

Measurement of spin-orbital angular momentum interactions in relativistic heavy-ion collisions

ALICE Collaboration*

Abstract

The first measurement of spin alignment of vector mesons ($\mathrm{K}^{* 0}$ and ϕ) in heavy-ion collisions at the Large Hadron Collider (LHC) is reported. The measurements are carried out as a function of transverse momentum $\left(p_{\mathrm{T}}\right)$ and collision centrality with the ALICE detector using the particles produced at midrapidity $(|y|<0.5)$ in $\mathrm{Pb}-\mathrm{Pb}$ collisions at a center-of-mass energy $\left(\sqrt{s_{\mathrm{NN}}}\right)$ of 2.76 TeV . The second diagonal spin density matrix element $\left(\rho_{00}\right)$ is measured from the angular distribution of the decay daughters of the vector meson in the decay rest frame, with respect to the normal of both the event plane and the production plane. The ρ_{00} values are found to be less than $1 / 3(=1 / 3$ implies no spin alignment) at low $p_{\mathrm{T}}(<2 \mathrm{GeV} / c)$ for both vector mesons. The observed deviations from $1 / 3$ are maximal for mid-central collisions at a level of 3σ for $\mathrm{K}^{* 0}$ and 2σ for ϕ mesons. As control measurements, the analysis is also performed using the $\mathrm{K}_{\mathrm{S}}^{0}$ meson, which has zero spin, and for the vector mesons in pp collisions; in both cases no significant spin alignment is observed. The ρ_{00} values at low p_{T} with respect to the production plane are closer to $1 / 3$ than for the event plane; they are related to each other through correlations introduced by the elliptic flow in the system. The measured spin alignment is surprisingly large compared to the polarization measured for Λ hyperons, but qualitatively consistent with the expectation from models which attribute the spin alignment to a polarization of quarks in the presence of large initial angular momentum in non-central heavy-ion collisions and a subsequent hadronization by the process of recombination.

(C) 2019 CERN for the benefit of the ALICE Collaboration.

Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

[^0]Ultra-relativistic heavy-ion collisions create a system of deconfined quarks and gluons, called the QuarkGluon Plasma (QGP) and provide the opportunity to study its properties. In collisions with non-zero impact parameter, a large angular momentum and magnetic field are also expected. Theoretical calculations estimate a total angular momentum of $O\left(10^{7}\right) \hbar[1]$ and a magnetic field $O\left(10^{14}\right) \mathrm{T}$ [2]. While the magnetic field is expected to be short lived (a few fm / c), the angular momentum is conserved and could be felt throughout the evolution of the system formed in the collision. Experimental observables sensitive to these initial conditions [3, 4] could be used to study the influence of angular momentum and a magnetic field on the properties and the dynamical evolution of the QGP and its subsequent hadronization.
Spin-orbit interactions have wide observable consequences in several branches of physics [5-7]. The direction of the angular momentum in non-central heavy-ion collisions is perpendicular to the reaction plane (subtended by the beam axis and impact parameter) [8]. In the presence of such a large angular momentum, the spin-orbit coupling of quantum chromodynamics (QCD) could lead to a polarization of quarks followed by a net-polarization of vector mesons $\left(\mathrm{K}^{* 0}\right.$ and ϕ) [8-12] along the direction of the angular momentum.
The spin alignment of a vector meson is described by a 3×3 Hermitian spin-density matrix [12]. The trace of the spin-density matrix is 1 and diagonal elements ρ_{11} and ρ_{-1-1} cannot be measured separately. As a result, there is only one independent diagonal element, ρ_{00}. The elements of the spin-density matrix can be studied by measuring the angular distributions of the decay products of the vector mesons with respect to a quantization axis. In the analysis presented here, two different quantization axes are used: i) a vector perpendicular to the production plane (PP) of the vector meson and ii) the normal to the reaction plane (RP) of the system. The PP is defined by the flight direction of the vector meson and the beam direction.

The spin density element ρ_{00} is determined from the distribution of the angle θ^{*} between the kaon decay daughter and the quantization axis in the decay rest frame [13],

$$
\begin{equation*}
\frac{\mathrm{d} N}{\mathrm{~d} \cos \theta^{*}} \propto\left[1-\rho_{00}+\cos ^{2} \theta^{*}\left(3 \rho_{00}-1\right)\right] \tag{1}
\end{equation*}
$$

The complete expression is given in [14] and Eq. 1 is obtained by applying parity symmetry of QCD, the unit trace condition of the spin density matrix, and integrating over the azimuthal angle. The probability of finding a vector meson in spin state zero ρ_{00} is $1 / 3$ in the absence of spin alignment and the angular distribution in Eq. 1 is uniform. Deviations from $\rho_{00}=1 / 3$ indicate that the vector meson has a preferred spin state, leading to a non-uniform angular distribution. This is the experimental signature of spin alignment.

The large initial angular momentum in combination with the spin-orbit interaction is expected to lead to spin alignment with respect to the reaction plane (RP). The reaction plane orientation cannot be measured directly, but is estimated from the final state distributions of particles. This experimentally measured plane is called the event plane [15] (EP). To correct for the spread of the EP with respect to the RP, the observed $\rho_{00}^{\text {obs }}$ is corrected for the EP resolution (R) using [16],

$$
\begin{equation*}
\rho_{00}=\frac{1}{3}+\left(\rho_{00}^{\mathrm{obs}}-\frac{1}{3}\right) \frac{4}{1+3 R} . \tag{2}
\end{equation*}
$$

There are specific qualitative predictions for the spin alignment effect [10]: (a) $\rho_{00}>1 / 3$ if the hadronization of a polarized parton proceeds via a fragmentation and less than $1 / 3$ for hadronization via recombination, (b) ρ_{00} is expected to have a maximum deviation from $1 / 3$ for mid-central heavy-ion collisions, where the angular momentum is also maximal, and a smaller deviation for both peripheral (large impact parameter) and central (small impact parameter) collisions, (c) the ρ_{00} value is expected to have maximum deviation from $1 / 3$ at low p_{T} and reach the value of $1 / 3$ at high p_{T} in the recombination
hadronization scenario, and (d) the effect is expected to be larger for $\mathrm{K}^{* 0}$ compared to ϕ due to their constituent quark composition. All of these features are probed for $\mathrm{K}^{* 0}$ and ϕ vector mesons in $\mathrm{Pb}-\mathrm{Pb}$ collisions presented in this letter. In addition, to establish the results, a control measurement is carried out using pp collisions, which do not possess large initial angular momentum, and the same analysis is done in $\mathrm{Pb}-\mathrm{Pb}$ collisions for $\mathrm{K}_{\mathrm{S}}^{0}$ mesons, which have zero spin. As a further cross check, the measurements are carried out by randomizing the directions of the event (RndEP) and production planes (RndPP).

The analyses are carried out using 43 million minimum bias pp collisions at $\sqrt{s}=13 \mathrm{TeV}$, taken in the year 2015 and 14 million minimum bias $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=2.76 \mathrm{TeV}$, collected in the year 2010. The measurements for vector mesons are performed at midrapidity $(|y|<0.5)$ as a function of p_{T} and are reported for pp collisions as well as for different centrality classes in $\mathrm{Pb}-\mathrm{Pb}$ collisions. The $\mathrm{K}_{\mathrm{S}}^{0}$ analysis is performed only for $\mathrm{Pb}-\mathrm{Pb}$ collisions in the $20-40 \%$ centrality class. The details of the ALICE detector, trigger conditions, centrality selection, and second order event plane [17] estimation using the V0 detectors at forward rapidity, can be found in [18-20]. For the analysis, events are accepted with a primary vertex position within $\pm 10 \mathrm{~cm}$ of the detector center along the beam axis. The event selection in $\mathrm{Pb}-\mathrm{Pb}$ collisions further requires at least one hit in any of V0A, V0C, and Silicon Pixel Detectors while in pp collisions at least one hit in both V0A and V0C is required. The events were classified by the collision centrality based on the amplitude measured in the V0 counters [20]. The $\mathrm{K}^{* 0}$ and ϕ vector mesons are reconstructed via their decays into charged $\mathrm{K} \pi$ and KK pairs, respectively, while the $\mathrm{K}_{\mathrm{S}}^{0}$ is reconstructed via its decay into two pions. The Time Projection Chamber (TPC) [21] and Time-of-Flight (TOF) detector [22] are used to identify the decay products of these mesons via specific ionization energy loss and time-of-flight measurements, respectively. The $\mathrm{K}^{* 0}$ and ϕ yields are determined via the invariant mass technique [23-25]. The background coming from combinatorial pairs and misidentified particles is removed by constructing the invariant mass distribution from the socalled mixed events for the $\mathrm{K}^{* 0}$ and $\phi[23,24]$. The combinatorial background for the $\mathrm{K}_{\mathrm{S}}^{0}$ candidates is significantly reduced by using topological criteria to select the distinctive V-shaped decay topology [25].

The invariant mass distributions are fitted with a Breit-Wigner (Voigtian: convolution of Breit-Wigner and Gaussian distributions) function for the $\mathrm{K}^{* 0}(\phi)$ signal and a $2^{\text {nd }}$ order polynomial that describes the residual background, in order to extract the yields [23, 24]. Extracted yields are then corrected for the reconstruction efficiency and acceptance in each $\cos \theta^{*}$ and p_{T} bin [23, 24]. The reconstruction efficiency is determined from Monte Carlo simulations of the ALICE detector response based on GEANT3 simulation [23, 24]. The signal extraction procedures for the vector mesons and $\mathrm{K}_{\mathrm{S}}^{0}$ are identical to those used in earlier publications reporting the p_{T} distribution of the mesons [23-25]. The mass peak positions and widths of the resonances across all the $\cos \theta^{*}$ bins for various p_{T} intervals in pp collisions and in different centrality classes of $\mathrm{Pb}-\mathrm{Pb}$ collisions are consistent with those obtained from earlier analyses $[23-25]$ and no significant dependence on $\cos \theta^{*}$ is seen. The resulting efficiency and acceptance corrected $\mathrm{d} N / \mathrm{d} \cos \theta^{*}$ distributions for selected p_{T} intervals in minimum bias pp collisions and in $10-50 \%$ central $\mathrm{Pb}-\mathrm{Pb}$ collisions are shown in Fig. 1 along with those for $\mathrm{K}_{\mathrm{S}}^{0}$ in $20-40 \%$ central $\mathrm{Pb}-\mathrm{Pb}$ collisions. These distributions are fitted with the functional form given in Eq. 1 to determine ρ_{00} for each p_{T} bin in pp and $\mathrm{Pb}-\mathrm{Pb}$ collisions. For the EP results, the values of resolution, R, used are $0.71,0.53$, $0.72,0.66$, and 0.40 for $10-50 \%, 0-10 \%, 10-30 \%, 30-50 \%$, and $50-80 \%$, respectively [17].

There are three main sources of systematic uncertainties in the measurements of the angular distribution of vector meson decays : (a) Meson yield extraction procedure: this contribution is estimated by varying the fit ranges for the yield extraction, the normalization range for the signal+background and background invariant mass distributions, the procedure to integrate the signal function to get the yields, and by varying the width of the resonance peak by leaving the corresponding parameter free in the fit, instead of keeping it fixed to the PDG value and the mass resolution obtained from simulations. These sources contribute to the uncertainties on the ρ_{00} value at a level of $12(8) \%$ at the lowest p_{T} and decrease with p_{T} to $4(3) \%$ at the highest p_{T} studied for the $\mathrm{K}^{* 0}(\phi)$. (b) Track selection criteria: this contribution includes variations

Figure 1: (Color online) Angular distribution of the decay daughter in the rest frame of the meson with respect to the quantization axis at $|y|<0.5$ for pp collisions at $\sqrt{s}=13 \mathrm{TeV}$ and $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=2.76 \mathrm{TeV}$. Panels (a) - (c) show results for $K^{* 0}$ and ϕ with respect to EP, PP, and random event plane. Panels (d) and (e) are the results for $\mathrm{K}_{\mathrm{S}}^{0}$ with respect to both the PP and EP and for vector mesons in pp collisions with respect to PP , respectively.
of the selection on the distance of closest approach to the collision vertex, the number of crossed pad rows in the TPC [21], the ratio of number of the found clusters to the number of expected clusters, and the quality of the track fit. The systematic uncertainties on the ρ_{00} value due to variation on the track selection criteria are $14(6) \%$ at the lowest p_{T} and about $11(5) \%$ at the highest p_{T} for $\mathrm{K}^{* 0}(\phi)$. (c) Particle identification procedure: this is evaluated by varying the particle identification criteria related to the TPC and TOF detectors. The corresponding uncertainty is $5(3) \%$ at the lowest p_{T} and about $4(4.5) \%$ at the highest p_{T} studied for $\mathrm{K}^{* 0}(\phi)$. The total systematic uncertainty on ρ_{00} is obtained by adding all the contributions in quadratures.

Several consistency checks are carried out. Specifically the yields of vector mesons are summed over $\cos \theta^{*}$ bins for each p_{T} interval to obtain the p_{T} distributions, which are found to be consistent within the statistical uncertainties with the published p_{T} distributions in $\mathrm{Pb}-\mathrm{Pb}$ collisions [23, 24]. Similarly a closure test (comparison between generated and reconstructed angular distribution) is carried out for the Monte Carlo (MC) data which is used to obtain the reconstruction efficiencies for the mesons. Two different event generators are used to determine the reconstruction efficiency and the results are consistent. The effect of the shape of the p_{T} distributions in the MC simulations is studied in detail and the impact on the ρ_{00} measurement is found to be small. The dependence of the reconstruction efficiency for a $\cos \theta^{*}$ range on the azimuthal angle of vector meson $\left(\phi_{V}\right)$ relative to the event plane angle (Ψ) is also studied. The reconstruction efficiencies obtained in a $\cos \theta^{*}$ range by integrating over $\phi_{V}-\Psi$ are similar to the efficiency obtained by averaging over the $\phi_{V}-\Psi$ bins. Data samples with two different magnetic field polarities in the experiment are separately analyzed and the $\cos \theta^{*}$ distributions are found to be consistent. In addition, the analysis is performed separately for positive $(0<y<0.5)$ and negative $(-0.5<y<0)$ rapidity and also for $\mathrm{K}^{* 0}$ versus $\overline{\mathrm{K}}^{* 0}$; the different samples are also consistent. The final result is reported for average yield of particles $\left(\mathrm{K}^{* 0}\right)$ and anti-particles $\left(\overline{\mathrm{K}}^{* 0}\right)$, obtained from the combined mass distribution.

Figure 2 shows the measured ρ_{00} as a function of p_{T} for $\mathrm{K}^{* 0}$ and ϕ mesons in pp collisions and $\mathrm{Pb}-\mathrm{Pb}$ collisions, along with the measurements for $\mathrm{K}_{\mathrm{S}}^{0}$ in $\mathrm{Pb}-\mathrm{Pb}$ collisions. In mid-central $(10-50 \%) \mathrm{Pb}-\mathrm{Pb}$ collisions, ρ_{00} is below $1 / 3$ at the lowest measured p_{T} and increases to $1 / 3$ within uncertainties for $p_{\mathrm{T}}>2 \mathrm{GeV} / c$. At low p_{T}, the central value of ρ_{00} is smaller for $\mathrm{K}^{* 0}$ than for ϕ, although the results are compatible within uncertainties. In pp collisions, ρ_{00} is independent of p_{T} and equal to $1 / 3$ within uncertainties. For the spin zero hadron $\mathrm{K}_{\mathrm{S}}^{0}, \rho_{00}$ is consistent with $1 / 3$ within uncertainties in $\mathrm{Pb}-\mathrm{Pb}$ collisions. The results with random event plane directions are also compatible with no spin alignment for the studied p_{T} range, except for the smallest p_{T} bin, where ρ_{00} less than $1 / 3$ but still larger than for EP and PP measurements. The origin of this is discussed later in context of Fig. 44 The results for the random production plane (the momentum vector direction of each vector meson is randomized) are similar to RndEP measurements. These results indicate that a spin alignment is present at lower p_{T}, which is a qualitatively consistent with the predictions [10].
Figure 3 shows ρ_{00} for $\mathrm{K}^{* 0}$ and ϕ mesons as a function of average number of participating nucleons ($\left\langle N_{\text {part }}\right\rangle$) [20] for $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=2.76 \mathrm{TeV}$. Large $\left\langle N_{\text {part }}\right\rangle$ correspond to the central collisions, while peripheral events have low $\left\langle N_{\text {part }}\right\rangle$. In the lowest p_{T} range, the ρ_{00} values have maximum deviation from $1 / 3$ for intermediate centrality and approach $1 / 3$ for both central and peripheral collisions. This centrality dependence is qualitatively consistent with the dependence of initial angular momentum on impact parameter in heavy-ion collisions [1]. At higher p_{T}, the ρ_{00} measurements are consistent with $1 / 3$ for all the collision centrality classes studied for both vector mesons. For the low- p_{T} measurements in mid-central $\mathrm{Pb}-\mathrm{Pb}$ collisions, the maximum deviations of ρ_{00} from $1 / 3$ are 3.2 (2.6) σ and 2.1 (1.9) σ for $\mathrm{K}^{* 0}$ and ϕ mesons, respectively, for mid-central $\mathrm{Pb}-\mathrm{Pb}$ collisions with respect to the PP (EP). The σ are calculated by adding statistical and systematic uncertainties into quadrature.

The relation between the ρ_{00} values with respect to different quantization axes can be expressed using Eq. 2 and calculating the corresponding factor R. This gives $\rho_{00}(\operatorname{RndEP})-\frac{1}{3}=\left(\rho_{00}(\mathrm{EP})-\frac{1}{3}\right) \times \frac{1}{4}$

Figure 2: (Color online) Transverse momentum dependence of ρ_{00} corresponding to $\mathrm{K}^{* 0}$, ϕ, and $\mathrm{K}_{\mathrm{S}}^{0}$ mesons at $|y|<0.5$ in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=2.76 \mathrm{TeV}$ and minimum bias pp collisions at $\sqrt{s}=13 \mathrm{TeV}$. Results are shown for spin alignment with respect to event plane (panels a,b), production plane (c,d) and random event plane (e,f) for $\mathrm{K}^{* 0}$ (left column) and ϕ (right column). The statistical and systematic uncertainties are shown as bars and boxes, respectively.

Figure 3: (Color online) Measurements of ρ_{00} as a function of $\left\langle N_{\text {part }}\right\rangle$ for $\mathrm{K}^{* 0}$ and ϕ mesons at ranges of low and high p_{T} in $\mathrm{Pb}-\mathrm{Pb}$ collisions. The statistical and systematic uncertainties are shown as bars and boxes, respectively. Few data points are shifted horizontally for better visibility.
($R=0$ for random plane) and $\rho_{00}(\mathrm{PP})-\frac{1}{3}=\left(\rho_{00}(\mathrm{EP})-\frac{1}{3}\right) \times \frac{1+3 v_{2}}{4}\left(R=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \cos \left(2 \psi_{\mathrm{EP}}\right)[1+\right.$ $\left.2 v_{2} \cos \left(2 \psi_{\mathrm{EP}}\right)\right] d \psi_{\mathrm{EP}}$, where ψ_{EP} is the event plane angle and ν_{2} is the azimuthal anisotropy). This is further confirmed (see Fig. 4) using a toy model simulation with PYTHIA 8.2 event generator by incorporating v_{2} and spin alignment through appropriate rotation of $\mathrm{K}^{* 0}$ and its decay products momentum [26, 27].

Spin alignment measurements have been performed in various collision systems in the past. Several measurements in $\mathrm{e}^{+} \mathrm{e}^{-}$[28-30], hadron-proton [31] and nucleon-nucleus collisions [32] were carried out to understand the role of spin in the dynamics of particle production. These measurements in small collision systems with respect to the production plane have $\rho_{00}>1 / 3$ and off-diagonal elements close to zero. For pp collisions at $\sqrt{s}=13 \mathrm{TeV}$ the $\rho_{00} \sim 1 / 3$ for the p_{T} range studied (see Fig.3). Initial measurements at RHIC1 with a relatively small sample of $\mathrm{Au}-\mathrm{Au}$ collisions at $\sqrt{s_{\mathrm{NN}}}=200 \mathrm{GeV}$ did not find significant spin alignment for the vector mesons [33]. Significant polarization of Λ baryons $(\operatorname{spin}=1 / 2)$ was reported at low RHIC energies. The polarization is found to decrease with increasing $\sqrt{s_{\mathrm{NN}}}$ 34]. At the LHC energies, the global polarization for Λ baryons was measured to less than 0.15% [35] and compatible with zero within uncertainties. Measurements of particles with spin-1/2 are performed with respect to the $1^{\text {st }}$ order event plane in order to know the orientation of the angular momentum vector. However, the effect of "spin up" and "spin down" is the same for particles with spin-1, hence the second order event plane suffices. In the recombination model, ρ_{00} is expected to depend on the square of the quark polarization whereas the Λ polarization depends linearly on it, therefore using quark polarization information from Λ measurements will yield a $\rho_{00} \sim 1 / 3$ at LHC energies. The large effect observed for the central value of ρ_{00} for mid-central $\mathrm{Pb}-\mathrm{Pb}$ collisions at low p_{T} is therefore puzzling. However, the magnitude of the spin alignment also depends on the details of the transfer of the quark

[^1]

Figure 4: (Color online) ρ_{00} values from data in $10-50 \% \mathrm{~Pb}-\mathrm{Pb}$ collisions at $0.8<p_{\mathrm{T}}<1.2 \mathrm{GeV} / c$ with respect to various planes compared with expectations from model simulations with and without added elliptic flow $\left(v_{2}\right)$. The statistical and systematic uncertainties are shown as bars and boxes, respectively.
polarization to the hadrons (baryon vs. meson), details of the hadronization mechanism (recombination vs. fragmentation), re-scattering, regeneration, and possibly the lifetime and mass of the hadrons in the system. Moreover, the vector mesons are predominantly primordially produced whereas the hyperons are expected to have large contributions from resonance decayes. To date, no quantitative theory expectation for ρ_{00} at LHC energies exists. We expect that these measurements will encourage further theoretical work on this topic.

In conclusion, for the first time we obtain evidence of a significant spin alignment effect for vector mesons in heavy-ion collisions. The effect is strongest when the alignment is measured at low p_{T} with respect to a vector perpendicular to the reaction plane and for mid-central ($10-50 \%$) collisions. These observations are qualitatively consistent with expectations from the effect of large initial angular momentum in non-central heavy-ion collisions, which leads to quark polarization via spin-orbit coupling and is subsequently transferred to hadronic degrees of freedom by hadronization via recombination. However, the measured spin alignment is surprisingly large compared to the polarization measured for Λ hyperons where in addition a strong decrease in polarization with $\sqrt{s_{\mathrm{NN}}}$ is observed.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS),

Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Ministry of Education of China (MOEC), Ministry of Science \& Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research I Natural Sciences, the VILLUM FONDEN and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l'Energie Atomique (CEA), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS) and Région des Pays de la Loire, France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Ministry of Research and Innovation and Institute of Atomic Physics, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation, National Research Centre Kurchatov Institute, Russian Science Foundation and Russian Foundation for Basic Research, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut \& Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; Suranaree University of Technology (SUT), National Science and Technology Development Agency (NSDTA) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America.

References

[1] F. Becattini, F. Piccinini, and J. Rizzo, "Angular momentum conservation in heavy ion collisions at very high energy", Phys. Rev. C77 (2008) 024906, arXiv:0711. 1253 [nucl-th].
[2] D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, "The Effects of topological charge change in heavy ion collisions: 'Event by event P and CP violation'", Nucl. Phys. A803 (2008) 227-253, arXiv:0711.0950 [hep-ph].
[3] R. J. Fries, G. Chen, and S. Somanathan, "Initial Angular Momentum and Flow in High Energy Nuclear Collisions", Phys. Rev. C97 no. 3, (2018) 034903, arXiv:1705. 10779 [nucl-th].
[4] V. Voronyuk, V. D. Toneev, W. Cassing, E. L. Bratkovskaya, V. P. Konchakovski, and S. A. Voloshin, "(Electro-)Magnetic field evolution in relativistic heavy-ion collisions", Phys. Rev. C83 (2011) 054911, arXiv:1103.4239 [nucl-th].
[5] J. D. Jackson, "Classical Electrodynamics", Wiley, New York 3rd edition (1982) Sec. 11-8 and 11-11.
[6] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, "Quantum Electrodynamics", Pergamon Press Volume 4 of Course of Theoretical Physics, 2nd Edition (1999) .
[7] M. G. Mayer, "On closed shells in nuclei. II", Phys. Rev. 75 (1949) 1969-1970.
[8] Z.-T. Liang and X.-N. Wang, "Globally polarized quark-gluon plasma in non-central A+A collisions", Phys. Rev. Lett. 94 (2005) 102301, arXiv: nucl-th/0410079 [nucl-th]. [Erratum: Phys. Rev. Lett.96, 039901(2006)].
[9] S. A. Voloshin, "Polarized secondary particles in unpolarized high energy hadron-hadron collisions?", arXiv:nucl-th/0410089 [nucl-th].
[10] Z.-T. Liang and X.-N. Wang, "Spin alignment of vector mesons in non-central A+A collisions", Phys. Lett. B629 (2005) 20-26, arXiv: nucl-th/0411101 [nucl-th].
[11] Z.-T. Liang, "Global polarization of QGP in non-central heavy ion collisions at high energies", J. Phys. G34 (2007) S323-330, arXiv:0705.2852 [nucl-th].
[12] Y.-G. Yang, R.-H. Fang, Q. Wang, and X.-N. Wang, "Quark coalescence model for polarized vector mesons and baryons", Phys. Rev. C97 no. 3, (2018) 034917, arXiv:1711. 06008 [nucl-th].
[13] K. Schilling, P. Seyboth, and G. E. Wolf, "On the Analysis of Vector Meson Production by Polarized Photons", Nucl. Phys. B15 (1970) 397-412. [Erratum: Nucl. Phys.B18,332(1970)].
[14] $\frac{\mathrm{d} N}{\mathrm{~d} \cos \theta^{*} \mathrm{~d} \varphi^{*}} \propto\left[\cos ^{2} \theta^{*} \rho_{00}+\sin ^{2} \theta\left(\rho_{11}+\rho_{-1-1}\right) / 2-\sin 2 \theta\left(\cos \varphi^{*} \operatorname{Re} \rho_{10}-\right.\right.$ $\left.\sin \varphi^{*} \operatorname{Im} \rho_{10}\right) / \sqrt{2}+\sin 2 \theta\left(\cos \varphi^{*} \operatorname{Re} \rho_{-10}+\sin \varphi^{*} \operatorname{Im} \rho_{-10}\right) / \sqrt{2}-\sin ^{2} \theta\left(\cos 2 \varphi^{*} \operatorname{Re} \rho_{1-1}-\right.$ $\left.\left.\sin 2 \varphi^{*} \operatorname{Im} \rho_{1-1}\right)\right]$, The angle denoted here as θ^{*} is that made by one of the decay daughters in the rest frame of the vector meson with respect to the quantization axis and φ^{*} is the corresponding azimuthal angle.
[15] A. M. Poskanzer and S. A. Voloshin, "Methods for analyzing anisotropic flow in relativistic nuclear collisions", Phys. Rev. C58 (1998) 1671-1678, arXiv:nucl-ex/9805001 [nucl-ex].
[16] A. H. Tang, B. Tu, and C. S. Zhou, "Practical considerations for measuring global spin alignment of vector mesons in relativistic heavy ion collisions", Phys. Rev. C98 no. 4, (2018) 044907, arXiv:1803.05777 [nucl-ex].
[17] ALICE Collaboration, B. B. Abelev et al., "Elliptic flow of identified hadrons in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=2.76 \mathrm{TeV} "$, JHEP 06 (2015) 190, arXiv: 1405.4632 [nucl-ex].
[18] ALICE Collaboration, K. Aamodt et al., "The ALICE experiment at the CERN LHC", JINST 3 (2008) S08002.
[19] ALICE Collaboration, K. Aamodt et al., "Centrality dependence of the charged-particle multiplicity density at mid-rapidity in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$ ", Phys. Rev. Lett. 106 (2011) 032301, arXiv:1012.1657 [nucl-ex].
[20] ALICE Collaboration, B. Abelev et al., "Centrality determination of $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{N N}}=$ 2.76 TeV with ALICE", Phys. Rev. C88 no. 4, (2013) 044909, arXiv:1301.4361 [nucl-ex].
[21] J. Alme et al., "The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events", Nucl. Instrum. Meth. A622 (2010) 316-367, arXiv:1001.1950 [physics.ins-det].
[22] ALICE Collaboration, G. Dellacasa et al., "ALICE technical design report of the time-of-flight system (TOF)", CERN-LHCC-2000-012 (2000) . http://cds.cern.ch/record/430132.
[23] ALICE Collaboration, J. Adam et al., " $K^{*}(892)^{0}$ and $\phi(1020)$ meson production at high transverse momentum in pp and $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=2.76 \mathrm{TeV}$ ", Phys. Rev. C95 no. 6, (2017) 064606, arXiv:1702.00555 [nucl-ex].
[24] ALICE Collaboration, B. B. Abelev et al., " $\mathrm{K}^{*}(892)^{0}$ and $\phi(1020)$ production in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=2.76 \mathrm{TeV}$ ', Phys. Rev. C91 (2015) 024609, arXiv:1404.0495 [nucl-ex].
[25] ALICE Collaboration, B. B. Abelev et al., " $\mathrm{K}_{\mathrm{S}}^{0}$ and Λ production in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{N N}}=$ 2.76 TeV", Phys. Rev. Lett. 111 (2013) 222301, arXiv:1307. 5530 [nucl-ex].
[26] The v_{2} is introduced by modifying the angle in the azimuthal plane as $\varphi_{0}=\varphi+v_{2} \sin 2 \varphi$, where φ_{0} is the azimuthal angle of a $\mathrm{K}^{* 0}$ in absence of v_{2} and for a given value of v_{2}, φ_{0} transforms to φ.
[27] Spin alignment is introduced through the equation
$\cos \theta_{0}^{*}=3 / 2 \times\left[\left(1-\rho_{00}\right) \cos \theta^{*}+1 / 3\left(3 \rho_{00}-1\right) \cos ^{3} \theta^{*}\right]$. Here θ_{0}^{*} is the angle made by the decay daughter of $\mathrm{K}^{* 0}$ with the quantization axis in the absence of spin alignment. θ_{0}^{*} transforms to θ^{*} to introduce a given input value of ρ_{00}. In this study we assume that the φ^{*} remains fixed during the rotation.
[28] OPAL Collaboration, K. Ackerstaff et al., "Spin alignment of leading K*0 (892) mesons in hadronic Z^{0} decays", Phys. Lett. B412 (1997) 210-224, arXiv: hep-ex/9708022 [hep-ex]
[29] OPAL Collaboration, K. Ackerstaff et al., "Study of $\phi(1020), D^{* \pm}$ and B* spin alignment in hadronic Z^{0} decays", Z. Phys. C74 (1997) 437-449.
[30] DELPHI Collaboration, P. Abreu et al., "Measurement of the spin density matrix for the ρ^{0}, $\mathrm{K}^{* 0}(892)$ and ϕ produced in Z^{0} decays", Phys. Lett. B406 (1997) 271-286.
[31] Brussels-Genoa-Mons-Nijmegen-Serpukhov-CERN Collaboration, M. Barth et al., "Inclusive Resonance Production in $\mathrm{K}^{+} \mathrm{p}$ Interactions at $70-\mathrm{GeV} / \mathrm{c}$ ", Nucl. Phys. B223 (1983) 296. [Erratum: Nucl. Phys.B232,547(1984)].
[32] EXCHARM Collaboration, A. N. Aleev et al., "Spin alignment of $\mathrm{K}^{* \pm}(892)$ mesons produced in neutron carbon interactions", Phys. Lett. B485 (2000) 334-340,
arXiv:hep-ex/0002054 [hep-ex]
[33] STAR Collaboration, B. I. Abelev et al., "Spin alignment measurements of the K*0 (892) and ϕ (1020) vector mesons in heavy ion collisions at $\sqrt{s_{\mathrm{NN}}}=200 \mathrm{GeV}^{\prime}$, Phys. Rev. C77 (2008) 061902, arXiv:0801.1729 [nucl-ex].
[34] STAR Collaboration, L. Adamczyk et al., "Global Λ hyperon polarization in nuclear collisions: evidence for the most vortical fluid", Nature 548 (2017) 62-65, arXiv: 1701.06657 [nucl-ex].
[35] ALICE Collaboration, S. Acharya et al., "Global polarization of Λ and $\bar{\Lambda}$ hyperons in $\mathrm{Pb}-\mathrm{Pb}$ collisions at the LHC", arXiv:1909.01281 [nucl-ex].

A The ALICE Collaboration

S. Achary $\sqrt{141}$, D. Adamov $\sqrt{94}$, A. Adler ${ }^{\sqrt{74}}$, J. Adolfsson $\sqrt{80}$, M.M. Aggarwa $\sqrt{99}$, G. Aglieri Rinella $\sqrt{33}$, M. Agnelld $\frac{30}{30}$ N. Agrawa $\sqrt{10[53}, ~ Z . ~ A h a m m e d ~ \sqrt{141}, ~ S . ~ A h m a d ~ \sqrt{16}$, S.U. Ahr $\sqrt{76}$, A. Akindino $\sqrt{91}$, M. Al-Turany $\sqrt{106}$, S.N. Alam ${ }^{141}$, D.S.D. Albuquerque $\sqrt{122}$, D. Aleksandro $\sqrt{87}$, B. Alessandrd $\sqrt{58}$, H.M. Alfand ${ }^{6}$, R. Alfaro

 V. Anguelov $\sqrt{103}$, C. Anson $\sqrt{15]}$, T. Antičii 107 , F. Antinor $\sqrt{56}$, P. Antoniol $\sqrt{53}$, R. Anwat $\sqrt{125}$, N. Apadula $\sqrt{79}$, L. Aphecetche $e^{[144}$, H. Appelshäuser ${ }^{68}$, S. Arcelli ${ }^{26}$, R. Arnald ${ }^{58]}$, M. Arratia i^{79}, I.C. Arsene $\sqrt{20}$, M. Arslandok k^{103}, A. Augustinus $\sqrt{33}$, R. Averbeck ${ }^{106}$, S. Aziz $\sqrt{61}$, M.D. Azm $\sqrt{16}$, A. Badal $\sqrt{55}$, Y.W. Baek ${ }^{40}$, S. Bagnasc $\sqrt{58}$, X. Ba ${ }^{106}$, R. Bailhach e^{68}, R. Bal $\sqrt{100}$, A. Baldisser ${ }^{137}$, M. Bal ${ }^{[42}$, S. Balouz a^{104}, R. Barbera ${ }^{27}$, L. Barioglid $\sqrt{25}$, G.G. Barnaföld ${ }^{145}$, L.S. Barnby $\sqrt{93}$, V. Barre ${ }^{\sqrt{134}}$, P. Bartalin $\sqrt{6}$, K. Barth $\sqrt{33}$, E. Bartsch ${ }^{68}$, F. Baruffald ${ }^{[28}$, N. Bastid ${ }^{\frac{134}{2}}$, S. Basu ${ }^{143}$, G. Batign e^{114}, B. Batyuny \int^{75}, D. Baur ${ }^{488}$,

 D. Bereny $\sqrt{145}$, R.A. Berten $\sqrt{130}$, D. Berzand $\sqrt{58}$, M.G. Besoiu 67 , L. Bete $\sqrt{33}$, A. Bhasin 100 , I.R. Bha 100 , M.A. Bha ${ }^{37}$, H. Bhat ${ }^{[48}$, B. Bhattacharje ${ }^{41}$, A. Bianch ${ }^{25}$, L. Bianch ${ }^{255}$, N. Bianch $\sqrt{51}$, J. Bielčí1 $\sqrt{36}$,
 G. Bocal $\sqrt{139}$, F. Bock $\sqrt{33} \sqrt{95}$, A. Bogdano $\sqrt{92}$, S. Bo $\sqrt{23}$, L. Boldizsár ${ }^{[145}$, A. Bolozdyny $\sqrt{922}$, M. Bombara ${ }^{37}$, G. Bonom $\sqrt[140]{140}$ H. Bore $\sqrt{137}$, A. Borisso $\sqrt{22 \mid 144}$, H. Boss $\sqrt{146}$, E. Botta $\sqrt{25}$, L. Bratrud $\sqrt{68}$, P. Braun-Munzinge 106 , M. Bregan $\frac{121}{12}$, M. Bro2 2^{36}, E.J. Brucken ${ }^{43}$, E. Brun ${ }^{58}$, G.E. Brund ${ }^{105}$, M.D. Buckland $\sqrt{127]}$, D. Budniko $\sqrt{108}$, H. Buesching $\frac{68}{68}$, S. Bufalind $\frac{30}{}$, O. Bugnon $\sqrt{114}$, P. Buhle $\sqrt{113}$, P. Buncic $\sqrt{33}$, Z. Buthelezi $\frac{\sqrt{72} 131}{}$, J.B. But $\frac{14}{14}$, J.T. Buxtor $\frac{96}{96}$, S.A. Bysiak ${ }^{[118}$, D. Caffarr ${ }^{89}$, A. Caliva $\sqrt{106}$, E. Calvo Villar 111 , R.S. Camachd ${ }^{44}$, P. Camerin $\sqrt{24}$, A.A. Capor $\sqrt{113}$, F. Carnesecch ${ }^{10[26}$, R. Caron $\sqrt{137}$, J. Castillo Castellanos $\sqrt{137}$, A.J. Castrd ${ }^{130}$, E.A.R. Casul $\sqrt{54}$, F. Cataland $\frac{30}{30}$ C. Ceballos Sanchez $\frac{52}{51}$, P. Chakraborty ${ }^{488}$, S. Chandra ${ }^{141}$, W. Chand ${ }^{60}$, S. Chapeland ${ }^{333}$,
M. Chartier ${ }^{[127}$, S. Chattopadhyay $\sqrt{141}$, S. Chattopadhyay $\sqrt{109}$, A. Chauvir $\sqrt{234}$, C. Cheshko $\sqrt{135}$, B. Cheyni $\sqrt{135}$, V. Chibante Barrosd $\sqrt{33}$, D.D. Chinellatd $\sqrt{122}$, S. Chd $\sqrt{60}$, P. Chochula $\sqrt{33}$, T. Chowdhury $\sqrt{134}$, P. Christakoglou $\sqrt{89}$, C.H. Christensen $\sqrt[88]{88}$, P. Christiansen $\sqrt{80}$, T. Chujd ${ }^{133}$, C. Cical $\sqrt{54}$, L. Cifarell $\sqrt{10626}$, F. Cindolo $\sqrt{53}$, J. Cleymans $\sqrt{124}$, F. Colamari $\sqrt{52}$, D. Colell2 $\sqrt{52}$, A. Collu $\sqrt[79]{70}$ M. Colocci $\sqrt{26}$, M. Conca $5 \sqrt{58 \text { liil }}$, G. Conesa Balbastre $\sqrt{78}$, Z. Conesa del Valle ${ }^{61}$, G. Contir ${ }^{24] 127}$, J.G. Contreras ${ }^{36}$, T.M. Cormiel ${ }^{95]}$ Y. Corrales Morales ${ }^{25}$, P. Cortese ${ }^{31}$,

D. Dabrowsk $\sqrt{142}$, T. Dahms $\sqrt{104 \mid 117]}$, A. Dainese e^{56}, F.P.A. Dama $\sqrt{114 \mid 137]}$, M.C. Danisch 103, A. Danu $\sqrt{67}$,
 Catald 5^{52}, J. de Cuveland $\sqrt{38}$, A. De Falcd ${ }^{23}$, D. De Gruttol $\sqrt{10}$, N. De Marc $\sqrt{58}$, S. De Pasqual ${ }^{29}$, S. Deb ${ }^{49}$,

D. Di Bar ${ }^{\sqrt[32]{2}}$ A. Di Maur $\sqrt{33}$, R.A. Diaz 7^{8}, T. Diete $\sqrt{124}$, P. Dillenseger ${ }^{68}$, Y. Ding ${ }^{64}$, R. Divi ${ }^{33}$, D.U. Dixii ${ }^{19}$,

Ø. Djuvsland $\sqrt{21}$, U. Dmitrieva $\sqrt{62}$, A. Dobrin $\sqrt[33167]{ }$, B. Dönigus $\sqrt{68}$, O. Dordic $\sqrt{20}$, A.K. Dubey ${ }^{141}$, A. Dubl $\sqrt{106}$,
S. Dudi $\sqrt{99}$, M. Dukhishyam $\sqrt{85}$, P. Dupieux $\sqrt{[134}$, R.J. Ehlerr $\sqrt{146}$, V.N. Eikeland $\sqrt{21]}$, D. Elii ${ }^{52}$, H. Enge $\sqrt{744}$
E. Epple $\sqrt{146}$, B. Erazmus $\sqrt{114}$, F. Erhard ${ }^{986}$, A. Erokhin $\sqrt{112]}$, M.R. Ersda $\sqrt{21}$, B. Espagnor $\sqrt{61}$, G. Euliss $\sqrt{33}$, D. Evans $\sqrt{110]}$ S. Evdokimor $\sqrt{90]}$, L. Fabbiett 1041117 , M. Faggin ${ }^{28}$, J. Faivre ${ }^{78]}$, F. Fan $\sqrt{6}$, A. Fanton $\sqrt{[5]}$, M. Fase $\sqrt{95}$,
 V.J.G. Feuillard ${ }^{103}$, J. Figie $\sqrt{118}^{118}$, S. Filchagin ${ }^{108}$, D. Finogee $\sqrt{62}$, F.M. Fiond $\sqrt{21}^{21}$, G. Fiorenza $\sqrt{52}$, F. Flol ${ }^{125}$, S. Foertsch ${ }^{721}$, P. Fok $\sqrt{106}^{106}$, Fokin ${ }^{877}$, E. Fragiacomd $\sqrt{59}$, U. Frankenfeld $\sqrt{106}$, U. Fuch $\sqrt{33}$, C. Furge ${ }^{781}$, A. Furs ${ }^{62}$, M. Fusco Girard $\sqrt{29}$, J.J. Gaardhøj. ${ }^{88}$, M. Gagliard ${ }^{\sqrt[25]{25}}$, A.M. Gagd $\sqrt{111}$, A. Ga ${ }^{[136}$, C.D. Galvar ${ }^{120}$, P. Ganot t^{83},

 P. Giubellind $\sqrt{58 \sqrt{106}}$, P. Giubilatd $\sqrt{28}$, P. Glässe $\sqrt{103}$, D.M. Goméz Cora $\sqrt{71}$, A. Gomez Ramire 2^{74}, V. Gonzale 2^{106},
 K.L. Graham $\frac{110}{10}$ L. Greinel $\sqrt[79]{79}$, A. Grelli $\sqrt{63}$, C. Grigora $\sqrt{33}$, V. Grigorie $\sqrt{92}$, A. Grigoryan $\frac{11}{2}$, S. Grigoryan $\sqrt{75}$,

 E.G. Hernande $2^{[44}$, G. Herrera Corra ${ }^{9} 9$, F. Herrmann ${ }^{[144}$, K.F. Hetland ${ }^{35}$, T.E. Hilder $\frac{\sqrt{43}}{}$, H. Hillemanns $\sqrt{33}$, C. Hills $\sqrt{127}$, B. Hippolyte $\sqrt{136}$, B. Hohlwege ${ }^{\sqrt[104]{104}}$, D. Horak ${ }^{\sqrt{36}}$, A. Hornung ${ }^{68]}$, S. Hornung ${ }^{106}$, R. Hosokaw $\sqrt{15 \mid 133}$, P. Hristo $\sqrt{33}$, C. Huang $\sqrt{61}$, C. Hughe $\sqrt{130}^{13}$, P. Huhn ${ }^{68}$, T.J. Humanid ${ }^{96}$, H. Hushnud $\sqrt{109}$, L.A. Husova $\sqrt{144}$,
N. Hussain $\sqrt{41}$, S.A. Hussair $\sqrt{14}$, D. Huttel $\sqrt{38}$, J.P. Iddor $\sqrt{331127}$, R. Ilkae $\sqrt{108}$, M. Inaba $\sqrt{133}$, G.M. Innocenti $\sqrt{33}$, M. Ippolito $\sqrt{87}$, A. Isako $\sqrt{944}$ M.S. Islam $\frac{\sqrt{109}, ~ M . ~ I v a n o ~}{\sqrt{106}}$ V. Ivano $\sqrt{97}$, V. Izuchee $\sqrt{90}$, B. Jacak $\frac{\sqrt{79}}{}$,
 M.A. Janik ${ }^{[142}$, T. Janson $\sqrt{74}$, M. Jerci ${ }^{98}$, O. Jevons $\sqrt{110}$, M. Jin $\sqrt{125}$, F. Jona $\sqrt{95] 144}$, P.G. Jones $\sqrt{110}$, J. Jung $\sqrt{68 \text {, }}$ M. Jung $\sqrt{68}$, A. Juskd ${ }^{1100}$, P. Kalinak ${ }^{64}$, A. Kalwei ${ }^{33}$, V. Kaplir ${ }^{922}$, S. Kat ${ }^{66}$, A. Karasu Uysa ${ }^{771}$, O. Karaviche $\sqrt{62}$,
 M. Kei ${ }^{33}$, B. Ketze ${ }^{[42}$, Z. Khabanova ${ }^{89}$, A.M. Khan ${ }^{6}$, S. Khan ${ }^{16}$, S.A. Khan ${ }^{141}$, A. Khanzadee $\sqrt{97}$, Y. Kharlo $\sqrt{90}$, A. Khatur $\frac{16}{16}$, A. Khunti $\sqrt{118}$, B. Kilens $\sqrt{35}$, B. Kim ${ }^{60}$, B. Kim $\sqrt{133}$, D. Kim ${ }^{147,}$, D.J. Kim $\sqrt{126}$,
 T. Kim ${ }^{147}$, T. Kim ${ }^{147}$, S. Kirsch ${ }^{\frac{38]}{68}}$, I. Kise $\sqrt{38}$, S. Kisele $\sqrt{91}$, A. Kisie $\sqrt{142}$, J.L. Klay ${ }^{51}$, C. Klein ${ }^{68}$, J. Klein $\sqrt{58}$, S. Klein ${ }^{79}$, C. Klein-Bösing $\sqrt{144}$, M. Kleiner ${ }^{68}$, A. Kluge ${ }^{\sqrt{33}}$, M.L. Kniche ${ }^{\frac{33}{3}}$, A.G. Knospe $e^{[125}$, C. Kobda $\sqrt{115]}$,
 P.J. Konopk $\sqrt{33}$, L. Kosk $\sqrt{116}$, O. Kovalenk $\sqrt{844}$, V. Kovalenk $\sqrt{112}$, M. Kowalsk $\sqrt{118}$, I. Králik ${ }^{64}$, A. Kravčákoval $\sqrt{37}$,

 S. Kundu ${ }^{\sqrt[85]{ }}$, P. Kurashvili ${ }^{84}$, A. Kurepin ${ }^{[62}$, A.B. Kurepin $\sqrt{62}$, A. Kuryakin 108 , S. Kushpi ${ }^{194}$, J. Kvapi ${ }^{1110}$, M.J. Kweor $\sqrt{60}$, J.Y. Kwor $\frac{60}{60}$ Y. Kwon $\sqrt{147}$, S.L. La Point $\sqrt{38}$, P. La Rocca $\sqrt{27}$, Y.S. Lal $\sqrt{79}$, R. Lango $\sqrt{129}$, K. Lapidu $\sqrt{33}$, A. Lardeux ${ }^{201}$, P. Lariono $\sqrt{51}$, E. Laud ${ }^{33}$, R. Lavicka ${ }^{\sqrt{36}}$, T. Lazareva $\sqrt{112}$, R. Lea ${ }^{24}$, L. Leardin $\sqrt{103}$, J. Lee ${ }^{\sqrt{133}}$, S. Le $e^{\sqrt{147}}$, F. Leha $\sqrt{89}$, S. Lehne $\sqrt{113}$, J. Lehrbach $\sqrt{38}$, R.C. Lemmon $\sqrt{93}$, I. León Monzón ${ }^{1200}$

 W.J. Llope $\sqrt{143}$, I.M. Lofne $\sqrt{21}$, V. Logino $\sqrt{92}$, C. Loizides 95 , P. Lonca ${ }^{34}$, X. Lope $\sqrt{134}$, E. López Torre $\sqrt{8}$, J.R. Luhde $\frac{\sqrt{144}}{2}$ M. Lunardon $\sqrt{28]}$, G. Luparelld $\sqrt{59}$, Y. M $\sqrt{39}$, A. Maevskayd $\sqrt{62}$, M. Mage $\frac{\sqrt[3]{33}}{25}$ S.M. Mahmood $\sqrt{20}$

 N.A. Martin $\frac{103}{103}$, P. Martinengd $\sqrt{33}$, J.L. Martine z^{125}, M.I. Martínez ${ }^{44}$, G. Martínez Garcíal ${ }^{114}$, M. Martinez Pedreira ${ }^{33}$, S. Masciocch $\sqrt{106}$, M. Masera ${ }^{255}$, A. Mason $\sqrt{54}$, L. Massacrie $\sqrt{61}$, E. Massor $\frac{114}{114}$,
A. Mastroseri $52 \sqrt{52138}$, A.M. Mathi $\sqrt{104 \mid 117]}$, O. Matonoh $\sqrt{80}$, P.F.T. Matuok $\sqrt{121}$, A. Matyj $\sqrt{118}$, C. Maye $\sqrt{118]}$, M. Mazzill $\sqrt{52]}$, M.A. Mazzon $\sqrt{57}$, A.F. Mechlel $\sqrt{68}$, F. Medd $\sqrt{222}$, Y. Melikyar $\sqrt{62 \mid 92}$, A. Menchaca-Rochal $\sqrt{71}$,
 K. Mikhaylo $\sqrt{75191}$, A. Mischke $\sqrt{631 i}$, A.N. Mishra $\sqrt{69}$, D. Miśkowie $\sqrt{106}$, A. Modak ${ }^{3}$, N. Mohammad $\sqrt[33]{3}$, A.P. Mohant $\sqrt{63}$, B. Mohanty $\sqrt{85}$, M. Mohisin Khan $\sqrt{16 \mathrm{liv}}$, C. Mordasin $\frac{104}{104}$, D.A. Moreira De Godoy $\sqrt{144}$, L.A.P. Moren $\sqrt{444}$, I. Morozo $\sqrt{62}$, A. Morsch $\sqrt{33}$, T. Mrnjavad ${ }^{33}$, V. Muccifora ${ }^{51}$, E. Mudnic ${ }^{34}$, D. Mühlheim ${ }^{144}$, S. Muhur $\frac{141}{}$, J.D. Mulligan $\frac{79}{7}$, M.G. Munhoz z^{121}, R.H. Munzer $\frac{68}{68}$, H. Murakam $\sqrt{132}$, S. Murra $\sqrt{124}$, L. Mus $\sqrt{33}$

 N. Novitzky ${ }^{133}$, P. Nowakowsk $\frac{142}{1 / 4}$, A. Nyanir $\frac{877}{}$, J. Nystrand $\frac{21}{51}$, M. Ogind $\frac{81}{81}$, A. Ohlsor $\frac{80}{1033}$, J. Oleniac 2^{1422},
 A. Oskarsson $\sqrt{80}$, J. Otwinowsk $\sqrt{118}$, K. Oyam 2^{81}, Y. Pachmaye $\sqrt{103}$, V. Pacik ${ }^{\sqrt{88}}$, D. Pagand $\sqrt{140}$, G. Paii $\sqrt{69}$, J. Par ${ }^{143}$, A.K. Pandey ${ }^{486}$, S. Panebianco $\sqrt{137}$, P. Pareek $\sqrt{491141}$, J. Park $\sqrt{60}$, J.E. Parkkila $\sqrt{126}$, S. Parmat ${ }^{[99}$, S.P. Patha $\sqrt{125}$, R.N. Patra $\sqrt{141}$, B. Pau ${ }^{23 / 58}$, H. Pe ${ }^{6}$, T. Peitzmann $\sqrt{63}$, X. Pen ${ }^{66}$, L.G. Pereira $\sqrt{70}$, H. Pereira Da Cost 2^{137}, D. Peresunk $\sqrt{87}$, G.M. Pere z^{87} E. Perez Lezam $\sqrt{68}$, V. Pesko $\sqrt{68}$, Y. Pesto $\sqrt{44}$, V. Petráček ${ }^{36}$,

 M.G. Poghosyan 95 , B. Polichtchouk ${ }^{90}$, N. Poljak $\sqrt{98}$, A. Pop $\sqrt{477}$, H. Poppenbor $\sqrt{144}$, S. Porteboeuf-Houssai $\sqrt{134}$, V. Pozdniako $\sqrt{75]}$, S.K. Prasad $\sqrt{3}$, R. Preghenell $\sqrt{533}$, F. Prind $\sqrt{58}$, C.A. Pruneau $\sqrt{143}$, I. Pshenichno $\sqrt{62}$, M. Puccid $\sqrt{25 \mid 33}$, J. Putschk ${ }^{\sqrt{143}}$, R.E. Quishpe $\sqrt{125}$, S. Ragon $\sqrt{110}$, S. Raha ${ }^{33}$, S. Rajpu $\sqrt{100}$, J. Rak $\sqrt{126}$,
A. Rakotozafindrabe ${ }^{137}$, L. Ramelld ${ }^{31}$, F. Ram $\sqrt{136}$, R. Raniwald $\sqrt{101}$, S. Raniwald $\sqrt{101}$, S.S. Räsäner ${ }^{433}$, R. Rath $\sqrt{49}$,
V. Ratza ${ }^{42}$, I. Ravasengd ${ }^{30 \mid 89}$, K.F. Read ${ }^{95 \mid 130}$, K. Redlich ${ }^{84 \sqrt{7}}$, A. Rehman $\sqrt{21}$, P. Reichel ${ }^{68]}$, F. Reid ${ }^{33]}$,

 K. Røed $\frac{20}{20}$, R. Rogale $\sqrt{90}$, E. Rogochaya $\sqrt{75}$, D. Roh $\frac{33}{3}$, D. Röhrich $\frac{21}{21}$, P.S. Rokit ${ }^{\frac{142}{2}}$, F. Ronchett $\frac{51}{51}$,

Affiliation notes

${ }^{i}$ Deceased
ii Dipartimento DET del Politecnico di Torino, Turin, Italy
${ }^{\text {iii }}$ M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics, Moscow, Russia
${ }^{\text {iv }}$ Department of Applied Physics, Aligarh Muslim University, Aligarh, India
${ }^{\mathrm{v}}$ Institute of Theoretical Physics, University of Wroclaw, Poland

Collaboration Institutes

${ }^{1}$ A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia
${ }^{2}$ Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine
${ }^{3}$ Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India
${ }^{4}$ Budker Institute for Nuclear Physics, Novosibirsk, Russia
${ }^{5}$ California Polytechnic State University, San Luis Obispo, California, United States
${ }^{6}$ Central China Normal University, Wuhan, China
${ }^{7}$ Centre de Calcul de l'IN2P3, Villeurbanne, Lyon, France
${ }^{8}$ Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
${ }^{9}$ Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico

[^2]${ }^{61}$ Institut de Physique Nucléaire d'Orsay (IPNO), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3/CNRS), Université de Paris-Sud, Université Paris-Saclay, Orsay, France
${ }^{62}$ Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
${ }^{63}$ Institute for Subatomic Physics, Utrecht University/Nikhef, Utrecht, Netherlands
${ }^{64}$ Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
${ }^{65}$ Institute of Physics, Homi Bhabha National Institute, Bhubaneswar, India
${ }^{66}$ Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
${ }^{67}$ Institute of Space Science (ISS), Bucharest, Romania
${ }^{68}$ Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
${ }^{69}$ Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
${ }^{70}$ Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
${ }^{71}$ Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
72 iThemba LABS, National Research Foundation, Somerset West, South Africa
${ }^{73}$ Jeonbuk National University, Jeonju, Republic of Korea
74 Johann-Wolfgang-Goethe Universität Frankfurt Institut für Informatik, Fachbereich Informatik und Mathematik, Frankfurt, Germany
75 Joint Institute for Nuclear Research (JINR), Dubna, Russia
${ }^{76}$ Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
${ }^{77}$ KTO Karatay University, Konya, Turkey
${ }^{78}$ Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France
${ }^{79}$ Lawrence Berkeley National Laboratory, Berkeley, California, United States
${ }^{80}$ Lund University Department of Physics, Division of Particle Physics, Lund, Sweden
${ }^{81}$ Nagasaki Institute of Applied Science, Nagasaki, Japan
${ }^{82}$ Nara Women's University (NWU), Nara, Japan
${ }^{83}$ National and Kapodistrian University of Athens, School of Science, Department of Physics, Athens, Greece
${ }^{84}$ National Centre for Nuclear Research, Warsaw, Poland
${ }^{85}$ National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, India
${ }^{86}$ National Nuclear Research Center, Baku, Azerbaijan
${ }^{87}$ National Research Centre Kurchatov Institute, Moscow, Russia
${ }^{88}$ Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
${ }^{89}$ Nikhef, National institute for subatomic physics, Amsterdam, Netherlands
${ }^{90}$ NRC Kurchatov Institute IHEP, Protvino, Russia
${ }^{91}$ NRC Ấ́Kurchatov InstituteÂż - ITEP, Moscow, Russia
92 NRNU Moscow Engineering Physics Institute, Moscow, Russia
${ }^{93}$ Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
${ }^{94}$ Nuclear Physics Institute of the Czech Academy of Sciences, Řež u Prahy, Czech Republic
${ }^{95}$ Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
${ }_{96}$ Ohio State University, Columbus, Ohio, United States
${ }^{97}$ Petersburg Nuclear Physics Institute, Gatchina, Russia
${ }^{98}$ Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia
99 Physics Department, Panjab University, Chandigarh, India
${ }^{100}$ Physics Department, University of Jammu, Jammu, India
${ }^{101}$ Physics Department, University of Rajasthan, Jaipur, India
102 Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
${ }^{103}$ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
104 Physik Department, Technische Universität München, Munich, Germany
105 Politecnico di Bari, Bari, Italy
${ }^{106}$ Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
107 Rudjer Bošković Institute, Zagreb, Croatia
108 Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
109 Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
${ }^{110}$ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
${ }^{111}$ Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru

[^3]
[^0]: *See Appendix Afor the list of collaboration members

[^1]: ${ }^{1}$ STAR experiment results have a different event plane resolution correction.

[^2]: ${ }^{10}$ Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi', Rome, Italy
 ${ }^{11}$ Chicago State University, Chicago, Illinois, United States
 ${ }^{12}$ China Institute of Atomic Energy, Beijing, China
 ${ }^{13}$ Comenius University Bratislava, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovakia
 ${ }^{14}$ COMSATS University Islamabad, Islamabad, Pakistan
 Creighton University, Omaha, Nebraska, United States
 Department of Physics, Aligarh Muslim University, Aligarh, India
 Department of Physics, Pusan National University, Pusan, Republic of Korea
 Department of Physics, Sejong University, Seoul, Republic of Korea
 Department of Physics, University of California, Berkeley, California, United States
 Department of Physics, University of Oslo, Oslo, Norway
 Department of Physics and Technology, University of Bergen, Bergen, Norway
 Dipartimento di Fisica dell'Università 'La Sapienza' and Sezione INFN, Rome, Italy
 Dipartimento di Fisica dell'Università and Sezione INFN, Cagliari, Italy
 Dipartimento di Fisica dell'Università and Sezione INFN, Trieste, Italy
 Dipartimento di Fisica dell'Università and Sezione INFN, Turin, Italy
 Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Bologna, Italy
 Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Catania, Italy
 Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Padova, Italy
 Dipartimento di Fisica 'E.R. Caianiello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy
 Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy
 ${ }^{31}$ Dipartimento di Scienze e Innovazione Tecnologica dell' Università del Piemonte Orientale and INFN Sezione di Torino, Alessandria, Italy
 32 Dipartimento Interateneo di Fisica 'M. Merlin' and Sezione INFN, Bari, Italy
 European Organization for Nuclear Research (CERN), Geneva, Switzerland
 ${ }^{34}$ Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
 ${ }^{35}$ Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
 ${ }^{36}$ Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
 ${ }^{37}$ Faculty of Science, P.J. Šafárik University, Košice, Slovakia
 ${ }^{38}$ Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
 ${ }^{39}$ Fudan University, Shanghai, China
 ${ }^{40}$ Gangneung-Wonju National University, Gangneung, Republic of Korea
 ${ }^{41}$ Gauhati University, Department of Physics, Guwahati, India
 42 Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
 ${ }^{43}$ Helsinki Institute of Physics (HIP), Helsinki, Finland
 ${ }^{44}$ High Energy Physics Group, Universidad Autónoma de Puebla, Puebla, Mexico
 ${ }^{45}$ Hiroshima University, Hiroshima, Japan
 ${ }^{46}$ Hochschule Worms, Zentrum für Technologietransfer und Telekommunikation (ZTT), Worms, Germany
 ${ }^{47}$ Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
 ${ }^{48}$ Indian Institute of Technology Bombay (IIT), Mumbai, India
 ${ }^{49}$ Indian Institute of Technology Indore, Indore, India
 Indonesian Institute of Sciences, Jakarta, Indonesia
 INFN, Laboratori Nazionali di Frascati, Frascati, Italy
 INFN, Sezione di Bari, Bari, Italy
 INFN, Sezione di Bologna, Bologna, Italy
 INFN, Sezione di Cagliari, Cagliari, Italy
 INFN, Sezione di Catania, Catania, Italy
 INFN, Sezione di Padova, Padova, Italy
 INFN, Sezione di Roma, Rome, Italy
 INFN, Sezione di Torino, Turin, Italy
 INFN, Sezione di Trieste, Trieste, Italy
 ${ }^{60}$ Inha University, Incheon, Republic of Korea

[^3]: 112 St. Petersburg State University, St. Petersburg, Russia
 113 Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria
 114 SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, Nantes, France
 115 Suranaree University of Technology, Nakhon Ratchasima, Thailand
 116 Technical University of Košice, Košice, Slovakia
 117 Technische Universität München, Excellence Cluster 'Universe', Munich, Germany
 118 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
 119 The University of Texas at Austin, Austin, Texas, United States
 ${ }^{120}$ Universidad Autónoma de Sinaloa, Culiacán, Mexico
 ${ }^{121}$ Universidade de São Paulo (USP), São Paulo, Brazil
 122 Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
 123 Universidade Federal do ABC, Santo Andre, Brazil
 124 University of Cape Town, Cape Town, South Africa
 125 University of Houston, Houston, Texas, United States
 126 University of Jyväskylä, Jyväskylä, Finland
 ${ }^{127}$ University of Liverpool, Liverpool, United Kingdom
 128 University of Science and Techonology of China, Hefei, China
 ${ }^{129}$ University of South-Eastern Norway, Tonsberg, Norway
 ${ }^{130}$ University of Tennessee, Knoxville, Tennessee, United States
 131 University of the Witwatersrand, Johannesburg, South Africa
 ${ }^{132}$ University of Tokyo, Tokyo, Japan
 133 University of Tsukuba, Tsukuba, Japan
 134 Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
 135 Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, Lyon, France
 136 Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Strasbourg, France
 137 Université Paris-Saclay Centre d'Etudes de Saclay (CEA), IRFU, Départment de Physique Nucléaire (DPhN), Saclay, France
 138 Università degli Studi di Foggia, Foggia, Italy
 139 Università degli Studi di Pavia, Pavia, Italy
 140 Università di Brescia, Brescia, Italy
 141 Variable Energy Cyclotron Centre, Homi Bhabha National Institute, Kolkata, India
 142 Warsaw University of Technology, Warsaw, Poland
 143 Wayne State University, Detroit, Michigan, United States
 ${ }^{144}$ Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, Münster, Germany
 145 Wigner Research Centre for Physics, Budapest, Hungary
 146 Yale University, New Haven, Connecticut, United States
 147 Yonsei University, Seoul, Republic of Korea

