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Introduction

Table retrieval from data lakes has recently

become important for many downstream

tasks. For example, data engineering efforts

often involve retrieving relevant tables from

data lakes to provide the basis for further data

analysis and exploration. Moreover, table

retrieval has also gained importance beyond

data engineering. For example, recent open-

domain table question answering (TQA)

approaches combine table retrieval with large

language models (LLMs) to answer questions

based on tables.

Existing table retrieval approaches often follow

the same procedure: Given a data lake of tables

and a user-provided information need, they

estimate each table’s relevance to the informa-

tion need and return a ranking of the most rel-

evant tables. While this approach helps users

to search through large collections of tables, it

still has severe limitations:

(1) Irrelevant data in full tables. A major issue

of existing table retrieval approaches is that

they are coarse-grained and often only return

full tables. While this approach is somewhat

tractable for small web tables, retrieving full

tables can cause high manual filtering over-

heads for real-world table repositories such as

enterprise data lakes, where tables often con-

tain hundreds of columns and millions of rows.

(2) Scattered information. A second major

issue is that relevant information is often scat-

tered across multiple tables in the ranked

result list, causing additional difficulties and

overheads for users to identify and combine the

relevant information.

Towards Fine-Grained Structured Table

Retrieval

To address these limitations of existing table

retrieval approaches, we propose the idea of

fine-grained structured table retrieval, where

the goal is to use data from the data lake tables

to construct small relational databases that

are tailored to the specific user-provided infor-

mation needs. We further present our vision of

R2D2 (Retrieving Relevant Data from Data

Lakes), a system which tackles this goal by

diverging from existing table retrieval ap -

proaches in two key aspects: 

(1) Instead of retrieving full tables, R2D2 first

splits the tables into smaller tiles (sub-tables),

allowing the retrieval step to select which parts

of the table to return to the user. In contrast to

existing table segmentation approaches, we pro-

pose a novel representation-based slicing algo-

rithm that is agnostic to the information needs

but takes the table data into account to group

related rows and columns in the same tiles.

(2) Instead of returning ranked lists of inde-

pendent tables as a result, R2D2 detects rela-

tionships between the individual tiles in the

result and uses them to compose structured

results in the form of small relational data -

bases. Returning multiple tables allows us to

better capture the relevant entities of the infor-

mation needs. Moreover, we argue that such

structured results come more naturally to

users and let them get an overview of the

retrieved data more easily.

Prototype Implementation

As shown in Figure 1, R2D2 works in three

stages. The first stage uses our novel repre-

sentation-based slicing algorithm to slice each

table into a set of small tiles. The second stage

then uses embeddings of the information need

(i.e., the user’s question) and tiles to retrieve a

set of relevant tiles. Finally, the third stage

derives the relationships between the retrieved

tiles to compose the structured result that rep-

resents the data satisfying the user’s question.

Representation-based slicing. By slicing the
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Figure 1: Prototype Overview
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tables into tiles, we allow the retrieval step to

filter which parts of the table to return to the

user. Naively partitioning the tables into row-

wise or column-wise chunks may leave related

information, that is relevant to the same infor-

mation needs, scattered across multiple tiles.

To tackle this issue, we propose a novel slicing

algorithm that works based on representations

of the table data. In each step, we partition the

table either horizontally or vertically to incre-

mentally increase the focus of the resulting

tiles whilst keeping related rows and columns

in the same tile.

The slicing algorithm starts with a full table

and then recursively splits it into multiple tiles.

In each step, we first determine which tile to

split. Since we want to keep related informa-

tion in the same tile, we compute a measure of

semantic heterogeneity di for each tile and split

the tile with the highest heterogeneity. To oper-

ationalize this, we compute representations for

each tile’s rows and columns using a pre-

trained language model (Reimers and

Gurevych, 2019). Next, we determine the maxi-

mum pairwise cosine distances di
row and di

col

between the row and column representations

of tile 𝑖 and consider the greater of the two dis-
tances as the tile’s semantic heterogeneity di.

We also use di
row and di

col to determine whether

to split the tile row-wise or column-wise based

on which of the two values is greater. To then

actually split the tile, we cluster the tile into k
clusters of rows/columns based on the tile’s

row/column representations. We then continue

to recursively split the resulting tiles until a

specified number of tiles is reached.

Fine-grained tile retrieval. Given a user-pro -
vided information need, R2D2 performs a

cosine similarity-based vector search to

retrieve a set of relevant tiles. To compute the

representation for the information need, we

simply embed the natural language string. To

compute the tile representations, we compute

embeddings for all rows and columns of the

source table. The tile representations are then

computed by averaging the embeddings of all

corresponding rows and columns.

Structured result construction. Finally, R2D2
uses the retrieved tiles to compose the struc-

tured result that is returned to the user. The

main idea is that instead of returning a ranked

list of individual tiles, we aim to construct a

structured set of tables that better represents

the relationships between the data. Our proto-

type of R2D2 merges all tiles that come from

the same source table and thus have explicit

structural relationships. For each source table,

we determine the smallest sets of rows and

columns so that their overlap contains all

retrieved tiles and construct one result table

based on this overlap.

Table Question Answering

To demonstrate the viability of the ideas behind

our approach, we combine R2D2 with a LLM to

evaluate how our approach can benefit TQA as

a first downstream task.

Data sets. We experiment on two data sets:

Spider (Yu et al., 2018) is a text-to-SQL data set

containing relational databases with natural

language questions and matching SQL queries.

Open-WikiTable (Kweon et al., 2023) is an open-

domain TQA data set containing web tables

with natural language questions and matching

SQL queries.

Experimental setup. We combine our table

retriever (R2D2) with a LLM (OpenAI’s GPT-4

Turbo) in a retriever-reader framework, i.e., the

LLM receives the retrieved tables and the ques-

tion and generates the answer. To analyze the

effectiveness of the retrieval approach, we con-

strain the input size to 1,000 tokens for Open-

WikiTable and 200 tokens for Spider. We com-

pute the exact match (EM) accuracy to evaluate

the TQA and measure the recall (R) based on

which cells are included in the model input.

Results. Table 1 shows that R2D2 vastly
improves the accuracy and recall on both data

sets compared to retrieving full tables (no 

slicing). Furthermore, we see that our repre-

sentation-based slicing algorithm outperforms

naïve row-wise and column-wise slicing on

Open-WikiTable. On Spider, our approach out-

performs row-wise slicing and performs on par

with column-wise slicing. Finally, we see that

omitting the result construction and instead

using individual tiles as input to the LLM leads

to sharp declines in accuracy and recall, indi-

cating the importance of the result construc-

tion step.
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Table 1: TQA EM Accuracy and Recall

OWT Spider

R

.44

.64

.84

.65

.82

EM

.08

.09

.13

.11

.13

R

.07

.38

.48

.21

.51

EM

.08

.29

.25

.12

.32

No Slicing

Row-Wise Slicing

Column-Wise Slicing

R2D2 W/O Result Construction 

R2D2
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