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Abstract

We report the transverse enerdy;] measured with ALICE at midrapidity in Pb—Pb collisions at
VSN = 2.76 TeV as a function of centrality. The transverse engray measured using identified
single particle tracks. The measurement was cross chedied the electromagnetic calorimeters
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of participating nucleons to that seen at lower energies. growth in(dEt/dn) at the LHC,/Sun
exceeds extrapolations of low energy data. We observe §niear scaling ofdEr/dn) with the
number of quark participants. With the canonical assumpif@ 1 fmt formation time, we estimate
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This is roughly 2.3 times that observed in 0-5% central Au€éllisions at,/Syn = 200 GeV.
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1 Introduction

Quantum Chromodynamics (QCD) predicts a phase transifionabear matter to a plasma of quarks and
gluons at energy densities above about 0.2-1 Gejﬂﬁr@]. This matter, called Quark—Gluon Plasma
(QGP), is produced in high energy nuclear collisi SEB—an’!] its properties are being investigated at
the Super Proton Synchrotron (SPS), the Relativistic HéamyCollider (RHIC) and the Large Hadron
Collider (LHC). The highest energy densities are achiewdddeal HC in Pb—Pb collisions.

The mean transverse energy per unit pseudorapidit/dn) conveys information about how much
of the initial longitudinal energy carried by the incomingatei is converted into energy carried by
the particles produced transverse to the beam axis. Theveese energy at midrapidity is therefore
a measure of the stopping power of nuclear matter. By usimgplsi geometric considerationEtM]
(dEt/dn) can provide information on the energy densities attaineddi€s of the centrality ang/Syn
dependence ofdEr/dn) therefore provide insight into the conditions prior to thet and chemical
equilibrium.

The(dEr/dn) has been measured at the AGS by E802 [15] and E814/E877 {16 8PS b NA34ﬂ7],
NA35 [18], NA49 , and WA80/93/94 [20, 21], at RHIC by PHEN[22-24] and STARI[25], and at
the LHC by CMS ], covering nearly three orders of magretad ,/Syy. The centrality dependence
has also been studied extensively witer /dn) at midrapidity scaling nearly linearly with the collision
volume, or equivalently, the number of participating nodlg at lower energieﬂlz 27.128]. Further
studies of heavy-ion collisions revealed deviations frdms simple participant scaling law [21]. The
causes of this deviation from linearity are still activeligalissed and might be related to effects from
minijets @Bb] or constituent quark scalir@[ﬁl 32].

The ALICE detectorEB] has precision tracking detectord alectromagnetic calorimeters, enabling
several different methods for measurigg. In this paper we discuss measurement&&r /dn) in Pb—
Pb collisions at/Syn = 2.76 TeV using the tracking detectors alone and using théogwed information
from the tracking detectors and the electromagnetic cakters. In addition we compare to calculations
of (dEy/dn) from the measured identified particle transverse momenistrilditions. Measurements
from the tracking detectors alone provide the highest pi@ti We compare our results to theoretical
calculations and measurements at lower energies.

2 Experiment

A comprehensive description of the ALICE detector can baddn @]. This analysis uses the VO, Zero
Degree Calorimeters (ZDCs), the Inner Tracking System)|ffe Time Projection Chamber (TPC), the
ElectroMagnetic Calorimeter (EMCal), and the PHOton Sppeceter (PHOS), all of which are located
inside a 0.5 T solenoidal magnetic field. The VO detedtor [BAsists of two scintillator hodoscopes
covering the pseudorapidity range8.7 < n < —1.7 and 2.8< n < 5.1. The ZDCs each consist of a
neutron calorimeter between the beam pipes downstreane afipole magnet and a proton calorimeter
external to the outgoing beam pipe.

The TPC [EB], the main tracking detector at midrapidity, isyndrical drift detector filled with a Ne—
CO, gas mixture. The active volume is nearly 9¢ and has inner and outer radii of 0.848 m and
2.466 m, respectively. It provides particle identificatida the measurement of the specific ionization
energy loss (B/dx) with a resolution of 5.2% and 6.5% in peripheral and cemindisions, respectively.

The ITS @3] consists of the Silicon Pixel Detector with leyat radii of 3.9 cm and 7.6 cm, the Silicon
Drift Detector with layers at radii of 15.0 cm and 23.9 cm, dlne Silicon Strip Detector with layers at
radii of 38.0 and 43.0 cm. The TPC and ITS are aligned to wighiew hundredum using cosmic ray
and pp collision datmG].
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The EMCal [[3_17[38] is a lead/scintillator sampling calorierecovering|n| < 0.7 in pseudorapidity and
100 in azimuth in 2011. The EMCal consists of 11520 towers, edthtwansverse size 6 cm 6 cm, or
approximately twice the effective Moliere radius. Theatile energy resolution i§/0.112 J/E+0.017
where the energ¥ is measured in Ge\ﬂ_@?]. Clusters are formed by combiningai from adja-
cent towers. Each cluster is required to have only one logatgy maximum. Noise is suppressed
by requiring a minimum tower energy of 0.05 GeV. For this gsial we use clusters withim| < 0.6.
The PHOS@Q] is a lead tungstate calorimeter coverimg< 0.12 in pseudorapidity and 60n az-
imuth. The PHOS consists of three modules of>6466 towers each, with each tower having a trans-
verse size of 2.2 cnx 2.2 cm, comparable to the Moliére radius. The relative gneesolution is
/0.01F/E2 + 0.036/E + 0.012 where the energ§ is measured in GeV [40].

The minimume-bias trigger for Pb—Pb collisions in 2010 wafirdl by a combination of hits in the VO
detector and the two innermost (pixel) layers of the Ims 18]2011 the minimum-bias trigger signals
in both neutron ZDCs were also required![41]. The collisientcality is determined by comparing the
multiplicity measured in the VO detector to Glauber modeidations of the muItipIicityEbE4]. These
calculations are also used to determine the number of jgticg nucleons{Npar). We restrict our
analysis to the 0—-80% most central collisions. For thesé&aldies corrections due to electromagnetic
interactions and trigger inefficiencies are negligible. We data from approximately 70k 0-80% central
events taken in 2011 for the tracking detector and EMCal nreasents and data from approximately
600k 0-80% central events taken in 2010 for the PHOS measuneriVe focus on a small event sam-
ple where the detector performance was uniform in orderngpkfy efficiency corrections since the
measurement is dominated by systematic uncertainties.

Tracks are reconstructed using both the TPC and the ITSkJra®e selected by requiring that they
cross at least 70 rows and requiringiaper space poink 4. Tracks are restricted tg| < 0.6. Each
track is required to have at least one hit in one of the tworimost ITS layers and a small distance of
closest approach (DCA) to the primary vertex in Xgglane as a function of transverse momentyr)
defined by DCAy < (0.0182+0.035p%-°1) cm wherepr is in GeVk. The distance of closest approach
in the z direction is restricted to DCA< 2 cm. This reduces the contribution from secondary pasticle
from weak decays, which appear as a background. With thésetisa criteria tracks with transverse
momentapr > 150 MeVk can be reconstructed. The typical momentum resolutionofemhomentum
tracks, which dominat&r measurements, Bpr/pr ~ 1%. The reconstruction efficiency varies with
pr and ranges from about 50% to 75% [41].

Particles are identified through their specific energy |d&gdx, in the TPC when possible. Théix

is calculated using a truncated-mean procedure and cothpratbe dE/dx expected for a given particle
species using a Bethe-Bloch parametrization. The dewiditam the expectedE/dx value is expressed
in units of the energy-loss resolutiam[@]. Tracks are identified as arising from a kaon if they aithiw
3o from the expectedE/dx for a kaon, more than@ from the expectedE/dx for a proton or a pion,
and havepr < 0.45 GeV¢. Tracks are identified as arising from (anti)protons if theg within 3 from
the expectedd/dx for (anti)protons, more thand3from the expected/dx for kaons or pions, and have
pr < 0.9 GeVE. Tracks are identified as arising from an electron (posjteord therefore excluded from
the measurement E{T’K’p if they are within Zr from the expectedH/dx for an electron (positron), more
than 4o from the expected/dx for a pion, and more thand3from the expected/dx for a proton or
kaon. With this algorithm approximately 0.1% of tracks arisom electrons or positrons misidentified
as arising from pions and fewer than 0.1% of tracks are misifiled as arising from kaons or protons.
Any track not identified as a kaon or proton is assumed to &mse a pion and the measurement must
be corrected for the error in this assumption.

The PHOS and EMCal are used to measure the electromagnetigyecomponent of th&r and to
demonstrate consistency between methods. Data from 20del wged for the EMCal analysis due to
the larger EMCal acceptance in 2011. Data from one run in 204r@ used for the PHOS due to better
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detector performance and understanding of the calibraiiothat run period. The EMCal has a larger
acceptance, but the PHOS has a better energy resolutiome Bha&lso a lower material budget in front
of the PHOS than the EMCal. This provides an additional cloecthe accuracy of the measurement.

3 Method

Historically mostEr measurements have been performed using calorimeterdy@ndrmmonly accepted
operational definition oEr is therefore based on the eneigymeasured in the calorimeterjth tower

M
Er= Y Ejsing 1)
A

where j runs over all M towers in the calorimeter afds the polar angle of the calorimeter tower. The
transverse energy can also be calculated using singlelpatrticks. In that case, the index, j, in E§. 1
runs over the M measured particles instead of calorimeteers; andg, is the particle emission angle.
In order to be compatible with thEr of a calorimetry measurement, the enefgyof Eq.[d must be
replaced with the single particle energies

Exin for baryons
Ej =< Exin+2mc? for anti-baryons (2)
Exin +mc?  for all other particles.

This definition of Er was used in the measurements of the transverse energy by @}Iﬁapsed on
calorimetry), PHENIX] (based on electromagnetic datetry), and STAR@5] (based on a combi-
nation of electromagnetic calorimetry and charged particicking). To facilitate comparison between
the various data sets the definition®f given by Eqs[ 1 andl 2 is used here.

It is useful to classify particles by how they interact witle tdetector. We define the following categories
of final state particles:

A 1, K*, p, andp: Charged particles measured with high efficiency by tragkietectors
B m° w, n, €5, andy: Particles measured with high efficiency by electromagnediorimeters

C A, A, K(S’, st 3, andZ Particles measured with low efficiency in tracking detextand electro-
magnetic calorimeters

D KE, n, andn: Neutral particles not measured well by either trackinged®rs or electromagnetic
calorimeters.

The totalEt is the sum of théer observed in final state particles in categories A-D. Coatidims from
all other particles are negligible. In HIJING 1.3@[43] silations of Pb—Pb collisions gfSyn = 2.76
TeV the next largest contributions come from ®E) and Q(Q) baryons with a total contribution of
about 0.4% of the totdEr, much less than the systematic uncertainty on the final \a@lll&s. The Er
from unstable particles witbr < 1 cm is taken into account through tke from their decay particles.

When measurinder using tracking detectors, the primary measurement is dfges in category A
and corrections must be applied to take into accountBhevhich is not observed from particles in
categories B-D. In the hybrid method tkg from particles in category A is measured using tracking
detectors and thEy from particles in category B is measured by the electromiagicalorimeter. An
electromagnetic calorimeter has the highest efficiencyrfeasuring particles in category B, although
there is a substantial background from particles in categoiThe Er from categories C and D, which
is not well measured by an electromagnetic calorimetert imeisorrected for on average. Following the
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convention used by STAR, we defiﬁéad to be theEr measured from particles in category A and scaled
up to include particles in categories C and D &3tI'to be theEr measured in category B. The totat
is given by

Er = EPd4+ EE™. 3)

We refer toEN as the hadroni€r andEE™ as the electromagnetier. We note thaE2and ES™ are
operational definitions based on the best way to observeribigye deposited in various detectors and
that the distinction is not theoretically meaningful.

Several corrections are calculated using HIJING [43] satiohs. The propagation of final state particles
in these simulations through the ALICE detector materidiscribed using GEANT @4]. Throughout
the paper these are described as HIJING+GEANT simulations.

3.1 Tracking detector measurements oEt

The measurements of the tota using the tracking detectors and of the hadrdgicare closely cor-
related because the direct measurement in both caﬁyi’g, the E from rrt, K*, p, andp from the
primary vertex. All contributions from other categorieg @reated as background. Fg#dthe Er from
categories C and D is corrected for on average and for theEgtthe contribution from categories B,
C, and D is corrected for on average. Each of these conwitwiis taken into account with a correction
factor.

The relationship between the measured track momentE&ﬁd’ is given by

B 11 1 it g
dn An prcut fhotip i; E(pl'r)

where i runs over the n reconstructed tracks Arndis the pseudorapidity range used in the analysis,
g(pr) corrects for the finite track reconstruction efficiency andeptance fng(pr) corrects for the\,

A, and K daughters and electrons that pass the primary track qualtsy fooup corrects for particles
that could not be identified unambiguously through theirc#meenergy loss B/dx in the TPC, and
fore: COITECtS for the finite detector acceptance at low momentttadronic Er is given by ENad =

EF P/ freutral Where foeural is the fraction ofEPad from 7+, K*, p, andp and totalEr is given byEr

= E?’K’p/ftom where fia is the fraction ofEr from ™, K*, p, andp. The determination of each of
these corrections is given below and the systematic urniotes are summarized in TdH. 1. Systematic
uncertainties are correlated point to point.

(4)

3.1.1 Single track efficiencyacceptance (pr)

The single track efficiencyacceptance is determined by comparing the primary yieldbdgaecon-
structed vyields using HIJING+GEANT simulations, as ddseliin @5]- When a particle can be iden-
tified as arr, K*, p, orp using the algorithm described above, the efficiency for plaaticle is used.
Otherwise the particle-averaged efficiency is used. The yfematic uncertainty is determined by the
difference between the fraction of TPC standalone trackismed with a hit in the ITS in simulations
and data.

3.1.2 Backgroundig(pr)

The background comes from photons which convee't® in the detector and decay daughters fram
A, and K which are observed in the tracking detectors but do notratgi from primaryrt, K=, p, and

p. This is determined from HIJING+GEANT simulations. Thetgmatic uncertainty on the background
due to conversion electrons is determined by varying thenshtudget in the HIJING+GEANT simu-
lations by+10% and found to be negligible compared to other systematertainties. The systematic
uncertainty due td\, A, and Kg daughters is sensitive to both the yield and the shape % the and Kg
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spectra. To determine the contribution frémA, and Kg decay daughters and its systematic uncertainty
the spectra in simulation are reweighted to match the datatanyields are varied within their uncer-
tainties [[Zb]. Because the centrality dependence is lessttiie uncertainty due to other corrections, a
constant correction of 0.982 0.008 is applied across all centralities .

3.1.3 Particle identificationfoup

The Er of particles with 0.15< pr < 0.45 GeV¢ with a dE/dx within two standard deviations of the
expected B/dx for kaons is calculated using the kaon mass andeghef particles with 0.15< pr < 0.9
GeV/c with a dE/dx within two standard deviations of the expectdeldk for (anti)protons is calculated
using the (anti)proton mass. Thg of all other particles is calculated using the pion masscé&ihe
average transverse momentum(jig) = 0.678+ 0.007 GeV¢ for charged particles [47] and over 80%
of the particles created in the collision are pio@ [42], taeticles can be identified correctly using
this algorithm. At high momentum, the difference betweemttineEr and theEt calculated using the
pion mass hypothesis for kaons and protons is less than gbfowhis is therefore a small correction.
Assuming that all kaons with 0.15 pt < 0.45 GeV¢ and (anti)protons with 0.15 pt < 0.9 GeVEtare
identified correctly and using the identifed, K*, p, andp spectraﬂlz] giveSnoup = 0.992+ 0.002.
The systematic uncertainty is determined from the unceiés on the yields.

Assuming that 5% of kaons and protons identified using theégmidentification algorithm described
above are misidentified as pions only decredsgs by 0.0002, less than the systematic uncertainty on
froup. This indicates that this correction is robust to changethénmean &/dx expected for a given
particle and its standard deviation. We note that eitheuraByy no particle identification or doubling
the number of kaons and protons only decredggg by 0.005.

3.1.4 Lowpt acceptancdp,,,

The lower momentum acceptance of the tracking detectonsnsgly driven by the magnetic field and
the inner radius of the active volume of the detector. Tragksbe reliably reconstructed in the TPC for
particles withpy > 150 MeVk. The fraction ofEr carried by particles below this momentum cut-off
is determined by HIJING+GEANT simulations. To calculate gystematic uncertainty we follow the
prescription given by STAF@S]. The fraction Bf contained in particles below 150 Medis calculated
assuming that all particles below this cut-off have a mom@nof exactly 150 MeW to determine an
upper bound, assuming that they have a momentum of 0 Me\determine a lower bound, and using the
average as the nominal value. Using this prescriptfgp, = 0.97104+ 0.0058. We note thaft,, ., is the
same within systematic uncertainties when calculated fPMHIA simulations [[ZB] for pp collisions
with \/s=0.9 and 8 TeV, indicating that this is a robust quantity.

3.1.5 Correction factorsneytraiand fiotal

Under the assumption that the different states within aspisomultiplet and particles and antiparticles
have the samEr, fheutraiCan be written as

2ET 4 2EK 4 2EP
3EF+4EK 1 4EP 1 2EN 1 6EZ

()

fneutral =

and fiotg can be written as

2ET + 2EX + 2E7
3EN 4 4EK + 4EP 4 2EN 4+ 6EZ 4 ELNEY

(6)

ftotal =

whereEX is theEr from one kaon specie&T is the Er from one pion specie&? is the average of the
Er from protons and antiprotonEZ is the averag&r from A andA\, andE# is the averag&r from =+,
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>, and2? and their antiparticles. The contributioBg, E{-(, E?, andE{‘ are calculated from the particle
spectra measured by ALICﬂ 46] as for the calculatioBdfrom the particle spectra. The systematic
uncertainties are also propagated assuming that the sgtitaimcertainties from different charges of the
same particle species (e.gri and ) are 100% correlated and from different species (e1g.and
K™) are uncorrelated. The contribution from the, =, and 59 and their antiparticles is determined
from the measured\ spectra. The total contribution frol species and their antiparticles should be
approximately equal to that of tieandA, but since there are three isospin states fobtheach species
carries roughly 1/3 of th&r that theA carries. Since th&® decays dominantly through/aand has a
short lifetime, the measurefl spectra includé\ from thez° decay. The ratio oF = (E¥ +EF )/Ef

is therefore expected to be 0.5. HIJII\@[43] simulationsdatk that- = 0.67 and if theEr scales with
the yield, THERMUS@9] indicates th&t = 0.532. We therefore uge = 0.585+ 0.085.

The contributionE?’”’ei’V is calculated using transverse mass scaling forrthmeson and PYTHIA
simulations for thew, €, andy, as described earlier. Because most offffés carried byrt™, K*, p, p,
n, andn, whose contributions appear in both the numerator andeherdinator,foia and freutraican be

determined to high precision, and the uncertaintyégy and fheytralis driven byEZ? and E#””’ei’y. It is
worth considering two special cases. If BY were carried by pions, as is the case at low energy where
almost exclusively pions are produced, Elg. 6 would simpbifyfioq = 2/3. If all Er were only carried

by kaons, (anti)protons, and (anti)neutrons,[Eq. 6 woutthfify to fig = 1/2.

In order to calculate the contribution from thhemeson and its uncertainties, we assume that the shapes
of its spectra for all centrality bins as a function of trami®e mass are the same as the pion spectra,
using the transverse mass scali@ [50], and thantfr ratio is independent of the collision system, as
observed by PHENI@l]. We also consider a scenario wheze)thpectrum is assumed to have the
same shape as the kaon spectrum, as would be expected ifihe shthen spectrum was determined

by hydrodynamical flow. In this case we use the ALICE measergmofn /mrin pp collisions [[__5|2] to
determine the relative yields. We use thért ratio at the lowest momentum point availabpg, = 0.5
GeV/c, because th&r measurement is dominated by low momentum particles. Becaw® measure-
ment exists, PYTHIA@S] simulations of pp collisions werged to determine the relative contribution
from the w and from all other particles which interact electromagradty (mainly y and €). These

contributions were approximately 2% and 1%, respectively. With these assumptioE#f’”’ei’V/ ET
=0.17+ 0.11. The systematic uncertainty on this fraction is domeiddy the uncertainty in thg /m
ratio. We propagate the uncertainties assuming thaEth&fom the same particle species are 100%
correlated and that the uncertainties from different pertspecies are uncorrelated.

The freutrab fiota, aNd fem = 1— fotal freutrar@re shown in FidJ1 along with the fractions®Bf carried by

all pions fr, all kaonsf, protons and antiprotong,, and/A baryonsfa versus(Npa). While there is

a slight dependence of the central value(blgary), this variation is less than the systematic uncertainty.
Since there is little centrality dependence, we figg= 0.240+ 0.027, fheurras = 0.728+ 0.017, and
fiotal = 0.553+ 0.010, which encompass the entire range for all centraliflde systematic uncertainty
is largely driven by the contribution from, w, n, e, andy since these particles only appear in the
denominator of Eq§l5 amd 6. The systematic uncertaintftganis smaller than that offi,etra) bECaUSE
freutraiONly hasE? in the denominator.

These results are independently interesting. The fracti@mergy carried by different species does not
change significantly with centrality. Additionally, onlypaut 1/4 of the energy is iB:™, much less than
the roughly 1/3 of energy iE$™ at lower energies where most particles produced are piothsting r°
carrying approximately 1/3 of the energy in the collisiorurtRermore, only about 3.5% of ther is
carried byw, n, €, andy. Since charged and neutral pions have comparable spdtganéans that
the tracking detectors are highly effective for measurimg transverse energy distribution in nuclear
collisions.
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Fig. 1. Fraction of the totaEr in pions (f;), kaons k), p andp (fp), andA (fo) and the correction
factors fiptal, freutras @and fem as a function ofNyar). The fractionf, is scaled by a factor of two so that
the data do not overlap with those from protons. Note thafalis the fraction ofE?ad measured in the
tracking detectors whildioa and fer, are the fractions of the tot&r measured in the tracking detectors
and the calorimeters, respectively. The vertical erros lgare the uncertainty on the fraction Bf from
the particle yields.

Correction Value % Rel. uncertainty
forewe | 0.9710+ 0.0058 0.6 %
freutral | 0.728+ 0.017 23%
fiotal | 0.553+ 0.010 3.0%
froup | 0.982+ 0.002 0.2%
fog(PT) 1.8% 0.8%
e(pr) 50% 5%

Table 1: Summary of corrections and systematic uncer@'rftirE?ad andEr from tracking detectors.
For centrality andot independent corrections the correction is listed. Forredityt and pr dependent
corrections, the approximate percentage of the corredidiated. In addition, the anchor point uncer-
tainty in the Glauber calculations leads to an uncertaihty-d%, increasing with centrality.

3.1.6 ERddistributions

Figure[2 shows the distributions of the reconstrucﬁéaoI measured fromrt, K*, p, andp tracks using
the method described above for several centralities. Niection was done for the resolution leaving
these distributions dominated by resolution effects. Tikam&"dis determined from the average of the
distribution ofEf2in each centrality class.

3.2 Calculation of Er and Efdfrom measured spectra

We use the transverse momentum distributions (spectrajured by ALICE @2@6} to calculatet
andEMd as a cross check. We assume that all charge signs and is¢ags sf each particle carry
the samekr, e.g. E}1+ =Ef = E?O , and that theey carried by (anti)neutrons equals tke carried

by (anti)protons. These assumptions are consistent watlddta at high energies where positively and
negatively charged hadrons are produced at similar ragsh@nanti-baryon to baryon ratio is close to
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Fig. 2: Distribution ofE?ad measured fronit™, K*, p, andp tracks at midrapidity for several centrality
classes. Not corrected for resolution effects. Only dtesiserror bars are shown.
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Fig. 3: Comparison ofdEMY/dn) /((Npart/2)) versus(Npar) from the measured particle spectra and as
calculated from the tracking detectors. The boxes inditaeystematic uncertainties.

one @@4] Since thé spectra|l_A|6] are only measured for five centrality bins, Aheontribution is
interpolated from the neighboring centrality bins. The saaasumptions about the contributions of the
n, w, y, ande™ described in the section digta and freurraiare used for these calculations. The dominant
systematic uncertainty on these measurements is due tantjle srack reconstruction efficiency and
is correlated point to point. The systematic uncertaintytt@se calculations is not correlated with the
calculations ofEr using the tracking detectors because these measuremerfterardata collected in
different years. The meah‘aThad per (Npart/2) obtained from the tracking results of Fig. 2 are shown as a
function of (Npar) in Fig.[3, where they are compared with results calculatéagute particle spectra
measured by ALICE. The two methods give consistent resilitsa are plotted in 2.5% wide bins in
centrality for 0-40% central collisions, where the undetiaon the centrality is<1% @]. Data for
40-80% central collisions are plotted in 5% wide bins.
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3.3 Electromagnetic calorimeter measurements dt$™

The ES™ is defined as the transverse energy of the particles of agtd&discussed above, which are
the particles measured well by an electromagnetic caléemghile the definition oES™ includesr®,

w, N, €, andy, the majority of theE; comes fromr® — yy (85%) andn — yy (12%) decays, mean-
ing that the vast majority oES™ arises from photons reaching the active area of the eleeatyogtic
calorimeters. Reconstructed clusters are used for thgssalvith most clusters arising from a single
Clusters reduce contributions from detector noise to aigibtg level, as compared to using tower ener-
gies as done by STAﬂlZS]. However, clusters also requirdiadél corrections for the reconstruction
efficiency, nonlinearity, and minimum energy reconstrdcte addition, both the EMCal and the PHOS
have limited nominal acceptances so an acceptance cormeautist be applied. Backgrounds come from
charged hadrons in category A%, K*, p, andp), kaon decays inta® from both category A (K) and
category C K2), neutrons from category D, and particles produced by stangninteractions with the
detector material.

The corrected;™ is given by

dE—?m 11 1 < SinGJ bkgd>
- - E - E 7
dn An face fETmin J 5m£YfEN|_ J T 0

where j runs over the reconstructed clusters in the calaenmandAn is the pseudorapidity range used
in the analysis. The correction factéy corrects for the finite nominal azimuthal detector acceggan
fe..;, IS @ correction for the minimum cluster energy used in thdyais oy, is zero when a cluster is
matched to a track and one otherwisgjs the product of the active acceptance and the reconsiructi
efficiency in the nominal acceptance of the detecfgy, is the correction for the nonlinear response
of the calorimeter, an@&>% is the sum of the contributions from charged hadrons, kaoestrons,
and particles created by secondary interactions. Theseation factors are discussed below and their
systematic uncertainties are summarized in [Thb. 2. All@fstystematic uncertainties except for that due
to the background subtraction are correlated point to pdystematic uncertainties on measurements
of Ef™ from the EMCal and the PHOS and calculationsEgf" from the spectra are not correlated.
Systematic uncertainties on hybrid measurements are @ébadify systematic uncertainties E??d and

are therefore dominantly correlated point to point and withtracking detector measurements.

3.3.1 Acceptance correctiofacc and cluster reconstruction efficiency,

The correction for the acceptance is divided into two painis.correction due to the nominal acceptance
of the detector and the correction due to limited acceptariitdn the nominal acceptance of the detector
due to dead regions and edge effects. To reduce edge eftbeiters in the PHOS are restricted to
In| < 0.1and in the EMCal tfn| < 0.6. The correctiorfacaccounts for the limited nominal acceptance
in azimuth and is therefore 5/18 for the EMCal, which has ainahacceptance of 100and 1/6 for
the PHOS, which has a nominal acceptance ¢f 80 does not correct for acceptance effects due to
dead regions in the detector or for noisy towers omitted ftbmanalysis. This is accounted for by
the cluster reconstruction efficiencpcceptance within the nominal detector acceptaagesalculated
from HIJING+GEANT simulations using photons from the decdythe 7° meson. The efficiency is
calculated as a function of the energy of the cluster.

3.3.2 Minimum cluster energye,,.,

There is a minimum energy for usable clusters analogousetaninimum py in the acceptance of the
tracking detectors. A threshold of 250 MeV for PHOS and 300/M& the EMCal is applied. These
energies are above the peak energy for minimum ionizingoest(MIPs), reducing the background
correction due to charged hadrons. We apply the threshdig nather than energy because it simplifies
the calculation of the correction for this threshold andsigstematic uncertainty. We use the charged
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pion spectra to calculate the fraction Bf™ below these thresholds. PYTHIA is used to simulate the
decay kinematics and the measured charged pion spectraedtd¢aidetermine the fraction &f from
pions within the acceptance. As for the calculatiorfigf; for the measurement E?ad described above,
we assume transverse mass scaling to determine the sh&ee)cprectrum and thg /rrratio measured
by ALICE [@] to estimate the contribution of thg meson tofg, . The uncertainty on the shape of
the charged pion spectrum and on tiér ratio is used to determine the uncertainty fan . This
correction is centrality dependent and ranges from 0.786440 for the PHOS and from 0.640 to 0.673
for the EMCal with a systematic uncertainty of 3.5-5%.

3.3.3 Nonlinearity correctiorfg,, and energy scale uncertainty

For an ideal calorimeter the signal observed is proportitméhe energy. In practice, however, there
is a slight deviation from linearity in the signal observedjsticularly at low energies. A nonlinearity
correction is applied to take this into account. For the EM@B& deviation from linearity reaches a
maximum of about 15% for the lowest energy clusters usedisratimalysis. The systematic uncertainty
for the EMCal is determined by comparing the nonlinearitgated in test beam and the nonlinearity
predicted by HIJING+GEANT simulations and reaches a marinadi about 5% for the lowest energy
clusters. The PHOS nonlinearity is determined by compattieglocation of ther® mass peak to HI-
JING+GEANT simulations and cross checked using the enexgged! by the momentum for identified
electrons. The systematic uncertainty is derived from tteaicy of the location of tha® mass peak.
The nominal correction is about 1% with a maximum systematiertainty of around 3% for the lowest
energy clusters. The ral8£™ is calculated with the maxima and minima of the nonlineasitind the dif-
ference from the nominal value is assigned as a systematirtamty. The final systematic uncertainty
on the measurement with the EMCal due to nonlinearity is a0@% and 1.3% for the PHOS. For both
the PHOS and the EMCal, the energy scale uncertainty waswetd by comparing the location of the
m° mass peak and the ratio of energy over momentum for electifims systematic uncertainty is 2%
for the EMCal [[_Eb] and 0.5% for the PHOE[S?].

3.3.4 Backgrounde2

Charged particles (category A) are the largest source dfgoaand inE;™. Clusters matched to tracks
are omitted from the analysis. The track matching efficieshetermined from HIJING+GEANT simu-
lations is combined with information from clusters matchedracks to calculate the number and mean
energy of remaining deposits from charged particles. Tis¢esyatic uncertainty on this contribution
comes from the uncertainty on the track matching efficienay #he uncertainty in the mean energy.
The former is dominated by the uncertainty on the singlektraconstruction efficiency and the latter is
determined by comparing central and peripheral collisiassuming that the energy of clusters matched
to tracks in central collisions may be skewed by overlappingters due to the high occupancy.

The background contributions from both charged kaons goayeA) through their K — Xm° decays
andK¢ (category C) through it&Q — n° n° decay are non-negligible. The amount of energy deposited
by a kaon as a function gt is determined using HIJING+GEANT simulations. This is caneol with

the kaon spectra measured by ALICE] [42] to calculate thegyraeposited in the calorimeters by kaons.
The systematic uncertainty on the background from kaonsterchined by varying the yields within the
uncertainties of the spectra. Contributions from both regwg and particles from secondary interactions
are determined using HIJING+GEANT simulations. The systieruncertainty on these contributions
is determined by assuming that they scale with either thebeurof tracks (as a proxy for the number
of charged particles) or with the number of calorimeter tetss (as a proxy for the number of neutral
particles).

The background contribution is centrality dependent andea from 61% to 73% with both the back-
ground and its systematic uncertainty dominated by camtdhs from charged hadrons. This correction
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PHOS EMCal
Correction  Uncertainty Correction  Uncertainty
face 6 0 3.6 0
Energy scalg - 0.5% - 2%
gy 40% 5% 80% 5%
feqmn | 0.735—0.740 3.5% 0.64-0.673 4.1-5.0%
fEn < 0.5% 1.3% < 5% 0.8%
fokgd | 0.616 —0.753  9-20% | 0.659-0.732 8—-13%
EZM - 10 - 20% - 10 -15%

Table 2: Summary of corrections and systematic uncergsirfor Ef™. The approximate size of the
correction is listed fore, and the ranges are listed for centrality dependent cooresti The fraction
bkgd

— bkgd raw raw __ sinGJ s . . -
fokgd = Er ~ /EF™ whereEf2" = JZémmE, is given in order to comparE; ™" across centralities.

In addition, the anchor point uncertainty in the Glaubercugldtions leads to an uncertainty of 0—4%,
increasing with centrality.

is so large becausg®™ comprises only about 25% of tigr in an event whilert®, K=, p, andp carry
roughly 57% of theEr in an event.

3.3.5 Acceptance effects

The limited calorimeter acceptance distorts the distidioubf ES™ for events with very lonE;f™ because

it is difficult to measure the meagr when the mean number of clusters observed is small (about 1—
10). While it is possible to correct for acceptance, this was done since the measurementEgf

from the tracking method has the highest precision. Theitiybethod using both the calorimeters and
the tracking detectors is therefore restricted to the mestral collisions where distortions of t&"™
distribution are negligible.

3.3.6 EfMdistributions

No resolution correction was applied for the resolutiorvieg the distributions in Fig]4 and Figl 5
dominated by resolution effects. The resolution is pritgadetermined by the finite acceptance of the
detectors in azimuth, limiting the fraction &;™ sampled by the calorimeter. The distributions are
broader for PHOS than EMCal because of the smaller azimaitdptance of the PHOS. The mean
Ef™is determined from the average of the distributiorEgf" in each centrality bin. ThEF™ per (Npar)

pair measured using the electromagnetic calorimetersnigaced to that calculated using the measured
pion spectra in Fid.]6, demonstrating that these methodstteeomparable results. THEE™ calculated

from the spectra is determined using the same ratlE;r“b'f‘"ei*y/E{T =0.171+ 0.110 for all centralities.

4 Results

The(dEt/dn) /({Npart/2)) versus(Npar) is shown in FiglV using tracking detectors, using EMCabkirag,
using PHOS+tracking, and as calculated from the measumidlpaspectra. All methods lead to com-
parable results, although the systematic errors are lacgetelated due to the dominant correction from
the tracking inefficiency. The Glauber calculationgNa) and its uncertainties are calculated asin [55]
and the uncertainties ofiN,ar) are added in quadrature to the uncertaintie&pnAs discussed above,
the small number of clusters observed in the calorimetepeiipheral collisions make acceptance cor-
rections difficult. Since the measurements with the tragklatectors alone has higher precision, only
these measurements are used in the following.
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Fig. 4: Distribution ofEf™ measured with the EMCal at midrapidity for several certyatins. Not
corrected for resolution effects. Only statistical errardare shown.
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Fig. 5: Distribution ofEF™ measured with the PHOS at midrapidity for several cenyrddins. Not
corrected for resolution effects. Only statistical errardare shown.

Fig.[8 comparegdEr/dn)/((Npart/2)) versus(Npar) in Pb—Pb collisions at/Syy = 2.76 TeV from
CMS [26] and ALICE, and in Au—Au collisions ay/Syy = 200 GeV from STARI[25] and PHENIX [22,
@]. Data from RHIC have been scaled by a factor of 2.7 for camispn of the shapes. The factor of 2.7 is
approximately the ratio ofpr) (dNcn/dn) at the LHC ] to that at RHIC@E@]. The shapes observed
by ALICE and PHENIX are comparable for &\,ar). STAR measurements are consistent with PHENIX
measurements for the most central collisions and aboveHIEENPX measurements, although consistent
within systematic uncertainties, for more peripheralismhs. CMS measurements are consistent with
ALICE measurements for peripheral collisions but deviagdmd the systematic uncertainties for more
central collisions. Théer in Pb—Pb collisions is 173% 6(stat.)+ 97 (sys.) GeV and th&t per
participant is 9.02+ 0.03(stat. 1+ 0.50 (sys.) GeV, two standard deviations below the valuemes by
CMS |26]. All methods resulted in a low& than that reported by CMS, although the systematic errors
on the measurements are significantly correlated. Theat@mns for the CMS data are determined by
Monte Carlo ] while the corrections for the ALICE measuent are mainly data-driven.
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Fig. 6: Comparison ofdEZ™/dn)/((Npart/2)) versus(Npar) at midrapidity from the PHOS, from the
EMCal, and as calculated from the measured pion spectrabdkes indicate the systematic uncertain-
ties.
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Fig. 7: Comparison of totaldEr/dn) /((Npart/2)) versus(Npary) at midrapidity using tracking detectors,
using EMCal+tracking, using PHOS+tracking, and as catedl&om the measured particle spectra. The

boxes indicate the systematic uncertainties.

PHENIX ] reported that whilédEr/dn) scaled by(Nyar) has a pronounced centrality dependence,
as seen in Figl8dEr /dn) scaled by the number of constituent quam®&uar, (dEt/dn) /((Nquark/2))
shows little centrality dependence within the systemativeutainties for collisions gy/Syn = 62.4 — 200
GeV. This indicates thaEr might scale linearly with the number of quarks participgtin the collision
rather than the number of participating nucleons. [Hig. Svsh@lEr/dn)/({(Ngquark/2)) as a function of
(Npart). To calculate(Nquark the standard Monte Carlo Glauber techni [28] has beeahwithk the
following Woods-Saxon nuclear density parameters: raoiuameteRys = 6.62+0.06 fm, diffuseness
a=0.54640.010 fm, and hard cordnin, = 0.4+ 0.4 fm. The three constituent quarks in each nucleon
have been sampled from the nucleon density distributigReon= o€~ with a= 4.28fm~! using the
method developed by PHENI@O]. The inelastic quark-quendss section a{/syy = 2.76 TeV was
found to beoy®' = 15.5+ 2.0 mb corresponding toy¢ = 64+5 mb [55]. The systematic uncertainties
on the(Nguark calculations were determined following the procedure dlesd in @]. Unlike at RHIC,
we observe an increase (dEt/dn) /((Nguark/2)) With centrality below(Nyary ~200.
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Fig. 8: Comparison ofdEr/dn)/((Npart/2)) at midrapidity in Pb—Pb collisions gfsyn = 2.76 TeV
from CMNSEB% and ALICE and in Au-Au collisions af/syv = 200 GeV from STAR @5] and
PHENIX ]. Data from RHIC were scaled by a factor of 20¥ fomparison of the shapes. The
boxes indicate the systematic uncertainties.
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Fig. 9: Measurements qidEr/dn)/((Nguark/2)) versus(Npa) at midrapidity in Pb—Pb collisions at
V/SNN = 2.76 TeV. Note the suppressed zero. The boxes indicate/$itensatic uncertainties.

Figure[10 showsdEr/dn)/(dNgy/dn), a measure of the average transverse energy per particieisve
(Npart) in Pb—Pb collisions af/syn = 2.76 TeV from ALICE, and in Au—Au collisions gfSyn = 200 GeV
from STAR ] and PHENIXﬂS]. No centrality dependens®bserved within uncertainties at ei-
ther RHIC or LHC energies. Th@lEr/dn)/(dNg,/dn) increases by a factor of approximately 1.25 from
V/SuN = 200 GeV 5] tqQ/Sun = 2.76 TeV, comparable to the increas€ ji) from ,/Syn = 200
GeV @Eb] to,/S\n =2.76 TeV [[_Z’V]. The average transverse moment{py}, also shows little depen-
dence on the charged-particle multiplicity except for pleeiral coIIisionsﬁg]. The absence of a strong
centrality dependence iftEy/dn)/(dNey/dn) is consistent with the development of radial flow seen in
the spectra of identified particles [42] assuming kinetiergg is conserved during the hydrodynamic
expansion.

Figure[11 shows a comparison (coiET/dr;>/(%art/2>) versus,/SyN in 0-5% central Pb—Pb collisions
at \/SyN = 2.76 TeV from ALICE and CMS|[26] and central collisions ahet energies@ﬂ@O]
at midrapidity. The data are compared to an extrapolatiom flower energy datﬁizZ], which substan-
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Fig. 10: Comparison ofdEr/dn)/(dNch/dn) versus(Nyar) at midrapidity in Pb—Pb collisions at
VSWN = 2.76 TeV from ALICE and in Au-Au collisions a/syv = 200 GeV from STAR@S] and

PHENIX [22,[23].
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Fig. 11: Comparison ofdEr/dn)/((Npart/2)) at midrapidity versug/Sun in 0-5% central Pb—Pb colli-
sions at,/Syy = 2.76 TeV from ALICE and CMﬁG] and central collisions atet energiemﬁEkSO]

at midrapidity. All measurements are from 0-5% centralisiolhs except the NA49 data, which are from
0—7% collisions.

tially underestimates th@Er/dn)/({(Npart/2)) at the LHC. The data are also compared to the EKRT
model @EIZ] The EKRT model combines perturbative QCDijsiiproduction with gluon saturation
and hydrodynamics. The EKRT calculation qualitatively afées the,/Syn dependence at RHIC and
SPS energieﬁbS]. However, at LHC energies EKRT overestisitg substantially, indicating that it is
unable to describe the collision energy dependence.

Figure[I2 shows a comparison @fEr/dn)/(dNen/dn) versus,/Syn in 0-5% central Pb—Pb collisions
at./syn = 2.76 TeV from ALICE and in central collisions at other enesy Previous measurements
indicated thatdEr/dn)/(dNgy/dn) had either saturated at RHIC energies or showed only a weak de
pendence oR/Syn [22, ,Eb]. An empirical extrapolation of the data to LHG=agies assuming that
bothEr and(Nch) have a linear dependence @fsyy predicted thatdEr /dn)/(dNen/dn) would be 0.92

+ 0.06 @] and we observe 1.860.05. Increasing the incident energy increases both thiclggpro-
duction and the mean energy per particle at LHC energiesyntrast to lower energies/Sun = 19.6 —
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Fig. 13: Comparison ofdEr/dn)/({Npart/2)) versus(Nyary) at midrapidity to AMPT [@4], HYDJET
1.8 @], and UDGG]. The boxes indicate the systematieuainties.

200 GeV) where increasing the incident energy only led tosiased particle productioﬂ22].

Figure[13 shows a comparison @Er/dn)/((Npart/2)) versus(Npar) to various models. AMPT@4]

is a Monte Carlo event generator which builds on HIJING [48]ding explicit interactions between
initial minijet partons and final state hadronic interacio HYDJET 1.8@5 is a Monte Carlo event
generator that introduces jet quenching via gluon bremisistng to PYTHIA ] events. The curves
labeled UDG are calculations from a Color Glass Condensaitdeh@] with different normalization

K factors. None of the available models is able to descrileedtita very well, but we find that AMPT
does best in describing the shape and leveld&r/dn)/((Npar/2)). HYDJET describes the relative
shape changes as a function of centrality as well as AMPTpbeitestimatesdEr /dn) /((Npart/2)).
Both CGC calculations overestimaigEr /dn) /((Npart/2)) and predict a larger increase as a function of
centrality than is observed in the data.

The volume-averaged energy densityan be estimated frondEr/dn) using the following expres-
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where A is the effective transverse collision are# the speed of light, J is the Jacobian for the trans-
formation betweer{dEy/dn) and (dEt/dy), and 1o is the formation time. The Jacobian is calculated
from the measured particle spec , 46]. While J hagyatstientrality dependence, it is smaller than
the systematic uncertainty so a constant Jacobian of J =1.0.D6 is used. The formation time of the
systemry is highly model dependent and we therefore repagt

The transverse overlap area corresponding to the mea&egddn ) was determined by a calculation
using a Glauber Monte Carlo method. Using the Glauber pasméom |[_a§] and assuming each
participating nucleon has an effective transverse radiu? 6 (G,i\?ﬁ' /4m)Y2 = 0.71 fm results inA =
1625 fm? for central collisions§ = 0 fm). This is equivalent to a transverse overlap radiug ef7.19
fm, which is close to the value of 7.17 fm often used in estgwaif energy densities using a Woods-
Saxon distribution to determine the effective a@@, B0k centrality dependence of A is obtained by
assuming it scales ds707 — 03,)%/2 [67], whereo? and o; are the variances aruf;, is the covariance
of the spatial distribution of the participating nucleongtie transverse plane in the Glauber Monte Carlo
calculation. For 0-5% central collisions this leads to aioidn of A by 3% resulting ireto = 12.5+

1.0 GeV/frf/c. For comparison usinB = 7.17 fm givess 1o = 12.3+ 1.0 GeV/fnt/c, roughly 2.3 times
that observed in 0-5% central Au—Au collisions, &y = 200 GeV. Some of this increase comes from
the higher(Npar) in central Pb—Pb collisions relative to central Au—Au @tins The energy density
times the formation timetg is shown in Figl’I¥ foR = 7.17 fm in order to be comparable to previous
measurementﬂleGO].

In addition to estimating the volume averaged energy deitsi also interesting to estimate the energy
density attained at the core of the collision area. This @addne by rewriting the Bjorken Elgl. 8 as

&To= é]<%i>c = ggl\iin;z Oc 9)

whereA. is the area of the transverse co<€‘%> is <‘f%> produced in the core, arat = (Npart)c/Ac IS
C

the transverse area density of nucleon participants aftditee he ared\. was chosen arbitrarily to be a
circle with a radius of 1 fm at the center of the collision. Btjon[9 assumes that the local energy density
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scales with the participant density in the transverse péamethat the measured value<o%> /(Npart),
which is averaged over the total transverse collision dsealso representative of the transverse energy

production at the core@%> /(Npart)c. The increase of this quantity with increasing centraliiicates
that this is a conservative ecstimate. From a Glauber Mont Calculation we find for 0-5% centrality
0. = 4.2+ 0.1 nucleon/fn resulting in a core energy density &ftg = 21+ 2 GeV/frré/c. For the most
central 80 fm (half the total overlap area) the energy density is stilha80% of the core energy density
emphasizing that the core energy density may be more rdlémajudging the initial conditions of the

QGP than the volume averaged energy density.

5 Conclusions

We have measure@lEr/dn) at midrapidity in Pb—Pb collisions gfSyn = 2.76 TeV using four differ-
ent methods. All methods lead to comparable results, alindlie systematic uncertainties are largely
correlated. Our results are consistent with results fronﬁd@] for 10-80% central collisions, how-
ever, we observe a lowgdEr/dn) in 0-10% central collisions. ThédEr/dn) observed at,/Sun

= 2.76 TeV in 0-5% central collisions is 1737 6(stat.)+ 97 (sys.) GeV. The shape of the cen-
trality dependence ofdEr/dn)/((Npart/2)) is similar for RHIC and the LHC. No centrality depen-
dence of(dEr/dn)/(dNgh/dn) is observed within uncertainties, as was observed at RHITUIke) at
RHIC, we observe an increase {dEt/dn)/((Ngquark/2)) with centrality below(Nyar) ~200. Both
(dEt/dn)/((Npart/2)) and (dEt/dn)/(dNcn/dn) in central collisions exceed the value expected from
naive extrapolations from data at lower collision energi@ssuming that if the formation timg is 1
fm/c the energy density is estimated to be at least #2130 GeV/fn? in 0-5% central Pb—Pb collisions
at,/syn = 2.76 TeV and the energy density at the core of the collisiaeeds 2 2 GeV/fr?.
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