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Abstract

We report the transverse energy (ET) measured with ALICE at midrapidity in Pb–Pb collisions at√
sNN = 2.76 TeV as a function of centrality. The transverse energywas measured using identified

single particle tracks. The measurement was cross checked using the electromagnetic calorimeters
and the transverse momentum distributions of identified particles previously reported by ALICE. The
results are compared to theoretical models as well as to results from other experiments. The mean
ET per unit pseudorapidity (η), 〈dET/dη〉, in 0–5% central collisions is 1737± 6(stat.)± 97 (sys.)
GeV. We find a similar centrality dependence of the shape of〈dET/dη〉 as a function of the number
of participating nucleons to that seen at lower energies. The growth in〈dET/dη〉 at the LHC

√
sNN

exceeds extrapolations of low energy data. We observe a nearly linear scaling of〈dET/dη〉 with the
number of quark participants. With the canonical assumption of a 1 fm/c formation time, we estimate
that the energy density in 0–5% central Pb–Pb collisions at

√
sNN = 2.76 TeV is 12.3± 1.0 GeV/fm3

and that the energy density at the most central 80 fm2 of the collision is at least 21.5± 1.7 GeV/fm3.
This is roughly 2.3 times that observed in 0–5% central Au–Aucollisions at

√
sNN = 200 GeV.
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1 Introduction

Quantum Chromodynamics (QCD) predicts a phase transition of nuclear matter to a plasma of quarks and
gluons at energy densities above about 0.2-1 GeV/fm3 [1, 2]. This matter, called Quark–Gluon Plasma
(QGP), is produced in high energy nuclear collisions [3–13]and its properties are being investigated at
the Super Proton Synchrotron (SPS), the Relativistic HeavyIon Collider (RHIC) and the Large Hadron
Collider (LHC). The highest energy densities are achieved at the LHC in Pb–Pb collisions.

The mean transverse energy per unit pseudorapidity〈dET/dη〉 conveys information about how much
of the initial longitudinal energy carried by the incoming nuclei is converted into energy carried by
the particles produced transverse to the beam axis. The transverse energy at midrapidity is therefore
a measure of the stopping power of nuclear matter. By using simple geometric considerations [14]
〈dET/dη〉 can provide information on the energy densities attained. Studies of the centrality and

√
sNN

dependence of〈dET/dη〉 therefore provide insight into the conditions prior to thermal and chemical
equilibrium.

The〈dET/dη〉 has been measured at the AGS by E802 [15] and E814/E877 [16], at the SPS by NA34 [17],
NA35 [18], NA49 [19], and WA80/93/98 [20, 21], at RHIC by PHENIX [22–24] and STAR [25], and at
the LHC by CMS [26], covering nearly three orders of magnitude of

√
sNN. The centrality dependence

has also been studied extensively with〈dET/dη〉 at midrapidity scaling nearly linearly with the collision
volume, or equivalently, the number of participating nucleons at lower energies [20, 27, 28]. Further
studies of heavy-ion collisions revealed deviations from this simple participant scaling law [21]. The
causes of this deviation from linearity are still actively discussed and might be related to effects from
minijets [29, 30] or constituent quark scaling [31, 32].

The ALICE detector [33] has precision tracking detectors and electromagnetic calorimeters, enabling
several different methods for measuringET. In this paper we discuss measurements of〈dET/dη〉 in Pb–
Pb collisions at

√
sNN = 2.76 TeV using the tracking detectors alone and using the combined information

from the tracking detectors and the electromagnetic calorimeters. In addition we compare to calculations
of 〈dET/dη〉 from the measured identified particle transverse momentum distributions. Measurements
from the tracking detectors alone provide the highest precision. We compare our results to theoretical
calculations and measurements at lower energies.

2 Experiment

A comprehensive description of the ALICE detector can be found in [33]. This analysis uses the V0, Zero
Degree Calorimeters (ZDCs), the Inner Tracking System (ITS), the Time Projection Chamber (TPC), the
ElectroMagnetic Calorimeter (EMCal), and the PHOton Spectrometer (PHOS), all of which are located
inside a 0.5 T solenoidal magnetic field. The V0 detector [34]consists of two scintillator hodoscopes
covering the pseudorapidity ranges−3.7< η < −1.7 and 2.8< η < 5.1. The ZDCs each consist of a
neutron calorimeter between the beam pipes downstream of the dipole magnet and a proton calorimeter
external to the outgoing beam pipe.

The TPC [35], the main tracking detector at midrapidity, is acylindrical drift detector filled with a Ne–
CO2 gas mixture. The active volume is nearly 90 m3 and has inner and outer radii of 0.848 m and
2.466 m, respectively. It provides particle identificationvia the measurement of the specific ionization
energy loss (dE/dx) with a resolution of 5.2% and 6.5% in peripheral and centralcollisions, respectively.

The ITS [33] consists of the Silicon Pixel Detector with layers at radii of 3.9 cm and 7.6 cm, the Silicon
Drift Detector with layers at radii of 15.0 cm and 23.9 cm, andthe Silicon Strip Detector with layers at
radii of 38.0 and 43.0 cm. The TPC and ITS are aligned to withina few hundredµm using cosmic ray
and pp collision data [36].
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The EMCal [37, 38] is a lead/scintillator sampling calorimeter covering|η |< 0.7 in pseudorapidity and
100◦ in azimuth in 2011. The EMCal consists of 11520 towers, each with transverse size 6 cm× 6 cm, or
approximately twice the effective Molière radius. The relative energy resolution is

√

0.112/E +0.0172

where the energyE is measured in GeV [37]. Clusters are formed by combining signals from adja-
cent towers. Each cluster is required to have only one local energy maximum. Noise is suppressed
by requiring a minimum tower energy of 0.05 GeV. For this analysis we use clusters within|η | < 0.6.
The PHOS [39] is a lead tungstate calorimeter covering|η | < 0.12 in pseudorapidity and 60◦ in az-
imuth. The PHOS consists of three modules of 64× 56 towers each, with each tower having a trans-
verse size of 2.2 cm× 2.2 cm, comparable to the Molière radius. The relative energy resolution is
√

0.0132/E2+0.0362/E +0.012 where the energyE is measured in GeV [40].

The minimum-bias trigger for Pb–Pb collisions in 2010 was defined by a combination of hits in the V0
detector and the two innermost (pixel) layers of the ITS [8].In 2011 the minimum-bias trigger signals
in both neutron ZDCs were also required [41]. The collision centrality is determined by comparing the
multiplicity measured in the V0 detector to Glauber model simulations of the multiplicity [8, 34]. These
calculations are also used to determine the number of participating nucleons,〈Npart〉. We restrict our
analysis to the 0–80% most central collisions. For these centralities corrections due to electromagnetic
interactions and trigger inefficiencies are negligible. Weuse data from approximately 70k 0-80% central
events taken in 2011 for the tracking detector and EMCal measurements and data from approximately
600k 0-80% central events taken in 2010 for the PHOS measurement. We focus on a small event sam-
ple where the detector performance was uniform in order to simplify efficiency corrections since the
measurement is dominated by systematic uncertainties.

Tracks are reconstructed using both the TPC and the ITS. Tracks are selected by requiring that they
cross at least 70 rows and requiring aχ2 per space point< 4. Tracks are restricted to|η | < 0.6. Each
track is required to have at least one hit in one of the two innermost ITS layers and a small distance of
closest approach (DCA) to the primary vertex in thexy plane as a function of transverse momentum (pT),
defined by DCAxy < (0.0182+0.035/p1.01

T ) cm wherepT is in GeV/c. The distance of closest approach
in the z direction is restricted to DCAz < 2 cm. This reduces the contribution from secondary particles
from weak decays, which appear as a background. With these selection criteria tracks with transverse
momentapT > 150 MeV/c can be reconstructed. The typical momentum resolution for low momentum
tracks, which dominateET measurements, is∆pT/pT ≈ 1%. The reconstruction efficiency varies with
pT and ranges from about 50% to 75% [41].

Particles are identified through their specific energy loss,dE/dx, in the TPC when possible. The dE/dx
is calculated using a truncated-mean procedure and compared to the dE/dx expected for a given particle
species using a Bethe-Bloch parametrization. The deviation from the expected dE/dx value is expressed
in units of the energy-loss resolutionσ [42]. Tracks are identified as arising from a kaon if they are within
3σ from the expected dE/dx for a kaon, more than 3σ from the expected dE/dx for a proton or a pion,
and havepT < 0.45 GeV/c. Tracks are identified as arising from (anti)protons if theyare within 3σ from
the expected dE/dx for (anti)protons, more than 3σ from the expected dE/dx for kaons or pions, and have
pT < 0.9 GeV/c. Tracks are identified as arising from an electron (positron) and therefore excluded from
the measurement ofEπ,K,p

T if they are within 2σ from the expected dE/dx for an electron (positron), more
than 4σ from the expected dE/dx for a pion, and more than 3σ from the expected dE/dx for a proton or
kaon. With this algorithm approximately 0.1% of tracks arise from electrons or positrons misidentified
as arising from pions and fewer than 0.1% of tracks are misidentified as arising from kaons or protons.
Any track not identified as a kaon or proton is assumed to arisefrom a pion and the measurement must
be corrected for the error in this assumption.

The PHOS and EMCal are used to measure the electromagnetic energy component of theET and to
demonstrate consistency between methods. Data from 2011 were used for the EMCal analysis due to
the larger EMCal acceptance in 2011. Data from one run in 2010were used for the PHOS due to better

3
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detector performance and understanding of the calibrations in that run period. The EMCal has a larger
acceptance, but the PHOS has a better energy resolution. There is also a lower material budget in front
of the PHOS than the EMCal. This provides an additional checkon the accuracy of the measurement.

3 Method

Historically mostET measurements have been performed using calorimeters, and the commonly accepted
operational definition ofET is therefore based on the energyE j measured in the calorimeter’sjth tower

ET =
M

∑
j=1

Ej sinθj (1)

where j runs over all M towers in the calorimeter andθj is the polar angle of the calorimeter tower. The
transverse energy can also be calculated using single particle tracks. In that case, the index, j, in Eq. 1
runs over the M measured particles instead of calorimeter towers, andθj is the particle emission angle.
In order to be compatible with theET of a calorimetry measurement, the energyEj of Eq. 1 must be
replaced with the single particle energies

Ej =







Ekin for baryons
Ekin +2mc2 for anti-baryons
Ekin +mc2 for all other particles.

(2)

This definition ofET was used in the measurements of the transverse energy by CMS [26] (based on
calorimetry), PHENIX [22] (based on electromagnetic calorimetry), and STAR [25] (based on a combi-
nation of electromagnetic calorimetry and charged particle tracking). To facilitate comparison between
the various data sets the definition ofET given by Eqs. 1 and 2 is used here.

It is useful to classify particles by how they interact with the detector. We define the following categories
of final state particles:

A π±, K±, p, andp: Charged particles measured with high efficiency by tracking detectors

B π0, ω , η , e±, andγ : Particles measured with high efficiency by electromagnetic calorimeters

C Λ, Λ, K0
S, Σ+, Σ−, andΣ0: Particles measured with low efficiency in tracking detectors and electro-

magnetic calorimeters

D K0
L, n, andn: Neutral particles not measured well by either tracking detectors or electromagnetic
calorimeters.

The totalET is the sum of theET observed in final state particles in categories A-D. Contributions from
all other particles are negligible. In HIJING 1.383 [43] simulations of Pb–Pb collisions at

√
sNN = 2.76

TeV the next largest contributions come from theΞ(Ξ) andΩ(Ω) baryons with a total contribution of
about 0.4% of the totalET, much less than the systematic uncertainty on the final valueof ET. TheET

from unstable particles withcτ < 1 cm is taken into account through theET from their decay particles.

When measuringET using tracking detectors, the primary measurement is of particles in category A
and corrections must be applied to take into account theET which is not observed from particles in
categories B-D. In the hybrid method theET from particles in category A is measured using tracking
detectors and theET from particles in category B is measured by the electromagnetic calorimeter. An
electromagnetic calorimeter has the highest efficiency formeasuring particles in category B, although
there is a substantial background from particles in category A. The ET from categories C and D, which
is not well measured by an electromagnetic calorimeter, must be corrected for on average. Following the
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convention used by STAR, we defineEhad
T to be theET measured from particles in category A and scaled

up to include particles in categories C and D andEem
T to be theET measured in category B. The totalET

is given by
ET = Ehad

T +Eem
T . (3)

We refer toEhad
T as the hadronicET andEem

T as the electromagneticET. We note thatEhad
T andEem

T are
operational definitions based on the best way to observe the energy deposited in various detectors and
that the distinction is not theoretically meaningful.

Several corrections are calculated using HIJING [43] simulations. The propagation of final state particles
in these simulations through the ALICE detector material isdescribed using GEANT 3 [44]. Throughout
the paper these are described as HIJING+GEANT simulations.

3.1 Tracking detector measurements ofET

The measurements of the totalET using the tracking detectors and of the hadronicET are closely cor-
related because the direct measurement in both cases isEπ,K,p

T , theET from π±, K±, p, andp from the
primary vertex. All contributions from other categories are treated as background. ForEhad

T theET from
categories C and D is corrected for on average and for the total ET the contribution from categories B,
C, and D is corrected for on average. Each of these contributions is taken into account with a correction
factor.

The relationship between the measured track momenta andEπ,K,p
T is given by

dEπ,K,p
T

dη
=

1
∆η

1
fpTcut

1
fnotID

n

∑
i=1

fbg(pi
T)

ε(pi
T)

Ei sinθi (4)

where i runs over the n reconstructed tracks and∆η is the pseudorapidity range used in the analysis,
ε(pT) corrects for the finite track reconstruction efficiency and acceptance,fbg(pT) corrects for theΛ,
Λ, and K0

S daughters and electrons that pass the primary track qualitycuts, fnotID corrects for particles
that could not be identified unambiguously through their specific energy loss dE/dx in the TPC, and
fpTcut corrects for the finite detector acceptance at low momentum.HadronicET is given byEhad

T =
Eπ,K,p

T / fneutral where fneutral is the fraction ofEhad
T from π±, K±, p, andp and totalET is given byET

= Eπ,K,p
T / ftotal where ftotal is the fraction ofET from π±, K±, p, andp. The determination of each of

these corrections is given below and the systematic uncertainties are summarized in Tab. 1. Systematic
uncertainties are correlated point to point.

3.1.1 Single track efficiency×acceptanceε(pT)

The single track efficiency×acceptance is determined by comparing the primary yields tothe recon-
structed yields using HIJING+GEANT simulations, as described in [45]. When a particle can be iden-
tified as aπ±, K±, p, or p using the algorithm described above, the efficiency for that particle is used.
Otherwise the particle-averaged efficiency is used. The 5% systematic uncertainty is determined by the
difference between the fraction of TPC standalone tracks matched with a hit in the ITS in simulations
and data.

3.1.2 Backgroundfbg(pT)

The background comes from photons which convert toe+e− in the detector and decay daughters fromΛ,
Λ, and K0

S which are observed in the tracking detectors but do not originate from primaryπ±, K±, p, and
p. This is determined from HIJING+GEANT simulations. The systematic uncertainty on the background
due to conversion electrons is determined by varying the material budget in the HIJING+GEANT simu-
lations by±10% and found to be negligible compared to other systematic uncertainties. The systematic
uncertainty due toΛ, Λ, and K0

S daughters is sensitive to both the yield and the shape of theΛ, Λ, and K0
S

5
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spectra. To determine the contribution fromΛ, Λ, and K0
S decay daughters and its systematic uncertainty

the spectra in simulation are reweighted to match the data and the yields are varied within their uncer-
tainties [46]. Because the centrality dependence is less than the uncertainty due to other corrections, a
constant correction of 0.982± 0.008 is applied across all centralities .

3.1.3 Particle identificationfnotID

The ET of particles with 0.15< pT < 0.45 GeV/c with a dE/dx within two standard deviations of the
expected dE/dx for kaons is calculated using the kaon mass and theET of particles with 0.15< pT < 0.9
GeV/c with a dE/dx within two standard deviations of the expected dE/dx for (anti)protons is calculated
using the (anti)proton mass. TheET of all other particles is calculated using the pion mass. Since the
average transverse momentum is〈pT〉 = 0.678± 0.007 GeV/c for charged particles [47] and over 80%
of the particles created in the collision are pions [42], most particles can be identified correctly using
this algorithm. At high momentum, the difference between the trueET and theET calculated using the
pion mass hypothesis for kaons and protons is less than at lowpT. This is therefore a small correction.
Assuming that all kaons with 0.15< pT < 0.45 GeV/c and (anti)protons with 0.15< pT < 0.9 GeV/c are
identified correctly and using the identifedπ±, K±, p, andp spectra [42] givesfnotID = 0.992± 0.002.
The systematic uncertainty is determined from the uncertainties on the yields.

Assuming that 5% of kaons and protons identified using the particle identification algorithm described
above are misidentified as pions only decreasesfnotID by 0.0002, less than the systematic uncertainty on
fnotID. This indicates that this correction is robust to changes inthe mean dE/dx expected for a given
particle and its standard deviation. We note that either assuming no particle identification or doubling
the number of kaons and protons only decreasesfnotID by 0.005.

3.1.4 LowpT acceptancefpTcut

The lower momentum acceptance of the tracking detectors is primarily driven by the magnetic field and
the inner radius of the active volume of the detector. Trackscan be reliably reconstructed in the TPC for
particles withpT > 150 MeV/c. The fraction ofET carried by particles below this momentum cut-off
is determined by HIJING+GEANT simulations. To calculate the systematic uncertainty we follow the
prescription given by STAR [25]. The fraction ofET contained in particles below 150 MeV/c is calculated
assuming that all particles below this cut-off have a momentum of exactly 150 MeV/c to determine an
upper bound, assuming that they have a momentum of 0 MeV/c to determine a lower bound, and using the
average as the nominal value. Using this prescription,fpTcut = 0.9710± 0.0058. We note thatfpTcut is the
same within systematic uncertainties when calculated fromPYTHIA simulations [48] for pp collisions
with

√
s = 0.9 and 8 TeV, indicating that this is a robust quantity.

3.1.5 Correction factorsfneutraland ftotal

Under the assumption that the different states within an isospin multiplet and particles and antiparticles
have the sameET, fneutralcan be written as

fneutral=
2Eπ

T +2EK
T +2Ep

T

3Eπ
T +4EK

T +4Ep
T +2EΛ

T +6EΣ
T

(5)

and ftotal can be written as

ftotal =
2Eπ

T +2EK
T +2Ep

T

3Eπ
T +4EK

T +4Ep
T +2EΛ

T +6EΣ
T +Eω ,η ,e±,γ

T

. (6)

whereEK
T is theET from one kaon species,Eπ

T is theET from one pion species,Ep
T is the average of the

ET from protons and antiprotons,EΛ
T is the averageET from Λ andΛ, andEΣ

T is the averageET from Σ+,

6
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Σ−, andΣ0 and their antiparticles. The contributionsEπ
T , EK

T , Ep
T, andEΛ

T are calculated from the particle
spectra measured by ALICE [42, 46] as for the calculation ofET from the particle spectra. The systematic
uncertainties are also propagated assuming that the systematic uncertainties from different charges of the
same particle species (e.g.,π+ andπ−) are 100% correlated and from different species (e.g.,π+ and
K+) are uncorrelated. The contribution from theΣ+, Σ−, andΣ0 and their antiparticles is determined
from the measuredΛ spectra. The total contribution fromΣ species and their antiparticles should be
approximately equal to that of theΛ andΛ, but since there are three isospin states for theΣ, each species
carries roughly 1/3 of theET that theΛ carries. Since theΣ0 decays dominantly through aΛ and has a
short lifetime, the measuredΛ spectra includeΛ from theΣ0 decay. The ratio ofF = (EΣ+

T +EΣ−
T )/EΛ

T
is therefore expected to be 0.5. HIJING [43] simulations indicate thatF = 0.67 and if theET scales with
the yield, THERMUS [49] indicates thatF = 0.532. We therefore useF = 0.585± 0.085.

The contributionEω ,η ,e±,γ
T is calculated using transverse mass scaling for theη meson and PYTHIA

simulations for theω , e±, andγ , as described earlier. Because most of theET is carried byπ±, K±, p,p,
n, andn, whose contributions appear in both the numerator and the denominator,ftotal and fneutralcan be

determined to high precision, and the uncertainty inftotal and fneutral is driven byEΛ
T andEω ,η ,e±,γ

T . It is
worth considering two special cases. If allET were carried by pions, as is the case at low energy where
almost exclusively pions are produced, Eq. 6 would simplifyto ftotal = 2/3. If all ET were only carried
by kaons, (anti)protons, and (anti)neutrons, Eq. 6 would simplify to ftotal = 1/2.

In order to calculate the contribution from theη meson and its uncertainties, we assume that the shapes
of its spectra for all centrality bins as a function of transverse mass are the same as the pion spectra,
using the transverse mass scaling [50], and that theη/π ratio is independent of the collision system, as
observed by PHENIX [51]. We also consider a scenario where the η spectrum is assumed to have the
same shape as the kaon spectrum, as would be expected if the shape of theη spectrum was determined
by hydrodynamical flow. In this case we use the ALICE measurements ofη/π in pp collisions [52] to
determine the relative yields. We use theη/π ratio at the lowest momentum point available,pT = 0.5
GeV/c, because theET measurement is dominated by low momentum particles. Because noω measure-
ment exists, PYTHIA [48] simulations of pp collisions were used to determine the relative contribution
from theω and from all other particles which interact electromagnetically (mainly γ and e±). These

contributions were approximately 2% and 1% ofEπ
T , respectively. With these assumptions,Eω ,η ,e±,γ

T /Eπ
T

= 0.17± 0.11. The systematic uncertainty on this fraction is dominated by the uncertainty in theη/π
ratio. We propagate the uncertainties assuming that theET from the same particle species are 100%
correlated and that the uncertainties from different particle species are uncorrelated.

The fneutral, ftotal, and fem = 1− ftotal/ fneutralare shown in Fig. 1 along with the fractions ofET carried by
all pions fπ , all kaons fK , protons and antiprotonsfp, andΛ baryons fΛ versus〈Npart〉. While there is
a slight dependence of the central value on〈Npart〉, this variation is less than the systematic uncertainty.
Since there is little centrality dependence, we usefem = 0.240± 0.027, fneutral = 0.728± 0.017, and
ftotal = 0.553± 0.010, which encompass the entire range for all centralities. The systematic uncertainty
is largely driven by the contribution fromΛ, ω , η , e±, andγ since these particles only appear in the
denominator of Eqs. 5 and 6. The systematic uncertainty onftotal is smaller than that onfneutral because
fneutralonly hasEΛ

T in the denominator.

These results are independently interesting. The fractionof energy carried by different species does not
change significantly with centrality. Additionally, only about 1/4 of the energy is inEem

T , much less than
the roughly 1/3 of energy inEem

T at lower energies where most particles produced are pions with theπ0

carrying approximately 1/3 of the energy in the collision. Furthermore, only about 3.5% of theET is
carried byω , η , e±, andγ . Since charged and neutral pions have comparable spectra, this means that
the tracking detectors are highly effective for measuring the transverse energy distribution in nuclear
collisions.
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Fig. 1: Fraction of the totalET in pions (fπ ), kaons (fK), p andp ( fp), andΛ ( fΛ) and the correction
factors ftotal, fneutral, and fem as a function of〈Npart〉. The fractionfΛ is scaled by a factor of two so that
the data do not overlap with those from protons. Note thatfneutral is the fraction ofEhad

T measured in the
tracking detectors whileftotal and fem are the fractions of the totalET measured in the tracking detectors
and the calorimeters, respectively. The vertical error bars give the uncertainty on the fraction ofET from
the particle yields.

Correction Value % Rel. uncertainty
fpTcut 0.9710± 0.0058 0.6 %

fneutral 0.728± 0.017 2.3 %
ftotal 0.553± 0.010 3.0 %

fnotID 0.982± 0.002 0.2 %
fbg(pT) 1.8% 0.8%

ε(pT) 50% 5%

Table 1: Summary of corrections and systematic uncertainties forEhad
T andET from tracking detectors.

For centrality andpT independent corrections the correction is listed. For centrality and pT dependent
corrections, the approximate percentage of the correctionis listed. In addition, the anchor point uncer-
tainty in the Glauber calculations leads to an uncertainty of 0–4%, increasing with centrality.

3.1.6 Ehad
T distributions

Figure 2 shows the distributions of the reconstructedEhad
T measured fromπ±, K±, p, andp tracks using

the method described above for several centralities. No correction was done for the resolution leaving
these distributions dominated by resolution effects. The meanEhad

T is determined from the average of the
distribution ofEhad

T in each centrality class.

3.2 Calculation ofET and Ehad
T from measured spectra

We use the transverse momentum distributions (spectra) measured by ALICE [42, 46] to calculateET

and Ehad
T as a cross check. We assume that all charge signs and isospin states of each particle carry

the sameET, e.g. Eπ+

T = Eπ−
T = Eπ0

T , and that theET carried by (anti)neutrons equals theET carried
by (anti)protons. These assumptions are consistent with the data at high energies where positively and
negatively charged hadrons are produced at similar rates and the anti-baryon to baryon ratio is close to
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one [53, 54]. Since theΛ spectra [46] are only measured for five centrality bins, theΛ contribution is
interpolated from the neighboring centrality bins. The same assumptions about the contributions of the
η , ω , γ , ande± described in the section onftotal and fneutralare used for these calculations. The dominant
systematic uncertainty on these measurements is due to the single track reconstruction efficiency and
is correlated point to point. The systematic uncertainty onthese calculations is not correlated with the
calculations ofET using the tracking detectors because these measurements are from data collected in
different years. The meanEhad

T per〈Npart/2〉 obtained from the tracking results of Fig. 2 are shown as a
function of 〈Npart〉 in Fig. 3, where they are compared with results calculated using the particle spectra
measured by ALICE. The two methods give consistent results.Data are plotted in 2.5% wide bins in
centrality for 0–40% central collisions, where the uncertainty on the centrality is<1% [55]. Data for
40–80% central collisions are plotted in 5% wide bins.
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3.3 Electromagnetic calorimeter measurements ofEem
T

The Eem
T is defined as the transverse energy of the particles of category B discussed above, which are

the particles measured well by an electromagnetic calorimeter. While the definition ofEem
T includesπ0,

ω , η , e±, andγ , the majority of theET comes fromπ0 → γγ (85%) andη → γγ (12%) decays, mean-
ing that the vast majority ofEem

T arises from photons reaching the active area of the electromagnetic
calorimeters. Reconstructed clusters are used for the analysis, with most clusters arising from a singleγ .
Clusters reduce contributions from detector noise to a negligible level, as compared to using tower ener-
gies as done by STAR [25]. However, clusters also require additional corrections for the reconstruction
efficiency, nonlinearity, and minimum energy reconstructed. In addition, both the EMCal and the PHOS
have limited nominal acceptances so an acceptance correction must be applied. Backgrounds come from
charged hadrons in category A (π±, K±, p, andp), kaon decays intoπ0 from both category A (K±) and
category C (K0

S), neutrons from category D, and particles produced by secondary interactions with the
detector material.

The correctedEem
T is given by

dEem
T

dη
=

1
∆η

1
facc

1
fETmin

(

∑
j

δm
sinθj

εγ fENL

Ej − Ebkgd
T

)

(7)

where j runs over the reconstructed clusters in the calorimeter and∆η is the pseudorapidity range used
in the analysis. The correction factorfacc corrects for the finite nominal azimuthal detector acceptance,
fETmin is a correction for the minimum cluster energy used in the analysis, δm is zero when a cluster is
matched to a track and one otherwise,εγ is the product of the active acceptance and the reconstruction
efficiency in the nominal acceptance of the detector,fENL is the correction for the nonlinear response
of the calorimeter, andEbkgd

T is the sum of the contributions from charged hadrons, kaons,neutrons,
and particles created by secondary interactions. These correction factors are discussed below and their
systematic uncertainties are summarized in Tab. 2. All of the systematic uncertainties except for that due
to the background subtraction are correlated point to point. Systematic uncertainties on measurements
of Eem

T from the EMCal and the PHOS and calculations ofEem
T from the spectra are not correlated.

Systematic uncertainties on hybrid measurements are dominated by systematic uncertainties onEhad
T and

are therefore dominantly correlated point to point and withthe tracking detector measurements.

3.3.1 Acceptance correctionfacc and cluster reconstruction efficiencyεγ

The correction for the acceptance is divided into two parts,the correction due to the nominal acceptance
of the detector and the correction due to limited acceptancewithin the nominal acceptance of the detector
due to dead regions and edge effects. To reduce edge effects,clusters in the PHOS are restricted to
|η |< 0.1 and in the EMCal to|η |< 0.6. The correctionfaccaccounts for the limited nominal acceptance
in azimuth and is therefore 5/18 for the EMCal, which has a nominal acceptance of 100◦, and 1/6 for
the PHOS, which has a nominal acceptance of 60◦. It does not correct for acceptance effects due to
dead regions in the detector or for noisy towers omitted fromthe analysis. This is accounted for by
the cluster reconstruction efficiency×acceptance within the nominal detector acceptance,εγ , calculated
from HIJING+GEANT simulations using photons from the decayof the π0 meson. The efficiency is
calculated as a function of the energy of the cluster.

3.3.2 Minimum cluster energyfETmin

There is a minimum energy for usable clusters analogous to the minimumpT in the acceptance of the
tracking detectors. A threshold of 250 MeV for PHOS and 300 MeV for the EMCal is applied. These
energies are above the peak energy for minimum ionizing particles (MIPs), reducing the background
correction due to charged hadrons. We apply the threshold inET rather than energy because it simplifies
the calculation of the correction for this threshold and itssystematic uncertainty. We use the charged
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pion spectra to calculate the fraction ofEem
T below these thresholds. PYTHIA is used to simulate the

decay kinematics and the measured charged pion spectra are used to determine the fraction ofET from
pions within the acceptance. As for the calculation offtotal for the measurement ofEhad

T described above,
we assume transverse mass scaling to determine the shape of theη spectrum and theη/π ratio measured
by ALICE [52] to estimate the contribution of theη meson tofETmin. The uncertainty on the shape of
the charged pion spectrum and on theη/π ratio is used to determine the uncertainty onfETmin. This
correction is centrality dependent and ranges from 0.735 to0.740 for the PHOS and from 0.640 to 0.673
for the EMCal with a systematic uncertainty of 3.5–5%.

3.3.3 Nonlinearity correctionfENL and energy scale uncertainty

For an ideal calorimeter the signal observed is proportional to the energy. In practice, however, there
is a slight deviation from linearity in the signal observed,particularly at low energies. A nonlinearity
correction is applied to take this into account. For the EMCal this deviation from linearity reaches a
maximum of about 15% for the lowest energy clusters used in this analysis. The systematic uncertainty
for the EMCal is determined by comparing the nonlinearity observed in test beam and the nonlinearity
predicted by HIJING+GEANT simulations and reaches a maximum of about 5% for the lowest energy
clusters. The PHOS nonlinearity is determined by comparingthe location of theπ0 mass peak to HI-
JING+GEANT simulations and cross checked using the energy divided by the momentum for identified
electrons. The systematic uncertainty is derived from the accuracy of the location of theπ0 mass peak.
The nominal correction is about 1% with a maximum systematicuncertainty of around 3% for the lowest
energy clusters. The rawEem

T is calculated with the maxima and minima of the nonlinearities and the dif-
ference from the nominal value is assigned as a systematic uncertainty. The final systematic uncertainty
on the measurement with the EMCal due to nonlinearity is about 0.8% and 1.3% for the PHOS. For both
the PHOS and the EMCal, the energy scale uncertainty was determined by comparing the location of the
π0 mass peak and the ratio of energy over momentum for electrons. This systematic uncertainty is 2%
for the EMCal [56] and 0.5% for the PHOS [57].

3.3.4 BackgroundEbkgd
T

Charged particles (category A) are the largest source of background inEem
T . Clusters matched to tracks

are omitted from the analysis. The track matching efficiencydetermined from HIJING+GEANT simu-
lations is combined with information from clusters matchedto tracks to calculate the number and mean
energy of remaining deposits from charged particles. The systematic uncertainty on this contribution
comes from the uncertainty on the track matching efficiency and the uncertainty in the mean energy.
The former is dominated by the uncertainty on the single track reconstruction efficiency and the latter is
determined by comparing central and peripheral collisions, assuming that the energy of clusters matched
to tracks in central collisions may be skewed by overlappingclusters due to the high occupancy.

The background contributions from both charged kaons (category A) through their K± → Xπ0 decays
andK0

S (category C) through itsK0
S → π0 π0 decay are non-negligible. The amount of energy deposited

by a kaon as a function ofpT is determined using HIJING+GEANT simulations. This is combined with
the kaon spectra measured by ALICE [42] to calculate the energy deposited in the calorimeters by kaons.
The systematic uncertainty on the background from kaons is determined by varying the yields within the
uncertainties of the spectra. Contributions from both neutrons and particles from secondary interactions
are determined using HIJING+GEANT simulations. The systematic uncertainty on these contributions
is determined by assuming that they scale with either the number of tracks (as a proxy for the number
of charged particles) or with the number of calorimeter clusters (as a proxy for the number of neutral
particles).

The background contribution is centrality dependent and ranges from 61% to 73% with both the back-
ground and its systematic uncertainty dominated by contributions from charged hadrons. This correction
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PHOS EMCal
Correction Uncertainty Correction Uncertainty

facc 6 0 3.6 0
Energy scale – 0.5% – 2%

εγ 40% 5% 80% 5%
fETmin 0.735 – 0.740 3.5% 0.64 – 0.673 4.1 – 5.0%
fENL < 0.5% 1.3% < 5% 0.8%
fbkgd 0.616 – 0.753 9 – 20% 0.659 – 0.732 8 – 13%
Eem

T – 10 – 20% – 10 – 15%

Table 2: Summary of corrections and systematic uncertainties for Eem
T . The approximate size of the

correction is listed forεγ and the ranges are listed for centrality dependent corrections. The fraction

fbkgd = Ebkgd
T /E raw

T whereE raw
T = ∑

j
δm

sinθj

εγ fENL
Ej is given in order to compareEbkgd

T across centralities.

In addition, the anchor point uncertainty in the Glauber calculations leads to an uncertainty of 0–4%,
increasing with centrality.

is so large becauseEem
T comprises only about 25% of theET in an event whileπ±, K±, p, andp carry

roughly 57% of theET in an event.

3.3.5 Acceptance effects

The limited calorimeter acceptance distorts the distribution of Eem
T for events with very lowEem

T because
it is difficult to measure the meanET when the mean number of clusters observed is small (about 1–
10). While it is possible to correct for acceptance, this wasnot done since the measurement ofET

from the tracking method has the highest precision. The hybrid method using both the calorimeters and
the tracking detectors is therefore restricted to the most central collisions where distortions of theEem

T
distribution are negligible.

3.3.6 Eem
T distributions

No resolution correction was applied for the resolution leaving the distributions in Fig. 4 and Fig. 5
dominated by resolution effects. The resolution is primarily determined by the finite acceptance of the
detectors in azimuth, limiting the fraction ofEem

T sampled by the calorimeter. The distributions are
broader for PHOS than EMCal because of the smaller azimuthalacceptance of the PHOS. The mean
Eem

T is determined from the average of the distribution ofEem
T in each centrality bin. TheEem

T per〈Npart〉
pair measured using the electromagnetic calorimeters is compared to that calculated using the measured
pion spectra in Fig. 6, demonstrating that these methods lead to comparable results. TheEem

T calculated

from the spectra is determined using the same ratio ofEω ,η ,e±,γ
T /Eπ

T = 0.171± 0.110 for all centralities.

4 Results

The〈dET/dη〉/(〈Npart/2〉) versus〈Npart〉 is shown in Fig. 7 using tracking detectors, using EMCal+tracking,
using PHOS+tracking, and as calculated from the measured particle spectra. All methods lead to com-
parable results, although the systematic errors are largely correlated due to the dominant correction from
the tracking inefficiency. The Glauber calculations of〈Npart〉 and its uncertainties are calculated as in [55]
and the uncertainties on〈Npart〉 are added in quadrature to the uncertainties onET. As discussed above,
the small number of clusters observed in the calorimeters inperipheral collisions make acceptance cor-
rections difficult. Since the measurements with the tracking detectors alone has higher precision, only
these measurements are used in the following.
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Fig. 4: Distribution ofEem
T measured with the EMCal at midrapidity for several centrality bins. Not

corrected for resolution effects. Only statistical error bars are shown.
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Fig. 5: Distribution ofEem
T measured with the PHOS at midrapidity for several centrality bins. Not

corrected for resolution effects. Only statistical error bars are shown.

Fig. 8 compares〈dET/dη〉/(〈Npart/2〉) versus〈Npart〉 in Pb–Pb collisions at
√

sNN = 2.76 TeV from
CMS [26] and ALICE, and in Au–Au collisions at

√
sNN = 200 GeV from STAR [25] and PHENIX [22,

23]. Data from RHIC have been scaled by a factor of 2.7 for comparison of the shapes. The factor of 2.7 is
approximately the ratio of〈pT〉〈dNch/dη〉 at the LHC [42] to that at RHIC [58, 59]. The shapes observed
by ALICE and PHENIX are comparable for all〈Npart〉. STAR measurements are consistent with PHENIX
measurements for the most central collisions and above the PHENIX measurements, although consistent
within systematic uncertainties, for more peripheral collisions. CMS measurements are consistent with
ALICE measurements for peripheral collisions but deviate beyond the systematic uncertainties for more
central collisions. TheET in Pb–Pb collisions is 1737± 6(stat.)± 97 (sys.) GeV and theET per
participant is 9.02± 0.03(stat.)± 0.50 (sys.) GeV, two standard deviations below the value observed by
CMS [26]. All methods resulted in a lowerET than that reported by CMS, although the systematic errors
on the measurements are significantly correlated. The corrections for the CMS data are determined by
Monte Carlo [26] while the corrections for the ALICE measurement are mainly data-driven.
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Fig. 6: Comparison of〈dEem
T /dη〉/(〈Npart/2〉) versus〈Npart〉 at midrapidity from the PHOS, from the

EMCal, and as calculated from the measured pion spectra. Theboxes indicate the systematic uncertain-
ties.
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Fig. 7: Comparison of total〈dET/dη〉/(〈Npart/2〉) versus〈Npart〉 at midrapidity using tracking detectors,
using EMCal+tracking, using PHOS+tracking, and as calculated from the measured particle spectra. The
boxes indicate the systematic uncertainties.

PHENIX [24] reported that while〈dET/dη〉 scaled by〈Npart〉 has a pronounced centrality dependence,
as seen in Fig. 8,〈dET/dη〉 scaled by the number of constituent quarks,〈Nquark〉, 〈dET/dη〉/(〈Nquark/2〉)
shows little centrality dependence within the systematic uncertainties for collisions at

√
sNN = 62.4 – 200

GeV. This indicates thatET might scale linearly with the number of quarks participating in the collision
rather than the number of participating nucleons. Fig. 9 shows 〈dET/dη〉/(〈Nquark/2〉) as a function of
〈Npart〉. To calculate〈Nquark〉 the standard Monte Carlo Glauber technique [28] has been used with the
following Woods-Saxon nuclear density parameters: radiusparameterRWS= 6.62±0.06 fm, diffuseness
a = 0.546±0.010 fm, and hard coredmin = 0.4±0.4 fm. The three constituent quarks in each nucleon
have been sampled from the nucleon density distributionρnucleon= ρ0e−ar with a = 4.28f m−1 using the
method developed by PHENIX [60]. The inelastic quark-quarkcross section at

√
sNN = 2.76 TeV was

found to beσ inel
qq = 15.5±2.0 mb corresponding toσ inel

NN = 64±5 mb [55]. The systematic uncertainties
on the〈Nquark〉 calculations were determined following the procedure described in [55]. Unlike at RHIC,
we observe an increase in〈dET/dη〉/(〈Nquark/2〉) with centrality below〈Npart〉 ≈200.
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Fig. 8: Comparison of〈dET/dη〉/(〈Npart/2〉) at midrapidity in Pb–Pb collisions at
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Figure 10 shows〈dET/dη〉/〈dNch/dη〉, a measure of the average transverse energy per particle, versus
〈Npart〉 in Pb–Pb collisions at

√
sNN = 2.76 TeV from ALICE, and in Au–Au collisions at

√
sNN = 200 GeV

from STAR [25] and PHENIX [22, 23]. No centrality dependenceis observed within uncertainties at ei-
ther RHIC or LHC energies. The〈dET/dη〉/〈dNch/dη〉 increases by a factor of approximately 1.25 from√

sNN = 200 GeV [22, 23, 25] to
√

sNN = 2.76 TeV, comparable to the increase in〈pT〉 from
√

sNN = 200
GeV [58, 59] to

√
sNN = 2.76 TeV [47]. The average transverse momentum,〈pT〉, also shows little depen-

dence on the charged-particle multiplicity except for peripheral collisions [47]. The absence of a strong
centrality dependence in〈dET/dη〉/〈dNch/dη〉 is consistent with the development of radial flow seen in
the spectra of identified particles [42] assuming kinetic energy is conserved during the hydrodynamic
expansion.

Figure 11 shows a comparison of〈dET/dη〉/(〈Npart/2〉) versus
√

sNN in 0–5% central Pb–Pb collisions
at

√
sNN = 2.76 TeV from ALICE and CMS [26] and central collisions at other energies [22, 25, 60]

at midrapidity. The data are compared to an extrapolation from lower energy data [22], which substan-
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Fig. 11: Comparison of〈dET/dη〉/(〈Npart/2〉) at midrapidity versus
√

sNN in 0–5% central Pb–Pb colli-
sions at

√
sNN = 2.76 TeV from ALICE and CMS [26] and central collisions at other energies [22, 25, 60]

at midrapidity. All measurements are from 0–5% central collisions except the NA49 data, which are from
0–7% collisions.

tially underestimates the〈dET/dη〉/(〈Npart/2〉) at the LHC. The data are also compared to the EKRT
model [61, 62]. The EKRT model combines perturbative QCD minijet production with gluon saturation
and hydrodynamics. The EKRT calculation qualitatively describes the

√
sNN dependence at RHIC and

SPS energies [25]. However, at LHC energies EKRT overestimatesET substantially, indicating that it is
unable to describe the collision energy dependence.

Figure 12 shows a comparison of〈dET/dη〉/〈dNch/dη〉 versus
√

sNN in 0-5% central Pb–Pb collisions
at

√
sNN = 2.76 TeV from ALICE and in central collisions at other energies. Previous measurements

indicated that〈dET/dη〉/〈dNch/dη〉 had either saturated at RHIC energies or showed only a weak de-
pendence on

√
sNN [22, 25, 60]. An empirical extrapolation of the data to LHC energies assuming that

bothET and〈Nch〉 have a linear dependence on
√

sNN predicted that〈dET/dη〉/〈dNch/dη〉 would be 0.92
± 0.06 [22] and we observe 1.06± 0.05. Increasing the incident energy increases both the particle pro-
duction and the mean energy per particle at LHC energies, in contrast to lower energies (

√
sNN = 19.6 –
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Fig. 13: Comparison of〈dET/dη〉/(〈Npart/2〉) versus〈Npart〉 at midrapidity to AMPT [64], HYDJET
1.8 [65], and UDG [66]. The boxes indicate the systematic uncertainties.

200 GeV) where increasing the incident energy only led to increased particle production [22].

Figure 13 shows a comparison of〈dET/dη〉/(〈Npart/2〉) versus〈Npart〉 to various models. AMPT [64]
is a Monte Carlo event generator which builds on HIJING [43],adding explicit interactions between
initial minijet partons and final state hadronic interactions. HYDJET 1.8 [65] is a Monte Carlo event
generator that introduces jet quenching via gluon bremsstrahlung to PYTHIA [48] events. The curves
labeled UDG are calculations from a Color Glass Condensate model [66] with different normalization
K factors. None of the available models is able to describe the data very well, but we find that AMPT
does best in describing the shape and level of〈dET/dη〉/(〈Npart/2〉). HYDJET describes the relative
shape changes as a function of centrality as well as AMPT, butoverestimates〈dET/dη〉/(〈Npart/2〉).
Both CGC calculations overestimate〈dET/dη〉/(〈Npart/2〉) and predict a larger increase as a function of
centrality than is observed in the data.

The volume-averaged energy densityε can be estimated from〈dET/dη〉 using the following expres-
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Fig. 14: ετ0 versus〈Npart〉 estimated using Eq. 8,R = 7.17 fm, and the measured〈dET/dη〉. The boxes
indicate the systematic uncertainties.

sion [14]

ε =
1

Acτ0
J
〈dET

dη

〉

(8)

where A is the effective transverse collision area,c is the speed of light, J is the Jacobian for the trans-
formation between〈dET/dη〉 and〈dET/dy〉, andτ0 is the formation time. The Jacobian is calculated
from the measured particle spectra [42, 46]. While J has a slight centrality dependence, it is smaller than
the systematic uncertainty so a constant Jacobian of J = 1.12± 0.06 is used. The formation time of the
systemτ0 is highly model dependent and we therefore reportετ0.

The transverse overlap area corresponding to the measured〈dET/dη〉 was determined by a calculation
using a Glauber Monte Carlo method. Using the Glauber parameters from [55] and assuming each
participating nucleon has an effective transverse radius of R = (σ inel

NN /4π)1/2 = 0.71 fm results inA =
162.5 fm2 for central collisions (b = 0 fm). This is equivalent to a transverse overlap radius ofR = 7.19
fm, which is close to the value of 7.17 fm often used in estimates of energy densities using a Woods-
Saxon distribution to determine the effective area [24, 60]. The centrality dependence of A is obtained by
assuming it scales as(σ2

x σ2
y −σ2

xy)
1/2 [67], whereσ2

x andσ2
y are the variances andσ2

xy is the covariance
of the spatial distribution of the participating nucleons in the transverse plane in the Glauber Monte Carlo
calculation. For 0–5% central collisions this leads to a reduction of A by 3% resulting inετ0 = 12.5±
1.0 GeV/fm2/c. For comparison usingR = 7.17 fm givesετ0 = 12.3± 1.0 GeV/fm2/c, roughly 2.3 times
that observed in 0–5% central Au–Au collisions at

√
sNN = 200 GeV. Some of this increase comes from

the higher〈Npart〉 in central Pb–Pb collisions relative to central Au–Au collisions The energy density
times the formation timeετ0 is shown in Fig. 14 forR = 7.17 fm in order to be comparable to previous
measurements [24, 60].

In addition to estimating the volume averaged energy density it is also interesting to estimate the energy
density attained at the core of the collision area. This can be done by rewriting the Bjorken Eq. 8 as

εcτ0 =
J
c

〈

dET
dη

〉

c

Ac
=

J
c

〈

dET
dη

〉

〈Npart〉
σc (9)

whereAc is the area of the transverse core,
〈

dET
dη

〉

c
is
〈

dET
dη

〉

produced in the core, andσc = 〈Npart〉c/Ac is

the transverse area density of nucleon participants at the core. The areaAc was chosen arbitrarily to be a
circle with a radius of 1 fm at the center of the collision. Equation 9 assumes that the local energy density
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scales with the participant density in the transverse planeand that the measured value of
〈

dET
dη

〉

/〈Npart〉,
which is averaged over the total transverse collision area,is also representative of the transverse energy

production at the core,
〈

dET
dη

〉

c
/〈Npart〉c. The increase of this quantity with increasing centrality indicates

that this is a conservative estimate. From a Glauber Monte Carlo calculation we find for 0–5% centrality
σc = 4.2±0.1 nucleon/fm2 resulting in a core energy density ofεcτ0 = 21±2 GeV/fm2/c. For the most
central 80 fm2 (half the total overlap area) the energy density is still above 80% of the core energy density
emphasizing that the core energy density may be more relevant for judging the initial conditions of the
QGP than the volume averaged energy density.

5 Conclusions

We have measured〈dET/dη〉 at midrapidity in Pb–Pb collisions at
√

sNN = 2.76 TeV using four differ-
ent methods. All methods lead to comparable results, although the systematic uncertainties are largely
correlated. Our results are consistent with results from CMS [26] for 10–80% central collisions, how-
ever, we observe a lower〈dET/dη〉 in 0–10% central collisions. The〈dET/dη〉 observed at

√
sNN

= 2.76 TeV in 0–5% central collisions is 1737± 6(stat.)± 97 (sys.) GeV. The shape of the cen-
trality dependence of〈dET/dη〉/(〈Npart/2〉) is similar for RHIC and the LHC. No centrality depen-
dence of〈dET/dη〉/〈dNch/dη〉 is observed within uncertainties, as was observed at RHIC. Unlike at
RHIC, we observe an increase in〈dET/dη〉/(〈Nquark/2〉) with centrality below〈Npart〉 ≈200. Both
〈dET/dη〉/(〈Npart/2〉) and 〈dET/dη〉/〈dNch/dη〉 in central collisions exceed the value expected from
naive extrapolations from data at lower collision energies. Assuming that if the formation timeτ0 is 1
fm/c the energy density is estimated to be at least 12.3± 1.0 GeV/fm3 in 0–5% central Pb–Pb collisions
at
√

sNN = 2.76 TeV and the energy density at the core of the collision exceeds 21± 2 GeV/fm3.
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A.N. Mishra48 , D. Miśkowiec97 , J. Mitra133 , C.M. Mitu62 , N. Mohammadi57 , B. Mohanty79 , L. Molnar55 ,
L. Montaño Zetina11 , E. Montes10 , D.A. Moreira De Godoy54 , L.A.P. Moreno2 , S. Moretto29 , A. Morreale113 ,
A. Morsch35 , V. Muccifora72 , E. Mudnic116 , D. Mühlheim54 , S. Muhuri133, M. Mukherjee133 ,
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