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Abstract

The production of (anti-)deuteron and (anti-)3He nuclei in Pb–Pb collisions at
√

sNN = 2.76 TeV
has been studied using the ALICE detector at the LHC. The spectra exhibit a significant hardening
with increasing centrality. Combined blast-wave fits of several particles support the interpretation
that this behavior is caused by an increase of radial flow. Theintegrated particle yields are discussed
in the context of coalescence and thermal-statistical model expectations. The particle ratios,3He/d
and3He/p, in Pb–Pb collisions are found to be in agreement with a common chemical freeze-out
temperature ofTchem≈ 156 MeV. These ratios do not vary with centrality which is in agreement
with the thermal-statistical model. In a coalescence approach, it excludes models in which nucleus
production is proportional to the particle multiplicity and favors those in which it is proportional
to the particle density instead. In addition, the observation of 31 anti-tritons in Pb–Pb collisions is
reported. For comparison, the deuteron spectrum in pp collisions at

√
s = 7 TeV is also presented.

While the p/π ratio is similar in pp and Pb–Pb collisions, the d/p ratio in pp collisions is found to be
lower by a factor of 2.2 than in Pb–Pb collisions.
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1 Introduction

Collisions of ultra-relativistic ions create suitable conditions for producing light (anti-)nuclei, because
a high energy density is reached over a large volume. Under these conditions, hot and dense matter,
which contains approximately equal numbers of quarks and anti-quarks at mid-rapidity, is produced
for a short duration (a few 10−23 s). The system cools down and undergoes a transition to a hadron
gas. While the hadronic yields are fixed at the moment when therate of inelastic collisions becomes
negligible (chemical freeze-out), the transverse momentum distributions continue to change until also
elastic interactions cease (kinetic freeze-out).

The formation of (anti-)nuclei is very sensitive to the chemical freeze-out conditions, to the dynamics
of the emitting source as well as to final-state effects. The production scenarios are typically discussed
within two approaches: (i) The thermal-statistical approach has been very successful not only in describ-
ing the integrated yield of the hadrons but also of compositenuclei [1–3]. In this picture, the chemical
freeze-out temperatureTchem(predicted around 160 MeV) acts as the key parameter. The strong sensitiv-
ity of the abundance of nuclei to the choice ofTchem is caused by their large massm and the exponential
dependence of the yield on the temperature given by exp(−m/Tchem). (ii) In the coalescence model,
nuclei are formed by protons and neutrons which are nearby inphase space and exhibit similar veloci-
ties [4, 5]. A quantitative description of this process is typically based on the coalescence parameterBA

and has been applied to many collision systems at various energies [6–13]. The binding energy of light
nuclei is very small (around few MeV), so they can hardly remain intact during hadronic interactions,
even if only quasi-elastic scattering during the hadronic phase with temperatures between 100 MeV and
170 MeV is considered. When produced thermally at chemical freeze-out, they might break apart and
be created again by final-state coalescence [14]. It turns out that both, the thermal approach and the
coalescence mechanism, give very similar predictions [15].

The production of light nuclei has attracted attention already at lower incident energies in heavy-ion
collisions at the AGS, SPS, and RHIC [16–18]. A study of the dependence on

√
sNN is of particular

interest, because different production mechanisms might dominate at various energies, e.g. a formation
via spectator fragmentation at lower energies or via coalescence/thermal mechanisms at higher ones. In
all cases, an exponential drop in the yield was found with increasing mass of the nuclei [19, 20]. At
RHIC and now at the LHC, matter with a high content of strange and of anti-quarks is created in heavy-
ion collisions. This has led to the first observation of anti-alphas [21] and of anti-hypertritons [22]. Their
yields at LHC energies were predicted based on thermal modelestimates in [1, 2].

In this paper, a detailed study of light (anti-)nuclei produced in the mid-rapidity region in Pb–Pb colli-
sions at

√
sNN = 2.76 TeV and a comparison with deuteron production in pp collisions at

√
s = 7 TeV

using A Large Ion Collider Experiment (ALICE) [23] is presented. The paper is organized as follows: In
Section 2, details of the analysis technique used to extractraw yields, acceptance and efficiency correc-
tions of (anti-)deuterons and (anti-)3He are presented. The results are given in Section 3 which starts with
a comparison of the production of nuclei and anti-nuclei along with studies related to the hadronic inter-
action of anti-nuclei with the detector material. Then, thetransverse momentum spectra,pT-integrated
yields and average transverse momenta are shown. The observation of (anti-)tritons is also discussed
in this section. In Section 4, the results are discussed along with a description using a blast-wave ap-
proach, and are compared with expectations from the thermal-statistical and coalescence models. The
measurement of (anti-)alphas and (anti-)hypertritons will be shown in subsequent publications.
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2 Experiment and data analysis

2.1 The ALICE detector

The results presented in this paper are obtained from the data collected by the ALICE experiment at the
LHC. Its performance and the description of its various subsystems are discussed in detail in Refs. [23,
24]. The ALICE detector has excellent particle identification capabilities. The main detectors used in
this analysis are the Time Projection Chamber (TPC) [25], the Time-Of-Flight detector (TOF) [26], and
the Inner Tracking System (ITS) [27]. All detectors are positioned in a solenoidal magnetic field of
B = 0.5 T. As the main tracking device, the TPC provides full azimuthal acceptance for tracks in the
pseudo-rapidity region|η | < 0.8. In addition, it provides particle identification via the measurement of
the specific energy loss dE/dx. It allows the identification of (anti-)3He over the entire momentum range
under study and the measurement is only limited by the available statistics. The velocity information
from the TOF detector is in addition used to identify deuterons with transverse momenta (pT) above
1.4 GeV/c and (anti-)tritons in the transverse momentum range of 0.6 GeV/c < pT < 1.6 GeV/c. The
detector provides a similar acceptance as the TPC and its total time resolution for tracks from Pb–Pb
collisions corresponds to about 80 ps which is determined bythe intrinsic time resolution of the detector
and the accuracy of the start time measurement. By a combinedanalysis of TPC and TOF data, deuterons
are identified up to 4.5 GeV/c in Pb–Pb collisions. In case of pp collisions, the less precisely determined
start time leads to a time resolution of about 120 ps and the identification is limited to about 3 GeV/c. The
precise space-point resolution in the six silicon layers ofthe ITS allows a precise separation of primary
and secondary particles in the high track density region close to the primary vertex.

2.2 Event and track selection

For this analysis, the data collected in the year 2010 are used. In total, the data sample consists of nearly
14 million Pb–Pb collisions at

√
sNN = 2.76 TeV and 380 million minimum-bias triggered events forpp

collisions at
√

s = 7 TeV after off-line event selection.

A pair of forward scintillator hodoscopes, the V0 detectors(2.8 < η < 5.1 and -3.7< η < -1.7),
measured the arrival time of particles with a resolution of 1ns and was used for triggering purposes
and for centrality determination of Pb–Pb collisions. In ppcollisions, the data were collected using a
minimum-bias trigger requiring at least one hit in either ofthe V0 detectors or in the two innermost
layers of the ITS (Silicon Pixel Detector, SPD). The triggercondition during the Pb–Pb data taking was
changed with time to cope with the increasing luminosity delivered by the LHC. It was restricted offline
to a homogenous condition, requiring at least two hits in theSPD and one hit in either of the V0 detectors.
This condition was shown to be fully efficient for the 90% mostcentral events [28]. A signal in the V0
was required to lie in a narrow time window (≈ 30 ns) around the nominal collision time in order to reject
any contamination from beam-induced background. Only events with a reconstructed primary vertex
position in the fiducial region|Vz|< 10 cm were considered in the analysis. The V0 amplitude distribution
was also used to determine the centrality of the heavy-ion collisions. It was fitted with a Glauber Monte-
Carlo model to compute the fraction of the hadronic cross section corresponding to a given range of V0
amplitude. Based on those studies, the data were divided in several centrality percentiles, selecting on
signal amplitudes measured in the V0 [28]. The contamination from electromagnetic processes has been
found to be negligible for the 80% most central events.

In this analysis, the production of primary deuterons and3He-nuclei as well as their respective anti-
particles are measured at mid-rapidity. In order to provideoptimal particle identification by reducing the
difference between transverse and total momentum, the spectra are provided within a rapidity window
of |y| < 0.5. In addition, only those tracks in the full tracking acceptance of|η |< 0.8 are selected. The
extrapolation of the yield at low momenta, where the acceptance does not cover the full|y|< 0.5 region,
is done by assuming a flat distribution iny and by determining dη /dy for eachpT-interval. Primary
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Fig. 1: Specific energy loss (dE/dx) vs. rigidity (momentum/charge) for TPC tracks from pp collisions at
√

s =
7 TeV (top panel) and from 0-80% most central Pb–Pb collisions at

√
sNN = 2.76 TeV (bottom panel). The solid

lines represent a parametrization of the Bethe-Bloch curve.

particles are defined as prompt particles produced in the collision including all decay products, except
products from weak decays of light flavor hadrons and of muons. In order to select primary tracks of
suitable quality, various track selection cuts are applied. At least 70 clusters in the TPC and two points in
the ITS (out of which at least one in the SPD) are required. These selections guarantee a track momentum
resolution of 2% in the relevantpT-range and a dE/dx resolution of about 6%, as well as a determination
of the Distance-of-Closest-Approach to the primary vertexin the plane perpendicular (DCAxy) and par-
allel (DCAz) to the beam axis with a resolution of better than 300µm in the transverse direction [24].
Furthermore, it is required that theχ2 per TPC cluster is less than 4 and tracks of weak-decay products
are rejected as they cannot originate from the tracks of primary nuclei.
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Fig. 2: Distribution of(m2−m2
d) measured with the TOF detector for tracks with 2.6 GeV/c < pT < 2.8 GeV/c

from central Pb–Pb collisions showing the peak corresponding to the deuteron massmd and the background from
mismatched tracks (black dotted line) which is subtracted to obtain the raw yields (see text for details).

2.3 Particle identification

Particle identification is mainly performed using the TPC [25]. It is based on the measurement of the
specific ionization energy deposit (dE/dx) of charged particles. Figure 1 shows the dE/dx versus rigidity
(momentum/charge,p/z) of TPC tracks for pp collisions at

√
s = 7 TeV (top panel) and for Pb–Pb colli-

sions at
√

sNN = 2.76 TeV (bottom panel). Nuclei and anti-nuclei like (anti-)deuterons, (anti-)tritons, and
(anti-)3He are clearly identified over a wide range of momenta. The solid curves represent a parametriza-
tion of the Bethe-Bloch function for the different particlespecies. In practice, it is required that the
measured energy-loss signal of a track lies in a 3σ window around the expected value for a given mass
hypothesis. While this method provides a pure sample of3He nuclei in thepT-range between 2 GeV/c
and 7 GeV/c, it is limited to aboutpT < 1.4 GeV/c for deuterons.

In order to extend thepT-reach of the deuteron measurement, the TOF system is used above this mo-
mentum in addition. Based on the measured flight timet, the massm of a particle can be calculated
as

m2 =
p2

c2 ·
(c2t2

L2 −1
)

, (1)

where the total momentump and the track lengthL are determined with the tracking detectors. Fig-
ure 2 shows the obtained∆m2 distribution, where the deuteron mass square (m2

d) was subtracted, for a
pT-bin between 2.6 GeV/c and 2.8 GeV/c. For eachpT-bin, the∆m2 distribution is fitted with a Gaus-
sian function with an exponential tail for the signal. Sincethe background mainly originates from two
components, namely wrong associations of a track with a TOF cluster and the non-Gaussian tail of lower
mass particles, it is described with a first order polynomialto which an exponential function is added.
The same procedure for signal extraction and background subtraction is applied in the analysis of pp
collisions.

2.4 Background rejection

Particles produced in the collisions might interact with the detector material and the beam pipe which
leads to the production of secondary particles. The probability of anti-nucleus production from the
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interaction of primary particles with detector material isnegligible, whereas the sample of nuclei may
include primary as well as secondary particles originatingfrom the material. This contamination is
exponentially decreasing with increasing momentum. In addition, it is about five times larger in central
compared to peripheral Pb–Pb or pp events because of the higher probability of a fake ITS hit assignment
to secondary tracks. Most of the secondary particles from material have a large DCA to the primary
vertex and hence this information is used to correct for the contamination. Figure 3 shows the DCAxy

distribution for deuterons (left panel) and anti-deuterons (right panel) for Pb–Pb collisions at
√

sNN =
2.76 TeV. The distributions are shown for two different|DCAz| cuts. As can be seen from the figure,
a strict |DCAz| cut of 1.0 cm cuts a large fraction of background for nuclei, but does not change the
distribution for anti-nuclei. At sufficiently high momenta(above 1.4 GeV/c for deuterons and above 2
GeV/c for 3He), the secondary and knock-out contamination caused by material is in this way reduced
to a negligible level and the raw yield can be directly extracted. In order to extend the measurement of
deuterons to lower momenta in Pb–Pb collisions, the DCAxy distribution for deuterons in each transverse
momentum (pT)-interval was fitted with the expected shapes (called “templates” in the following) as
extracted from Monte-Carlo events. Figure 4 shows a typicalexample of this procedure for tracks with
transverse momentum range 0.9 GeV/c < pT < 1.0 GeV/c. One template for primary particles and one
template for secondary particles from material are used. The characteristic shape of the template used for
knock-out nuclei from material with its flat behavior at large DCAxy allows a precise distinction between
the two contributions. The significant peak at small|DCAxy| is caused by those knock-out nuclei to which
a cluster in one of the SPD layers is wrongly associated. The obtained fraction of primary particles is
then used to calculate the raw yield in the correspondingpT-bin. The same technique is applied for
background rejection and raw yield extraction of deuteronsfor pp collisions at

√
s = 7 TeV.
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Fig. 3: Distribution of DCAxy for deuterons (left) and anti-deuterons (right) in the transverse momentum range
0.7 GeV/c < pT < 1.4 GeV/c for 0-80% most central Pb–Pb collisions at

√
sNN = 2.76 TeV demonstrating the

influence of cuts in DCAz on d andd.

2.5 Efficiency and acceptance

The finalpT-spectra of nuclei are obtained by correcting the raw spectra for tracking efficiency and accep-
tance based on Monte-Carlo (MC) generated events. Standardevent generators, such as PYTHIA [29],
PHOJET [30], or HIJING [31] do not include the production of (anti-)nuclei other than (anti-)protons
and (anti-)neutrons. Therefore, nuclei are explicitly injected into underlying PYTHIA (in case of pp)
and HIJING (in case of Pb–Pb) events with a flat momentum distribution. In the next step, the particles
are propagated through the ALICE detector geometry with theGEANT3 transport code [32]. GEANT3
includes a basic description of the interaction of nuclei with the detector, however, this description is
imperfect due to the limited data available on collisions oflight nuclei with heavier materials. Due to the
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Fig. 4: Distribution of DCAxy of identified deuterons in the transverse momentum range 0.9 GeV/c < pT < 1.0
GeV/c for central Pb–Pb collisions (

√
sNN = 2.76 TeV) along with the Monte-Carlo templates which are fitted to

the data (see text for details).

unknown interaction of anti-nuclei with material, these processes are not included for anti-nuclei heavier
than anti-protons. In order to account for these effects, a full detector simulation with GEANT4 as a
transport code [33, 34] was used. Following the approach described in [35], the correction for interac-
tion of (anti-)nuclei with the detector material from GEANT3 was scaled to match the expected values
from GEANT4. An alternative implementation to correct for this effect and the relevant uncertainties
related to these corrections are discussed in Section 3.1. The acceptance×efficiency is then obtained as
the ratio of the number of particles detected by the detectorto the number of generated particles within
the relevant phase space.
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Fig. 5: Acceptance×efficiency as a function of transverse momentum (pT) for deuterons (left) and for3He (middle)
in Pb–Pb collisions at

√
sNN = 2.76 TeV, as well as for deuterons in pp collisions at

√
s = 7 TeV (right panel). The

curves represent a fit with the function presented in Eq. (2) (see text for details).

The top panel of Fig. 5 shows the acceptance×efficiency for deuterons (left) and3He (right) as a function
of pT for Pb–Pb collisions at

√
sNN = 2.76 TeV. In both cases, the rapid rise of the efficiency at low pT

is determined by energy loss and multiple scattering processes of the incident particle with the detector
material. The values reach a maximum when the energy loss becomes smaller and when the track curva-
ture is still sufficiently large so that a track can cross the dead area between two TPC readout chambers
in a relatively small distance such that the two track parts can still be connected. For straighter tracks at
higher pT which cross the insensitive region between two chambers this distance is larger and the con-
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nection becomes more difficult. Thus a slight reduction of the efficiency is observed until a saturation
value is reached. The figure also shows the lower efficiency values (open points) when in addition a
deuteron track is matched to a hit in the TOF detector. The drop is mainly caused by the energy loss and
multiple scattering in the material between the TPC and the TOF, by the TOF dead zones corresponding
to other detectors or structures, and by the number of activeTOF channels. The curves represent fits with
the empirical functional form

f (pT) = a0 e(−a1/pT)
a2 +a3 pT . (2)

Here,a0,a1,a2, anda3 are free parameters. Correcting the raw spectra with eitherthe fit function or the
actual histogram is found to result in negligible differences with respect to the total systematic error.

Figure 5 (bottom panel) also shows acceptance×efficiency for the deuterons as a function ofpT for pp
collisions at

√
s = 7 TeV. The curve is a fit using the same functional form as usedfor the Pb–Pb collisions

discussed above. The efficiency has a similarpT-dependence as the one for Pb–Pb collisions at
√

sNN

= 2.76 TeV. The observed differences are due to variations inthe number of active detector components,
mainly in the SPD, for the two data sets.

2.6 Momentum correction
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Fig. 6: The average difference between the reconstructed and the generatedpT is plotted as a function of the
reconstructedpT for simulated deuterons and3He for Pb–Pb collisions at

√
sNN = 2.76 TeV. The lines represent a

fit with the functional form as shown in Eq. (3) (see text for details).

Low-momentum particles lose a considerable amount of energy while traversing the detector material.
The track reconstruction algorithm takes into account the Coulomb scattering and energy loss, assuming
the pion mass for each particle. Therefore, a track-by-track correction for the energy loss of heavier
particles (d/̄d and3He/3He) is needed. This correction is obtained from MC simulations, in which the
difference of the reconstructed and the generated transverse momentum is studied on a track-by-track
basis. Figure 6 shows the averagepT-difference as a function of the reconstructed track momentum
(pRec

T ) for deuterons and3He. The lines represent the empirical function

f (pT) = A+B

(

1+
C

p2
T

)D

, (3)
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where the free parametersA,B,C, and D are extracted from a fit. It can be seen that the correction
becomes largest for the heaviest particles at low momenta. This reflects the typical 1/β 2-behavior of
the energy loss. The difference in transverse momentum is corrected on a track-by-track basis in the
analysis. This energy loss correction has been applied bothfor pp and for Pb–Pb collisions. The same
correction in rapidity has also been studied and found to result in negligible changes in the final spectra.

2.7 Systematic uncertainties

Individual contributions to the systematic error of the measurement are summarized in Table 1 and are
discussed in detail in the following. The systematic uncertainty related to the identification of the nuclei
is smaller in thepT-region in which the energy loss in the TPC provides a clear separation compared to
those in which the identification is mainly based on the TOF information. The error is of the order of 1%
for deuterons at low momenta and for the fullpT-range studied for3He-nuclei. In the TOF part (pT >
1.4 GeV/c) of the deuteron spectrum, the error is considerably largerdue to the presence of background
and has been estimated as 5% on the basis of different signal extraction methods: the raw yields obtained
from the signal fit and from bin counting are compared. The estimates of the uncertainties related to the
tracking and matching are based on a variation of the track cuts and are found to be less than 4% and
independent of the particle species. In addition to this, a variation in the momentum correction leads to
differences of similar magnitude at lower momenta and are added in quadrature.

Contamination from secondaries originating from interactions of primary particles with the detector ma-
terial dominates the systematic error at low transverse momenta, but it decreases exponentially towards
higher momenta. These uncertainties are estimated by a variation of the fit range and templates. Their
values amount to about 20% in the lowestpT-bin for deuterons and for3He in most central events.
For all other centralities and transverse momentum regions, it is significantly lower. Feed down from
weakly decaying hyper-nuclei is negligible for deuterons.The only relevant decay of the hyper-triton,
3
ΛH → d+p+π−, results in a negligible contamination, because of the roughly 700 times smaller pro-
duction cross section of the hyper-triton with respect to the deuteron [1, 2]. On the other hand, the decay
3
ΛH → 3He+π− contaminates the3He-spectrum as these particles are produced with similar abundance.
This background is conceptually similar to the feed down ofΛ decays into the proton-spectrum [36]
though the relevant branching ratio in the case of3

ΛH (25%) [37] is assumed to be considerably lower
than in the case ofΛ (64%). A detailed MC study shows that only about 4-8% of all3

ΛH decaying into
3He pass the track selection criteria of primary3He. Therefore, the remaining contamination has not
been subtracted and the uncertainty related to it was further investigated by a variation of the DCAxy-cut
in data and a final error of about 5% is assigned. Uncertainties in the material budget have been studied
by simulating events varying the amount of material by±10%. This leads to variations in the efficiency
of about 5% in the lowestpT-bins. The hadronic interaction of nuclei with the detectormaterial gives
rise to an additional uncertainty of about 6% for deuteron and for 3He. The material between TPC and
TOF needs to be considered only for the deuteron spectrum above pT > 1.4 GeV/c and increases the un-
certainty by additional 5%. The corresponding correctionsfor anti-nuclei are significantly larger and less
precisely determined because of the missing knowledge of the relevant elastic and inelastic cross sec-
tions. Details of the systematics originating from differences between the available models are discussed
in the next section.

In general, the individual contributions to the systematicerror do not show a significant dependence on
the event multiplicity. The only exception is given by the uncertainty of the correction for secondaries
from material, which changes from about 20% in central to about 4% in peripheral Pb–Pb or pp collisions,
respectively. All other contributions are found to be independent of event multiplicity.

9



Production of light (anti-)nuclei in pp and Pb–Pb collisions at LHC energies ALICE Collaboration

Source d 3He
0.7 GeV/c 4 GeV/c 2 GeV/c 8 GeV/c

PID 1% 5% 1% 1%
Tracking and matching 6% 4% 6% 4%
Secondaries material 20% 1% 20% 1%

Secondaries weak decay negl. 5%
Material budget 5% 1% 3% 1%

Hadronic interaction 6% 6%

Table 1: Summary of the main contributions to the systematic uncertainties. See text for details.

Fig. 7: Ratio of anti-particle to particle efficiency based on GEANT4 and a modified version of GEANT3 including
an empirical model to describe the hadronic interaction of anti-nuclei for (anti-)deuterons (left) and for (anti-)3He
(right). The estimate of the systematic uncertainty for thehadronic interaction based on the difference between the
two models is indicated by the blue band.

3 Results

3.1 Anti-particle to particle ratios and hadronic interact ion of anti-nuclei

For a measurement of particle to anti-particle ratios, the correction of the hadronic interaction of the
emitted particles with the detector material has to be precisely known. The relevant cross sections are
only poorly measured for anti-nuclei heavier thanp. The only available data for anti-deuterons from
the U-70 Serpukhov accelerator [38, 39] are measured at relatively high momenta (p = 13.3 GeV/c and
p = 25.0 GeV/c) and provide only a rough constraint. Two approaches are considered to model the cor-
rection for hadronic interaction. Firstly, the anti-nuclei cross sections are approximated in a simplified
empirical model by a combination of the anti-proton (σ p̄,A) and anti-neutron (σ n̄,A) cross sections. Fol-
lowing the approach presented in [40], the cross sectionσd̄,A for an anti-deuteron on a target material
with mass numberA is then e.g. given by

σd̄,A =
(

σ3/2
p̄,A +σ3/2

n̄,A

)2/3
K(A) , (4)

where the scaling factorK(A) is determined from the same procedure applied to the measured inelastic
cross sections of nuclei and protons. Details of the method can be found in [40]. This approach is
implemented as a modification to GEANT3. However, it does notaccount for elastic scattering processes
and is therefore only used for the estimation of the systematic uncertainty. Secondly, the anti-nucleus–
nucleus cross sections are determined in a more sophisticated model with Glauber calculations based on
the well-measured total and elastic pp cross section [34]. It is implemented in the GEANT4 software
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collisions at

√
sNN = 2.76 TeV. Boxes describe the systematic uncertainties, vertical lines the statistical ones.

package [33].

The relevant correction factor for the anti-particle to particle ratio is given by the ratio of the efficiencies
in which all effects cancel except of those related to the hadronic interaction with the detector material.
The efficiency ratios for anti-deuterons and for3He nuclei using the two models described above (mod-
ified GEANT3 and GEANT4) are shown in Fig. 7. The applied correction factors are parameterized
with the same function which was used for a similar study in [35]. The absorption correction is larger
for tracks which are required to reach the TOF detector due tothe additional material behind the TPC,
mainly the support structure and the Transition Radiation Detector (TRD). In the following, results cor-
rected with GEANT4 are presented. Based on the discrepancy between the two models, an uncertainty of
60% of the difference between the efficiency for particles and anti-particles is assumed for the absorption
correction. It is indicated by the blue band in Fig. 7.

Applying this model-based correction to the data, leads tod/d and3He/3He ratio shown in Fig. 8 for
various centrality bins in Pb–Pb collisions. Both ratios are consistent with unity and exhibit a constant
behavior as a function ofpT as well as of collision centrality. Since the same statements hold true for the
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Anti-nuclei/nuclei Centrality Ratio

d̄/d

0-10% 0.98± 0.01±0.13
10-20% 0.99± 0.01± 0.13
20-40% 1.01± 0.01± 0.14
40-60% 1.02± 0.01± 0.16
60-80% 1.02± 0.02± 0.16

3He/3He
0-20% 0.83± 0.08± 0.16
20-80% 1.03± 0.14± 0.18

Table 2: Anti-particle to particle ratios for various centrality classes in Pb–Pb collisions at
√

sNN = 2.76 TeV. The
first error represents the statistical error and the second one is the systematic error. See text for details.

p̄/p ratios [41], these observations are in agreement with expectations from the thermal-statistical and
coalescence models [2] which predict a ratio ofd/d = ( p̄/p)2 and3He/3He = ( p̄/p)3. Table 2 show the
anti-particle to particle ratios for various centrality classes in Pb–Pb collisions at

√
sNN = 2.76 TeV.

Ongoing studies on the hadronic interaction of anti-nucleiin the material between the TPC and TOF will
allow to constrain the uncertainties of the currently purely model based corrections and to replace them
with data driven ones. As the spectra for nuclei and anti-nuclei are consistent within the currently large
uncertainties, only the spectra of nuclei are provided in the following.

3.2 Spectra of nuclei

The final spectra of deuterons obtained in Pb–Pb and pp collisions are shown in Fig. 9. The statistical
and systematic errors are shown separately as vertical lines and boxes, respectively. In pp collisions, the
spectrum is normalized to the number of all inelastic collisions (NINEL) which includes a correction for
trigger inefficiencies (see [42, 43] for details). It is fitted with the following function [44–46] that has
been used for lighter particles

1
2π pT

d2N
dpTdy

=
dN
dy

(n−1)(n−2)
2π nC(nC+m0(n−2))

(

1+
mT −m0

nC

)−n

(5)

with the fit parametersC, n, and the dN/dy. The parameterm0 corresponds to the mass of the particle

under study (deuteron) at rest andmT =
√

m2
0+ p2

T to the transverse mass. As in the case of lighter
particles, the function is found to describe the deuteronpT spectrum well in the measured range with
a χ2/ndf of 0.26 . The fit function is used for the extrapolation to the unmeasured region at low and
high transverse momenta (about 45% of the total yield) and apT-integrated yield of dN/dy = (2.03±
0.34(syst))×10−4 is obtained.

While statistical errors are negligible, the systematic error is dominated by the uncertainty related to
the extrapolation (13%) which is evaluated by a comparison of different fit functions [47] (Boltzmann,
mT-exponential,pT-exponential, Fermi-Dirac, Bose-Einstein). Based on the same extrapolation in the
unmeasured region of the spectrum, a mean transverse momentum 〈pT〉 of 1.075±0.060 GeV/c is ob-
tained.

The final spectra of deuterons and3He for Pb–Pb collisions at
√

sNN = 2.76 TeV are shown in Figs. 9
and 10 for various choices of the collision centrality. Again, the systematic and statistical errors are
shown separately by boxes and vertical lines, respectively. The pT distributions show a clear evolution,
becoming harder as the multiplicity increases. A similar behavior is observed for protons, which have
been successfully described by models that incorporate a significant radial flow [41].

The spectra obtained in Pb–Pb collisions are individually fitted with the blast-wave (BW) model for the
determination ofpT-integrated yields and〈pT〉. This model [48] describes particle production properties
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Fig. 9: Efficiency and acceptance corrected deuteron spectra for Pb–Pb collisions at
√

sNN = 2.76 TeV in various
centrality classes and for inelastic pp collisions at

√
s = 7 TeV. The dashed lines represent an individual fit with the

BW function (Eq. 6) in the case of Pb–Pb spectra and with the function presented in Eq. (5) in the case of the pp
spectrum (see text for details). The boxes show systematic error and vertical lines show statistical error separately.

by assuming that the particles are emitted thermally from anexpanding source. The functional form of
the model is given by

1
pT

dN
dpT

∝
∫ R

0
rdr mTI0

( pT sinhρ
Tkin

)

K1

(mT coshρ
Tkin

)

, (6)

where the velocity profileρ is described by

ρ = tanh−1β = tanh−1
(

βS(r/R)n
)

. (7)

HereI0 andK1 are the modified Bessel functions,r is the radial distance from the center of the fireball
in the transverse plane,R is the radius of the fireball,β (r) is the transverse expansion velocity,βS is
the transverse expansion velocity at the surface,n is the exponent of the velocity profile, andTkin is
the kinetic freeze-out temperature. The free parameters inthe fit areTkin, βS, n, and a normalization
parameter. Here, we present two alternatives: fitting the two particles separately (Figs. 9 and 10) and
simultaneously (Fig. 11). The extracted values of the kinetic freeze-out temperature and radial flow
velocity are discussed in more detail in the next section. The results of these fits are summarized in
Table 3, where the values of dN/dy and 〈pT〉 are also reported. The dN/dy values are extracted by
individually fitting the spectra with the BW model. The extrapolation topT = 0 introduces an additional
error which is again evaluated by a comparison of different fit functions and amounts to about 6% for
central and 13% for peripheral collisions for the deuteron yields. In the3He case, it contributes about
17% and 16% to the total systematic errors for the 0–20% and 20-80% centrality class, respectively.
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Centrality 〈β 〉 Tkin (MeV) n dN/dy 〈 pT 〉 (GeV/c) χ2/ndf

d (0-10%) 0.629±0.003 77±1 0.75±0.05 (9.82±0.04±1.46)×10−2 2.12±0.00±0.09 0.10
d (10-20%) 0.612±0.004 106±2 0.76±0.06 (7.60±0.04±1.16)×10−2 2.08±0.01±0.09 0.07
d (20-40%) 0.568±0.005 124±9 0.91±0.12 (4.75±0.02±0.77)×10−2 1.92±0.00±0.11 0.03
d (40-60%) 0.508±0.012 109±3 1.07±0.16 (1.90±0.01±0.40)×10−2 1.64±0.01±0.10 0.02
d (60-80%) 0.382±0.009 109±2 1.80±0.31 (0.51±0.01±0.14)×10−2 1.29±0.01±0.14 0.27
3He (0-20%) 0.572±0.006 101±61 1.02±0.02 (2.76±0.09±0.62)×10−4 2.83±0.05±0.45 0.49
3He (20-80%) 0.557±0.007 101±37 0.99±0.03 (5.09±0.24±1.36)×10−5 2.65±0.06±0.45 0.20
d, 3He (0-20%) 0.617±0.009 83±22 0.81±0.06 0.32

Table 3: Summary of extracted yields dN/dy and mean transverse momenta〈pT〉 based on the BW individual fits
performed on the spectra for Pb–Pb collisions at

√
sNN = 2.76 TeV. The first error on dN/dy and〈pT〉 represents the

statistical error and the second one is the combination of systematic and extrapolation errors, added in quadrature.
See text for details.
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Fig. 12: The production yield dN/dy of light nuclei as a function of the particle massmA measured for 0-20%
centrality class in Pb–Pb collisions at

√
sNN = 2.76 TeV. The line represents a fit with an exponential function.

Figure 12 shows the production yields of p, d, and3He measured in the centrality interval 0–20% in
Pb–Pb collisions which follow an exponential decrease withthe mass of the particle. The penalty factor,
namely the reduction of the yield by adding one nucleon, is 307 ± 76. Such an exponential decrease has
already been observed at lower incident energies starting from those provided by the AGS [16, 18, 19,
21], yet with different slopes.

The mean transverse momentum〈pT〉 values obtained for d and3He are compared to those of light
particle species for Pb–Pb collisions at

√
sNN = 2.76 TeV (from [41]) in Fig. 13. The figure shows that

the 〈pT〉 increases with increasing mass of the particle. Such a behavior is expected if all the particles
are emitted from a radially expanding source.

3.3 Observation of (anti-)triton

The combined particle identification capability of the TPC and TOF also allows a track-by-track iden-
tification of low momenta (0.6 GeV/c < pT < 1.6 GeV/c) anti-tritons as illustrated in Fig. 14. In this
momentum region, the background from mismatched tracks is removed by the TPC particle identifi-
cation. The contamination is estimated based on a side-bandstudy and found to be negligible below
pT < 1.6 GeV/c, but it increases rapidly for higher momenta so that signal and background cannot be
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Fig. 14: Scatter plot of(m2−m2
t̄ ) measured with the TOF detector versuspT. Only those tracks are shown which

pass the pre-selection done by applying a 3σ cut on the TPC dE/dx. The pT-region in which the candidates are
identified on a track-by-track basis is shown as red box.

distinguished anymore thus limiting the range available for the measurement.

As can be seen, 31 anti-triton candidates are observed in the0-80% centrality range. These numbers
are consistent with expectations based on an extrapolationof the 3He-spectra to lower momenta taking
into account the low reconstruction efficiency for anti-tritons in this momentum region (of about 11%±
6%). An observation of about 10 to 40 anti-tritons is expected based on this estimate, indicating similar
production rates of anti-tritons and3He nuclei. This comparison suffers from large uncertainties related
to the absorption of anti-nuclei and energy loss in the detector material before the TPC at such low
momenta. A similar measurement of tritons is unfeasible dueto the large contamination from knock-out
nuclei in this momentum region.
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4 Discussion

4.1 Description of spectra via blast-wave fits
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Fig. 15: Blast-wave fit ofπ+, K+, p, d, and3He particles for 0–20% centrality for Pb–Pb collisions at
√

sNN =
2.76 TeV. Solid symbols denote thepT range of the spectra used for the fits, while the open symbols show the
remaining part. The lower panels show the deviations of the measured spectra to the BW fits.

Combined BW fits provide essential insight into the kinetic freeze-out conditions and allow quantitative
comparisons between different collision systems and between measurements at different

√
sNN in terms

of a hydrodynamic interpretation. In this section, a simultaneous fit to theπ, K, p, d, and3He spectra
in the centrality range 0-20% using in addition data from [41, 49] is discussed. Since the BW model is
not expected to describe eventual hard contributions that may set in at higherpT, the fit ranges have been
limited. For the light particles, they are taken as in [41, 49] (0.5-1 GeV/c, 0.2-1.5 GeV/c, 0.3-3 GeV/c
for π, K, and p, respectively). However, for d and3He, the spectrum is fitted up to thepT value where
the invariant yield reduces to 10% of the maximum available value of that spectrum. The exponentn
of the velocity profile is left as a free parameter as in [41]. In such an approach, all particle species are
forced to decouple with the same parameters even though theyfeature different hadronic cross sections
with the medium. This is in particular relevant for multi-strange particles such asΞ andΩ [50], which
are therefore not included in the fit. These limitations are not present in full hydrodynamic calculations.
However, these are not yet available for light nuclei at LHC energies.

In Fig. 15 the results of a simultaneous fit to the five particlespecies are shown. The deviations of the
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spectra from the BW fit are shown in the lower parts of Fig. 15. The statistical errors are shown by
vertical lines and the systematic errors are shown as shadedbands. Note that data points marked with
open symbols are not included in the fit. The hardening of the spectra for central collisions is qualitatively
well described by the combined BW fit with a collective radialflow velocity〈β 〉 = 0.632± 0.01, a kinetic
freeze-out temperature ofTkin = 113± 12 MeV, andn = 0.72± 0.03. Theχ2/ndf value of the fit is 0.4. A
comparison of these parameters to those obtained from a fit toπ, K, and p [41] (〈β 〉 = 0.644± 0.020,Tkin

= 97± 15 MeV, andn = 0.73± 0.11) reveals that the inclusion of nuclei leads to a slightly smaller value
for 〈β 〉 and a slightly larger value forTkin. This behavior is mainly driven by the strong anti-correlation
of 〈β 〉 andTkin in the blast-wave model: the slightly lower value of〈β 〉 leads to a deviation of the fit
from the proton spectrum which is then compensated by a higher Tkin.

A detailed look at the data-to-fit ratio for light nuclei reveals a considerable slope, both for d and3He,
which is not observed in the case of a fit to light nuclei alone as shown in Fig. 11. The difference between
the two fit variants is caused by a small, but significant change in 〈β 〉 which is about 5% lower in the fit
to light nuclei alone. This deviation thus underlines the strong sensitivity of the light nuclei spectra to
the value of〈β 〉 due to their large mass.

4.2 Comparison to thermal models

Figure 16 shows the d/p and the3He/p ratios as a function of the average charged particle multiplicity per
event. The proton yields are taken from [41, 49]. The observed values of about 3.6×10−3 for the d/p ratio
and about 9.3×10−6 for the3He/p ratio are in agreement with expectations from the thermal-statistical
models [1, 2]. Similar values for d/p ratios are also observed by the PHENIX experiment for Au-Au
collisions [47, 51]. Since at RHIC energies significant differences between nucleus and anti-nucleus
production are present, for this plot the geometrical mean is used which in a thermal concept cancels
the influence of the baryon chemical potential (µB) ∗. Within the achieved experimental precision, no
dependence of these particle ratios on the event multiplicity is observed at RHIC and LHC energies. Also
thep/p and the p/π ratios hardly vary with centrality [41, 52] showing thatTchemandµB do not vary with
centrality in high energy collisions. In a coalescence approach, the centrality independence disfavors
implementations in which the nuclei production is proportional to the absolute proton multiplicity [53]
rather than the particle density.

The comparison with thermal models is shown in more detail inFig. 17 for the 0–10% centrality class.
These calculations have been performed using the grand-canonical formulation of both THERMUS [54]
and the GSI-Heidelberg model [1]. This approach is appropriate for the ratios shown here, as no strange
quarks are involved. Details can be found in [1, 2]. These ratios are monotonically increasing withTchem

reflecting the dependence with exp(−∆m/Tchem) where∆m corresponds to the mass difference of the
particles under study.

The measured ratios of3He/p and3He/d are in agreement with a chemical freeze-out temperature in the
range of 150 MeV to 165 MeV. No significant differences are observed between the THERMUS and
GSI-Heidelberg model with respect to the production of light (anti-)nuclei. A fit to p, d, and3He only
gives Tchem = 156± 4 MeV with a χ2/ndf of 0.4. This value can be compared to a fit including all
measured light flavor hadrons which yields a temperature of about 156 MeV [55].

The d/p ratio obtained in pp collisions is lower by a factor of2.2 than in Pb–Pb collisions. Assuming
thermal production not only in Pb–Pb, but also in pp collisions, this could indicate a lower freeze-out
temperature in pp collisions. However, the p/π ratio does not show significant differences between pp
and Pb–Pb collisions. Effects related to canonical suppression of strange particles can also be excluded

∗In a thermal model, the yieldnB of a baryon with energyE in a medium of temperatureT is proportional to exp(−E−µB
T )

while the yield of an anti-baryonnB is proportional exp(−E+µB
T ). The geometric mean

√
nBnB leads to a cancellation of the

µB.
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because these ratios do not involve any strange quarks. Therefore, this observation must find another
explanation within the framework of thermal models or non-thermal production mechanisms need to be
considered in small systems. Further work in the theoretical models is needed for a better understanding
of this effect.

4.3 Comparison with the coalescence model

Light nuclei have nucleons as constituents and are thus likely formed via coalescence of protons and
neutrons which are near in space and have similar velocities. In this production mechanism, the spectral
distribution of the composite nuclei is related to the one ofthe primordial nucleons via
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Ei
d3Ni

dp3
i

= BA

(

Ep
d3Np

dp3
p

)A

(8)

assuming that protons and neutrons have the same momentum distribution. BA is the coalescence pa-
rameter for nucleii with mass numberA and a momentum ofpi = A pp. In the simplest approach,BA is
independent of the transverse momentum and is determined bythe maximum relative momentump0 of
the coalescing nucleons [17, 56, 57]:

BA =

(

4π
3

p3
0

)A−1 M
mA . (9)

In this expression, the spin of the nucleons is neglected andM andm are the nucleus and the proton mass,
respectively. Under the assumption that thep0 value is the same for deuterons and3He, Eq. (9) can be
rewritten as

B3 = B2
2

(

M3He ·m
M2

d

)

≈ 3
4

B2
2 , (10)

allowing for a basic comparison of the measuredB2 andB3 values.

Figure 18 shows the obtainedB2 values for deuterons (left panel) andB3 values for3He (right panel) in
several centrality bins for Pb–Pb collisions. The results are plotted versus the transverse momentum per
nucleon. A clear decrease ofB2 andB3 with increasing centrality is observed. In the coalescencepicture,
this behavior is explained by an increase in the source volume Veff: the larger the distance between the
protons and neutrons which are created in the collision, theless likely is that they coalesce. Alternatively,
it can be understood on the basis of the approximately constant d/p and3He/p-ratios as an increase of
the overall proton multiplicity independent of the geometry of the collision. The argument can be best
illustrated by assuming a constant value ofB2 and integrating Eq. (8) overpT. The value ofB2 can then
be calculated for a given ratio d/p and a given spectral shapef (pT) (with

∫ ∞
0 f (pT)dpT = 1) of the proton

spectrum as

B2 =
π
2
·

dNd
dy

(
dNp

dy )2
· 1
∫ ∞

0
f 2(pT)

pT
dpT

, (11)

where for a constant ratio of the deuteron dNd/dy to proton dNp/dy yield, it is found thatB2 ∝ 1/(dNp/dy).
As can be seen in Fig. 18, the coalescence parameter also develops an increasing trend with transverse
momentum for central collisions in contrast to expectations of the most simple coalescence models. The
significance of this increase is further substantiated by the fact that the systematic errors betweenpT-
bins are to a large extent correlated. It can be qualitatively explained by position-momentum correlations
which are caused by a radially expanding source [58]. A comparison of theB2 andB3 values based on
Eq. (10) is presented in Fig. 19 and shows qualitative agreement between the two observables.

In a more quantitative picture, it turns out that the coalescence process is governed by the same homo-
geneity volume which can be extracted from the HBT radii. Themathematical expression which relates
B2 to HBT radii (R⊥ andR‖) is given by

B2 =
3π3/2〈Cd〉

2mTR2
⊥(mT)R‖(mT)

, (12)
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Fig. 18: The coalescence parametersB2 (left) andB3 (right) as a function of the transverse momentum per nucleon
for various centrality classes in Pb–Pb collisions at

√
sNN = 2.76 TeV.

wheremT corresponds to the transverse mass [14].R‖ andR⊥ are given by the longitudinal and transverse
HBT radii in the Yano-Koonin-Podgoretskii parameterization. 〈Cd〉 is a quantum-mechanical correction
factor which depends on the deuteron size and the longitudinal and transverse radii of homogeneity for
nucleons. As explained in detail in [14], Eq. (12) is only valid for gaussian density profiles of the fireball.
The latter would lead to identical slopesT ∗

d and T ∗
p of the deuteron and proton spectra which is not

supported by data. For the phenomenologically more preferred box-like density profiles, the equation

must be in principle amended by the factor exp
(

2(mT −m0)(
1

T ∗
p
− 1

T ∗
d
)
)

wherem0 corresponds to the

rest mass of the proton. For reasons of simplicity, this additional correction, which would lead to an
even steeper increase of theB2 values from HBT as a function ofpT, is neglected in the following.
Figure 19 shows the comparison ofB2 values from Fig. 18 obtained in the 0-20% centrality interval with
B2 calculated using Eq. (12) and the HBT volumeVeff = R2

⊥R‖ = R2
sideRlong from [59, 60] for pions†. The

dependence of the HBT radii on the particle mass is taken intoaccount by showing results as a function
of the transverse kinetic energy per nucleon. A rough agreement is found in terms of magnitude and the
dependence onpT.

Taking into account its strong dependence on centrality andpT, the dependence ofB2 on collision energy
can also be discussed. It is observed thatB2 at a fixed momentum (pT = 1.3 GeV/c) for central collisions
(0-20%) decreases rapidly from AGS energies to top SPS energy and then remains about the same up to
RHIC [51]. Our value of approximately 4×10−4 GeV2/c3 is only slightly lower than the measurement at
RHIC (≈ 6×10−4 GeV2/c3). SinceB2 is inversely proportional to the homogeneity volumeVeff = R2

⊥R‖,
the decrease inB2 corresponds to an increase in effective volume and supportssimilar observations based
on HBT measurements. On the other hand, Eq. (11) shows that a decrease inB2 can also be related to a
simple increase of the proton multiplicity.

5 Conclusion

In summary, the spectral distributions of deuterons in pp at
√

s = 7 TeV and of deuterons and3He in Pb–
Pb collisions at

√
sNN = 2.76 TeV have been presented. In Pb–Pb collisions, the yields are decreasing by

a factor of 307± 76 for each additional nucleon, the meanpT rises with mass and the combined blast-

†The identityR2
⊥R‖ = R2

sideRlong is only valid for symmetric collision systems like Pb–Pb andfor radii calculated in the
longitudinally co-moving system.
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Fig. 19: The comparison of coalescence parametersB2 andB3 based on Eq. (10) as well as a comparison ofB2

values extracted from deuteron spectra and from HBT radii via Eq. (12) in central (0-20%) Pb–Pb collisions at√
sNN = 2.76 TeV [59, 60].

wave fit toπ, K, p, d, and3He gives a reasonable fit with〈β 〉 = 0.63 andTkin around 115 MeV suggesting
that these nuclei take part in the evolution from chemical tokinetic freeze-out. For anti-tritons, a track-
by-track identification has been applied in the momentum range 0.6 GeV/c < pT < 1.6 GeV/c and the
observation of 31 anti-tritons in Pb–Pb collisions at

√
sNN = 2.76 TeV in the 0-80% centrality class is

reported in this paper.

An important question is whether the nuclei produced in heavy-ion collisions are created at the chemical
freeze-out or at a later stage via coalescence. One of the keyobservations is the fact that the d/p and3He/p
ratios are constant as a function of〈dNch/dη〉η=0. This confirms a trend seen by PHENIX [47, 51] for the
d/p ratio. Such a behavior is expected from a thermal-statistical interpretation, as it is found thatTchem

andµB do not vary with centrality in high energy collisions. A further test of the underlying production
mechanism is the study of the elliptic flow (v2) of these particles, presently under investigation. Results
from the STAR Collaboration [8] indicate thatv2 scales with the number of nucleons when plotted versus
pT divided by the mass number. Such a behavior favors the coalescence model.

Studying the measured particle ratios from Pb–Pb collisions in a thermal-statistical model points to a
common freeze-out temperature of around 156 MeV for light (anti-)nuclei and all other measured light
flavor hadrons. At these temperatures, the weakly-bound deuteron and3He can hardly survive. These
nuclei might break up and might be regenerated. However, if this complex process of break-up and regen-
eration is governed by an overall isentropic expansion, theparticle ratios are preserved [61]. Eventually,
the yields of particles including weakly bound nuclei are therefore described in the thermal-statistical
model. Other properties, e.g. spectral shapes and ellipticflow, exhibit the influence of the interactions
during the hadronic phase. Light (anti-)nuclei in Pb–Pb collisions therefore show the identical behav-
ior as non-composite light flavor hadrons which are governedby a common chemical freeze-out and a
subsequent hydrodynamic expansion.

The extracted coalescence parametersB2 andB3 exhibit a significant decrease with collision centrality
and an increase with transverse momentum which cannot be explained by coalescence models in their
simplest form. On the other hand, taking into account the larger source volume for more central collisions
and the radial expansion of the emitting system, a rough agreement with theB2 parameter deduced from
the HBT radii of pions is found. Thus the production of light (anti-)nuclei in Pb–Pb collisions may still
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be compatible with the expectations from a coalescence space-time description.

The measurements of nuclei at LHC energies are shown to follow trends observed from lower incident
energies. Extrapolations and model predictions based on the thermal-statistical or coalescence approach
are, therefore, a solid ground for further studies, e.g. of hyper-nuclei and exotica.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable con-
tributions to the construction of the experiment and the CERN accelerator teams for the outstanding
performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and
support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration.
The ALICE Collaboration acknowledges the following funding agencies for their support in building
and running the ALICE detector: State Committee of Science,World Federation of Scientists (WFS)
and Swiss Fonds Kidagan, Armenia, Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico
(CNPq), Financiadora de Estudos e Projetos (FINEP), Fundac¸ão de Amparo à Pesquisa do Estado de São
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A. Di Mauro36 , P. Di Nezza72 , M.A. Diaz Corchero10 , T. Dietel89 , P. Dillenseger53 , R. Divià36 ,
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V. Petráček40 , V. Petrov112 , M. Petrovici78 , C. Petta29 , S. Piano110 , M. Pikna39 , P. Pillot113 , O. Pinazza105 ,36,
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2 Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
3 Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine
4 Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS),

Kolkata, India
5 Budker Institute for Nuclear Physics, Novosibirsk, Russia
6 California Polytechnic State University, San Luis Obispo,California, United States
7 Central China Normal University, Wuhan, China
8 Centre de Calcul de l’IN2P3, Villeurbanne, France
9 Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear(CEADEN), Havana, Cuba
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28 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Bologna, Italy
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31



Production of light (anti-)nuclei in pp and Pb–Pb collisions at LHC energies ALICE Collaboration

64 Instituto de Fı́sica, Universidad Nacional Autónoma de M´exico, Mexico City, Mexico
65 iThemba LABS, National Research Foundation, Somerset West, South Africa
66 Joint Institute for Nuclear Research (JINR), Dubna, Russia
67 Konkuk University, Seoul, South Korea
68 Korea Institute of Science and Technology Information, Daejeon, South Korea
69 KTO Karatay University, Konya, Turkey
70 Laboratoire de Physique Corpusculaire (LPC), Clermont Université, Université Blaise Pascal,
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