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1 Introduction

Charged particle beams at the LHC generate an electromagnetic field which can be re-

garded as a beam of quasi-real photons; thus at the LHC, besides hadronic interactions,

also photonuclear and photon-photon interactions occur. Collisions in which the impact

parameter exceeds the sum of the radii of the incoming beam particles are called ultra-

peripheral collisions (UPC). In UPC the cross section for hadronic processes is strongly

suppressed, while the cross sections for two-photon and photonuclear interactions remain

large. This is particularly the case for heavy ions, because the intensity of the photon flux

grows with the square of the ion charge, Z. A number of reviews of UPC are available;

e.g., [1, 2]. The ALICE Collaboration has previously studied exclusive photoproduction of

J/ψ in ultra-peripheral Pb-Pb and p-Pb collisions [3–5].

Exclusive photoproduction of ρ0 vector mesons, Pb + Pb → Pb + Pb + ρ0, can be

described as the fluctuation of a quasi-real photon into a virtual ρ0 vector meson, which

then scatters elastically off the target nucleus. Two cases can be distinguished. When the

interaction involves the complete target nucleus, the process is called coherent. In this

case the target nucleus normally remains intact. If the virtual ρ0 vector meson scatters

off only one of the nucleons in the target, then the process is called incoherent and in this

case the target nucleus normally breaks up, emitting neutrons at very forward rapidities.

For coherent processes, the size of the lead ion restricts the mean transverse momentum of

the vector meson to be about 60 MeV/c corresponding to a de Broglie wavelength of the

nuclear size, while it is of the order of 500 MeV/c for incoherent processes.

Because of the strong electromagnetic fields in ultra-peripheral collisions of heavy ions,

multiple photons may be exchanged in a single event. The additional photons can lead

to excitation of the nuclei. The dominant process is the excitation to a Giant Dipole

Resonance [6]. As these photonuclear processes occur on a different time scale, they are
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assumed to be independent, so the probabilities factorize. The excited nucleus typically

decays by the emission of neutrons at very forward rapidities. The signature of these

processes is thus a ρ0 vector meson with very low transverse momentum which may be

accompanied by a few neutrons at very forward rapidities but no other particles.

Photoproduction of ρ0 vector mesons on nuclear targets has been studied in fixed target

experiments with lepton beams [7], and more recently in ultra-peripheral collisions by the

STAR Collaboration at RHIC at
√
sNN = 62 [8], 130 [9], and 200 GeV [10]. STAR has also

observed coherent photoproduction of the ρ0(1700) [11].

The ρ0 vector meson gives the dominant contribution to the hadronic structure of

the photon. For proton targets, the process γ + p → ρ0 + p contributes about 10% to

20% of the total γ + p cross section, depending on energy [12]. Scaling from a nucleon

target to a nuclear target is often done using the Glauber model assuming Vector Meson

Dominance [13]. The large value of σ(γ + p → ρ0 + p) means that for heavy nuclei one

may reach the limit where the target appears like a black disk and the total ρ0 + A cross

section approaches 2πR2
A (RA is the nuclear radius). The situation may, however, be more

complicated for several reasons. The cross section σ(γ + p → ρ0 + p) has contributions

both from Reggeon and Pomeron exchange, and its energy dependence is therefore not

monotonic. Furthermore, the nuclear medium might modify the Reggeon and Pomeron

components differently. There may also be interference between the ρ and ρ′ production

amplitudes, and these amplitudes may be affected by the nuclear environment in a different

way [14]. A detailed discussion of models for photoproduction of ρ0 on complex nuclei based

on data from fixed target experiments can be found in [13].

The cross sections measured by STAR [8–10] at RHIC were found to be about a

factor two less than that predicted by the calculation of ref. [15], while in agreement with

STARLIGHT [16]. The reason for the difference between these two models, which both use

the Glauber model to obtain the γ-nucleus cross section, will be discussed below. The many

issues associated with calculating the photonuclear ρ0 cross section and the discrepancies

between models thus call for more data. In particular, it is important to establish if the

trends seen at lower energies persist at higher energies.

Moreover, the total cross section for exclusive ρ0 production is very large at LHC

energies, with the models mentioned above predicting that it could be between 50–100% of

the total hadronic inelastic cross section. It could thus constitute a significant background,

e.g. at the trigger level, to low multiplicity peripheral hadronic interactions and to other

types of ultra-peripheral collisions. It therefore has to be well understood. The high

statistics in the ρ0 sample allows the predictions for exclusive ρ0 production accompanied

by nuclear fragmentation to be tested with good precision.

This paper presents the first measurement of the cross section for coherent photo-

production of ρ0 vector mesons in Pb-Pb collisions at the LHC. The ρ0 is reconstructed

using the π+π− decay channel in the rapidity range |y| < 0.5. The rapidity interval cor-

responds to a γ-nucleon center of mass energy in the range 36 ≤ WγN ≤ 59 GeV with

〈WγN 〉 = 48 GeV, about a factor of 4 higher than in any previous measurement [10]. The

cross section is measured for the cases of no neutron emission and for at least one emitted

neutron. The new data presented in this paper will hopefully help to clarify some of the

theoretical uncertainties mentioned above.
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Figure 1. Energy deposit in the Zero-Degree Calorimeters. The curves correspond to Gaussian

fits for 0, 1, 2, 3, or 4 neutrons entering the calorimeter. The plot is for events satisfying the

requirements (i)–(vi) described in the text.

2 The ALICE experiment and the UPC trigger

A full description of the ALICE detectors and their performance can be found in [17, 18];

here, only the components relevant for this analysis will be briefly described. The Inner

Tracking System (ITS) and Time Projection Chamber (TPC) are used to measure and

identify the tracks of the decay products of the ρ0 vector meson. The ITS consists of

six layers of silicon detectors covering the full azimuthal angle. The two innermost layers

form the Silicon Pixel Detector (SPD) with a pseudorapidity acceptance of |η| < 1.4. The

SPD also provides trigger information at the lowest level. Two layers of silicon drift and

two of silicon strip detectors complement the ITS, and all six layers have an acceptance

of |η| < 0.9. The TPC is the main tracking detector of ALICE. It has a Ne-CO2-N2 gas

mixture contained in a large — almost 90 m3 — cylindrical drift detector with a central

membrane at high voltage and two readout planes, composed of multi-wire proportional

chambers, at the end caps. It covers the full azimuth and |η| < 0.9 for full length tracks.

It also provides a measurement of the ionization energy loss, dE/dx, which allows the

identification of particles. The TPC and ITS are situated inside a large solenoid magnet

providing a B = 0.5 T field.

The measurement of neutrons emitted at forward rapidities is performed with a set

of two neutron Zero Degree Calorimeters (ZDC) located 114 m away on each side of the

interaction point. The ZDC has a 99% detection probability for neutrons with |η| > 8.8 [19].

Figure 1 illustrates the capabilities of the ZDC to separate the emission of zero, one or

several neutrons at zero degrees. The sample appearing in this figure was obtained from

events fulfilling the event selection described in section 3.

In addition to the SPD, this analysis uses the Time of Flight (TOF) and VZERO

detectors for triggering. TOF is a large cylindrical barrel surrounding the TPC. It has

18 sectors in azimuth, each made of multigap resistive plate chambers distributed in five

gas-tight modules, with a total of 152928 read-out channels and an intrinsic time resolu-
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tion better than 50 ps. The pseudorapidity acceptance is the same as for the TPC. The

VZERO consists of two arrays of scintillators called VZERO-A and VZERO-C, covering

the pseudorapidity ranges 2.8 < η < 5.1 (VZERO-A) and −3.7 < η < −1.7 (VZERO-C).

Its time resolution, better than 500 ps [20], allows beam-beam collisions to be distinguished

from beam-gas collisions.

The data used for this analysis were collected during the 2010 Pb-Pb run of the LHC

at an energy of
√
sNN = 2.76 TeV. Two different triggers were used. At the beginning of

the run, when the luminosity was low, the trigger requirement was at least two hits in the

TOF detector. When the luminosity was increased the trigger selection was strengthened

to improve the purity by additionally requiring at least two hits in the outer layer of the

SPD, and no activity in any of the VZERO arrays.

The luminosity is determined from the cross section for triggering on at least one

neutron in the ZDC detectors [19]. This cross section has been determined from a

van der Meer scan [21] to be 371.4 ± 0.6 (stat.)+24
−19 (syst.) b [18]. The integrated lu-

minosities for the two samples are 48+3
−2 mb−1 (TOF trigger only) and 214+14

−11 mb−1

(SPD+TOF+VZERO trigger).

3 Track and event selection

In addition to the trigger selection, the events used for the analysis are required to fulfill

the following requirements:

i) a primary vertex has to be identified within 10 cm of the nominal interaction point

position, along the beam direction;

ii) the event is required to have exactly two tracks reconstructed in the TPC and ITS

satisfying the track selections discussed below;

iii) the VZERO arrays are required to be empty (the difference between the offline and

online VZERO selection will be discussed below);

iv) the energy loss in the TPC has to be consistent with that for pions within 4 standard

deviations from the Bethe-Bloch expectations, i.e., ∆σ2π+ + ∆σ2π− < 16 (see figure 2);

v) the track pairs used to define the coherent signal have to have a transverse momentum

below 150 MeV/c and rapidity |y| < 0.5, the latter requirement being imposed to

avoid edge effects;

vi) the track pairs used to define the coherent signal are required to have tracks of

opposite charge.

The background estimated from like-sign pairs (π+π+ and π−π−) is below 2% and it

is subtracted from the final sample bin-by-bin in invariant mass.

The track selection requires that each track has at least 70 space points, out of a

maximum of 159, in the TPC and a χ2 per degree of freedom from the Kalman fit procedure

better than 4. Each track has at least one hit in the SPD with a χ2 per ITS hit less than
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Figure 2. Identification of π+/− from the TPC dE/dx. The x– and y-axes show the deviation of

the measured energy loss from the Bethe-Bloch (BB) expectations for positive and negative tracks,

respectively. The scale is such that one unit corresponds to one standard deviation. The circle,

corresponding to 4σ, shows the selection used. The entries in the upper right corner are from

e+e− pairs produced in two-photon interactions. The plot is for events satisfying the requirements

(i)–(iii) and (v)–(vi) described in the text.

36. The distance of closest approach between the track and the primary vertex has to

be less than 2 cm along the beam direction and less than 0.0182 + 0.035/p1.01T cm (pT in

GeV/c) in the plane perpendicular to the beam direction. These track selection cuts are

based on studies of the detector performance [18].

Three other track selections are used in order to estimate systematic errors. These

differ from the default track selection described above in the following ways: (a) accepting

tracks reconstructed only in the ITS in addition to combined ITS-TPC tracks satisfying the

default track selection; (b) using only TPC information and accepting tracks having at least

50 space points in the TPC; (c) using the default track cuts with stronger requirements on

TPC variables. The latter requirements meant that the tracks had to pass at least 120 of

the 159 TPC pad rows and have a cluster in more than 80% of the crossed pad rows. For

the cross section calculation, the mean of the results of the four different track selection

methods is used. The systematic error related to the track selection is estimated from the

deviation from the mean. This contributes +3.7
−3.0% to the systematic error.

The momentum resolution of the ALICE central barrel tracking system [18] translates

into a resolution in transverse momentum of single π+π−-pairs better than 4 MeV/c in the

kinematic range studied here. Similarly, the resolution in invariant mass varies between

2 MeV/c2 (Mππ = 0.4 GeV/c2) and 6 MeV/c2 (Mππ = 1.5 GeV/c2).

The ionization energy loss for the selected tracks is shown in figure 2. The scale on both

axes is in units of the number of standard deviations from the Bethe-Bloch expectation
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in the TPC; in this way the dependence on track momentum is removed. Pions can be

clearly identified by the 4σ circle centered on (0, 0), while the events above and to the right

of the pions are mostly e+e− pairs from γγ → e+e−. This figure shows that any possible

contamination from kaons or protons in the sample is negligible. There could, however, be

a contamination from muons from the process γγ → µ+µ−, which cannot be distinguished

from pions using the energy loss. This contribution can be estimated from the number of

e+e− pairs in the data sample, as the cross sections for γγ → µ+µ− and γγ → e+e− are

about the same at midrapidity for invariant masses well above threshold. It can also be

calculated from STARLIGHT [22, 23]. Both methods give an expected number of muon

pairs of about 5%, which is not corrected for, but added to the systematic error. The

contribution from γγ → π+π− is expected to be much smaller than from γγ → µ+µ−.

The π+π− cross section is reduced by the form factor of the pion, see e.g. [24], so this

contribution is not considered.

4 Data analysis

Using the event and track selection described in the previous section, the four-momenta

of the two tracks are constructed and pair variables are extracted. The resulting

distribution of the pair transverse momentum is shown in figure 3 for events with

0.4 ≤ Mππ ≤ 1.1 GeV/c2 and |y| < 0.5. A peak at low transverse momentum (pT <

0.15 GeV/c), corresponding to coherent production, is clearly seen. The distribution is

compared with the corresponding distributions from STARLIGHT [16, 23] events for co-

herent and incoherent ρ0 production, processed through the detector response simulation

based on GEANT 3. The coherent peak is shifted to slightly lower pT in data than that pre-

dicted by STARLIGHT. A similar trend has been observed by STAR at lower energies [25].

The shape of the coherent peak in the pT distribution is determined by the nuclear form

factor. The form factor used in STARLIGHT is consistent with what is obtained from

elastic electron-nucleus scattering, which probes the charge content of the nucleus. Since

the ρ0 couples to both neutrons and protons, a possible explanation of this difference could

thus be the presence of a “neutron skin”. The effect, however, appears larger than what

the current limit on the difference between neutron and proton radius in 208Pb (0.3 fm) al-

lows [26], and is thus not fully understood. Data also show a dip around pT = 0.12 GeV/c,

which is not present in the model. The absence of this dip in the model can be understood

from the fact that in STARLIGHT the transverse momentum of the photon is consid-

ered, and this reduces the dip one would expect from the form factor of the target nucleus

alone. In a Glauber calculation, the transverse momentum distribution is determined from

a Fourier transform of the nuclear profile function, see e.g. [2], and the direct dependence

on the form factor is only an approximation; this could also contribute to explaining the

difference between STARLIGHT and data. The high-pT tail of the distribution is very well

described by the incoherent pT spectrum from STARLIGHT.

The transverse momentum distribution for coherent production may also be parame-

terized as an exponential, dN/dt ∝ exp(bt) where t = −p2T . Fitting the ALICE data to

such a function gives b = 428±6(stat.)±15(syst.) GeV2/c2. The systematic error has been
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Figure 3. Transverse momentum distributions for π+π−-pairs. The dashed (red) and dash-dotted

(blue) histograms show the normalized pT distribution from STARLIGHT passed through the

detector response simulation for coherent and incoherent ρ0 production, respectively. The solid

(black) histogram is the sum of the two.

obtained as the difference in slope between STARLIGHT events and STARLIGHT events

processed through the full detector simulation. The ALICE result can be compared with

the corresponding measurement by STAR, where b = 388 ± 24 GeV2/c2 was found [10].

The STAR and ALICE results are consistent within errors if one takes into consideration

that b is expected to be ≈4–8% larger for a lead nucleus than for a gold nucleus because of

the difference in size (one expects b ∝ R2). The fit was performed for |t| > 0.002 GeV2/c2

to avoid interference effects at very low pT [10].

The final sample of coherent ρ0 → π+π− candidates is corrected for acceptance

and efficiency in invariant mass bins. The event sample used to determine the correc-

tions has uniform distributions in invariant mass, rapidity, transverse momentum, and

azimuthal angle over the ranges 2mπ ≤ Mππ ≤ 1.5 GeV/c2, |y| ≤ 1.0, pT ≤ 0.15 GeV/c,

and 0 ≤ φ ≤ 2π. Using a flat distribution in transverse momentum is justified over the

narrow range pT ≤ 0.15 GeV/c, where the acceptance and efficiency are constant. All

models predict only a very small variation of the cross section over the range |y| < 0.5 (see

figure 5 below) so also for rapidity a uniform input distribution is justified. The advantage

of using a flat input distribution in invariant mass is to obtain sufficient statistics in the

tails of the distribution. If one were to use a ρ0-shape as input, one would need enormous

statistics to cover the high and low invariant mass ranges. The ρ0 candidates are assumed

to be transversely polarized. This is expected from helicity conservation and has been

confirmed by photoproduction measurements [10, 27]. This polarization translates into a

dnπ/dΩ ∝ sin2(θ) angular distribution of the π+π− decay products in their center of mass

system (θ is here measured relative to the direction of flight of the ρ0 in the γ-nucleon

center of mass system). All generated samples serve as input to a full detector simulation

using GEANT 3 for the propagation of particles through the detector. Selection criteria are

applied in the same way as done for real events. The variation of the detector configuration

during the data taking period is included in the detector response simulations. The product

of acceptance and efficiency varies from about 2% at the low end of the studied invariant

mass interval (Mππ = 0.6 GeV/c2) to about 12% at the high end (Mππ = 1.5 GeV/c2).
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(blue) curve corresponds to a fit to the Söding parameterization eq. (4.1), and the dashed (green)

curve shows the resonant contribution only. The dot-dashed (red) curve shows the fit to the Ross-

Stodolsky parameterization eq. (4.3). The parameters of the fit are given in the text.

The uncertainty in the trigger efficiency is obtained by comparing the measured trigger

efficiency with the one in the detector response simulation in a data sample taken with

a ZDC trigger [4]. The result is a trigger efficiency uncertainty of +3.8
−9.0%. In addition,

a correction is applied for the trigger dead time resulting from after pulses in the TOF,

originated by late particles in the event. The systematic error on this correction is estimated

to be ±1.3%.

The invariant mass distribution of the ρ0 candidates, corrected for acceptance and

efficiency and normalized by the luminosity to provide a cross section, is shown in figure 4.

It is well known that the shape of the ρ0 in photoproduction deviates from a pure Breit-

Wigner resonance [7–10, 27]. Several different parameterizations exist to describe the

shape, with one of the most often used being a formula due to Söding, where a continuum

amplitude, B, is added to the Breit-Wigner resonance [28]:

dσ

dMππ
=

∣∣∣∣∣A
√
MππMρ0Γ(Mππ)

M2
ππ −M2

ρ0
+ iMρ0Γ(Mππ)

+B

∣∣∣∣∣
2

. (4.1)

Here, A is the amplitude of the Breit-Wigner function, B is the amplitude of the direct

non-resonant π+π− production, and the mass dependent width is given by

Γ(Mππ) = Γρ0
Mρ0

Mππ

[
M2
ππ − 4m2

π

M2
ρ0
− 4m2

π

] 3
2

, (4.2)

with mπ the mass of the pion. Eq. 4.1 was fitted to the measured Mππ distribu-

tion with Mρ0 , Γρ0 , A, and B as free parameters. The fit gives Mρ0 = 761.6 ±
2.3 (stat.)+6.1

−3.0 (syst.) MeV/c2 and Γρ0 = 150.2±5.5 (stat.)+12.0
−5.0 (syst.) MeV/c2, in agreement

with the values reported by the PDG [29]. The ratio of the non-resonant and resonant am-

plitudes is found to be |B/A| = 0.50±0.04 (stat.)+0.10
−0.04 (syst.) (GeV/c2)−1/2. The systematic

errors are obtained by varying the fitting method (χ2 or log likelihood minimization), track

selection (as discussed above), and fitting range.
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The ratio |B/A| is lower than what was found by STAR with Au targets, |B/A| = 0.81–

0.89 (GeV/c2)−1/2 for 〈WγN 〉 in the range 7–12 GeV [8–10]. The result from ZEUS with

proton targets for 〈WγN 〉 in the range 55–90 GeV shows that |B/A| varies with the γ-proton

momentum tranfer [27]. The average is |B/A| = 0.67± 0.02 (stat.)± 0.04 (syst.), while for

momentum transfers of the same order as for coherent production |B/A| ≈ 0.8. The lower

value of |B/A| observed by ALICE may indicate that the non-resonant contribution is more

strongly absorbed in heavy nuclei at high energies, as had been previously suggested [30].

Other parameterizations of the ρ0 shape are possible, and as a cross check the invariant

mass distribution was also fit to a Ross-Stodolsky function [27, 31]:

dσ

dMππ
= f

∣∣∣∣∣
√
MππMρ0Γ(Mππ)

M2
ππ −M2

ρ0
+ iMρ0Γ(Mππ)

∣∣∣∣∣
2(

Mρ0

Mππ

)k
, (4.3)

with a slightly different definition of the mass dependent width

Γ(Mππ) = Γρ0

[
M2
ππ − 4m2

π

M2
ρ0
− 4m2

π

] 3
2

. (4.4)

As can be seen in figure 4, this parameterization also described the observed shape

of the invariant mass distribution well and gave a ρ0 mass (Mρ0 = 769.2 ±
2.8 (stat.)+8.0

−5.2 (syst.) MeV/c2) and width (Γρ0 = 156.9±6.1 (stat.)+17.3
−5.9 (syst.) MeV/c2) con-

sistent with the PDG values. The deviation from a pure Breit-Wigner shape is given by the

parameter k, which was found to be k = 4.7± 0.2 (stat.)+0.8
−0.6 (syst.). This can be compared

to the corresponding value for proton targets from ZEUS [27] and H1 [32] at HERA. ZEUS

finds k = 5.13± 0.13 averaged over all momentum transfers and k ≈ 6 for t = 0, while H1

reports k = 6.84 ± 1.00 averaged over all momentum transfers. The larger value of k for

proton targets again indicates that the invariant mass distribution for Pb-targets deviates

less from a pure Breit-Wigner resonance, as was also found using the Söding formula.

As can be seen in the lower part of figure 4, there is a hint of a resonance around

1.3 GeV/c2. This may be understood from two-photon production of the f2(1270) meson

followed by its decay into two pions, γ+γ → f2(1270)→ π+π−. This meson is a “standard

candle” in two-photon interactions with a well known γγ coupling, but it has so far not been

observed in ultra-peripheral collisions because of the large background from photonuclear

processes. The significance of the excess over the ρ0 Breit-Wigner distribution is estimated

to be 4+2
−1, where the error comes from the uncertainty in the skewness of the Breit-Wigner

distribution (parameter k in the Ross-Stodolsky formula).

The normalized yield of ρ0s (Nyield) is obtained by integrating the resonant part of

eq. (4.1) (obtained by setting B = 0 and taking the other parameters from the fit) from

2mπ to 1.5 GeV/c2. The systematic error on the number of extracted ρ0s is obtained by

varying the fitting method (χ2 or log likelihood minimization) and fitting range, resulting

in an error of +0.8
−1.4%. The uncertainty in the track selection gives an additional error of

+3.7
−3.0% as discussed above. Both eq. (4.1) and (4.3) describe the observed shape equally

well (the integrated yield differ by less than 0.5%), so no additional systematic error was

added to the yield because of the choice of fitting function.
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It is worth noting that the shape of the resonant contribution (shown by the dashed

curve in figure 4) is quite different from the shape of the measured π+π− invariant mass

distribution. However, the integrated yield between 2mπ and 1.5 GeV/c2 does not deviate

by more than around 1% if the non-resonant amplitude is included in the integration.

The number of extracted ρ0s is corrected for the following 3 contributions: incoherent

events with pT < 0.15 GeV/c (fincoh), events which have one or more additional SPD

tracklets (fSPD), and the number of coherent ρ0 events lost by the VZERO offline timing

requirement (fVZERO).

The number of incoherent events with pT < 0.15 GeV/c is estimated in two different

ways: first fitting the sum of two exponentials in p2T to the pT distributions and integrating

the fitted functions over the interval chosen for the coherent selection (pT < 0.15 GeV/c),

and second using the fit to the STARLIGHT templates shown in figure 3. The correction

for incoherent events is found to be 5.1% in both cases with an uncertainty estimated from

using different track selections of ±0.7%.

The track selection (a) above allows one to check the events for any additional activity

in the ITS, for example from tracks with low momenta, which do not reach the TPC, using

SPD tracklets, defined as any combination of hits from the two SPD layers. Rejecting

events with one or more extra tracklets, not associated with the two good tracks coming

from the primary vertex, removes 3.0% of the events in the signal region. Since true UPC

events should have no additional tracks, the extracted yield is corrected for this. In the

Monte Carlo samples of coherently produced ρ0s, the same cut removes only 0.5% of the

events which is taken as the systematic error associated with this cut.

The events selected by the SPD+TOF+VZERO trigger are required to have no online

signal in the VZERO detector. A similar cut is also applied offline to the events triggered

by TOF only. The VZERO offline selection is further refined using the timing information.

This selection has been tuned to work well for hadronic interactions, which typically have

a non-zero signal in the VZERO on both sides. In the ultra-peripheral events studied

here, where the VZERO is required to be empty, the offline selection is less reliable, and a

coherent signal can be observed in the events with 2 tracks rejected by the offline VZERO

requirement. The increase in the coherent signal when the offline VZERO selection is not

used amounts to 10.0%. The systematic error of this number is obtained from the estimated

contamination from hadronic events following from this looser cut. This contamination is

determined from the fraction of the events which have a signal in the ZDCs, resulting in a

systematic error of +0.0
−3.1%.

The corrected number of coherent ρ0s is then obtained from

N coh
ρ =

Nyield

1 + fincoh + fSPD + fVZERO
, (4.5)

with fincoh = 0.051± 0.007, fSPD = 0.030± 0.005, and fVZERO = −0.100+0.031
−0.000. From this

number the differential cross section is calculated as

dσ

dy
=

N coh
ρ

Lint ·∆y
. (4.6)
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Variable Systematic error

Luminosity +6.5%
−5.1%

Trigger efficiency +3.8%
−9.0%

Trigger dead time correction ±1.3%

Signal extraction +0.8%
−1.4%

Track selection +3.7%
−3.0%

Particle ID +0.0%
−5.0%

Incoherent contribution ±0.7%

SPD tracklets ±0.5%

VZERO offline selection +0.0%
−3.1%

Total +9.2%
−11.2%

Table 1. Summary of the systematic error in the cross section calculation. The numbers are for

the SPD+TOF+VZERO trigger sample. For a discussion of the TOF only trigger sample and the

separation between correlated and uncorrelated errors of the two samples, see the text.

The systematic errors discussed above are summarized in table 1. They have been

evaluated for the SPD+TOF+VZERO trigger sample, which contains more than 80% of

the total integrated luminosity. The total error is obtained by adding the individual errors

following the description in [33]. The two trigger samples, with appropriate errors, are

compared as a cross check. They use different trigger combinations and were taken under

quite different running conditions, with the typical hadronic minimum bias interaction rate

being around 10 Hz during the early part of the run when the TOF only trigger was used

and around 200 Hz during the later part of the run when the SPD+TOF+VZERO trigger

was used. The correction factor for trigger dead time due to after pulses was thus very

different for the two samples (≈1 during the early part and ≈5 during the later part).

To make a comparison of the cross sections measured under the different trigger con-

ditions, the systematic errors are separated into correlated and uncorrelated errors for the

two trigger samples. The fully correlated errors are those related to luminosity, incoherent

contribution, trigger efficiency, and particle identification. The fully uncorrelated errors

are those related to the VZERO offline selection (different VZERO thresholds were used

for the two data samples), the cut on SPD tracklets, and trigger dead time. The errors

related to the signal extraction and track selection are found to be partly correlated, but

are decorrelated for the comparison. This gives a cross section dσ/dy = 466+25
−25 mb for the

sample taken with the TOF only trigger and dσ/dy = 414+14
−16 mb for the sample taken

with the SPD+TOF+VZERO trigger. The error is obtained from the squared sum of the

statistical and uncorrelated systematic error. The difference of 12% corresponds to 1.8

standard deviations. The final cross section is obtained as the weighted mean of the cross

sections of the two samples. The weighting procedure provides a total error, including both

the statistical and uncorrelated systematic components. The uncorrelated component is
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separated from the total error by subtracting in quadrature the error obtained in the case

when only the statistical errors are used for the weighting. The uncorrelated systematic

error is then added in quadrature to the correlated systematic error to obtain the total

systematic error. The final result is dσ/dy = 425± 10 (stat.)+42
−50 (syst.) mb.

In addition to the ρ0 cross section, the cross section for two-photon production of e+e−

pairs in the range 0.6 ≤Mee ≤ 2.0 GeV/c2 and |η1,2| < 0.9 (η1,2 are the pseudorapidities of

the two tracks) was measured. The analysis is similar to the one for ρ0 but the PID require-

ment was modified to accept electrons rather than pions. The detector efficiency is deter-

mined using STARLIGHT events processed through the full ALICE detector simulation.

The result is σ(0.6 ≤Mee ≤ 2.0 GeV, |η1,2| < 0.9) = 9.8±0.6 (stat.)+0.9
−1.2 (syst.) mb, which is

in good agreement with the STARLIGHT [22] prediction for the same selection in invariant

mass and pseudorapidity (σ = 9.7 mb). The cross sections for the individual trigger samples

are 11.8 ± 1.6 (stat.)+1.1
−1.4 (syst.) mb (TOF only trigger) and 9.4 ± 0.7 (stat.)+0.9

−1.1 (syst.) mb

(SPD+TOF+VZERO trigger).

As discussed above, photoproduction of vector mesons may occur in interactions where

additional photons are exchanged between the nuclei, leading to neutron emission in the

forward region. These neutrons may be detected in the ALICE ZDCs. Four Gaussian

distributions centered around each peak with means and variances constrained to xn = nx1
and σn =

√
nσ1 have been fitted to the ZDC energy distribution shown in figure 1. Here,

x1 and σ1 are the position and width of the peak corresponding to one neutron, and n is the

number of neutrons. In order to separate different cases of neutron emission, the minima

between the first three Gaussians are used. The minimum between zero and one-neutron

emission lies at half the energy per nucleon and it is roughly three sigma away from the

adjacent peaks. A given event is considered to have no neutron in the ZDC if the energy

registered in the calorimeter is less than 600 GeV, one neutron if the energy lies between

600 GeV and 2000 GeV and more than one neutron if the energy is above 2000 GeV.

The events are divided into different groups as follows: no neutrons emitted in any

direction (0n0n), at least one neutron emitted in any direction (Xn), at least one neutron

emitted in one direction and no neutron emitted in the other direction (0nXn), at least

one neutron emitted in both directions (XnXn).

The corrections applied in obtaining the cross section from the measured yield are

independent of the ZDC signal. The fractional yield for each fragmentation selection thus

reflects the relative ρ0 production cross section. The only exception to this is the correction

for the incoherent contribution (fincoh), which is expected to be higher when a signal is

required in the ZDCs. This correction is thus calculated for each ZDC selection separately,

using the same method as described above.

5 Results and discussion

The coherent ρ0 photoproduction cross section, dσ/dy, is shown and compared with model

predictions in figure 5. The measured cross section is in agreement with STARLIGHT [16]

and the calculation by Gonçalves and Machado (GM) [34], while the GDL (Glauber-

Donnachie-Landshoff) prediction [15, 35] is about a factor of 2 higher than data. The
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Figure 5. The cross section for coherent photoproduction of ρ0, dσ/dy, in ultra-peripheral collisions

for the three models compared with the ALICE result.

calculation by GM is based on the Color Dipole model, while STARLIGHT and GDL

use the photon-proton cross section σ(γ + p → ρ0 + p) constrained from data as in-

put. In STARLIGHT, the γ-nucleon cross section is given by the parameterization

σ = 5.0W 0.20
γN + 26.0W−1.23γN µb (WγN in GeV), while GDL use the Donnachie-Landshoff

model [36] for the total ρN cross section. All calculations use the Glauber model to scale

the cross section from γ-nucleon to γ-nucleus.

The STAR Collaboration has published the total coherent ρ0 photoproduction cross

section at three different energies [8–10]. To be able to compare the current result to

those, one has to integrate dσ/dy over the whole phase space, which can only be done

using models. The extrapolation factor from |y| < 0.5 to all rapidities is calculated as the

mean of the values obtained from the STARLIGHT (10.6) and GM (9.1) models, and the

deviation of the two from the mean (≈ 8%) is added to the systematic error. This gives

σ(Pb + Pb→ Pb + Pb + ρ0) = 4.2± 0.1(stat.)+0.5
−0.6(syst.) b at

√
sNN = 2.76 TeV. The total

cross section as a function of
√
sNN is shown in figure 6, where the results from ALICE

and STAR Collaborations are compared with the STARLIGHT and GDL calculations.

The total cross section increases by about a factor of 5 between the top RHIC energy and
√
sNN = 2.76 TeV.

The cross section and its energy dependence is well described by STARLIGHT, while

the GDL calculation overpredicts the cross section by about a factor of 2. The agreement

with STARLIGHT is somewhat surprising since its Glauber calculation does not include

the elastic part of the total cross section, which is included in the GDL model. It has been

argued that coherent ρ0 production off heavy nuclei may probe the onset of the Black Body

Limit, in which the total ρ0-nucleus cross section approaches 2πR2
A at high energies [15].

The results from STAR and ALICE do not favour this picture. The cross section is instead

reduced by about a factor of 2 compared with the GDL model [35], independent of energy,

indicating that further work is needed to understand this process. It should be noted that

none of the models in figure 5 include cross terms such as ρ+ N→ ρ′ + N.
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Figure 6. Excitation function for coherent and exclusive ρ0 production. The results from ALICE

and STAR [8–10] are compared with the STARLIGHT and GDL predictions for Pb-Pb and Au-Au.

The photonuclear cross section, σ(γ+Pb→ ρ0+Pb), in STARLIGHT is almost energy

independent for WγN > 10 GeV. The increase in the Pb-Pb cross section, σ(Pb + Pb →
Pb + Pb + ρ0), with

√
sNN is thus almost entirely due to the increase in the photon flux at

higher collision energies.

The model by GM, although in agreement with the current result, has been criticized

for using the Color Dipole model for a soft probe like the ρ0 [35]. A recent publication

shows that the calculation indeed has large uncertainties arising from the choice of ρ0 wave

function and dipole cross section [37].

The number of events satisfying the different fragmentation scenarios as well as the

ratio to the total number of events are shown in table 2. The table also shows the expected

fractions from the STARLIGHT [38] and GDL [35] models. These models assume that

the probabilities for exchange of multiple photons in a single event factorize in impact

parameter space. One should note that some of the fractions are correlated: the sum of

(0n0n) and (Xn) should be 100%, and the sum of (0nXn) and (XnXn) should be equal

to (Xn). This is the case within errors, but the sum is not exact, since the incoherent

contribution is subtracted for each selection separately. The results in table 2 are consistent

with both the STARLIGHT and GDL calculations within three standard deviations.

6 Conclusions

The first LHC measurement on coherent photoproduction of ρ0 in Pb-Pb collisions at
√
sNN = 2.76 TeV has been presented. Comparisons with model calculations show that

the measured cross section is in agreement with the predictions by STARLIGHT [16] and

Gonçalves and Machado (GM) [34], despite the idiosyncrasies in these models mentioned

above. The Glauber-Donnachie-Landshoff (GDL) model [15, 35] overpredicts the cross

section by about a factor of two. Comparisons with results from Au-Au collisions at

RHIC energies indicate that this factor of two difference is independent of collision energy
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Selection Number of events Fraction STARLIGHT GDL

All events 7293 100 %

0n0n 6175 84.7±0.4(stat.)+0.4
−1.9(syst.) % 79 % 80 %

Xn 1174 16.1±0.4(stat.)+2.2
−0.5(syst.) % 21 % 20 %

0nXn 958 13.1±0.4(stat.)+0.9
−0.3(syst.) % 16 % 15 %

XnXn 231 3.2±0.2(stat.)+0.4
−0.1(syst.) % 5.2 % 4.5 %

Table 2. The number of events that satisfy various selections on the number of neutrons detected

in the ZDCs. 0n0n corresponds to no neutrons emitted in any direction; Xn to at least one neutron

emitted in any direction; 0nXn to no neutrons in one direction and at least one neutron in the other

direction; XnXn to at least one neutron in both directions. For the relative yield the systematic

error is estimated, as explained in the text.

in the range
√
sNN = 62.4–2760 GeV. In a recent preprint, it is argued that inelastic

nuclear shadowing combined with the inclusion of intermediate states with higher mass in

the γ-vector meson transtition could explain the discrepancy [39]. Regardless of whether

this is the correct explanation or not, it indicates that non-trivial corrections to the ρ0

photoproduction cross section may become important at high photon energies.

The relative yields for different fragmentation scenarios are found to be in agreement

with predictions from the STARLIGHT and GDL models. This is important not only

to confirm the assumptions in the two models but also because some experiments, e.g.

PHENIX [40], have relied on a ZDC signal to trigger on ultra-peripheral collisions. To be

able to relate such measurements to a photonuclear cross section, it is imperative that the

probabilities for exchange of multiple photons are well understood.

The total cross section is found to be about half the total hadronic inelastic cross

section. This is an increase of about a factor of 5 from Au-Au collisions at
√
sNN = 200 GeV,

where the fraction was about 10%. If the increase of the coherent ρ0 photoproduction cross

section continues to follow STARLIGHT, one can expect it to exceed the total hadronic

production cross section of heavy ions such as lead or gold at a
√
sNN of about 20 TeV.
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T. Antičić97 , F. Antinori107 , P. Antonioli104 , L. Aphecetche112 , H. Appelshäuser52 ,
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M. Bregant118 , T. Breitner51 , T.A. Broker52 , T.A. Browning94 , M. Broz39 , E.J. Brucken45 ,

E. Bruna110 , G.E. Bruno33 , D. Budnikov98 , H. Buesching52 , S. Bufalino110 ,36 , P. Buncic36 ,

O. Busch92 ,126 , Z. Buthelezi64 , J.T. Buxton20 , D. Caffarri36 , X. Cai7 , H. Caines135 , L. Calero

Diaz71 , A. Caliva56 , E. Calvo Villar102 , P. Camerini26 , F. Carena36 , W. Carena36 , J. Castillo

Castellanos15 , A.J. Castro123 , E.A.R. Casula25 , C. Cavicchioli36 , C. Ceballos Sanchez9 ,

J. Cepila39 , P. Cerello110 , B. Chang121 , S. Chapeland36 , M. Chartier122 , J.L. Charvet15 ,

S. Chattopadhyay130 , S. Chattopadhyay100 , V. Chelnokov3 , M. Cherney85 , C. Cheshkov128 ,

B. Cheynis128 , V. Chibante Barroso36 , D.D. Chinellato119 , P. Chochula36 , K. Choi95 ,

M. Chojnacki79 , S. Choudhury130 , P. Christakoglou80 , C.H. Christensen79 , P. Christiansen34 ,

T. Chujo126 , S.U. Chung95 , Z. Chunhui56 , C. Cicalo105 , L. Cifarelli12 ,28 , F. Cindolo104 ,

J. Cleymans88 , F. Colamaria33 , D. Colella33 , A. Collu25 , M. Colocci28 , G. Conesa Balbastre70 ,

Z. Conesa del Valle50 , M.E. Connors135 , J.G. Contreras39 ,11 , T.M. Cormier83 , Y. Corrales

Morales27 , I. Cortés Maldonado2 , P. Cortese32 , M.R. Cosentino118 , F. Costa36 , P. Crochet69 ,

R. Cruz Albino11 , E. Cuautle62 , L. Cunqueiro36 , T. Dahms91 , A. Dainese107 , A. Danu61 ,

D. Das100 , I. Das100 ,50 , S. Das4 , A. Dash119 , S. Dash47 , S. De118 , A. De Caro31 ,12 , G. de

Cataldo103 , J. de Cuveland42 , A. De Falco25 , D. De Gruttola12 ,31 , N. De Marco110 , S. De

Pasquale31 , A. Deisting96 ,92 , A. Deloff76 , E. Dénes134 , G. D’Erasmo33 , D. Di Bari33 , A. Di
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M. Planinic127 , J. Pluta132 , S. Pochybova134 , P.L.M. Podesta-Lerma117 , M.G. Poghosyan85 ,

B. Polichtchouk111 , N. Poljak127 , W. Poonsawat113 , A. Pop77 , S. Porteboeuf-Houssais69 ,

J. Porter73 , J. Pospisil82 , S.K. Prasad4 , R. Preghenella36 ,104 , F. Prino110 , C.A. Pruneau133 ,

I. Pshenichnov55 , M. Puccio110 , G. Puddu25 , P. Pujahari133 , V. Punin98 , J. Putschke133 ,

H. Qvigstad22 , A. Rachevski109 , S. Raha4 , S. Rajput89 , J. Rak121 , A. Rakotozafindrabe15 ,

L. Ramello32 , R. Raniwala90 , S. Raniwala90 , S.S. Räsänen45 , B.T. Rascanu52 , D. Rathee86 ,

K.F. Read123 , J.S. Real70 , K. Redlich76 , R.J. Reed133 , A. Rehman18 , P. Reichelt52 ,

F. Reidt92 ,36 , X. Ren7 , R. Renfordt52 , A.R. Reolon71 , A. Reshetin55 , F. Rettig42 ,

J.-P. Revol12 , K. Reygers92 , V. Riabov84 , R.A. Ricci72 , T. Richert34 , M. Richter22 ,

P. Riedler36 , W. Riegler36 , F. Riggi29 , C. Ristea61 , A. Rivetti110 , E. Rocco56 , M. Rodŕıguez
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R. Sahoo48 , S. Sahoo60 , P.K. Sahu60 , J. Saini130 , S. Sakai71 , M.A. Saleh133 , C.A. Salgado17 ,

J. Salzwedel20 , S. Sambyal89 , V. Samsonov84 , X. Sanchez Castro54 , L. Šándor58 ,

A. Sandoval63 , M. Sano126 , G. Santagati29 , D. Sarkar130 , E. Scapparone104 , F. Scarlassara30 ,

R.P. Scharenberg94 , C. Schiaua77 , R. Schicker92 , C. Schmidt96 , H.R. Schmidt35 ,

S. Schuchmann52 , J. Schukraft36 , M. Schulc39 , T. Schuster135 , Y. Schutz112 ,36 , K. Schwarz96 ,

K. Schweda96 , G. Scioli28 , E. Scomparin110 , R. Scott123 , K.S. Seeder118 , J.E. Seger85 ,

Y. Sekiguchi125 , I. Selyuzhenkov96 , K. Senosi64 , J. Seo95 ,66 , E. Serradilla63 ,10 , A. Sevcenco61 ,

A. Shabanov55 , A. Shabetai112 , O. Shadura3 , R. Shahoyan36 , A. Shangaraev111 , A. Sharma89 ,

N. Sharma60 ,123 , K. Shigaki46 , K. Shtejer27 ,9 , Y. Sibiriak99 , S. Siddhanta105 ,

K.M. Sielewicz36 , T. Siemiarczuk76 , D. Silvermyr83 ,34 , C. Silvestre70 , G. Simatovic127 ,

G. Simonetti36 , R. Singaraju130 , R. Singh78 , S. Singha78 ,130 , V. Singhal130 , B.C. Sinha130 ,

T. Sinha100 , B. Sitar38 , M. Sitta32 , T.B. Skaali22 , K. Skjerdal18 , M. Slupecki121 ,

N. Smirnov135 , R.J.M. Snellings56 , T.W. Snellman121 , C. Søgaard34 , R. Soltz74 , J. Song95 ,

M. Song136 , Z. Song7 , F. Soramel30 , S. Sorensen123 , M. Spacek39 , E. Spiriti71 ,

– 22 –



J
H
E
P
0
9
(
2
0
1
5
)
0
9
5

I. Sputowska115 , M. Spyropoulou-Stassinaki87 , B.K. Srivastava94 , J. Stachel92 , I. Stan61 ,

G. Stefanek76 , M. Steinpreis20 , E. Stenlund34 , G. Steyn64 , J.H. Stiller92 , D. Stocco112 ,

P. Strmen38 , A.A.P. Suaide118 , T. Sugitate46 , C. Suire50 , M. Suleymanov16 , R. Sultanov57 ,
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