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Abstract
Voting advice applications (VAAs) are online tools providing voting advice to their users. 
This voting advice is based on the match between the answers of the user and the answers 
of several political parties to a common questionnaire on political attitudes. To visualize 
this match, VAAs use a wide array of visualisations, most popular of which are the two-
dimensional political maps. These maps show the position of both the political parties and 
the user in the political landscape, allowing the user to understand both their own position 
and their relation to the political parties. To construct these maps, VAAs require scales that 
represent the main underlying dimensions of the political space. This makes the correct 
construction of these scales important if the VAA aims to provide accurate and helpful 
voting advice. This paper presents three criteria that assess if a VAA achieves this aim. 
To illustrate their usefulness, these three criteria—unidimensionality, reliability and qual-
ity—are used to assess the scales in the cross-national EUVox VAA, a VAA designed for 
the European Parliament elections of 2014. Using techniques from Mokken scaling analy-
sis and categorical principal component analysis to capture the metrics, I find that most 
scales show low unidimensionality and reliability. Moreover, even while designers can—
and sometimes do—use certain techniques to improve their scales, these improvements are 
rarely enough to overcome all of the problems regarding unidimensionality, reliability and 
quality. This leaves certain problems for the designers of VAAs and designers of similar 
type online surveys.
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1  Introduction

Over the last years, an increasing number of voters have turned to voting advice appli-
cations (VAAs). These online platforms match the responses of their users and those of 
various political parties to a common set of questions about various political issues and 
attitudes. Of the various visualisations VAAs use to visualise this match, one of the most 
popular is the political map. Here, some of the questions are collapsed into scales, which 
are then used to construct a two-dimensional political space in which. As both users and 
parties are positioned in this space, this allows the user to not only see their position but 
those of the political parties as well.

For this visualisation to be accurate and useful, the scales underlying the dimensions 
need to be correct. Yet, VAA scales more often than not score low on basic criteria for 
scale construction (Louwerse and Otjes 2012; Gemenis 2013). This is worrying, as defec-
tive scales might lead to political maps that are not only incorrect and misleading but also 
hard to understand. In the worst case, this might confuse the user instead of helping them. 
To avoid this, VAA designers have made several suggestions on how to improve these 
scales. The most prominent of these is the idea of dynamic scale validation (DSV), first 
introduced by Germann et al. (2015). Here, VAA designers use the responses of an early 
group of users to confirm—or if necessary alter—the original scales.

In this paper, I expand on the idea of dynamic scale validation. I do so by looking at 
three criteria useful for scale validation: unidimensionality, reliability, and quality. For 
unidimensionality, I will use Loevinger’s coefficient of homogeneity H (Loevinger 1947, 
1948), for reliability the Latent Class Reliability Coefficient (LCRC) (van der Ark 2012), 
and for quality the dirty data index (DDI) as proposed by Blasius and Thiessen (2012). For 
each of these, I will provide a rationale for why they are required, and what they can tell 
about the quality of the scales.

From here, the paper will proceed as follows. First, I will discuss how VAAs generate 
scales and how they use them. Then, I will briefly discuss the concepts of unidimension-
ality, reliability, and quality and how we can measure them. I will use these concepts to 
assess a series of scales derived from the EUVox VAA, that was launched for the European 
Parliament elections of 2014. I conclude with a brief reflection on the use of the criteria 
and how VAA designers can use them to build more accurate scales.

2 � Scales in voting advice applications

In 2006, Kieskompas was the first VAA to use scales to position users and parties on a 
political map. Before this, VAAs showed their matches as mere percentages, most often 
in the form of ordered bar plots. Yet, while intuitive, such plots tend to include a piece of 
rather explicit voting advice: that of the party on top (Germann and Mendez 2016). Also, 
they do not distinguish between different issues but only add them together. Thus, the con-
tent of the issues does not affect the visualisation of the result. To see this, and on which 
issue they agreed or disagreed with the parties, a user has to compare their responses to 
those of each party for each of the issues. The political map addresses all these problems 
by combining the issues into two or more meaningful dimensions. Also, by using them to 
construct a two-dimensional space, they can show both the distance between the user and a 
party as well as the direction of that distance (Fossen et al. 2012).
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This idea to combine issues into dimensions is part of a long tradition of spatial mod-
elling ranging back to Downs (1957). At the core of this tradition is the idea that voters 
and parties do not choose their positions on issues at random. Instead, their position 
on one or more broader, underlying dimensions, determines their positions. Thus, to 
represent these dimensions, VAA designers combine several of the issues into scales. 
Which issue belongs to which scale depends either on theory or on data. Thus, an issue 
on taxes can belong to an economic left-right scale in theory, while an issue on abortion 
can belong to a conservative-progressive scale, again in theory. Yet, while using theory 
is simple and convenient, scales constructed this way are not without problems. Most 
often, they lack unidimensionality, which means that they represent more than a sin-
gle dimension at once (Louwerse and Otjes 2012; Gemenis 2013; Otjes and Louwerse 
2014). This not only makes the scale difficult to interpret but also gives a false idea of 
what the political space looks like.

Thus VAA designers have lately turned to data to construct their scales. In the begin-
ning, they often did so by using a combination of Exploratory (EFA) and Confirmatory 
Factor Analysis (CFA) (Wheatley 2015b, a), as these methods were well-understood and 
produced helpful goodness-of-fit indexes. Yet, as both methods assume metric data while 
VAA data are often ordinal, this often led to an overestimation of the number of dimen-
sions. To address this, they turned to IRT (Item Response Theory) models, such as Mokken 
Scaling Analysis (MSA) as these do allow for ordinal data (Katsanidou and Otjes 2016; 
Mendez and Wheatley 2014; Wheatley 2016; Wheatley et al. 2014; Wheatley and Mendez 
n.d.). Moreover, apart from constructing new scales, these models allowed VAA design-
ers to validate any theoretically constructed scales as well. It was therefore that Germann 
et al. (2015); Germann and Mendez (2016) suggested MSA a way to validate theoretically 
constructed scales in VAAs, and construct new scales based on early user data if needed.

Yet, basing the scales on user data has its problems. To begin with, it assumes that 
scales derived from the responses of users are better than scales constructed by VAA 
designers. Also, as this process requires user data, this means that VAA designers have 
to wait until after they have taken the VAA offline. And while they might choose to col-
lect data earlier and only use data of a set of early users, this leads to later users receiving 
advice based on different scales. It also implies that early users are more likely to have 
inaccurate results, and receive advice different from a later user, even though they might 
have the same responses to each of the items.

Yet, we must remember that while it might be uncertain to base scales solely on the 
responses of voters, it is as uncertain to base them solely on theory. In other words: users 
are no less correct or incorrect than VAA designers. Thus, the adequacy of VAA scales 
should depend both on theoretical and empirical criteria (Carmines and Zeller 1979). Here, 
the theoretical criteria are those VAA designers use to decide which items to include and 
in which scales to place them initially, while the empirical criteria are those decisions on 
whether to include or remove items from the scales based on the user responses. Also, if 
this changes the scales, this is conceptually reasonable as the goal of VAAs is to match vot-
ers with parties from the voter perspective. In other words, VAAs match voters with par-
ties, not the other way around.

Moreover, while some voters will indeed receive different advice, this is a good price 
to pay for more accurate scales (Germann et al. 2015; Germann and Mendez 2016). This 
as alternatives, such as pre-administrating the VAA questionnaire, often come with high 
costs. Also, with the often high number of VAA users, reaching the required number of 
users for validation is most likely a matter of days (or hours in some cases). And finally, 
as scales are only needed to construct the political maps, VAA designers could choose to 
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de-activate those until the scales are validated. In the meanwhile then, users could use the 
other visualisations—such as bar graphs or spider graphs—that most VAAs offer.

3 � Criteria for scales

When validating their scales with empirical criteria, there are three that VAA designers 
should keep in mind. These are the unidimensionality, reliability, and quality of the scale. 
While the first and second of these criteria are well known, the third is less so. This is as it 
focuses more on the actual responses of the users to the items than the items themselves. 
To understand what this means, I will briefly discuss this concept, and the metric it bases 
itself on, together with a review of the other two criteria.

3.1 � Unidimensionality

The underlying idea of any scale is that by adding the responses to all its items together, 
one arrives at a position on an underlying dimension. Yet, it is often so that items measure 
more than a single dimension. In other words: the scale is multidimensional. This is prob-
lematic, as the sum score of the scale is then difficult to interpret. So, what we want is a 
uni-dimensional scale: a scale that measures a single dimension and only that dimension 
(Gerbing and Anderson 1988). There are various methods to assess this, with the most 
popular methods being the earlier mentioned EFA and CFA. Here, one can use CFA to 
validate scales, and EFA to build new scales. Yet, apart from both requiring metric data, 
in EFA the number of dimensions extracted from a set of items depends on the eigenval-
ues. As there is some discussion at which eigenvalue a scale forms a dimension, extracting 
scales this way can be somewhat arbitrary. Also, EFA does not allow for correlated errors 
and cannot provide estimations of model fit (Bollen 1989). CFA does provide such estima-
tions but needs to assume that the specified number of dimensions is correct.

MSA addresses this using two concepts to assess unidimensionality: homogeneity and 
monotonicity. Homogeneity measures how well the items belong together while monoto-
nicity assesses if a higher score on a single item relates to a higher score on the scale as 
a whole. To measure homogeneity, Mokken (1971) proposed to use Loevinger’s H. This 
coefficient comes in three types: (a) a value H which shows how accurate the scale can 
order the respondents on the underlying dimension (Mokken et al. 1986), (b) a value Hij , 
which indicates how well items i and j co-vary (Loevinger 1947), and (c) a value Hi that 
tells us how well an item co-varies with the other items in the scale (see also Appendix A). 
For scale construction, H and Hi are the most important. Values of both lie between 0 and 
1 (Hemker et al. 1995). Here, 0 indicates there is no relation between the items at all and 
1 that there is a perfect relation between them. As a rule of thumb, scales with H < 0.30 
lack unidimensionality, while scales between H = 0.30 and H = 0.40 show weak, scales 
between 0.40 < H < 0.50 show medium and scales with H > 0.50 show strong unidimen-
sionality. For a Mokken scale, the H of the scale needs to be > 0.30 , as do the individual Hi 
values for each of the items. To measure monotonicity, we can use the restscore of the item. 
This is the score that remains when we subtract the score for the item from the sum score 
of all items in the scale. If monotonicity holds, this means that the higher the rest score of 
the user, the more likely it is that the user obtained a higher score on an item. From the dif-
ferent ways to measure this, the most useful is the crit-value Sijtsma and Molenaar (2002). 
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This value not only looks at the rest score but combines it the with characteristics of the 
scale. In general, any item with a crit-value over 80 can be said to violate monotonicity.

As well as confirming the unidimensionality of the scales like CFA, we can also use 
MSA to generate new scales, as EFA would. To do so, we can use two algorithms: the 
standard automated item search procedure (aisp) or the newer genetic algorithm (ga) 
(Straat et  al. 2013). Here, the aisp starts with those two items that have the highest Hij 
value. Then, it adds the item with the highest Hij value relative to the original two items 
until the H value of the scale drops below a set criterion. This procedure is then repeated 
for the remaining items until the algorithm can form no more scales (van der Ark 2012). 
Yet, while quick and straightforward, aisp does not always lead to an optimal partition of 
the items into scales. This is because as soon as an item is only a little under the lower 
bound for the criterion, aisp does not consider it. Also, because the method works hierar-
chically, much depends on which items aisp chooses as its starting items. The ga proce-
dure addresses this by considering all possible combinations of scales and selecting those 
that are the longest. Yet, this comes at the cost of the algorithm becoming time-consuming 
when the number of items is large (Straat et al. 2013).

3.2 � Reliability

The common understanding of the reliability of a scale is that under similar circumstances, 
it should produce similar results. In terms of classical test theory, this means that we want 
the true score variation to account for as large a degree of the total variation as possible 
(Carmines and Zeller 1979). Yet, as we cannot observe this true score, we have to estimate 
it. To do so, the most established technique is that of internal consistency,. This rests on 
the idea that the higher the correlation between items in a scale, the more reliable the scale 
is. The most popular measure to establish such internal consistency is Cronbach’s � . This 
measure compares the total variance between the items to the total variance of the scale. 
The higher this ratio, the more the items have in common (as they share a higher degree of 
variance) and thus the more reliable the scale.

While popular, using � to estimate the reliability of scales generated for VAAs is prob-
lematic. Not only does � need metric data, but it also assumes tau-equivalence. This means 
that each item in the scale should be equal and carry equal importance (Sijtsma 2009). 
Yet, both assumptions seem inappropriate for the hierarchical and ordinal data that VAAs 
generate. Some items might be more difficult, or less popular than others, sometimes even 
so by design. Thus, Germann and Mendez (2016) advise to use the Latent Class Reliabil-
ity Coefficient (LCRC) (van der Ark et al. 2011) instead (see also Appendix B). What the 
LCRC does is correlate a set of observed categorical variables to a set of latent unobserved 
categorical variables using latent classes. This addresses both the problems of requiring 
metric data and tau-equivalence. The LCRC itself is then a value between 0 − 1 that has the 
same interpretation as Cronbach’s � , with 0.90 being a useful lower bound Germann and 
Mendez (2016).

3.3 � Quality

Both reliability and unidimensionality focus on the relation between the items in the scale. 
Quality, on the other hand, focuses on the items themselves. The basic assumption of qual-
ity is that users respond to each item as we expect them to respond to it (Blasius and Thies-
sen 2012). That is, we expect them to take careful consideration of both item and response 
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options, and then find a proper connection between them. Yet, users often simplify this 
process by skimming over the items, using only a few of the response options or fabricate 
their responses altogether (Blasius and Thiessen 2012, 2015).

To measure to which degree this behaviour affects the quality of the items, Blasius and 
Thiessen (2012) propose a dirty data index. This index tests the quality of the responses 
to the item by looking at how metric this response is. For Likert scales, such as occur in 
VAAs, metric means that there are uniform distances between each of the categories. So, 
the distance between completely disagree and disagree is the same as the distance between 
completely agree and agree. Also, both are half of the distance between completely disa-
gree and either agree or disagree. But if users do not understand the item or the response 
categories, violations might occur. So, they may perceive the distance between completely 
disagree and disagree as smaller than the distance between disagree and either agree 
or disagree. In the worst scenario, this might even lead to ties. Here, either the distance 
between the two options is too small to be different, or the order of the response categories 
is wrong. This happens when either agree or disagree is more negative than disagree. If 
any of these things happen, the data are more ordinal than they are metric, and thus of 
lower quality.

To calculate the DDI, we compare the PCA solution of the scale with its categorical 
PCA (catPCA) solution. This is possible as catPCA does not assume that the distances 
between the categories are equal as PCA does. Instead, catPCA calculates these distances 
itself. So, while in PCA the values of the response categories (1, 2, 3… , etc.) are actual val-
ues, catPCA uses optimal scores to replace the original categories. The process that does 
so, optimal quantification, ensures that each optimal score accounts for the highest amount 
of variation (Linting 2007, p. 338). After the calculation of these scores, catPCA than pro-
ceeds in the same way as regular PCA. If the responses for all the items are metric, the 
optimal scores are the same as the PCA scores (Blasius and Thiessen 2012, pp. 133–138). 
In such a case, the DDI will be 0. The farther away from 0 the values are, the less equal the 
distances between the categories are and the less metric the responses to the items. Blasius 
and Thiessen (2012) consider DDI values smaller than 0.30 and 0.15 to indicate data of 
good and exceptional quality while values exceeding 0.5 indicate data of bad quality (see 
Appendix C for an overview of how to calculate the DDI).

4 � Empirical analysis

To show the usefulness of these criteria, I will now turn to an empirical application using 
data from the EUVox VAA (Mendez and Manavopoulos 2018). This VAA, launched for 
the 2014 elections for the European Parliament, had versions for 28 countries and con-
tained 30 items. The questionnaire itself used a 5-point Likert-type scale with an additional 
no opinion option (coded in the data-set as missing or NA). Each version of the VAA had 
an English version as well as a version in the main language of the country that version 
focused on. Of the 30 items, 21 core items occurred in all countries (20 in the case of 
France). Seven (six in the case of France) of these core items concerned powers of the 
EU. Another seven handled economic issues, and a final seven handled cultural issues. The 
issues and their content were such as to cover the main issues as found by the Chapel Hill 
Expert Survey (Polk et al. 2017). Country experts decided on the remaining issues (9 for 
most countries and 10 in the case of France) to capture salient topics for their countries. 
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Appendix E shows the English version of the 21 core questions. Of the 28 available coun-
tries, I excluded 11 from this analysis. The Netherlands and Sweden because these VAAs 
had different questionnaires; Belgium, Latvia, Luxembourg, and Malta because of the 
small number of users; and Bulgaria, Cyprus, Romania, Slovenia and Spain as not all infor-
mation on them was available. Also, as the data-set for England was larger than those for 
Northern Ireland, Scotland and Wales, I excluded the latter three.

Table 1 shows the number of respondents for the remaining 22 countries. Here, the third 
column shows the entries remaining after cleaning. Cleaning data generated by VAAs is 
necessary as VAAs are online unsupervised questionnaires. Thus, users can fill out the 
survey many times, click through the items, or use the same response category for each 
of the items. As this can lead to a large number of nonsense answers., we should always 
clean VAA data (Andreadis 2014; Mendez et al. 2014). Also, we should keep in mind that 
although the data might be cleaner, it is still far away from a standard survey in which an 
interviewer asks the questions and records the responses. As such, it should be no surprise 
if VAA scales will perform less well than scales derived from a supervised survey.

Following the advice by Andreadis (2014) and Mendez et al. (2014), I remove all those 
entries that: 1) users filled out using a mobile phone (as in the mobile version the No Opin-
ion option was not clearly shown), 2) returning users filled out (based on an identifier based 
on their IP-address), 3) where the time taken to complete all the 30 items was less than 
120  seconds, 4) where the time taken to complete all the 30 items was more than 5400 
seconds (90 min), 5) where the time taken to respond to any of the items was less than 
2 seconds, 6) where the time taken to respond to three or more issues was 3 seconds or 
less, 6) where users responded to more than 10 issues in the same way, and 7) where users 
skipped more than 10 items using the No Opinion response. The number of entries remain-
ing varies between countries and ranges between 65% (for Ireland) and 84% (for the Czech 

Table 1   Number of users in the 
EUVox data-set

∗Includes only England
Appendix D shows a full overview of the cleaning procedure

Country Raw dataset Clean dataset % Clean

Austria 10,669 7527 71
Croatia 7666 52,81 69
Czech Republic 28,630 24,084 84
Denmark 126,261 92,633 73
Estonia 18,172 12,267 68
Finland 8274 6729 81
France 8704 6656 76
Germany 9658 7208 75
Greece 63,687 46,098 72
Hungary 6711 5536 82
Ireland 9523 6198 65
Italy 36,614 26,235 72
Lithuania 9072 7050 78
Poland 73,521 58,429 79
Portugal 54,165 42,199 78
Slovakia 7238 5905 82
United Kingdom* 100,897 77,403 77
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Republic). Most users are removed either because they were returning users or because 
they used their mobile phone (see also Appendix D).

During its time in operation, EUVox used two versions of each of the economic (EC), 
European Union (EU) and cultural (CU) scales. The first version—the original scales—
were the scales designers based on theory and used before they launched the VAA. The 
second version—the DSV scales—were those constructed after DSV and which were 
implemented after the first group of users completed the VAA. Besides these two, I will 
also assess a series of scales based on a quasi-inductive method (Wheatley 2015b). These 
are constructed similarly as the scales created by the DSV, though wherein DSV restrains 
the MSA to the items assigned to it in the original scale, here these restraints are removed. 
While this often leads to longer scales, it also means that sometimes only a single emerges. 
This makes the method problematic if one needs two scales to construct a political map.

4.1 � Original scales

Appendix F shows the original scales. These scales include all the items designed for the 
VAA, except for the EU scale, where the EU7 item relating to referenda on EU treaties is 
left out. This item was most likely not included because the designers decided in a late-
stage that the item did not fit in well with the EU dimension. Besides these items, each 
country adds some additional items to some of the scales, with the type and number of 
items differing per country. For example, where Finland uses none of the additional items, 
other countries sometimes use almost all, most often for the economic scale. Portugal, for 
example, uses 7 of the 9 additional items for the economic scale, while both Croatia and 
Italy use 4 extra items. Moreover, Denmark takes six additional items on the EU scale 
while Poland takes four items on the cultural scale. The content of these additional items is 
most often related to specific issue relevant to the country. Thus, in the case of the United 
Kingdom, the three additional items that deal with Islam, asylum seekers and immigration 
are on the cultural scale. The underlying idea here is that voters think about these issues 
like other cultural issues such as abortion.

4.2 � DSV scales

Appendix G shows a second version of the scales. These scales are the result of a DSV for 
each of the scales. While almost all scales lost items, the precise implications were differ-
ent for each of the scales. The EU dimension lost the least number of items, with items 
EU1, EU2, and EU4 remaining for all countries. This is a first sign that these items (relat-
ing to the Euro, treaty change and common foreign policy) seem to capture the underlying 
EU dimension well. This was not the case for item EU5—related to redistribution—which 
DSV dropped in most cases. Something similar happened to the item CU4 that asked about 
community service. DSV dropped this item in all countries except the United Kingdom. 
On the other hand, DSV has retained other items, such as item CU5 in all cases, as well as 
item CU1 (except for Estonia and Ireland).

In all cases, the resulting scales are shorter than the original ones. Here, Estonia is 
the most noticeable, with 4 items for the EU and economic scales, and 3 for the cultural 
scale. To get an idea of why this is the case, we can look at the individual H values. 
For Estonia, the H scores for the EU, economic and cultural scales are 0.20, 0.15, and 
0.13—all well below the 0.30 mark. Also, only two items in all scales passed the 0.30 
mark and most of the crit values were high. Yet, even when removing several items, the 
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H values for the scales were only 0.33, 0.26 and 0.23. Besides, most of the Hi values for 
the individual items are below 0.30, while the crit values remain high in several cases as 
well. Most problematic is the CU scale, with only three items, with none of them reach-
ing the 0.3 mark and two of the three items have crit values > 80 . Even in this version, 
the cultural scale does not represent a true scale that measures a single underlying latent 
dimension. An altogether different case is Hungary. Here, the EU scale scored high H 
values for both the original scale and even higher ones for the DSV scale. In this case, 
DSV improved the original scale by removing the worst-performing item EU5 and add-
ing another.

4.3 � Quasi‑inductive scales

Restraining the analysis to the set of items related to either of the three scales has as the 
advantage that it will result in a similar number of scales. Yet, we also saw that this restric-
tion leads to some unsatisfactory or very short scales. So, as another way to improve upon 
the scales, we can remove any notion of to which scale an item should belong. This is the 
quasi-inductive approach. Inductive as we build the scales based on the data, and quasi 
because the scales are still constrained by the number and type of items included in the 
VAA (Wheatley 2016). To generate these scales, I run an MSA procedure using the genetic 
algorithm and H = 0.30 and Hi = 0.30 as unidimensionality criteria for the scale and 
items respectively. Also, I used a rest score group of 100 when calculating the crit values 
and dropped an item if the crit value was > 80 . After discarding an item, I repeated the 
procedure from the start, as the Hi of any item depends upon the other items included in 
the scale. For the full procedure I used the mokken package (van der Ark 2007, 2012) as 
implemented in R. For a full overview of this procedure, see Appendix I.

Appendix H shows the results of this procedure. At first glance, there are some interest-
ing differences. To begin with, MSA did not maintain all the scales for each of the coun-
tries. In the case of the United Kingdom and Hungary, there was only a single EU scale. In 
most other countries there were either two or three scales, with one of them also being an 
EU scale. The latter is not strange, as the VAA focused on the European Parliament elec-
tions. Estonia, which had troublesome scales in its original and DSV form, has three scales, 
though they are both short and low in H values. The same goes for Lithuania, which lost 
a cultural scale, but whose economic scale is short (containing 3 items). The DSV already 
dropped CU4 in all countries but the United Kingdom, but now it disappears completely 
from any scale. Yet, items EU1 and EU6—relating to the Euro and EU membership, are in 
each EU-scale, again underlining their importance.

5 � Results

Figures  1,  2, and  3 show the results for all countries for all three three versions of the 
scales, for the unidimensionality, reliability, and quality respectively. In each figure, squares 
represent the values for the economic scales, circles for the EU scales and diamonds for the 
cultural scales. Also, open symbols represent the values for the original scales, closed ones 
for the DSV scales, and crossed ones for the quasi-inductive scales if these scales were 
present.
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5.1 � Unidimensionality

With regards to unidimensionality, Fig. 1 reveals that the Loevinger’s H values (see also 
Appendix J) lie between 0.1 and 0.6. This means some countries have scales with high 
unidimensionality while others lack unidimensionality. This is especially so for the DSV 
and quasi-inductive scales as these are restrained to only include items in the scale when 
Hi > 0.30 . The exception to this is the DSV economic scale in Denmark and the DSV EU 
and cultural scale in Estonia. Here, the VAA included them despite their Hi < 0.30 as no 
other possibilities where available.

We find the highest values in the United Kingdom, where the EU scale in its DSV form 
reached 0.60. In its quasi-inductive form, a new EU scale emerged, which included also the 
other two scales and reached a position of 0.46 (obscured in the plot by a similar position 
of the EU DSV scale position). In the same way, in Hungary, the original economic scale 
improved from 0.20 to 0.52 but was also subsumed by an EU scale in its quasi-inductive 
form. Estonia and Denmark have the lowest scores, as mentioned before. Despite changing 
the scales, even the DSV scales for the EU and cultural dimensions in Estonia were well 
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Fig. 1   Overview of the values for Loevinger’s H coefficient for the original, DSV and quasi-inductive scales
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below the 0.30 mark. Also, the value for the economic scale is low, at 0.33. The quasi-
inductive scales fare better but are small. Both the economic and cultural scales consist of 
3 items, while the EU scale has 5 items.

The degree to which the value of H increases is different for each country and each 
scale. In the case of Poland, both the EC and CU original scales had a value of 0.19 and 
increased to 0.41 and 0.46 with several items less. In the case of the EC scale, these com-
prise the items relating to cutting government spending (EC5) and loans from external 
institutions (EC7) as well as an item about the protection of the environment versus eco-
nomic growth (AD5). Each of the items correlated low with the other items. The loans from 
external institutions item even show a negative correlation with the others ( Hi = −0.20 ). 
This means that for that item we observe more errors than expected under statistical inde-
pendence. This is most likely because the item is not in the correct direction. So, users who 
agreed with the other items of the scale disagreed with this item.

Other countries in which the value of H improved between the original and DSV ver-
sion of the scale was Croatia. Here, the EC scale increased from 0.15 to 0.37 and the Czech 
Republic, where the CU scale increased from 0.20 to 0.47. In other countries, like Ireland, 
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Fig. 2   Overview of the latent class reliability coefficient for the original, DSV and quasi-inductive scales
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Portugal and Denmark, the improvement (in this case for the CU scale) was low and did lit-
tle to help reach the 0.30 mark. Thus, the scales for EC and CU improved the most between 
the original and DSV scales, while the EU scale showed less improvement.

5.2 � Reliability

Figure 2 shows the values for reliability in the form of the LCRC (see also Appendix 
K). As with other measures of reliability, the possible values lie between 0 and 1, with 
values closer to 1 indicating higher reliability. Most of the values of the LCRC lie 
between 0.50 and 0.90. Only two countries (Hungary and the United Kingdom) show 
values above 0.90, in both cases for the EU scale. This means that for most cases the 
standard of 0.90 is not reached. Moreover, in a considerable number of cases, the value 
of the LCRC is well below the 0.90 mark, with low values occurring for each of the 
types of scales. The lowest values are once more found in Estonia, where the DSV 
cultural scale scored only 0.50, and none of the other scales reached higher than 0.70. 
Combined with the low values of H for the country, I conclude it is not possible to 
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generate valid scales for Estonia. We can find another case of a low LCRC for the EC 
scale for Lithuania in its quasi-inductive form with a score of 0.54. Given that the H 
score of this scale is 0.33, we can also question the usefulness of this scale.

We find the best results, as with the values for H, in the United Kingdom. Here, all 
the scales scored higher than 0.80, with the quasi-inductive scale on the EU reaching 
0.94. The EU scale scores as well for the other countries in the case of the quasi-
inductive scales. It had an average of 0.85 over all countries, while the EC and CU 
scale scored 0.75 and 0.64. For the original and DSV scales, the average differences 
were less pronounced. The original scales had averages of 0.74, 0.78 and 0.74 for the 
EC, EU and CU scales, while the values for the DSV scales were 0.75, 0.80 and 0.75.

The quasi-inductive scales, while performing very well for the EU scale, perform as 
well as the DSV scales in case of the EC scale. Yet, they perform worse in the case of 
the cultural scale. This is most likely because the cultural scales in their quasi-induc-
tive form were small. Often, they contained only 3 items (as was the case in Austria, 
Estonia, Finland, France, Italy, Portugal, and Slovakia). Keeping the analogy with � , 
it is likely that the LCRC decreased because a higher number of items leads to higher 
reliability of the scale (Nunnally 1967).

5.3 � Quality

For quality, Fig. 3 shows the results for the DDI (see also Appendix L). Opposite to 
the values of H and the LCRC, we want the DDI to be as low as possible. Here, we 
observe only two cases in which the DDI comes above the 0.5 mark, which Blasius and 
Thiessen (2012) argue indicates data of bad quality. Both cases are for the original and 
DSV version of the CU scale in Estonia. Interesting about this is that Estonia has both 
the highest and lowest DDI values. Its DSV cultural scale has a value of 0.52, while 
its quasi-inductive economic scale has a value of 0.07. The different values show that 
while the first scale is ordinal, the latter is near metric. In any case, the original values 
for Estonia are all above the 0.30 mark, as are two of the quasi-inductive scales. This 
indicates that even after running MSA in two different ways, these two scales remain 
problematic. This illustrates that MSA cannot guarantee a high quality of the scales.

Most of the other values are between 0.10 and 0.30, indicating metric data. For all 
scales and countries, the values belonging to the DSV and quasi-inductive scales are 
lower than the scores for the original scales, though the differences are often small. 
Besides, there is little difference between the quasi-inductive and the DSV scales. For 
the countries, Finland, Denmark and Italy perform the best, while Estonia and Poland 
perform the worst. This is because of the problematic EC scale in Poland, which per-
formed badly in all its iterations and the high value for the CU scale in Estonia. Also, 
while the economic scale in Poland changed little in its DDI values (from 0.49 to 0.44 
and 0.42), it improved in both its values of H (from 0.19 to 0.41 and 0.40) and LCRC 
(from 0.69 to 0.81 and 0.81). Thus, improving the unidimensionality and reliability 
does not ensure the quality of the scale. Another instance where this is the case is Ire-
land. Here, the H values for the economic scale increased from 0.24 to 0.34 between 
the original and quasi-inductive scales, while the DDI was 0.25 and 0.20
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5.4 � Relationships between the measures

While unidimensionality, reliability and quality measure different aspects of a scale, there 
is overlap between them. This is especially so for unidimensionality and reliability, as the 
first is a necessary condition for the second. Indeed, most reliability metrics assume unidi-
mensionality at the risk of underestimating the reliability (Tavakol and Dennick 2011,  p. 
54). Thus, a low degree of unidimensionality should lead to a low degree of reliability, 
while a high unidimensionality should relate to a higher degree of reliability. Besides, both 
the estimates for the concepts base themselves on the degree of inter-item co-variances. 
They do so either in a direct way (Loevinger’s H) or through an estimator (LCRC).

The opposite is true for the correlation between either the LCRC and the Loevinger’s 
H values, and the DDI. Not only is there no clear link—as the focus of the DDI is on the 
categories of the item and not on the item itself—but the DDI is also formulated such that 
higher values indicate a negative performance of the scale, instead of a positive one.

As we already saw some evidence that the quality if not related to either unidimension-
ality or reliability, we will now look a bit closer at their precise relationship. Thus, Fig. 4 
shows the correlations between each of the three possible pairs of criteria for each of the 
three versions of scales (over all countries and types), together with their 95% confidence 
intervals (see also Appendix M).

Starting with the original scales, I find high and significant correlations between the 
LCRC and H values as we would expect. Besides, the confidence intervals are small. For 
the correlations between the DDI and H values, I find conflicting results. While the CU and 
EC scales are significant but negative, the EU scale is not significant. We can make a simi-
lar evaluation for the correlation between the LCRC and the DDI. Yet, here the confidence 
intervals of the CU and EC scales are more extended. This means that for the economic 
and cultural scales an increase in the LCRC or H value goes together with a decrease in 
the DDI. This is what we would want: increased reliability goes together with an increased 
understanding of the scale. Yet, in the case of the EU, there is no relation between the two.

For the DSV scales, the relations between the LCRC and H values are all positive. Yet, 
the degree of the correlation is lower, and the confidence intervals are wider. For the rela-
tionship between the DDI and H, none of the values is significant, with both the coefficient 
for the EU and EC scale being very close to 0. For the LCRC–DDI relation, both the EU 
and EC scale are not significant. Only the CU scale indicates a significant negative correla-
tion, like the one seen at the original scales.

For the quasi-inductive scales, none of the correlations is significant. The exception is 
the EU scales for the relation between H-LCRC. Here, the other two scales, while positive, 
are not different from 0 and have rather large confidence intervals. For the relation between 
the DDI and H, the correlation for the EU scale is 0 ( r = −0.01 ). The other two scales are 
negative but also not different from 0. This is also the case for the relation between the 
LCRC and the DDI. Here, both the CU and EC scales are 0 ( r = −0.03 and r = −0.05 ), 
and the EU scale is negative but different from 0. The reason for this, especially for the 
absence of a positive relationship between the H-value and the LCRC, is that the quasi-
inductive algorithm produced only scales with a H > 0.30 . As this reduced the number of 
possible values H could take, the spread of the H-value is limited, resulting in lower values 
of r.

So, while we can observe the expected relationship between reliability and uni-
dimensionality, the relationship between these two and the measure of quality is not so 
straightforward. Thus, it is possible to construct a scale that shows high reliability and 
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unidimensionality, but from which the items themselves are not well understood by the 
users. Similarly, the degree to which the users understood the items says nothing about 
their combined behaviour on a scale. So, when confronted with a scale of items that show 
high unidimensionality and reliability, but low quality, it depends on the designer whether 
to decide to include or drop a certain item.
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Fig. 4   Pearson’s r correlations between the DDI, Loevinger’s H, and the latent class reliability coefficient 
with 95% confidence intervals
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6 � Conclusion

For the dimensions in VAA political maps to be useful and informative, VAA design-
ers must validate the scales that underlie them. Here, I discussed three criteria they can 
use to do so: unidimensionality, reliability, and quality. As an example, I applied these 
to available data from the EUVox VAA. I did so for scales on three topics—economy, 
culture and European integration —for three different versions of the scales. I found that 
in only a few cases any of these scales meet the requirements demanded by each of the 
three criteria. Moreover, I reached similar conclusions when performing a robustness 
check using the data from the euandi VAA for the same elections (see Appendix N).

The scales scored especially low on reliability, with only five of the scales surpass-
ing the lower bound of 0.90. For quality, the results were mixed, with most scales scor-
ing a DDI between 0.10 and 0.30, indicating relatively good data (Blasius and Thies-
sen 2012, p. 136), while others performed worse and two even showed poor data. For 
unidimensionality, the results depended on the version of the scale. While most of the 
original versions of the scales scored below H = 0.30 , the other two versions scored 
around 0.40. This result is further proof that VAA designers should not only base scales 
on theory but should also validate them using data. One method of validation—known 
as dynamic scale validation (Germann et al. 2015; Germann and Mendez 2016) - was 
tested here in one version of the scales, and in almost all cases, these scales performed 
better than their original versions. A third version of the scales, using a quasi-inductive 
method, did not perform better than either the original or the DSV scales.

From this, we can draw three main conclusions. First, that VAA designers should 
never base their scales on theoretical assumptions alone. Second, that even though using 
DSV can improve the scales, these improvements are only guaranteed for the unidimen-
sionality criterion. This as the MSA algorithm takes only that criterion into account. 
Other criteria, such as the reliability and the quality, might improve, but not necessarily. 
Third, that while there is both a theoretical and empirical relationship between the uni-
dimensionality and the reliability of the scale, such a relationship does not exist between 
either of these two measures and the quality of the scale.

While establishing if scales conform to standards is important in all aspects of politi-
cal science, it is even more so in the case of VAAs. Not only because voters might be 
unaware of any deficiencies, but also because incorrect scales might lead to incorrect 
advice. This is especially problematic as there is increasing evidence that VAAs do not 
only influence voter turnout but also voter choice. Do so would go against the idea of 
most scholars in the VAA community that VAAs should benefit the voter. Thus, scale 
validation should become standard. Each of the three criteria shown here covers another 
element of validation and should be performed as soon as it is workable to do so. More-
over, carrying out this validation is relatively easy and requires only a few steps (see for 
an example Appendix O). Doing so would allow empirical reality to correct theoretical 
assumptions, and improve the quality of the voting advice.
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