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Abstract

We report on results obtained with the Event Shape Engineering technique applied to Pb–Pb colli-
sions at

√
sNN = 2.76 TeV. By selecting events in the same centrality interval, but with very different

average flow, different initial state conditions can be studied. We find the effect of the event-shape
selection on the elliptic flow coefficientv2 to be almost independent of transverse momentumpT, as
expected if this effect is due to fluctuations in the initial geometry of the system. Charged hadron,
pion, kaon, and proton transverse momentum distributions are found to be harder in events with
higher-than-average elliptic flow, indicating an interplay between radial and elliptic flow.
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1 Introduction

Results from Lattice Quantum Chromo-Dynamics [1, 2] predict the existence of a plasma of deconfined
quarks and gluons, known as the “Quark Gluon Plasma” (QGP). This state of matter can be produced in
the laboratory by colliding heavy nuclei at relativistic energies [3, 4, 5]. The QGP was found to behave as
a nearly perfect liquid and its properties can be described using relativistic hydrodynamics (for a recent
review, see [6]). The current experimental heavy-ion programs at Brookhaven’s Relativistic Heavy Ion
Collider (RHIC) and at CERN’s Large Hadron Collider (LHC) are aimed at a precise characterization of
the QGP, in particular of its transport properties.

The system created in a heavy-ion collision expands and hence cools down, ultimately undergoing a
phase transition to a hadron gas, which then decouples to thefree-streaming particles detected in the
experiments [6]. A precision study of the QGP properties requires a detailed understanding of this ex-
pansion process. If the initial geometry of the interactionregion is not azimuthally symmetric, a hydro-
dynamic evolution of a nearly-ideal liquid (i.e. with a small value of the shear viscosity over entropy ratio
η/s) gives rise to an azimuthally anisotropic distribution in momentum space for the produced particles.
This anisotropy can be characterized in terms of the Fouriercoefficientsvn of the particle azimuthal dis-
tribution [7]. The shape of the azimuthal distribution, andhence the values of these Fourier coefficients,
depend on the initial conditions and on the expansion dynamics. The geometry of the initial state fluctu-
ates event-by-event and measurements of the resultingvn fluctuations pose stringent constraints on initial
state models. A quantitative understanding of the initial geometry of the produced system is therefore
of primary importance [6]. A number of different experimental measurements and techniques have been
proposed to disentangle the effects of the initial conditions from QGP transport, including measurements
of correlations of different harmonics [8], event-by-event flow fluctuations [9, 10, 11, 12] and studies in
ultra-central collisions [13, 14]. Recent results from pp and p–Pb collisions at the LHC, moreover, sug-
gest that hydrodynamic models may be also applicable to small systems [15, 16, 17, 18, 19]. This further
highlights the importance of studying Pb–Pb collisions with more differential probes, to investigate the
interplay between the initial conditions and the evolution, in the system where the hydrodynamic models
are expected to be most applicable.

One of the new tools for the study of the dynamics of heavy-ioncollisions is the “Event Shape Engi-
neering” (ESE) [20]. This technique is based on the observation that the event-by-event variation of the
anisotropic flow coefficient (vn) at fixed centrality is very large [12]. Hydrodynamic calculations show
that the response of the system to the initial spatial anisotropy is essentially linear for the second and third
harmonic, meaning that the final statev2 (andv3) are very well correlated with the second (and third)
order eccentricities in the initial state for small values of η/s [7, 21, 22]. These observations suggest
a possibility to select events in heavy-ion collisions based on the initial (geometrical) shape, providing
new opportunities to study the dynamics of the system evolution and the role of the initial conditions.

The ESE technique is proposed to study ensemble-averaged observables (such asv2 and inclusive particle
spectra) in a class of events corresponding to the same collision centrality, but differentvn values. In
this paper events are selected based on the magnitude of the second order reduced flow vectorq2 (see
Sect. 3.1). The technique was recently applied to study correlations between different flow harmonics
in the ATLAS experiment [23]. In this paper we present the results on elliptic flow and charged particle
specta in Pb–Pb collisions at

√
sNN = 2.76 TeV obtained with ESE technique. The events selected with

the ESE technique are characterized by the measurement ofv2, to quantify the effect of the selection on
the global properties of the event. In order to search for a connection between elliptic and radial flow
the effect of the ESE selection on the inclusive transverse momentum distribution of charged hadrons,
pions, kaons and protons is then studied. The results are presented for primary charged particles, defined
as all prompt particles produced in the collision includingall decay products, except those from weak
decays of light flavor hadrons and of muons. The differentialmeasurement described in this work could
provide important constraints to identify the correct model for initial conditions and for the determination
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of transport properties. The development of flow in hydrodynamical models is driven by the pressure
gradients and anisotropy in the initial state. A correlation between anisotropic and radial flow may stem
from the specific fluctuation pattern in the initial state and/or can be produced in the final state depending
on the bulk and shear viscosity of the system [7].

A few important caveats, which can affect the selectivity ofthe ESE technique, have to be kept in mind
in this study. First, the discriminating power of theq2 selection depends on the multiplicity andv2 value
in the psudorapidity,η , region where it is computed and on the intrinsic resolutionof the detector used
for the measurement. Second, non-flow effects (such as resonance decays, jets, etc. [22]) could bias the
q2 measurement. In this work we discuss both aspects in detail,making use of different detectors with
different intrinsic resolution and differentη coverage.

The paper is organized as follows. In Sect. 2 a brief review ofthe ALICE detector and of the data
sample is presented. In Sect. 3 the analysis technique, withan emphasis on the event selection and on the
particle identification strategy, is discussed. The results are presented in Sect. 4. Their implication for
the hydrodynamic interpretation is discussed in Sect. 5. Finally, we come to our conclusions in Sect. 6.

2 ALICE detector and data sample

The ALICE detector at the CERN LHC was designed to study mainly high-energy Pb–Pb collisions. It is
composed of a central barrel (|η |. 0.8 for full-length tracks), containing the main tracking andparticle
identification detectors, complemented by forward detectors for specific purposes (trigger, multiplicity
measurement, centrality determination, muon tracking). Adetailed description of the apparatus can be
found in [24]. The main detectors used for the analysis presented in this paper are discussed below.

The main tracking devices in the central barrel are the InnerTracking System (ITS) and the Time Projec-
tion Chamber (TPC). They are immersed in a 0.5 T solenoidal field. The ITS is the detector closest to the
interaction point. It is a six-layer silicon tracker with a very low material budget (∼ 7% of one radiation
lengthX0). The ITS provides information on the primary interaction vertex and is used to track particles
close to the interaction point, with the first layer positioned at a radial distance of 3.9 cm from the interac-
tion point and the sixth one at 43 cm. It can measure the transverse impact parameter (DCAxy) of tracks
with a resolution of about 300 (40)µm, for transverse momentumpT = 0.1 (4) GeV/c, allowing the
contamination from secondary particles to be significantlyreduced. The TPC [25] is a large-volume gas
detector (external diameter 5 m) which measures up to 159 space points per track, providing excellent
tracking performance and momentum resolution (σpT/pT ∼ 6% atpT = 10 GeV/c) [26]. It is also used
in this work to identify particles through the measurement of the specific energy loss, dE/dx. The dE/dx,
computed as a truncated mean utilizing only 60% of the available samples, has a resolution of∼ 5% in
peripheral and∼ 6.5% in central collisions [26]. At a radius of 3.7 m from the beam axis, the Time
of Flight (TOF) detector measures the arrival time of particles with a total resolution of about 85 ps in
Pb–Pb collisions, allowing aπ/K (K/p) 2 σ separation up topT = 3 (5) GeV/c. The ALICE reconstruc-
tion software performs tracking based either on the information from the TPC alone (TPC-only tracks)
or on the combined information from the ITS and TPC (global tracks). The former have the advantage
of an essentially flat azimuthal acceptance, and are used forv2 andq2 measurements. The latter provide
better quality tracks (σpT/pT ∼ 1.5% at pT = 10 GeV/c) [26], rejecting most of the secondary tracks.
However, the acceptance and reconstruction efficiency of global tracks are not flat in azimuth and as a
function of transverse momentum, mostly due to missing or inefficient regions of the ITS. These tracks
are used for thepT distribution measurements. TPC-only tracks can be constrained to the primary vertex
(reconstructed also using the ITS information) to provide better momentum resolution.

The data used for this analysis were collected in 2010, during the first Pb–Pb run at the LHC, at a center-
of-mass energy per nucleon

√
sNN = 2.76 TeV. The hadronic interaction rate was of the order of 100 Hz,

low enough to avoid any space charge distortion effects in the TPC [27]. The trigger was provided by the
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V0 detector [28], a pair of forward scintillator hodoscopesplaced on either side of the interaction region,
covering the pseudorapidity regions 2.8 < η < 5.1 (V0A) and−3.7 < η < −1.7 (V0C). Events were
requested to have a signal in both sides of the V0, selecting roughly 0–90% most central collisions [29].
The V0 measures a signal whose average amplitude is proportional to the multiplicity of charged parti-
cles. The V0 acceptance times detection efficiency is approximately 90% and flat as a function of the
particle pT, with only a small reduction to about 85% forpT < 300 MeV/c. Events are further selected
offline using the timing information from the V0 and from a setof two forward Zero Degree Calorimeters
(ZDCs), in order to reject contamination from beam-inducedbackgrounds (see [29, 30, 31] for a detailed
discussion). After all selections, the event sample used inthe analysis consists of about 16 million events.

3 Analysis technique

3.1 Centrality and the event shape selection

The events which pass the basic selection described in Sect.2 are divided in centrality classes based
on the signal amplitude (proportional to the charged particle multiplicity) measured in the V0 detector,
as described in [29]. Events in each centrality class are further subdivided into groups with different
average elliptic event shapes based on the magnitude of the second order reduced flow vectorq2 [22]
given as

q2 =
|QQQ2|√

M
, (1)

whereM is the multiplicity and|QQQ2|=
√

Q2
2,x+Q2

2,y is the magnitude of the second order flow vector.

In this paper, the flow vectorQQQ2 is calculated using the TPC or V0 detectors. In the TPC, tracks in the
range 0.2< pT < 20 GeV/c and|η |< 0.4 (to avoid an overlap with theη region used for thev2 andpT

distribution measurements) are used to measure

Q2,x =
M

∑
i=1

cos2ϕi , Q2,y =
M

∑
i=1

sin2ϕi , (2)

whereϕi is the azimuthal angle of thei-th particle andM is the number of tracks in an event.

In the forward rapidity region the V0 is used. This detector segmented into four rings, each consisting of
8 azimuthal sectors, the flow vector is hence calculated as

Q2,x =
32

∑
i=1

wi cos2ϕi , Q2,y =
32

∑
i=1

wi sin2ϕi , M =
32

∑
i=1

wi, (3)

where the sum runs over all 32 channels,ϕi is the angle of the center of the sector containing channeli,
wi is the amplitude measured in channeli andM is in this case the sum of the amplitudes measured in
each channel.

The discriminating power ofq2 depends on the magnitude of elliptic flow as well as on the track multi-
plicity used in theq2 calculation and on the performance of the detector, including the angular resolution
or the linearity of the response to the charged particle multiplicity. The good resolution of the TPC and
the large multiplicity at midrapidity are used to maximize the selectivity onq2. However, the ALICE
central barrel acceptance enables only limited separationin pseudorapidity between the region used to
calculateq2 and the region used to calculate the observables (|∆η |= 0.1). This separation is introduced
in order to suppress unwanted non-flow correlations, which typicaly involve only a few particles and
are in general short-range. In order to further assess the contribution of non-flow correlations, the flow
vector is also calculated using the V0 detectors. This leadsto a separation of more than one unit in
pseudorapidity between the two regions.
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Fig. 1: (Color online) Distributions ofqTPC
2 (top) andqV0C

2 (bottom) as a function of centrality (left) and projections
for two centrality classes, 0–1% and 30–31% (right). In eachof the left panels the solid curve shows the average
q2 as a function of centrality, while the dashed and the dotted curves indicate the top 10% and the bottom 10%,
respectively.

In absence of correlations, the average length ofQQQ2 grows as
√

M [22]: q2 is introduced to remove this
trivial part of the multiplicity dependence. In case of non-zero correlations (due to either collective flow
or non-flow correlations),q2 depends on multiplicity and on the strength of the flow as [32,22]

〈

q2
2

〉

≃ 1+ 〈(M−1)〉
〈(

v2
2+δ2

)〉

, (4)

where the parameterδ2 accounts for non-flow correlations, and the angular brackets denote the average
over all events.

In the case when the multiplicity is measured via the signal amplitude in the V0 detector, the first term
in Eq. 4 (unity) has to be substituted by〈e2

i 〉/〈ei〉2, whereei is the energy deposition of a single particle
i. The fluctuations inei lead to an increase in the flow vector length and reduce the corresponding event
plane resolution.
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Theq2 distribution measured with the TPC (qTPC
2 ) and V0C (qV0C

2 ) is shown in Fig. 1 as a function of
centrality, and in two narrow centrality classes, 0–1% and 30–31%. As can be seen,q2 reaches values
twice as large as the mean value, as expected in case of large initial state fluctuations [20]. TheqV0C

2
is larger thanqTPC

2 , as the former is measured in a larger pseudorapidity window(integrating a larger
multiplicity) and is sensitive to the fluctuations inei . Note also that the selectivity (discrimination power)
of the two selection cuts is in principle different, due to the different detector resolution, and, in the case
of V0C, smallerv2 value at forwardη , fluctuations inei and large contribution of secondary particles.

In the present analysis, the effect of the event shape engineering onv2 and pT distributions is studied.
The average flow and particle spectra are measured in the pseudorapidity range 0.5< |η |< 0.8 in order
to avoid overlap with the region used to calculateqTPC

2 . The V0C selection is used to estimate the
contribution of non-flow correlations to the event-shape selection, since it provides a largeη gap. As
a further crosscheck, the analysis was also repeated using the V0A detector. The results obtained with
V0A and V0C show a qualitative agreement with a better selectivity when the V0C is used (mostly due
to the larger multiplicity in the acceptance of this detector and to theη dependence of the elliptic flow).
We therefore report the results for events selected usingqTPC

2 andqV0C
2 in this paper.

Due to the limited statistics, the analysis has to be performed in relatively wide centrality classes (∼ 10%).
The length ofq2 changes within such large centrality intervals (Fig. 1), and a cut at a fixed value ofq2

would introduce a dependence on the multiplicity that wouldobscure the effect of the event-shape se-
lection. Theq2 selection is therefore evaluated in narrow (1%-wide) centrality classes. The results
presented in the next sections are obtained in two event-shape classes, corresponding to the 10% of the
events having the top (bottom) value of theq2 (estimated in the narrow centrality classes). In the fol-
lowing, we refer to these two classes as “large−q2” (90-100%) and “small−q2” (0-10%) or, generically,
as ESE-selected events. Conversely, we refer to the totality of data within a given centrality class as the
“unbiased” sample.

The correlation betweenqTPC
2 andqV0C

2 is illustrated for events in the 30-31% centrality class in Fig. 2.
The left (right) panel shows the distribution ofq2 measured with the TPC (V0C) for all events and for
events in the large−q2 and small−q2 classes, selected with the V0C (TPC). The averageq2 changes by
about 18% and 14% in the large−q2 and small−q2 samples respectively. In order to control the effect
of fluctuations in a given detector the detailed comparison of the results obtained withqTPC

2 andqV0C
2 is
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crucial, as discussed in detail below. In order to disentangle the effect of theη gap and of theq2 cut, the
selection onqTPC

2 is also adjusted such that the average flow measured at mid-rapidity is similar to the
one in the large−q2 sample (Sect. 4).

The ESE becomes less selective in peripheral events regardless of the detector used to computeq2, due
to the low multiplicity. This limits the present analysis tothe 60% most central events.

Space charge distortion effects in the TPC, which accumulate over many events could, in principle, bias
theq2 selection. In order to check for this and other possible instrumental effects it was verified that the
results are not sensitive to the instantaneous luminosity.

3.2 Elliptic flow measurement

The elliptic flow,v2, is measured in the pseudorapidity range 0.5 < |η | < 0.8 using the Scalar Product
(SP) method [22], according to:

v2{SP}= 〈 uuu2,kQQQ∗
2/M〉

√

QQQA
2QQQB∗

2 /MAMB
(5)

whereuuu2,k=exp(i2ϕk) is the particle’s unit flow vector,ϕk is the azimuthal angle of thek-th particle of
interest,QQQ2 is the flow vector andM is the multiplicity. The full event is divided in two independent
sub-events, labeled asA andB, covering two different pseudorapidity ranges, 0.5< η < 0.8 and−0.8<
η <−0.5. The particle’s unit flow vectoruuu2,k is evaluated in the sub-eventA while the flow vectorQQQ2 and
the multiplcityM in the sub-eventB and vice-versa, ensuring a pseudorapidity gap of|∆η |> 1 between
the particle of interest and the reference charged particles, which suppresses the non-flow contribution in
the calculation ofv2{SP}. A flat acceptance in azimuth is achieved in this analysis selecting TPC-only
tracks, constrained to the primary vertex. Tracks are required to have at least 70 clusters and a〈χ2〉 ≤ 4
per TPC cluster (two degrees of freedom). Tracks with a transverse distance of closest approach to the
vertex (computed before constraining tracks to the primaryvertex) DCAxy > 2.4 cm or a longitudinal
distance of closest approach DCAz > 3.2 cm are rejected to reduce the contamination from secondary
tracks. The effect of secondary particles is corrected applying the same analysis procedure to Monte
Carlo events, simulated with the AMPT event generator [33] and propagated through a GEANT3 [34]
model of the detector. Thev2{SP} computed using reconstructed tracks is then compared with the one
computed with generated primary particles, and the difference (< 5%) is used as a correction factor.

The uncertainty on the tracking efficiency was assessed withdifferent track samples and selections:
using a set of hybrid tracks, built from a combination of global and TPC only tracks to obtain a uniform
azimuthal acceptance [35], using TPC only tracks not constrained to the primary vertex, varying the
minimum number of TPC clusters required in the analysis from70 to 50 (Track reconstructionin Tab. 1
and 2) and weighting each track by the inverse of the (pT-dependent) efficiency (Tracking efficiency).

The procedure used to estimate the centrality percentiles leads to a∼1% uncertainty in the definition of
the centrality classes [29]. In order to propagate this uncertainty to the results presented in this paper, the
measurement is repeated displacing the centrality percentile by 1%. For instance, the analysis in the 30-
40% centrality class is repeated for the selection 30.3-40.4% (Centrality resolution). Moreover, tracks
reconstructed at midrapidity (instead of the V0 signal) areused as the centrality estimator (Centrality
estimator).

The correction for the effect of secondary particles mentioned above is strongly model dependent, there-
fore the difference between thev2 estimated using generated AMPT particles and reconstructed tracks
was used to estimate the corresponding systematic uncertainty, ∼ 3.5% (0.7%) atpT = 0.2 (1.5) GeV/c
(Secondary particles).

Moreover, the following systematic checks were considered: the dependence on the magnetic field con-
figuration was studied analyzing separately samples of events collected with different polarities of the
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Effect v2 v2 large−q2 v2 small−q2

Track reconstruction 3.1% (0-20%) 3.1% (0-20%) 3.1% (0-20%)
2.7% (20-60%) 2.7% (20-60%) 2.7% (20-60%)
(pT=0.2 GeV/c) (pT=0.2 GeV/c) (pT=0.2 GeV/c)
0.08% (0-20%) 0.08% (0-20%) 0.08% (0-20%)
0.02% (20-60%) 0.02% (20-60%) 0.02% (20-60%)
(pT=1.5 GeV/c) (pT=1.5 GeV/c) (pT=1.5 GeV/c)

Tracking efficiency 0.07% 0.35% 0.14 %
Centrality resolution 0.21% 0.35% 0.35%
Centrality estimator 0.57% 0.49% 0.57%
Secondary particles 3.56% 3.56% 3.56%

(pT = 0.2 GeV/c) (pT = 0.2 GeV/c) (pT = 0.2 GeV/c)
0.8% 0.8% 0.8%

(pT = 1.5 GeV/c) (pT = 1.5 GeV/c) (pT = 1.5 GeV/c)
Magnetic field NS NS NS

Charge NS NS NS
Vertex NS NS NS

Table 1: Summary of systematic errors onv2{SP} measurement. NS = not statistically significant.

Effect v2 large−q2/unbiased v2 small−q2/unbiased

Track reconstruction 0.14% 0.14%
Tracking efficiency 0.35 % 0.21%
Centrality resolution 0.14% 0.21%
Centrality estimator 0.14% 0.07%
Secondary particles 0.07% 0.35%

Magnetic Field NS NS
Charge NS NS
Vertex NS NS

Table 2: Summary of systematic errors on thev2{SP} ratios. NS = not statistically significant.

magnetic field (Magnetic field), analyzing positive and negative particles separately (charge)and analyz-
ing samples of tracks produced at different vertex positions: −10< zvtx < 0 cm and 0< zvtx < 10 cm
(Vertex). These effects are found to be not significant.

The systematic uncertainties in thev2 measurements and in the ratios ofv2 in ESE-selected over unbiased
events are summarized in Tab. 1 and 2. Only the checks and variations which are found to be statistically
significant are considered in the systematic uncertainties[36]. Whenever thepT dependence of the
uncertainty is not negligible, values for characteristicpT are given in the tables.

3.3 Transverse momentum distribution measurement

The measurement of thepT distributions uses global tracks, which provide good resolution on DCAxy

(Sect. 2), and hence good separation of primary and secondary particles. The track selection requires at
least 70 clusters in the TPC and at least 2 points in the ITS, out of which at least one must be in the first
two layers, to improve the DCAxy resolution. ApT-dependent cut on the DCAxy, corresponding to 7 times
the experimental resolution on DCAxy, is applied to reduce the contamination from secondary particles.
Tracks with aχ2 per point larger than 36 in the ITS and larger than 4 in the TPC are rejected. Finally,
to further reduce the contamination from fake tracks, a consistency cut between the track parameters of
TPC and global tracks was applied. For each reconstructed TPC track, theχ2-difference between the
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Effect Nch π± K± p and p̄

Track reconstruction < 0.035% 0.07% 0.07% 0.07%
Tracking efficiency 0.21% 0.21% 0.21% 0.21%
Centrality resolution 0.07% (pT > 1.5 GeV/c) 0.07% (pT > 1.5 GeV/c) 0.14% 0.14%
Centrality estimator 0.35% 0.35% 0.35% 0.35%

PID - 0.07% (pT > 1.5 GeV/c) 0.07% 0.07%
Secondary particles < 0.035% < 0.035% < 0.035% 0.07%

Normalization 1.1% 1.1% 1.1% 1.1%
Magnetic field NS NS NS NS

Charge < 0.035% < 0.035% < 0.035% < 0.035%
Vertex 0.07% 0.07% 0.07% 0.07%

Table 3: Summary of systematic errors for the ratio ofpT distributions between large-q2 and unbiased events. NS
= not statistically significant.

Effect Nch π± K± p and p̄

Track reconstruction < 0.035% 0.07% 0.07% 0.07%
Tracking efficiency 0.28% 0.28% 0.28% 0.28%
Centrality resolution 0.07% (pT > 1.5 GeV/c) 0.07% (pT > 1.5 GeV/c) 0.14% 0.14%
Centrality estimator 0.35% 0.35% 0.35% 0.35%

PID - 0.07% (pT > 1.5 GeV/c) 0.07% 0.07%
Secondary particles < 0.035% < 0.035% < 0.035% 0.07%

Normalization 0.6% 0.6% 0.6% 0.6%
Magnetic field NS NS NS NS

Charge < 0.035% < 0.035% < 0.035% < 0.035%
Vertex 0.07% 0.07% 0.07% 0.07%

Table 4: Summary of systematic errors for the ratio ofpT distributions between small-q2 and unbiased events. NS
= not statistically significant.

track parameters computed using only the TPC information constrained to the vertex and the associated
global track is required to be less than 36 [37]. Charged tracks are studied in the pseudorapidity window
0.5< |η |< 0.8, to avoid an overlap with theqTPC

2 calculation.

Particles are identified using the specific energy loss dE/dx in the TPC and their arrival time in the TOF.
The technique is similar to the one presented in [15]. A trackis identified as either a pion, a kaon or
a proton based on the difference, in the detector resolutionunits, from the expected energy loss and/or
time of flight nσ i

PID (with i being the particle identity under study). BelowpT = 0.5 GeV/c, only the
TPC information is used (nσ i

PID = nσ i
TPC). For largerpT, the TPC and TOF information is combined

using a geometrical mean:nσ i
PID =

√

(nσ i
TPC)

2+(nσ i
TOF)

2. Tracks are required to be within 3σPID of

the expected value to be identified asπ±, K± or p (p). In the region where the 3σPID identification
bands of two species overlap, the identity corresponding tothe smallernσPID is assigned. This technique
gives a good track-by-track identification in the followingpT ranges: 0.2 < pT < 4 GeV/c for π±,
0.3< pT < 3.2 GeV/c for K±, 0.5< pT < 4 GeV/c for p (p). The misidentification of tracks is below
4% for pions, 25% for kaons and 10% for protons in those ranges. Further discussion on the ALICE
Particle Identification (PID) performance can be found in [26, 38]. The results for identified particles
are provided in the pseudorapidity range 0.5 < |η | < 0.8. However, in the case of theqV0C

2 selection
the results were also studied at mid-rapidity|y| < 0.5. Results for positive and negative particles are
consistent. In the following, “pions”, “kaons” and “protons”, as well as the symbols “π”, “K” and “p”,
refer to the sum of particles and antiparticles.
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The results for the spectra in ESE-selected events are presented in terms of ratios between the distribu-
tions measured in the large−q2 (small−q2) samples and the unbiased sample. The unbiased spectra have
already been reported in [37, 38]. Most of the corrections (and uncertainties) cancel out in these ratios,
allowing for a precise determination of the effect due to theevent-shape selection, as discussed in detail
below. The uncertainties can mostly arise due to effects that depend on the local track density, which are
found to be small [39].

The systematic uncertainties are summarized in Tab. 3 and Tab. 4. As mentioned before, only the checks
and variations which are found to be statistically significant are considered in the systematic uncertain-
ties [36].

The systematic uncertainty related to the tracking is estimated varying the track selection cuts. Instead of
the standard TPC cluster cut, at least 120 (out of 159) pad-rows hits in the TPC and a fraction of shared
clusters in the TPC< 0.4, are required (Track reconstructionin Tab. 3 and 4).

The possible effect of a track-density-dependent efficiency (which would influence in a different way
events with the large− and small−q2 selection) is investigated using simulations based on the AMPT
event generator [33] and a parametric event generator tunedto reproduce the ALICE spectra andv2 mea-
surements [39]. This effect leads to an uncorrelated systematic error of about 0.2% and a normalization
error of 0.4% (Tracking efficiency).

The uncertainty on the centrality is estimated varying the definitions of centrality classes by 1% and
using tracks as the centrality estimator. These checks leadto an uncorrelated uncertainty of about 0.1%
and 0.35%, respectively and a normalization uncertainty below 1% in the ratios of spectra (Centrality
resolutionandCentrality estimator).

The systematic effect related to the particle identification is studied performing several variations to the
PID approach described above. ThenσPID cut is varied between 2 and 4. Alternatively, if a track is
consistent with more than one particle assignment within the nσPID cut, double counting is allowed. As
compared to the standard strategy where only the identity closest to the measurednσPID is selected, this
approach leads to a slightly larger contamination from misidentified tracks, but also to a larger efficiency.
Finally, an exclusivenσPID strategy was used, which drastically reduces misidentification: a particle is
only accepted if it is compatible with only one mass hypothesis at 3σPID. As a further cross-check, a
Bayesian approach [26] was also considered. This method allows for better control of contamination at
high pT. Overall, the uncertainty related to the particle identification strategy is less than 0.1% (PID).

The effect of secondary particles depends on thepT distribution of weakly-decaying primary particles,
and could be different for the large− and small−q2 samples. This effect is estimated to be at most
∼ 0.1% for protons with the TPC ESE selection and negligible in all other cases (Secondary particles).

Possible effects related to the magnetic field and to the charge state are addressed studying separately
events collected with different magnet polarities (Magnetic field) and different charges (Charge), as in the
case of thev2{SP} measurement. Particles produced at different longitudinal position cross a different
portion of the detector, with different reconstruction efficiency. The samples of events produced with a
negative (−10< zvtx < 0 cm) and positive (0< zvtx < 10 cm) longitudinal vertex coordinate with respect
to the nominal interaction point were studied separately (Vertex).

4 Results

4.1 Charged particle elliptic flow

The event-shape selection is studied in Fig. 3, where thev2{SP} as a function ofpT is reported for the
unbiased and ESE-selected samples, with both theqTPC

2 (|η |< 0.4) andqV0C
2 (−3.7< η <−1.7) selec-

tions in different centrality classes. Figure 4 shows the ratio between thev2 measured with the large−q2
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Fig. 3: (Color online) Measurement ofv2{SP} as a function ofpT in different centrality classes for the unbiased,
the large−q2 and the small−q2 samples. Only statistical uncertainties are plotted (systematic uncertainties are
smaller than the markers).
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uncertainties are plotted (systematic uncertainties are smaller than the markers).
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ratios to the unbiased sample. Only statistical uncertainties are plotted (systematic uncertainties are smaller than
the markers).

(small−q2) selection and the unbiased sample. Selecting the 10% highest (lowest)qTPC
2 samples leads

to a change of 30-50% in thev2{SP} measured, depending on centrality. The change is smaller (∼ 10-
25%) in the case ofqV0C

2 -based selection, as compared to theqTPC
2 case. As already indirectly inferred

from the difference between 2nd and 4th order flow cumulantsv2{2} andv2{4} in [12], the elliptic flow
response of the system to geometry fluctuations is almost independent ofpT. For all centralities, the
change observed in Fig. 4 depends indeed weakly onpT, up to at least 4-5 GeV/c. This indicates that a
cut onq2 selects a global property of the event, likely related to theinitial shape in the overlap region.
The only exception to the previous observation is the 0-5% centrality class, where for theqTPC

2 selection
an increasing trend withpT is observed. In this centrality class the mean value ofv2 is small, due to
the almost isotropic shape in the initial state. Moreover, relative flow fluctuations are large in central
collisions, with apT dependence similar to the one shown in Fig. 4 [12]. The analysis of thepT spectra
presented in Section 4.2 gives additional insight into the trend observed in Figure 4.

For pT & 4− 5 GeV/c, the ratio ESE-selected/unbiasedv2{SP} increases for the large−q2 selection.
This trend is more pronounced for theqTPC

2 selection and for the most central and the most peripheral
classes. A fit with a constant over the fullpT range yieldsχ2 per degree of freedom values in the range
2-6 (depending on centrality) for theqTPC

2 selection and< 2 for theqV0C
2 selection. Fitting the ranges

pT < 5 GeV/c and pT > 5 GeV/c with two different constants indicates an increase for the large−q2

selection of order 5% and 10% for theqV0C
2 andqTPC

2 selections, respectively. This difference could be
due to a small non-flow-induced bias. At highpT thev2 is believed to be determined by the path-length
dependence of parton energy loss [12].

The difference between theqTPC
2 andqV0C

2 can be due to the different selectivity (see Sect. 3.1), but also to
a different contribution of non-flow correlations between theq2 and thev2 measurements. Replacing the
qTPC

2 selection with theqV0C
2 one changes both non-flow and selectivity at the same time. Todisentangle

these two contributions, the selectivity of theqTPC
2 selection was artificially reduced. This is achieved
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Fig. 6: (Color online) Centrality dependence of the averagev2{SP} variation in the large−q2 and small−q2 sam-
ples.

either relaxing the selection itself or rejecting a random fraction of tracks for the computation ofqTPC
2 ,

while still selecting 10% of the events. It is found that selecting the class 65-100% for the large−q2

sample (0-55% for the small−q2 sample) withqTPC
2 , or alternatively rejecting 70% of the TPC tracks,

leads to an average variation of thev2{SP} in the range 0.2 < pT < 4 GeV/c comparable to the one
obtained with the standard 10%qV0C

2 selection. The results are shown in Fig. 5 for the centralityclass
30–40%. Not only is it possible to find a cut which leads to the same average variation inv2{SP},
but the pT dependence is very similar in both cases. Rejecting randomly 70% of the tracks changes
the selectivity ofqTPC

2 without affecting non-flow correlations between theqTPC
2 selection andv2{SP}

measurement (as theη gap is not varied). Also in this case, it is found that the effect of theq2 selection
does not depend onpT. A similar result, with the same value of the relaxed cut or fraction of rejected
tracks, is found for the centrality interval 10–50%. Moreover, as it will be discussed in the next section,
the same relaxed selections lead to the same effect on thepT distributions.

These checks demonstrate that the selectivity of the cut is the main reason for the difference between the
TPC and V0C selections. Due to the largeη gap, the non-flow contribution is expected to be negligible
in the case of theqV0C

2 selection. The agreement observed in Fig. 5 indicates that,in the centrality classes
10–50%, this is also the case for theqTPC

2 selection in the rangepT < 5 GeV/c, a transverse momentum
region dominated by hydrodynamic effects [38]. It is worth noticing that the ATLAS Collaboration
measured a modification of the elliptic flow of∼ 35%, nearly independent ofpT up to∼ 12 GeV/c in
the 20–30% centrality class, while measuringv2 andq2 with a pseudorapidity gap of 0.7 units [23]. The
increasing trend in the centrality class 0–5% is also observed in [23]1.

To study the centrality and theq2 dependence ofv2{SP} in ESE-selected event classes, we quantified

1See auxiliary figures available on the ATLAS Collaboration web page
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2014-03/
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the average change for each centrality class fitting the ratios in the range 0.2 < pT < 4 GeV/c with a
constant2. The centrality dependence of the average change in the large−q2 and small−q2 selection is
reported in Fig. 6. The trend obtained with theqTPC

2 andqV0C
2 selections is very similar, except for the

most central class 0–5%, where the average is influenced by the non-flat trend seen in Fig. 4. This once
again reinforces the conclusion that the non-flow contamination is small also in the TPC selection case
for the bulk of particles. The relative importance of non-flow changes with centrality. A large non-flow
bias would therefore introduce a centrality dependence in the relative trend between theqTPC

2 andqV0C
2

selections, which is not observed. The dependence of thev2{SP} variation onqTPC
2 andqV0C

2 is shown
for the centrality classes 5-10%, 30-40% and 50-60% in Fig. 7. The left panel shows the absoluteq2

2The result of the fit is numerically equivalent to the direct computation of the integratedv2 in the range 0.2 < pT <
20 GeV/c.
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values on the x axis, while the right panel depicts the self-normalized values, defined as the averageq2

value in ESE-selected events over the averageq2 values for all events in a given centrality class. The
V0C selection spans a larger range but the TPC is more selective, as is clearly seen from the different
slope of the TPC and V0C curves. In both cases the averageq2 reaches values twice as large compared
to those in the unbiased sample, (Fig. 7, right).

In summary, the observations reported in this section indicate that the ESE selects a global property of
the collisions, as suggested by the flat modification in thev2 as a function ofpT. TheqTPC

2 leads to a
change twice as large than the correspondingqV0C

2 selection. The difference between the two seems to
be mostly due to the different discriminating power rather than to non-flow effects.
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unbiased sample. Comparison between the effect of the event-shape selection obtained with the standard V0C and
with the tuned TPC selections (see text for details), in the centrality class 30-40%.

4.2 Transverse momentum distributions

In order to study the interplay between the initial configuration of the system and the dynamics of the
expansion of the fireball, the effect of the ESE selection on the single particlepT distribution is reported
in Fig. 8, for theqTPC

2 andqV0C
2 selections. As discussed in Sect. 3.1 the reduced flow vectoris calculated

in the TPC detector in the pseudorapidity range|η |< 0.4. In order to avoid overlap between theqTPC
2 and

pT distribution measurements, only the region 0.5 < |η | < 0.8 is used to measure thepT distributions.
This ensures at least 0.1 units of pseudorapidity separation between theq2 and spectra measurements,
thus suppressing the effect of short-range correlations. For consistency with the TPC analysis, the same
pseudorapidity range is used in the case of the V0C selection. In theqV0C

2 case, it is also possible to study
the spectra at mid-rapidity|η | < 0.8 without any overlap with theq2 measurement. The results agree
within uncertainty with those in 0.5< |η |< 0.8.

The spectra in the large−q2 sample are harder than those in the small−q2 one. The ratio to the unbiased
spectra reaches a maximum aroundpT = 4 GeV/c, and then stays approximately constant within large
uncertainties.

The effect of the selection is more pronounced in semi-central events (∼ 30–50%), and decreases both
towards more central and more peripheral collisions. This can be understood as due to the fact that theq2
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unbiased sample for theqTPC
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2 (bottom) selections.

spans a larger dynamic range in semi-central collisions (Fig. 1 and Fig. 7). In the most peripheral central-
ity class studied in this paper (50–60%) the effect of the TPC-based selection is still very pronounced,
while theqV0C

2 selection is less effective. This may indicate a small contamination from non-flow ef-
fects in the most peripheral bin, consistent with observations discussed for thev2{SP} measurement in
Sect. 4.1. In the most central class (0-5%) the modification of the spectrum is very small. This suggests
that the trend observed in the same centrality class in Fig. 4is likely to be dominated by flow fluctuations
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rather than non-flow contributions.

As in the previous section, we disentangle the effect of non-flow andq2 selectivity either relaxing the
qTPC

2 selection or randomly rejecting a fraction of the tracks. The relaxed cut and the fraction of rejected
tracks tuned to reproduce thev2 variation in 0.2< pT < 4 GeV/c in Sect. 4.1 are used. Figure 9 shows
that these selections yield results compatible with the standardqV0C

2 selection. A similar result (with the
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same relaxed cuts or fraction of rejected tracks) is found for all centralities up to∼ 50%, after which
non-flow effects seem to become relevant.

As discussed in Sect. 4.1, we conclude that the effect of non-flow is small and that the main factor driving
these observations is the averagev2 at mid-rapidity.

The modification on the spectra of identifiedπ, K, and p is reported in Fig. 10 and Fig. 11 for differ-
ent centrality classes. The same pattern measured in the case of non-identified hadrons is observed.
Moreover, a clear mass ordering is seen: the modification is more pronounced for heavier particles. Con-
versely, the spectra in the small−q2 sample are softer. In the case of the V0C selection the analysis was
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also repeated in the region|y|< 0.5, yielding consistent results.

These observations suggest that the spectra in the large−q2 (small−q2) sample are affected by a larger
(smaller) radial flow push. This hypothesis was tested with ablast-wave [40] study. A ratio of two
blast-wave functions was used to fit the spectra ratios shownin Fig. 10 and Fig. 11. The parameters were
initially fixed to the values from [38], where they were tunedto describe the inclusive spectra of pions,
kaons and protons. Then, the〈βT〉 parameter of the numerator function was allowed to change (while
keeping the overall integral of the function constant). Thefit was performed as in [38] in the transverse
momentum ranges 0.5-1 GeV/c, 0.2-1.5 GeV/c, 0.3-3 GeV/c for π, K, p, respectively. The agreement
with the data is good, also outside the range used to determine the parameters, up topT ∼ 3GeV/c. The
fits yield the following result for the difference∆〈βT〉 between the〈βT〉 parameter of the numerator and
denominator function:∆〈βT〉 = (0.41±0.03)% (large−q2) and∆〈βT〉 = (−0.22±0.03)% (small−q2)
for the centrality class 30-40%, as shown in Fig. 12.

5 Discussion

In this paper the first application of the Event Shape Engineering (ESE) [20] to the analysis of ALICE
data was presented.

The results on thev2{SP} measurement suggest that the ESE technique selects a globalproperty of the
collision, likely related to the eccentricity in the initial state. The measurement ofpT spectra indicates
that events with larger eccentricity show an increased radial flow. A correlation between elliptic and
radial flow could be introduced either at the initial stage, due to the specific fluctuation patterns in the
energy deposition, or during the hydrodynamic evolution ofthe system, due to an interplay of bulk and
shear viscosity [7].

A Glauber Monte Carlo simulation was performed to estimate the possible correlation between the ini-
tial eccentricity and azimuthally-averaged pressure gradients. In the model, the multiplicity of charged
particles in the acceptance of the V0 detector, used to determine the centrality classes, is computed
following [29]. A “number of ancestors”Nancestorsis derived from the number of participant nucleons
(Npart) and binary collisions (Ncoll) as

Nancestors= f Npart +(1− f )Ncoll. (6)

Each ancestor is assumed to produce particles following a negative binomial distribution with parameters
taken from [29].

The participant density, defined following [41, 42, 9, 43] asNpart/S, is used as a proxy for the magnitude
of the pressure gradients. The average cross-sectional areaSand participant eccentricityε are computed
as

S= 4πσx′σy′ = 4π
√

σ2
x σ2

y −σ2
xy, (7)

ε =
σ2

y′ −σ2
x′

σ2
x′ +σ2

y′
=

√

(σ2
y −σ2

x )
2+4σ2

xy

σ2
x +σ2

y
, (8)

where
σ2

x = 〈x2〉− 〈x〉2, σ2
y = 〈y2〉− 〈y〉2, σxy = 〈xy〉− 〈x〉〈y〉. (9)

The unprimed coordinates are given in the fixed laboratory coordinate frame. Primed coordinates,x′ and
y′, are calculated in the so-called participant coordinate system, rotated with respect to the laboratory
coordinate frame such that the minor symmetry axis of the participant nucleon distribution coincides
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Fig. 13: (Color online) Participant density as a function of the participant eccentricity estimated in a Glauber
Monte Carlo model for central (top) and semi-central (bottom) collisions.

with the x′ direction. The normalization of the area is chosen such thatfor a Gaussian distribution the
averagedensity coincides withNpart/S.

Two narrow centrality classes, selected based on the simulated charged particle multiplicity, roughly cor-
responding to 0-2% (central) and 30-32% (semi-central), are studied in Fig. 13. The observed correlation
between the density and the participant eccentricity is reminiscent of the correlation between radial flow
and event shape measured in this paper. The average density in events with the 10% largestε is about 1%
(7%) larger than in events with the smallestε for central (semi-central) collisions, qualitatively consistent
with what is observed in Fig. 10 and Fig. 11, where the effect of the ESE selection is much stronger for
semi-central collisions. This reinforces our conclusion that ESE is an effective tool to select the initial
shape and density, thereby opening the possibility of further studies.

A quantitative comparison would require a full hydrodynamical calculation. The correlation can in fact
be modified by the transport in the hydrodynamic phase. In particular, it was shown [7, 44] that in a
system with a finite shear viscosity the flow coefficients, obtained for a given set of initial eccentricities,
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(full markers) are compared with AMPT Monte Carlo model (bands). Only statistical uncertainties are plotted
(systematic uncertainties are smaller than the markers).

are reduced as compared to the ideal hydrodynamics case. At the same time, shear viscosity increases
the radial flow. In principle, bulk viscosity reduces the radial flow, reducing the correlation observed
in this paper, but the latter effect was estimated to be negligible [44]. Therefore, the measurement we
present in this paper is sensitive to the interplay of initial conditions and transport coefficients in the
hydrodynamic phase. As such, it poses stringent constraints on hydrodynamic calculations, and it could
allow the extraction of the value of average shear viscosityat the LHC.

A study of the relation of the fluctuation in the initial size to the spectra was performed in [45, 46]
with a full hydrodynamic simulation. It was shown that the event-by-event fluctuations in the Glauber
initial conditions lead to fluctuations in the initial size of the system that reflect in fluctuations of the
radial flow and hence〈pT〉. It is found that the relative〈pT〉 fluctuations computed with Glauber initial
conditions overestimate the data, indicating a strong sensitivity of event-by-event measurements on the
initial conditions model. It is also shown that the〈pT〉 fluctuations are not sensitive to the shear viscosity.
The study in [45, 46] (fluctuations in〈pT〉), however, does not address the relation between the elliptic
and radial flow. It may be expected that the present measurement will also be sensitive to the transport
coefficient of the medium.

In a recent series of theoretical studies [47, 48, 49], it wassuggested to use the Principal Component
Analysis to study flow fluctuations. It was argued that most ofthe current methods to study flow do
not fully capture the complexity of the initial state. Indeed, the PCA studies revealed the presence of
sub-leading flow components (arising from radial geometry excitations), which break the factorization
of flow harmonics [47, 48], In particular, in [49] it is arguedthat the sub-leading component ofv2 reflects
a non linear mixing with radial flow, which could address the same physics as reported in this paper.

A study of the relation of the fluctuation in the initial size to the spectra was performed in [45, 46]
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with a full hydrodynamic simulation. It was shown that the event-by-event fluctuations in the Glauber
initial conditions lead to fluctuations in the initial size of the system that reflect in fluctuations of the
radial flow and hence〈pT〉. It is found that the relative〈pT〉 fluctuations computed with Glauber initial
conditions overestimate the data, indicating a strong sensitivity of event-by-event measurements on the
initial conditions model. It is also shown that the〈pT〉 fluctuations are not sensitive to the shear viscosity.
The study in [45, 46] (fluctuations in〈pT〉), however, does not address the relation between the elliptic
and radial flow. It may be expected that the present measurement will also be sensitive to the transport
coefficient of the medium.

In a recent series of theoretical studies [47, 48, 49], it wassuggested to use the Principal Component
Analysis to study flow fluctuations. It was argued that most ofthe current methods to study flow do
not fully capture the complexity of the initial state. Indeed, the PCA studies revealed the presence of
sub-leading flow components (arising from radial geometry excitations), which break the factorization
of flow harmonics [47, 48]. In particular, in [49] it is arguedthat the sub-leading component ofv2 reflects
a non linear mixing with radial flow, which could be related tothe same underlying physics phenomena
reported in this paper.

To further understand the observed effect, we studied it in AMPT, a model known to reproduce many
of the flow observables measured at the LHC [33]. This model isbased on HIJING [50] to describe
the initial conditions and on the Zhang’s parton cascade [51] to describe the partonic evolution. The
string meltingconfiguration, described in [52], is used. To assess the impact of the detector resolution
on theq2 selection, the simulated AMPT events were transported through the ALICE apparatus using
the GEANT [34] transport model. Theq2 was computed using either the reconstructed Monte Carlo
tracks (qrec

2 ) or the generated primary particles in the same kinematic range (qgen
2 ). The elliptic flow and

the transverse momentum distribution are calculated usinggenerated Monte Carlo particles. Since the
charged particle multiplicity distribution is different in AMPT and data, theq2 selection is calibrated
in the model as a function of multiplicity. The results are shown in Fig. 14 for the charged hadrons
elliptic flow and in Fig. 15 for the transverse momentum distribution of charged hadrons. Using either
qrec

2 or qgen
2 does not introduce any significant difference on the effect of the selection. This indicates

that detector resolution effects are negligible for theqTPC
2 selection. The V0 detectors, on the other hand,

have a coarser azimuthal resolution and are sensitive to fluctuations in the energy deposition of incident
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particles. However, the study with the relaxed TPC selection discussed in Sect. 4 demonstrates that the
properties of the ESE selected events are mostly determinedby the averagev2{SP} value. It is therefore
advised that in any comparison of this data to theoretical models the selection in the model is tuned as to
reproduce the average change inv2{SP} at mid-rapidity.

The pT dependence of the elliptic flow observed in data is not reproduced in AMPT (top panel). This
model reproduces however the magnitude of the modification as well as the flatness of the ratio as a
function of pT.

The effect of the ESE selection on thepT distribution of charged particles is well reproduced by AMPT
below pT = 2 GeV/c, as shown in Fig. 15. However, the magnitude of the effect at intermediatepT

(2< pT < 6 GeV/c) is underestimated in AMPT. As previously observed for thev2 measurement, a good
agreement is observed between the selection based onqgen

2 andqrec
2 .

6 Conclusions

In summary, the first application of the Event Shape Engineering (ESE) technique to Pb–Pb collisions
data measured by ALICE at

√
sNN = 2.76 TeV has been presented.

The elliptic flow at mid-rapidity is observed to increase as afunction of theq2 calculated in the central
or forward rapidity regions. The modification of thev2 coefficient as a function ofpT is nearly flat
below pT = 4 GeV/c, suggesting that this technique allows the selection of a global property of the
collision, likely related with the geometry of the participant nucleons in the initial state. In the region
abovepT > 5 GeV/c a small increase is observed within the large statistical uncertainties, possibly due
to a small non-flow contamination. In this transverse momentum range the elliptic flow is believed to be
driven by the different path-length traversed in- and out-of-plane by high-pT partons in the deconfined
medium, rather than by the hydrodynamic evolution of the system.

The pT-distributions of unidentified hadrons in thepT region (0< pT < 5 GeV/c) are harder (softer) in
event with large−q2 (small−q2) values.

Identified pions, kaons and protons show a similar behavior with a clear mass ordering in the ratio be-
tween the large−q2 and the unbiased spectra, thus suggesting this effect to be due to a stronger radial
flow in such events. Glauber Monte Carlo calculations reveala correlation between the transverse par-
ticipant density and the participant eccentricity which could be the origin of this effect. This indicates
that at least part of the correlation is generated in the initial state. However, these measurements are also
sensitive to the transport coefficients in the hydrodynamicevolution. A quantitative comparison would
require a full hydrodynamic calculation and may provide stringent constraints both on shear and bulk
viscosity.
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Y.W. Baek44 , S. Bagnasco111 , R. Bailhache53 , R. Bala90 , A. Baldisseri15 , F. Baltasar Dos Santos Pedrosa36 ,
R.C. Baral61 , A.M. Barbano111 , R. Barbera29 , F. Barile33 , G.G. Barnaföldi135 , L.S. Barnby102 , V. Barret70 ,
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D.B. Piyarathna122, M. Płoskoń74 , M. Planinic129 , J. Pluta133 , S. Pochybova135, P.L.M. Podesta-Lerma119,
M.G. Poghosyan86 ,84, B. Polichtchouk112, N. Poljak129 , W. Poonsawat114 , A. Pop78 ,
S. Porteboeuf-Houssais70 , J. Porter74 , J. Pospisil83 , S.K. Prasad4 , R. Preghenella36 ,105, F. Prino111 ,
C.A. Pruneau134, I. Pshenichnov56 , M. Puccio111 , G. Puddu25 , P. Pujahari134 , V. Punin99 , J. Putschke134 ,
H. Qvigstad22 , A. Rachevski110 , S. Raha4 , S. Rajput90 , J. Rak123 , A. Rakotozafindrabe15 , L. Ramello32 ,
F. Rami55 , R. Raniwala91 , S. Raniwala91 , S.S. Räsänen46 , B.T. Rascanu53 , D. Rathee87 , K.F. Read125 ,
J.S. Real71 , K. Redlich77 , R.J. Reed134 , A. Rehman18 , P. Reichelt53 , F. Reidt93 ,36, X. Ren7 , R. Renfordt53 ,
A.R. Reolon72 , A. Reshetin56 , F. Rettig43 , J.-P. Revol12 , K. Reygers93 , V. Riabov85 , R.A. Ricci73 , T. Richert34 ,
M. Richter22 , P. Riedler36 , W. Riegler36 , F. Riggi29 , C. Ristea62 , A. Rivetti111 , E. Rocco57 , M. Rodrı́guez
Cahuantzi2 , A. Rodriguez Manso81 , K. Røed22 , E. Rogochaya66 , D. Rohr43 , D. Röhrich18 , R. Romita124 ,
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15 Commissariat à l’Energie Atomique, IRFU, Saclay, France
16 COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
17 Departamento de Fı́sica de Partı́culas and IGFAE, Universidad de Santiago de Compostela, Santiago de

Compostela, Spain
18 Department of Physics and Technology, University of Bergen, Bergen, Norway
19 Department of Physics, Aligarh Muslim University, Aligarh, India
20 Department of Physics, Ohio State University, Columbus, Ohio, United States
21 Department of Physics, Sejong University, Seoul, South Korea
22 Department of Physics, University of Oslo, Oslo, Norway
23 Dipartimento di Elettrotecnica ed Elettronica del Politecnico, Bari, Italy
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116 Technical University of Split FESB, Split, Croatia
117 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
118 The University of Texas at Austin, Physics Department, Austin, Texas, USA
119 Universidad Autónoma de Sinaloa, Culiacán, Mexico
120 Universidade de São Paulo (USP), São Paulo, Brazil
121 Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
122 University of Houston, Houston, Texas, United States
123 University of Jyväskylä, Jyväskylä, Finland
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