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Abstract

Direct photon production at mid-rapidity in Pb-Pb collisions at
√

sNN = 2.76 TeV was studied in the
transverse momentum range 0.9< pT < 14 GeV/c. Photons were detected with the highly segmented
electromagnetic calorimeter PHOS and via conversions in the ALICE detector material with thee+e−

pair reconstructed in the central tracking system. The results of the two methods were combined and
direct photon spectra were measured for the 0–20%, 20–40%, and 40–80% centrality classes. For all
three classes, agreement was found with perturbative QCD calculations forpT & 5 GeV/c. Direct
photon spectra down topT ≈ 1 GeV/c could be extracted for the 20–40% and 0–20% centrality
classes. The significance of the direct photon signal for 0.9< pT < 2.1 GeV/c is 2.6σ for the 0–
20% class. The spectrum in thispT range and centrality class can be described by an exponential
with an inverse slope parameter of(297± 12stat± 41syst)MeV. State-of-the-art models for photon
production in heavy-ion collisions agree with the data within uncertainties.
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1 Introduction

The theory of the strong interaction, Quantum ChromoDynamics (QCD), predicts a transition from or-
dinary nuclear matter to a state where quarks and gluons are no longer confined to hadrons [1, 2]. The
creation and study of this deconfined partonic state, the Quark-Gluon Plasma (QGP), is the major objec-
tive in the experimental program of heavy-ion collisions atthe Relativistic Heavy Ion Collider (RHIC)
[3–6] and the Large Hadron Collider (LHC) [7–15].

Direct photons, defined as photons not originating from hadron decays, are a valuable tool to study de-
tails of the evolution of the medium created in heavy-ion collisions. Unlike hadrons, direct photons
are produced at all stages of the collision and escape from the hot nuclear matter basically unaffected
[16], delivering direct information on the conditions at the time of production:prompt direct photons
produced in hard scatterings of incoming partons provide information on parton distributions in nuclei;
deconfined quark-gluon matter as well as hadronic matter created in the course of the collision emitther-
mal direct photons, carrying information about the temperature, collective flow and space-time evolution
of the medium [17]. Different transverse momentum (pT) regions are dominated by photons emitted
at different stages of the collision. Prompt direct photonsfollow a power law spectrum and dominate
at high transverse momentum (pT & 5 GeV/c). At lower transverse momenta (pT . 4 GeV/c) one
expects contributions from the thermalized partonic and hadronic phases with an approximately expo-
nential spectrum [18, 19]. In addition, other direct photonproduction mechanisms, like the interaction
of hard scattered partons with the medium (”jet-photon conversion”) [20, 21], may be important for
pT . 10 GeV/c.

The direct photon spectrum at lowpT, therefore, contains information on the initial temperature and
space-time evolution of the thermalized medium created in heavy-ion collisions. The observed thermal
direct photon spectrum is a sum of contributions from all stages of the collision after thermalization,
where the earliest, hottest stage and later, cooler stages can make comparable contributions [22]. High
photon emission rates at the largest temperatures in the early stage are compensated by an expanded
space-time volume and blue-shift due to radial flow in the later stage. This complicates the interpretation
of inverse slope parameters of direct photon spectra, but a correlation between the slope and the initial
temperature still exists [23].

The first measurement of a direct photon spectrum in relativistic A-A collisions was presented by the
WA98 collaboration [24]. The direct photon yield was measured at the CERN SPS in central Pb-Pb
collisions at

√
sNN = 17.3 GeV in the range 1.5 < pT < 4 GeV/c. The signal can be interpreted either

as thermal photon radiation from a quark-gluon plasma and hadronic gas or as the effect of multiple
soft scatterings of the incoming partons without the formation of a QGP [19]. The PHENIX experiment
measured the direct photon spectrum in Au-Au collisions at

√
sNN = 200 GeV in the range 1. pT .

20 GeV/c [25, 26]. It was found that at highpT (5 . pT . 21 GeV/c) the direct photon spectrum
measured in Au-Au collisions agrees with the one measured inpp collisions at the same energy after
scaling with the number of binary nucleon-nucleon collisions (Ncoll). Scaling of high-pT direct photon
production withNcoll in Pb-Pb collisions at LHC energy was confirmed by the ATLAS [27] and CMS
[28] experiments in the measurement ofisolated photons, i.e., photons with little hadronic energy in a
cone around them, in the ranges 22< pT < 280 GeV/c and 20< pT < 80 GeV/c, respectively. The
absence of suppression of highpT isolated photons in A-A collisions with respect toNcoll scaled pp
collisions, in contrast to the observed suppression of hadrons, is consistent with the latter being due to
energy loss of hard scattered quarks and gluons in the medium.

Direct photon production at lowpT (. 3 GeV/c) in Au-Au collisions at
√

sNN = 200 GeV was studied by
the PHENIX experiment in the measurement of virtual photons(e+e− pairs from internal conversions)
[29] and with real photons [30]. A clear excess of direct photons above the expectation from scaled
pp collisions was observed. The excess was parameterized byan exponential function with inverse
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slope parametersTeff = 221±19stat±19syst MeV (virtual photon method [29]) andTeff = 239±25stat±
7syst MeV (real photon method [30]) for the 0–20% most central collisions. The measured spectrum
can be described by models assuming thermal photon emissionfrom hydrodynamically expanding hot
matter with initial temperatures in the range 300−600 MeV [31]. The measurement of a direct-photon
azimuthal anisotropy (elliptic flow), which was found to be similar in magnitude to the pion elliptic
flow at low pT in Au-Au collisions at

√
sNN = 200 GeV [32], provides a further important constraint for

models. The simultaneous description of the spectra and elliptic flow of direct photons currently poses a
challenge for hydrodynamic models [33].

In this letter, the first measurement of direct photon production for pT . 14 GeV/c in Pb-Pb collisions
at
√

sNN = 2.76 TeV is presented.

2 Detector setup

Photons were measured using two independent methods: by thePhoton Conversion Method (PCM)
and with the electromagnetic calorimeter PHOS. In the conversion method, the electron and positron
tracks from a photon conversion were measured with the InnerTracking System (ITS) and/or the Time
Projection Chamber (TPC).

The ITS [34] consists of two layers of Silicon Pixel Detectors (SPD) positioned at a radial distance of
3.9 cm and 7.6 cm, two layers of Silicon Drift Detectors (SDD)at 15.0 cm and 23.9 cm, and two layers of
Silicon Strip Detectors (SSD) at 38.0 cm and 43.0 cm. The two innermost layers cover a pseudorapidity
range of|η | < 2 and|η | < 1.4, respectively. The TPC [35] is a large (85 m3) cylindrical drift detector
filled with a Ne-CO2-N2 (90-10-5) gas mixture. It covers the pseudorapidity range|η |< 0.9 over the full
azimuthal angle with a maximum track length of 159 reconstructed space points. With the magnetic field
of B = 0.5 T, e+ ande− tracks can be reconstructed down topT ≈ 50 MeV/c, depending on the position
of the conversion point. The TPC provides particle identification via the measurement of the specific
energy loss (dE/dx) with a resolution of 5.2% in pp collisions and 6.5% in central Pb-Pb collisions [36].
The ITS and the TPC were aligned with respect to each other to the level of less than 100µm using
cosmic-ray and pp collision data [37]. Particle identification is furthermore provided by the Time-of-
Flight (TOF) detector [38] located at a radial distance of 370 < r < 399 cm. This detector consists of
Multigap Resistive Plate Chambers (MRPC) and provides timing information with an intrinsic resolution
of 50 ps.

PHOS [39] is an electromagnetic calorimeter which consistsof three modules installed at a distance of
4.6 m from the interaction point. It subtends 260◦ < ϕ < 320◦ in azimuth and|η | < 0.13 in pseudo-
rapidity. Each module consists of 3584 detector cells arranged in a matrix of 64× 56 lead tungstate
crystals each of size 2.2×2.2×18 cm3. The signal from each cell is measured by an avalanche photodi-
ode (APD) associated with a low-noise charge-sensitive preamplifier. To increase the light yield, reduce
electronic noise, and improve energy resolution, the crystals, APDs, and preamplifiers are cooled to a
temperature of−25 ◦C. The resulting energy resolution isσE/E = (1.3%/E)⊕ (3.3%/

√
E)⊕ 1.12%,

whereE is in GeV. The PHOS channels were calibrated in pp collisionsby aligning theπ0 peak position
in the two-photon invariant mass distribution.

Two scintillator hodoscopes (V0-A and V0-C) [40] subtending 2.8 < η < 5.1 and−3.7 < η < −1.7,
respectively, were used in the minimum bias trigger in the Pb–Pb run. The sum of the amplitudes of
V0-A and V0-C served as a measure of centrality in the Pb–Pb collisions.

3 Data analysis

This analysis is based on data recorded by the ALICE experiment in the first LHC heavy-ion run in the
fall of 2010. The detector readout was triggered by the minimum bias interaction trigger based on trigger
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signals from the V0-A, V0-C, and SPD detectors. The efficiency for triggering on a Pb–Pb hadronic
interaction ranged between 98.4% and 99.7%, depending on the minimum bias trigger configuration. The
events were divided into centrality classes according to the V0-A and V0-C summed amplitudes. Only
events in the centrality range 0–80% were used in this analysis. To ensure a uniform track acceptance
in pseudorapidityη , only events with a primary vertex within±10 cm from the nominal interaction
point along the beam line (z-direction) were used. After offline event selection, 13.6×106 events were
available for the PCM analysis and 17.7×106 events for the PHOS analysis.

The direct photon yield is extracted on a statistical basis from the inclusive photon spectrum by com-
paring the measured photon spectrum to the spectrum of photons from hadron decays. The yield of
π0s, which contribute about 80−85% of the decay photons (cf. Fig. 1), was measured simultaneously
with the inclusive photon yield. Besides photons fromπ0 decays, the second and third most important
contributions to the decay photon spectrum come fromη andω decays.

An excess of direct photons above the decay photon spectrum can be quantified by thepT dependent
double ratio

Rγ ≡
γincl

π0
param

/

γdecay

π0
param

=
γincl

γdecay
, (1)

whereγincl is the measured inclusive photon spectrum,π0
param a parameterization of the measuredπ0

spectrum, andγdecay the calculated decay photon spectrum. The PCM and PHOSπ0 measurements are
described in [41]. The double ratio has the advantage that some of the largest systematic uncertainties
cancel partially or completely. Using the double ratio, thedirect photon yield can be calculated from the
inclusive photon yield as

γdirect= γincl − γdecay= (1− 1
Rγ

) · γincl. (2)

The PCM and PHOS analyses were performed independently. Combined direct photon spectra were
determined based on combined double ratios and combined inclusive photon spectra. In contrast to
taking the average of the PCM and PHOS direct-photon spectra, this approach allowed us to use the
information from both measurements also when one measurement of Rγ fluctuated below unity.

In the PCM analysis, photons are reconstructed via a secondary vertex finding algorithm which provides
displaced vertices with two opposite-charge daughters. The positively and negatively charged daughter
tracks are required to contain reconstructed clusters in the TPC. Only tracks with a transverse momentum
above 50 MeV/c and a ratio of the number of reconstructed TPC clusters over the number of findable TPC
clusters (accounting for track length, spatial location and momentum) larger than 0.6 were considered.
To identify e+ and e−, the specific energy loss in the TPC [36] was required to be within a band of
[−3σ ,5σ ] around the average electron dE/dx, and be more than 3σ above the average pion dE/dx
(where the second condition is only applied for tracks withpT > 0.4 GeV/c). Tracks with an associated
signal in the TOF detector were only accepted as electron candidates if they were consistent with the
electron hypothesis within a±5σ band. The vertex finding algorithm uses the Kalman filter technique
for the decay/conversion point and four momentum determination of the neutral parent particle (V 0) [42].
V 0s result fromγ conversions but also from strange particle decays (K0

s , Λ or Λ̄). Further selection was
performed on the level of the reconstructedV 0. V 0s with a decay point with radiusr < 5 cm were rejected
to removeπ0 andη Dalitz decays. The transverse momentum componentqT = pe sinθV0,e [43] of the
electron momentum,pe, with respect to theV 0 momentum was restricted toqT < 0.05 GeV/c. Based
on the invariant mass of thee+e− pair and the pointing of theV 0 to the primary vertex, the vertex finder
calculates aχ2(γ) value which reflects the level of consistency with the hypothesis that theV 0 comes
from a photon originating from the primary vertex. A selection based on thisχ2(γ) value was used to
further reduce contamination in the photon sample. Random associations of electrons and positrons were
further reduced by making use of the small opening angle of the e+e− pair from photon conversions at
the conversion point.

4



Direct photon production in Pb-Pb ALICE Collaboration

The raw photon spectrum, constructed from the secondary vertex candidates passing the selection de-
scribed above, was corrected for the reconstruction efficiency, the acceptance and the contamination. The
detector response was simulated for Pb–Pb collisions usingHIJING [44] together with the GEANT 3.21
transport code [45]. The resulting efficiency correction isdominated by the conversion probability of
photons in the ALICE material. The integrated material budget of the beam pipe, the ITS and the TPC
for r < 1.8 m corresponds to(11.4± 0.5)% of a radiation lengthX0, resulting in a photon conversion
probability that saturates at about 8.5% forpT & 2 GeV/c [36, 42]. The photon finding efficiency for
converted photons is of the order of 50–65% over the measuredpT range for all centralities. The purity
of the photon candidate sample forpT < 3 GeV/c extracted from simulation is 98–99% in peripheral
and 91–97% in the most central collisions. Furthermore, secondary photon candidates, mainly photons
from the decayK0

s → 2π0 → 4γ , not removed by theχ2(γ) selection, were subtracted statistically based
on the measuredK0

s spectrum [46]. A correction of less than 2% for photons from pile-up collisions was
applied for the 40–80% class forpT < 2 GeV/c. At higherpT and for more central classes this correction
is negligible.

Centrality 0–20% 20–40% 40–80%
pT (GeV/c) 1.2 5.0 1.2 5.0 1.2 5.0
γinclγinclγincl yield
Track quality (A) 0.6 0.6 0.2 0.2 0.2 0.7
Electron PID (A,B) 1.5 6.9 0.9 4.8 0.7 4.0
Photon selection (A,B) 4.0 1.8 2.4 2.1 1.5 1.3
Material (C) 4.5 4.5 4.5 4.5 4.5 4.5
γincl/π0γincl/π0γincl/π0

Track quality (A) 0.7 1.7 0.8 0.4 0.6 1.3
Electron PID (A,B) 1.2 4.8 0.9 3.8 0.9 4.0
Photon selection (A,B) 3.2 3.2 3.0 1.5 2.5 2.4
π0 yield (A) 1.6 2.9 1.7 2.7 0.5 3.0
Material (C) 4.5 4.5 4.5 4.5 4.5 4.5
γdecay/π0γdecay/π0γdecay/π0

π0 spectrum (B) 0.5 1.2 0.8 1.8 0.5 3.2
η yield (C) 1.4 1.4 1.4 1.4 1.4 1.4
η shape (B) 1.6 0.5 1.2 0.2 1.0 0.2
Total Rγ 6.2 8.1 5.7 7.0 5.7 8.3
Total γincl 6.2 8.5 5.2 6.9 4.8 6.2

Table 1: Summary of the systematic uncertainties of the PCM analysisin percentage. Uncertainties are character-
ized according to three categories: point-by-point uncorrelated (A), correlated inpT with magnitude of the relative
uncertainty varying point-by-point (B), and constant fractional uncertainty (C). Items in the table with categories
(A,B) summarize sources of uncertainties which are either of type A or B.

In the PHOS analysis, clusters (each cell of the cluster musthave at least one common edge with another
cell of the cluster) were used as photon candidates. To estimate the photon energy, the energies of cells
with centers within a radiusRcore= 3.5 cm from the cluster center of gravity were summed. Compared
to the full cluster energy, thiscore energy (Ecore) is less sensitive to overlaps with low-energy clusters in a
high multiplicity environment. The non-linearity in the conversion of the reconstructed to the true photon
energy introduced by this approach is reproduced by GEANT3 Monte Carlo simulations. The contribu-
tion of hadronic clusters was reduced by requiringEcluster> 0.3 GeV,Ncells > 2 and by accepting only
clusters above a minimum lateral cluster dispersion [41]. The latter selection rejects hadrons punching
though the crystal and producing a large signal in the photodiode of a single cell. With a minimum time
between bunch crossings of 525 ns, possible pile-up contributions from other bunch crossings is removed
by a loose cut on the cluster arrival time|t| < 150 ns. For systematic uncertainty studies, photons were
also reconstructed with apT-dependent dispersion cut and with a charged particle veto (CPV) cut on the
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Centrality 0–20% 20–40% 40–80%
pT (GeV/c) 2 10 2 10 2 10
γinclγinclγincl yield
Efficiency (B) 3.0 3.0 0.7 0.7 2.5 2.5
Contamination (B) 2.0 2.0 1.3 1.3 2.9 0.5
Conversion (C) 1.7 1.7 1.7 1.7 1.7 1.7
Acceptance (C) 1.0 1.0 1.0 1.0 1.0 1.0
∗Global E scale (B) 9.6 9.0 6.1 5.9 5.8 6.3
∗Non-linearity (B) 2.2 0.1 2.1 0.1 2.0 0.1
π0π0π0 yield
Yield extraction (A) 2.7 4.0 3.1 5.2 1.8 2.9
Efficiency (B) 1.8 1.8 2.7 2.2 2.5 2.5
Acceptance (C) 1.0 1.0 1.0 1.0 1.0 1.0
Pileup (C) 1.0 1.0 1.0 1.0 1.0 1.0
Feed-down (B) 2.0 2.0 2.0 2.0 2.0 2.0
γdecay/π0γdecay/π0γdecay/π0

π0 spectrum (B) 1.3 4.3 1.8 1.8 1.8 1.8
η contribution (B) 2.2 1.7 2.2 1.6 2.1 1.6
Total Rγ 6.8 7.9 5.9 6.5 6.1 6.0
Total γincl 12.4 12.7 9.7 10.0 9.8 9.6

Table 2: Summary of systematic uncertainties of the PHOS analysis inpercentage. Uncertainties are characterized
according to three categories: point-by-point uncorrelated (A), correlated inpT with magnitude of the relative
uncertainty varying point-by-point (B), and constant fractional uncertainty (C). Uncertainties marked with * cancel
in the double ratioRγ .

distance between the PHOS cluster position and the positionof extrapolated charged tracks on the PHOS
surface to suppress clusters from charged particles [41]. Both dispersion and CPV cuts were tuned using
pp collision data to provide a photon efficiency at the level of 96–99%.

The product of acceptance and efficiency (A · ε) was estimated by embedding simulated photon clus-
ters into real events and applying the standard reconstruction. PHOS properties (energy and position
resolutions, residual de-calibration, absolute calibration, non-linear energy response) were tuned in the
simulation to reproduce thepT dependence of theπ0 peak position and width [41]. In peripheral events,
A ·ε for the default selection (no dispersion cut, no CPV cut) hasa value of about 0.022 atpT = 1 GeV/c.
For higherpT, A · ε decreases and saturates at about 0.018 forpT & 5 GeV/c. The decrease ofA · ε with
pT results from the use ofEcore. In central collisions,A · ε increases by up to about 10% due to clus-
ter overlaps. Applying the dispersion and CPV cuts, the efficiency is reduced by 5–10% in peripheral
collisions and the centrality dependence becomes negligible.

The contamination of the photon spectrum measured with PHOSoriginates mainly fromπ± and p̄, n̄ an-
nihilation in PHOS, with other contributions being much smaller. Application of the dispersion and CPV
cuts reduces the overall contamination atpT ≈ 1.5 GeV/c from about 15% to 2–3% and down to 1–2% at
pT ∼ 3–4 GeV/c. The subtraction of contamination is based on a data driven approach: the probability to
pass the CPV and dispersion cuts and the calorimeter response to hadrons are estimated using identified
π±, p̄ tracks; the photon candidate spectra, measured with different cuts (default, dispersion, CPV, both)
were decomposed intoγ , π±, p̄ and n̄ contributions, assuming equal contamination from ¯p and n̄. The
contamination calculated in this way agrees with that estimated from a HIJING simulation. Finally, the
photon contribution fromK0

s → 2π0 → 4γ decays was subtracted based on the measuredK0
s spectrum

[46] as in the PCM analysis.

To calculate theγdecay/π0 ratio, a Monte Carlo approach was used to simulate particle decays into photons
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both for the PCM and the PHOS analysis. The largest contributions come fromπ0, η , andω decays.
Contributions of other hadrons were also included but were found to be negligible. To allow for a
cancellation of some uncertainties common to the photon andπ0 yield in Eq. (1), each analysis (PCM,
PHOS) used theπ0 spectrum measured with the respective method.
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 = 2.76 TeVNNs0-20% Pb-Pb Monte Carlo simulation

Fig. 1: (Color online) Relative contributions of different hadrons to the total decay photon spectrum as a function
of the decay photon transverse momentum (PCM case).

Theη meson contribution is estimated by using two approaches which assume: (i) transverse mass (mT)
scaling of theπ0 and theη spectrum which is consistent with measurements at RHIC [31,47] or (ii) that
the pT spectrum of theη has the same shape as theK0

s spectrum [46] as both particles should be affected
by radial flow in the same way due to their similar masses. The maximum deviation between these two
cases occurs atpT ≈ 2.5 GeV/c where (i) corresponds to aη/π0 ratio of about 0.4 whereas (ii) gives a
ratio of about 0.5. The absolute yield ofη mesons in both cases was fixed atpT > 5 GeV/c to reproduce
the measuredη/π0 ratio at

√
sNN = 200 GeV: 0.46±0.05 [48]. The statistical precision of theη signal

in the 2010 and 2011 data sets is too low to further constrain these two assumptions with a measurement
of the η spectrum. The average of these two cases is used for the decayphoton calculation, while half
the difference is taken as a contribution to the systematic uncertainty of theη meson contribution in
addition to the normalization uncertainty quoted above. The contribution ofω meson decay photons is
below∼ 3% andmT scaling of the measuredπ0 spectrum with(dNω/dmT)/(dNπ0/dmT) = 0.9 is used
[49]. The relative contributions of the different hadrons to the total decay photon spectrum are shown in
Fig. 1.

The main sources of systematic uncertainties in the determination of the inclusive photon spectrum and
Rγ for the PCM analysis are listed in Table 1. The two largest uncertainties are related to the material
budget of the ALICE detector and the Monte Carlo-based efficiency corrections to the inclusive pho-
ton andπ0 spectra. The material budget uncertainty was estimated in pp collisions by comparing the
measured number of converted photons (normalized to the measured charged particle multiplicity) with
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GEANT simulation results in which particle yields from PYTHIA and PHOJET were used as input. Un-
certainties related to track selection and electron identification were estimated by variation of the cuts.
For instance, we observe a small variation in results depending on the minimum threshold for electron
tracks. This is most likely related to different tracking performance for real data and in the Monte Carlo
simulation for low-pT particles (pT . 50 MeV/c). The uncertainty related to the choice of this threshold
was estimated by increasing the minimumpT from 50 MeV/c up to 100 MeV/c. Uncertainties related
to falsely reconstructed electron-positron pairs from Dalitz decays as conversion pairs were obtained by
varying the minimum radial distanceRmin of reconstructed electron tracks from the standard value of
Rmin = 5 cm up toRmin = 10 cm. The estimation of the systematic uncertainty of the electron selection
includes a contribution estimated by the variation of the dE/dx cuts.

In the double ratioRγ , many uncertainties partially cancel. The uncertainties on Rγ were therefore ob-
tained by evaluating the effect of cut variations directly on Rγ . Uncertainties related to the decay photon
spectrum are similar for PCM and PHOS analyses: they includethe uncertainty due to theπ0 spectrum
parameterization, difference of shapes ofπ0 spectra measured by PCM and PHOS, and uncertainties due
to the shape and absolute normalization of theη spectrum. Uncertainties due to contributions of other
hadrons are negligible.

The main systematic uncertainties of the PHOS analysis are summarized in Table 2. For the inclusive
photon spectrum, the uncertainty of the efficiency calculation is estimated comparing the PID cut effi-
ciency in Monte Carlo and real data. The contamination uncertainty is estimated comparing the photon
purity calculated with a data driven approach and with MonteCarlo HIJING simulations. The conversion
probability is estimated comparingπ0 yields in pp collisions with and without magnetic field. The global
energy and non-linearity uncertainties, which mostly cancel in Rγ , are estimated comparing calibrations
based on theπ0 peak position and on the electronE/p peak position. The centrality dependence of
the energy scale uncertainty results from the larger background under theπ0 peak in central events and
therefore larger uncertainties in the peak position.

A more detailed description of the single photon selection and especially of the additionalπ0 uncertain-
ties for both the PCM and PHOS analyses can be found in Ref. [41].

The comparison of the individual PHOS and PCM inclusive photon spectra, normalized to the averaged
spectrum, is shown in Fig. 2. Statistical and point-to-point uncorrelated systematic uncertainties (type A)
are combined and presented as error bars, point-to-point correlated systematic uncertainties (type B) are
shown as boxes, and common normalization systematic uncertainties (type C) are shown as bands around
unity. The uncertainties are dominated bypT-correlated contributions. The individual PHOS and PCM
double ratios are shown in Fig. 3. The partial cancellation of the energy scale uncertainties (PHOS) and
the material budget uncertainties (PCM) is taken into account in the shown uncertainties.

The level of agreement between the PHOS and PCM inclusive photon spectra and double ratiosRγ was
quantified taking into account the correlation of the uncertainties inpT and centrality. To this end, pseudo
data points for the ratio of the PHOS and PCM inclusive photonspectra and double ratios were generated
simultaneously for all three centrality classes under the assumption of the null hypothesis that the ratio
is unity for all points, i.e., that both measurements resultfrom the same original distribution. The type B
and C systematic uncertainties give rise to a shifted baseline, around which the pseudo data points are
drawn from a Gaussian with a standard deviation given by the statistical and type A uncertainties. A
test statistict was defined as the sum of the squared differences of the pseudodata points with respect
to the null hypothesis in units of the type A and statistical uncertainties. Ap-value was calculated
as the fraction of pseudo experiments with values oft larger than observed in the real data [50]. The
corresponding significance in units of the standard deviation of a one-dimensional normal distribution
was calculated based on a two-tailed test. The PHOS and PCM inclusive photon spectra were found
to agree within 1.2 standard deviations, the PHOS and PCM double ratios agree within 0.4 standard
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Fig. 2: (Color online) Comparison of inclusive photon spectra measured with PCM and PHOS in the 0–20%, 20–
40%, and 40–80% centrality classes. The individual spectrawere divided by the corresponding combined PCM
and PHOS spectrum. The shown errors only reflect the uncertainties of the individual measurements. The boxes
around unity indicate normalization uncertainties (type C).

deviations.

4 Results

The inclusive photon spectra and double ratios of the PCM andPHOS analyses are combined as two
independent measurements to obtain the error-weighted average. The uncertainties common to both
measurements (trigger efficiency, centrality determination, etc.) are negligible in comparison to the
uncorrelated, analysis-specific uncertainties. For each centrality selection the average double ratioRγ is
used together with the averaged inclusive photon spectrum to obtain the final direct photon spectrum,
according to Eq. 2. For the 0–20% centrality class andpT = 2 GeV/c, this results in type A, B, and C
systematic uncertainties ofσA = 2.5%, σB = 2.3%, andσC = 3.0% for the combined double ratio and
of σA = 20%,σB = 18%, σC = 24% for the combined direct photon spectrum.

The combined PCM and PHOS double ratiosRγ measured for three centrality classes are shown in
Fig. 4. A direct photon excess is observed for all centralityclasses forpT & 4 GeV/c, and also for
1 . pT . 4 GeV/c in the most central class. The measurements are compared with the expectedRγ
for the prompt photon contribution as calculated with next-to-leading-order (NLO) perturbative QCD
calculations. The prompt photon expectations in Fig. 4 weredetermined as 1+NcollγpQCD/γdecaywhere
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Fig. 3: (Color online) Comparison of double ratiosRγ measured with PCM and PHOS for the 0–20%, 20–40%, and
40–80% centrality classes. Error bars reflect the statistical and type A systematic uncertainty, the boxes represent
the type B and C systematic uncertainties. The cancellationof uncertainties (energy scale, material budget) in the
double ratioRγ is taken into account in the shown systematic uncertainties.

the number of binary nucleon-nucleon collisions (Ncoll = 1210.8±132.5, 438.4±42, and 77.2±18 for
the 0–20%, 20–40%, and 40–80% class, respectively) was calculated with a Monte Carlo Glauber code
[58] using an inelastic nucleon-nucleon cross section ofσ inel

NN = 64± 5 mb. The decay photon spectra
γdecaywere calculated as the product of the(γdecay/π0)|MC ratio from the decay photon calculation and
the combined PHOS and PCMπ0 spectra. Three different direct photon calculations are shown, two
based on JETPHOX (with different parton distribution functions) [54], and one from Refs. [51, 52].
The band around the latter reflects the factorization, renormalization, and fragmentation scale uncer-
tainty whereas the bands around the JETPHOX calculations also include the uncertainty of the parton
distribution functions. In all three centrality classes, the excess agrees with the calculated prompt di-
rect photon contributions at highpT & 5 GeV/c. The contribution of prompt direct photons cannot be
calculated straightforwardly forpT . 2 GeV/c; their contribution relative to the decay photons, how-
ever, is expected to be small. The excess of about 10–15% for the 0–20% centrality class in the range
0.9 . pT . 2.1 GeV/c indicates the presence of another source of direct photons in central collisions.
The significance of the excess at each data point in thispT range in the 0–20% centrality class is about
2σ . Considering all data points in 0.9 . pT . 2.1 GeV/c, the significance of the direct photon ex-
cess is about 2.6σ which is only slightly larger than the significance of the individual points due to the
correlation of systematic uncertainties inpT.
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Fig. 4: (Color online) Combined PCM and PHOS double ratioRγ in the 0–20%, 20–40%, and 40–80% centrality
classes compared with pQCD calculations for nucleon-nucleon collisions scaled by the number of binary collisions
for the corresponding Pb-Pb centrality class. The dark bluecurve is a calculation from Refs. [51, 52] which uses
the GRV photon fragmentation function [53]. The JETPHOX calculations [54] were performed with two different
parton distribution functions, CT10 [55] and EPS09 [56], and the BFG II fragmentation function [57].

The resulting direct photon spectra are shown in Fig. 5. Arrows represent 90% upper confidence limits.
The same NLO pQCD calculations that were used in Fig. 4 are directly compared with the measured
direct-photon spectra. In addition, the pQCD calculation used in the Pb-Pb direct photon prediction
by Paquet et al. [59] is shown as a dashed line in Fig. 5. This calculation was performed down to
pT ≈ 1 GeV/c by using large scalesµ (> 2pγ

T) and rescaling the result so that it agrees with a calculation
done with smaller scales at higherpT. The systematic uncertainty of this calculation is estimated to be
about 25% forpT & 5 GeV/c, growing to about 60% atpT ≈ 1 GeV/c. All calculations were scaled
with the corresponding number of nucleon-nucleon collisions in the centrality class. Similar toRγ , an
agreement with these theoretical estimates of pQCD photon production in peripheral, mid-central, and
central collisions forpT & 5 GeV/c is found. An agreement betweenNcoll-scaled pQCD calculation and
data forisolated direct photon yields was also found at higherpT (> 20 GeV/c) by ATLAS [27] and
CMS [28].

In mid-central and more clearly in central collisions an excess of direct photons at lowpT . 4 GeV/c
with respect to the pQCD photon predictions is observed, which might be related to the production
of thermal photons. In models in which thermal photon production in the early phase dominates, the
inverse slope parameter reflects an effective temperature averaged over the different temperatures during

11



Direct photon production in Pb-Pb ALICE Collaboration

)c (GeV/
T

p
0 2 4 6 8 10 12 14

)2
c

-2
 (

G
eV

yd
T

pd
T

p
di

r
γ

N2 d
 

ev
.

N π2
1

8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1

10

210

310

2x 10

1x 10

0x 10

 = 2.76 TeVNNsPb-Pb 
  0-20% ALICE
20-40% ALICE
40-80% ALICE

PDF: CTEQ6M5, FF: GRV 
(n)PDF: CTEQ6.1M/EPS09,
FF: BFG2

JETPHOX
PDF: CT10, FF: BFG2
nPDF: EPS09, FF: BFG2

)collN(all scaled by 

Fig. 5: (Color online) Direct photon spectra in Pb–Pb collisions at
√

sNN = 2.76 TeV for the 0-20% (scaled by a
factor 100), the 20-40% (scaled by a factor 10) and 40-80% centrality classes compared to NLO pQCD predictions
for the direct photon yield in pp collisions at the same energy, scaled by the number of binary nucleon collisions
for each centrality class.

the space-time evolution of the medium. In order to extract the slope parameter, apT region is selected
where the contribution of prompt direct photons is small. The pQCD contribution from the calculation
by Paquet et al. [59], shown as a dashed line in Fig. 5, is subtracted and the remaining excess yield
is fit with an exponential function∝ exp(−pT/Teff). The extracted inverse slope parameter isTeff =
(297± 12stat± 41syst)MeV in the range 0.9 < pT < 2.1 GeV/c for the 0–20% class andTeff = (410±
84stat±140syst)MeV in the range 1.1< pT < 2.1 GeV/c for the 20–40% class. Alternatively, to estimate
the sensitivity to the pQCD photon contribution, the slope was extracted without the subtraction of pQCD
photons. This yields inverse slopes ofT nosubtr

eff = (304± 11stat± 40syst)MeV for the 0–20% class and
T nosubtr

eff = (407±61stat±96syst)MeV for the 20–40% class. The dominant contribution to the systematic
uncertainty of the inverse slopes is due to the type B uncertainties.

A significant contribution of blueshifted photons from the late stages of the collision evolution with high
radial flow velocities has to be taken into account [22, 63]. This makes the relation between the medium
temperature and the inverse slope parameter less direct anda comparison to full direct photon calcu-
lations including the photons emitted during the QGP and hadron gas phase is necessary to extract the
initial temperature. A comparison to state-of-the-art direct photon calculations is shown in Fig. 6. All
shown models assume the formation of a QGP. The hydrodynamicmodels, which fold the space-time
evolution with photon production rates, use QGP rates from Ref. [64] and equations of state from lattice
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Fig. 6: (Color online) Comparison of model calculations from Refs.[59–62] with the direct photon spectra in
Pb–Pb collisions at

√
sNN = 2.76 TeV for the 0–20% (scaled by a factor 100), the 20–40% (scaled by a factor

10) and 40–80% centrality classes. All models include a contribution from pQCD photons. For the 0–20% and
20–40% classes the fit with an exponential function is shown in addition.

QCD. All models include the contribution from pQCD photons,however, different parameterizations are
used. The model of van Hees et al. [60] is based on ideal hydrodynamics with initial flow (prior to ther-
malization) [65]. The photon production rates in the hadronic phase are based on a massive Yang-Mills
description of gas ofπ, K, ρ , K∗, anda1 mesons, along with additional production channels (including
anti-/baryons) evaluated with the in-mediumρ spectral function [19]. Bremsstrahlung fromπ–π andK–
K̄ is also included [66], in the calculation shown here together with π–ρ–ω channels recently described
in Ref. [67]. The space-time evolution starts atτ0 = 0.2 fm/c with temperaturesT0 = 682, 641, 461 MeV
for the 0–20%, 20–40%, and 40–80% classes, respectively, atthe center of the fireball. The calculation
by Chatterjee et al. [61, 68] is based on an event-by-event (2+1D) longitudinally boost invariant ideal
hydrodynamic model with fluctuating initial conditions. Anearlier prediction with smooth initial con-
ditions was presented in Ref. [69]. Hadron gas rates are taken from the massive Yang-Mills approach
of Ref. [19]. Bremsstrahlung from hadron scattering is not included. The hydrodynamic evolution in
the model of Chatterjee et al. starts atτ0 = 0.14 fm/c with an average temperature at the center of the
fireball of T0 ≈ 740 MeV for the 0–20% class andT0 ≈ 680 MeV for the 20–40% class. The calculation
by Paquet et al. [59] uses event-by-event (2+1D) longitudinally boost invariant viscous hydrodynamics
[70] with IP-Glasma initial conditions [71]. Viscous corrections were applied to the photon production
rates [59, 72, 73]. The same hadron gas rates as described above for the calculation by van Hees et al.
are used. The hydrodynamic evolution starts atτ0 = 0.4 fm/c with an initial temperature (averaged over
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all volume elements withT > 145 MeV) ofT0 = 385 MeV for the 0–20% class andT0 = 350 MeV for
the 20–40% class. The PHSD model prediction by Linnyk et al. [62] is based on an off-shell transport
approach in which the full evolution of the collision is described microscopically. Bremsstrahlung from
the scattering of hadrons is a significant photon source in this model. The comparison of the measured
direct-photon spectra to the calculations in Fig. 6 indicates that the systematic uncertainties do not allow
us to discriminate between the models.

5 Conclusions

The pT differential invariant yield of direct photons has been measured for the first time in Pb–Pb colli-
sions at

√
sNN = 2.76 TeV for transverse momenta 0.9< pT < 14 GeV/c and for three centrality classes:

0–20%, 20–40%, and 40–80%. Two independent and consistent measurements (PCM, PHOS) have been
averaged to obtain the final results. In all centrality classes, the spectra at high transverse momentum
pT & 5 GeV/c follow the expectation from pQCD calculations of the directphoton yield in pp collisions
at the same energy, scaled by the number of binary nucleon collisions. Within the sensitivity of the cur-
rent measurement, no evidence for medium influence on directphoton production at highpT is observed.
In the low pT region, pT . 2 GeV/c, no direct photon signal can be extracted in peripheral collisions,
but in mid-central and central collisions an excess above the prompt photon contributions is observed.
An inverse slope parameter ofTeff = (297±12stat±41syst)MeV is obtained for the 0–20% most central
collisions from an exponential function fit to the direct photon spectrum, after subtraction of the pQCD
contribution, in the range 0.9< pT < 2.1 GeV/c. Models which assume the formation of a QGP were
found to agree with the measurements within uncertainties.
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J. Adam40 , D. Adamová83 , M.M. Aggarwal87 , G. Aglieri Rinella36 , M. Agnello110 , N. Agrawal48 ,
Z. Ahammed132, S.U. Ahn68 , S. Aiola136 , A. Akindinov58 , S.N. Alam132 , D. Aleksandrov99 , B. Alessandro110 ,
D. Alexandre101 , R. Alfaro Molina64 , A. Alici 12 ,104, A. Alkin3 , J.R.M. Almaraz119 , J. Alme38 , T. Alt43 ,
S. Altinpinar18 , I. Altsybeev131 , C. Alves Garcia Prado120 , C. Andrei78 , A. Andronic96 , V. Anguelov93 ,
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15 Commissariat à l’Energie Atomique, IRFU, Saclay, France
16 COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
17 Departamento de Fı́sica de Partı́culas and IGFAE, Universidad de Santiago de Compostela, Santiago de

Compostela, Spain
18 Department of Physics and Technology, University of Bergen, Bergen, Norway
19 Department of Physics, Aligarh Muslim University, Aligarh, India
20 Department of Physics, Ohio State University, Columbus, Ohio, United States
21 Department of Physics, Sejong University, Seoul, South Korea
22 Department of Physics, University of Oslo, Oslo, Norway
23 Dipartimento di Elettrotecnica ed Elettronica del Politecnico, Bari, Italy
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France
56 Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
57 Institute for Subatomic Physics of Utrecht University, Utrecht, Netherlands
58 Institute for Theoretical and Experimental Physics, Moscow, Russia
59 Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
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97 Rudjer Bošković Institute, Zagreb, Croatia
98 Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
99 Russian Research Centre Kurchatov Institute, Moscow, Russia

100 Saha Institute of Nuclear Physics, Kolkata, India
101 School of Physics and Astronomy, University of Birmingham,Birmingham, United Kingdom
102 Sección Fı́sica, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
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