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Abstract

Three- and four-pion Bose-Einstein correlations are piteskin pp, p—Pb, and Pb—Pb col-
lisions at the LHC. We compare our measured four-pion catimgls to the expectation

derived from two- and three-pion measurements. Such a aisopgprovides a method to

search for coherent pion emission. We also present mixadyehcorrelations in order to

demonstrate the effectiveness of several analysis proegduch as Coulomb corrections.
Same-charge four-pion correlations in pp and p—Pb appeistent with the expectations
from three-pion measurements. However, the presence efhegligible background cor-

relations in both systems prevent a conclusive statemeriRb+Pb collisions, we observe
a significant suppression of three- and four-pion BoseiEinsorrelations compared to
expectations from two-pion measurements. There appedis o centrality dependence
of the suppression within the 0—-50% centrality intervale Dhigin of the suppression is not
clear. However, by postulating either coherent pion emissi large multibody Coulomb

effects, the suppression may be explained.
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1 Introduction

The last stage of particle interactions in high-energyisiolhs (kinetic freeze-out) occurs on the
femtoscopic length scale (18 m) where quantum statistical (QS) correlations are expecte
QS correlations at low relative momentum are known to beisemso the space-time extent
(e.g. radius) and dynamics of the particle emitting sodile@l. Another interesting, although
less studied, aspect of QS correlations is the possiblassgipn due to coherent pion emission
[@—B]. Coherent emission may arise for several reasonsasifilom the formation of a disori-
ented chiral condensate (DC@ @—11], gluonic or pionic &&stein Condensates (BEC)
[IE], or multiple coherent sources from pulsed radia@].

Coherent emission is known to suppress Bose-Einsteinlatmes below the expectation from

a fully chaotic particle emitting source. Some of the eatlettempts to search for coherence
relied solely on fits to two-pion correlation functio@[l?{he intercepts of the fits at zero
relative momentum were found to be highly suppressed. Hewéwvas quickly realized that
Coulomb repulsion and long-lived emitters (e.g. longdivesonance decays) also suppress
the correlation function significantly. Furthermore, thregse shape of the freeze-out space-
time distribution is unknown. As a consequence, the coaording functional form of the
correlation function in momentum space is also unknownn@such, there is no reliable way
to extrapolate the measured correlation function to theaasured intercept.

Multipion Bose-Einstein correlations could provide anrgased sensitivity to coherence as the
expected suppression increases with the order of the atimelfunction lﬂﬂfﬂg]. However,
the analysis of multipion Bose-Einstein correlations cemghe expense of increased complex-
ity. Some of the earliest attempts to measure three-pioe-Basstein correlations relied on a
different methodology and gave rather ambiguous re ]. Recently the methodology of
isolating three- and four-pion Bose-Einstein correlagibas been considerably improv@ [19]-
particularly in regards to the treatment of long-lived pemitters. Our previous measurements
of three-pion correlations revealed a suppression whichamae from a coherent fractio®]

of 23%-+ 8% at lowpr at kinetic freeze-ou@4].

We present three- and four-pion QS correlations in pp, paRt,Pb—Pb collisions at the LHC
measured with ALICE using the methodology presented in [@] The QS correlations are
extracted from the measured multipion distributions. Tkieaetion of QS correlations relies
on the treatment of long-lived pion emitters and final-stateractions (FSI), e.g. Coulomb cor-
relations. QS correlations between pions separated bg liggances>*~ 100 fm) are only
observable at very low relative momentum, where track mereifects and finite momentum
resolution prevent reliable measurements. The effectrgf-loved emitters at measurable rela-
tive momentum is to simply dilute the correlation functiomfe presented correlation functions
are corrected for this dilution as well as FSI and thereftv@eutd represent the pure QS cor-
relations from short-lived pion emitters, i.e. the core afticle production. We also present
the mixed-charge four-pion correlations, which are usedktmonstrate the effectiveness of all
corrections in the analysis procedure.

The measured multipion QS correlations require a refeream@@der to quantify a possible
suppression. Lower order QS correlation functions forméfierence in this analysis. Two-pion
QS correlations, in particular, provide a direct measurgéthe pair-exchange magnitudes,
which may be used as a building block to form an expectatiorhigher order correlation
functions. These “expected” multibody correlations wemrerted “built” in Ref. @].
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This article is organized into 7 sections. We explain theecketr setup and data selection in
Sec. 2. In Sec. 3, we describe the analysis methodology. éhdts are presented in Sec. 4. In
Sec. 5, we discuss all of the systematic uncertainties figaged. We discuss several possible
origins of the suppression in Sec. 6. Finally, in Sec. 7 wersanze our findings.

2 Experimental setup and data selection

Data from pp, p—Pb and Pb—Pb collisions at the LHC recordéul ALLICE [@] are analyzed.
The data for pp collisions as= 7 TeV were taken during 2010, during 2013 for p—Pb colli-
sions at,/Syn = 5.02 TeV, and during 2011 for Pb—Pb gByn = 2.76 TeV.

The trigger conditions are slightly different for each oétthree collision systems. For pp
collisions, at least one hit in the Silicon Pixel DetectdP[g, at central rapidity, or either of the
VO detectors@G], at forward rapidity, is required. For Pb-and p—Pb collisions, the trigger is
formed by requiring hits simultaneously in each VO.

The Inner Tracking System (ITS) and Time Projection ChanfbBiC) located at mid-rapidity
are used for particle trackinﬁZ?]. There are 6 layers atail detectors in the ITS: two
silicon pixel, two silicon drift, and two silicon strip det®rs. The ITS provides high spatial
resolution for the position of the primary vertex. The TPOra is used for momentum and
charge determination of particles through the radius obature of the particles traversing a
0.5 T longitudinal magnetic field. The TPC additionally piaes particle identification through
the specific ionization energy lossHftix). To ensure uniform tracking, tteecoordinate (along
the beam-axis) of the primary vertex is required to be withidistance of 10 cm from the
detector center.

Tracks with a transverse momentum af6< pt < 1.0 GeVt and a pseudorapidity ofy| < 0.8

are retained in this analysis. To ensure good momentumutssola minimum of 70 tracking
points in the TPC are required. The measured energy |&&sIXdof particles traversing the
TPC and the corresponding uncertaingy) @re used to select charged piolﬁ [28]. Charged
tracks observed in the TPC are identified as pions if thEiidd is within 20 of the Bethe-
Bloch expectation for pions while being more tham @way from the Bethe-Bloch expectation
for kaons and protons. The pion purity in our sample is saidigh the HIJING generato@Q],
folded with the ALICE acceptance. In the sample selecteH thi¢ procedure described above,
about 96% of the particles are expected to be pions.

The effects of track merging and splitting are minimized &jgcting track pairs whose spatial
separation in the TPC is smaller than a threshold valle 24| three-pion and four-pion corre-

lations, each same-charge pair in the triplet and quadrigpfequired to satisfy this condition.

Oppositely charged pairs are not required to satisfy thissuhey curve in opposite directions
in the solenoidal magnetic field and are therefore easilyngjsished.

The low multiplicity events produced in pp and p—Pb colli@aontain a non-negligible non-
femtoscopic background arising from mini-jda[ 32]. Wduce this background by retain-
ing only high multiplicity events in pp and p—Pb. For pp andPp-€ollisions, we retain events
with at least 10 and 15 reconstructed charged pions, ragglctThe choice of these bound-
aries are chosen to provide sufficient statistics while cadpnon-femtoscopic background cor-
relations. The multiplicity cut selects events from the &% and 42% of the cross-sections,
respectively. In Pb—Pb collisions, all non-femtoscopickggounds are negligible. We ana-
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lyze Pb—Pb data from the top 50% collision centrality in teualy divided intervals. The
collision centrality in Pb—Pb is determined using the ckdrgarticle multiplicity in the VO de-
tectors ]. Approximately 13, 52, and 34 million events ased for pp, p—Pb, and Pb—Pb
collisions, respectively.

3 Analysis technique

We follow the techniques outlined in Reﬂ19] for the extran of multipion QS correlations
and a possible coherent fraction. Several types of muttiparelation functions are presented:
CSS, CSS, CSS, afs, bSS, and CSS. The full three-pion correlation is given SS and the
cumulant correlation is given b;ES. Four types of four-pion correlations are defined: the full
correlation,CfS; two types of partial cumulant correlatiort'.i;ﬁ,?S and bfs; and the cumulant
correlationcg®.

The full three-pion same-charge correlation function aorg both pair and triplet symmetriza-
tion sequences while the cumulant contains only the trgytetmetrization sequence. The full
four-pion same-charge correlation function contains smgquences of symmetrizations: single-
pair, double-pair, triplet, and quadruplet symmetrizasio Partial cumulants, denoted Iays
(bfs), have single-pair (single- and double-pair) symmetitres explicitly removed. The cu-
mulant correlation, denoted tngs, represents an isolation of the quadruplet symmetrization
sequence.

Two-pion correlations are extracted from two types of paanmentum distributiong\; (p1)N1(p2)
andNy(p1, p2), wherep; is the momentum of particle Ni(p1)Ni(p2) is measured by sam-
pling two pions from different events with similar charatséc multiplicity and z-coordinate
collision vertex class.Nx(p1, p2) is measured by sampling both pions from the same event.
Three-pion QS correlations are extracted from three typéagpbet distributions

N1(p1)Na(p2)Na(p3), (1)
No(p1, P2)N1(p3), (2)
N3(p1, P2, P3). 3)

Four-pion QS correlations are extracted from the followgigdruplet distributions

N1 (p1)N1(p2)N1(p3)Ni(pa), (4)
N2(p1, P2)N1(P3)N1(pa), (5)
N2 (p1, p2)N2(P3, P4), (6)
N3(pP1, P2, P3)N1(pa), (7)
Na(P1, P2, P3, Pa). (8)

The distributions in Eq$.J[I}8 are formed by sampling the appate number of particles from
the same event and the rest from different events. The spbBarN represents the number of
pions taken from the same event. We normalize the distabaiin Eqd {32 to the distributionin
Eq.[3 at a suitably large invariant relative momentams= /—(pi — pj)¥(pi — pj) . Likewise,
the distributions in Eq§J@17 are normalized to the distidouin Eq[8. They;; interval is chosen
to be far away from the region of significant QS and FSI coti@tes. The normalization interval
is 0.15 < gjj < 0.2 GeVEk in Pb—Pb while being @ < gjj < 1.2 GeVCk in pp and p—Pb due to

4
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the wider QS correlations in smaller collision systems. dlstributions are all corrected for
finite momentum resolution and muon contamination [24].

The two-, three-, and four-pion distributioriﬁﬁ(s) are extracted from the measured distribu-
tions (Nn) with the appropriate coefficients according to the “coadnh prescription Eb] of
short- and long-lived emitterﬁb4]. In the core-halo moddtaction of particlesf¢) originate
within a small radius component of particle production (teee). The rest, * f¢, originate
within a much larger halo radius. The fraction of pairs,lgip, and quadruplets from the core
is then given byf2, £, andfZ, respectively. The other possibilities of mixed core-hadmpo-
sitions are treated as well in this analysis. Pairs of pagifrom the core of particle production
are separated by sufficiently short distances such that @®iand FSI correlations are ex-
perimentally observable. Pairs with one or both partictesnfthe halo effectively dilute the
correlation functions as no significant QS and FSI corretetiare expected. The coefficients
that isolate the multipion QS distributions are determifrech the f. parametemg].

The f. parameter is often associated wifA , whereA parametrizes the correlation strength,
which is usually determined from fits to two-particle Bosedfein correlations. However, due
to the unknown functional form of two-pion correlation fuionis, theA parameter, determined
this way, is convoluted with the arbitrary choice of fittingnttions (e.g. Gaussian fits to non-
Gaussian correlation functions). A more accurate exwacotif f; is done by fitting mixed-
charge two-pion correlations inste[24]. The corretabetweent™ andr is dominated by
Coulomb and strong FSI for which the wave functions are wedivikn @]. Owing to the large
pion Bohr radiusyt™ im correlations are less sensitive to the detailed structitteesource and
can be fit less ambiguously wmt" 71" correlations. As part of the long-lived emitters corresphon
to weak decays (secondarie$),is also sensitive to the specific tracking algorithm'’s &pilo
discriminate primary from secondary tracks. The valiges 0.844+0.03, was used in R:ﬂ%[_ﬂ]
as well as in this analysis.

The distinction between core and halo may depend on thedkasdic sizes and the dynamics
of the system. Pions from decays of mid-lived emitters, saghheK*, =*, w, andn’ con-
stitute a special case where the effect of QS correlatiotts ether pions can be smaller than
that of Coulomb correlations. Therefore, one might expesiigintly smaller core fraction for
QS compared to Coulomb interactions. The magnitude of tfereihce should mainly relate
to the fraction of pions produced from decays of mid-livedomances. The resulting differ-
ence, which we assume to be small, is addressed by vafyiag discussed in the section on
systematic uncertainties.

The treatment of multibody FSI (Coulomb and strong) is dooeoeding to the generalized
Riverside approximatiomﬁmﬁ@ 36] where tH®ody FSI correlation is treated as the
product of each pair FSI correlation,

Kz = Ka(012)Ko(013)K2(023) 9)
Ka = K2(g12) K2(013) K2 (014) K2(023) K2 (024) K2(034) - (10)

The two-pion FSI factor of paii, j) is given byK>(q;j) and is calculated by averaging the mod-
ulus square of the Coulomb and strong wave function over sumasd freeze-out distribution.
We use therHERMINATOR model of particle production as an estimate for the freasedcs-
tribution @@] The pair product approach to three-p@i correlations was shown to be a
good approximation to the full asymptotic wave functionccgétion Eb]. In this article we
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present QS correlation functions which are corrected fdraf8 for the dilution of long-lived
emitters according to Egs. 33 and 39 in Ref] [19].

All distributions and correlation functions are projectatto the 1D the Lorentz invariant rel-
ative momentum. For three- and four-pion correlations,sin® quadrature of pair invariant
relative momenta is used:

Q3 = \/ Cﬁz + cﬁg + qgga (11)

Qs = /Byt Gyt Gy + B+ By GBy. (12)

Thepr dependence of the correlation functions is studied by &umpnojecting onto the average
transverse momenta

|Bra+Pr2

Kro = 5 (13)
Krs Pri+ ﬁ;,z-i- ﬁT,3|’ (14)
Kpa — Pra+ ﬁm: Pr3+ Pr4 , (15)

for two-, three-, and four-pion correlations, respeciv&le form two intervals oKy3 defined
by 0.16 < Kt3 < 0.3 and 03 < Ky3 < 1.0 GeVk. Similarly, we define two intervals dft4 as
0.16 < K14 < 0.3 and 03 < K14 < 1.0 GeVCk. For the lowKrs interval which is simultaneously
at low Q3 (0.02 < Q3 < 0.03 GeVk), (pr) = 0.23 GeVt and the RMS of thepr distribution
is 0.03 GeVe. At high Kz, (pr) is 0.34 GeV¢ and the RMS is 0.03 Ge¥/ The same values
also closely describe the low and hih, interval at lowQ,4 (0.045< Q4 < 0.06 GeVE). We
further note that thépr) is very similar for eacly interval in this analysis. For.06 < K2 < 0.3
GeVlc, (pr) increases linearly by about 0.015 GeWi the interval 0005< g < 0.2 GeVEL.

3.1 Extracting the pair-exchange magnitudes

The building blocks of Bose-Einstein correlations are thg-pxchange magnitude$;{) and
the coherent fraction®) in the absence of multipion phasas@, ,, 39]. Multigphases
are expected when the space-time point of maximum pion @niss momentum dependent.
However, the relative momentum dependence of the effectsivaan to be rather weaﬂ39].
Assuming a value o, the pair-exchange magnitudes can be used to build all hyders of
correlation functions. We define tlegpected or built correlation functionsz (i), which repre-
sent the expectation of higher ordej QS correlations using lower order< n) experimental
measurements as an input. The equations to Hyldre given in appendix]A. We define two
types of expected correlation functions:

1. E3(2) andE4(2): The pair-exchange magnitudes can be extracted direcity fo-pion
correlation functions, which forms our primary expectatio Pb—Pb collisions. The two-
pion correlations are tabulated in four dimensions durirafirst pass over the data in the
longitudinally co-moving systengut, Gside Giong, K12)- The interval width of each rela-
tive momentum dimension is 5 Me¥//while it is 50 MeVEk in theKt, dimension. In the
second pass over the data, the previously tabulated twoegoiwelations are interpolated
for each pion pair from mixed events. We interpolate betwetative momentum bins
with a cubic interpolator. A linear interpolation is usedbatweenKr» bins, where a
more linear dependence of correlation strength is observed

6
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Fig. 1. Mixed-charge £ + +F) four-pion correlations versu3, in pp, p—Pb, and Pb—Pb. The fungs),
partial cumulant£3°), and cumulantd®®) correlation functions are shown. The inset figure shows a
zoom ofcfs. Systematic uncertainties are shown by the shaded bandsahd highKy4 quadruplets
are shown. The average of the charge conjugated correfatiations is shown.
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2. E4(3) andey(3): We also extract the pair-exchange magnitudes from fi&_,%(a@))

and Cgs (e4(3)) in 3D (g12,013,023)- The fit is performed according to an Edgeworth
parametrization@O] as shown in equation 20 of Ref] [19]isT2%¢ approach is more
limited as the pair-exchange magnitudes are extracteddr8m projection of a 9D func-
tion. Similar to the $ type of expected correlations, the pair-exchange magestiade
obtained from the first pass over the data and input into tberskpass.

For the case of partial coherence, we assume that the piaege magnitude of the coher-
ent source is identical to the chaotic one (e.g. same radhigiwmight be expected for DCC
radiation |EV]. The value o6 may then be extracted by minimizing tiyé difference between
measured and expected correlations for €@glor Q4 bin. One may extrads from either of
the six same-charge channeG?®, a2°, b3®, c3°, C:?S, andcgs. The primary channel of ex-
traction isCfBS for reasons of statistical precision and sensitivity toareint emission. We also
extractedG with several other multipion correlations and is shown irepagate notéﬂll]. In
pp and p—Pb collisions, where non-negligible non-femtpacbackgrounds exist, we only use
the 29 build technique as three-pion correlations have a larggrasito background ratio [42].

Both build techniques were tested using data generatecellHEERMINATOR model, including

a known coherent fractioﬂ:ﬂlQ]. THe,(2) correlations were typically 3% smaller than the
“measured correlations” INHERMINATOR. The bias is attributed to the finite 4D projection of
the true 6D two-pion correlation function. We correct foistpotential bias in a data-driven

approach. The interpolated two-pion correlation funcfimm the 4D projection is compared

to the true two-pion correlation function for eaghnterval. The ratio of the two correlation

functions (subtracting unity from each), forms our con@ttactor.

4 Results

We now present the results of three- and four-pion QS cdioels in pp, p—Pb, and Pb—Pb
collisions. All correlations are corrected for FSI and foe dilution of pions from long-lived
emitters. Mixed-charge correlations are first presentedktoonstrate the effectiveness of all
corrections in the analysis. Fits to same-charge three-gorelations, which allow us to con-
structE4(3) andey(3), are then presented. The comparison of measured to expeateet
charge correlations assuming the null hypotheSis=(0) is then presented. Finally we present
the same comparison with non-zero value&of

4.1 Mixed-charge four-pion correlation functions

Mixed-charge correlations of the first type: (£ +F) are shown in Figd. IT(g)-1[f). The full
correlation contains contributions from two- and threerpsymmetrizations while the partial
cumulant (afs) contains only three-pion symmetrizations. The cumulaﬁ?)( has all lower
orders (i < 4) of symmetrization removed. Its proximity to unity demtages the effective-
ness of several procedures: the event-mixing techniquesd¥&ctions, muon corrections, and
momentum resolution corrections.

The second type of mixed-charge quadruplets{++) are shown in Figq. 2(#)-2[f). The
full correlation in Figs| 2(a)-2(f) contains contribut®from single-pair and double-pair sym-
metrization sequences. The partial cumulant removes thgtan symmetrizations while the
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Fig. 2: Mixed-charge f  +£4) four-pion correlations versu®, in pp, p—Pb, and Pb—Pb. Same details

as for Figs[ Z(a)-1(}).

cumulant further removes the double-pair symmetrizatidast as for the first type of mixed-
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Fig. 3: Same-charge three-pion full and cumulant correlationsuss with Edgeworth fits in pp, p—
Pb, and Pb—Pb collisions. Bottom panels show the ratio ofitlia to the fit. The fits assunt@= 0.
The systematic uncertainties f@?s are given by the shaded band while thoseo%?are the same after
re-scaling by the ratio of correlation strengths. Onlyistigial errors are shown for the ratio. The average
of the charge conjugated correlation functions is shown.

charge quadruplets, the residue seen with the cumulardadieaizes the effectiveness of several
procedures. The baseline of the cumulant in pp collision#s&t from unity by about 10% and

is due to statistical fluctuations in the higmormalization region of our data sample. Itis in-
cluded in the systematic uncertainty. The mixed-chargeutan residues seen in pp and p—Pb
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collisions are similar in magnitude as seen in Pb—Pb cotisi Note that the FSI correlations
are larger in pp and p—Pb with respect to Pb—Pb collisioation of the cumulant correlation
function,cfs, is done by subtracting several distributions as shown m[Bg after correcting

for FSI. By default, we also utilize the distributions of twderacting opposite charge pions,
N2(—,+)Nz(=)N1(=) and Np(—,+)N1(=)Ny(+) for m " and " ir*, respec-

tively. After correcting for finite momentum resolution, orucontamination, and FSI correc-
tions, such distributions should be identicalNg in the absence of additional correlations. A

small difference irl:‘?S is observed without the subtraction of such terms [41].

4.1.1 Fitsto three-pion correlation functions

The 29 build technique relies on the extraction of the pair-exgfgeamagnitudes from fits to
three-pion correlations. We separately fit both the currtL(Ie??) and full (Cgs) correlations
with an Edgeworth parametrization in 3Q16,q13,023). The three-pion correlations and fits
are projected ontQs for pp, p—Pb, and Pb—Pb collisions in Figs. §(a){3(c). Thgdubrth
fits have six free parameters,R K3, K4, K5, andKg, [IE] as well as a fixed value d@&. In

Figs [3@3(0)G = 0.
4.2 Same-charge three- and four-pion QS correlations

Figureg 4(d)-4(¢) present same-charge four-pion coielatn all three collision systems. Each
symmetrization sequence is clearly visible. Two differerpectations are showi,(3) and
e4(3). The expected correlations in pp and p—Pb are typicallyiwit0% of measured correla-
tions while being closer, 5%, in Pb—Pb.

Three-pion measured and expected correlations in Pb—Ppresented in Fig$. 5(&)-5(b) for
low and highKrts. The expected correlations are of th@& type and assumé& = 0. The top
panels show the full and cumulant three-pion correlatiohgeanthe bottom panels present the
ratio of measured to expected full three-pion correlatidirom the bottom panels we observe
a Qs dependent suppression of measured correlations, comiuatieel expected correlations.

Four-pion measured correlations are compared t&if2) expectations in Pb—Pb in Figs. §(a)-
[6(b) for low and highKt4. Similar to the three-pion case, we obsen@sadependent suppres-
sion of measured compared to the expected correlations.

4.3 Extracting a possible coherent fraction

We now investigate the expected correlations with non-galhees of the coherent fractio,
and compare them to the measured correlations in Pb—Pb. &Vthesxpected correlations
of the B! type to extract the coherent fraction from four-pion caatieins. Owing mostly to
limitations of the three-pion fitting procedure, we do notragt the coherent fraction with the
2" type. The isospin effect relevant for charged-particleereht states is neglected in this

analysis @[I?Qﬂq.

Figure[T presents same-charge four-pion correlations #PBlversu®), at low Kt4. We ob-
serve that the suppression can be partially explained asgud= 32% which minimizes the
x? of the difference of the ratio from unity f@4 < 0.105 GeVt. Thex2/DOF of the minimum

is quite low, 0.34, and is due to the inclusion of high data in the calculation and the rapidly
decreasing QS correlation wiy. In Fig.[8 we present same-charge three-pion correlations i
Pb—Pb versu®s at low Kt3. In contrast to the four-pion case, the valuef 32% does not
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Fig. 4: Same-charge four-pion fulof®), partial cumulant43®, b3°), and cumulantd®) correlations
versusQ, in pp (a), p—Pb (b), and Pb—Pb (c) collisions. The solid arsthed block histograms represent
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drawn forcé?S and is explained in the systematics section. The bottoml gaoevs the ratio of measured
to expecteccfs. The average of the charge conjugated correlation furei®ahown.

12



Multipion Bose-Einstein correlations

ALICE Collaboratio

s o ALICE 0-5% Pb-Pb 5,,=2.76 TeV
E L
s &
S ‘o
o 4=
s X
S i
o [ - E42) (G=0%)
s 3 S
=T 0.16<K15<0.3 GeVic
e T TITITU
L ]
= H e
i G o
= e

o C¥IE,(2) (G=0%)

0 002 004 006 008

Q3 (GeVic)

(a) 016 < Ky3 < 0.3 GeVk

S 5r ALICE 0-5% Pb-Pb {8,=2.76 TeV
8 r
g i ° C3QS
S a- |
s [ | o cg®
a [
g L ‘ P - E4(2) (G=0%)
£ 3 .
=T 0.3<K14<1.0 GeVic
: """"" ® ! - -
o TCTTTT
i Y
bl T .
r O $ ® e ..
R i B i i {}}"T”‘:@‘""}"‘?"r A {.?
-}% | SEETEEETCEIELIEELIELIRtEes O I R ICEEREE ICRERR @ ----e- R -
x L o
0.9+
| l 0 CYE,(2) (G=0%)
0 002 0.04 006 008 0.1

Q3 (GeVi/c)

(b) 0.3< Kr3 < 1.0 GeVk

Fig. 5: Three-pion same-charge ful¥®) and cumulantd$®) correlations versugs in Pb—Pb. Expected
correlations of the 3 type are shown with dashed block histograms v@th- 0. The ratio of measured
to expectect:?S is shown in the bottom panel. The systematic uncertaintieskaown by the shaded
bands at the top of the figure as explained in Fig.]4(a). Theageeof the charge conjugated correlation

functions is shown.

ALICE 0-5% Pb-Pb |s5,,=2.76 TeV

,,,,,,, ° CP
: : = as
6~ o b3

o ¥

Four pion correlation
T

| P - E,(2) (G=0%)
0.16<K,<0.3 GeV/c

i e TETETETE

Ratio

0 C¥IE,(2) (G=0%)

0 0.05 0.1

Q4 (GeVic)

(@) 016 < Krq < 0.3 GeVk

Four pion correlation

Ratio

ALICE 0-5% Pb-Pb |s,,=2.76 TeV

+ e C®
T " as
0 b
P °cg®
- EL(2) (G=0%)
Pe 0.3<K,<1.0 GeVic

. TETETETE

o CYIE,(2) (G=0%)

0.05 0.1 0.15
Q4 (GeVi/c)

(b) 0.3< Krs < 1.0 GeVk

Fig. 6: Four-pion same-charge full and cumulant correlationsus@s in Pb—Pb. Expected correlations
of the P! type are shown with dashed block histograms v@tk= 0. The other details are the same as

Fig.[4(a).

13



Multipion Bose-Einstein correlations ALICE Collaboratio

_5 gl ALICE 0-5% Pb-Pb |s,,=2.76 TeV
T |
()]
S
o I —e—
S 6 - E4(2) (G=0%)
2
§ - — E,(2) (G=32%)
St
44— | [ : 0.16<K;,<0.3 GeV/c
2_ _____
I
I | T L GURLEl SUTLED L SEEIRY SRS RSNt SRRnCE (EECEEL TECERD 2O
g $TTTTS
@
0.9 b o C/E,(2) (G=0%)
- e CY°/E,(2) (G=32%)
0 0.05 0.1 0.15
Q4(GeV/c)
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satisfactorily explain the suppression.

We also studied the centrality dependence of the suppressi®b—Pb. Figurds 9(a) ahd 9(b)
show the centrality dependence of the extracted coheraetidn for low and highKy4. Within
statistical and systematic uncertainties, the coherantitms are consistent for each centrality
interval. We also parametrized the coherent component asnd gource as opposed to the
equal radii assumption used by default. The point sourceoappation may be expected to be
more appropriate for gluon or pion condensate formatiore &ttracted coherent fractions with
the point source approximation are shown in a separate M}e [

Previously], the coherent fractions were extractedftbers observable which is intended
to isolate the phase of three-pion correlatians$ Eb 45Fkdntrast to the previous analysis, we
estimateG by averaging the suppression in sevépalor Q4 bins instead of extrapolating to
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the unmeasured intercept. This approach was chosen due lergiely flat relative momentum
dependence of previoug measurementﬁll@%]. The values®are obtained by averaging
the bin-by-bin values within 03 < Q4 < 0.105 GeVE. Furthermore, our past analysis did not
employ interpolation corrections which are relevant far gxpected correlations. Correcting
for the interpolation biases is expected to |O\N§ﬂE].

We extracted coherent fractions in Pb—Pb using the expectedlations of the 3 type. The
expected correlations of th&@®type were shown in all three collision systems but are exguect
to be less accurate due to more limited dimensionality arditting procedure of three-pion
correlations. Being such, we could not reliably extractlagaf G with the 2" build technique.
The 29type is, however, preferred in low multiplicity events, wh@on-negligible background
correlations exist.

One of the most commonly cited sources of coherent pion éoniss the DCCEBEO], which
may occur as a consequence of chiral symmetry restoratiba.nfost common prediction of
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Fig. 9: The extracted coherent fractionS)(from same-charge four-pion correlations versus cetyrali
Systematic uncertainties are given by the shaded band eArliiit using only the statistical uncertainties
is shown by the horizontal red line.

the DCC is the fluctuation of charged to neutral pion produrctt low pr. If a single DCC
domain is created within each event, we may expect a surplsherent charged pions in one
event, while in another event, only coherent neutral pioagpaesent. We investigated this pos-
sibility by firstisolating a narrow multiplicity class atgtierpr, 0.35< pr < 0.5 GeVLk, within
the 0-5% centrality class determined with the VO detectBrem the multiplicity distribution
of charged pions at the highpt interval, we retain events which were within 1 standard aevi
tion from the mean of the distribution. We then analyzed thuipiicity distribution of charged
pions at lowpt , 0.16 < pr < 0.25 GeVE. Events with lowpr multiplicities below the mean
of the distribution were stored separately from those evabbve the mean. We do not observe
a significant change of the suppression for events below@reathe mean. The finding disfa-
vors single-domain DCCs but does not rule out multidomairCBCfor which independently
coherent charged and neutral pions may be found in a singl& @/,].

5 Systematic uncertainties

We consider several sources of systematic uncertaintgiperg to the methodology and finite
detector resolution. Below we describe each systematiertainty studied in order of decreas-
ing magnitude. Some systematic uncertainties apply to w@gsured or expected correlations
while others apply to both. The given values of the uncetiesrapply to four-pion correlations.
The values for three-pion correlations are generally smnall

1. fcscale. The fraction of pion tracks from short-lived emitters fdnieh QS and FSI corre-
lations are experimentally observable is quantified withfthparameter. From previous
studies in ALICE using fits tar" m~ FSI correlations, we estimate thft= 0.84+0.03
[lﬂ]. We vary fc within its uncertainties from the previous analysis. Theartainty
derived from varyingf. applies to both measured and expected correlations andig ab
6% at lowQ4. As the uncertainty ori; given here does not account for the assumption
of a universalf; for both QS and Coulomb correlations (see discussion in@es), we
have also considered more extreme variations givericby 0.63 andf. = 0.92. The
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systematic variations of measured and expected corretatice largely correlated. With
fc =0.63, the ratio of measured to expected four-pion correlatioareased by about 2%
at low Q4 as compared to the ratio formed with our defafgl= 0.84.

2. FS variation. The default two-pion FSI correlatidg,, together with the default value
fo = 0.84, gives a satisfactory description af 71 correlations]. We find that in-
creasing the FSI correlation strengtk, — 1|, by 5% while decreasind to 0.806 also
provides a satisfactory description mf 71~ correlations. The analysis was redone with
such modifications, and the ratio of measured to expecteedion correlations changed
by less than (5%.

3. Tjj extraction at high g. The P type of expected correlations use the pair-exchange
magnitudes Tjj) extracted from two-pion correlations. The extractionTgf becomes
problematic at large), where the measured two-pion QS correlations fluctuatedtlene
the baseline due to finite statistics. For such bins welget 0. We also constructed
a separate expected correlation where the entire triplguadruplet was skipped if any
pair Tjj was negative. Half of the difference between these two builds assigned as an
uncertainty which is about 4% at higdy and less than.Q% at lowQ4.

4. Interpolation. We apply a data-driven approach to correct for interpotabiases, as
already mentioned. From studies with different intergolatschemes, we find a 1%
systematic uncertainty on the expected correlations aQgw

5. Mid-lived emitters. The extraction of the multipion QS correlations from theasweed
distributions in Eq4.1418 relies on tHgy, f40, f43, f44 coefficients in Ref.ﬂ9]. The default
values were derived in the “core-halo” picture of partialequction, for which there are
only short and long-lived emitters. In general there are atgd-lived emitters (e.gw
decays) which modify thé coefficients and can be estimated usingtRERMINATOR
model. The effect was found to be quite small [19] and leads @5% uncertainty at

high Qa.

6. Renormalization. To account for small normalization differences betweeo-jwhree-,
and four-pion correlation functions, the expected cotiehs are re-normalized to the
ones measured at higQs. In central Pb—Pb, the renormalizations are about 0.9997
(E3(2)), 1.005 E4(2)), and 1.07 €4(3)). The interval in Pb—Pb is.025< Q4 < 0.145
GeVlcin central collisions and varies smoothly td85< Q4 < 0.185 GeV¢t in periph-
eral collisions. The interval in pp and p—Pb igl6< Q4 < 0.49 GeVkt. We take an
interval shifted by 15 (60) Me\in Pb—Pb (pp and p—Pb).

7. Detector resolution. Numerous effects related to finite detector resolutiorevedrecked.
The charge conjugated correlation functions were congistéhin statistical uncertain-
ties. Similarly, the polarity of the solenoidal magnetiddibad a negligible effect on the
correlation functions. We compared Pb—Pb data from twaekfit data-taking periods
which were known to have different tracking efficiencies.eTheasured and expected
correlation functions differed by less tharb®. Finite momentum resolution is known
to smear the correlation functions, decreasing the cdioelatrength at low relative mo-
mentum for all orders of correlation functions. We correxctfinite momentum resolution
using HIJING (Pb-Pb) and PYTHI&J%] (pp and p—PDb) data sated with the ALICE
detector response. The uncertainty on the momentum resokit low pr is governed
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by the material budget uncertainty of the ALICE detector mnektimated to be less than
10%. The corresponding uncertainty on the measured anatexpeorrelations is about
1%. Our pion purity is estimated to be about 96% for which #raaining 4% impurity
is dominated by muon contamination. Simulations have shibnhmost of the muons
in our sample originate from charged pion decays for whiche@&$ FSI correlations are
expected with primary pions. We apply muon corrections lsimo Refs. @4@2}. We
assign a 2% uncertainty to the muon correction procedure tfHeking efficiency of the
ALICE detector decreases rapidly fpr < 0.2 GeVkt [@]. To estimate the potential bias
caused by the tracking efficiency, we randomly discard piom3HERMINATOR accord-
ing to the TPC reconstruction efficiency. We do not observeasa bn the measured nor
expected correlation functions which could cause an adifsuippression.

In addition to the above mentioned sources of systematiesalgo applied an additional un-
certainty to cumulant correlation functiortgs. The cumulant correlations were found to be
much more sensitive to effects induced by low statisticewat@,. The additional uncertainty
is several tens of percents for the low€gtbin.

Most of the systematic uncertainties were found to be smnilanagnitude and highly corre-
lated for both measured and expected correlations. As a&eqaesce, the systematics largely
cancel in the ratio of measured to expected. For the rati@mpdy the maximum difference of
measured and expected systematics. The systematic untestéor the ratio are dominated by
the interpolator and mid-lived emitter uncertainty at IQ4 At high Q4, the muon corrections
and the extraction ofj; at highq dominate the uncertainties.

6 Possible origins of the suppression

A suppression of three- and four-pion Bose-Einstein cati@hs compared to the expectations
from two-pion measurements has been observed in Pb—Pbicodii Below we list our inves-
tigations into the origin of the suppression.

1. Quantumcoherence. Incorporating the effects of quantum coherence can psrégpain
the four-pion suppression in Fig. 7 with a centrality avexgoherent fraction of 32%
3%(stat)}+-9%(syst). However, the same coherent fraction fails toarghe suppression
at the three-pion level in Fil] 8. In particular, the suppi@s at the lowesQ3; and Q4
intervals cannot be resolved with the same coherent fraetsoneeded at high€s and
Qqintervals. The isospin effect for charged-pion cohereﬂEslﬂlD?lleﬂM has not been
calculated, since the expressions which incorporate isagmservation do not exist at
the four-pion level. FoG = 32%, the isospin effect increases the intercept of two- and
three-pion correlations by about 1% and 3%, respectivelye @ffect on the expected
correlations at finite relative momentum has not been caied|

2. Coulomb repulsion. Same-charge pions experience Coulomb and strong repwigitch
is stronger for quadruplets than for pairs. The four-piorulBmb corrections used in
this analysis correspond to the asymptotic limit of the @b wave function as men-
tioned before. Previous studi@[ﬂ] have justified the diseich wave functions for the
characteristic freeze-out volumes and relative momentdied in this analysis. We have
also shown that the cumulamf(s) of mixed-charge correlations are near unity after FSI
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——+ F++ [———+ [ ——++ [ ++++
Low K73,Krg | 1.07+0.01| 1.16+0.02 | 1.6+0.1 | 0.89+0.02 | 1.17+0.02
High K73,Kt4 | 1.06+0.01 | 1.13+0.02 | 1.2+0.1 | 0.89+0.02 | 1.09+0.02

Table 1: Thex factors used to modify the multipion FSI factor such thatdbppression of same-charge
correlations and the residues of mixed-charged cumulaetsesolved. The multipion FSI factor is
modified according toKz 4 — X|K3 4 — 1| 4 1. With — — —4 correlations, only4 was modified and not
K3 which is also used to isolate the cumulant. We further naéxitis moreQs and Q4 dependent for
the case oft + + and+ + ++. We find that for the lowedD3; andQ4 bin, x is about 1.2.

corrections. In the case that the genuine multipion Coulamtdractions are not negli-
gible, we modify the three- and four-pion FSI correlatiolysam amountx, needed to

resolve the suppression (residue) of same-charge (mixadye) correlations. The FSI
factors are modified askz 4 — X|Kzs4 — 1|+ 1. Thex factors given in Tati]1l demon-
strate that if the suppression is solely caused by genuitigom Coulomb effects, they
should modify the two-body approximation by up to 20% at |@kative momentum for

the case of same-charge three- and four-pion correlatiunsh large multibody Coulomb
correlations are not expected from the arguments provia&ef. ?ﬁ].

3. Mid-lived emitters. Uncertainties of mid-lived resonance productibn{10 MeV) result
in uncertainties of 44, f43, f42, andfs; [IE] which are used to isolate the QS correlations
from the measured distributions. We investigated the pdagiof decreasingfs4 while
equally increasinga1, 642, and 4f43 following the unitary probability constraintfs4 +
4f43+ 642+ f41 = 1. Decreasingfs4 by 0.08 resolves the suppression @ < 0.06
while 0.04 is more appropriate for larg®y. However, as a consequence the —+ and
— — 4+ cumulant correlations increase by as much as 0.2 aQgwvhich leaves larger
unexplained residues.

4. Background correlations. Event generators such as HIJING and AMPT [48] do not in-
clude the effects of QS nor FSI and may thus be used to estinaateground correla-
tions. We checked two-, three-, and four-pion correlatiorctions in the 5% most central
events from HIJING and AMPT. All orders of correlation fuizects were consistent with
unity.

5. Multipion phases. The expected correlations ignore the three- and fourdpaumier trans-
form phases@g]. Thes observable was extracted in ALICE[24] amedERMINATOR
] and no significanQ3; dependence was found. As the trend®ivith Q3 and Q4
is opposite to that expected from the pha@ [41], we find thelikely to explain the
suppression.

6. Multipion distortions. At high freeze-out phase-space density, all higher orger-s
metrizations, which are usually neglected, can contrilsigeificantly to all orders of
correlation functionslﬂ@B]. The distortions have beelcwdated for two-pion corre-
lations and recently for three- and four-pion correlati@]. The calculations suggest
that the ratio of measured to expected correlations is tofitis respect to this effect.
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7 Summary

Three- and four-pion QS correlations have been measured,ip°b, and Pb—Pb collisions
at the LHC. The measured same-charge multipion correliom compared to the expectation
from lower order experimental correlation functions. Arsfgant suppression of multipion
Bose-Einstein correlations has been observed in Pb—PisionB. The ratio of measured to
expected same-charge four-pion correlations is abauiéow unity in our lowesQ, interval.

In pp and p—Pb collisions, owing to background correlatiah¥ow multiplicity in two-pion
correlation functions, we compare the measured four-parretations to the expectation from
fits to three-pion correlationgg(3) andes(3)). Three-pion correlation functions contain sub-
stantially larger QS correlations and reduced backgrownrcelations, which makes them a
preferred base for higher order expectations in pp and p-efisions. We do not observe
a significant suppression of four-pion correlations in pp pePb collisions. However, the
more limited dimensionality and fitting procedure to thpgen correlations makeS,(3) and
e4(3) expectations less accurate thag(2). Nevertheless, despite the presence of the non-
femtoscopic background, we also performed the analysipiana p—Pb collisions with the
first type of expected correlationB4(2) andE3(2)). No significant suppression was observed
in pp or p—Pb collisions, although the unknown strength efilbn-femtoscopic background
prevents an absolute statement.

Mixed-charge four-pion correlations have also been measurhey are used to demonstrate
the effectiveness of the cumulant isolation via the everxing techniques as well as that of
the FSI, muon, and momentum resolution corrections. Thedicharge cumulant correlations
are shown to be near unity although a finite residue exists dth types of mixed-charge
correlations.

The suppression of same-charge three- and four-pion aetioes in Fig[ V¥ an@]8 cannot be
unambiguously resolved with any of the possible origingused. For example, if genuine
multipion Coulomb interactions are non negligible, a larggease of as much as 20% beyond
the two-body approximation would be needed to account ferdhserved suppression. On
the other hand, a coherent fraction of about 32%8%6(stat)4+-9%(syst) could largely explain
the four-pion suppression, but the same value cannot exiplaithree-pion suppression. There
does not appear to be a significant centrality dependenbe &xtracted coherent fractions. The
weakKT, dependence of the coherent fractions does not favor theateymof Bose-Einstein
condensates nor disoriented chiral condensates, whiaxpeeted to radiate mostly at lquy.
The suppression observed in this analysis appears to eatégast up tqr ~ 340 MeVEL.
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A Appendix

Given the experimentally measured two-pion correlatiamcfions, one may build the expec-
tation for higher order correlation functions using the a&tpns of quantum statistics. The
measured two-pion correlation functions are first coreedte experimental distortions: mo-
mentum resolution and muon contamination. Correctionddiog-lived emitters and FSI are
then performed to extract the genuine QS correlation acwprd C, = (1 — 2) + fCZKZCSS
[@]. In the case of no coherent emission, the pair-exchamagnitudesTj;) can be extracted
according toCSS: 1+Ti2. The extracted pair-exchange magnitudes are then useddd e
expectation for higher order QS correlatioﬁs@, 18, 19]thie absence of coherent emission
and multipion phases, the three- and four-pion expectedd@$lations are

Es = 1+[T+cp]

+  2T12T23T31, (A.1)
Es = 1+[T3+cp]

+ [T&T5H+cp]

+ 2[T17_T23T31 + Cp]

-+ 2[T12T23T34T41 +C. p] , (A.2)

where cp. stands for the cyclically permuted terms. The equationsiwvimclude partial co-
herence can be found in Refl E 19]. Thefactors are tabulated from the first pass over
the data and used to build higher order correlations by metasveight applied to the fully
mixed-event distribution in the second and final pass.

Each symmetrization sequence is formed with a product afgoahange magnitudes. Single-
pair, double-pair, triplet, and quadruplet sequences epeesented by Tj, Tika%, Tij Tik T

Tij Ti T Tii, respectively. The sum of the appropriate symmetrizatemjusnces yields the ex-
pected versions (ﬁfs, a?s, b?s, andc?s.
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