NOTIZEN

Zur Reaktion von $(\eta^5-C_5H_5)Fe(CO)_2Br$ mit Se(SiMe₃)₂ Die Kristallstruktur von $[Se{Fe(CO)_2(C_5H_5)}_3]_2[Fe_4Se_4Br_4]$

Reaction of

 $(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}Br$ with $Se(SiMe_{3})_{2}$ The Crystal Structure of $[Se{Fe(CO)_{2}(C_{5}H_{5})}_{3}]_{2}[Fe_{4}Se_{4}Br_{4}]$

Dieter Fenske*, Paul Maué und Kurt Merzweiler

Institut für Anorganische Chemie der Universität Frankfurt, Niederurseler Hang, D-6000 Frankfurt/Main 50

Z. Naturforsch. **42b**, 928–930 (1987); eingegangen am 17. Februar 1987

Synthesis, X-Ray, Crystal Structure of $[Fe_4Se_4Br_4]^{2-}$ -Cluster

 $(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}Br$ reacts with Se(SiMe₃)₂ to form the title compound **1**, which has been characterized by X-ray crystal structural analysis. **1** crystallizes in the space group P2₁2₁2₁ with 4 formula units per unit cell. **1** consists of [Se{Fe(CO)₂(C₅H₅)}₃]⁺cations and [Fe₄Se₄Br₄]²⁻-anions, the latter with a heterocubane structure.

Einleitung

Bei der Reaktion von $[MCl_2(PPh_3)_2]$ (M = Co, Ni) mit E(SiMe_3)₂ (E = S, Se) entstehen metallreiche Cluster wie z.B. $[Co_4E_4(PPh_3)_4]$, $[Co_6E_8(PPh_3)_6]$, $[Co_9E_{11}(PPh_3)_6]$, $[Ni_8S_6Cl_2(PPh_3)_6]$, $[Ni_6Se_5(PPh_3)_6]$, $[Ni_1Se_{15}(PPh_3)_6]$ und $[Ni_{34}Se_{22}(PPh_3)_{10}]$ [1]. Die Bildung großer Clusterverbindungen ist abhängig vom verwendeten Lösungsmittel und dem Verhältnis von MCl_2: E(SiMe_3)_2. Offenbar ist aber auch das verwendete Phosphan von Bedeutung, da bei der Umsetzung von $[MCl_2(PR_3)_2]$ (R = Ph, Et, But) mit E(SiMe_3)_2 unterschiedliche Komplexe gebildet werden. Wir haben nun untersucht, ob Cyclopentadienylkomplexe der Übergangsmetallhalogenide mit E(SiMe_3)_2 zu Clustern reagieren.

Ergebnisse

Bei der Umsetzung von $(\eta^5-C_5H_5)Fe(CO)_2Br$ [2] mit Se(SiMe₃)₂ [3] beobachtet man (in THF) eine rasche Verfärbung von rot nach dunkelbraun. Nach 2 d Reaktionszeit wird das Lösungsmittel im Vakuum abgesaugt und der Rückstand in Toluol aufgenommen. Dabei fällt ein feinkristalliner Niederschlag aus, der aus **1** besteht.

0 (0) (

$$CpFe(CO)_{2}Br \xrightarrow{Se(SiMe_{3})_{2}}$$

$$[Se{Fe(CO)_{2}Cp}_{3}]_{2}[Fe_{4}Se_{4}Br_{4}]$$

$$1$$

Aus $C_2H_4Cl_2$ kristallisiert **1** in Form brauner Kristalle aus. **1** ist in THF und $C_2H_4Cl_2$ löslich. Im IR-Spektrum (KBr-Verreibung) beobachtet man die ν -CO-Schwingungen des [Se{Fe(CO)₂Cp}₃]-Kations bei 2025, 2008 und 1975 cm⁻¹.

Zur Klärung der strukturellen Verhältnisse fertigten wir eine Kristallstrukturanalyse an [4]. 1 kristallisiert mit 2 fehlgeordneten Molekülen C₂H₄Cl₂ aus. Als Folge davon ist die Strukturverfeinerung nur bis zu einem *R*-Wert von 0,089 möglich. 1 besteht aus zwei isolierten [Se{Fe(CO)₂Cp}₃]⁺-Kationen und einem [Fe₄Se₄Br₄]²⁻-Anion. Abb. 1 gibt die Struktur des Kations wieder. In Übereinstimmung mit der 18-Elektronenregel sind drei 17-Elektronenfragmente $(FeCp(CO)_2)$ an den 3-Elektronendonator μ_3 -Se gebunden. Dementsprechend muß man die Fe-Se-Abstände (239-243 pm) als Einfachbindungen interpretieren. Die Fe3Se-Struktureinheit besteht aus einer abgeflachten Pyramide, bei der zwischen den Fe-Atomen (Fe-Fe: 400 pm) keine bindenden Wechselwirkungen vorliegen. Eine ähnliche Situation findet man auch im $(\mu_3$ -Se)[(Cp)MnFe₂(CO)₆] vor [5]. Im Sinne des Isolobalprinzips besteht eine Analogie zwischen $(CH_3)_3Se^+$ und $[Se{Fe(CO)_2Cp}_3]^+$ [6]. Ein mit $[Se{Fe(CO)_2Cp}_3]^+$ identisches Kation wurde erst kürzlich von W. A. Herrmann et al. durch Umsetzung von $(\mu$ -Se)[CpFe(CO)₂]₂ mit [CrFe(CO)₂(THF)][BF₄] erhalten [7]. Die Struktur des Anions enthält Abb. 2. Danach liegt ein [Fe₄Se₄Br₄]²⁻-Cluster vor, der aus einem Fe₄-Tetraeder (Fe1-Fe4) besteht, dessen Polyederflächen von vier μ_3 -Se^{2–}-Liganden (Se 1–Se 4) besetzt sind. Zusätzlich ist jedes Eisenatom an Br¹⁻-Liganden gebunden. Dadurch ist Eisen verzerrt tetraedrisch koordiniert. Heterocubancluster der Zusammensetzung $[Fe_4S_4X_4]^{2-}$ (X = Cl, SPh, SCH₂Ph, Br, I) wurden bereits früher synthetisiert und strukturell aufgeklärt [8]. Mit Ausnahme von $[Fe_4S_4I_4]^{2-}$ und $[Fe_4S_4Br_4]^{2-}$ sind Cluster mit Fe_4S_4 -Einheiten tetragonal verzerrt [8, 9]. Die im Anion von 1 gefundenen Werte bestätigen diesen Trend.

Ebenso wie z.B. im $[Fe_4S_4Cl_4]^{2-}$ (2) können die Fe-Fe-Abstände in zwei kurze (276,2 und 278,7(5) pm) und vier lange (280,2-282,5(5) pm)

^{*} Sonderdruckanforderungen an Prof. Dr. D. Fenske.

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932-0776/87/0700-0928/\$ 01.00/0

Abb. 1. Molekülstruktur des [Se(FeCp(CO)₂)₃]⁺-Kations im Kristall.

Bindungsabstände [pm]: Im Kation 1 (Se6, Fe8, Fe9, Fe10): Se6-Fe: 242,6-243,1(5), Fe-C(Cp): 215-217(2), Fe-C(Carbonyl): 170-175(2), C-O: 114-118(3), C(Cp)-C(Cp): 142(0).

Bindungswinkel [°]: Im Kation 1: Fe-Se-Fe: 112,9-113,6(2), O-C-Fe: 173-177(3), C(Carbonyl)-Fe-C(Carbonyl): 91,8-95,3(1,6), C(Carbonyl)-Fe-Se: 92-98(1,3).

Die Bindungsabstände und Bindungswinkel sind im zweiten Kation (Se5, Fe5, Fe6, Fe7) innerhalb der Standardabweichungen identisch mit den oben genannten Werten.

Abb. 2. Molekülstruktur des [Fe₄Se₄Br₄]²⁻-Anions im Kristall.

Bindungsabstände [pm]: Fe1-Fe2: 281,3(6), Fe1-Fe3: 276,2(6), Fe1-Fe4: 282,5(6), Fe2-Fe3: 280,2(5), Fe2-Fe4: 279,7(6), Fe3-Fe4: 280,1(5), Se1-Fe: 238,6-244,9(4), Se2-Fe: 237,6-241,9(4), Se 3-Fe: 235,1-243,3(4), Se 4-Fe: 238,5-243,3(5), Fe-Br: 234,9-236,7(5). Bindungswinkel [°]: Fe-Fe-Fe: 58,9-61,0(1), Br-Fe-Se: 104,8-119,7(2), Fe-Se-Fe:

69,3-72,0(2), Se-Fe-Se: 104,3-109,1(2).

Bindungen aufgeteilt werden. Die Fe-Fe-Fe-Bindungswinkel betragen $58,9-61,0^{\circ}$. Se···Se-Abstände bestehen aus zwei langen (391,8 und 394,8(5) pm) und vier kurzen (377,6-382,7(5) pm) Kontakten. Diese Werte sind jedoch weit oberhalb bindender Wechselwirkungen [1, 10]. Vier Fe-Se-Abstände liegen im Bereich von 235,1-238,6(5) pm, und acht Fe-Se-Bindungen sind mit 241,0-244,9(5) pm deutlich verlängert. Gegenüber **2** sind die Fe-Se-Fe-Winkel mit 69,3-72,0(2)° um etwa 2-4° kleiner.

Die übrigen Bindungslängen und Bindungswinkel weisen keine Besonderheiten auf.

Experimenteller Teil

Darstellung von $[Se{Fe(CO)_2(C_5H_5)}_3]_2[Fe_4Se_4Br_4]$

 $8 g(3,12 mmol) CpFe(CO)_2Br werden unter Argon$ in 100 ml THF gelöst und mit 7,30 g (3,24 mmol) Se(SiMe₃)₂ versetzt. Die Lösung verfärbt sich innerhalb weniger Minuten von rot nach dunkelbraun. Nach 2 d wird das Lösungsmittel im Vakuum abkondensiert und der Rückstand mit 100 ml Toluol versetzt. Dabei bildet sich ein braunes Öl, aus dem nach einem Tag ein feinkristalliner Niederschlag gebildet wird. Nach Filtration wird der Rückstand in $C_2H_4Cl_2$ gelöst und mit Pentan überschichtet. An der Phasengrenze kristallisiert 2,4 g metallisch glänzendes **1** aus.

 $C_{42}H_{30}Br_4Fe_{10}O_{12}Se_6$ (2078,56)

Ber. C 24,27 H 1,46 Fe 26,87, Gef. C 24,05 H 1,38 Fe 26,56.

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie unterstützt.

- D. Fenske, Nachr. Chem. Tech. Lab. 34, 432 (1986);
 D. Fenske, J. Hachgenei und J. Ohmer, Angew. Chem. 97, 684 (1985); Angew. Chem., Int. Ed. Engl. 24, 706 (1985); D. Fenske, J. Ohmer und J. Hachgenei, Angew. Chem. 97, 993 (1985); Angew. Chem., Int. Ed. Engl. 24, 993 (1985); D. Fenske und J. Ohmer, Angew. Chem. 99, 155 (1987); Angew. Chem., Int. Ed. Engl. 26, 148 (1987).
- [2] R. J. Haines und A. L. du Preez, J. Chem. Soc. A 1970, 2341.
- [3] M. Schmidt und H. Ruf, Z. Anorg. Allg. Chem. 321, 270 (1963).
- [4] **1** kristallisiert aus $C_2H_4Cl_2$ /Pentan mit 2 Molekülen $C_2H_4Cl_2$ /Formeleinheit aus. Raumgruppe $P_{2_12_12_1}$, Gitterkonstanten (180 K): a = 1508,3(7), b = 1854,4(7), c = 2445,0(11) pm, V = 6838,6 Å³, D_{ber} = 2,19 g cm³.

Datensammlung: Siemens AED/2, $2\theta \ge 53^{\circ}$, MoK_a, 11115 Reflexe, davon 6022 mit $I \ge 2\sigma(I)$, empirische Absorptionskorrektur. *Strukturlösung:* Pattersonmethoden, Fe, Br, Se aniso-

trop, C, O isotrop verfeinert. Das mitkristallisierende Lösungsmittel ist fehlgeordnet. Cp als starre Gruppe (C-C: 142 pm) verfeinert. R = 0.089, $R_w = 0.078$, $w = [\sigma_{(F)}^2 + 0.0008 F^2]^{-1}$.

Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie, Physik, Mathematik, D-7514 Eggenstein-Leopoldshafen, unter der Angabe der Hinterlegungsnummer CSD 52436, des Autors und des Zeitschriftenzitats angefordert werden.

- [5] W. A. Herrmann, J. Rohrmann, M. L. Ziegler und Th. Zahn, J. Organomet. Chem. 295, 175 (1985).
- [6] R. Hoffmann, Angew. Chem. 94, 725 (1982); Angew. Chem., Int. Ed. Engl. 21, 711 (1982); F. G. A. Stone, Angew. Chem. 96, 85 (1984); Angew. Chem., Int. Ed. Engl. 23, 85 (1984).
- [7] Ch. Hecht, E. Herdtweck, J. Rohrmann und W. A. Herrmann, J. Organometal. Chem., zur Publikation eingereicht.
- [8] M. A. Bobrik, K. O. Hodgson und R. H. Holm, Inorg. Chem. **16**, 1851 (1977); M. G. Kanatzidis, D. Coucouvanis, A. Kostikas und V. Papaefthymiou, J. Am. Chem. Soc. **107**, 4925 (1985); W. Saak und S. Pohl, Z. Naturforsch. **40b**, 1105 (1985); A. Müller, N. Schladerbeck und H. Bögge, Chimia **39**, 24 (1985).
- [9] B. A. Averill, T. Herskovitz, R. H. Holm und J. A. Ibers, J. Am. Chem. Soc. **95**, 3523 (1973); K. S. Hagen, A. D. Watson und R. H. Holm, Inorg. Chem. **23**, 2984 (1984).
- [10] E. H. Henninger, R. C. Buschert und L. Heaton, J. Chem. Phys. 46, 586 (1967); R. K. McMullan, D. J. Prince und J. D. Corbett, Inorg. Chem. 10, 1749 (1971).