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Deutsche Zusammenfassung

Das in der zweiten Hälfte des 20. Jahrhundert entwickelte Standardmodell der Teilchenphysik
ist eine Quantenfeldtheorie zur mikroskopischen Beschreibung von drei der vier fundamentalen
Kräfte der Natur, der elektromagnetischen, der schwachen und der starken Wechselwirkung. Die
vorliegende Arbeit beschränkt sich auf die Untersuchung des Sektors der starken Wechselwirkung,
der innerhalb des Standardmodells durch die Quantenchromodynamik (QCD) beschrieben wird.
Die Konstituenten der Quantenchromodynamik sind Teilchen mit verschiedener Masse und
elektrischer Ladung, die als Quarks bezeichnet werden. Sie besitzen einen Eigendrehimpuls (Spin)
von 1/2 und zählen somit zur Klasse der Fermionen. Aufgrund ihrer Eigenschaften unterscheidet
man sechs verschiedene Sorten, die man als Quarks von unterschiedlichem flavor (Geschmack)
bezeichnet. Die Wechselwirkung zwischen den Quarks wird durch Teilchen von ganzzahligem
Spin vermittelt, die man als Gluonen bezeichnet. Diese bosonischen Austauschteilchen tragen
selbst keine Masse und können darüber hinaus mit sich selbst wechselwirken. Entscheidend ist,
dass die Stärke der Wechselwirkung abhängig von der Energieskala des Systems ist, was sich im
Phänomen der laufenden Kopplung manifestiert. Bei niederen bis mittleren Energien und Dichten
sind Quarks und Gluonen stark gekoppelt und man beobachtet das Phänomen des Confinement.
Im Gegensatz zu anderen fundamentalen Bausteinen von Materie, wie beispielsweise Elektronen,
ist es bei diesen Energien nicht möglich Quarks und Gluonen zu isolieren. Sie treten ausschließlich
in gebundenen Zuständen, sogenannten Hadronen von mindestens drei Quarks (Baryonen) oder
einem Quark-Antiquark Paar (Mesonen) auf. Auf Grundlage dessen, ordnet man Quarks eine
Farbladung („chromo“) zu, so dass Hadronen farbneutrale Zustände darstellen, die entweder
durch additive Farbmischung dreier Farben (rgb-Modell) oder durch Kombination von Farbe
und Antifarbe gebildet werden. Erst bei hohen Energien und Dichten, wird die Kopplung der
starken Wechselwirkung geringer und geht im Grenzfall in eine freie Theorie von Quarks und
Gluonen über (asymptotische Freiheit). Es kommt somit zu einem Phasenübergang, bei dem
sich die gebundenen Zustände aus Quarks und Gluonen auflösen, einer deconfinement transition.
Die Quantenchromodynamik stellt eine Eichtheorie dar und ist somit invariant unter lokalen,
nicht-Abelschen SU(3) Eichtransformationen. Hierbei wird die Dynamik der Gluonen im
Rahmen einer SU(3) Yang-Mills Theorie beschrieben und die Kopplung von Quarks und
Gluonen erfolgt mithilfe der kovarianten Ableitung. Im Bereich der starken Kopplung lassen
sich Berechnungen nicht mithilfe von Störungstheorie durchführen und es ist notwendig auf
nicht-pertubative Methoden zurückzugreifen. Neben einer Vielzahl von effektiven Theorien ist
hierbei vor allem das Konzept der Gitterquantenchromodynamik erfolgreich. Die zentral Idee
der Gitter-QCD ist, die kontinuierliche Raumzeit durch ein diskretes Gitter, typischerweise mit
isotropem Gitterabstand, zu ersetzen und die Theorie ohne Verletzung der Eichinvarianz zu
diskretisieren. Die Berechnung von Observablen erfolgt dann beispielsweise durch das Bestimmen
von Korrelationsfunktionen, die durch das numerische Lösen von Pfadintegralen ausgewertet
werden können. Diese Berechnung hochdimensionaler Integrale erfolgt typischerweise mithilfe
von Monte-Carlo Integration, bei der man einen Teil des Integranden der Korrelationsfunktion
als ein Wahrscheinlichkeitsmaß auffasst, um den Wert des Pfadintegrals mithilfe von importance
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vi Deutsche Zusammenfassung

sampling entlang einer Markow-Kette, statistisch zu approximieren. Bei diesem Verfahren, ist es
typischerweise notwendig, die reale Zeit anhand einer Wick-Rotation auf die imaginäre Achse zu
rotieren und somit eine euklidische Zeit zu erhalten. Gitter-QCD eignet sich somit besonders
zur Berechnung statischer Größen wie bspw. den Hadronmassen, oder auch für eine Anwendung
in der statistischen Physik wie beispielsweise für die Berechnung der Zustandsgleichung der
QCD.
Durch den Wechsel zu euklidischer Zeit ist es nicht mehr direkt möglich zeitabhängige physikalis-
che Größen, wie bspw. die Energiedichte und den Druck in einem Systems außerhalb des
thermischen Gleichgewichts zu bestimmen. Im nicht-pertubativen Bereich ist somit eine
alternative Beschreibung, z.B. anhand von effektiven Modellen erforderlich, welche die reelle,
physikalische Zeit beibehalten. Eine Möglichkeit bietet hierbei eine klassische Approximation
der Theorie, die erlaubt, Quanteneffekte in führender Ordnung zu vernachlässigen und die
Dynamik des Systems anhand von Hamiltonschen Bewegungsgleichungen für klassische Felder
zu entwickeln. Für die Validität einer klassischen Approximation ist es zunächst notwendig, dass
die klassischen Feldmoden im infraroten Bereich (IR-Skala) gegenüber den Quantenkorrekturen
im ultravioletten Bereich (UV-Skala) dominieren. Dies ist nur in einer bosonischen Theorie
möglich, da das Paulische Ausschlussprinzip für Fermionen eine Überbesetzung (overoccupa-
tion) spezifischer Feldmoden verbietet. Somit kann ausschließlich der Yang-Mills Sektor der
Quantenchromodynamik als klassisch approximiert werden. Darüber hinaus muss die Theorie
hinreichend schwach gekoppelt sein, was im Falle der QCD nur nahe der asymptotischen Freiheit
bei hohen Energien gewährleistet ist. Eine Diskretisierung auf dem Gitter bietet nun die
Möglichkeit die Impulse der UV-Skala durch die Gitterregulasisierung abzuschneiden (Impuls-
Cutoff des Gitters) und gleichzeitig die Eichinvarianz der Theorie bei der Diskretisierung
zu gewährleisten. Es ist allerdings nicht mehr möglich in einer klassischen Approximation
auf dem Gitter einen Kontinuumslimes durchzuführen, bei dem der Gitterabstand gegen
Null läuft und man das Ergebnis des Kontinuums extrapoliert, da die klassische Theorie
in diesem Grenzfall divergiert. In Analogie zur UV-Divergenz der klassischen Beschreibung
der Schwarzkörperstrahlung, wird dieses Phänomen häufig als Rayleigh-Jeans Divergenz der
klassischen Theorie bezeichnet. Als Konsequenz sind insbesondere die Observablen, die im
Rahmen einer klassischen Approximation auf dem Gitter berechnet werden, abhängig vom
Gitterabstand. Es ist allerdings möglich den Gitterabstand über ein Abgleichen (matching) der
klassischen Theorie mit einer Kontinuumstheorie festzulegen.
Um einen Phasenübergang innerhalb der QCD von einem stark gekoppelten, hin zu einem schwach
gekoppelten System (quasi-)freier Quarks und Gluonen zu untersuchen, benötigt man ein System
mit hoher Energie und Dichte. Ein solches ist durch eine ultrarelativistische, hochenergetische
Kollision schwerer Ionen gegeben, die sich gut experimentell untersuchen lässt. Derartige
Kollisionen von typischerweise Blei- oder Goldkernen, werden unter anderem am Relativistic
Heavy Ion Collider (RHIC) in Brookhaven (USA) oder auch am Large Hadron Collider (LHC) in
Genf (Schweiz/Frankreich) untersucht. In naher Zukunft sollen diese Experimente noch um die
Facility for Antiproton and Ion Research (FAIR) in Darmstadt (Deutschland) ergänzt werden. In
den jeweiligen Experimenten werden die Ionen auf ein hohes Perzentil der Lichtgeschwindigkeit
beschleunigt und anschließend möglichst zentral kollidiert. Aufgrund dessen wird ihre Struktur
zerstört und das System bis auf die unterste Ebene der Elementarteilchen, sprich der Quarks und
Gluonen zerlegt. Es ist somit davon auszugehen, dass es zu einem Phasenübergang kommt bei
dem Quarks und Gluonen in der Frühphase der Kollision frei vorliegen. Aufgrund der Expansion
des heißen Feuerballs aus Elementarteilchen nimmt die Energiedichte allerdings rapide ab und in
Folge dessen formieren sich erneut Hadronen aus den freien Quarks und Gluonen, bis schließlich,
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nach einer Lebenszeit von ca. 10 fm, das System in sich zusammenbricht (freeze-out). Auf
der Grundlage der Experimente konnte gezeigt werden, dass sich das System bereits in der
Frühphase der Kollision nach ungefähr ∼ 1 fm gut mithilfe von Hydrodynamik beschreiben lässt.
Demnach verhält sich das Medium aus freien Quarks und Gluonen ähnlich einer Flüssigkeit
und wird als Quark-Gluonen Plasma (QGP) bezeichnet. Eine zentrale Frage der Frühphase
einer Schwerionenkollision ist hierbei die Suche nach einem Thermalisierungsprozess in der
QCD. Unmittelbar nach der Kollision der Ionen ist das System außerhalb des thermischen
Gleichgewichtes, allerdings wird für die Beschreibung des QGP mithilfe von Hydrodynamik
zumindest ein lokales thermisches Gleichgewicht (local thermal equilibrium (LTE)) benötigt. In
dieser Arbeit wird dabei der für das Erreichen des LTE wichtige Teilaspekt der Isotropisierung
des Druckes untersucht.
Den in dieser Arbeit durchgeführten Simulationen der Frühphase einer Schwerionenkollision,
liegt ein effektives Modell zugrunde, das auf der Beobachtung basiert, dass die Gluonendichte
der kollidierenden Nuklei bei einer bestimmten Impulsskala saturiert. Beschleunigt man die
schweren Ionen auf hohe Geschwindigkeiten und lässt sie zentral kollidieren, so emittieren die
hochenergetischen Gluonen der Nuklei kaskadenartig niederenergetische Gluonen (BFKL-ladder)
durch Bremsstrahlung. Die Gluonendichte saturiert sobald der Wirkungsquerschnitt für die
Rekombination von Gluonen und der Wirkungsquerschnitt für die Emission von Bremsstrahlung
von gleicher Ordnung sind. Dieser Punkt ist durch eine spezifische Impulsskala bestimmt,
die als saturation scale bezeichnet wird. Die effektive Beschreibung erfolgt nun anhand einer
Separation der Energieskalen der unterschiedlichen Gluonen. Die hochenergetischen Gluonen
der UV-Skala (sowie die Valenz- und Sea-Quarks) können während der Kollision als statisch
betrachtet werden, da sie aufgrund der Lorentzschen Zeitdilatation für die Dauer der Kollision
eingefroren sind (frozen-in). Diese agieren nun als statischer Hintergundstrom für die Dynamik
der niederenergetischen Gluonen (IR-Skala), und deren Dynamik kann in führender Ordnung
anhand der klassischen Bewegungsgleichungen beschrieben werden. Da Gluonen Farbladung
tragen und die hochenergetischen Gluonen in einem System mit saturierter Gluonendichte
(ähnlich einem Kondensat) die Dynamik der niederenergetischen Gluonen über einen statischen
Farbstrom beeinflussen, wird diese effektive Theorie als Theorie des Farbglaskondensats (Color-
Glass Condensate) bezeichnet.
In der vorliegenden Arbeit verwenden wir diese effektive Theorie für die Konstruktion der
Eichfelder des Yang-Mills Sektors als Anfangsbedingung in einer Gittersimulation auf einem
dreidimensionalen Gitter mit reeller Zeit. Das so generierte Ensemble aus klassischen SU(3)
Yang-Mills Feldern stellt einen Übergangszustand zwischen dem Color-Glass Condensate und
dem Quark-Gluonen Plasma dar und wird als Glasma bezeichnet. Die Dynamik des Glasmas
lässt sich nun in führender Ordnung anhand der klassischen Bewegungsgleichungen entwickeln.
Das Glasma wird unter anderem von zwei zentralen Eigenschaften charakterisiert. Zum Einen,
bildet das System auf der Grundlage des statischen Farbstroms hochenergetischer Gluonen
longitudinale Röhren mit konstantem Farbfluss (color-flux tubes) aus. Entlang dieser Röhren
ist das chromo-elektrische Feld des Systems konstant, während es in transversaler Richtung
verschwindet. In einem naiven Bild, kann man das System somit als eine Art Plattenkondensator
beschreiben, bei denen die statischen, hochenergetischen Gluonen die mit Farbladung geladenen
Platten darstellen, zwischen denen sich ein chromo-elektrisches Feld ausbildet. Zum Zweiten
weist der Druck des Systems anfänglich eine hohe Anisotropie auf. Eine explizite Rechnung
ergibt, dass der Druck in longitudinaler Richtung dem transversalen Druck mit umgekehrtem
Vorzeichen entspricht. Eine zentrale Frage bei klassischen Simulationen des Glasmas ist somit,
inwiefern die Dynamik des Systems zu einer Isotropisierung des Druckes führt und ob sich das
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System somit in Richtung eines lokalen thermischen Gleichgewichts entwickelt.
In der Literatur konnte bereits mithilfe von klassischen Simulationen von reiner Yang-Mills The-
orie gezeigt werden, dass es zu keiner Druckisotropisierung kommt und stattdessen ein Zustand
erreicht wird, bei denen die Gluonen (quasi-)wechselwirkungsfrei propagieren, das sogenannte
free-streaming limit. Dies ist sogar der Fall, wenn man die Expansion des Systems vernachlässigt
und in einer statischen Box simuliert. Grund hierfür ist, dass die Anfangsbedingungen invariant
unter longitudinalen Lorentztransformation sind und die klassischen Bewegungsgleichungen diese
Invarianz erhalten. Somit ist das System in einer statischen Box effektiv zweidimensional und
insbesondere wird die Struktur der longitudinalen Röhren mit konstantem Farbfluss erhalten, so
dass es zu keiner Druckisotropisierung kommt. In der statischen Box konnte allerdings gezeigt
werden, dass ein explizites Brechen der longitudinalen Boostinvarianz dazu führt, dass sich
die Röhren mit konstantem Farbfluss mit der Zeit auflösen und es zu einer Isotropisierung
des Drucks kommt. Eine solche explizite Verletzung der Boostinvarianz ist motiviert durch
Quantenfluktuationen und hat das Ausbilden einer Instabilität zur Folge, die als chromo-
Weibel-Instabilität bezeichnet wird. Wird diese Instabilität durch die Quantenfluktuationen
induziert, verbreitet sie sich über das komplette Gitter und führt dazu, dass in einer Kaskade
hochenergetische Moden besetzt werden, was schließlich auch zu einer Isotropisierung des Druckes
führt. In einer longitudinal expandierenden Box konnte eine ähnliche Instabilität identifiziert
werden, allerdings verhindert die rapide Expansion ein Isotropisierung und das System fällt in
das free-streaming limit.
Bisherige Simulationen des Glasmas berücksichtigen nur reine Yang-Mills Theorie und vernach-
lässigen somit den Einfluss von Fermionen auf das System. Fermionen können zum einen nach
der Kollision der Ionen im Medium gefangen werden, viel eher aber durch Paarerzeugung beim
Zerfall von Gluonen entstehen. Es ist zu erwarten, dass eine Kopplung der klassischen Eichfelder
des Glasmas an Fermionen einen mindestens gleichwertigen Einfluss auf das System ausübt, wie
Quantenkorrekturen in der Yang-Mills Theorie. Unter Berücksichtigung der Beobachtung, dass
Quantenfluktuationen im Yang-Mills Sektor einen signifikanten Beitrag zur Dynamik des Glasmas
liefern und den Druck des Systems entscheidend beeinflussen, wird in dieser Arbeit untersucht,
inwiefern eine Wechselwirkung der klassischen Eichfelder mit Fermionen in einer statischen und
einer longitudinal expandierenden Box das System beeinflussen. Hierzu wird der fermionische
Sektor der QCD unter Verwendung der Vakuumlösung der Dirac Gleichung initialisiert und
im ersten Zeitschritt der Simulation an den klassischen Yang-Mills Sektor gekoppelt. Wie
eingangs beschrieben, verbietet das Paulische Ausschlussprinizip eine klassische Approximation
der Fermionen und sie stellen somit eine Quelle für Quanteneffekte dar. Infolgedessen ist
es notwendig eine effektive Approximation der QCD zu entwickeln, die es erlaubt auf einem
dreidimensionalen Gitter mit reeller Zeit die Dynamik von klassischen Eichfeldern, gekoppelt
an Fermionen zu beschreiben. Im vierten Kapitel dieser Arbeit präsentieren wir eine solche,
semi-klassische Approximation der QCD. Auf der Grundlage dessen ist es anschließend möglich
die Bewegungsgleichungen der klassischen Eichfelder und insbesondere des chromo-elektrischen
Feldes zu bestimmen, in der die Fermionen in der Form eines Farbstroms eingehen, der durch
eine Auswertung des statistischen Propagators bestimmt ist. In Verbindung mit dem Lösen der
Dirac Gleichung für die Dynamik der Fermionen, ist es somit möglich alle Felder mithilfe einer
leap-frog Methode zum numerischen Lösen von Differentialgleichungen in der Zeit zu entwickeln.
Im ersten Teil der Arbeit betrachten wir das System in einer statischen Box. Neben der
Diskussion einer Renormierung der semi-klassischen Approximation, die eine korrekte Dynamik
der Eich- und Fermionfelder in einer regularisierten Theorie auf dem Gitter gewährleistet, leiten
wir Observablen her, die in der Simulation numerisch berechnet werden. Wir bestimmen hierbei
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die Energiedichte des Systems, sowie den Druck anhand der Diagonalelemente des Energie-
Impuls-Tensors der QCD. Darüber hinaus präsentieren wir eine eichinvariante Möglichkeit zur
Auswertung der Besetzung der Energiemoden des Systems, basierend auf der Identifikation
der Energiemoden mit den Moden der fouriertransformierten Energiedichte des Systems. Die
Berechnung der fermionischen Observablen erfolgt mithilfe einer stochastischen Methode, bei
der die Erwartungswerte der fermionischen Feldoperatoren durch Mittelwerte eines Ensembles
stochastischer Fermionen approximiert werden. Da es wie eingangs beschrieben nicht möglich
ist im Falle der semi-klassischen Approximation einen Kontinuumslimes durchzuführen, legen
wir den Gitterabstand mithilfe eines Matching fest. Hierfür matchen wir die Energiedichte
unseres Systems an die abgeschätzte Energiedichte der Frühphase in einer Schwerionenkollision,
die mithilfe einer effektiven Kontinuumstheorie, ebenfalls basierend auf dem Phänomen der
Gluonsaturierung (saturation model), bestimmt wurde.
In der statischen Box konnten wir mithilfe von Gittersimulationen der semi-klassischen Ap-
proximation der QCD zeigen, dass das System aus klassischen Yang-Mills Feldern des Glasmas,
durch die Kopplung an Vakuum-Fermionen isotropisiert. Ähnlich der chromo-Weibel Insta-
bilität in reiner Yang-Mills Theorie mit explizit gebrochener longitudinaler Boostinvarianz,
führt die Wechselwirkung zwischen den Feldern zu einer Besetzung hochenergetischer Moden
und ein Isotropisierungsprozess setzt ein. Die Besetzung der Moden erfolgt hierbei durch
die Rückkopplung der Fermionen auf die Yang-Mills Felder und den damit verbundenen
Energietransfer. Wir konnten entsprechend zeigen, dass ein Reduzieren der Kopplung den
Prozess verlangsamt, wohingegen eine Verdopplung der Freiheitsgrade des fermionischen Sektors,
durch die Hinzunahme eines weiteren Quarkflavor mit gleicher Masse (entartete Quarks), die
Equilibrierung der Besetzung der Energiemoden, sowie die Isotropisierung beschleunigt. Darüber
hinaus konnten wir zeigen, dass dieser Prozess im Wesentlichen unabhängig von der gewählten
Masse der Quarks ist, wobei wir Massen von der Ordnung des strange-Quarks und der up/down-
Quarks getestet haben. Insbesondere leichte Quarkmassen sind aufgrund der hohen Energie-
und Impulsskala des Glasmas bereits nahe dem ultrarelativistischen Grenzfall masseloser Quarks
zu verorten. Verbunden mit der Equilibrierung der Besetzung der Energiemoden des Systems,
konnten wir ebenfalls beobachten, dass sich die für das Glasma charakteristische Struktur
der Röhren mit konstantem Farbfluss, mit fortlaufender Zeit auflöst. Im Gegensatz zu reiner
Yang-Mills Theorie mit explizit gebrochener Boostinvarianz geschieht dies nicht durch das
Ausbilden räumlich begrenzter Filamente aufgrund einer chromo-Weibel Instabilität, die sich
anschließend rapide auf das gesamte Gitter übertragen, sondern ist an jedem Gitterpunkt präsent.
Abseits der beobachteten Isotropisierung ist jedoch zentral, dass die übermäßige Besetzung
niederenergetischer Moden im Yang-Mills Sektor, die eine notwendige Bedingung für die Validität
der klassischen Approximation der Eichfelder darstellt, aufgrund der Wechselwirkung mit den
Fermionen im Laufe der Zeit abnimmt. Zu späten Simulationszeiten konkurriert somit die
Druckisotropisierung mit der Klassizität des Systems und die Approximation verliert aller
Voraussicht nach ihre Gültigkeit.
In einem zweiten Abschnitt wurde das Modell von der statischen auf eine longitudinal ex-
pandierende Box erweitert, welche besser die physikalische Realität einer Schwerionenkollision
modelliert. Die Beschreibung eines derartigen Systems erfolgt mithilfe eines spezifischen
Koordinatensystems, dass als Milne- oder Bjorken-Koordinaten bezeichnet wird und dem eine
longitudinale Expansion geometrisch immanent ist (comoving Koordinaten). Infolge dessen war es
notwendig die Bewegungsgleichungen der semi-klassischen Approximation, sowie die Observablen
auf das neue Koordinatensystem anzupassen. Hierbei musste insbesondere die freie Dirac-
Gleichung in Milne-Koordinaten gelöst werden, deren Vakuumlösung die Anfangsbedingung
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für den Fermion Sektor bildet. Aufgrund der nichtlinearen Zeitabhängigkeit der freien Dirac-
Gleichung in der expandierenden Box, war es hierbei notwendig eine Variante der Besselschen
Differenzialgleichung zu lösen, um den Vakuumspinor zu konstruieren. Die Initialisierung des
Yang-Mills Sektors erfolgte, wie zuvor in der statischen Box, mithilfe der effektiven Theorie des
Farbglaskondensats. Ebenfalls in Analogie zur statischen Box, ist es möglich anschließend den
Gitterabstand über ein Matching-Verfahren für die Energiedichte des Systems festzulegen.
Wir konnten durch die Simulation des expandierenden Systems zeigen, dass im Gegensatz
zur statischen Box, keine Druckisotropisierung erfolgt. Zwar wird die anfängliche starke
Anisotropie des Systems aufgelöst, allerdings fällt es anschließend in das free-streaming limit,
charakterisiert durch einen Abfall der Energiedichte, der invers proportional zur Zeit ist, einen
Abfall des longitudinalen Druckes auf Null, sowie ein Verhältnis von transversalem Druck
zu Energiedichte von ein-halb. Wie in der statischen Box ist diese Beobachtung unabhängig
von der gewählten Masse der Fermionen. Weiterhin ist im Vergleich zur statischen Box eine
Besetzung hochenergetischer Moden durch den Energietransfer zwischen beiden Sektoren in der
expandierenden Box deutlich reduziert. Grund hierfür ist zum einen die rapide longitudinale
Expansion, die der Wechselwirkung entgegenwirkt und zum anderen die Tatsache, dass die
Energiemoden des Systems durch die Expansion zusätzlich abgesenkt werden und somit neue
niederenergetische Moden geschaffen werden. Der Einfluss der Schnelligkeit der Expansion ließ
sich bestätigen, indem ein langsam expandierendes System aus klassischen Yang-Mills Feldern
des Glasmas und Fermionen simuliert wurde, welches zwar keine deutliche Druckisotropisierung
zeigt, allerdings nicht in das free-streaming limit fällt. Wir konnten darüber hinaus zeigen,
dass die Effekte einer induzierten Instabilität durch das explizite Brechen der longitudinalen
Boostinvarianz im Yang-Mills Sektor und eine Instabilität durch das koppeln an Fermionen
kombinieren. Nichtsdestotrotz verhindert die longitudinale Expansion eine Isotropisierung des
Druckes. Ein Herabsetzen der Kopplung zeigte wie erwartet, dass hochenergetische Moden noch
langsamer besetzt werden. Ein Verdoppeln der Freiheitsgrade des Fermion Sektors, durch die
Hinzunahme eines weiteren, entarteten Quark-flavors, zeigte hingegen nur marginale Effekte
auf die Besetzung der Energiemoden. In beiden Fällen konnte keine Druckisotropie erreicht
werden. Durch die langsamere Besetzung hochenergetischer Moden in der expandierenden
Box ist allerdings davon auszugehen, dass im Gegenteil zur statischen Box, die klassische
Approximation auf längeren Zeitskalen valide ist, da die Überbesetzung klassischer Feldmoden
länger gewährleistet ist.
Zusammenfassend konnten wir in dieser Arbeit zeigen, dass Quanteneffekte eine entscheidende
Rolle für die Evolution des Mediums in der Frühphase einer Schwerionenkollision, hin zu
einem System im lokalen thermischen Gleichgewicht spielen. Wir konnten dabei zeigen, dass
die Kopplung der klassischen Yang-Mills Felder an Fermionen einen ähnlichen Effekt auf die
Dynamik des Systems hat wie ein explizites Brechen der longitudinalen Boostinvarianz im
Yang-Mills Sektor. In einer expandierenden Box konnte allerdings keine Druckisotropie durch
die betrachteten Quanteneffekte erreicht werden. Darüber hinaus konnten wir zeigen, dass das
Isotropisieren des Druckes mit der Validität der klassischen Approximation konkurriert, was
eine alternative Beschreibung des Systems zu späten Zeiten notwendig macht. Insbesondere
können die Quanteneffekte des Yang-Mills Sektors nicht länger vernachlässigt werden, da die
Überbesetzung klassischer Feldmoden nicht mehr gewährleistet ist und somit die Klassizität
zusammenbricht. Infolge dessen ist zu späten Zeiten eine alternative Beschreibung des Systems
notwendig, die auch ein Laufen der Kopplung berücksichtigen sollte.
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Introduction

The Standard Model of Particle Physics had its genesis in the 70s of the previous century, but
it still provides a challenging area of research in the first quarter of the 21st century. In the
standard model, the microscopic quantum dynamics of three of the four fundamental forces of
nature, the electromagnetic interaction, the weak interaction and the strong interaction are
combined. The quantum theory of the latter one is known as Quantum Chromodynamics (QCD)
and will be the subject of interest in this thesis. Quantum Chromodynamics is constructed
from Nf = 6 fermion fields of different mass, referred to as quarks. The interaction of these
fermion fields is mediated by non-abelian SU(3) massless bosons, called gluons, making QCD
an SU(3) gauge theory. At low and mid energies, QCD is dominated by a phenomenon referred
to as Color Confinement. Due to color confinement, color-charged particles, as quarks and
gluons, can not directly be observed and are always bound in color neutral states. Such states
can be constructed from three quarks of different color, creating a half integer spin particle,
referred to as Baryon, or from a quark and an anti-quark, creating an integer spin particle,
referred to as Meson. Besides that, exotic states as glueballs, which are theoretical proclaimed
particles constructed from gluons only (see [1] for a review), or particles constructed from more
than three quarks, as for example Tetra- or Penta-quark states (see e.g. [2] for a review), are
interesting objects of recent research.
One important consequence of the phenomenon of color confinement is, that QCD is strongly
coupled below high energy scales („infrared slavery“). As a consequence, it is not possible
to derive the hadron spectrum of QCD using perturbation theory, making non-perturbative
methods necessary. One of the most successful non-perturbative approaches is Lattice Quantum
Chromodynamics. The idea is to systematically discretize QCD on a four dimensional lattice,
while preserving gauge invariance. Within this discretization, it is possible to derive quantities as
hadron masses from correlation functions, by solving high dimensional path integrals numerically.
In practice, this can be realized by making use of Monte-Carlo methods for numerical integration
of highly dimensional integrals. The bulk of these methods is based on importance sampling,
where a probability weight function is defined from the integrand of the path integral, making it
possible to approximate the true value of the path integral from generating field configurations
in a Markov Chain. As a consequence, controlling the numerical error and the systematic error
of the lattice discretization are two of the most important challenges in lattice simulations,
where the latter one can be taken care of by a systematic continuum limit, that removes the
lattice cutoff dependence.
The evaluation of path integrals in Lattice Quantum Chromodynamics requires a Wick rotation
of Minkowski time to imaginary, euclidean time. The euclidean formulation is of great use
in spectroscopy, as well as in statistical quantum field theory (see e.g. [3] for a review of
lattice QCD thermodynamics), making it possible to investigate the QCD equation of state [4],
the deconfinement transition [5] or the Chiral Phase Transition [6]. All these studies have in
common, that quantities of interest are not dependent on real-time, making a computation on
an euclidean lattice possible.
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2 Introduction

On the experimental side, a successful setup to test QCD for a deconfinement transition is
provided by (ultra-)relativistic Heavy Ion Collisions, where heavy nuclei, e.g. Au- or Pb-nuclei,
are accelerated to very high velocities and collided at huge center-of-mass energies. The largest
operating experiments nowadays are the Relativistic Heavy Ion Collider (RHIC) in Brookhaven
(USA), reaching center of mass energies up to

√
s ≈ 200 GeV and the Large Hadron Collider

(LHC) in Geneva (Switzerland/France), reaching center of mass energies up to
√
s ≈ 5 TeV

[7]. In the nearer future, the Facility for Antiproton and Ion Reserach (FAIR), located close
to Darmstadt (Germany) is expected to start operating [8]. Around the year 2000, it has
prominently been argued in [9], that experimental evidence in heavy ion collisions at the LHC
indicates a new state of matter, which is formed shortly after the collision. The collective flow
of this new state of matter [10, 11], could be described well, by making use of hydrodynamics
[12, 13] and it turned out to be in good agreement with theoretical predictions for the existence
of a state of non-confined quarks and gluons, known as the Quark-Gluon-Plasma (QGP). For a
review on the experimental evidence in heavy ion collisions for a formation of the QGP, see [14]
and for a review on the applicability of hydrodynamics, see [15].
Besides the search for the phase transitions of strongly interacting matter, heavy ion collisions
provide important insights into the non-equilibrium dynamics of QCD. With the confined heavy
nuclei colliding at very high velocities in the experiment, the system is out-of-equilibrium right
after the collision. On the other hand, the QGP itself is expected to be at least in local thermal
equilibrium [16], arising the question for a thermalization process in highly energetic QCD. A
first step towards an understanding of the very early phase in a heavy ion collision, has been
presented in terms of an effective theory for QCD, based on the phenomenon of gluon saturation
[17]. The saturated regime allows to identify a separation of scales for the gluonic degrees
of freedom of the system, where the hard gluons (Ultraviolet-scale) are frozen in due to time
dilation and form a background current for the soft gluons (Infrared-scale) that behave classical
to leading order. A prominent theoretical description of such a system in SU(3) Yang-Mills
theory, has been presented by L.D. MacLerran and R. Venugopalan and became popular as the
MV-model [18, 19, 20]. The model was later extended, putting the assumption of the separation
of scales on a more solid basis and resulting in an effective theory, referred to as Color-Glass
Condensate (CGC) [21, 22, 23, 24].
As stated already, an important property of this effective theory is the assumption, that the
dynamical, soft gluons of the system are classical to leading order. As a consequence, it is
necessary that the IR-modes of the fields are highly occupied. This requirement leads to three
necessities, that a theory has to fulfill, for the existence of a classical limit: (1) the fields
have to be bosonic in character, because the Pauli-exclusion principle for fermions naturally
forbids large occupation numbers, (2) the fields of the theory have to be associated with stable
particles, allowing the establishment of a classical configuration on macroscopic time-scales
and (3) the theory must have a sensible non-interactive limit [25]. The first two properties are
naturally provided by the Yang-Mills sector of QCD, but the latter one is only established in
the deconfined phase of the theory, with the saturated regime in the CGC essentially providing
the necessary condition of highly occupied IR-modes for the gauge fields A ∼ O(1/αs) , with αs
the strong coupling.
Classical approximations have already been successfully used to calculate the soliton pair
creation in real scalar field theory by D. Yu. Grigoriev and V.A. Rubakov in 1988 [26]. Later,
they have systematically been studied in a hot scalar field theory by G. Aarts and J. Smit
[27], demonstrating that indeed the quantum theory is approximated at high energy and weak
coupling. These studies could then be extended to nonequilibrium fields in [28, 29]. The
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possibility of approximating a bosonic theory as classical within a specific regime, opened
the perspective of calculating real-time observables on the lattice. Instead of solving path
integrals on a euclidean lattice, it is possible to simulate the evolution of a classical system,
by solving Hamilton equations of motion on a three dimensional lattice, keeping real-time [30].
The lattice hereby provides a nonperturbative regularization of the classical theory, removing
the non-classical UV-degrees of freedom, while preserving exact gauge invariance. On the
downside, a continuum limit is no longer possible in the classical lattice theory, because the
theory is UV-divergent (Rayleigh-Jeans divergent). Nevertheless, classical lattice simulations
have successfully been used to investigate the topology of Yang-Mills theories [31, 32], the
chiral-magnetic effect [33, 34], solid state physics [35] and heavy quark thermalization in QCD
[36].
Another prominent application, is a simulation of the early time dynamics in a heavy ion collision.
The dynamical gauge fields of the Color-Glass Condensate effective theory form a pre-QGP,
out-of-equilibrium state, referred to as the Glasma [37]. The dynamics of the Glasma has already
been investigated in pure Yang-Mills theory, making use of real-time lattice techniques. The
Glasma is expected to form after t ≈ 0.1 fm1 in a heavy ion collision and acts as a transitional
state, until hydrodynamics is expected to become applicable, at a hydrodynamization time of
t ≈ 1 fm [38]. Classical simulations of the Glasma have successfully been used to investigate
the gluon multiplicity [39, 40, 41, 42, 43] and the energy density of the Glasma [44, 45]. For a
review on simulations of the Glasma see [46]. Additionally, the Glasma has been used as an
initial state [47, 48, 49] for different theoretical approaches to describe the early dynamics of a
heavy ion collision, using e.g. QCD kinetic theory [50] or hydrodynamic models [51, 52].
Besides an investigation of the intrinsic features of the Glasma, the search for a thermalization
process is of particular interest. A first step towards thermalization in QCD has been made in
perturbative QCD, with the discovery of bottom up thermalization [53] in overoccupied systems,
where initially a large number of low energy degrees of freedom is occupied. Later, its relation to
QCD plasma instabilities has been discussed in [54], that actually might prevent the mechanism
[55]. With the Glasma beeing an overoccupied system, studies have been extended to the regime
of gluon saturation in weakly coupled QCD [56, 57], resulting in the discovery of a non-thermal
fixed point, where a self-similar scaling behavior of the phase-space density could be observed.
This observation could be related to the appearance of an energy cascade, where energy is
transported from low- to high-momentum excitations. It has been argued, that essentially this
transport is necessary for a thermalization process to appear [58, 59].
Another success was the discovery of a similar cascade for the occupation of high energy modes,
in real-time lattice simulations of the Glasma, in a static box [60]. It could later be traced back to
the development of a chromo-Weibel instability, that is realized by explicitly breaking longitudinal
boost invariance by hand, introducing a quantum fluctuation on the level of the initial conditions.
Although a full equilibration process is out of reach in a real-time classical simulation, it was
possible to show, that the pressure of this system reaches an isotropy, which is a necessary step
towards (local) thermal equilibrium. An extension of the study to a longitudinally expanding
box, lead to the discovery of a similar instability, but pressure isotropy could never be reached
and is prevented by the expansion. On the opposite, the free-streaming limit is reached by
the system, where the classical gluon fields evolve (quasi-)free [61, 62]. Recently, a systematic
calculation of NLO corrections in the Yang-Mills sector has been performed [63, 64], as well as a
finite thickness of the colliding nuclei [65, 66, 67] has been considered, that could both provide

1We use natural units in this work, setting c = 1.
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a source for an explicit breaking of longitudinal boost invariance.
All these studies have in common, that they only deal with a pure Yang-Mills theory and neglect
fermions. In a first approximation this is reasonable, because the regime of gluon saturation
is essentially gluon dominated, as indicated from Deep Inelastic Scattering (DIS) experiments
at the Hadron-Elektron-Ring-Anlage (HERA) [68]. Nevertheless, fermions are expected to be
produced from gluon decay in the Glasma and a first step towards the calculation of quark
production has been presented in [69, 70], where a back-coupling of the quarks onto gluons
has been neglected. Adopting an idea, presented for the calculation of fermion production in
QED [71], it is possible to derive a semi-classical approximation of QCD, where a back-coupling
of fermions onto the classical Yang-Mills fields is included and fermions enter the equations
of motion via a color current [72]. This approximation has already been used to study the
quark production in a static system for Glasma-type initial conditions, initializing a system
of overoccupied gluons [73]. Additionally, in [74] a first step towards a calculation of quark
production in a longitudinally expanding setup has been made, presenting first results in [75]
and comparing them to results from kinetic theory [76, 77, 78].
In this work, we want to study how a coupling of fermions to the classical Yang-Mills fields
of the Glasma modifies the evolution of the system in both, a static and a longitudinally
expanding system. In similarity to a breaking of longitudinal boost invariance from quantum
fluctuations in the Yang-Mills sector, fermions could potentially provide a quantum source for
the development of an instability as well, that drives the system towards pressure isotropy.
To study this, we initialize the Yang-Mills fields by solving the Poisson equation of the CGC
effective theory on the lattice, generating the Glasma and couple it to vacuum fermions at
the first time-step. The system can now be evolved, by making use of the semi-classical
approximation of QCD. We implement it on a three dimensional isotropic lattice, keeping
real-time. Our main goal is to study the energy density, the occupation of energy modes and
the pressure of the system, which can be measured from the diagonal components of the QCD
energy-momentum tensor. We will use the energy density to set the scale in our system, by
matching it to an estimate for the initial energy density in a heavy ion collision. Investigating the
pressure now allows us, to search for a process of pressure isotropization, induced by the fermions.

hydro

Figure 1: Illustration of the interplay of different theoretical approaches for the early time dynamics
of a heavy ion collision. Illustration adapted from [79].

A description of an equilibration process within the (semi-)classical model is out of reach,
because the validity of the model breaks down as soon as the overoccupation of soft bosonic field
modes is diminished from the energy cascade. As a consequence, a complete description would
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require a matching to either hydrodynamics or QCD kinetic theory (see figure 1). Kinetic theory
has already been successfully used to study the equilibration of non-abelian pure Yang-Mills
theory [57, 77, 80, 81, 82] and our work hereby provides information, how the initial state could
be modified when including fermions already on the level of the Glasma. Studies of quark
production and chemical equilibration within QCD kinetic theory have been presented in [83,
84, 85]. For a recent review on thermalization in QCD see [86].

This thesis is structured in the following way: In the first two chapters we briefly review
continuum QCD and lattice QCD on a three dimensional lattice, with Minkowski time. In
chapter 3 we introduce the effective theory of the Color Glass Condensate and the concept of
gluon saturation. We present how to construct a lattice gauge link ensemble representing the
Glasma state, that provides the initial condition for the Yang-Mills sector in our simulations.
Furthermore, we discuss how the energy density of the early phase in a heavy ion collision,
at the formation time of the Glasma t ≈ 0.1 fm can be estimated. In a first part, we discuss
how to simulate in a static box, introducing the evolution equations of the semi-classical model
in chapter 4 and its renormalization in chapter 5. We continue by deriving the observables
from the energy-momentum tensor of QCD in chapter 6. In chapter 7 we discuss the lattice
implementation of the model and following that, we present a possibility to introduce a physical
scale to our system, by matching the energy density in the simulation to an estimate of the
energy density in the early phase of a heavy ion collision, fixing the lattice spacing a. We close
the first part, by presenting the results of a simulation in the static box in chapter 8. The
second part of this thesis extends the model to a longitudinally expanding system, starting
with a discussion of the formalism in chapter 9. In the next chapter, we solve the free lattice
Dirac equation in the expanding box, obtaining the vacuum solution of the spinor, that will be
used as initial condition for the fermion sector in the simulation. In chapter 11 and chapter 12
the equations of motion and observables are extended to the longitudinally expanding system.
Finally in chapter 13, the matching procedure for the energy density is repeated, to set the
physical scale and the results for a simulation in an expanding box are presented. We close
the thesis with a discussion of our results and future research perspectives.
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1
Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the quantum theory of strong interactions and its genesis
began with the discovery of a variety of hadrons, starting in 1947 with the discovery of Kaons
K in cosmic rays by George Rochester and Clifford Charles Butler [87] and was followed by
the discovery of the Λ-Baryon in 1950 by V. D. Hopper and S. Biswas [88]. In the 60s and
70s, many more discoveries were made (e.g. the Ω baryon and the Ξ baryon, both in 1964, the
J/Ψ meson in 1974), arriving at a situation that became famous as the „particle zoo“. The
discovery of such a great amount of particles motivated a new theoretical description for strong
interactions, first presented by Gell-Mann and Ne’eman, who ordered the hadrons into groups
(SU(3)-multiplets), characterized by the particles properties and masses. This ordering became
popular as the „eightfold way“ [89, 90]. Later in 1964 Gell-Mann and Zweig proposed additional
spin-1/2 particles of different flavor as constituents of these hadrons, called quarks [91, 92]. Due
to the fermionic nature of the quarks, the discovery of the ∆++ resonance as a state constructed
of three quarks of the same flavor (three up-quarks) and the same spin orientation (spin +3/2),
marked a theoretical challenge, because such a state should be forbidden due to the Pauli
exclusion principle. A solution for this problem was first proposed by Greenberg, Han and
Nambu where they added an additional SU(3) gauge degree of freedom to the quark model, that
became later known as color charge [93, 94]. The idea of the model is, that hadronic states have
to be color neutral, which can either be achieved by combining three quarks of different color or
a quark with an anti-quark. The interaction of the quarks is mediated by 32 − 1 vector bosons,
which later became known as gluons. In 1973 Fritzsch, Leutwyler and Gell-Mann adopted the
idea of color charge in the quark model and combined it with a theory for vector bosons [95],
first discussed by Chan Ning Yang and Robert Mills (Yang-Mills theory) [96], to describe the
dynamics of the gluons, finally specifying the model of Quantum Chromodynamics.

In this thesis, we will derive a semi-classical approximation of QCD, that will be applicable to
simulate the early time dynamics of a heavy ion collision. In this chapter, we briefly review
some aspects of the theory, presenting all equations that are necessary in later calculations
and we clarify the notation and conventions used in this thesis.

7
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1.1 The Action of Quantum Chromodynamics

As a quantum field theory, the theory of Quantum Chromodynamics can be formulated in terms of
an action

SQCD =
∫

LQCD d4x, (1.1)

where LQCD is the corresponding Lagrange density of QCD

LQCD = −1

4
F µν,aF a

µν +
Nf∑

f=1

ψ̄(f)(x)
(

iγµDµ −m(f)
)

ψ(f)(x). (1.2)

The QCD action and Lagrangian are invariant under Lorentz transformations. We denote
Lorentz indices as greek indices and use the following signature for the Minkowski metric

diag(ηµν) = (+,−,−,−), (1.3)

where co- and contra-variant space-time vectors are represented as

xµ =
(

x0, xi
)

=
(

t,x
)

, xµ =
(

x0, xi
)

=
(

t,−x
)

. (1.4)

The Lagrange density of QCD (eq. 1.2) can be divided into two parts, where the first part
describes the dynamics of the fermion fields, referred to as fermion sector in this thesis

Lf =
Nf∑

f=1

ψ̄(f)(x)
(

iγµDµ −m(f)
)

ψ(f)(x), (1.5)

and the second part the dynamics of the gauge fields, referred to as Yang-Mills sector

LYM = −1

2
trF µνFµν . (1.6)

The interaction of quarks and gluons is given from the covariant derivative Dµ
1

Dµ = ∂µ + igAµ(x), (1.7)

with the coupling g.
The quarks are described in terms of Dirac spinors ψ(f), that are four dimensional vectors in
Dirac space of spin-1/2, carrying an additional flavor index (f). The Nf = 6 different quark
flavors have different masses m(f). We will restrict ourselves only to one fermion flavor of mass
m, or to Nf degenerate quark flavors, with equal mass.

QCD is a gauge theory and the corresponding action (eq. 1.1) is invariant under local SU(3)
gauge transformations. The quarks hereby carry a color charge and transform within the
fundamental representation of SU(3)

ψ(f)′ = U(x)ψ(f) = e−iθa(x)Taψ(f). (1.8)

1The sign in front of the coupling g is a convention, where both (+) and (−) can be found in the literature.
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The matrices T a are the group generators of the SU(3) Lie-group, with a ∈ {1, ..., 32 − 1}.
The gluons are massless spin-1 vector bosons and transform as

A′
µ(x) = U(x)Aµ(x)U−1(x)− i

g
U(x)∂µU

−1(x). (1.9)

They are matrices in color-space and can be written as

Aµ(x) = Aaµ(x)T a. (1.10)

The group generators of SU(3) are given by the Gell-Mann matrices (eq. A.6) and satisfy the Lie
algebra

[

T a, T b
]

= ifabcT c, (1.11)

with fabc the structure coefficients of the group (eq. A.5). The dynamics of the Yang-Mills
fields of QCD is formulated in terms of the field strength tensor F µν

Fµν(x) = −i
[

Dµ(x), Dν(x)
]

(1.12)

= ∂µAν(x)− ∂νAµ(x) + ig
[

Aµ(x), Aν(x)
]

= ∂µAν(x)− ∂νAµ(x)− gfabcT aAbµ(x)Acν(x).

A gauge theory has some additional gauge degrees of freedom, requiring physical observables to
be gauge invariant. This freedom of choosing a specific gauge allows us to isolate one gauge
degree of freedom, choosing temporal (or Fock-Schwinger) gauge, setting

A0 = 0. (1.13)

With this choice of gauge, the gauge orbit is not yet completely fixed and one additional gauge
degree of freedom remains. If not stated differently, we do not fix this additional degree of
freedom, but if doing so, we make use of Coulomb gauge

∇A(x) = 0. (1.14)

1.1.1 Yang-Mills Theory

The Yang-Mills sector of QCD is of particular interest for the definition of the semi-classical
model. As discussed in the introduction, a classical approximation is only possible for bosons,
because it requires a large occupation of classical field modes, which is forbidden for fermions
due to the Pauli exclusion principle. As a consequence, only the Yang-Mills sector of QCD can
be approximated as classical. Choosing temporal gauge, the Lagrangian (eq. 1.6) reduces to

LYM = tr
[

F0iF0i −
∑

i<j

FijFij

]

= tr
[

F 2
0i −

∑

i<j

F 2
ij

]

. (1.15)

It is possible to derive the corresponding Hamiltonian of pure Yang-Mills theory, by applying
a Legendre transformation. The conjugate field is given as

Πµa
A (x) =

∂LYM
∂
(

∂0Aaµ(x)
) = −F 0µ,a. (1.16)
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In analogy to Electrodynamics, we identify the conjugate field as the chromo-electric field

Πi,a
A (x) = F a

0i(x) := Ea
i (x) = ∂0A

a
i (x). (1.17)

The Hamilton density of pure Yang-Mills theory is then given as

HYM =Πµ,a
A (x)∂0A

a
µ(x)− LYM = Ea

i (x)∂0A
a
i (x)− LYM (1.18)

=tr

[

Ei(x)Ei(x) +
∑

i<j

Fij(x)Fij(x)

]

.

The Yang-Mills Lagrangian can be expressed as a function of the chromo-electrical fields as well

LYM = tr

[

EiEi −
∑

i<j

FijFij

]

. (1.19)

In a classical field theory, the dynamics of the system is governed by the classical equation
of motion, derived from the Euler-Lagrange equation

∂µ
∂LYM
∂
(

∂µAaν
) − ∂LYM

∂Aaν
= 0, (1.20)

leading to

∂µF
µν,a − gfabcAbµF µν,c = 0. (1.21)

Setting ν = i, it is possible to derive the equation of motion for the chromo-electric fields from (eq.
1.21)

∂tE
a
i (x) =∂jF

ji,a(x)− gfabcAbj(x)F ji,c(x). (1.22)

1.1.2 The Hamiltonian of Quantum Chromodynamics

From the QCD Lagrangian (eq. 1.2), rewritten by making use of the chromo-electric fields (eq.
1.17)

LQCD = LYM + Lf = tr

[

EiEi −
∑

i<j

FijFij

]

+ ψ̄(x)
(

iγµDµ −m
)

ψ(x), (1.23)

it is possible to derive the Hamiltonian, performing a Legendre transformation. We already
presented this derivation for the Yang-Mills sector, arriving at (eq. 1.18). For the fermion
sector, the conjugate field is given as

Πf (x) =
∂Lf

∂
(

∂0ψ(x)
) = iψ̄(x)γ0. (1.24)

A Legendre transformation then leads to the Hamiltonian of the fermion sector of QCD (in tempo-
ral gauge)

Hf =Πf (x)∂0ψ(x)− Lf = ψ̄(x)
(

− iγiDi +m
)

ψ(x). (1.25)

The total Hamiltonian is now given as the sum of (eq. 1.18) and (eq. 1.25)

HQCD = Hf +HYM = tr

[

Ei(x)Ei(x) +
∑

i<j

Fij(x)Fij(x)

]

+ ψ̄(x)
(

− iγiDi +m
)

ψ(x). (1.26)
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1.2 Free Colored Fermions

The free theory of colored fermions is of particular interest for this thesis, because it will provide
the initial condition for the fermion sector of QCD in the static box, in later simulations. It
is given by setting Aµ = 0 in the QCD Lagrangian (eq. 1.2)

Lf = ψ̄(x)
(

iγµ∂µ −m
)

ψ(x), (1.27)

where we consider only Nf = 1 fermion flavor.2 It is straight forward to derive the corresponding
equation of motion, making use of the Euler-Lagrange equation. The result is well known
and referred to as the free Dirac equation

(

iγµ∂µ −m
)

ψ(x) = 0. (1.28)

Its solution can be found from Fourier decomposing the spinor3

ψ(x) =
∫ 2∑

s=1

3∑

c=1

(

as,c(p)us(p)ξce
−ipx + b†

s,c(p)vs(p)ξce
ipx
)
d3p

(2π)3
, (1.29)

where ξc is a (unit) vector in color space, but we will suppress its notation in most of the
calculations.
To perform a canonical quantization, the Fourier coefficients as(p) and b†

s(p) are replaced by
creation and annihilation operators, that satisfy an anti-commutation algebra

{as,c(p), a†
s′,c′(k)} = {bs,c(p), b†

s′,c′(k)} = (2π)3δss′δcc′δ(p− k), (1.30)

with all other anti-commutators vanishing. As a consequence, the spinor ψ is an operator
itself, satisfying an anti-commutation relation as well

{ψα(x), ψ̄β(y)} = γ0
αβδ(x− y), (1.31)

evaluated at equal time x0 = y0.

The creation and annihilation operators act onto physical states, creating or annihilating a
fermion. Letting an annihilation operator act onto the free vacuum state |0〉 leads to a zero contri-
bution

as(p) |0〉 = bs(p) |0〉 = 0, 〈0| a†
s(p) = 〈0| b†

s(p) = 0. (1.32)

Physical observables are now given from calculating expectation values of operators, e.g. with
respect to the vacuum state

O = 〈0| Ô |0〉 . (1.33)

In the free theory, these expectation values can easily be calculated by rewriting the operator
Ô in terms of creation and annihilation operators, with only specific combinations of creation

2We suppress the additional fundamental color index of the spinor fields in our notation.
3There can be found different normalizations of the basis spinors u/v in the literature, leading to different

expressions for the Fourier decomposition of the spinor.
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and annihilation operators contributing. It is therefore convenient to write the operator Ô in a
specific way, where all creation operators are written to the right and all annihilation operators
are written to the left, referred to as normal ordering. Normal ordering is usually indicated by
colons : Ô : left and right of the operator.

The functions us(p) and vs(p) are referred to as basis spinors and they are derived from
the free Dirac equation in momentum space

(

γµpµ −m
)

us(p) = 0,
(

γµpµ +m
)

vs(p) = 0. (1.34)

Their explicit solution is given as

us(p) = N

(

(ωp +m)ϕs
σipiϕs

)

, ϕ0 =

(

1
0

)

, ϕ1 =

(

0
1

)

, (1.35)

vs(p) = N

(

σipiχs
(ωp +m)χs

)

, χ0 =

(

0
1

)

, χ1 =

(

1
0

)

, (1.36)

with the Pauli matrices σi (eq. A.1) and a normalizationN = 1√
2ωp(ωp+m)

, where ωp =
√

p2 +m2

is the relativistic energy-momentum relation (free fermion dispersion relation).

The basis spinors fulfill a completeness relation

2∑

s=1

uα,s(p)ūβ,s(p) =
1

2ωp

(

γµpµ +m
)

αβ
, (1.37)

2∑

s=1

vα,s(p)v̄β,s(p) =
1

2ωp

(

γµpµ −m
)

αβ
, (1.38)

and they are ortho-normal

ūr(p)us(p) =
m

ωp

δrs, v̄r(p)vs(p) = −m
ωp

δrs, (1.39)

u†
r(p)us(p) = δrs, v†

r(p)vs(p) = −δrs. (1.40)

The evaluation of expectation values of creation and annihilation operators is modified when
considering an ensemble of free fermions. Such an ensemble is describable in terms of statistical
physics, where it is possible to associate a temperature T in equilibrium. In statistical quantum
field theory [97] one derives the following relation for the expectation values of commutators of
creation an annihilation operators, evaluated with respect to the statistical ensemble

〈[

âs,c(p), a†
s′,c′(k)

]〉

= (2π)3δss′δcc′δ(p− k)
(

1− 2ns+(p, T )
)

, (1.41)
〈[

b̂s,c(p), b†
s′,c′(k)

]〉

= (2π)3δss′δcc′δ(p− k)
(

1− 2ns−(p, T )
)

, (1.42)

where ns±(p, T ) denotes the occupation number. For a homogeneous distribution of temperature
T , it is given by the Fermi-Dirac distribution

n±(p, T ) =
1

exp
(
ωp±µ
T

)

+ 1
, (1.43)

where µ denotes the chemical potential, that will be set to µ = 0 in all considered cases.
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1.2.1 The Statistical Fermion Propagator

An important quantity in statistical quantum field theory, that will be important in later
calculations is the statistical fermion propagator, defined as

Fαβ(x, y) :=
1

2

〈[

ψα(x), ψ̄β(y)
]〉

. (1.44)

With the propagator being defined as the expectation value of a commutator of spinor fields, it
is connected to the occupation number, when taking the expectation value with respect to a
statistical ensemble of fermions, as seen previously on the level of the creation and annihilation
operators (eq. 1.41). Therefore it is referred to as statistical propagator. It is also possible
to calculate the statistical propagator of free Dirac fermions, by evaluating the expectation
value with respect to the vacuum state |0〉

Fαβ(x, y) =
1

2
〈[ψα(x), ψ̄β(y)]〉 =

1

2

∫ 2∑

s=1

(

usα(p)ūsβ(p)e−ip(x−y) − vsα(p)v̄sβ(p)eip(x−y)
)
d3p

(2π)3
,

(1.45)

where we made use of (eq. 1.30) and (eq. 1.32). Performing the spin sums (eq. 1.37) we find

Fαβ(x, y) =
1

2

∫ 1

2ωp

(

(/p+m)αβe
−ip(x−y) − (/p−m)αβe

ip(x−y)
)
d3p

(2π)3
. (1.46)

At equal times x0 = y0 it is possible to simplify this result by exchanging p → −p in the
second term, finally leading to

F ab
αβ(x0 = y0,x,y) = δab

∫ 1

2ωp

(

piγ
i +m

)

αβ
eip(x−y) d

3p

(2π)3
. (1.47)

1.2.2 Stochastic Low-Cost Fermions

Evaluating vacuum expectation values of fermion fields in a lattice simulation is a tedious
exercise. Using numerical techniques as for example the mode function expansion method
[98, 99, 100], often requires tremendous computational times, making it nearly impossible to
access large lattices, because the number of numerical operations rises significantly with the
number of lattice points. To reduce the computational cost, Borsanyi and Hindmarsh proposed
an alternative method to calculate vacuum expectation values of fermion fields, replacing the
vacuum expectation value by a stochastic ensemble average with respect to a finite ensemble
Nens of so called gendered fermion fields ψG(x) [101]. In the following, this method will be
presented in the continuum formulation.

To construct a suitable ensemble of stochastic fermion fields, a first step is to replace the
creation and annihilation operators in the solution of the free Dirac equation (eq. 1.29) by
complex numbers ξ(p) and η(p). These complex numbers have to be drawn from a Gaussian
distribution in such a way, that taking the ensemble average recreates the familiar algebra of
canonical quantization (eq. 1.30).
One can show, that this is only possible by introducing two kinds of fermion fields, called gendered
fermion fields ψG. As a consequence, stochastic fermion fields can either be male ψM or female ψF

ψM/F (x) =
1√
2

∫ 2∑

s=1

(

ξs(p)us(p)e−ipx ± ηs(p)vs(p)eipx
)
d3p

(2π)3
. (1.48)
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The only difference between these two fermion fields is the sign in front of the second term
and an additional factor of 1√

2
has been introduced to obtain the correct normalization of the

spinors, when taking the ensemble average.
To reproduce the algebra (eq. 1.30), the complex numbers ξ(p) and η(p) are sampled according to

〈ξs(p)ξ⋆r (k)〉Nens = (2π)3δsrδ(p− k) (1.49)

〈ηs(p)η⋆r(k)〉Nens = (2π)3δsrδ(p− k).

In case of a statistical ensemble of stochastic fermions of temperature T (eq. 1.49) is modified to

〈ξs(p)ξ⋆r (k)〉Nens = (2π)3δsrδ(p− k)
(

(1− 2nF (p)
)

, (1.50)

〈ηs(p)η⋆r(k)〉Nens = (2π)3δsrδ(p− k)
(

(1− 2nF (p)
)

,

with nF (p) the Fermi-Dirac distribution (eq. 1.43), where we assumed no spin polarisation and
a vanishing chemical potential µ = 0.

Having defined stochastic fermions, it is now possible to calculate the statistical propagator,
making use of an ensemble average of these fermion fields

Fαβ(x, y) :=
1

2
〈[ψα(x), ψ̄β(y)]〉 = 〈ψMα (x)ψ̄Fβ (y)〉

Nens
= 〈ψFα (x)ψ̄Mβ (y)〉

Nens
. (1.51)

Because physical observables should not depend on the ensemble size Nens one has to choose an
appropriate ensemble in a simulation.

The validity of (eq. 1.51) can be checked for free vacuum fermions, by explicitly inserting
the Fourier representation of the stochastic spinors (eq. 1.48)

Fαβ(x, y) =
〈

ψM/F
α (x)ψ̄

F/M
β (y)

〉

Nens
(1.52)

=
1

2

∫ ∫ 2∑

s,r=1

(

〈ξs(p)ξ⋆r (k)〉Nens u
s
α(p)ūrβ(k)e−i(px−ky) ∓ 〈ξs(p)η⋆r(k)〉Nens u

s
α(p)v̄rβ(k)e−i(px+ky)

±
〈

ηs(p)ξ⋆r (k)
〉

Nens
vsα(p)ūrβ(k)ei(px+ky) − 〈ηs(p)η⋆r(k)〉Nens v

s
α(p)v̄rβ(k)ei(px−ky)

)
d3pd3k

(2π)6

=
1

2

∫ 2∑

s=1

(

usα(p)ūsβ(p)e−ip(x−y) − vsα(p)v̄sβ(p)eip(x−y)
)
d3p

(2π)3
,

where we used (eq. 1.49), reproducing the familiar result (eq. 1.45).

In the simulation, the statistical propagator will be evaluated, by performing an additional
gender average, because both combinations of genders should lead to the same result

Fαβ(x, y) =
1

2

(

〈ψMα (x)ψ̄Fβ (y)〉
Nens

+ 〈ψFα (x)ψ̄Mβ (y)〉
Nens

)

. (1.53)



2
Quantum Chromodynamics on the Lattice

In this chapter the quantum theory of strong interactions will be discretized and put on a
lattice. In the majority of the literature, see e.g. [102, 103], this is done after performing a
Wick rotation in time, leading to the euclidean formulation of QCD. This approach has been
very successful to compute time independent observables as e.g. hadron masses, making use
of Monte Carlo techniques to solve the euclidean path integrals. On the downside, it is no
longer possible to derive time dependent observables within this approach, without a challenging
analytical continuation to Minkowski time. Since we are particularly interested in time dependent
observables, we keep real-time and do not consider an isotropic four dimensional lattice, but a
three dimensional, spacial lattice. The lattice extent is notated as Nx ×Ny ×Nz, with isotropic
lattice spacing a. Nevertheless, we will see later, that the solution of the equations of motion
of the semi-classical approximation in a simulation, requires an additional discretization of
time. We will discuss this discretization in detail in (chapter 7).

2.1 Lattice Yang-Mills Theory

Before turning to full QCD, let us start with pure Yang-Mills theory, neglecting the fermion
sector of the QCD Lagrangian (eq. 1.2) for a second. When discretizing the theory, the
continuum gauge fields Aµ are replaced by lattice gauge links Uµ, living on the edges of the
lattice and linking the nearest neighbor lattice points. A visualization can be found in (figure
2.1). Their connection to the continuum fields is given as1

Ui(x) = eigaAi(x) = eigaAai (x)Ta . (2.1)

A gauge link Ui(x) connects the nearest neighbor lattice points x and x+ âi, but we will usually
suppress the additional factor of the lattice spacing a, when writing a shift to the nearest
neighbor lattice point in direction î. Due to the linearity in a and g of the definition of Ui, it
is convenient to introduce a dimensionless lattice field [102], by rescaling

Āi(x) = agAi(x). (2.2)

1We will only discuss the spacial links in the following, because all temporal gauge links are set to U0 = 1,
due to the choice of temporal gauge At = 0.

15



16 2.1. Lattice Yang-Mills Theory

In the following we will indicate dimensionless lattice objects by an additional bar over the quan-
tity.

Ui(x)U
†
i (x− î)

x x+ îx− î

ψ(z)

Uij(y)

y y + î

y + î+ ĵy + ĵ

ψ(z + î)

Ui(z)

Figure 2.1: Visualization of the gauge links, the plaquette and the nearest neighbor interaction of
fermion fields on the lattice.

The gauge links are an infinite series in the gauge fields Aµ, where higher order terms
are suppressed by powers of the lattice spacing O(a)

Ui(x) = 1 + igaAi(x) +O(a2). (2.3)

They transform in the following way under local gauge transformations Ω(x) ∈ SU(3)

Ui(x) → U ′
i(x) = Ω(x)Ui(x)Ω†(x+ î). (2.4)

For the discretization of a Yang-Mills theory, one requires a lattice Lagrangian that is invariant
under local gauge transformations. Such a Lagrangian can be constructed from the lattice
plaquette, which is given as a closed loop of four nearest neighbor gauge links (see figure 2.1)

Uij(x) = Ui(x)Uj(x+ î)U †
i (x+ ĵ)U †

j (x). (2.5)

The conjugate lattice links are explicitly given as

U †
j (x) = U−j(x+ ĵ) = e−igaAj(x). (2.6)

It is immediately clear, by making use of (eq. 2.4), that the trace of the lattice plaquette (eq.
2.5) is a gauge invariant object.

The plaquette is connected to the field strength tensor of Yang-Mills theory

Uij(x) = eia2gFij(x)+O(a3). (2.7)

Using this connection, one easily shows that

Retr
[

1− Uij(x)
]

= Retr
[

1− exp
(

iga2Fij(x) +O(a3)
)]

(2.8)

=
1

2
g2a4tr

[

Fij(x)Fij(x)
]

+O(a2).
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Using this result we can now rewrite the Lagrangian of Yang-Mills theory (eq. 1.19) on the lattice

LYM =
1

g2a4
Retr

[

ĒiĒi − 2
∑

i<j

(

1− Uij
)
]

, (2.9)

where we introduced the dimensionless lattice version of the chromo-electric field

Ēi(x) = ga2Ei(x). (2.10)

The corresponding lattice Yang-Mills Hamiltonian is now obtained from a Legendre transforma-
tion

HYM =
1

g2a4
Retr

[

ĒiĒi + 2
∑

i<j

(

1− Uij
)
]

. (2.11)

The dynamics of the classical Yang-Mills theory on the lattice is governed by the lattice Yang-
Mills equation, hereby the equation of motion of the chromo-electric fields can be derived
from a Hamilton equation

∂tE
a
i (x) = − ∂HYM

∂Aai (x)
. (2.12)

Making use of the lattice Yang-Mills Hamiltonian (eq. 2.11) and carrying out the derivatives leads
to

∂tE
a
i (x) =

2

ga3

∑

j 6=i
Imtr

[

T a
(

Uji(x) + U−ji(x)
)]

. (2.13)

A detailed derivation of this equation can be found in (Appendix A.4). It is possible to explicitly
show, that the continuum result of the equation of motion for the chromo-electric field in pure
Yang-Mills theory (eq. 1.22), is reproduced in the continuum limit a → 0

ga3∂tE
a
i (x) =2

∑

j 6=i
Imtr

[

T a
(

Uji(x) + U−ji(x)
)]

(2.14)

=ga3
∑

j 6=i

[

∂jF
a
ji − gfabcAbj(x)F c

ji(x)
]

+O(a4).

This derivation is motivated in (Appendix A.5).

2.2 Colored Fermions on a Minkowski Lattice

Having discussed Yang-Mills theory, let us now turn to the discretization of the fermion sector
of QCD. In the previous section, we introduced the gauge link Ui(x) as a gauge transporter
between the nearest neighbor lattice points, living on the edges of the lattice. On the opposite,
fermions are located on the lattice sites (see figure 2.1) and their interaction is mediated by the
gauge fields, entering via the covariant derivative (eq. 1.7). On the lattice this interaction is
realized by combinations of gauge links, that connect the fermion fields along the lattice, as
depicted in (figure 2.1). As a consequence, we require the gauge links Ui(x) to enter the lattice
version of the covariant derivative. The discretized covariant derivate on the lattice is given as

Diψ(x) =
1

2a

[

Ui(x)ψ(x+ î)− U †
i (x− î)ψ(x− î)

]

. (2.15)
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When expanding in terms of O(a), one reproduces the continuum covariant derivative in the limit
a → 0

Diψ(x) =
1

2a

[

eiagAi(x)ψ(x+ î)− e−iagAi(x)ψ(x− î)
]

(2.16)

=
ψ(x+ î)− ψ(x− î)

2a
+ ig

1

2

(

Ai(x)ψ(x+ î) + Ai(x− î)ψ(x− î)
)

+O(a)

a→0
= ∂iψ(x) + igAi(x)ψ(x) = Diψ(x).

We can now write a first Ansatz for the lattice Lagrangian of the fermion sector of QCD

Lf = iψ̄(x)γ0∂tψ(x) +
i

2a

[

ψ̄(x)γiUi(x)ψ(x+ î)− ψ̄(x)γiU †
i (x− î)ψ(x− î)

]

−mψ̄(x)ψ(x).

(2.17)

This Lagrangian can also be written in a different form, introducing the (naive) lattice Dirac opera-
tor

Lf = ψ̄(x)D(x, y)ψ(y) = ψ̄(x)
[

iγ0δ(x0 − y0)∂y0δxy −mδxyδ(x
0 − y0) (2.18)

+
i

2a

(

γiUi(x)δx+î,y − γiU †
µ(x− î)δx−î,y

)

δ(x0 − y0)
]

ψ(y).

2.2.1 Free Colored Fermions on the Lattice

As already stated in context of the continuum, free fermions on the lattice will provide the
initial condition for the fermion sector of the semi-classical approximation in the static box. On
the lattice, the theory of free fermions is again obtained by setting Ai = 0, which corresponds
to setting Ui(x) = 1 in the lattice Lagrangian (eq. 2.17)

Lfreef = iψ̄(x)γ0∂tψ(x) +
i

2a

[

ψ̄(x)γiψ(x+ î)− ψ̄(x)γiψ(x− î)
]

−mψ̄(x)ψ(x). (2.19)

The (naive) lattice Dirac operator of free fermions is then given as

ψ̄(x)

(

iγ0δ(x0 − y0)∂y0δxy +
3∑

i=1

i

2a
γi
(

δx+î,y − δx−î,y

)

δ(x0 − y0)−mδxyδ(x
0 − y0)

)

ψ(y)

= ψ̄(x)D(x, y)ψ(y). (2.20)

It is possible to derive the real-time lattice propagator of a free Dirac field from inverting the
free Dirac operator. The inversion is best done in momentum space

D̃−1(p) = −
γ0p0 +

3∑

i=1

1
a
γi sin

(

pia
)

−m

p2
0 +

3∑

i,j=1

1
a2ηij sin(pia) sin(pja)−m2

. (2.21)

A detailed derivation can be found in (Appendix A.6). When taking the continuum a→ 0 and
the massless limit m→ 0, we reproduce the free fermion propagator in momentum space

D̃−1(p)

∣
∣
∣
∣
∣
m=0

a→0
= −γ

µpµ
pµpµ

= −γ
µpµ
p2

. (2.22)
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The physical pole of the continuum propagator in the massless limit is given at p2 = m2 = 0.
On the opposite, for the lattice Dirac propagator in the massless limit (eq. 2.21), it is possible
to identify the physical pole at p2 = 0 as well, but there are additional unphysical poles at the
edges of the Brioullin zone, for the momenta pi ∈

(

− π
aµ
, π
aµ

]

, e.g. pµ =
(

0, π
a
, 0, 0

)

. Counting
all possible combinations of such four-momenta, this leads to a total number of

3∑

i=1

(

3
i

)

= 7 (2.23)

unphysical poles for a spacial lattice with continuous Minkowski time. These additional poles
are referred to as unphysical doubler modes and their appearance is known as the problem of
fermion doubling. We emphasize, that although we discussed the appearance of unphysical
doubler modes for a massless free theory, the doubling problem is a general problem of the
fermion sector in lattice QCD. A solution of the doubling problem has first been proposed by
Kenneth Wilson [104]. The idea is to remove the fermion doublers by including an additional
term to the Dirac operator, which has the following form in momentum space

D̃W (p) = −
3∑

i=1

r

a

[

1− cos
(

api
)]

. (2.24)

The parameter r is known as Wilson parameter and usually takes the value 1. One easily checks,
that the Wilson term is vanishing at the physical pole pµ = 0 and physics is not affected. For
the doubler momenta of the form π/aµ, the Wilson term contributes to the Dirac operator with
an additional factor of 2/a. This contribution can be interpreted as an additional mass term for
the doubler modes, completely decoupling them from the theory when taking the continuum
limit a→ 0.

The full Dirac operator in momentum space, including the Wilson term (eq. 2.24) is now given as

D̃(p) = −γ0p0 −
3∑

i=1

1

a
γi sin

(

pia
)

−m−
3∑

i=1

r

a

[

1− cos
(

api
)]

. (2.25)

The lattice fermion propagator thus takes the following form

D̃−1(p)

∣
∣
∣
∣
∣
m=0

= −
γ0p0 +

3∑

i=1

1
a
γi sin

(

api
)

+
(

m+
3∑

i=1

r
a

[

1− cos
(

api
)])

p2
0 +

3∑

i,j=1

1
a2ηij sin

(

api
)

sin
(

apj
)

−
(

m+
3∑

i=1

r
a

[

1− cos
(

api
)])2 . (2.26)

From (eq. 2.26) we observe, that the Wilson term modifies the lattice dispersion relation of the
fermions

0 = p2
0 +

3∑

i,j=1

1

a2
ηij sin

(

api
)

sin
(

apj
)

−
(

m+
3∑

i=1

r

a

[

1− cos
(

api
)]
)2

(2.27)

⇒ ω2
p =

1

a2

3∑

i=1

sin2(pia) +

(

m+
3∑

i=1

r

a

[

1− cos
(

api
)]
)2

.

This modification is essential for the dynamics of the fermion fields, also if the continuum
limit has not been taken. As depicted in (figure 2.2), the naive lattice dispersion relation of
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the fermion fields drops to zero at the edges of the Brioullin zone, which is contradicting the
behavior of the continuum dispersion relation. The additional Wilson term „cures“ the false
dynamics of the naive dispersion relation, although there is still a systematic error present when
compared to the continuum dispersion relation. This systematic error can only be eliminated
from systematically taking the continuum limit.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

-3 -2 -1  0  1  2  3

a
 ω

p

p in [-π/a, π/a]

continuum, am=0.01

naive lattice, am=0.01

Wilson lattice, am=0.01

continuum, am=0.1

naive lattice, am=0.1

Wilson lattice, am=0.1

continuum, am=1

naive lattice, am=1

Wilson lattice, am=1

Figure 2.2: Comparison of the continuum, naive lattice and Wilson lattice dispersion relation for free
fermions. All quantities have been rescaled in terms of the lattice spacing a and the momentum is
fixed to the first Brioullin zone.

With the Wilson term contributing as a mass term for the unphysical doubler modes, the
lightest doubler modes, which are associated to momenta of the form pµ = (0, π/2, 0, 0), have a
mass of 2/a (when setting r = 1). As a consequence, one has to assure, that there is a clear
separation of mass scales between the physical mass m and the masses of the doubler modes.
With a continuum limit not being possible in the semi-classical approximation, we are limited to
a certain resolution in a. Measuring the fermion mass in orders of the lattice spacing m̄ = am,
requires our choice of m̄ to be at least one order of magnitude smaller than the mass of the
lightest doubler modes, motivating the following upper limit for m̄

m̄max

a
=

0.1

a
<

2

a
. (2.28)

When choosing a larger value for the fermion mass in lattice units, the dispersion relation
is strongly affected, leading to an unphysical dynamics of the heavy fermion, as depicted in
(figure 2.2) for a fermion mass of the order of the lattice spacing m = 1

a
. In position space,

the Wilson term added to the Dirac operator takes the following form

DW (x, y) =
3∑

i=1

r

2a

[

δx+î,y − 2δx,y + δx−î,y

]

. (2.29)
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Letting it act on a spinor, it is possible to show that it can be written as a combination
of a lattice forward and backward derivative

∑

y

DW (x, y)ψ(y) =
3∑

i=1

r

2a

[

ψ(x+ î)− 2ψ(x) + ψ(x− î)
]

(2.30)

=
3∑

i=1

ra

2
∆b
i∆

f
i ψ(x) :=

ra

2
�free
W ψ(x),

where the lattice forward and backward derivative are defined as

∆f
i ψ(x) =

1

a

(

ψ(x+ î)− ψ(x)
)

, ∆b
iψ(x) =

1

a

(

ψ(x)− ψ(x− î)
)

. (2.31)

The full free Dirac operator in position space, including the Wilson term, now takes the following
form

D(x, y) =iγ0δ(x0 − y0)∂y0δxy −
(

m+
3∑

i=1

r

a

)

δ(x0 − y0)δxy (2.32)

+
3∑

i=1

i

2a

((

γi − ir
)

δx+î,y −
(

γi + ir
)

δx−î,y

)

δ(x0 − y0).

Having discussed the phenomenon of fermion doubling we are now able to formulate the physical
version of the free Dirac Lagrangian on the lattice

Lfreef =iψ̄(x)γ0∂tψ(x)−
(

m+
3∑

i=1

r

a

)

ψ̄(x)ψ(x) (2.33)

+
i

2a

3∑

i=1

[

ψ̄(x)
(

γi − ir
)

ψ(x+ î)− ψ̄(x)
(

γi + ir
)

ψ(x− î)
]

.

From the Lagrangian, we can easily obtain the equation of motion of the fermion fields, namely
the free Dirac equation on the lattice, making use of the Euler-Lagrange equation

iγ0∂t +
3∑

µ=1

i

2a

((

γi − ir
)

ψ(x+ î)−
(

γi + ir
)

ψ(x− î)
)

−
(

m+
3r

a

)

ψ(x) = 0. (2.34)

From a Legendre transformation of (eq. 2.33), we find the lattice Hamiltonian of free Dirac
fermions

Hf = −ψ̄(x)

[

i

2a

3∑

i=1

((

γi − ir
)

ψ(x+ î)−
(

γi + ir
)

ψ(x− î)
)

−
(

m− 3r

a

)

ψ(x)

]

. (2.35)

To initialize the fermion fields as free Dirac fermions in later simulations, we have to solve the
free Dirac equation (eq. 2.34) on the lattice. In analogy to the continuum, we make the following
ansatz

ψp,s(x) = us(p)e− i

a
s0t+ipx. (2.36)

Inserting this ansatz into (eq. 2.34), we find

0 =

[

γ0 1

a
s0 +

i

2a
γi
(

eipia − e−ipia
)

︸ ︷︷ ︸

=2i sin(pia)

−1

a
m̄− r

2a

∑

i

(

2−eipia − e−ipia

︸ ︷︷ ︸

=−2 cos(pia)

)
]

us(p)e− i

a
s0t+ipx (2.37)

=
1

a

[

γ0s0 − γisi − µ
]

us(p)e− i

a
s0t+ipx.
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We defined the (dimensionless) lattice momenta and the reduced lattice mass µ

si = sin(pia), µ = m̄+ r
∑

i

(

1− cos(pia)
)

. (2.38)

The equation is solved, for the lattice dispersion relation taking the following form

s2
0 =

3∑

i=1

sin2(pia) +

(

m̄+ r
3∑

i=1

[

1− cos(api)
]
)2

, (2.39)

which is the familiar dispersion relation of free Wilson fermions (eq. 2.27). It is now straight
forward to solve the free Dirac equation on the lattice, leading to the following momentum
space equations for the basis spinors

(

γµsµ − µ
)

us(p) = 0,
(

γµsµ + µ
)

vs(p) = 0. (2.40)

The lattice solution of these equations is given as

us(p) =
1

√

2s0(s0 + µ)

((

s0(p) + µ(p)
)

ϕs
σ · s(p)ϕs

)

, ϕ0 =

(

1
0

)

, ϕ1 =

(

0
1

)

, (2.41)

vs(p) =
1

√

2s0(s0 + µ)

(

σ · s(p)χs(

s0(p) + µ(p)
)

χs

)

, χ0 =

(

0
1

)

, χ1 =

(

1
0

)

. (2.42)

The basis spinors on the lattice satisfy an ortho-normality relation

ūr(p)us(p) =
µ

s0

δrs, v̄r(p)vs(p) = − µ
s0

δrs, (2.43)

u†
r(p)us(p) = δrs, v†

r(p)vs(p) = δrs.

It is also possible to calculate the following spin sums

2∑

s=1

usα(p)ūsβ(p) =
1

2s0

(γµsµ + µ)αβ,
2∑

s=1

vsα(p)v̄sβ(p) =
1

2s0

(γµsµ − µ)αβ. (2.44)

The solution of the free Dirac spinor on the lattice now takes the following Fourier representation

ψ(x) =
1

V

∑

p

2∑

s=1

3∑

c=1

(

as,c(p)us(p)ξce
−ipx + b†

s,c(p)vs(p)ξce
ipx
)

, (2.45)

where V is the spacial lattice volume. The operators as,c(p) and bs,c(p) are the lattice
counterparts of the creation and annihilation operators, satisfying the similar anti-commuting
algebra as in the continuum, with Dirac deltas replaced by Kronecker deltas

{as,c(p), a†
s′,c′(k)} = {bs,c(p), b†

s′,c′(k)} = V δss′δcc′δp,k. (2.46)

2.2.2 Stochastic Fermions on the Lattice

We discussed the low-cost stochastic fermion approach in (section 1.2.2), as a cost efficient
way to calculate the statistical fermion propagator in a simulation. We now present, how this
method can be used in a lattice regularized theory, presenting the lattice counterparts of the
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continuum equations.

Replacing the creation and annihilation operators of the lattice spinor solution (eq. 2.45)
by complex numbers, introducing two different fermion genders (eq. 1.48) and specifying
the initial time t0 = 0 leads to

ψM/F (t0,x) =
1√
2V

∑

n

2∑

s=1

(

ξs(p)us(p)ei 2π
Na

nx ± ηs(p)vs(p)e−i 2π
Na

nx

)

. (2.47)

For vacuum initial conditions, the sampling of the complex numbers on the lattice is given by
replacing the Dirac delta functions in (eq. 1.49) with discrete Kronecker deltas

〈ξs,a(p)ξ⋆r,b(q)〉
Nens

= V δpqδsrδab, 〈ηs,a(p)η⋆r,b(q)〉
Nens

= V δpqδsrδab. (2.48)

The same is true for the sampling of complex numbers in case of an ensemble of unpolarized
thermal fermions of temperature T, with vanishing chemical potential µ = 0

〈ξs,a(p)ξ⋆r,b(q)〉
Nens

= V δpqδsrδab
(

1− 2nFD(p, T )
)

, (2.49)

〈ηs,a(p)η⋆r,b(q)〉
Nens

= V δpqδsrδab
(

1− 2nFD(p, T )
)

.

In a simulation, the sampling of the complex numbers is realized in the following way:
The complex numbers are represented as (Euler-Moivre representation)

ξs,a(n) = As,a(n)eiφs,a(n), ξs,a(n) = Bs,a(n)eiθs,a(n). (2.50)

The momentum independent amplitudes As,a and Bs,a are drawn from a Gaussian distribution
with mean µG = 0 and squared width σ2 = V (or σ2 = V (1− 2nFD(p, T )) in case of thermal
fermions). The phases φs,a and θs,a are uniformly distributed in the interval [0, 2π], making use
of random numbers.

The lattice result of the equal time statistical propagator can now be determined by an
ensemble average of stochastic low-cost fermions on the lattice, as seen in (eq. 1.47)

Fαβ(x, y) = 〈ψM/F
α (x)ψ̄

F/M
β (y)〉

Nens
(2.51)

=
1

2V

∑

n

2∑

s=1

(

usα(p)ūsβ(p)ei 2π
Na

n(x−y) − vsα(p)v̄sβ(p)e−i 2π
Na

n(x−y)
)

.

Inserting the spin sums (eq. 2.44) then leads to

Fαβ(x, y) =
1

2V

∑

n

1

2s0

(

(γµsµ + µ)αβe
i 2π
Na

n(x−y) − (γµsµ − µ)αβe
−i 2π

Na
n(x−y)

)

(2.52)

=
1

2V

∑

n

1

s0

(γisi + µ)αβe
i 2π
Na

n(x−y).

2.3 Full Quantum Chromodynamics on the Lattice

Having discussed free lattice fermions and the doubling problem, let us return to full lattice
QCD. As in case of the free theory, it is mandatory to add an additional Wilson term to the
QCD Lagrangian to remove the unphysical doubler modes

W (x) =
a

2
ψ̄(x)�Wψ(x) =

1

2a

3∑

i=1

ψ̄(x)
[

Ui(x)ψ(x+ î)− 2ψ(x) + U †
i (x− î)ψ(x− î)

]

. (2.53)
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The lattice Lagrangian of the fermion sector of QCD is thus given as

Lf =ψ̄(x)iγ0∂tψ(x)−
(

m+
3r

a

)

ψ̄(x)ψ(x) (2.54)

+
i

2a

3∑

i=1

[

ψ̄(x)
(

γi − ir
)

Ui(x)ψ(x+ î)− ψ̄(x)
(

γi + ir
)

U †
i (x− î)ψ(x− î)

]

.

The corresponding lattice Dirac equation, coupled to the Yang-Mills fields, can be found by
making use of the Euler-Lagrange equation

0 =iγ0∂tψ(x)−
(

m+
3r

a

)

ψ(x) (2.55)

+
i

2a

3∑

i=1

[(

γi − ir
)

Ui(x)ψ(x+ î)−
(

γi + ir
)

U †
i (x− î)ψ(x− î)

]

.

The lattice Hamiltonian of the fermion sector is obtained from a Legendre transformation of (eq.
2.54)

Hf = −ψ̄(x)

[

i

2a

3∑

i=1

((

γi − ir
)

Ui(x)ψ(x+ î)−
(

γi + ir
)

U †
i (x− î)ψ(x− î)

)

(2.56)

−
(

m+
3r

a

)

ψ(x)

]

.

We now have everything at hand to formulate QCD on a three dimensional lattice with real,
continuous time. This result represents the starting point for the derivation of the semi-classical
approximation, that will be presented in (chapter 4). The Lagrangian is given as the sum of the
lattice Yang-Mills Lagrangian (eq. 2.9) and the lattice Lagrangian of the fermion sector (eq. 2.54)

LQCD =
1

g2a4
Retr

[

ĒiĒi − 2
∑

i<j

(

1− Uij
)
]

+ iψ̄(x)γ0∂tψ(x)−
(

m+
3r

a

)

ψ̄(x)ψ(x) (2.57)

+
i

2a

3∑

i=1

[

ψ̄(x)
(

γi − ir
)

Ui(x)ψ(x+ î)− ψ̄(x)
(

γi + ir
)

U †
i (x− î)ψ(x− î)

]

.

The corresponding Hamiltonian of lattice QCD is obtained from a Legendre transformation

HQCD =
1

g2a4
Retr

[

ĒiĒi + 2
∑

i<j

(

1− Uij
)
]

+

(

m+
3r

a

)

ψ̄(x)ψ(x) (2.58)

− i

2a

4∑

i=1

[

ψ̄(x)
(

γi − ir
)

Ui(x)ψ(x+ î)− ψ̄(x)
(

γi + ir
)

U †
i (x− î)ψ(x− î)

]

.

Introducing the following rescaling of the fermion fields in terms of the lattice spacing a

ψ̃(x) = a
3
2ψ(x), (2.59)

allows us to define a dimensionless version of the lattice QCD Lagrangian (eq. 2.57) and
the lattice QCD Hamiltonian (eq. 2.58)

L̄QCD = a4g2LQCD, H̄QCD = a4g2HQCD. (2.60)



3
Initial Conditions for the Yang-Mills Sector of

QCD

In this chapter we give a brief overview on the early time physics in a highly energetic heavy
ion collision. It marks the foundation for the derivation of the semi-classical approximation,
allowing us to treat the Yang-Mills sector of QCD effectively classical. We will start the
discussion with a general review of the phenomenology and the important physical concepts
in a heavy ion collision. This will lead us to the phenomenon of gluon saturation at the early
stage of the collision, that enters the definition of an effective model, allowing a description
of the dynamics of the system in terms of classical Yang-Mills fields. We will present the
genesis and applicability of this effective theory, referred to as Color-Glass-Condensate (CGC)
and in a next step, we will discuss the general properties of the specific initial state, known
as the Glasma. The Glasma represents the initial condition for the Yang-Mills sector in the
semi-classical approximation and we will present how to initialize it on a three dimensional
lattice with real-time. Finally, we discuss how to introduce a physical scale in our lattice system,
specifying the lattice spacing a of the classical approximation.

3.1 Phenomenology of a Heavy Ion Collision

The popularity of heavy ion collisions is rooted in the nature of the strong interaction and
its underlying quantum field theory, Quantum Chromodynamics (QCD). The phenomenon of
confinement causes all constituents of QCD that carry color charge, namely the quarks and
gluons, to appear only in bound, color-neutral states. The strength of interaction of quarks
and gluons is mediated by the coupling g, that turns out not to be a constant, but a quantity
depending on the energy scale of the system. It has been shown in [105, 106], that g decreases
for increasing energy, leading to an asymptotically free theory at infinitely large energy. This
can also be viewed in terms of distances: packing more and more hadrons into a small volume
lowers the average inter-quark distance, hence their interaction is reduced more and more. As a
consequence, the system becomes weakly coupled and eventually surpasses a phase transition
where the bound states are traded with a system of free quarks and gluons. Such a system of

25



26 3.1. Phenomenology of a Heavy Ion Collision

(quasi-)free quarks and gluons is called a Quark-Gluon-Plasma (QGP) and the underlying phase
transition hence is a function of energy and density.

An intuitive choice for a system that could naturally create a highly energetic and dense
medium is given from colliding two heavy nuclei at very high velocities. In fact, as prominently
argued by Bjorken [12], such collisions create a hot and dense medium, that is very well
describable in terms of hydrodynamics, where the system behaves like a fluid of quarks and
gluons [9]. Observations in early experiments at the super proton synchrotron (SPS), later
at the relativistic heavy ion collider (RHIC) and finally at the large hadron collider (LHC)
supported the idea that indeed a QGP is created in a heavy ion collision. For a review on the
history of the QGP see [107]. The phenomenology of a heavy ion collision, that is assumed
to last for a duration of ∼ 10 fm is schematically shown in (figure 3.1).

z 

t

strong fields classical dynamics

gluons & quarks out of eq.
viscous hydro

gluons & quarks in eq.

hadrons kinetic theory

freeze out

Figure 3.1: Illustration of the various stages in a heavy ion collision. Figure taken from [108].

The two incoming nuclei travel nearly at the speed of light and are taken to reside on
the lightcone. Right after the collision, the system is out-of-equilibrium and dominated by
overoccupied Yang-Mills fields. This marks the state of interest in our work and will be discussed
further in this chapter. It is expected that the system becomes eligible for a description in
terms of hydrodynamics after a hydrodynamization time of τhydro ∼ 1 fm [38]. Due to the rapid
longitudinal expansion, the energy density of the plasma drops during the evolution and as a
consequence, at some point a confinement transition happens and hadrons are formed again.
This process has been described successfully in terms of kinetic transport models as provided
for example by UrQMD [109] or SMASH [110]. Finally, the freeze out happens and all particles
are confined again, causing the system to break down.

For a better understanding of the physics of the initial state, right after collision, it is first of
all convenient to revisit the structure of a nucleus, or more simple a hadron. A hadron, as
e.g. a proton, is not only constructed from its three valence quarks, but in fact the largest
amount of its mass is contributed to binding energy, represented by the gluons and virtual
quark-antiquark pairs (sea-quarks). For collisions of hadrons at low energies, the timescale
of the internal dynamics of a hadron, as e.g. gluon exchange and the formation of sea quark
pairs, is expected to be of the order of the timescale of the collision, making it impossible to
study the hadron dynamics within perturbative QCD. The situation changes, when moving to
large energies: the internal dynamics becomes affected by Lorentz time dilation and hence the
timescale for gluon exchange and the lifetime of virtual sea-quark states is much longer, when
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compared to the duration of the collision. As a consequence, all constituents of a hadron can
be viewed as quasi-free during a high energetic collision. This concept manifests itself in the
parton model [111], which approximates a high energetic hadron as a collection of quasi free
constituents, called partons.

In a highly energetic system, a parton with large momentum can radiate softer partons in
quantum processes, making a classification in terms of momentum necessary. It is convenient to
introduce the Bjorken-x as the fraction of the longitudinal momentum carried by the parton over
the exchanged momentum Q. In deep inelastic scattering experiments (DIS) the parton model
has been exploited to probe the internal structure of a proton. We give the results from [68] for the
single parton distribution functions of the gluons xg, the sea-quarks xS and the valence quarks
xuv and xdv from DIS of a proton in (figure 3.2), at fixed momentum transfer of Q2 = 10 GeV2.
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Figure 3.2: Parton distribution functions for a proton from DIS at Q2 = 10 GeV2. The single parton
distribution functions of the gluons xg, the sea-quarks xS and the valence quarks xuv and xdv are
plotted as a function of Bjorken-x. The plot is taken from [68].

For small x one finds, that the gluon content dominates the system, whereas the sea-quarks
are suppressed by a factor of αs = g2

4π
. In the early phase of a heavy ion collision, processes

involving even softer momenta of the order of Q2 ∼ 2− 3 GeV2 are of interest and the relevant
Bjorken-x is assumed to be of order x ∼ 10−3 for LHC center-of-mass energies [112]. These
observations lead to the assumption that the early stage of a heavy ion collision can be described
within small-x physics and is dominated by the gluons.

3.2 Gluon Saturation and the MV-Model

Having discussed the dominance of gluons in the initial state of a heavy ion collision, the
subsequent next step is, to define an appropriate effective theory for this specific regime. One of
the first and most prominent models has been proposed by L.D. McLerran and R. Venugopalan
in 1994 [18, 19, 20], which became popular as the MV-model. This model exploits the fact, that
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at sufficiently small x, the gluon density tends to saturate at a specific transverse momentum
scale Qs, referred to as saturation scale. In the following we give a brief overview of the concept
of gluon saturation and its consequences for the definition of an effective field theory.

The reason for the phenomenon of gluon saturation to appear, is a balancing of gluon emission
and recombination gg → g at a specific transverse momentum scale. As discussed in the previous
section, if the hadron or nucleus is boosted to high velocities, it can be described within the
parton model. The highly energetic parton constituents of the hadron hence emit more and
more gluons by bremsstrahlung. These gluons themselves can emit softer gluons, leading to a
gluon cascade, formally known as BFKL-ladder. The dynamics follows the BFKL-equation
for the gluon distribution xG(x,Q2), first studied by Balitsky, Lipatov, Kuraev and Fadin
[113, 114]. Whereas the BFKL-construction assumes a dilute system and no interference
terms between emitters are taken into account, in reality the emission of soft gluons inside the
hadron increases the gluon density rapidly, making a density dependent description necessary.
For sufficiently high gluon densities, destructive interference of gluons happens, due to the
overlap of their wavefunctions, causing gluons from different cascades to recombine. This
happens as soon as the product of the number of gluons per unit area with the cross-section
of gluon recombination becomes larger than one,

αsQ
−2

︸ ︷︷ ︸

gg→g cross-section

× A−2/3xG(x,Q2)
︸ ︷︷ ︸

gluon surface density from atomic number and gluon distribution

≥ 1. (3.1)

As a consequence, as soon as the terms for gluon emission and recombination become para-
metrically of the same order, the system saturates. This happens at a specific transverse
momentum scale Qs that can be extracted from (eq. 3.1) as

Q2 ≤ Q2
s =

αsxG(x,Q2
s)

A2/3
∼ A1/3x−0.3 (3.2)

Saturation therefore becomes important, as soon as the typical momentum scale of the system is
below the saturation scale Qs. For nuclei at energies of the LHC, Qs is expected to be of the order
Q2
s ≈ 2− 4 GeV2 and in fact the bulk of particle production in heavy ion collisions is controlled

by saturation physics. The saturation domain is now characterized by two important features:
On one hand it is dominated by non-linear gluon interactions, making advanced computational
methods beyond perturbation theory necessary and on the other hand Qs supersedes all softer
momentum scales and thus controls the running of the coupling. The QCD coupling at the
momentum scale of gluon saturation Qs, for LHC center-of-mass energies can be extracted from
(figure 3.3) and is of the order of αs(Q2

s) ≈ 0.3, corresponding to a coupling of g ≈ 2. This is
the standard value considered in simulations of the early phase of a heavy ion collision in the
saturated regime [62].

Another view on gluon saturation results from the observation that a presence of large gluon
densities corresponds to the presence of strong gluon fields A ∼ O(1

g
). This causes the

occupation numbers to become large N = a†a ∼ 1
αs

and hence quantum fluctuations are just a
small correction to the strong, classical background field. Such a situation allows for a classical
treatment of the Yang-Mills sector, which is the basis for the formulation of the MV-model.

The main assumptions of the MV-model can be understood best, considering the timescales in
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a highly energetic nucleus. For simplicity, we restrict ourselves to one nucleus in the following
to present the concept, but it can be extended to describe a collision of two nuclei. The nucleus
is taken to move along the z−direction with a very large momentum p+1, making it reside on
the light-cone and Lorentz contracting it in longitudinal direction into a thin pancake. As a
consequence, the fast parton constituents of the nucleus, as the valence quarks and large-x
gluons, are affected by time dilation, whereas soft gluons at small-x have a much shorter
lifetime. This creates a situation, where a separation of scales can be identified, with the
long-lived large-x content of the nucleus formating an infinitely thin source of color-charge,
that can be viewed as frozen-in throughout the collision, due to time dilation, whereas the
small-x gluons remain dynamical. The MV-model relies on this separation of scales, treating
the soft, small-x gluons as classical Yang-Mills fields in the presence of large-x valence degrees
of freedom, that act as a static color source.
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Figure 3.3: Running coupling of QCD in the perturbative regime. Calculation taken from [115].

In practice, the static sources can be integrated, generating a color current, that only has
support in positive direction along the light-cone, because the sources are infinitely thin
along the opposite, x− direction

Jµa = δµ+δ(x−)ρa(x
−, x⊥). (3.3)

The δµ+ forces the nucleus to reside on the light-cone and the distribution of color charge
ρa(x

−, x⊥) is assumed to be given by a local Gaussian probability distribution WΛ[ρ], where
Λ represents the cutoff for the separation of scales. The resulting correlation of color charge
densities from the Gaussian distribution takes the form

〈

ρa(x⊥, x
−)ρb(y⊥, y

−)
〉

= δabδ(x⊥ − y⊥)δ(x− − y−)µ2, (3.4)

where we introduced the net color charge per unit area µ as a model parameter of the MV-model.
This quantity is connected to the saturation momentum by

Qs = g2µ, (3.5)

1The index ± indicates light-cone coordinates, with p± = p0 ± pz
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making the saturation scale Qs the only dimensionful scale entering the MV-model. The
dynamics of the small-x gluons is now governed by the classical Yang-Mills equation, with the
large-x degrees of freedom entering the equation via the static color current

[Dµ, F
µν ] = Jν . (3.6)

3.3 The Color-Glass Condensate

In the original proposed MV-model, a generic cutoff Λ has been introduced, to separate the
static large-x and dynamical small-x degrees of freedom. In the Color-Glass Condensate (CGC)
effective theory, this arbitrary cutoff dependence of the MV-model has been revisited. A crucial
problem in the MV-model is, that close to the cutoff Λ, quantum fluctuations become important,
which are not considered in the original model. It has been shown by a variety of authors, that
these corrections can be resummed by means of a Wilsonian renormalization group procedure,
introducing the JIMWLK-equation, named after Jalilian-Marian, Iancu, McLerran, Weigert,
Leonidov and Kovner [116, 117, 118, 119]. Also see [120, 121] for a review on the subject. The
JIMWLK-equation makes it possible to resum all quantum fluctuations in a small momentum
strip between Λ and a new Λ′, leading to the emergence of a cutoff Λ̃, that redefines the statistical
weight WΛ̃[ρ]. As a consequence, all quantum fluctuations close to the cutoff of the original
MV-model can systematically be resummed and included in a redefinition of the cutoff.
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Figure 3.4: Degrees of freedom in the CGC effective theory. Illustration taken from [122]

Therefore, the concept of a separation of scales remains valid and is fundamental for the
definition of the Color-Glass Condensate effective theory, as depicted in (figure 3.4). In this
context, the name Color-Glass Condensate becomes understandable, as an effective theory for
dynamical fields, in the background of an ensemble of Color sources, that are frozen in due to
time dilation (Glass) and saturated (like in a Condensate), formating a static current that acts
onto the system.

In the case of two colliding heavy nuclei, the following ansatz is made for the color current
of the static background sources

Jµ,a = δµ+ρ(1),a(x−,x⊥) + δµ−ρ(2),a(x+,x⊥), (3.7)
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where the δµ± force the two incoming nuclei to reside on the positive and negative light-cone
and ρ(1/2) is their corresponding color charge distribution. The collision axis is assumed to be
the z-axis. The dynamical small-x gluons are thus obtained by solving the classical Yang-Mills
equation of motion with the current entering as a source term

[

Dµ, F
µν
]

= δν+ρ(1)(x−,x⊥) + δν−ρ(2)(x+,x⊥). (3.8)

For the solution of these equations, we can exploit the fact, that highly energetic collisions are
nearly boost invariant in longitudinal direction. As a consequence, the solution of the classical
Yang-Mills equations does not explicitly depend on rapidity and our problem becomes effectively
2 + 1 dimensional.

The assumption of boost invariance allows us, to restrict our problem to the transverse plane
and the solution in the forward light-cone is now constructed in the following way:
As depicted in (figure 3.5), the equation is first solved for each of the nuclei individually,
corresponding to the regions (1) and (2).

Figure 3.5: Space-time regions in a heavy ion collision, used in the solution of the classical Yang-Mills
equation of the CGC effective theory, to construct the classical Yang-Mills fields in the forward lightcone,
region (3). Illustration taken from [122].

From the solution of the Yang-Mills equation in space-time regions (1) and (2), often notated
as α(1)

µ and α(2)
µ , one can construct the solution in the forward lightcone region (3) in radial

gauge x−A+ + x+A− = 0. This solution takes the form

Ai = α
(1)
i + α

(2)
i , Az/η = 0, (3.9)

Ei = 0, Ez/η = ig
([

α
(1)
1 , α

(2)
1

]

+
[

α
(1)
2 , α

(2)
2

])

(3.10)

[123], where Ei and Ez/η are the transverse and longitudinal components of the classical color-
electric field.2 Next, we are going to discuss the construction of this solution on the lattice.

Another issue of the effective model is gauge ambiguity. The strong color fields have been
discussed as intrinsic properties of the highly energetic nuclei, but they are dependent on a

2We introduced both z and η for the longitudinal direction, where the latter one denotes the space-time rapidity
in Bjorken coordinates. Bjorken (or Milne) coordinates will be an important ingredient for the construction of a
longitudinally expanding system and we will discuss them in (chapter 9).
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particular frame or gauge choice. A way around is, to formulate the problem not in terms of
gauge fields, but in terms of gauge invariant Wilson lines. Instead of assuming the distribution
of color charge of the individual nuclei to be approximated as an infinitesimal thin sheet of color
charge in transverse direction ρa(x±,x⊥) → δ(x±)ρa(x⊥), as it has originally been proposed
in the MV-model, we construct a set Ny of such sheets in longitudinal direction, allowing
to compute Wilson lines through this set. As a result, one maintains gauge-covariance in
that very direction, as pointed out in [124, 125].

3.3.1 The Color-Glass Condensate on the Lattice

Having presented the basic concepts of gluon saturation and the CGC as an effective theory
for the saturated regime, we now want to construct the lattice discretized version. We follow
the construction presented in [126] and the corresponding PhD thesis [127], that is itself based
on the formalism presented in [39]. We use a construction from Wilson lines to prevent gauge
ambiguity and additionally an infrared (IR) cutoff is introduced, when solving the Poisson
equation of the CGC effective theory, making it possible to maintain color-neutrality, as pointed
out in [128].

We first present how to construct the gauge link ensemble of the individual nuclei, corresponding
to the regions (1) and (2) in (figure 3.5). Following this, we are able to construct the solution
in the forward lightcone region (3). The gauge links of the individual nuclei are highlighted
by an index k ∈ {(1), (2)}. As discussed in context of the continuum solution (eq. 3.9), the
longitudinal direction is simply given by setting Akz/η = 0, which corresponds to choosing

Uk
z/η = 1, (3.11)

for all longitudinal gauge links.

The strategy for the construction of the remaining links and chromo-electric fields on the
lattice is the following:

First we draw the color charge densities of the individual nuclei ρ(1) and ρ(2) from the Gaussian dis-
tribution

〈

ρk,ai (x⊥)ρk
′,b
j (y⊥)

〉

=
g2µ2

Ny

δabδkk
′

δ(x⊥ − y⊥), (3.12)

where the Gaussian distribution is characterized by the color charge per unit area µ, extracted
from the saturation scale Qs. Additionally, we introduce a set of infinitesimal thin color-sheets
Ny to construct the Wilson lines. Hence we have to repeat the drawing Ny times to obtain
an ensemble of color sheets for the Wilson line construction, following [125]. The indices
i, j ∈ {1, ..., Ny} of the color charge density ρ count these sheets. Since all of these sheets are
assumed to be infinitesimally thin, the position coordinate of the longitudinal direction is set to
zero, making our problem effectively two dimensional, as discussed earlier.

Next, as familiar from electrodynamics, the next step is to construct a color potential Λ from the
charge distribution obtained in the previous step. To do so, we have to solve the Poisson equation

[

∆L +m2
]

Λk,a
i (x⊥) = −ρk,ai (x⊥), (3.13)
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with ∆L the two-dimensional lattice Laplace operator

∆LΛk,a
i (x⊥) =

1

a2
⊥

∑

i∈x⊥

[

Λk,a
i (x⊥ + î)− 2Λk,a

i (x⊥) + Λk,a
i (x⊥ − î)

]

. (3.14)

We additionally introduced the infrared (IR) regulator m to the Poisson equation for the
inversion of the Laplace operator, as discussed in [125].

The strategy for solving the Poisson equation on the lattice is discussed in [127] in detail
and we will only sketch the procedure. The equation is solved by introducing a lattice Fourier
transform, allowing us to write the color potential in momentum space as

Λ̃k,a
i (p1, p2) =

ρ̃k,ai (p1, p2)

4− eip1 − e−ip1 − eip2 − e−ip2 +m2
. (3.15)

The IR-cutoff eliminates the singularity of the zero mode (p1, p2) = (0, 0), making the solution
well defined on the reciprocal lattice. The position dependent color potential is thus extracted
from a Fourier back-transformation.

Having created an ensemble of Ny different color potentials Λi, we construct the Wilson
lines in longitudinal direction from

W k(x⊥) =
Ny∏

i=1

exp
[

iΛk,a
i (x⊥)T a

]

, (3.16)

with T a the generator of the SU(3) gauge group. Per construction one easily checks, that indeed
W k(x⊥) ∈ SU(3).

Finally, it is possible to construct the gauge link ensemble of the individual nuclei in a
gauge invariant fashion from the Wilson lines

Uk
i (x⊥) = W k(x⊥)W k†(x⊥ + î). (3.17)

Having constructed the gauge link ensemble of the individual nuclei in the space-time regions
(1) and (2) in (figure 3.5), we now have to construct the solution in the forward lightcone, region
(3), to obtain the initial gauge link ensemble for the simulation.

The lattice counterpart of (eq. 3.9) is given by [39]

tr

[

T a
((

U (1) + U (2)(x⊥)
)(

1 + U †
)

− h.c.

)]

= 0. (3.18)

For a SU(3) group theory, there is no closed analytical solution of (eq. 3.18) making it necessary
to extract the gauge links in the forward lightcone numerically. We initialize the gauge links as
U = exp

(

iθaT a
)

, drawing an ensemble of θa and solving (eq. 3.18) iteratively, by updating the

links U accordingly, until sufficient precision of 10−8 is reached. For details on the algorithm see
[127].
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Finally we have to initialize the chromo-electric fields. As it has been the case in the continuum
(eq. 3.10), the transverse chromo-electric fields are taken to be zero, setting

E⊥(x⊥) = 0. (3.19)

On the other hand, the longitudinal chromo-electric fields are constructed from the gauge link
ensemble for the different space-time regions in (figure 3.5) [61, 129]

ga2
⊥E

a
z/η(x) = − i

2

2∑

i=1

tr

[

T a
([

Ui(x)− 1
][

U
(2)†
i (x)− U (1)†

i (x)
]

− h.c. (3.20)

+
[

U †
i (x− î)− 1

][

U
(2)
i (x− î)− U (1)

i (x− î)
]

− h.c.

)]

.

3.4 The Glasma Initial State

In the previous section, we presented how to construct the initial gauge field ensemble from the
CGC effective theory on the lattice. Keep in mind, that we constructed the gauge link ensemble
in the transverse plane only, setting the longitudinal direction equal to zero. In this section, we
will discuss how to extend the solution into longitudinal direction, arriving at a system that is
known as the Glasma [37], an out-of-equilibrium state, initially dominated by gluon dynamics.

Figure 3.6: Color flux tubes of the Glasma in the early phase of a heavy ion collision, after t ≈ 0.1
fm. The Glasma is created from boost invariant color electric and color magnetic fields, generated
from the CGC effective theory. Illustration taken from [112].

Glasma is a coined word for the transitional state between the Color-Glass Condensate
and the Quark-Gluon-Plasma. It evolves from the classical dynamics of the small-x gluons
associated with the CGC, allowing a simulation of the Glasma within a classical field theory at
early times. The state is characterized, by the appearance of boost invariant longitudinal color
electric and color magnetic fields, forming so called color flux tubes, generated from the frozen
in color charge distribution of the colliding nuclei.3 A schematic illustration of this situation
is given in (figure 3.6). To generate a similar system from our initial gauge link ensemble,
presented in (section 3.3.1), we adapt the strategy presented in [60] for a static and in a second
step for an expanding box, following [61]. The idea is to simply copy the generated gauge link
configuration in the transverse plane at z/η = 0 to the other planes in longitudinal direction.

3In a naive picture, this can be viewed as some kind of capacitor, where the large-x, frozen-in color charges
of the nuclei represent the capacitor plates. This also gives an intuitive understanding, why the perpendicular
chromo-electric field components have to vanish.
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For the static system, following [60], we assume a cubic box as a first approximation. This
strategy exactly creates the desired color flux tube structure in longitudinal direction, that is
characteristic for the Glasma initial state.

A challenging problem for the transitional state of the Glasma, is how the initial pressure
of the system, determined from the CGC effective theory, is evolving. The crucial question
hereby is, if a pressure isotropy can be reached by the system. A calculation of the pressure from
the diagonal components of the energy momentum tensor T µν = diag

(

ǫ, PT , PT , PL
)

for the
CGC initial conditions reveals, that initially PT = ǫ, whereas PL = −ǫ, hence the longitudinal
pressure is negative and exactly the opposite of the transverse pressure. As a consequence,
the pressure of the system is highly anisotropic at initial times. The reason for the negative
pressure in longitudinal direction is, that the longitudinal fields have positive energy density and
thus stretching the color flux tubes further would require more positive energy in longitudinal
direction. From that observation one can already guess, that erasing the color flux tube structure
of the Glasma will turn out to be a crucial ingredient to move the system towards pressure
isotropy. We will return to this statement later, when discussing our results.

The system is expected to move towards pressure isotropy, because of the success of hy-
drodynamics for a description of the Quark-Gluon-Plasma, already around a time of t ≈ 1
fm. A necessary (but not sufficient) criteria for a hydrodynamization of the system and its
approach towards local thermal equilibrium (LTE), is pressure isotropy. The question therefore
is, if the dynamics of the classical gluons in the Glasma can drive the system towards pressure
isotropy. This is especially challenging because such a process competes with the expansion in
longitudinal direction. Due to the expansion, the system becomes more and more dilute and
one would expect that the interaction between gluons (and quarks) nearly becomes turned off
at some point, arriving at a situation of non-interacting quarks and gluons, also referred to as
the free-streaming limit.

The question if pressure isotropy is reached in the Glasma has already been attacked in a
variety of works, simulating the classical gluon dynamics within pure Yang-Mills simulations in a
static and expanding system [58, 60, 61, 62]. It has been shown, that even in the static box, no
pressure isotropy is reached for the Glasma initial conditions [60]. The reason for that is, that the
initial conditions are boost invariant and the classical Yang-Mills equations preserve this boost
invariance, hence the initial color flux tubes are never erased and no pressure isotropy is reached.
A possible way out has first been presented by Venugopalan and Romatschke in [61], where they
introduced rapidity fluctuations in longitudinal direction by hand, explicitly breaking the boost
invariance. These rapidity fluctuations are motivated from quantum fluctuations in the Yang-
Mills sector and later studied in a more systematic way, as NLO corrections to the CGC initial
conditions by Gelis and Eppelbaum [63, 64]. To explicitly break boost invariance in longitudinal
direction, the initial chromo-electric fields are modified, by introducing a perturbation

δEi(x⊥, z/η) := Dz/ηFi(x⊥, z/η) (3.21)

δEz/η(x⊥, z/η) := −DiFi(x⊥, z/η),

where Fi(x⊥, z/η) is a (at least) twice continuously differentiable function. Because we are only
interested in longitudinal rapidity fluctuations, the dependence on the transverse coordinate is
determined by random based generators ξi(x⊥), whereas we parametrize the rapidity fluctuation,
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using a single longitudinal mode times a real-valued amplitude ∆ that is chosen by hand

ga⊥Fi(x⊥, z/η) := f(z/η)ξi(x⊥) = ∆ cos

(

2πz/η

Lz/η

)

ξi(x⊥). (3.22)

In [126] and [60] it has been shown for a simulation of classical Yang-Mills theory in a static
box, that such an explicit breaking of longitudinal boost invariance leads to the development of
a plasma instability, referred to as chromo-Weibel instability, which is the SU(3) counterpart of
a Weibel instability familiar from electrodynamics [130]. This instability essentially erases the
color flux tubes of the Glasma and drives the system towards pressure isotropy. An extension to
the expanding system presented in [61] and [62] revealed the appearance of a Glasma instability
as well, but no pressure isotropy could be reached, with the longitudinal expansion preventing
the process and the free streaming limit being reached.

All these works only consider classical Yang-Mills theory to simulate the dynamics of the
Glasma, but an explicit breaking of boost invariance already indicated, that quantum effects
might play an important role for pressure isotropization. Besides the NLO quantum corrections
to Yang-Mills theory, fermions, that are always of quantum nature, might play an important
role for pressure isotropization. A first study in [73], for „Glasma type“ initial conditions
already gave promising evidence, that a coupling to fermions might play an interesting role for
the dynamics of the system. An analysis for an expanding system is still missing completely.
In this work we want to study the effect of fermions on the Glasma state in a static box in
detail, for a realistic set of parameters, connected to the heavy ion collision of Pb-Pb nuclei
at center of mass energy of

√
s = 5.02 TeV, as recently studied at the LHC. In a next step,

we want to extend this study to an expanding system. We assume that no quarks are trapped
in the Quark-Gluon-Plasma after the collision and the quark chemical potential is set to zero.
Quarks and anti-quarks can only be equally produced from gluon decay during the evolution
of the Glasma, keeping the entropy constant.

LO

CGC

Hydro

time

P
L / PT

τ0

-1

+1

Figure 3.7: Matching between hydrodynamics and the CGC effective theory at leading order at the
time τ0. Illustration taken from [131].

We will test our system for pressure isotropization in the static and expanding box. It
has been argued, that a system, that is already driven towards a (partial) pressure isotropy
could be matched to hydrodynamics at the time of τ0 ≈ 1 fm, as illustrated in (figure 3.7).
As pointed out in the introduction, this can be extended by an intermediate step, where the
dynamics of the system is described in terms of QCD kinetic theory after the classical regime
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(see figure 1). Following this, the dynamical evolution towards local thermal equilibrium is
governed by hydrodynamics, until it is possible to observe signatures of the Bose-Einstein
and Fermi-Dirac distributions for the spectrum of the system in momentum space, making it
possible to determine the equilibrium temperature of the medium.

3.5 Early Time Energy Density in a Heavy Ion Collision

A cutoff dependence is a general problem of lattice regularized theories, but it usually can be
solved by systematically taking the continuum limit. This is not possible in a classical theory,
because it is UV -divergent. This situation is familiar from Rayleigh-Jeans divergencies of the
classical description of blackbody radiation, which is the reason why the classical approximation
is sometimes referred to be Rayleigh-Jeans divergent. As a consequence, the classical theory
remains cutoff dependent and a way to deal with such a theory is to match it to a continuum
theory and extract the appropriate lattice spacing a. For our system, we want to perform such
a matching for the energy density of the initial state in our lattice simulation, to an estimate
of the energy density in the early stage of a heavy ion collision. The estimate is derived from
a model based on gluon saturation [24, 22] and has been adapted to Pb-Pb collisions at the
LHC with a center of mass energy of

√
s = 5.02 TeV in [132]. Performing a lattice simulation

with different lattice spacings a then allows us to extract the appropriate lattice spacing for a
matching of energy densities. We will present this procedure later, for a static and an expanding
box and only discuss, how to estimate the initial energy density at this point.

Starting point for the estimation of the energy density of the initial state and corresponding
momentum scale of gluon saturation Qs, is the so called kT -factorized spectrum of gluons per
unit rapidity (Y ), at transverse position x and per initial transverse momentum (P) [133, 134]

dNg

d2xd2PdY dy
=

g2Nc

4π5P2(N2
c − 1)

δ(Y − y)
∫

ΦPb

(

x +
b

2
,k

)

ΦPb

(

x− b

2
,P− k

)

d2k

(2π)2
, (3.23)

where g is the Yang-Mills coupling and Nc the number of colors. The individual Pb-nuclei
are modeled as presented by Woods and Saxon [135], taking the estimated nucleus radius for
Pb to be rPb = 6.62 fm and the diffusivity to be a = 0.546 fm. The impact parameter of
the collision is set to b = 0 (head-on collision), corresponding to the central rapidity regime
(Y = 0). The functions ΦPb are then the unintegrated gluon distributions of the colliding
Pb-nuclei, given from the Golec-Biernat-Wüsthoff (GBW) model [136]

ΦPb(x,k) = 4π2N
2
c − 1

gNc

k2

Q2
s,Pb

e
− k2

Q2
s,Pb , (3.24)

where the saturation scale of the Pb-nucleus Qs,Pb can be identified. Using these equations
it is possible to analytically derive the gluon spectrum within the GBW-model and compute
the energy density per unit rapidity

[

ǫ(x)τ
]

0
=
∫ ∫

|P|d2P
dNg

d2xd2PdY dy
. (3.25)

Assuming that transverse momentum is dominated by the saturation scale |P| ∼ Qs,Pb, makes it
possible to solve the integrals analytically, obtaining the following result for the energy density

[

ǫ(x)τ
]

0
=

N2
c − 1

4g2Nc

√
π

11Q3
s,Pb

25/2
. (3.26)
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The saturation scale Q2
s,Pb is parametrized as

Q2
s,Pb(x,x) = Q2

s,p(x)σ0TPb(x), (3.27)

with x the longitudinal momentum fraction of the partons (Bjorken-x) and TPb(x) the nuclear
thickness function. The product σ0TPb(x) effectively counts the number of nucleons (protons,
neutrons) at transverse position x in a Pb-nucleus. We take σ0 = 2πBG, where BG = 4 GeV−2

is the nucleus size, obtained from fits to HERA data [137, 138]. The quantity Q2
s,p(x) marks the

average saturation scale of a proton and it can be parametrized in the following way

Q2
s,p(x) = Q2

s,0x
−λ(1− x)δ, (3.28)

where Q2
s,0 = 0.63 GeV2, λ = 0.36 and δ = 1.

Combining (eq. 3.27) and (eq. 3.28) allows us to solve equation (eq. 3.26) for Pb-Pb collisions
at LHC center-of-mass energies of

√
s = 5.02 TeV. We extract the saturation scale

Q2
s,Pb = 3.586 GeV2, → Qs,Pb = 1.867 GeV, (3.29)

which matches very well the estimate of Qs ≈ 2 GeV for LHC energies, taken in the majority of
studies of the CGC effective theory (for a review see [38]).

We calculate the energy density at the formation time of the Glasma τ0 ≈ 1/Qs,Pb ≈ 0.1
fm [38], which is an order of magnitude smaller as the estimated hydrodynamization time of the
system τhydro ≈ 1 fm. Evaluating (eq. 3.26) leads to the (average) initial energy density

ǫ0 ≈ 281.45
GeV

fm3 . (3.30)

This estimate matches very well previous estimates of the initial energy density in Pb-Pb collisions
at the LHC, using hydrodynamic models [139]. For a standard choice of hydrodynamic parameters
in simulations of the QGP, namely a shear viscosity of η

s
= 2

4π
, a charged particle multiplicity

of dNch
η

= 1600, a constant C∞ = 0.87 extracted from late stage viscous hydrodynamics [82,

140] and an entropy per charged particle at freeze-out of S
Nch

= 7.5 [141], one finds

ǫ0 ≈ 270
GeV

fm3

(

τ0

0.1fm/c

)−1(
C∞

0.87

)−9/8(
η/s

2/4π

)−1/2(
A⊥

128fm2

)−3/2

(3.31)

(

dNch/dη

1600

)3/2(
νeff
40

)−1/2(
S/Nch

7.5

)3/2

,

where the initial time is taken to be τ0 = 0.1 fm and the transverse area of the Lorentz contracted
Pb-nucleus is A⊥ = 138 fm2. We find that this result for the initial state energy density is
close to (eq. 3.30), validating our approach. Together with the saturation scale Qs,Pb and the
estimated nucleus radius rPb for Pb, we will use this energy density to fix the lattice spacing
in our simulation of the Glasma and therefore introduce a physical scale. Keep in mind, that
these parameters are the only unit dependent parameters entering the simulation.



Part I

Simulating in a Static Box

Event display of a Pb-Pb collision at the LHC,
observed in the ALICE experiment [142].
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4
The Semi-Classical Approximation of QCD

In the following chapter we derive the semi-classical approximation of QCD in a static box. The
whole derivation is motivated from the validity of a classical approximation for the Yang-Mills
sector of QCD in the Glasma, discussed in the previous chapter. Initializing the Yang-Mills
sector accordingly, we introduce fermions to our system and derive an effective partition function
of QCD, as first presented in [72]. The aim of the section is to derive the equations of motion of
the semi-classical approximation for all fields entering the simulation, namely the gauge links
Ui, the fermion fields ψ and especially the chromo-electric fields Ei.

4.1 Evolution of Fermion Fields

We start our discussion with the derivation of the time evolution equation of fermion fields. The
dynamics of fermions governed by the lattice Dirac equation (eq. 2.55). As discussed in (section
2.2), we use ensemble averages of stochastic low-cost fermions, to calculate expectation values
involving fermion fields in our simulation. As a consequence, each individual gendered fermion
field ψG of the ensemble Nens has to be a solution of the lattice Dirac equation

0 =iγ0∂tψG(x)−
(

m+
3r

a

)

ψG(x) (4.1)

+
i

2a

3∑

i=1

[(

γi − ir
)

Ui(x)ψG(x+ î)−
(

γi + ir
)

U †
i (x− î)ψG(x− î)

]

,

with G = {M,F} denoting the gender index.

We kept continuous real time when writing (eq. 4.1). In a simulation, the time dependence
cannot be solved analytically in a closed form, making an additional discretization of time
necessary. This is realized by introducing a temporal spacing at, with t = ntat, nt ∈ N. This
discretization has additional consequences on the numerics of the simulation, that we will discuss
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later in (chapter 7). After discretizing time, (eq. 4.1) can be written as

ψG(x+ t̂) =ψG(x− t̂)− 2iatγ
0

(

m+
3r

a

)

ψG(x) (4.2)

− at
a
γ0

3∑

i=1

((

γi − ir
)

Ui(x)ψG(x+ î)−
(

γi + ir
)

U †
i (x− î)ψG(x− î)

)

.

The free Dirac equation is obtained by setting Ui = 1.

At initial time t0 = 0, we do not have access to the field ψG(x − t̂) entering (eq. 4.2)
in the lattice simulation. A way out is to evolve our system by using the non-symmetric
discrete time derivative once

ψG(x+ t̂) =ψG(x)− iatγ
0

(

m+
3r

a

)

ψG(x) (4.3)

− at
2a
γ0

3∑

i=1

((

γi − ir
)

Ui(x)ψG(x+ î)−
(

γi + ir
)

U †
i (x− î)ψG(x− î)

)

.

4.2 Evolution of the Gauge Links

We derive the time evolution equation of the classical gauge links from the temporal lattice
plaquette, using discretized time

U0i(x) = U0(x)Ui(x+ 0̂)U †
0(x+ 0̂)U †

i (x). (4.4)

After applying temporal gauge U0 = 1, this reduces to

U0i(x) = Ui(x+ 0̂)U †
i (x) = Ui(x+ t̂)U †

i (x) = eigataF0i(x)+O(a3). (4.5)

Making use of (eq. 2.7) it is now possible to write

Ui(x+ t̂) = eigataF0i(x)Ui(x), (4.6)

where we neglected terms of order O(a3). After identifying the chromo-electric fields (eq. 1.17),
we arrive at the equation of motion for the gauge links

Ui(x+ t̂) = eigataEi(x)Ui(x). (4.7)

4.3 The Semi-Classical Model

For the derivation of the time evolution equation of the chromo-electric fields we have to specify
the semi-classical approximation. This is done by deriving the corresponding partition function,
following [72] and in this chapter we will present the key results, adapted to our system. We
take our system to be out-of-equilibrium, which happens to be the case for the Glasma initial
state discussed in (section 3.4). Nevertheless, the following derivation is valid in more general
equilibrium and non-equilibrium systems fulfilling the requirements that a) the bosonic sector
of the theory can be treated classical to leading order and b) the initial state at a given time
t = t0 is well known.
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The appropriate formalism for the derivation of the model is provided by the real-time formalism
of the nonequilibrium quantum field theory. In the real-time formalism, time evolution is
governed by a specific time contour C, which is referred to as Schwinger-Keldysh contour [97].
Time evolution along the contour starts at an initial time t = t0, where the initial state of
the system is well known. It then proceeds forward up to a final time t = tf , that can also
be taken to infinity. This part of the contour is usually denoted C+. The contour is closed
by proceeding backwards in time, back to the initial time t = t0, usually denoted as C−. An
illustration of the contour is given in (figure 4.1).

Re(t)

Im(t)

t0 C
−

C
+

t → ∞

Figure 4.1: The Schwinger-Keldysh real time contour.

All information on the initial state of a system is given from the initial density matrix
ρ(t0) and the fields entering the density matrix only depend on the initial time t0. Making use
of the Schwinger-Keldysh contour and the initial density matrix of the system, the real-time
partition function of QCD can now be written as

ZC =
∫ ∫

ρ(t0)e
iSYM [A]+iSψ [ψ̄,ψ,U ][dA][dψ̄dψ], (4.8)

where the brackets [...] indicate the path integral measure. First we assume, that the initial
density matrix can be split into a Yang-Mills and a fermion part, assuming vacuum fermions for
the latter one. The fermion density matrix thus is quadratic in the fields and it can directly be
included in the definition of the inverse fermion propagator on the real-time contour C

Sf [ψ̄, ψ, A] =
∫ ∫

ψ̄(x)D−1
C [A](x, y)ψ(y)d4xd4y. (4.9)

As a consequence, it is possible to rewrite the partition function in the following way

ZC =
∫ ∫

ρ(t0)e
iSYM [A]+iSψ [ψ̄,ψ,U ][dA][dψ̄dψ] (4.10)

=
∫ ∫

ρA(t0)e
iSYM [A]+i

∫ ∫
ψ̄(x)D−1

C
[A](x,y)ψ(y)d4xd4y[dA][dψ̄dψ].

Because this result is quadratic in the fermion fields, we can integrate these fields, introducing
the so called fermion determinant

ZC =
∫

ρA(t0)det
[

D−1
C [A]

]

eiSYM [A][dA] =
∫

ρA(t0)e
Tr log[D−1

C
[A]]+iSYM [A][dA], (4.11)

where we used the trace-log (Jacobi) formula in the second step.
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For the gauge field Aµ we assume, that it can be split into a leading order classical field
Āµ and a small quantum correction Ãµ

Aµ(x) = Āµ(x) + Ã±
µ (x) = Āµ +

1

2
sgnCÃµ. (4.12)

A+
µ (x) = Āµ(x) +

1

2
Ãµ(x), A−

µ (x) = Āµ(x)− 1

2
Ãµ(x).

The quantum field has to be taken on the forward C+ and backward C− branch of the Schwinger-
Keldysh contour (figure 4.1), which is indicated by ±. It is now possible to integrate the classical
and the quantum gauge fields independently in the partition function

ZC =
∫

ρA(t0)e
Tr log[D−1

C
[A]]+iSYM [Ā,Ã][dĀ][dÃ]. (4.13)

The Yang-Mills action on the time contour C is given as

SYM [Ā, Ã] = −1

4

∫

C
F a
µν [Ā, Ã](x)F µν,a[Ā, Ã](x)d4x. (4.14)

In a next step, we linearize the Yang-Mills action in the quantum fluctuation O(Ã), neglecting
all higher order terms, which is justified due to the smallness of the fluctuation. The linearized
field strength tensor reads

F a
µν =∂µ

(

Ãa±
ν + Āaν

)

− ∂ν
(

Ãa±
µ + Āaµ

)

− gfabc
(

Ãb±µ + Ābµ

)(

Ãc±ν + Ācν

)

(4.15)

=
(

∂µĀ
a
ν − ∂νĀaµ

)

+
(

∂µÃ
a,±
ν − ∂νÃa,±µ

)

− gfabc
(

ĀbµĀ
c
ν + ĀbµÃ

c,±
ν + Ãb,±µ Ācν

)

+O
(

Ã2
)

.

Calculating the contraction and neglecting all higher order terms in Ã, leads to the linearized
Yang-Mills action

SYM [Ã, Ā] = −1

4

∫

C
F̄ µν,aF̄ a

µν + 4
(

∂µÃ
a,±
ν

)

F̄ µν,a + 4gfabcÃa,±ν ĀbµF̄
µν,cd4x+O(Ã2), (4.16)

where F̄ µν is constructed from classical fields Āµ only. A detailed derivation can be found
in (Appendix B.1). The first term in (eq. 4.16) vanishes due to the integration along the
time contour C. The reason for that is, that the classical field Ā is not branch dependent
and the forward and backward terms cancel each other

−1

4

∫

C
F̄ µν,aF̄ a

µνd
4x =− 1

4

∫

C+
F̄ µν,aF̄ a

µνd
4x− 1

4

∫

C−

F̄ µν,aF̄ a
µνd

4x (4.17)

=− 1

4

∫

C+
F̄ µν,aF̄ a

µνd
4x+

1

4

∫

C+
F̄ µν,aF̄ a

µνd
4x = 0.

For the middle term in (eq. 4.16) we use partial integration once

−
∫

C

(

∂µÃ
a,±
ν

)

F̄ µν,ad4x =
∫

C
Ãa,±ν ∂µF̄

µν,ad4x. (4.18)

Explicitly inserting the ansatz of the gauge fields (eq. 4.12) and splitting the contour integration
into an integration along the forward and the backward contour, we find the following result
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for the linearized version of the Yang-Mills action

SYM [Ã, Ā] =
1

2

∫

C
sgnCÃ

a
ν

(

∂µF̄
µν,a − gfabcĀbµF̄ µν,c

)

d4x (4.19)

=
1

2

∫

C+
Ãaν

(

∂µF̄
µν,a − gfabcĀbµF̄ µν,c

)

d4x− 1

2

∫

C−

Ãaν

(

∂µF̄
µν,a − gfabcĀbµF̄ µν,c

)

d4x

=
∫

C+
Ãaν

(

∂µF̄
µν,a − gfabcĀbµF̄ µν,c

)

d4x.

Inserting this result into the total partition function of the system, we find

ZC =
∫

ρA(t0)e
Tr log[D−1

C
[A]]+i

∫

C+ Ãaν

(

∂µF̄µν,a−gfabcĀbµF̄µν,c
)

d4x
[dĀ][dÃ]. (4.20)

In a final step, we want to specify the fermion sector in more detail. Our aim is to explicitly
evaluate the fermion determinant, by expanding Tr log ∆−1

C [A] in a Taylor series as a function
of Ã. In general, the inverse fermion propagator on the real-time contour C can be written as

iD−1
C [A] =

(

i/∂ − g /A(x)−m)δC(x, y) =
(

i/∂ − g
(

/̄A(x) +
1

2
sgnC /̃A

)

−m
)

δC(x, y). (4.21)

Because we neglect all terms of order O(Ã2), it is sufficient to calculate the first and second
term of the Taylor series. Carrying out the derivative

∂

∂Ãaµ
logD−1

C [A]
∣
∣
∣
∣
Ã=0

= DC[Ā]
∂

∂Ãaµ
D−1

C [A]
∣
∣
∣
∣
Ã=0

= DC[Ā]igγµ
1

2
sgnCT

a, (4.22)

allows us to write the Taylor series of the inverse propagator at Ã = 0

Tr logD−1
C [A] =Tr

(

logD−1
C [A]

∣
∣
∣
∣
Ã=0

+
∂

∂Ãaµ
logD−1

C [A]
∣
∣
∣
∣
Ã=0

Ãaµ +O(Ã2)

)

(4.23)

=Tr logD−1
C [Ā] +

ig

2
Tr
(

DC[Ā]sgnC /̃A
)

+O(Ã2),

where DC[Ā] denotes the fermion propagator evaluated in the background of the classical field
Ā. With the first term in (eq. 4.23) only being dependent on the classical field Ā, it does
not contribute to the partition function when integrating along the closed time contour C,
because again contributions on the forward and backward branch cancel each other.1 The
partition function now takes the following form

ZC =
∫

ρA(t0)e
ig
2

Tr

(

DC [Ā]sgnC
/̃A

)

+i
∫

C+ Ãaν

(

∂µF̄µν,a−gfabcĀbµF̄µν,c
)

d4x

[dĀ][dÃ]. (4.24)

The remaining term of the Taylor expanded fermion determinant can be connected to the
statistical fermion propagator. This can be seen, starting from the propagator of fermions
on the Schwinger-Keldysh contour

DC(x, y) = 〈TCψ(x)ψ̄(y)〉Ā , (4.25)

1The capital trace Tr[...] denotes the super-trace that includes a position and time integration along the
Schwinger-Keldysh contour.
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where the operator TC enforces time ordering along the contour and 〈...〉Ā indicates, that the
correlation function has to be evaluated in the background of the classical field Ā.
This propagator can be decomposed into Wightman-functions, commonly defined in the context
of thermal- or non-equilibrium quantum field theory [97]

DC[Ā](x, y) = θC(x0, y0)D
>[Ā](x, y) + θC(y0, x0)D

<[Ā](x, y), (4.26)

with θC(x0, y0) the generalized Heaviside function on the Schwinger-Keldysh contour. In terms
of spinor fields, these Wightman-functions are given as

D>
αβ[Ā](x, y) = 〈ψα(x)ψ̄β(y)〉Ā , D<

αβ[Ā](x, y) = −〈ψ̄β(y)ψα(x)〉Ā . (4.27)

We can now use (eq. 4.26) to reformulate the fermion trace entering the partition function (eq.
4.24)

Tr
(

DC[Ā]sgnC /̃A
)

= Tr
((

θC(x0, y0)D
>[Ā](x, y) + θC(y0, x0)D

<[Ā](x, y)
)

sgnC /̃A
)

(4.28)

=
∫

C

∫

x

∫

C

∫

y

tr
((

θC(x0, y0)sgnCD
>[Ā](x, y)− θC(x0, y0)sgnCD

<[Ā](x, y)
)

/̃A
)

δC(x, y)d4xd4y

=
∫

C+

∫

x

tr
((

D>[Ā](x, x) +D<[Ā](x, x)
)

/̃A(x)
)

d4x.

The Wightman-functions and the statistical propagator are related in the following way

FĀ(x, y) =
1

2

(

D>[Ā](x, y) +D<[Ā](x, y)
)

=
1

2
〈[ψ(x), ψ̄(y)]〉Ā , (4.29)

hence

ig

2
Tr
(

DC[Ā]sgnC /̃A
)

= ig
∫

C+

∫

x

tr
(

FĀ(x, x) /̃A(x)
)

d4x = ig
∫

C+

∫

x

tr
(

FĀ(x, x)γµT a
)

Ãaµ(x)d4x.

(4.30)

It is now possible to identify a fermion color-current in the integrand of (eq. 4.30)

Jµ,a
Ā

(x) = −gtr
(

FĀ(x, x)γµT a
)

, (4.31)

allowing us to write the fermion trace entering the partition function (eq. 4.24) in the following
way

ig

2
Tr
(

∆C[Ā]sgnC /̃A
)

= −i
∫

C+

Jµ,a
Ā

(x)Ãaµ(x)d4x. (4.32)

The partition function of the model is then given as

ZC =
∫

ρA(t0)e
i
∫

C+ Ãν(x)

(

∂µF̄µν,a−gfabcĀbµF̄µν,c−J
ν,a

Ā
(x)

)

d4x

[dĀ][dÃ]. (4.33)

In a final step we integrate the quantum fluctuation Ã, leading to the effective semi-classical
model. Before doing so, we have to specify the initial density matrix of the gauge fields. We
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assume, that the initial state is only dependent on the classical gauge fields Ā, which is indeed
the case for the Glasma in our simulation.2 Performing the integration we find

ZC =
∫

ρA[Ā(t0)]δ
[

∂µF̄
µν,a − gfabcĀbµF̄ µν,c − Jν,a

Ā

]

[dĀ]. (4.34)

It is possible to identify the classical Yang-Mills equation of the gauge fields Ā in (eq. 4.34),
familiar from (eq. 1.21). The fermions enter this equation via a color current Jν,a

Ā
. The delta

function thus enforces an evolution equation for the semi-classical system

∂µF̄
µν,a − gfabcĀbµF̄ µν,c = Jν,a

Ā
= −gtr

(

FĀ(x, x)γνT a
)

. (4.35)

This equation will be referred to as the equation of motion of the semi-classical model.

We derived (eq. 4.35) in the Nf = 1 flavor case. The derivation can easily be extended
to an arbitrary number of degenerate flavors. Considering Nf degenerate flavors, the flavor
trace of the statistical fermion propagator, entering the fermion current (eq. 4.31), simply picks
up an additional factor of Nf . This will be of great use later, when considering degenerate up-
and down-quarks.

It is possible to derive the equation of motion for the chromo-electric field from (eq. 4.35), setting
ν = i

∂0F
0i,a(x) + ∂jF

ji,a(x)− gfabcAbj(x)F ji,c(x) = J i,a
Ā

(x). (4.36)

Identifying the chromo-electric fields (eq. 1.17) leads to the evolution equation

∂tE
a
i (x) = −J i,a

Ā
(x) + ∂jF

ji,a(x)− gfabcAbj(x)F ji,c(x). (4.37)

When setting ν = 0 in the evolution equation of the semi-classical model (eq. 4.35) an additional
equation is found, that imposes a constraint on the systems dynamics

∂iF
i0,a[Ā](x)− gfabcĀbi(x)F i0,c[Ā](x) = J0,a

Ā
. (4.38)

This equation is referred to as Gauss constraint and will be discussed in detail at the end of this
chapter.

4.3.1 The Semi-Classical Model on the Lattice

Having derived the semi-classical model and the corresponding evolution equation (eq. 4.35) in
the continuum, let us discretize the results, making it accessible in a lattice simulation. For
the Yang-Mills part, that enters (eq. 4.37), it is straight forward to replace the continuum
Yang-Mills equation by its lattice counterpart, making use of (eq. 2.14),

∂tE
a
i (x) = −J i,a

Ā
(x) +

2

ga3

∑

j 6=i
Imtr

[

T a
(

Uji(x) + U−ji(x)
)]

. (4.39)

2In [72] it has been pointed out, that in general one could also Wigner transform the density matrix with
respect to the quantum fluctuation field Ã, linearizing it in the quantum fluctuation. Afterwards one could
proceed integrating the quantum fluctuation Ã, leading to a more general definition of the model.
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The discretization of the fermion current J i,a
Ā

(x) is realized, by making use of the lattice
inverse Dirac operator, discussed in (section 2.3),

D−1
C [A](x, x) =

1

2aµ

(
(

γµ − ir
)

Uµ(y)δx+µ̂,y −
(

γµ + ir
)

U †
µ(x− µ̂)δx−µ̂,y

)

−
(

m+
3r

a

)

δx,y,

(4.40)

where we additionally discretized the time direction, indicating a0 = at and ai = a. We formally
include U0 as well, although it is set to one in temporal gauge.

As presented in the continuum (eq. 4.23), we now perform a Taylor series for the inverse lattice
propagator

∂

∂Ãaµ(x)
D−1

C [A](x, x) (4.41)

=
1

2aµ

(
(

γµ − ir
) ∂

∂Ãaµ(x)
Uµ(x)δx+µ̂,y −

(

γµ + ir
) ∂

∂Ãaµ(x)
U †
µ(x− µ̂)δx−µ̂,y

)

,

where the derivative of the gauge link is given as

∂

∂Ãaµ(x)
Uµ(x) =

∂

∂Ãaµ(x)
exp

[

igaµ

(

Āaµ(x) +
1

2
sgnCÃ

a
µ(x)

)

T a
]

=
ig

2
aµsgnCT

aUµ(x). (4.42)

Comparing (eq. 4.41) and (eq. 4.42) to (eq. 4.22), we find a similar structure on the lattice,
making it straight forward to repeat the previous steps presented for the continuum, to derive
the following lattice version of the current [72]

Jν,a
Ā

(x) = −g
2

(

tr
(

F (x+ ν̂, x)
(

γν − ir
)

T aUν(x)
)

+ tr
(

F (x, x+ ν̂)
(

γν + ir
)

U †
ν(x)T a

))

.

(4.43)

The current picks up two terms, due to the structure of (eq. 4.41), but it is possible to simplify it,
using

F (x, x+ ν̂) = F †(x+ ν̂, x) =
1

2

〈[

ψ(x+ ν̂), ψ̄(x)
]〉†

(4.44)

=γ0 1

2

〈[

ψ(x), ψ̄†(x+ ν̂)
]〉

γ0 = γ0F (x, x+ ν̂)γ0.

Making use of this property and the cyclicity of the trace, we find

tr
(

F (x, x+ ν̂)
(

γν + ir
)

U †
ν(x)T a

)

=tr
(

F †(x+ ν̂, x)
(

γ0γνγ0 + ir
)

U †
ν(x)T a

)

(4.45)

=tr

((

T aUµ(x)
(

γµ − ir
)

F (x+ µ̂, x)
)†
)

=tr⋆
(

F (x+ µ̂, x)
(

γµ − ir
)

T aUµ(x)
)

.

The fermion current can now be written as

Jν,a
Ā

(x) =− g

2

(

tr
(

F (x+ ν̂, x)
(

γν − ir
)

T aUν(x)
)

+ tr⋆
(

F (x+ ν̂, x)
(

γν − ir
)

T aUν(x)
))

=− gRetr
(

F (x+ ν̂, x)
(

γν − ir
)

T aUν(x)
)

. (4.46)
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We find the following lattice version of the chromo-electric field equation of motion of the
semi-classical approximation

∂tE
a
i (x) = gRetr

(

F (x+ î, x)
(

γi − ir
)

T aUi(x)
)

+
2

ga3

∑

j 6=i
Imtr

[

T a
(

Uji(x) + U−ji(x)
)]

.

(4.47)

As discussed in (section 2.2.2), the statistical propagator that enters the fermion current (eq.
4.46) can be evaluated in a simulation as an ensemble average of stochastic low-cost fermions.

4.3.2 The Gauss Constraint

From the equation of motion of the semi-classical model (eq. 4.35), we identified an additional
constraint (eq. 4.38), referred to as Gauss constraint. This non-abelian variant of Gauss law
has to be satisfied at every time-step of a lattice simulation. It is possible to rewrite (eq.
4.38) as a function of the chromo-electric field (eq. 1.17)

∂iE
a
i (x)− gfabcĀbi(x)Ec

i (x) = −gtr
(

FĀ(x, x)γ0T a
)

. (4.48)

Looking at the left-hand side of the equation, we note that it can be written as
[

Di, Ei(x)
]

= ∂iEi(x) + igĀai (x)Eb
i (x)

[

T a, T b
]

(4.49)

= ∂iEi(x)− gfabcT aĀbi(x)Ec
i (x) = −gT atr

(

FĀ(x, x)γ0T a
)

.

In case of a U(1) theory, (eq. 4.49) would reproduce the familiar Gauss law of electrodynamics,
which explains the origin of the name.

Within the CGC effective theory, derived in (section 3.3.1), one would expect the Gauss
constraint to be satisfied at all time-steps in a simulation, but in fact the constraint can be
violated due to numerical reasons [126]. A numerical violation can happen due to rounding
errors, that particularly play an important role in pure Yang-Mills simulations [143]. In our
simulation, there is another source for numerical uncertainties, which is the statistical nature
of fermion expectation values, that are calculated as ensemble averages of stochastic low-cost
fermions. Although the error decreases with 1/

√
Nens, we would require very huge ensembles

to minimize the error, which are numerically out of reach. We will investigate this further in
(chapter 7). A way to restore the Gauss constraint in a simulation has first been presented in
[143] for a pure Yang-Mills theory, providing an algorithm, that is able to restore Gauss law at
every time-step of the simulation. We will adapt this algorithm to a simulation including fermions.

With the fermion fields and the chromo-electric fields being located on the lattice points, it is
possible to define a parallel transport along a direction î to the nearest neighbor lattice point

Ei(x) → U †
i (x)Ei(x)Ui(x). (4.50)

Following [143] the amount of Gauss violation at a lattice point in a pure Yang-Mills theory is
given as the difference of chromo-electric flux leaving a link subtracting the flux entering the link

0 =
1

a

∑

i

[

Ei(x)− U †
i (x− î)Ei(x− î)Ui(x− î)

]

. (4.51)
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One easily proves by taking the continuum limit, that the given ansatz for the lattice reproduces
the continuum Gauss law (eq. 4.48)

0 =
1

a

∑

i

[

Ei(x)− U †
i (x− î)Ei(x− î)Ui(x− î)

]

(4.52)

=
∑

i

[

Ei(x)− Ei(x− î)
a

+ igAai (x− x̂)Eb
i (x− î)

[

T a, T b]

]

+O(a)

=
∑

i

[

∂iEi(x)− gfabcT aAbi(x− x̂)Ec
i (x− î)

]

+O(a).

With the presence of fermions (eq. 4.51) becomes

1

a

∑

i

[

Ei(x)− U †
i (x− î)Ei(x− î)Ui(x− î)

]

= −gT aRetr
(

F (x+ 0̂, x)γ0T a
)

, (4.53)

in temporal gauge U0 = 1. One easily checks by inserting (eq. 4.52), that the continuum Gauss
law (eq. 4.48) is reproduced, when taking the continuum limit.

If the Gauss constraint is violated at a given time-step in the simulation, (eq. 4.53) picks up a fi-
nite value

C(x) :=
∑

i

[

Ēi(x)− U †
i (x− î)Ēi(x− î)Ui(x− î)

]

+ g2T aRetr
(

F̄ (x+ 0̂, x)γ0T a
)

, (4.54)

where C(x) is a matrix in color space, defined at every lattice point x at time t. We can define
the time dependent amount of Gauss violation, by taking a lattice average

C(t) =

√

1

V

∑

x

tr
(

C†(x)C(x)
)

. (4.55)

We now restore Gauss law in a simulation by using the following algorithm [143]:
First, we evaluate C(t) at a given time-step to check if Gauss law is satisfied. If not, the
chromo-electric fields are modified, introducing the following shift

Ẽi(x) → Ẽi(x) + γ
[

Ui(x)C(x+ î)U−i(x+ î)− C(x)
]

. (4.56)

Now, we evaluate C(t) again and check for convergence. The algorithm stops as soon as the
Gauss constraint is satisfied to sufficient precision. The constant γ, appearing in the definition
of the shift (eq. 4.56), is a numerical fine tuning parameter and has to be chosen appropriately.



5
Renormalization of the Semi-Classical Model

In this chapter we will discuss a renormalization procedure for the semi-classical effective theory
presented in the previous chapter. There are two important facts to keep in mind:
When constructing the Glasma initial state for the Yang-Mills sector of the theory in (chapter 3),
we assumed that the gauge fields are classical to leading order. The amplitudes of the classical
gauge fields are thus of the order Ā ∼ O(1/g) and these fields cannot participate in quantum
corrections within the semi-classical effective theory, due to the classicality. In the language of
Feynman diagrams, this translates to the fact, that gauge fields can not enter as internal lines
and especially there are no closed loops constructed from gauge lines. The situation is different
for the fermion fields. According to Paulis exclusion principle, fermions are always of quantum
nature. As a consequence, closed fermion loops can be present in the semi-classical model.
On the other hand, it is impossible to perform a continuum limit in the lattice regularized
semi-classical effective theory, because the classical Yang-Mills fields are UV -divergent (Rayleigh-
Jeans divergences). As a consequence, the theory is naturally regularized by the momentum
cutoff of the lattice and loop diagrams are not divergent anymore. Nevertheless, fermion loops
impose a correction to the classical gauge fields Ā, making a rigorous treatment in terms of
a renormalization procedure necessary, to achieve the correct dynamics of the system. This
has first been pointed out in context of stochastic low-cost fermions coupled to scalar fields
in [101] and we will adapt the procedure to our model.

5.1 Strategy of the Renormalization

How the semi-classical approximation can be affected by divergencies, that arise from fermion
loop contributions, becomes clear when studying the trace of the equal position statistical
propagator, that enters the fermion color-current of the equation of motion of the classical
Yang-Mills fields (eq. 4.31). This becomes utterly clear when expanding the current in terms
of the classical gauge field Ā to n-th order, creating a series of fermion loop diagrams with n
external boson lines. As stated in [101] these diagrams are (potentially) divergent in d = 3 + 1
dimensions making a renormalization procedure necessary.

It is possible to study such divergencies in a simple „toy-model“, considering the trace of

51
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a equal position statistical propagator F (x, x), evaluated from vacuum fermions, that enter
the semi-classical model as initial condition. Inserting the result of the vacuum statistical
propagator (eq. 1.47), a quick calculation leads to

tr
(

F (x, x)
)

= tr

(
∫ piγ

i +m

2
√

p2 +m2

d3p

(2π)3

)

∼
∫ 4m

2|p|
d3p

(2π)3
∼

∞∫

0

m

p
p2dp, (5.1)

which is obviously divergent. The fact that expectation values of bilinear field operators at
equal position are divergent is well known and has e.g. been studied in [144].

The strategy of renormalization is now based on a wave function renormalization, entering the
Yang-Mills sector. The corresponding Z-factor can be derived from a fermion loop correction to
the classical field Ā. As discussed in [101], for the computation of the renormalization Z-factor we
linearize the equation of motion, keeping the first fermion loop correction to the classical gauge
field. This technique has first been discussed in [98, 145] for a model of overoccupied, classical
scalar fields interacting with fermions. In a next step, one can identify the fermion self energy
Σ(x− z), making it possible to evaluate the renormalization Z-factor in the following way [101]

δZ =
∂2Σ(k0,k)

∂k2
0

∣
∣
∣
∣
∣
k=0

, (5.2)

where we choose the renormalization scale to be k = 0.
A Fourier transformation in k0 allows us to rewrite this equation as

δZ = Nf

∞∫

0

t2

2
Σ(t,k)

∣
∣
∣
∣
∣
k=0

dt. (5.3)

This integral can only be solved under the assumption, that the oscillatory parts entering the
integrand from the fermion self energy are incoherent at large times and can be averaged away
[101].

In the following, we adapt this procedure to classical SU(3) gauge fields coupled to fermions.
The Z-factor then enters the Yang-Mills part of the equation of motion and the observ-
ables from a counterterm renormalization. We emphasize that this approach matches pre-
vious studies of classical SU(2) gauge fields, coupled to scalar Higgs fields and low-cost
fermions, presented in [146, 147].

5.2 One-Loop Semi-Classical Equation of Motion

For the derivation of the fermion one-loop semi-classical equation of motion of the semi-classical
model, we start from the Lagrangian of one-flavor QCD (eq. 1.2). We first take the familiar
ansatz for the gauge field (eq. 4.12) and linearize the Lagrangian of the Yang-Mills sector
in the quantum fluctuation Ã, as discussed in (Appendix B.1)

L[Ã, Ā] = −1

4
F̄ µν,aF̄ a

µν −
1

4
G̃µν,a,±G̃a,±

µν −
(

∂µÃ
a,±
ν

)

F̄ µν,a − gfabcÃa,±ν ĀbµF̄
µν,c +O(Ã2). (5.4)
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We kept the non-interacting dynamics term of the quantum fluctuation Ã, that is formally of sec-
ond order

G̃a,±
µν = ∂µÃ

a,±
ν − ∂νÃa,±µ . (5.5)

The fermion fields have to be evaluated on the Schwinger-Keldysh contour (figure 4.1) as
well. We introduce an index ±, indicating if the field is located on the upper or the lower
branch of the contour. With the ansatz for the gauge fields (eq. 4.12), the Lagrangian of
the fermion sector can now be written as

Lf = ψ̄±
[

iγµ∂µ−gγµ
(

Āaµ + Ãa,±µ

)

T a −m
]

ψ± (5.6)

= ψ̄±
(

iγµ∂µ −m
)

ψ± − gψ̄±γµĀaµT
aψ± − gψ̄±γµÃa,±µ T aψ±,

following [145] the effective Lagrangian of QCD on the Schwinger-Keldysh contour is therefore
given as

L(A±
µ , ψ̄

±, ψ±) =L(A+
µ , ψ̄

+, ψ+)− L(A−
µ , ψ̄

−, ψ−) (5.7)

=Lfree(Ã±
µ , ψ̄

±, ψ±)−
(

∂µÃ
a,+
ν − ∂µÃa,+ν

)

F̄ µν,a − gfabc
(

Ãa,+ν − Ãa,−ν
)

ĀbµF̄
µν,c

− gψ̄+γµ
(

Āaµ + Ãa,+µ

)

T aψ+ + gψ̄−γµ
(

Āaµ + Ãa,−µ

)

T aψ−,

where we identified the free Lagrangian of the theory. Using partial integration once, the
effective action is then given as

Seff [A
±
µ , ψ̄

±, ψ±] =
∫

Lfree(Ã±
µ , ψ̄

±, ψ±) +
(

Ãa,+ν − Ãa,−ν
)[

∂µF̄
µν,a − gfabcĀbµF̄ µν,c

]

(5.8)

− gψ̄+γµ
(

Āaµ + Ãa,+µ

)

T aψ+ + gψ̄−γµ
(

Āaµ + Ãa,−µ

)

T aψ−d4x.

As discussed in [98], the equation of motion of the theory can now be derived from
〈

Ãd,+α (y)
〉

=
∫

Ãd,+α (y)eiSeff [A±
µ ,ψ̄

±,ψ±][dÃµ][dψ̄±][dψ±] = 0. (5.9)

The procedure can easily be demonstrated in a pure Yang-Mills theory, by expanding the
exponential in orders of O(Ã)

eSeff [A±
µ ] =eiSfree

eff
[Ãµ] exp

(

i
∫ (

Ãa,+ν − Ãa,−ν
)[

∂µF̄
µν,a − gfabcĀbµF̄ µν,c

]

d4x

)

(5.10)

=eiSfree
eff

[Ãµ]

(

1 + i
∫ (

Ãa,+ν − Ãa,−ν
)[

∂µF̄
µν,a − gfabcĀbµF̄ µν,c

]

d4x+O(Ã2)

)

.

Evaluating the expectation value leads to
〈

Ãd,+α (y)
〉

=
∫

Ãd,+α (y)eiSfree
eff

[Ãµ] (5.11)

×
(

1 + i
∫ (

Ãa,+ν − Ãa,−ν
)[

∂µF̄
µν,a − gfabcĀbµF̄ µν,c

]

d4x+O(Ã2)

)
[

dÃµ
]

=
〈

Ãd,+α (y)
〉

0

+ i
∫ ( 〈

Ãd,+α (y)Ãa,+ν
〉

0
−
〈

Ãd,+α (y)Ãa,−ν
〉

0

)[

∂µF̄
µν,a − gfabcĀbµF̄ µν,c

]

d4x

=0,
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where we introduced the single-field expectation value with respect to the free theory

〈

Ãd,+α (y)
〉

0
=
∫

Ãd,+α (y)eiSfree
eff

[Ãµ]DÃµ = 0. (5.12)

Since the two point functions satisfy
〈

Ãd,+α (y)Ãa,+ν
〉

0
6=
〈

Ãd,+α (y)Ãa,−ν
〉

0
, we can deduce the

Yang-Mills equation as the equation of motion of the classical Yang-Mills theory

∂µF̄
µν,a(x)− gfabcĀbµ(x)F̄ µν,c(x) = 0. (5.13)

Having demonstrated the procedure in pure Yang-Mills theory, let us now turn to the full
theory, including fermions. We already derived the full equation of motion of the semi-classical
model in (section 4.3) and therefore restrict ourselves to the one-loop version here. Expanding
the Yang-Mills sector of (eq. 5.9) in O(Ã) we find

〈

Ãd,+α (y)
〉

=
∫
(

Ãd,+α (y)e
i
∫

Lfree(Ã±
µ ,ψ̄

±,ψ±)−gψ̄+γµ
(

Āaµ+Ãa,+µ

)

Taψ++gψ̄−γµ
(

Āaµ+Ãa,−µ

)

Taψ−d4x
(5.14)

×
[

1 + i
∫ (

Ãa,+ν − Ãa,−ν
)[

∂µF̄
µν,a − gfabcĀbµF̄ µν,c

]

d4x

])
[

dÃµ
][

dψ̄
][

dψ
]

=0.

The remaining exponential still contains all interaction terms with fermion fields to arbitrary
order, which enter the fermion current (eq. 4.31) derived in (section 4.3). For a derivation of
the one-loop equation of motion, we make use of the assumption of the CGC effective theory,
that O(gĀ) is small, because classical field modes are highly occupied, allowing us to only
keep interaction terms of fermions and classical gauge fields, that are linear in the classical
field. Within this assumption, we linearize our theory, making it possible to derive the one-loop
equation of motion. After neglecting all terms that are of higher order, (eq. 5.9) reduces to

〈

Ãd,+α (y)
〉

=i
∫ ( 〈

Ãd,+α (y)Ãa,+ν (x)
〉

0
−
〈

Ãd,+α (y)Ãa,−ν (x)
〉

0

)[

∂µF̄
µν,a − gfabcĀbµF̄ µν,c

]

d4x

+ ig
∫ ( 〈

Ãd,+α (y)Ãa,−ν (x)
〉

0

〈

ψ̄−(x)γνT aψ−(x)
〉

0

−
〈

Ãd,+α (y)Ãa,+ν (x)
〉

0

〈

ψ̄+(x)γνT aψ+(x)
〉

0

)

d4x

− g2
∫ ∫ 〈

Ãd,+α (y)Ãa,+ν (x)
〉

0

(〈

ψ̄+(x)γνT aψ+(x)ψ̄+(z)γµT bψ+(z)
〉

0
(5.15)

−
〈

ψ̄+(x)γνT aψ+(x)ψ̄−(z)γµT bψ−(z)
〉

0

)

Ābµ(z)d4xd4z

+
〈

Ãd,+α (y)Ãa,−ν (x)
〉

0

(〈

ψ̄−(x)γνT aψ−(x)ψ̄−(z)γµT bψ−(z)
〉

0

−
〈

ψ̄−(x)γνT aψ−(x)ψ̄+(z)γµT bψ+(z)
〉

0

)

Ābµ(z)d4xd4z

=0,

where we introduced the fermion expectation value

〈

ψ̄−(x)γνT aψ−(x)
〉

0
= 〈0| ψ̄−(x)γνT aψ−(x) |0〉 =

∫

ψ̄−(x)γνT aψ−(x)eiSfree
eff

[ψ̄±,ψ±]
[

dψ̄
][

dψ
]

,

(5.16)
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taken with respect to the non-interacting vacuum |0〉.

It is now possible to deduce the following one-loop equations of motion from (eq. 5.15)

∂µF̄
µν,a−gfabcĀbµF̄ µν,c − g

〈

ψ̄+(x)γνT aψ+(x)
〉

+ ig2
∫ ( 〈

ψ̄+(x)γνT aψ+(x)ψ̄+(z)γµT bψ+(z)
〉

−
〈

ψ̄+(x)γνT aψ+(x)ψ̄−(z)γµT bψ−(z)
〉)

Ābµ(z)d4z = 0, (5.17)

∂µF̄
µν,a−gfabcĀbµF̄ µν,c − g

〈

ψ̄−(x)γνT aψ−(x)
〉

− ig2
∫ ( 〈

ψ̄−(x)γνT aψ−(x)ψ̄−(z)γµT bψ−(z)
〉

−
〈

ψ̄−(x)γνT aψ−(x)ψ̄+(z)γµT bψ+(z)
〉)

Ābµ(z)d4z = 0. (5.18)

One can demonstrate, that these equations are equivalent, identifying the fermion self energy

Σµν,ab(t− t′,x− z) = ig2tr
[

D<(t− t′,x− z)γµT bD<(t′ − t, z− x)γνT a (5.19)

−D>(t− t′,x− z)γµT bD<(t′ − t, z− x)γνT a
]

,

with D≶ denoting the Wightman-functions, familiar from (section 4.3). With the help of (eq.
5.19) and the definition of the statistical propagator (eq. 1.44), (eq. 5.17) and (eq. 5.18) lead
to the fermion one-loop equation of motion of the classical Yang-Mills fields Ā

∂µF̄
µν,a − gfabcĀbµF̄ µν,c − 2gtr

[

F (x, x)γνT a
]

+

t∫

0

Σµν,ab(x− z)Ābµ(z)d4z = 0. (5.20)

A detailed derivation of this result can be found in (Appendix B.2).

5.3 Calculation of the Z-factor

In a first step, we perform a spacial Fourier transformation for the calculation of the Z-factor.
The corresponding Fourier transformed classical gauge field is given as

Āµk(t) =
∫

Āµ(t,x)e−ikxd3x, (5.21)

The fermion self energy, that enters (eq. 5.20), can then be rewritten by making use of the
convolution theorem for Fourier transformations

t∫

0

Σµν,ab
k (t− t′)Ābk,µ(t′)dt′ = ig2

t∫

0

∫

tr
[

D<
p (t− t′)γµT bD>

p−k(t′ − t)γνT a (5.22)

−D>
p (t− t′)γµT bD<

p−k(t′ − t)γνT a
]
d3p

(2π)3
Ābk,µ(t′)dt′.

In a next step, we insert the Wightman functions in momentum space. With the semi-classical
model being specified at the first time-step in our simulation, where we couple the classical
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Yang-Mills fields of the Glasma to vacuum fermions, we evaluate the Wightman functions with
respect to free fermions, using the non-interacting vacuum

D>
p,nm(t, t′) =δnmD

>
p (t, t′) =

δnm
2ωp

(

/p+m
)

e−iEp(t−t′), (5.23)

D<
p,nm(t, t′) =δnmD

y
p(t, t′) = − δnm

2ωp

γ0
(

/p−m
)

γ0eiEp(t−t′). (5.24)

A detailed derivation can be found in (Appendix B.3).
It is now possible to evaluate the color traces of the self energy Σµν,ab

tr
[

D<
p (t− t′)γµT bD>

p−k(t′ − t)γνT a
]

=δijT
b
jnδnmT

a
mitr

[

D<
p (t− t′)γµD>

p−k(t′ − t)γν
]

(5.25)

=tr
[

T bT a
]

tr
[

D<
p (t− t′)γµD>

p−k(t′ − t)γν
]

=
1

2
δabtr

[

D<
p (t− t′)γµD>

p−k(t′ − t)γν
]

.

A similar calculation can be done for the second term.
In a next step, we have a look at Dirac space

D<
p (t− t′)γµD>

p−k(t′ − t)γν = − 1

4ωpωp−k

[

γ0
(

/p−m
)

γ0γµ
((

/p− /k
)

+m
)

γν
]

ei(ωp+ωp−k)(t−t′),

(5.26)

D>
p (t− t′)γµD<

p−k(t′ − t)γν = − 1

4ωpωp−k

[(

/p+m
)

γµγ0
((

/p− /k
)

−m
)

γ0γν
]

e−i(ωp+ωp−k)(t−t′).

(5.27)

Evaluating the Dirac traces then leads to

tr
[(

/p+m
)

γµγ0
((

/p− /k
)

−m
)

γ0γν
]

=4ηµν
(

ωpωp−k + p(p− k)−m2
)

(5.28)

+
∑

α,β

4ηµαηνβ
(

pα(p− k)β − pβ(p− k)α
)

,

tr
[

γ0
(

/p−m
)

γ0γµ
((

/p− /k
)

+m
)

γν
]

=4ηµν
(

ωpωp−k + p(p− k)−m2
)

(5.29)

+
∑

α,β

4ηµαηνβ
(

pα(p− k)β − pβ(p− k)α

)

.

A detailed derivation of this result can be found in (Appendix B.4).

In total we find the following result for the traces of Wightman functions of free fermions

tr
[

D<
p (t− t′)γµD>

p−k(t′ − t)γν
]

= −e
i(ωp+ωp−k)(t−t′)

ωpωp−k

[

ηµν
(

ωpωp−k + p(p− k)−m2
)

(5.30)

+
∑

α,β

ηµαηνβ
(

pα(p− k)β − pβ(p− k)α

)]

,

tr
[

D>
p (t− t′)γµD<

p−k(t′ − t)γν
]

= −e
−i(ωp+ωp−k)(t−t′)

ωpωp−k

[

ηµν
(

ωpωp−k + p(p− k)−m2
)

(5.31)

+
∑

α,β

ηµαηνβ
(

pα(p− k)β − pβ(p− k)α
)]

.
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Inserting these results into the Fourier transformed fermion self-energy, we arrive at

Σµν,ab
k (t− t′) (5.32)

=
i

2
δabg2

∫ 1

ωpωp−k

ηµν
(

ωpωp−k + p(p− k)−m2
)(

e−i(ωp+ωp−k)(t−t′) − ei(ωp+ωp−k)(t−t′)
)

+
1

ωpωp−k

∑

α,β

ηµαηνβ
((

pα(p− k)β − pβ(p− k)α
)

e−i(ωp+ωp−k)(t−t′)

−
(

pα(p− k)β − pβ(p− k)α
)

ei(ωp+ωp−k)(t−t′)
)
d3p

(2π)3
.

It is now possible to simplify this result, by identifying

i

2

(

e−i(ωp+ωp−k)(t−t′) − ei(ωp+ωp−k)(t−t′)
)

= sin
(

(ωp + ωp−k)(t− t′)
)

. (5.33)

As discussed in [101], we choose the scale of renormalization to be k=0,

Σµν,ab
0 (t− t′) = δabg2

∫

ηµν
(

1 +
p2 −m2

ω2
p

)

sin
(

2ωp(t− t′)
)

(5.34)

+
i

2

1

ω2
p

∑

α,β

ηµαηνβ
((

pαp
β − pβpα

)

e−i2ωp(t−t′) −
(

pαpβ − pβpα
)

ei2ωp(t−t′)
)
d3p

(2π)3
.

This result can also be written in the following way, after performing some algebra

Σµν,ab
0 (t) = δabg2

∫

2ηµν
p2

ω2
p

sin
(

2ωpt
)

+
i

ω2
p

∑

α,β

ηµαηνβ
(

pαp
β − pβpα

)

cos
(

2ωpt
) d3p

(2π)3
. (5.35)

From (eq. 5.3), we are now able to calculate δZ

δZ = Nf

∞∫

0

t2

2
Σ0(t)dt, (5.36)

where we stripped of δab and ηµν and formally kept a factor Nf for the number of degenerate
fermion flavors.

There are two contributions to the time integral. The first contribution is of the form

∞∫

0

t2 sin(2ωpt)dt =
1

4ω3
p

lim
t→∞

(

− 2ω2
pt

2 cos(2ωpt) + 2ωpt sin(2ωpt)
)

− 1

4ω3
p

. (5.37)

As discussed in [101], we assume that the oscillatory contributions to the integral are incoherent
at large times and can be averaged away, allowing us to neglect these oscillations

∞∫

0

t2 sin(2ωpt)dt = − 1

4ω3
p

. (5.38)
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The same is true for the second contribution, that is purely oscillatory

∞∫

0

t2 cos(2ωpt)dt =
1

4ω3
p

[(

2ω2
pt

2 − 1
)

sin(2ωpt) + 2ωpt cos(2ωpt)
]∞

0
(5.39)

=
1

4ωp

lim
t→∞

[(

2ω2
pt

2 − 1
)

sin(2ωpt) + 2ωpt cos(2ωpt)
]

.

In total we found the following renormalization factor

δZ =

∞∫

0

t2

2
Σ0dt = −g2Nf

∫
p2

4ω5
p

d3p

(2π)3
. (5.40)

Comparing this result to the result in [101], derived for a model of classical scalar fields coupled
to fermions, we find that both results agree up to an additional factor, that arises from the
evaluation of the SU(3) color traces. The agreement is not surprising, because the interaction
of fermion and classical fields has a similar structure in both cases and the key difference is
essentially the additional color degree of freedom, manifesting itself in the color traces.

5.3.1 Lattice Implementation of the Z-Factor

In the previous section, we presented how to calculate the wave function renormalization Z-factor
for the semi-classical approximation of QCD. This derivation has been presented in the continuum,
making a translation to the lattice necessary, to determine the Z-factor in a lattice simulation
of the effective theory. The lattice counterpart of the continuum Wightman functions of free
vacuum fermions (eq. 5.23) is obtained in similar fashion, as in the continuum (Appendix B.3).
For the lattice derivation, we make use of the free Dirac spinor on the lattice (eq. 2.45), leading to

S>p,ab(t, t
′) =

δab
2s0(p)

(

/s(p) + µ(p)
)

αβ
e−iωp(t−t′), (5.41)

S<p,ab(t, t
′) =− δab

2s0(p)
γ0
(

/s(p)− µ(p)
)

γ0eiωp(t−t′). (5.42)

It is now possible to use these results to calculate the lattice variant of the fermion self-energy

Σµν,ab
k (t− t′) =

ig2

V

∑

p

tr
[

S<p (t− t′)γµT bS>p−k(t′ − t)γνT a − S>p (t− t′)γµT bS<p−k(t′ − t)γνT a
]

.

(5.43)

Repeating the previous steps, setting the scale of renormalization to k=0 again, we find the
following lattice version of the fermion self energy, that enters the fermion one-loop equation
of motion of the classical Yang-Mills fields

Σµν,ab
0 (t) = δabg2 1

V

∑

p

2ηµν
s2

s2
0

sin
(

2ωpt
)

+
i

s2
0

ηµαηνβ
(

sαs
β − sβsα

)

cos
(

2ωpt
)

. (5.44)

It is now possible to derive the lattice renormalization Z-factor from the lattice fermion self-
energy in similar fashion, by solving the time integral (eq. 5.3). Carrying out the calculation
leads to a similar result as in case of the continuum, but this time the momentum integration



5. Renormalization of the Semi-Classical Model 59

is traded with a sum over the regularized lattice momenta and the momenta and dispersion
relation are replaced by the lattice counterparts (eq. 2.38)

δZ = − g2

4V
Nf

∑

p

s2(p)

s5
0(p)

. (5.45)

This result is naturally regulated by the lattice momentum cutoff and therefore finite. As
a consequence, δZ is cutoff dependent, which is no surprise because we are dealing with a
semi-classical theory, where no continuum limit can be performed and all quantities, including
the physical observables, remain cutoff dependent in general.

5.4 Counterterm Renormalization

Having derived the Z-factor for the semi-classical model, we can now use it to renormalize our
theory, following the procedure presented in [146]. The renormalization is done by introducing
a counterterm to the action of the classical Yang-Mills sector of QCD

SC = −
∫ (Z − 1)

4
F µν,aF a

µνd
4x. (5.46)

The Z-factor is defined as Z = 1 + δZ.
Adding the counterterm to the action of QCD (eq. 1.1), the renormalized action takes the form

SR = S + SC =
∫

−1

4
F µν,aF a

µν + ψ̄
(

iγµDµ −m
)

ψd4x−
∫ (Z − 1)

4
F µν,aF a

µνd
4x (5.47)

=
∫

−Z
4
F µν,aF a

µν + ψ̄
(

iγµDµ −m
)

ψd4x.

The corresponding renormalized lattice Lagrangian (eq. 2.57) can then be written as

LR =ZRetr

[

EiEi −
2

g2a4

∑

i<j

(

1− Uij
)
]

+ iψ̄(x)γ0∂tψ(x)−
(

m+
3r

a

)

ψ̄(x)ψ(x) (5.48)

+
i

2a

3∑

i=1

[

ψ̄(x)
(

γi − ir
)

Ui(x)ψ(x+ î)− ψ̄(x)
(

γi + ir
)

U †
i (x− î)ψ(x− î)

]

.

A similar result is found for the renormalized lattice Hamilton density of QCD (eq. 2.58)

HR =ZRetr

[

EiEi +
2

g2a4

∑

i<j

(

1− Uij
)
]

+ ψ̄(x)

(

m+
3r

a

)

ψ(x) (5.49)

− i

2a

3∑

i=1

[

ψ̄(x)
(

γi − ir
)

Ui(x)ψ(x+ î)− ψ̄(x)
(

γi + ir
)

U †
i (x− î)ψ(x− î)

]

.

5.4.1 Renormalized Equation of Motion

The derivation of the semi-classical model, presented in (section 4.3) is unchanged, when
starting from the renormalized Lagrangian (eq. 5.48). The equation of motion for the lattice
chromo-electric fields simply picks up the Z-factor

Z∂tE
a
i (x) =

2

ga3
Z
∑

j 6=i
Imtr

[

T a
(

Uji(x) + U−ji(x)
)]

+ gRetr
[

F
(

x+ î, x
)(

γi − ir
)

T aUi(x)
]

.

(5.50)
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A similar modification happens to the Gauss constraint of the model

Z

a

∑

i

[

Ei − U †
i (x− î)Ei(x− î)Ui(x− î)

]

= −gT aRetr
(

F (x+ 0̂, x)γ0T a
)

. (5.51)

The color matrix C(x), that measures the amount of Gauss violation and enters the algorithm
for a restoration of Gauss law, is now given as

C(x) =
Z

a

∑

i

[

Ei − U †
i (x− î)Ei(x− î)Ui(x− î)

]

+ gT aRetr
(

F (x+ 0̂, x)γ0T a
)

. (5.52)

The update equation for the chromo-electric fields (eq. 4.56), as well as the fermion and gauge
link evolution equations (eq. 4.1) and (eq. 4.7) remain unchanged.
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Static Box Observables

Having discussed the derivation of the semi-classical effective theory in (chapter 4), as well
as its renormalization in (chapter 5), let us now turn to the definition of the observables that
will be evaluated in the lattice simulation of the effective theory. As pointed out in (chapter
3), we are particularly interested in the pressure and the occupation of energy-modes of the
system, making it possible to measure the evolution of the initial pressure anisotropy of the
CGC and study the validity of the semi-classical approximation. Furthermore, we will determine
the energy density in the simulation to connect it to the estimated energy density of the early
phase in a heavy ion collision (section 3.5), allowing us to fix the lattice spacing a.

6.1 The Energy-Momentum Tensor of Quantum Chro-

modynamics

We will define the energy and pressure observables of our system, by making use of the energy-
momentum tensor of QCD, where the diagonal elements represent the energy density and
pressure. As expected, the resulting observables are gauge invariant and we do not have to
fix the remaining gauge degree of freedom in our system. One has to keep in mind, that the
Glasma initial state of the Yang-Mills sector is a non-equilibrium state and as a consequence,
the definition of a pressure should not be understood in context of an equilibrium statistical
(quantum-)field theory. We define the pressure of the non-equilibrium system essentially as the
spacial diagonal component of the corresponding energy-momentum tensor. To introduce the
basic concepts, we will stick to continuum physics at first and discretize our results in a next step.

The symmetrized energy-momentum tensor of QCD can be found e.g. in [148]

T µνQCD = −ηµνLQCD − ZF µα,aF ν a
α +

1

2
ψ̄iD(µγν)ψ +

1

2
ψ̄i
←−
D (µγν)ψ. (6.1)

We introduced the following short notation for the covariant derivative

D(µγν) =
1

2

(

Dµγν +Dνγµ
)

, (6.2)

61
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with an arrow above a covariant derivative indicating, that it has to be taken to the left

ψ̄
←−
Dµ = −∂µψ̄ + igψ̄Aµ. (6.3)

The energy-momentum tensor can now be split into the different sectors of QCD, a Yang-
Mills part T µνYM and a fermion part T µνψ

T µνQCD =
Z

4
ηµνFαβ,aF a

αβ − ZF µα,aF ν a
α

︸ ︷︷ ︸

:=Tµν
YM

(6.4)

−ηµνψ̄
(

iγαDα −m
)

ψ +
1

4

(

ψ̄iDµγνψ + ψ̄iDνγµψ + ψ̄i
←−
Dµγνψ + ψ̄i

←−
D νγµψ

)

.
︸ ︷︷ ︸

:=Tµν
ψ

We will use this splitting to define the energy density and pressure for each of the sectors individu-
ally.

6.1.1 Yang-Mills Sector of the QCD Energy-Momentum Tensor

We start our discussion for the Yang-Mills sector of the theory. The energy-momentum tensor
of the Yang-Mills sector can be written in the following way

T µνYM =
Z

4
ηµνFαβ,aF a

αβ − ZF µα,aF ν ,a
α =

Z

4
ηµνηαγηβδF a

γδF
a
αβ − ZηµαηνβηγδF a

αγF
a
βδ. (6.5)

The corresponding energy density is given as the 00-component of the tensor

T 00
YM = ǫYM =

Z

4
η00ηαγηβδF a

γδF
a
αβ − Zη0αη0βηγδF a

αγF
a
βδ =

Z

4
Fαβ,aF a

αβ − ZF 0α,aF 0 ,a
α (6.6)

Identifying the chromo-electric fields (eq. 1.17) then leads to

ǫYM = ZEa2
i −

Z

2

[

Ea2
i − Z

∑

i<j

F a2
ij

]

= Ztr
[

E2
i +

∑

i<j

F 2
ij

]

≡ HYM . (6.7)

By comparing this result to the Hamiltonian of pure Yang-Mills theory (eq. 2.11) we find that
both equations agree, as it should be the case in a conservative system.
The pressure can be calculated from the spacial components of (eq. 6.5)

T iiY M = PYM,i =
Z

4
ηiiηαγηβδF a

γδF
a
αβ − ZηiαηiβηγδF a

αγF
a
βδ (6.8)

=− Z

4
Fαβ,aF a

αβ − ZF 0,a
i F a

i0 −
∑

j 6=i
F j,a
i F a

ij.

Identifying the chromo-electric fields (eq. 1.17) again, we find

PYM,i = ZTr
[
∑

k 6=i
E2
k − E2

i + 2
∑

j 6=i
F 2
ij −

∑

k<j

F 2
kj

]

. (6.9)

We use this result to define the longitudinal pressure, which is oriented parallel to the beam
axis in a heavy ion collision and the transverse pressure, which is oriented perpendicular
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to the beam axis. Choosing the beam axis along z-direction, the longitudinal pressure is
given by the z-component of (eq. 6.8)

PL
YM = PYM,z = Ztr

[

E2
1 + E2

2 − E2
3 + F 2

13 + F 2
23 − F 2

12

]

. (6.10)

The transverse pressure is thus defined as

P T
YM =

1

2

(

PYM,x + PYM,y

)

= Ztr
[

E2
3 + F 2

12

]

. (6.11)

For the sake of completeness, the following splitting of the energy density of the Yang-Mills sector
into longitudinal and transverse contributions can be found in the literature (see e.g. [126])

ǫTYM =Ztr
[

E2
1 + E2

2 + F 2
13 + F 2

23

]

, ǫLYM = Ztr
[

E2
3 + F 2

12

]

. (6.12)

Using these definitions, the pressure and energy density of the Yang-Mills sector are re-
lated in the following way

P T
YM =ǫLYM , PL

YM = ǫTYM − ǫLYM . (6.13)

For the calculation it might be useful as well, to split the energy density into a chromo-electric
and a chromo-magnetic part. This is simply done by identifying all terms containing the
chromo-electric fields as chromo-electric and all other terms as the chromo-magnetic part.

6.1.2 Fermion Sector of the QCD Energy-Momentum Tensor

Next we have a look at the energy-momentum tensor of the fermion sector of QCD

T µνψ = −ηµνψ̄
(

iγαDα −m
)

ψ +
1

4

(

ψ̄iDµγνψ + ψ̄iDνγµψ + ψ̄i
←−
Dµγνψ + ψ̄i

←−
Dνγµψ

)

. (6.14)

The energy density is again obtained from the 00-component

T 00
ψ = ǫψ = −ψ̄

(

iγαDα −m
)

ψ +
1

2

(

ψ̄iγ0∂tψ + ψ̄iγ0←−∂ tψ
)

, (6.15)

Making use of the Lagrangian of the fermion sector of QCD (eq. 1.2), we find

ǫψ = −ψ̄(x)
(

iγiDi −m
)

ψ(x) ≡ Hf (x). (6.16)

As already seen in case of the Yang-Mills sector, the result (eq. 6.16) is equivalent to the
Hamilton density of the fermion sector (eq. 1.25).

The pressure is defined from the spacial diagonal components of (eq. 6.14)

Pψ
i = T iiψ = −ηiiψ̄

(

iγαDα −m
)

ψ +
1

2

(

ψ̄iDiγiψ + ψ̄i
←−
Diγiψ

)

. (6.17)

We can simplify this, using the fact that the Dirac equation explicitly enters the Lagrangian
of the fermion sector (eq. 1.5). With the Dirac equation representing the evolution equation
of the fermion fields in our simulation, it is satisfied at every time-step

Lf = ψ̄
(

iγ0∂t + iγiDi −m
)

ψ
︸ ︷︷ ︸

=0

= 0. (6.18)
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As a result, the pressure observable reduces to [144]

Pψ
i = T iiψ =

1

2

(

ψ̄iDiγiψ + ψ̄i
←−
Diγiψ

)

. (6.19)

It is now straight forward to define a longitudinal and transverse pressure for the fermion sector,
as presented for the Yang-Mills sector.

In contrast to the Yang-Mills sector, where the gauge fields are assumed to be classical, fermion
spinors are quantum operators. As a consequence, the energy density (eq. 6.16) and the pressure
(eq. 6.19) of the fermion sector are operator valued. When evaluating these observables, this
has to be done with respect to the partition function of the semi-classical model (eq. 4.34)

〈O(x)〉 =
∫

O(x)ρA[Ā(t0)]δ
[

∂µF̄
µν,a − gfabcĀbµF̄ µν,c − Jν,a

Ā

]

[dĀ]. (6.20)

We will discuss how to evaluate these observables in a lattice simulation in the following.

6.2 Lattice Discretization of the Observables

Having defined the energy and pressure observables of both, the Yang-Mills and fermion sector
in our semi-classical effective theory of QCD, let us discretize these results, making an evaluation
in a real-time lattice simulation possible.

It is straight forward to discretize the observables of the Yang-Mills sector (eq. 6.7) and (eq. 6.8),
by replacing the field-strength tensor components by the lattice counterparts given from (eq. 2.9)

ǭYM(x) =g2a4ǫYM(x) = ZRetr
[

Ē2
i (x) + 2

∑

i<j

[

1− Uij(x)
]]

, (6.21)

P̄ T
YM =g2a4P T

YM = ZRetr
[

Ē2
3 + 2(1− U12)

]

, (6.22)

P̄L
YM =g2a4PL

YM = ZRetr
[

Ē2
1 + Ē2

2 − Ē2
3 + 2(1 + U12 − U13 − U23)

]

, (6.23)

where we defined the energy density and pressure in lattice units, rescaling the observables in
terms of the lattice spacing a and the coupling g.

For the discretization of the fermion sector, we have to introduce the Wilson term (eq. 2.53)
to take care of the fermion doubling problem on the lattice. On top of this, as discussed in
the previous section, we have to take the expectation value with respect to the semi-classical
partition function (eq. 4.34), because fermion fields are operator valued. In case of the energy
density of the fermion sector (eq. 6.16), this manifests itself in

ǫψ =− i

2a

∑

i

(〈

ψ̄(x)
(

γi − ir
)

Ui(x)ψ(x+ î)
〉

−
〈

ψ̄(x)
(

γi + ir
)

U †
i (x− î)ψ(x− î)

〉)

(6.24)

+
1

a

(

am+ 3r
)〈

ψ̄(x)ψ(x)
〉

.

As discussed for the evaluation of the fermion current, that enters the equation of motion of
the chromo-electric fields (eq. 5.50), the expectation values can be evaluated by making use
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of the statistical propagator (eq. 1.44). Rewriting the first term of (eq. 6.24)
〈

ψ̄(x)
(

γi − ir
)

Ui(x)ψ(x+ î)
〉

=
〈

ψ̄α,c(x)
(

γiαβ − δαβir
)

Ui,cd(x)ψβ,d(x+ î)
〉

(6.25)

=
〈

ψ̄α,c(x)ψβ,d(x+ î)
〉 (

γiαβ − δαβir
)

Ui,cd(x),

we can split the expectation value into

〈

ψ̄α,c(x)ψβ,d(x+ î)
〉

=
1

2

(〈

ψ̄α,c(x)ψβ,d(x+ î)
〉

+
〈

ψ̄α,c(x)ψβ,d(x+ î)
〉)

. (6.26)

Because the fermion spinors are given at different spacial positions, we can make use of (eq .1.31)

{ψβ,d(x+ î), ψ̄α,c(x)} = ψβ,d(x+ î)ψ̄α,c(x) + ψ̄α,c(x)ψβ,d(x+ î) = 0, (6.27)

making it possible to identify the statistical propagator, by anti-commuting the first term

〈

ψ̄α,c(x)ψβ,d(x+ î)
〉

= −1

2

〈[

ψ̃β,d(x+ î), ψ̄α,c(x)
]〉

= −Fβα,dc(x+ î, x). (6.28)

With this result, the fermion expectation values in (eq. 6.24) can be calculated by making
use of the statistical propagator

〈

ψ̄(x)
(

γi − ir
)

Ui(x)ψ(x+ î)
〉

=− Fβα,dc(x+ î, x)
(

γiαβ − δαβir
)

Ui,cd(x) (6.29)

=− tr
[

F (x+ î, x)
(

γi − ir
)

Ui(x)
]

.

In similar fashion we find
〈

ψ̄(x)
(

γi + ir
)

U †
i (x− î)ψ(x− î)

〉

= −tr
[

F (x− î, x)
(

γi + ir
)

U †
i (x− î)

]

. (6.30)

In the mass term of (eq. 6.24), the spinor fields are taken at equal position

〈

ψ̄(x)ψ(x)
〉

=
〈

ψ̄α,c(x)ψα,c(x)
〉

=
1

2

(〈

ψ̄α,c(x)ψα,c(x)
〉

+
〈

ψ̄α,c(x)ψα,c(x)
〉)

. (6.31)

Nevertheless using (eq. 1.31) leads to

{ψα,c(x), ψ̄α,c(x)} = ψα,c(x)ψ̄α,c(x) + ψ̄α,c(x)ψα,c(x) = γ0
αα
︸︷︷︸

=trγ0=0

δccδx,x = 0. (6.32)

As a consequence, the mass term can also be calculated by making use of the statistical fermion
propagator

〈

ψ̄(x)ψ(x)
〉

= −tr
[

F (x, x)
]

= − 1

a3
tr
[

F̄ (x, x)
]

, (6.33)

where we introduced a rescaled, dimensionless lattice version of the statistical propagator in the
second step. Combining all results, we find the following lattice energy density of the fermion sec-
tor

ǭψ(x) = g2a4ǫψ(x) = g2 i

2

∑

i

(

tr
[

F̄ (x+ î, x)
(

γi − ir
)

Ui(x)
]

(6.34)

− tr
[

F̄ (x− î, x)
(

γi + ir
)

U †
i (x− î)

])

− g2
(

m̄+ 3r
)

tr
[

F̄ (x, x)
]

.
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In the simulation, the statistical propagator of fermion fields can be evaluated from ensemble
averages of stochastic low-cost fermions (eq. 1.51). As discussed already in the context of the
equations of motion in (section 4.3), when considering Nf degenerate fermion flavors, all traces
of the statistical propagator pick up an additional factor of Nf .

The pressure of the fermion sector can be derived in similar fashion. After including the
Wilson term1 and taking the expectation value, one finds

Pi(x) =−
〈

ψ̄(x)
(

iγiDi +
ra

2
�W
i

)

ψ(x)
〉

(6.35)

=− ig2

2

[〈

ψ̄(x)
(

γi − ir
)

Ui(x)ψ(x+ î)
〉

+ 2ir
〈

ψ̄(x)ψ(x)
〉

−
〈

ψ̄(x)
(

γi + ir
)

U †
i (x− î)ψ(x− î)

〉]

,

The expectation values can then be evaluated by making use of the statistical propagator.
Introducing dimensionless lattice fields, we obtain

P̄ψ
i = g2a4Pi,ψ = g2 i

2

(

tr
[

F̄ (x+ î, x)
(

γi − ir
)

Ui(x)
]

+ 2irtr
[

F̄ (x, x)
]

(6.36)

− tr
[

F̄ (x− î, x)
(

γi + ir
)

U †
i (x− î)

])

.

The total energy density and pressure of the system is then given as the sum of the individual
sectors.

In most cases, we will perform a lattice average for the energy density and pressure

〈O(t)〉av =
1

V

∑

x

O(t,x). (6.37)

This allows us to study the time dependence of the observables only.

6.2.1 Computing the Error for Stochastic Fermions

In the stochastic low-cost approach for the calculation of the statistical propagator, the
ensemble averages over Nens gendered fermions are of Gaussian type and can be under-
stood as evaluating the mean

µ
(

O(ψ, ψ̄)
)

= 〈O(ψ, ψ̄)〉Nens . (6.38)

In this section, we will discuss how to evaluate the standard deviation for averages of stochastic
low-cost fermions, making it possible to estimate a statistical error for the energy density
and pressure observables of the fermion sector

∆O(x) =
σ(x)√
Nens

. (6.39)

1Recall that in the derivation of the energy-momentum tensor, one takes the derivative of the Lagrangian
with respect to the field derivative [149]. The Wilson term enters the lattice Lagrangian as a derivative operator
itself, and as a consequence, one picks up an additional contribution from the Wilson term, when deriving the
lattice pressure of the fermion sector.
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The standard deviation is defined as

σ2
(

O(ψ, ψ̄)
)

= 〈O2(ψ, ψ̄)〉Nens − 〈O(ψ, ψ̄)〉2Nens . (6.40)

In a first step we have to square our observable for the energy density (eq. 6.24) and take the
expectation value with respect to the semi-classical partition function (eq. 4.34) afterwards.

The squared energy density of the fermion sector is given as

ǫ2
ψ(x) =− 1

4

∑

i,j

[〈

ψ̄(x)
(

γi − ir
)

Ui(x)ψ(x+ î)ψ̄(x)
(

γj − ir
)

Uj(x)ψ(x+ ĵ)
〉

(6.41)

+
〈

ψ̄(x)
(

γi + ir
)

U †
i (x− î)ψ(x− î)ψ̄(x)

(

γj + ir
)

U †
j (x− ĵ)ψ(x− ĵ)

〉

− 2
〈

ψ̄(x)
(

γi − ir
)

Ui(x)ψ(x+ î)ψ̄(x)
(

γj + ir
)

U †
j (x− ĵ)ψ(x− ĵ)

〉]

− i
(

m+ 3r
)∑

i

〈

ψ̄(x)ψ(x)ψ̄(x)
(

γi − ir
)

Ui(x)ψ(x+ î)
〉

+ i
(

m+ 3r
)∑

i

〈

ψ̄(x)ψ(x)ψ̄(x)
(

γi + ir
)

U †
i (x− î)ψ(x+ î)

〉

+
(

m+ 3r
)2
〈

ψ̄(x)ψ(x)ψ̄(x)ψ(x)
〉

.

We have to evaluate expectation values of the form

∑

i,j

〈

ψ̄aα(x)
(

γi − ir
)

αβ
Uab
i (x)ψbβ(x+ î)ψ̄cµ(x)

(

γj − ir
)

µν
U cd
j (x)ψdν(x+ ĵ)

〉

(6.42)

=
∑

i,j

〈

ψ̄aα(x)ψbβ(x+ î)ψ̄cµ(x)ψdν(x+ ĵ)
〉(

γi − ir
)

αβ
Uab
i (x)

(

γj − ir
)

µν
U cd
j (x).

This can be done by making use of the Wick theorem for fermion fields and afterwards using
the statistical propagator (eq. 1.44) to rewrite the result
〈

ψ̄aα(x)ψbβ(x+ î)ψ̄cµ(x)ψdν(x+ ĵ)
〉

=
〈

ψ̄aα(x)ψbβ(x+ î)
〉〈

ψ̄cµ(x)ψdν(x+ ĵ)
〉

(6.43)

−
〈

ψ̄aα(x)ψdν(x+ ĵ)
〉〈

ψ̄cµ(x)ψbβ(x+ î)
〉

=F ba
βα(x+ î, x)F dc

νµ(x+ ĵ, x)− F da
να(x+ ĵ, x)F bc

βµ(x+ î, x).

Using this, (eq. 6.42) is given as

∑

i,j

〈

ψ̄aα(x)ψbβ(x+ î)ψ̄cµ(x)ψdν(x+ ĵ)
〉(

γi − ir
)

αβ
Uab
i (x)

(

γj − ir
)

µν
U cd
j (x) (6.44)

=
∑

i,j

tr
(

F (x+ î, x)
(

γi − ir
)

Ui(x)
)

tr
(

F (x+ ĵ, x)
(

γj − ir
)

Uj(x)
)

−
∑

i,j

tr
(

F (x+ ĵ, x)
(

γi − ir
)

Ui(x)F (x+ î, x)
(

γj − ir
)

Uj(x)
)

.

We observe, that this splits into two terms, with the first one canceling one contribution
to the single squared single expectation value of the fermion energy density operator. All
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other terms of (eq. 6.41) can be treated in similar fashion and introducing dimensionless
lattice fields, we finally find

〈ǭ2
ψ(x)〉 = 〈ǭψ(x)〉2 +

g4

4

∑

i,j

[

tr
(

F̄ (x+ ĵ, x)
(

γi − ir
)

Ui(x)F̄ (x+ î, x)
(

γj − ir
)

Uj(x)
)

(6.45)

+ tr
(

F̄ (x− ĵ, x)
(

γi + ir
)

U †
i (x− î)F̄ (x− î, x)

(

γj + ir
)

U †
j (x− ĵ)

)

− 2tr
(

F̄ (x− ĵ, x)
(

γi − ir
)

Ui(x)F̄ (x+ î, x)
(

γj + ir
)

U †
j (x− ĵ)

)]

+ ig4
(

m̄+ 3r
)∑

i

[

tr
(

F̄ (x+ î, x)F̄ (x, x)
(

γi − ir
)

Ui(x)
)

− tr
(

F̄ (x− î, x)F̄ (x, x)
(

γi + ir
)

U †
i (x− î)

)]

− g4
(

m̄+ 3r
)2

tr
(

F̄ (x, x)F̄ (x, x)
)

.

With the help of (eq. 6.40) we can now derive the standard deviation and finally the standard
error (eq. 6.39). It is straight forward to repeat the procedure for the pressure observable

〈P̄ 2
i,ψ(x)〉 = 〈P̄i,ψ(x)〉2 +

g4

4

[

tr
(

F̄ (x+ î, x)
(

γi − ir
)

Ui(x)F̄ (x+ î, x)
(

γi + ir
)

Ui(x)
)

(6.46)

− 2tr
(

F̄ (x− î, x)
(

γi − ir
)

Ui(x)F̄ (x+ î, x)
(

γi + ir
)

U †
i (x− î)

)

+ tr
(

F̄ (x− î, x)
(

γi + ir
)

U †
i (x− î)F̄ (x− î, x)

(

γi + ir
)

U †
i (x− î)

)]

+ ig4r



tr
(

F̄ (x+ î, x)F̄ (x, x)
(

γi − ir
)

Ui(x)
)

− tr
(

F̄ (x− î, x)F̄ (x, x)
(

γi + ir
)

U †
i (x− î)

)]

− g4r2tr
(

F̄ (x, x)F̄ (x, x)
)

.

Keep in mind that the index i is not summed in case of the pressure and denotes the spacial direc-
tion.

6.2.2 Initial Values and Renormalization

In the simulation, we initialize the gauge and fermion sector independently and couple both
sectors at the first time-step of the simulation. At initial time t0 = 0, the sectors are thus still
uncoupled and we have to evaluate the energy density and pressure of the fermion sector with
respect to the free non-interacting vacuum, setting Ui = 1. It is well known from the continuum,
that this leads to divergencies of fermion expectation values, due to vacuum contributions
of fermion fields in a quantum field theory [149]. This infinite vacuum contribution has to
be subtracted when defining the physical observables. On a lattice, the theory is naturally
regulated by the lattice momentum cutoff, hence the vacuum contribution is finite, but it has to
be removed as well to define physical quantities.

In this section, we first identify the appearance of such vacuum contributions in the lattice
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fermion energy density and pressure observables. Afterwards, we discuss how to subtract them
in our simulation. Although we are mainly dealing with vacuum fermions in later simulations,
we will discuss the more general case of thermal fermions of temperature T . The initialization
of thermal fermions has previously been discussed in (section 1.2), where a thermal distribution
enters the expectation value of a commutator of creation and annihilation operators (eq. 1.41).

With all fermion observables being formulated with use of the statistical propagator, let
us first investigate the propagator itself. For thermal fermions, its lattice Fourier repre-
sentation can be written as

Fαβ(x, y) =
1

2V 2

∑

p,k

∑

s,r

(
〈[

as(p), a†
r(k)

]〉

us,α(p)ūr,β(k)e−ipx+iky (6.47)

+
〈[

b̂†
s(p), b̂r(k)

]〉

vs,α(p)v̄r,β(k)eipx−iky

)

=
1

2V

∑

p

(

1− 2nFD(p, T )
)
(
(

γµsµ(p) + µ
)

αβ

2s0

e−ip(x−y) −

(

γµsµ(p)− µ
)

αβ

2s0

eip(x−y)

)

,

where we used (eq. 1.41) and carried out the spin sums (eq. 2.44). The distribution function
nFD(p, T ) is the Fermi-Dirac distribution (eq. 1.43) and the vacuum result is easily obtained by
setting nFD(p, T ) = 0. The following combination of traces of the statistical propagator enters
the energy density (eq. 6.34) and pressure (eq. 6.36) observables of the fermion sector

tr
[

F (x+ î, x)
(

γi − ir
)]

− tr
[

F (x− î, x)
(

γi − ir
)]

(6.48)

=
2Nc

V

∑

p

1− 2nFD(p, T )

s0

(
(

si − irµ
)

e
i 2π
Ni
qi −

(

si + irµ
)

e
−i 2π

Ni
qi

)

,

where we inserted the lattice momenta pi = 2π
Nia

qi, qi ∈ {−Ni
2

+ 1, ..., Ni
2
} and Nc = 3 denotes

the number of colors. This can be simplified using

si = sin
(

api
)

= sin

(

2π

Ni

qi

)

=
1

2i

(

e
i 2π
Ni
qi − e−i 2π

Ni
qi
)

, (6.49)

cos
(

api
)

= cos

(

2π

Ni

qi

)

=
1

2

(

e
i 2π
Ni
qi + e

−i 2π
Ni
qi
)

, (6.50)

leading to

tr
[

F (x+ î, x)
(

γi − ir
)]

− tr
[

F (x− î, x)
(

γi − ir
)]

(6.51)

=
i4Nc

V

∑

p

1− 2nFD(p, T )

s0

(

sin2
(

api
)

− rµ cos
(

api
))

.

Inserting this into the free fermion energy density (eq. 6.34) we find

ǭ =
2Ncg

2

V

∑

p

1− 2nFD(p, T )

s0

[

−
3∑

i=1

sin2(api)− µ
(

m̄+ r
3∑

i=1

(

1− cos(api)
)
)]

. (6.52)
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Identifying the lattice mass and the lattice momenta of free Dirac fermions (eq. 2.38) we finally
have

ǭ = −2Ncg
2

V

∑

p

s0(p)
(

1− 2nFD(p, T )
)

. (6.53)

First note, that the result (eq. 6.54) is position independent, as expected for a free gas of
fermions with a temperature T . Furthermore the result is finite, because the momenta p are
regulated by the lattice momentum cutoff.
We obtain the vacuum solution by setting nFD(p, T ) = 0. This result is non-vanishing and
referred to as vacuum energy

ǭvac = −2Ncg
2

V

∑

p

s0
a→0→ −∞. (6.54)

The renormalized energy density can now be defined by subtracting the vacuum energy2

ǭR = ǭ− ǭvac =
4Ncg

2

V

∑

p

s0 nFD(p, T ). (6.55)

This result is the lattice version of the energy density of a free gas of fermions and the prefactor
gψ = 4Nc is the degeneracy factor, given by the number of spins, colors and fermion/anti-fermion.

At initial time t0 = 0, we calculate this vacuum energy (eq. 6.54) in our simulation, when evaluat-
ing (eq. 6.34)

ǭvacψ = ǭψ(t0) =
1

V

∑

x

〈0| Ĥψ(t0,x) |0〉 . (6.56)

Hence its initial value defines an additive renormalization constant, that has to be subtracted at
every time-step in the simulation, to obtain the physical energy density.

It is straight forward to repeat this discussion for the fermion pressure (eq. 6.36), leading
to the following contribution at initial time

P̄ψ
i = −g2 2Nc

V

∑

p

1− 2nFD(p, T )

s0

(

sin2(api) + µr
(

1− cos(api)
)
)

. (6.57)

We find by setting nFD(p, T ) = 0, that the fermion pressure observable has a vacuum contribution
as well, that has to be subtracted to define the physical observable

P̄ψ,R
i = P̄ψ

i − P̄ψ,vac
i . (6.58)

This renormalization procedure for the observables also matches the procedure of calculating
physical expectation values from normal ordered operators. As discussed in (section 1.2),
normal ordered operators are constructed such, that vacuum contributions are no longer present.
Following this concept, our renormalization procedure is nothing but normal ordering the
operator. It is straight forward to check that, starting from the operator and enforcing
normal order, reproducing our results.

2The vacuum energy is sometimes referred to as T = 0 contribution in the context of statistical quantum
field theory, where the renormalization procedure is known as additive renormalization. [150]
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6.3 Occupation

We want to define a measure for the occupation of field modes in our semi-classical system in a
gauge invariant way. This can be done by making use of a gauge independent observable, which
is provided by the energy density of the system. We will use the Fourier transform of the energy
density to identify the Fourier modes as energy modes of the system, providing information on
the occupation of modes. We will crosscheck this procedure numerically by comparing it to a
gauge dependent definition of the occupation of modes presented in [40, 43]. The additional
gauge degree of freedom will be fixed using the Coulomb condition and a relaxation algorithm.

6.3.1 Gauge Invariant Occupation of Energy Modes

We follow the definition that has first been presented in [126] for a pure Yang-Mills simulation
and extend it to a system including fermions. As pointed out already, our starting point
is the gauge invariant energy density

ǭ(x) = ǭYM(x) + ǭψ(x). (6.59)

In a first step, we perform the lattice Fourier transform of the energy density

˜̄ǫ(t,p) =
1

√

|Λ|
∑

x∈Λ

ǭ(t,x)e−ixp =
1√
V

∑

n∈Λ

ǭ(t,x)e
−i 2π

Ni
niki , (6.60)

where we define the position and momentum space lattice according to

Λ =
{

x = (x, y, z); xi = ani; ni ∈
[

0, 1, ..., Ni − 1
]}

, (6.61)

Λ̃ =

{

p = (px, py, pz); pi =
2π

aNi

ki; ki ∈
[

−Ni/2 + 1, ..., 0, ..., Ni/2
]
}

. (6.62)

The Fourier transform can be split into a Yang-Mills and fermion part as well

˜̄ǫ(t,p) = ˜̄ǫYM(t,p) + ˜̄ǫψ(t,p). (6.63)

In context of a Fourier transformation, we have to treat the zero-momentum p = (0, 0, 0) with spe-
cific care. Recalling the definition of the (discrete) Fourier transform and setting p = 0, we find

˜̄ǫ(t,0) = ˜̄ǫ0(t) =
1√
V

∑

x

ǭ(t,x) =
√
V ǭ(t). (6.64)

The zeroth Fourier mode therefore is nothing but the lattice average of the energy density itself
and can not be interpreted as a specific energy mode of our system. As a consequence, we
exclude it in our definition.

The definition of the occupation of energy modes is motivated by the energy density of a
free gas of bosons or fermions [151]

ǫ =
∫

ωpn(p)d3p, (6.65)



72 6.3. Occupation

where n(p) denotes the distribution function and ωp the energy of the specific modes. For
a free gas on the lattice, the energy of a mode corresponds to the lattice dispersion relation.
In case of massless Yang-Mills fields it is given as

ω2
p → 1

a2
p̂2 =

4

a2

3∑

i=1

sin2

(

api

2

)

, (6.66)

where p̂ takes discrete values in an interval of

1

a
p̂ ∈

[

0,
2

a

√

3 sin2 π/2

]

=

[

0,
2
√

3

a

]

. (6.67)

We discussed the lattice dispersion relation of massive Wilson fermion fields of mass m̄ =
am already in (section 2.2.1), obtaining

ω2
p → 1

a2
s2

0 =
1

a2

3∑

i=1

sin2
(

api
)

+
1

a2
µ2(p), (6.68)

with the lattice mass µ (eq. 2.38). It takes discrete values in the interval of

1

a
s0 ∈

[

m,
1

a

√

3 sin(π) + (m+ 3(1− cos(π)))2

]

=

[

m,m+
6

a
r

]

. (6.69)

Every lattice momentum pi is associated with a specific value ωp of either the fermion or the
boson lattice dispersion relation. Note that this mapping is unique, but its inversion is not
unique: for some values of ωp there exist multiple momenta of pi, e.g.

ωp → p̂ = sin

(

π

Ni

n

)

for







p =
(

sin
(
π
Ni
n
)

, 0, 0
)

p =
(

0, sin
(
π
Ni
n
)

, 0
)

p =
(

0, 0, sin
(
π
Ni
n
))

.

(6.70)

We call Γp the set of momenta p with equal lattice dispersion relation ωp.

The energy density in momentum space is a function of the lattice momenta pi and it takes
different values for different momenta of the set p ∈ Γp. We therefore perform an average
for momenta in the set Γp. The result corresponds to the occupation of one specific energy
mode ωp, defining the gauge invariant occupation of energy modes as

n(t, ωp) =
1

ωp

〈∣
∣
∣˜̄ǫ(t,p)

∣
∣
∣

〉

p
=

1

ωp

(

1

|Γp|
∑

p∈Γp

∣
∣
∣˜̄ǫ(t,p)

∣
∣
∣

)

. (6.71)

This definition is motivated from (eq. 6.65) and provides a gauge invariant possibility to calculate
the occupation of energy modes. Although we are in an interacting system, an analysis in [40]
has shown, that it is reasonable in a system dominated by classical modes to approximate the
dispersion relation ωp using the free lattice dispersion.

We have defined the occupation of energy modes (eq. 6.71) without restricting to fermions
or bosons. The corresponding observables are given by replacing the Fourier transformed
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energy density with the energy density of the fermion or the Yang-Mills sector and the lattice
dispersion relation (eq. 6.66) or (eq. 6.68)

g2a3nYM(t, p̂) = n̄YM(t, p̂) =
1

p̂

〈∣
∣
∣˜̄ǫYM(t,p)

∣
∣
∣

〉

p
, (6.72)

g2a3nψ(t, p̂) = n̄ψ(t, p̂) =
1

s0

〈∣
∣
∣˜̄ǫψ(t,p)

∣
∣
∣

〉

p
. (6.73)

We defined the dimensionless lattice version of the observable, introducing the appropriate
rescaling in terms of the lattice spacing a.

The definitions (eq. 6.72) provide a measure for the occupation of energy modes, hence
it can also be used to discuss the classicality of our system. We expect the system to be
initially dominated by an overoccupation of classical field modes, which should manifest itself
in a large occupation of low energy modes in the Yang-Mills sector. With the fermion sector
being initialized as vacuum fermions, all energy modes have to be unoccupied at initial time.
We are now able to measure how high energy modes become occupied during the evolution of
the system, possibly causing the classical approximation to break down at a late stage of the
simulation.

Keeping in mind, that the definition of the occupation of energy modes discussed in this
section does not match the Bose-Einstein or Fermi-Dirac distribution of modes in equilibrium
statistical (quantum-)field theory.
This can easily be seen, by a check of dimension: The distribution function of equilibrium
statistical physics has dimension 1, whereas

[nYM(t, ωp)] ∼ [ǫYM/ψ]

[ωp]
∼ 1

fm3 , (6.74)

has the dimension of a density, hence we can interpret it as an occupation number density [126]

nYM(t, p̂) =
NYM(t, p̂)

V
. (6.75)

To monitor the occupation of high energy modes during the evolution of the system, it is useful
to define a specific reduction of the occupation of energy modes (eq. 6.72). As discussed in
(section 3.4), the construction of the Glasma state from the CGC effective theory is realized by
copying the effectively two dimensional solution of the Poisson equation to the other transverse
planes in longitudinal direction, generating color flux tubes. As a result, when plotting the
occupation of energy modes as a function of longitudinal momentum, the distribution is peaked
at pz = 0. We will later confirm this numerically when discussing our simulation results. To
measure how energy modes with momenta pz 6= 0 become more and more occupied during the
evolution of the system, we define the occupation of energy modes as a function of longitudinal
momentum, by averaging the occupation in the transverse planes

n(t, pz) =
1

NxNy

∑

px,py

1

ωp

〈∣
∣
∣ǫ̃(t,p)

∣
∣
∣

〉

p
. (6.76)

6.3.2 Gauge Variant Occupation

To justify the validity of our gauge invariant approach for the calculation of the occupation
of energy modes, we want to compare it to the gauge variant definition, familiar from the
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literature [43]. The gauge variant occupation has only be defined in a pure Yang-Mills theory
and therefore we restrict ourselves to the Yang-Mills sector. Starting point of the gauge
variant definition is the Hamilton function of the Yang-Mills sector, that is derived from the
Hamiltonian (eq. 1.18) by integrating the position dependence

HYM(t) =
∫

HYM(t,x)d3x =
∫

tr

[

Ei(x)Ei(x) +
∑

i<j

Fij(x)Fij(x)

]

d3x. (6.77)

In the previous section, we already discussed that the total energy in a free theory is given by
the free dispersion relation ωk =

√
k2 +m2, weighted with the occupation number n(k)

H =
∫

ωkn(k)d3k, (6.78)

where we replaced the energy by the Hamilton function, which is possible in a conservative system.

Applying a Fourier transform for the chromo-electric part of the Hamiltonian, we find

H ∼
∫

Retr
[

Ei(x)Ei(x)
]

d3x =
∫ ∫

Retr
[

Ei(t,k)Ei(t,p)
] ∫

e−ix(k+p)d3x
d3k

(2π)3

d3p

(2π)3
(6.79)

=
∫

Retr
[

Ei(t,k)Ei(t,−k)
] d3k

(2π)3
=
∫

Retr|Ei(t,k)|2 d3k

(2π)3
.

In [43] it has been argued, that the chromo-electric and chromo-magnetic modes are equally
distributed, when taking a time average, making it possible to approximate

H =
∫

ω(k)n(k)d3k ≈
∫

2Retr|Ei(t,k)|2 d3k

(2π)3
, (6.80)

where the over-line indicates a time average and the additional factor of 2 counts the contribution
of the chromo-magnetic part. We can now conclude from a comparison to (eq. 6.78), that

n(k) =
2

(2π)3ωk

Retr|Ei(k)|2, (6.81)

where we use the same argument as previously, that the dispersion relation can be taken as
(quasi-) free.

On the lattice, the free dispersion relation ωp will again be replaced by the lattice Yang-
Mills dispersion relation. Also note, that the definition (eq. 6.81) has the same dimension as the
gauge invariant definition (eq. 6.72). As stated in the beginning, the definition of the occupation
of modes (eq. 6.81) requires an additional gauge fixing procedure. We choose Coulomb gauge

0 = ∇A, (6.82)

and fix the gauge on the lattice, making use of a relaxation algorithm [102].

6.3.3 Fermion Spectrum

Having discussed a gauge variant definition for the occupation of modes in the Yang-Mills
sector of QCD we want to present a possibility to evaluate the occupation in the fermion sector
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as well. A possible definition of a quark production rate has been proposed in [74]. We will
briefly review the derivation and afterwards adapt the result to our static system. The quark
number per momentum fraction is derived in [74] by making use of the LSZ-reduction formula
for the production of quark-antiquark pairs. They define a probability P1 to produce one
quark-antiquark pair and generalize to n-pairs afterwards. The mean number of produced pairs
per momentum fraction, given from the first moment

∑

n nPn, can then be written as

dNq

d3p
=

1

(2π)3

2∑

s,r=1

Nc∑

a,b=1

∫ d3k

(2π)3

∣
∣
∣
∣

(

ψ0+
p,r,b

∣
∣
∣ψ−

k,s,a

)

t

∣
∣
∣
∣

2

, (6.83)

with the free spinor mode-function

ψ0+
p,r,b = ur(p)e−ipx. (6.84)

The scalar product is defined as
∣
∣
∣
∣

(

ψ0+
k,r,b

∣
∣
∣ψ−

p,s,a

)

t

∣
∣
∣
∣

2

=
∫ ∫

ψ0+,†
p,r,b(t,x)ψ−

k,s,a(t,x)ψ−,†
k,s,a(t,y)ψ0+

p,r,b(t,y)d3xd3y. (6.85)

For the details on the derivation see Appendix A of [74].

We will now use the stochastic low-cost gendered fermions (eq. 1.48) to define the following
combination of gendered spinors

ψ−
η (x) :=

1√
2

(

ψM(x)− ψF (x)
)

=
∫ 2∑

r=1

Nc∑

b=1

ηr,b(k)ψ−
k,r,b(x)

d3k

(2π)3
, (6.86)

where we identified the mode-functions ψ±
k,r,b(t,x). At initial time t0 = 0, these are given

by the vacuum solution of free Dirac fermions

ψ+
k,r,b(t0,x) = ψ0+

k,r,b(t0,x) = ur,b(k)e−ikx, (6.87)

ψ−
k,r,b(t0,x) = ψ0−

k,r,b(t0,x) = vr,b(k)eikx. (6.88)

Using (eq. 6.86) and taking an ensemble average, we are left with

〈

ψ−
η (x)ψ−†

η (y)
〉

Nens

=
∫ ∫ 2∑

r,r′

Nc∑

b,b′

〈

ηr,b(k)η∗
r′b′(k′)

〉

Nens
︸ ︷︷ ︸

=(2π)3δ(k−k′)δrr′δbb′

ψ−
k,r,b(x)ψ−†

k′,r′,b′(y)
d3k

(2π)3

d3k′

(2π)3

=
∫ 2∑

r=1

Nc∑

b=1

ψ−
k,r,b(x)ψ−†

k,r,b(y)
d3k

(2π)3
, (6.89)

where we used (eq. 1.49). We can now substitute

2∑

s=1

Nc∑

a=1

∫ ∣
∣
∣
∣

(

ψ0+
k,r,b

∣
∣
∣ψ−

p,s,a

)

t

∣
∣
∣
∣

2 d3k

(2π)3
(6.90)

=
∫ ∫

ψ0+,†
p,r,b(t,x)

2∑

s=1

Nc∑

a=1

∫

ψ−
k,s,a(t,x)ψ−,†

k,s,a(t,y)
d3k

(2π)3
ψ0+

p,r,b(t,y)d3xd3y

=
∫ ∫

ψ0+,†
p,r,b(t,x)

〈

ψ−
η (t,x)ψ−†

η (t,y)
〉

Nens

ψ0+
p,r,b(t,y)d3xd3y

=

〈
∫

ψ0+,†
p,r,b(t,x)ψ−

η (t,x)d3x
∫

ψ−†
η (t,y)ψ0+

p,r,b(t,y)d3y

〉

Nens

=
〈∣
∣
∣
∣

(

ψ0+,†
p,r,b

∣
∣
∣ψ−
η

)

t

∣
∣
∣
∣

2〉

Nens

.
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We have shown, that it is possible to evaluate the quark spectrum using stochastic low cost via

dNq

d3p
=

1

2(2π)3

2∑

r=1

Nc∑

b=1

〈∣
∣
∣
∣

(

ψ0+,†
p,r,b

∣
∣
∣ψM − ψF

)

t

∣
∣
∣
∣

2〉

Nens

. (6.91)

This result can be simplified even further in case of the static box, by explicitly inserting the
mode functions at initial time (eq. 6.87) in the last line of (eq. 6.90)

〈
∫

ψ0+,†
p,r,b(t,x)ψ−

η (t,x)d3x
∫

ψ−†
η (t,y)ψ0+

p,r,b(t,y)d3y

〉

Nens

(6.92)

=

〈

u†
r,b(p)

∫

ψ−
η (t,x)e−ipxd3x

∫

ψ−†
η (t,y)eipyd3yur,b(p)

〉

Nens

=

〈

ψ̃−†
η (t,p)ur,b(p)u†

r,b(p)ψ̃−
η (t,p)

〉

Nens

,

where we identified the Fourier transformation. Inserting this into (eq. 6.92) and performing a
spin sum (eq. 1.37), makes it possible to write the quark production rate in the following way

dNq

d3p
=

Nc

2ωp(2π)3

〈

ψ̄−
η (t,p)

(

ωpγ
0 + γipi +m

)

ψ−
η (t,p)

〉

Nens

. (6.93)

Explicitly inserting (eq. 6.86) finally leads to the quark number per momentum fraction

dNq

d3p
=

Nc

2(2π)3

〈
(

ψ̄M(t,p)− ψ̄F (t,p)
)ωpγ

0 + γipi +m

2ωp

(

ψM(t,p)− ψF (t,p)
)
〉

Nens

. (6.94)

When discretizing (eq. 6.94) we have to replace the integrals by lattice sums and the dispersion
relation by the corresponding lattice dispersion relation of Wilson fermions (eq. 2.27)

dNq

d3p
=

Nc

2(2π)3

〈
(

ψ̄M(t,p)− ψ̄F (t,p)
)s0(p)γ0 + γisi(p) + µ(p)

2s0(p)

(

ψM(t,p)− ψF (t,p)
)
〉

Nens

.

(6.95)

The total quark number is finally given by summing the momenta

Nq =
Nc

2

∑

p

〈
(

ψ̄M(t,p)− ψ̄F (t,p)
)s0(p)γ0 + γisi(p) + µ(p)

2s0(p)

(

ψM(t,p)− ψF (t,p)
)
〉

Nens

.

(6.96)

It is possible to derive the total anti-quark number in similar fashion,

Nq̄ =
Nc

2

∑

p

〈
(

ψ̄M(t,p) + ψ̄F (t,p)
)s0(p)γ0 + γisi(p)− µ(p)

2s0(p)

(

ψM(t,p) + ψF (t,p)
)
〉

Nens

.

(6.97)

In a simulation, we expect Nq = Nq̄, because we start from the vacuum state with zero entropy.

In [74] it has been argued that the given definition of the quark and anti-quark number is gauge
invariant. Strictly speaking this is only true considering the limit t→∞, which is why we fix
Coulomb gauge when evaluating (eq. 6.96) and (eq. 6.97) at every time-step in our simulation.



7
The Simulation in a Static Box

In this chapter we will discuss the realization of the semi-classical approximation of QCD
in a real-time lattice simulation. We will provide results of different tests of the lattice
implementation of the model, studying its numerical properties in detail. Additionally we will
provide a matching procedure for the semi-classical approximation, allowing us to introduce
a physical scale to our system, fixing the lattice spacing a.

7.1 Lattice Implementation of the Semi-Classical Equa-

tions of Motion

In (chapter 4), we presented the real-time equations of motion of the semi-classical model. As
pointed out earlier, it is not possible to solve the time dependence of these equations in a
closed form, making a discretization necessary. This discretization of the temporal direction has
consequences on the numerics, when solving the equations of motion, as well as on the fermion
doubling problem, arising the question, if temporal doublers are present as well. In this section,
we present the lattice implementation of the equations of motion and discuss an algorithm that
governs the time evolution.

Having discretized time, the equations of motion become „update“ equations, that move
the fields from the current time-slice ti to a new time-slice ti + at, with at denoting the temporal
spacing. This procedure follows a leap-frog construction:
First we update the chromo-electric fields to the new time slice, making use of the fermion fields
and gauge links defined on the current time slice. Next we proceed with the fermion fields and
afterwards the gauge links, moving all fields to the new time slice t+ at. Additionally one has
to assure that the Gauss constraint (eq. 4.53) is satisfied during the evolution of the system.
For this purpose, we fix Gauss law using the algorithm discussed in (section 4.3.2), after the
fields have been moved to the new time-slice.

We give the lattice equations of motion using dimensionless lattice quantities, rescaled in
terms of the lattice spacing a and the coupling g. The update equations are given as:

77
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• Chromo-electric fields:
For the chromo-electric fields we have the following update equation, obtained from (eq.
5.50)

Ēa
i (x+ t̂) =Ēa

i (x) + 2āt
∑

j 6=i
Imtr

[

T a
(

Uji(x) + U−ji(x)
)]

(7.1)

+
g2āt
2Z

Retr
(〈

ψ̃M(x+ î) ˜̄ψF (x) + ψ̃F (x+ î) ˜̄ψM(x)
〉

Nens

(

γi − ir
)

T aUi(x)
)

,

where we expressed the statistical propagators explicitly in terms of an ensemble average
of low-cost fermions.

• Fermion fields:
The time evolution of the low-cost fermion fields ψG is governed by the Dirac equation
(eq. 4.1)

ψ̃G(x+ t̂) =ψ̃G(x− t̂)− 2iātγ
0
(

m̄+ 3r
)

ψ̃G(x) (7.2)

− ātγ0
3∑

i=1

((

γi − ir
)

Ui(x)ψ̃G(x+ î)−
(

γi + ir
)

U †
i (x− î)ψ̃G(x− î)

)

.

As discussed in (section 4.1), we have to use the non central derivative at the very first
time-step of the evolution, because the field ψ̃G(x− î) is not accessible.

• Gauge links:
The update equation for the gauge links has been derived in (section 4.2)

Ui(x+ t̂) = eiãtĒi(x)Ui(x). (7.3)

In the simulation we evaluate the exponential function by approximating it via a Taylor
series up to 15th order, to reach sufficient precision.

• Gauss constraint:
The dimensionless color matrix C(x) for restoring Gauss law is computed in the following
way, as argued in (section 5.4.1)

C(x) = Z
∑

i

[

Ēi(x)−U †
i (x− î)Ēi(x− î)Ui(x− î)

]

(7.4)

+
g2

2
T aRetr

[〈

ψ̃M(x+ t̂) ˜̄ψF (x) + ψ̃F (x+ t̂) ˜̄ψM(x)
〉

Nens

γ0T a
]

,

where we replaced the statistical propagator by an ensemble average of low-cost fermions.
If Gauss law is violated, we restore it by updating the chromo-electric fields according to
(eq. 4.56) iteratively.

7.2 Free Gas of Fermions

A first test for the implementation of fermions in our lattice simulation is provided by comparing
the energy density and pressure of a free gas of fermions calculated in the simulation, to the
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analytic result familiar from statistical mechanics. In our simulation, the energy density of
free fermions is simply given by setting Ui = 1 in (eq. 6.34). It is now possible to calculate
the energy density of a free gas of fermions of temperature T from the lattice simulation, by
initializing the low cost fermion fields from a thermal distribution, using (eq. 2.49). We will
calculate the energy density for different temperatures T , with a fixed fermion mass of

m̄ = am = 0.1, → a =
0.1

m
. (7.5)

We use these relations to fix the lattice spacing of our system as well.

We have already seen in (section 6.2.2) , that it is possible to calculate the energy density of a
free thermal gas of fermions analytically on the lattice, with the (renormalized) result given as

a4ǫ =
4Nc

V

∑

p

s0(p)nFD(p, T ). (7.6)

It is possible to replace the momentum sum by a continuous integration over the first Brioullin
zone in this equation, leading to

a4ǫ =
gψ

(2π)3

π∫

−π

π∫

−π

π∫

−π

s0(p̄)nFD(p̄, T̄ )d3p̄, (7.7)

with p̄i = api and the degeneracy factor gψ = 4Nc. One has to keep in mind, that the fermion
lattice dispersion relation s0 enters the Fermi-Dirac distribution as well

nFD(p̄, T̄ ) =
1

e
s0(p̄)

aT + 1
, (7.8)

where we defined T̄ = aT .

It is straight forward to calculate (eq. 7.7) numerically in python. To study the discretization
error of Wilson fermions on the lattice, let us compare the lattice discretized result to the
continuum result as well. In the continuum, the energy density of a free gas of relativistic
fermions is given as [151]

ǫψ =
gψ

(2π)3

∫

ωpn(p, T )d3p, (7.9)

with the free dispersion relation given by the relativistic energy momentum relation ω2
p =

p2 +m2. To compare this to the lattice result, we have to restrict the momentum integration
to the first Brioullin zone

a4ǫψ(x) =
gψ

(2π)3

π∫

−π

π∫

−π

π∫

−π

ω̄pn(p̄, T̄ )d3p̄, (7.10)

where we have rescaled the momentum p̄i = api, rewriting the dispersion relation accordingly

ωp =
1

a
ω̄p =

√

1

a2
p̄2 +

1

a2
m̄2, d3p =

1

a3
d3p̄. (7.11)
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We calculate the integral (eq. 7.10) numerically and compare it to the lattice results in (figure 7.1).
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Figure 7.1: Energy density of a free gas of fermions, comparing the continuum result with momentum
cutoff (eq. 7.10), the lattice Brioullin zone integrated result (eq. 7.7) and a result evaluated in a
lattice simulation using an ensemble of stochastic low-cost fermions of size Nens = 80, on a lattice with
20× 20× 20 points. The fermion mass is taken to be am = 0.1.

In (figure 7.1) it is clearly evident, that the energy density calculated from (eq. 7.7) and in
the lattice simulation match. We additionally included a crosscheck for naive fermions, setting
r = 0, removing the Wilson term.

Furthermore, we observe that the energy density calculated from naive fermions has a significant
offset when compared to the continuum result. The reason for that is, that the lattice dispersion
relation for naive fermion drops to zero at the edges of the Brioullin zone (see figure 2.2). The
contribution of large momenta therefore is underestimated, when compared to the continuum
dispersion relation, which is in fact maximized at the edges of the Brioullin zone. Because
large momenta become more and more important at large temperatures T the offset for naive
fermions increases. Additionally keep in mind, that the lattice dispersion relation enters the
Fermi-Dirac distribution as well, hence large momenta are also weighted differently when using
naive fermions. This demonstrates, why it is important to introduce a Wilson term, although a
continuum limit is not possible in our scenario.

Because no continuum limit has been performed, there is still an offset between the continuum
and the lattice Wilson fermion energy density present in (figure 7.1). As discussed in (section
2.2.1), the additional mass of the doubler modes prevents the unphysical behavior of the lattice
dispersion relation close to the edges of the Brioullin zone, but as observed in (figure 2.2), we
do not achieve perfect agreement with the continuum dispersion relation, as long as we do not
take the continuum limit a→ 0. This finite offset translates to the energy density as well.
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Having discussed the energy density of a free gas of fermions, let us now turn to the pressure.
In the simulation, we calculate the pressure of free fermions, by setting Ui = 1 in (eq. 6.36).
In (section 6.2.2), we already calculated the analytic expression for the renormalized pressure
of free fermions of temperature T on the lattice

a4Pi,ψ =
gψ
V

∑

p

sin2
(

api
)

+ rµ
(

1− cos(api)
)

s0

nFD(p, T̄ ). (7.12)

As presented already, we replace the sum by an integration over the Brioullin zone and
additionally, because the pressure of a free gas of fermions is uniform in all spacial directions,
we write P = 1

3

∑

i Pi and obtain

a4Pψ =
gψ

3(2π)3

π∫

−π

π∫

−π

π∫

−π

3∑

i=1
sin2(p̄i) + rµ

3∑

i=1

(

1− cos(p̄i)
)

s0

nFD(p̄, T̄ )d3p̄. (7.13)

Again we want to compare (eq. 7.13) to its continuum counterpart. In statistical physics, the
pressure is given as the momentum transfer per fermion times the flux of fermions hitting a
wall [151]. Let us assume the particles flow along the x-axis, so the flux is given as

vxnFD(p, T )d3p. (7.14)

The momentum transfer is thus given as px and the pressure can be calculated from

Pψ =
gψ

(2π)3

∫

pxvxnFD(p, T )d3p. (7.15)

We can now replace the velocity by its relation to the relativistic momentum vx = px
ωp

, leading to

Pψ =
gψ

(2π)3

∫ p2
x

ωp

nFD(p)d3p. (7.16)

Finally we use, that this can be written uniformly in every spacial direction, replacing p2
x = 1

3
p2.

We found the following result for the pressure of a free gas of fermions

Pψ =
gψ

3(2π)3

∫
p2

ωp

n(p, T )d3p. (7.17)

To compare to the lattice result, we now restrict the integration to the first Brioullin zone,
introducing the lattice momentum cutoff π

a
1

a4Pψ =
gψ

3(2π)3

π∫

−π

π∫

−π

π∫

−π

p̄2

ω̄p

n(p̄, T̄ )d3p̄. (7.18)

1Naively one may wonder from comparing (eq. 7.18) to (eq. 7.13), why the squared momentum p
2 is not

simply replaced by the squared lattice momentum s
2. The reason for that can be understood recalling that s

2

has unphysical roots at the edges of the Brioullin zone as well, which is obviously not the case for p
2, hence the

Wilson term corrects this misbehavior leading to an appropriate approximation of the continuum result.
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Figure 7.2: Pressure of a free gas of fermions as a function of T , comparing the continuum result
with lattice momentum cutoff (eq. 7.18), to the lattice Brioullin zone integrated result (eq. 7.13)
and a result evaluated in a lattice simulation with an ensemble of stochastic low-cost fermions of size
Nens = 80, on a lattice with 20× 20× 20 points. The fermion mass is taken to be am = 0.1.

We compare the different results in (figure 7.2). We observe a similar behavior as in the
case of the energy density when comparing the result of the pressure for Wilson and naive
fermions in (figure 7.2). As expected, the result evaluated in the simulation and the lattice
result (eq. 7.13) agree. Furthermore, we observe a similar offset between the continuum pressure
(eq. 7.18) and the lattice counterpart (eq. 7.13) that is again rooted in discretization effects,
that are only vanishing in the continuum limit a → 0.

7.3 Initialization of Vacuum Stochastic Fermions

In the simulation, we compute fermion expectation values making use of ensemble averages
of statistical low-cost fermions, which introduces a statistical error, that is reduced when
increasing the ensemble size Nens. This statistical error in the fermion sector does not only have
consequences for the computation of observables, but more importantly for the equations of
motion themselves. As seen in (section 4.3), a fermion color current enters the chromo-electric
field equations of motion (eq. 5.50) and the Gauss constraint (eq. 5.51). In this section we will
have a detailed look at the current at initial time t0 = 0 by comparing a result calculated in the
simulation to the analytic result.

The fermion color current (eq. 4.31), evaluated from an ensemble average of stochastic
low-cost fermions is given as

a3Jµ,a(x) =
g2

2
Retr

(〈

ψ̃M(x+ î) ˜̄ψF (x) + ψ̃F (x+ î) ˜̄ψM(x)
〉

Nens

(

γµ − iδµir
)

T aUµ(x)
)

. (7.19)
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At initial time the fermion color current can be calculated analytically by using the result of the
free fermion statistical propagator on the lattice (eq. 2.52). We find for the spacial part

a3J i,a(t0,x) = −2g2

V

∑

n

si(n) + iµ(n)

s0(n)
tr
(

T aUi(x)
)

e− 2π
N

na. (7.20)

We will compare this result (eq. 7.20) to the fermion color current (eq. 7.19) calculated in the
simulation. Because the current is a vector in color and Lorentz space, we only give the result
for one component, setting i = 1 and a = 1, having checked for the other components as well.
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Figure 7.3: J1,1 component of the fermion color current (eq. 7.19) at initial time, calculated in a
lattice simulation on a 8× 8× 8 lattice with Wilson fermions of mass am = 0.1, for different ensemble
sizes Nens and compared to the analytic result (eq. 7.20). The x-axis counts all lattice points.

We compare both results in (figure 7.3). The simulation has been performed on a small
lattice of 8× 8× 8 points, manageable on a local machine for large stochastic fermion ensembles
Nens. We consider fermions of mass am = 0.1 and compute the fermion color current, that
enters the equations of motion at the first time-step. The result has been plotted as a function
of the spacial lattice points, labeling all points in a straight forward list. As expected, better
precision is achieved when increasing the ensemble size Nens. For a sufficiently large ensemble
the approximation matches the analytic result.

Having discussed the spacial part of the current (eq. 7.19) let us now turn to the temporal part
of the current (eq. 4.31), that enters the Gauss constraint (eq. 5.51). At initial time we
find the following analytic result

J0,a(t0,x) = g2Retr
(

F
(

x+ î, x
)

γ0T a
)

= −g
2

V

∑

p

2∑

s=1

v̄s(p)γ0vs(p)eiωpat trT a
︸ ︷︷ ︸

=0

= 0. (7.21)

Choosing the same lattice size as previously with 8× 8× 8 points and a lattice fermion mass
of m̄ = 0.1, we compare the result in the lattice simulation (eq. 7.19) to the analytic result
(eq. 7.21) in (figure 7.4). We observe, that the current calculated from an ensemble average of
low-cost fermions fluctuates around the analytical value and the amplitude of the fluctuation
is reduced when increasing the ensemble size Nens.
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Figure 7.4: J0,1 component of the fermion color current (eq. 7.19) at initial time, calculated in a
lattice simulation on a 8× 8× 8 lattice with Wilson fermions of mass am = 0.1, for different ensemble
sizes Nens and compared to the analytic result (eq. 7.20). The x-axis counts all lattice points.

As discussed in (section 4.3.2), the Gauss constraint (eq. 5.51) should be satisfied to
a fairly high precision. At initial time, the gauge link ensemble generated from the CGC
satisfies the Gauss constraint per construction. In (figure 7.4) we observe, that the fermion
sector introduces a significant statistical uncertainty to the Gauss constraint, arriving at a
situation where Gauss law is not satisfied at initial time, although it should in principle be
the case from an analytical perspective.
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Figure 7.5: Standard deviation σ of the J0,1 component of the fermion color current (eq. 7.19), when
compared to the continuum result (eq. 7.21) as a function of the stochastic fermion ensemble size Nens.
A lattice average has been performed. The error drops with 1√
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, as indicated by the fit.

It is not possible to choose the stochastic fermion ensemble Nens that large, that the
Gauss constraint is satisfied up to machine precision at initial time, because the error only
decreases with 1√

Nens
, as can be seen in (figure 7.5). To achieve sufficient precision, one would

have to move to tremendously large ensembles, that are not numerically feasible. As a way
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out, we match the temporal component of the fermion color current to the analytical result
at initial time, setting it zero. For all other time-steps we apply the algorithm described
in (section 4.3.2), to restore Gauss law.

7.3.1 Restoration of Gauss Law

To restore Gauss law at every time-step of the simulation, we use the algorithm of [143],
previously presented in (section 4.3.2). In (figure 7.6) we demonstrate this procedure on a
lattice with 20× 20× 20 points in a simulation with Wilson fermions of mass am = 0.01 and
an ensemble size of Nens = 200. The restoration algorithm uses an optimization parameter of
γ = 0.06, that turned out to give good results while optimizing the computational time. We will
use the same choice later, in a simulation of the semi-classical effective model on larger lattices.
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Figure 7.6: Restoration of Gauss law, making use of the algorithm presented in [143]. The simulation
has been performed on a lattice of size 20× 20× 20, with Wilson fermions of mass am = 0.01 and an
ensemble size of Nens = 750. The γ−parameter is set to γ = 0.06.

We have plotted the amount of Gauss violation C(t) on a logarithmic scale as a function of the
iteration step of the restoration algorithm, at the second time-step of the simulation. We observe,
that the amount of Gauss violation decreases exponentially for every iteration of the algorithm.
Because every iteration requires a re-computation of a fermion expectation value, that takes a
significant computational time, we accept Gauss law to be sufficiently restored for C . 10−6, to
keep the computational time feasible. This value is reasonable, when compared to the statistical
error imposed by the computation of fermion expectation values within the low-cost method.

7.3.2 Stochastic Fermion Ensemble Dependence

Having discussed the statistical error imposed by the ensemble average of low-cost fermions, let
us check for the ensemble size Nens dependence of the observables in general. For the validity
of the method, the observables calculated in the simulation should not depend on the chosen
ensemble size Nens, which can be realized by choosing it sufficiently large. We test the ensemble
size dependence for the energy density of the fermion sector (eq. 6.34)2 in a simulation on a

2We also investigated the pressure of the fermion sector (eq. 6.36), obtaining similar results.
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lattice of size 60×60×60. This will turn out to correspond to a lattice spacing a, that is smaller
than the lattice spacing we will extract in a matching procedure later. As a consequence, if
fermion observables turn out to be independent on the chosen ensemble size Nens on the given
lattice, we conclude that the choice of Nens is also appropriate on coarser lattices.
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Figure 7.7: Dependence for the energy density of the fermion sector (eq. 6.34) on the stochastic
fermion ensemble size Nens. The simulations have been performed on a lattice of size 60× 60× 60.

We observe in (figure 7.7), that beyond a choice of Nens ≥ 750, the results of the fermion
energy density of the fermion sector (eq. 6.34) do not significantly vary. A larger deviation is
observed, when choosing a smaller ensemble size of Nens = 500. This becomes more evident
by looking at the inlay plot in (figure 7.7), where we plot the deviation of the energy density
for different choices of Nens from the result with Nens = 1000. We find that the deviation
for the choices of Nens ∈ {750, 800, 900} is only of the order of 0.3% and therefore negligible.
Choosing a smaller ensemble of Nens = 500 leads to a stronger deviation of the order of
0.6%. To optimize the computational time, that blows up for large choices of Nens, we stick
to the choice of Nens = 750 in later simulations. For tests of the lattice implementation of the
semi-classical approximation on a local machine, we will usually stick to smaller ensembles,
having checked for ensemble dependence as well.

7.4 Discretizing Minkowski Time

As pointed out earlier, the lattice implementation of the equations of motion of the semi-
classical effective theory required a discretization of time, introducing a temporal spacing at. In
(section 2.2), we rigorously discussed the phenomenon of fermion doubling on a spacial lattice,
introducing the spacial Wilson term to remove the doublers. When additionally discretizing
the time direction, the question arises if temporal doublers appear as well. In this section we
will argue, that temporal doublers are not excited in our simulations, as long as we keep a
strong anisotropy at/a≪ 1. We will furthermore provide a numerical test to check if temporal
doublers are indeed unexcited during the evolution of the system, following the discussion in [146].
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In general, the choice of at is not arbitrary but limited by the Courant-Friedrichs-Levi condition
[152], which is a constraint for a numerical integrator of partial differential equations, as for
example the leap-frog method, that has to be satisfied to achieve convergence. It relates
the spacial step-size ∆x of the integrator, in our case given by the lattice spacing a, to
the temporal step-size ∆t, given by the temporal spacing at. Both spacings have to satisfy
the following relation [127]

√
3
|v|∆t
∆x

≪ 1, (7.22)

where the prefactor
√

3 is determined from the number of directions and |v| is the propagation
velocity, given as |v| = 1 in natural units. This approximately translates to the lattice
spacings in the following way

at
a

= āt ≪ 1. (7.23)

In practice, we will limit our choices of at to at ∈ {0.05a, 0.03a, 0.02a}, obviously satisfying (eq.
7.23).

With this in mind, let us return to the question if there are additional fermion doublers present,
when discretizing time. We initialize the fermion fields according to fermion fields according to
the vacuum solution with continuous Minkowski time (eq. 2.45), hence temporal doublers are
initially not excited. To argue, that these doubler modes remain unexcited during the evolution,
let us study the appearance of temporal doublers in the free theory first. As discussed in (section
2.2.1) the lattice propagator with real Minkowksi time can be derived from (cf. eq. 2.32)

(

iγ0∂t +
i

2a
γi
(

δy,x+î − δy,x−î

)

−mδy,x

)

D(t− t′,x,y) = iδ(t− t′)δx,y. (7.24)

Applying a spacial Fourier transform, we arrive at

∫
(

iγ0∂t +
i

2a
γi
(

eipia − e−ipia
)

−m
)

D(t,p)eipx d3p

(2π)3
= 0. (7.25)

It is now possible to identify the spacial lattice momenta si, writing
(

iγ0∂t +
1

a
γisi −m

)

D(t,p) = 0. (7.26)

This differential equation can easily be solved analytically and we find the following solution

D(t,p) =
m+ γisi

2ωp

cos(ωpt)−
i

2
γ0 sin(ωpt), (7.27)

with ωp the (naive) lattice dispersion relation, obtained from (eq. 2.27) by setting r = 0. The
spacial doublers could now be removed by introducing a spacial Wilson term, but we ignore
them for a second and discretize the time direction instead, using (eq. 2.31)

(

i

2
γ0
(

∇f
t +∇b

t

)

+ γisi −m
)

D(t,p) = 0. (7.28)
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As seen for the spacial direction, this leads to a „lattice momentum“ in temporal direction of the
form

s0 =
1

at
sin(p0at). (7.29)

As a consequence, we require the solution of the Dirac equation on the lattice to satisfy s0 = ωp.
If we now consider a lattice with a strong anisotropy at ≪ a, we can expand s0 in terms of
at, because ωp ∼ O(1/a) and at/a ≪ 1 is very small. When doing so, we have to be careful,
because there are two possible solutions in the first Brioullin zone, namely a physical solution
and one close to the edge of the Brioullin zone, representing the doubler solution [101]

ωp ≈ p0, ωp ≈
π

at
− p0. (7.30)

Because ωp ∼ O(a−1), we can already see, that the doubler solution becomes very heavy for
strong anisotropic lattices, with at ≪ a and is most likely not excited in the evolution of
our system, if (eq. 7.23) is satisfied. This can be studied in more detail by looking at the
lattice propagators of the two different dispersion relations

D1(t,p) =
m+ γisi

2ωp

cos(ωpt)−
i

2
γ0 sin(ωpt), (7.31)

D2(t,p) =
m+ γisi

2ωp

cos(ωpt)(−1)s − i

2
γ0 sin(ωpt)(−1)s+1, (7.32)

where D1 represents the physical lattice propagator and D2 the propagator of the doubler modes,
that fluctuates in sign for every time-step (t = sat), due to the additional shift by π

at
in the

lattice dispersion relation.

Although we have studied this in context of free fermions, the fluctuating character of the
doubler modes does not change, when coupling our theory to gauge fields. We can exploit the
sign changes of the doubler mode propagator, to test the excitement of temporal doubler modes
during the evolution of our system. We do this by averaging the two closest time-steps in the
following way [146]:
We first define

ψp(x) =
ψ(x+ at) + ψ(x)

2
+
ψ(x) + ψ(x− at)

2
, (7.33)

ψd(x) =
ψ(x+ at)− ψ(x)

2
− ψ(x)− ψ(x− at)

2
. (7.34)

Using these definitions, we can calculate the following expectation values

1

2

〈

ψ†
p,M/F (t,x)ψp,M/F (t,x)

〉

Nens

,
1

2

〈

ψ†
d,M/F (t,x)ψd,M/F (t,x)

〉

Nens

, (7.35)

and compute their lattice average. Because the physical solution does not differ in sign, we
expect the closest time-step expectation value to cancel in the second case, whereas it does
not cancel in the first case. For the doubler solution, the situation is vice versa. One easily
checks this for vacuum fermions, by calculating the expectation values analytically, inserting
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the explicit formulas for the free stochastic low-cost fermions (eq. 2.47)

1

2

〈

ψ†
p,M/F (t,x)ψp,M/F (t,x)

〉

Nens

=
1

4V

∑

p

(

cos
(

p0at
)

+ 1
)2

, (7.36)

1

2

〈

ψ†
d,M/F (t,x)ψd,M/F (t,x)

〉

Nens

=
1

4V

∑

p

(

cos
(

p0at
)

− 1
)2

. (7.37)

For the physical solution p0 ≈ ωp we have

cos
(

p0at
)

= cos
(

ωpat
)

≈ 1 +O
(

at
a

)

, (7.38)

leading to

1

2

〈

ψ†
p,M/F (t,x)ψp,M/F (t,x)

〉

Nens

≈ 1,
1

2

〈

ψ†
d,M/F (t,x)ψd,M/F (t,x)

〉

Nens

≈ 0. (7.39)

Whereas for the unphysical doubler solution p0 ≈ π
at
− ωp (if only doubler modes would be

excited and no physical modes), we expect

cos
(

p0at
)

≈ cos
(

π − ωpat
)

≈ −1 +O
(

at
a

)

, (7.40)

leading to

1

2

〈

ψ†
p,M/F (t,x)ψp,M/F (t,x)

〉

Nens

≈ 0,
1

2

〈

ψ†
d,M/F (t,x)ψd,M/F (t,x)

〉

Nens

≈ 1. (7.41)

We use this method to check if temporal doubler modes stay unexcited during the evolution of
our system in (figure 7.8). We compute (eq. 7.35) in a simulation of the semi-classical effective
model, on a lattice of 20× 20× 20 points, using a stochastic low-cost fermion ensemble of size
Nens = 100, with Wilson fermions of mass am = 0.1 and a temporal spacing of at

a
= 0.02≪ 1.

We verify that temporal doublers are not excited in the simulation, when choosing a small
temporal spacing, justifying our approach of not taking a temporal Wilson term into account.
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of the semi-classical model on a 20× 20× 20 lattice, using a stochastic low-cost fermion ensemble of
size Nens = 100, Wilson fermions of mass am = 0.1 and a temporal spacing of at = 0.02a.
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7.4.1 Initial Oscillations when Solving the Lattice Dirac Equation

Let us discuss another phenomenon that is connected to time discretization in the solution of the
equations of motion of the semi-classical model. When coupling vacuum fermions to the ensemble
of gauge links Ui, the fermion fields are significantly modified, when evolving the coupled system
the first time. With the fermions being intialized as vacuum fields, the energy modes are initially
unoccupied, whereas in the Yang-Mills fields, classical modes are even overoccupied and carry a
large anisotropy. As a consequence, the system is sensitive to the time discretization at and
one observes additional oscillations in the observables as e.g. the energy density (eq. 6.34). As
expected, these oscillations are significantly reduced when moving to smaller temporal spacings.
We demonstrate this using a lattice of 20× 20× 20 points and a low-cost fermion ensemble of
massive am = 0.01 fermions of size Nens = 70. We vary the temporal spacing in the simulation
and give the results as a function of the different at in (figure 7.9).
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Figure 7.9: Energy density of the fermion sector (eq. 6.34) for different temporal spacings at. The
simulation has been performed on a 20× 20× 20 lattice, for an ensemble of massive stochastic low-cost
fermions of mass am = 0.01 and ensemble size Nens = 70.

We indeed observe, that oscillations at initial times are significantly reduced when moving
to smaller temporal spacings at. Note that for at = 0.05, which is a typical literature choice in
pure Yang-Mills simulations (compare e.g. [61]), the oscillations are still large. On the opposite,
for very small spacings below at ≤ 0.005 the oscillations are nearly removed completely. On the
downside, such a small temporal spacing blows up the computational time, demanding a huge
number of time-steps for a simulation that lasts (at least) up to the estimated hydrodynamization
time of t ≈ 1 fm. As a compromise, we stick to the spacing of at = 0.02 in most of our simulations.
Nevertheless note, that the solution (eq. 6.34) is still stable for coarse temporal spacings.

The sudden jump in the fermion energy density, which is present in (figure 7.9) at the initial
time-step, happens because we assume the Yang-Mills and fermion sector of our theory to
be initially uncoupled and initialize each of the sectors individually. At the first time-step
we couple both sectors and the gauge links of the Yang-Mills sector do not only enter the
equations of motion, but also the energy density and pressure observables of the fermion
sector. As a consequence, we observe a sudden jump in these observables at the first time-
step, that is often referred to as a quantum quench. We are going to discuss this in more
detail, when presenting the simulation results.
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7.5 Scale Setting

In (chapter 4), we pointed out that it is not possible to perform a continuum limit for a lattice
theory including classical fields, due to the appearance of Rayleigh-Jeans divergencies. As
a consequence, we cannot remove the lattice cutoff dependence of our observables. A way
out is to connect the lattice spacing a to a physical scale in a matching procedure. Such a
procedure is known as a scale setting and has been performed in numerous scenarios (see e.g. [36]).

In (section 3.5), we discussed the physical parameters entering the CGC effective theory,
namely the saturation scale Qs and the nucleus size. Because the saturation scale cannot directly
be measured, we presented a model to estimate the saturation scale and the initial energy
density for Pb-Pb collisions at LHC center-of-mass energies of

√
s = 5.02 TeV (compare

to eq. 3.29 and eq. 3.30)

Qs ≈ 1.867 GeV, ǫ0 = 281.45
GeV

fm3 . (7.42)

The idea of the scale setting procedure is to match the lattice averaged energy density calculated
in our simulation, using (eq. 6.34 and eq. 6.21) to the estimated energy density of the initial
state in a heavy ion collision. This procedure allows us to fix the lattice spacing a to a physically
motivated value.

The box size is fixed by connecting the transverse lattice area L2
⊥ to the area of the colliding

nuclei, assuming that they totally overlap in the collision („head-on“ collision). As discussed
in (chapter 3), the incoming nuclei are Lorentz contracted in beam direction due to their high
velocity and can therefore be approximated as effectively two dimensional

L2
⊥ = a2

⊥N
2
⊥ ≈ πR2, (7.43)

with R denoting the nucleus radius of a Pb-atom, estimated as RPb ≈ 6.6 fm [132, 139]. The
lattice extent in perpendicular direction is thus given as

L2
⊥ ≈ πR2

Pb ≈ 138 fm2, → L⊥ ≈ 12 fm ≈ 60
1

GeV
(7.44)

This can be connected to the lattice spacing in the following way

a⊥ =
L⊥

N⊥
≈ 12

N⊥
fm ≈ 60

N⊥

1

GeV
. (7.45)

For later convenience, it is useful to derive a dimensionless scale, connecting the saturation
scale and the length scale of the system

QsL⊥ ≈ 111 = g2µ̄, (7.46)

where µ̄ is the color charge per unit area in lattice units.

As discussed in (section 3.4), we choose a cubic box for our static system

Nz = N⊥ → V = NzN
2
⊥ = N3

⊥. (7.47)
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We can now fix the lattice spacing a, by performing simulations with different lattice extents N ,
keeping the physical parameters box size and saturation scale constant. We extract the specific
lattice spacing a, where the estimated energy density (eq. 3.30) and the lattice averaged energy
density approximately match. A perfect matching will not be possible, because we are restricted
to a choice of an even integer number for the lattice extent N .

The energy density in physical units is extracted from the simulation by calculating the
total energy density as a sum of (eq. 6.21) and (eq. 6.34)

ǫ(t) =
1

g2a4
ǭ(t). (7.48)

The physical coupling at the saturation scale Qs has been determined in (section 3.2) as
g ≈ 2, combining this with (eq. 7.45) we find

ǫ(t) =
1

a4g2
ǭ(t) =

N4
⊥

g2 (12)3 60
ǭ(t)

GeV

fm3 . (7.49)

We now run a series of simulations of varying lattice spacing and extract the corresponding
energy density. We will fit these results using a standard polynomial function, making it possible
to extract the appropriate lattice spacing a.

We perform the matching, choosing a fermion of mass am = 0.01, which is sufficiently
small to be unaffected from discretization effects, as discussed in (section 2.2). The temporal
spacing is chosen to be āt = 0.02, satisfying the Courant-Levi condition (eq. 7.23). The
results are given in (figure 7.10).
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Figure 7.10: Lattice averaged energy density in a simulation of the semi-classical approximation in
the static box, for different lattice spacings a, as a function of the lattice extent N, using (eq. 7.45).
The fermion ensemble is of size Nens = 750, the fermion mass is am = 0.01, the temporal spacing is
chosen to be at = 0.02a and the saturation scale, that enters the CGC initial conditions Qs = 1.867
GeV.

From the inlay plot in (figure 7.10) it is possible to extract the lattice spacing for approximately
matching energy densities. We identify the perfect value to be located between 12

48
fm > a > 12

50
fm.3

3As stated previously we have restricted ourselves to even integer numbers for the lattice extent.
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Because the estimated energy density of the initial state (eq. 3.30) is a strongly model dependent
quantity, with a significant uncertainty itself, we choose the smaller value for the lattice spacing
a = 12

50
fm, because finer lattices naturally provide better resolutions. We extracted the following

lattice spacing a from the matching procedure

a ≈ 12

50
fm = 0.24 fm = 1.2

1

GeV
. (7.50)

We can now use this result to discuss the scale of the fermion masses entering the simulation.
We choose the following values

m =
0.01

a
≈ 0.01

1.2
GeV ≈ 8.33 MeV ∼ O(mu/d), (7.51)

m =
0.1

a
≈ 0.1

1.2
GeV ≈ 80.3 MeV ∼ O(ms), (7.52)

where the first choice is parametrically of the order of the light quark masses, namely the up-
and down-quark and the second choice of the order of the strange quark mass.
To discuss the ultra-relativistic limit, we will also check a mass of

m =
0.001

a
≈ 0.001

1.2
GeV ≈ 0.833 MeV. (7.53)

Larger masses are naturally excluded, because of the condition set from the lattice dispersion
relation of Wilson fermions, discussed in (section 2.2).

In case of two fermions with degenerate masses, we take Nf = 2. As a consequence, the
quench at the first time-step is modified, because we have doubled the degrees of freedom in the
fermion sector. We therefore have to repeat the matching procedure, again choosing a fermion
of mass am = 0.01 and a temporal spacing of at = 0.02a. The results are given in (figure 7.11).
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Figure 7.11: Lattice averaged energy density in a simulation of the semi-classical approximation in
the static box with two flavors Nf = 2, for different lattice spacings a, as a function of the lattice
extent N, using (eq. 7.45). The fermion ensemble is of size Nens = 750, the fermion mass is am = 0.01,
the temporal spacing is chosen to be at = 0.02a and the saturation scale, that enters the CGC initial
conditions Qs = 1.867 GeV.
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As discussed previously we identify the appropriate lattice spacing a as

a ≈ 12

44
fm = 0.27 fm =

60

44

1

GeV
= 1.363

1

GeV
. (7.54)

In a highly energetic system, the masses of the up- and down-quark can be taken to be of
the same order mu ∼ md, making it possible to approximate these to be degenerate. In our
simulation we choose the fermion masses to be

m =
0.01

a
=

0.01

1.363
GeV ≈ 7.34 MeV ∼ O(mu/d), (7.55)

m =
0.001

a
=

0.001

1.363
GeV ≈ 0.734 MeV, (7.56)

where the first choice is parametrically of the same order as the masses of the up- and down-quark
and the second choice is taken to investigate if the ultra-relativistic limit is reached.

Finally, we have to repeat the matching procedure for a pure Yang-Mills simulation, that
will be used for a comparison to the simulations including fermions. When doing so, we
keep all physical parameters as box size and saturation scale Qs GeV unchanged. The
result is given in (figure 7.12).
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Figure 7.12: Lattice averaged energy density in a pure Yang-Mills simulation in the static box, for
different lattice spacings a, as a function of the lattice extent N, using (eq. 7.45). The simulation has
been performed with a temporal spacing of at = 0.02a, keeping the physical parameters box size and
saturation scale Qs = 1.867 GeV constant, when compared to the simulation with fermions.

We extract the following lattice spacing a from the matching procedure in (figure 7.12)

a ≈ 12

62
fm ≈ 0.19 fm. (7.57)



8
Results for the Static Box

In the following we will present the results of a simulation of the semi-classical effective theory
of QCD in a static box. As discussed in (chapter 3), the classical Yang-Mills fields are initialized
by making use of the Color Glass Condensate effective theory, formating the Glasma at initial
time. The fermion fields are initialized as vacuum fermion fields and the Yang-Mills and fermion
sector are coupled at the first time-step of the simulation.

In (section 7.5) we extracted the appropriate lattice spacing for a simulation in a static box,
making use of a matching procedure for the energy density of the initial Glasma state. We
extracted a lattice spacing of a = 12

N
fm ≈ 0.24 fm. The static box is assumed to be cubic, and

the length is fixed, by using the estimated radius of the incoming Pb-nuclei, setting the number
of lattice points to 50 × 50 × 50. As discussed in (section 7.1), integrating the equations of
motion of the semi-classical theory on the lattice in a leap-frog scheme, required a discretization
of Minkowski time. If not stated differently, we choose at = 0.02a for the temporal spacing,
which satisfies on one hand the Courant-Levi condition (eq. 7.23) and leads to numerically fairly
stable results at early time-steps, as discussed in (section 7.4.1).

As discussed in (section 3.3.1), we follow the strategy of [126] for the initialization of gauge
links, making use of the CGC effective theory on the lattice. We therefore choose the following
parameters for the initialization: The number of longitudinal infinitesimally thin color sheets,
used for the construction of the color current from Wilson lines, is set to Ny = 30. For the
infrared, we use a cutoff of m/Q = 0.1 when solving the Poisson equation on the lattice. The
UV-cutoff is provided by the lattice cutoff, where the momentum in each direction is limited by
pmax = π

a
.

For the physical initial conditions, we use a saturation scale of Qs = 1.867 GeV, which is
the appropriate estimate for Pb-Pb central collisions with a center-of-mass energy of

√
s = 5.02

GeV at the LHC, as discussed in (section 3.5). The corresponding coupling has been extracted
in (chapter 3.2) from the QCD running coupling for fixed momentum transfer at the saturation
scale Qs and is set to g = 2. Fermion observables are computed, using stochastic low-cost
fermions (see section 2.2.2), choosing an ensemble of size Nens = 750, as discussed in (section

95
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7.3.2). The parameter γ entering the Gauss law restoration algorithm (see chapter 4.3.2) is set
to γ = 0.06.

We compare the results for the semi-classical effective theory of QCD to a pure Yang-Mills
simulation. The pure Yang-Mills simulation has been constructed in such a way, that all physical
parameters match the parameters of the simulation including fermions. To fix the corresponding
lattice spacing, we have repeated the matching procedure for the initial energy density in (section
7.5), leading to a lattice spacing of a ≈ 12

62
≈ 0.1934 fm. The corresponding number of lattice

points is given as 62× 62× 62.

We will first present the results for different choices of fermion mass m. These masses are chosen
parametrically of the same order as the masses of the up- and down-quark and the strange
quark (eq. 7.51). Next, we compare these results to a pure Yang-Mills simulation, where we
additionally modified the Glasma initial conditions, by explicitly breaking longitudinal boost
invariance, introducing a quantum rapidity fluctuation of magnitude ∆ (eq. 3.22). Following
this, we test our model for different choices of the coupling g. Finally we discuss the effect on
the system, when having two degenerate quark flavors Nf = 2 present in the simulation. The
mass is chosen of the same order as the mass of the up-/down-quark (eq. 7.55).

8.1 Simulations in a Static Box with Different Fermion

Masses

We will first present the results for simulations of the semi-classical effective theory of QCD in a
static box, including fermions of different mass m. The fermion masses are chosen as (see eq. 7.51)

m = 0.01
1

a
≈ 8.33 MeV ∼ O(mu/d), m = 0.1

1

a
≈ 83.3 MeV ∼ O(ms), (8.1)

where the former one is parametrically of the order of the up-/down-quark mass and the
latter one of the order of the mass of the strange quark. Additionally, we discuss the
result for fermions of mass

m = 0.001
1

a
= 0.833 MeV, (8.2)

making it possible to check for the ultra-relativistic limit.

8.1.1 Energy Density

Let us first study the energy density of the system. We plot the lattice average of the total
energy density, as well as its splitting into the contributions to the Yang-Mills and fermion
sector. Because there is no energy gain or loss in a static box, we expect the lattice averaged
total energy density to be constant. We indicate the errors of the observables determined from
ensemble averages of stochastic low-cost fermions by color bands.

In (figure 8.1) we observe, that the total energy of the system is indeed constant. Furthermore,
the lattice averaged total energy density is of the same order as the estimated energy density
of the initial state (eq. 3.30), discussed in (section 3.5). The slight deviation is rooted in
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the fact, that we are limited to a choice of an even integer number for the lattice extent N ,
leading to a slightly larger total energy density in our simulation. Nevertheless, the estimated
initial energy density (eq. 3.30) is a model dependent quantity, that has not been measured
in the experiment, making the agreement sufficient.

Figure 8.1: Energy density in simulations for different fermion masses m = 8.33 MeV and m = 83.3
MeV, on a 50 × 50 × 50 lattice, with spacing a = 0.24 fm, coupling g = 2 and a stochastic fermion
ensemble size of Nens = 750. On the right-hand side, time is plotted logarithmically.

The early time oscillations in the fermion sector have already been discussed in (section
7.4.1) and happen due to the limitation in resolution, caused from the time discretization. One
clearly notes, that these discretization effects diminish throughout the simulation. Furthermore,
we observe a jump of the energy density at the initial time-step, especially when looking at the
right plot of (figure 8.1). The reason for that is a quench, that happens at the first time-step,
when coupling the Yang-Mills and fermion sector of the effective theory.

Initially, only the Yang-Mills sector contributes to the energy density, due to the initialization
of the gauge links with respect to the CGC effective theory. The fermions on the other hand
are initialized as free vacuum fermions and hence do not contribute to the energy density. As
a consequence, before both sectors are coupled at the first time-step, they are represented by
individual density matrices ρ with corresponding Hamilton operators Ĥ. For the Yang-Mills
sector, one has the classical Hamilton function of the CGC effective theory and for the fermions
the free Hamilton operator of fermions Hfree. As soon as both sectors are coupled at the first
time-step, the evolution of the system is governed by a new, interacting Hamilton operator of
the total system Ĥ int. As a consequence, the gauge links Ui now enter the fermion evolution
equation and observables (and vice versa). Such a sudden change for the evolution of a system
at a specific time-step is characterized by an unsteadiness in the observables and referred to as
(quantum) quench.

During the evolution of the system, more and more energy is transfered from the Yang-Mills to
the fermion sector. This effect is more present for lighter fermions, that can naturally acquire
more kinetic energy, although the effect is not very present for the two masses considered.
We expect the energy of the fermion and Yang-Mills sector to saturate at late times, leading
to a situation where the energy exchange between sectors is balanced. This state is not yet
reached for the final time in our simulation, but we can extract the asymptotes by fitting
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the data to functions of the form

ǫfit(t) = a+ b · e−c·t. (8.3)

We give the result of the fitting procedure in (figure 8.2). The simulation data is indicated as
bold line, whereas the fit is plotted as dotted line. As a crosscheck, the total energy density
is obtained from summing the fits for the Yang-Mills and fermion sector.

Figure 8.2: Energy density in simulations with different fermion masses m = 8.33 MeV and m = 83.3
MeV, on a 50 × 50 × 50 lattice, with spacing a = 0.24 fm, coupling g = 2 and a stochastic fermion
ensemble size of Nens = 750. The data is fitted to (eq. 8.3), making it possible to extract the
asymptotes.

Note that this state of balanced energy transfer between the Yang-Mills and fermion sector
is reached far beyond the estimated hydrodynamisation time of τhydro ≈ 1 fm. Based on that,
we can already conclude, that most likely no equilibrium state is reached for a simulation of the
Glasma coupled to fermions within the time estimates for equilibration, using the framework of
the semi-classical effective theory of QCD.

We close the discussion of the energy density, by comparing a simulation with fermions of
mass m = 8.33 MeV to a simulation with fermions of lower mass m = 0.833 MeV. The idea
is to study, how strongly the dynamics of the system is modified when moving towards the
ultra-relativistic limit of massless fermions.

Comparing the energy density for the two different masses in (figure 8.3), we find that the
difference is negligible. We can conclude, that we are already close to the ultra-relativistic
limit for a choice of m ≤ 8.33 MeV for the fermion mass. The reason for that is most likely
rooted in the fact, that the fermion mass is small, when compared to the momentum scale of
the highly energetic Glasma state. Extending this discussion to larger fermion masses is not
possible, because the dynamics of lattice Wilson fermions becomes significantly modified,
as discussed in (section 2.2).
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Figure 8.3: Energy Density in simulations with different fermion masses m = 0.833 MeV and m = 8.33
MeV, on a 50 × 50 × 50 lattice, with spacing a = 0.24 fm, coupling g = 2 and a stochastic fermion
ensemble size of Nens = 750.

8.1.2 Pressure Isotropization

Let us now turn to the question if a pressure isotropy is reached in the simulation. As discussed
in (section 3.4), the initial Glasma state is characterized by a strong pressure anisotropy for the
longitudinal pressure PL compared to the transverse pressure PT , with the initial ratio given as
PL/PT = −1. Because of the success of hydrodynamics after an estimated time of thydro = 1 fm,
we require the system to move towards (at least partial) thermal equilibrium, where (partial)
pressure isotropy marks a necessary condition.

As discussed in (section 3.4), it has already been shown in [60] that a pure Yang-Mills simulation
of the Glasma does not isotropize. Isotropization could only be achieved by explicitly breaking
the longitudinal boost invariance on the level of the initial conditions, motivated from quantum
rapidity fluctuations (eq. 3.22). In this section, we want to study if a coupling to fermions,
that are inherently of quantum nature, has a comparable effect on the system and can drive it
towards pressure isotropy as well.

In (figure 8.4), we compare the ratio PL/PT for simulations with fermions of masses m = 8.33
MeV and m = 83.3 MeV. We observe that the system moves towards pressure isotropy in
both cases. For a comparison, we additionally included the pressure ratio of a pure Yang-
Mills simulation, that shows no isotropization, as expected. Perfect isotropy PL/PT = 1 is
not reached in the simulation with fermions, but the initial anisotropy of PL/PT = −1 of
the Glasma is erased rapidly. The difference for the two masses is only marginal. It can
be explained, by the fact that lighter fermions acquire more energy, as seen in (figure 8.1),
but it can also be rooted in discretization effects.
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Figure 8.4: Longitudinal to transverse pressure ratio for simulations with fermions of mass m = 8.33
MeV and m = 83.3 MeV, on a 50× 50× 50 lattice, with spacing a = 0.24 fm, coupling g = 2 and a
stochastic fermion ensemble of size Nens = 750. On the right-hand side, time is plotted logarithmically.

As characteristic for the Glasma, the initial anisotropy is given as PL/PT = −1. As soon
as both sectors are coupled, the system enters an oscillatory phase, that is present in all cases,
in a pure Yang-Mills simulation, as well as in a simulation with fermions. In the latter one,
the oscillations are significantly reduced in amplitude. Also note, that the quench at the first
time-step, that has previously been discussed in context of the energy density (figure 8.1), is
present as well. The oscillatory phase approximately lasts until t ≈ 1 fm, which is of the order
of the hydrodynamization time. The crucial difference between the system including fermions
and the pure Yang-Mills system is, that in the latter one the pressure ratio drops to zero after
the oscillatory phase, reaching the free streaming limit, which is characterized by PL → 0. On
the opposite, the system including fermions already reaches a pressure ratio of PL/PT ≈ 0.5
after the oscillatory phase, followed by a phase, where the pressure is slowly approaching isotropy.

In (chapter 3), it has been suggested to match either to hydrodynamics or to QCD kinetic theory
at a specific time [50]. Following [153] we suggest a ratio of PL/PT ≥ 0.7 in (figure 8.4), although
this ratio is reached far beyond the expected hydrodynamization time t ≈ 4 fm > thydro = 1 fm.
As discussed in [38], QCD effective kinetic theory (EKT) is expected to be valid early at the
order of tEKT ≈ 0.3 fm, which happens to be very close to the peak of the initial oscillatory
phase, observable in (figure 8.4). Finally note, that having reached a ratio of PL/PT ≈ 0.5 at
the hydrodynamization time of thydro = 1 fm, matches well previous studies in [154], where
a matching to relativistic hydrodynamics has been proposed, also presented in [155, 156, 157, 158].

Having discussed masses of the order of the up-/down-quark mass and the mass of the strange
quark, let us consider a mass of m = 0.833 MeV, which is below the mass of the up-quark,
to test for the ultra-relativistic limit. We give the longitudinal to transverse pressure ratio in
(figure 8.5). As it has already been observed in case of the energy density (figure 8.3), we do not
find a significant difference for the two masses considered, supporting our previous observation,
that the dynamics becomes independent on m, due to the validity of the ultra-relativistic limit.
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Figure 8.5: Longitudinal to transverse pressure ratio for simulations with fermions of mass m = 0.833
MeV and m = 8.33 MeV, on a 50× 50× 50 lattice, with spacing a = 0.24 fm, coupling g = 2 and a
stochastic fermion ensemble of size Nens = 750. On the right-hand side, time is plotted logarithmically.

Another observable of interest in our simulation, is the pressure to energy ratio P/ǫ. In
a pure Yang-Mills simulation, the system approaches [61, 62]

PL
ǫ
→ 0,

PT
ǫ
→ 1

2
, (8.4)

which is referred to as the free streaming limit.

Figure 8.6: Pressure to energy ratio for a simulation with fermions of mass m = 8.33 MeV (left)
and m = 83.3 MeV (right), on a 50× 50× 50 lattice, with spacing a = 0.24 fm, coupling g = 2 and a
stochastic fermion ensemble of size Nens = 750.

It has been shown in [60], that an explicit breaking of longitudinal boost invariance in a
pure Yang-Mills simulation in a static box, drives the ratio towards the limit

PT/L
ǫ
→ 1

3
, (8.5)

which is familiar from an ultra-relativistic free gas.
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We give the results for the pressure to energy ratio of our semi-classical system with fermions
of mass m = 8.33 MeV and m = 83.3 MeV in (figure 8.6). It is clearly visible, that the limit
PL/PT → 1/3 is approached during the evolution, although it is not yet perfectly reached,
matching our previous observation for the longitudinal to transverse pressure ratio. Keep
in mind, that the exact limit of Pi/ǫ → 1/3 is only reached in case of ultra-relativistic
particles and we expect to reach a constant value slightly below in case of fermions with
a finite mass m = 83.3 MeV [159].

Figure 8.7: Pressure to energy ratio of the Yang-Mills sector (left) and the fermion sector (right) for
different fermion masses m = 8.33 MeV and m = 83.3 MeV, on a 50× 50× 50 lattice, with a stochastic
fermion ensemble of size Nens = 750 and coupling g = 2.

The limit P/ǫ ∼ 1/3 is also reached for the Yang-Mills and fermion sector individually
(figure 8.7). In general we observe, that the transverse direction approaches the equilibrium
value slightly faster, which seems to be reasonable, because initially the pressure in longitudinal
direction is far more off its equilibrium value. We will use the observation, that the fermion sector
approaches the equilibrium value of P/ǫ→ 1/3, to match the energy density of the fermion sector
to a free gas of fermions later, making it possible to extract a quasi-temperature of the system.

8.1.3 Profile of the Energy Density

In the following, we want to study the process of pressure isotropization, caused from a coupling
of the Yang-Mills fields of the Glasma to fermions. In a first step, we have a look at the profile
of the energy density. This is motivated by the observation, that the energy density of the
Yang-Mills sector is characterized by lines of constant energy in longitudinal direction for the
Glasma. This can easily be understood, recalling the longitudinal color-flux tubes present
in the Glasma. In a simulation of pure Yang-Mills theory, the equations of motion preserve
longitudinal boost invariance and the initial profile of the energy density is conserved. This can
be seen in (figure 8.8), where we have plotted the profile of the longitudinal chromo-electric
part of the energy density in a pure Yang-Mills simulation at different times. The profile shows
the longitudinal lines of constant energy, only influenced by fluctuations.
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Figure 8.8: Profile of the longitudinal chromo-electric energy density ǫEL (t) in a pure Yang-Mills
simulation at times t = {0, 1.35, 1.94, 2.32, 4.06, 9.68} fm. A lattice average has been performed for the
x-direction. Simulations have been performed on a 62× 62× 62 lattice, with lattice spacing a ≈ 0.19
fm and a coupling of g = 2.

Figure 8.9: Profile of the longitudinal chromo-electric energy density ǫEL (t) for a simulation with
fermions of mass m = 8.33 MeV (top) and fermions of mass m = 83.3 MeV (bottom), at times
t ∈ {0.12, 0.96, 1.44} fm. A lattice averaged has been taken in x-direction. The simulations have been
performed on a 50× 50× 50 lattice, with spacing a = 0.24 fm, coupling g = 2 and a stochastic fermion
ensemble of size Nens = 750.

We now want to study, how the energy density profile is changed in a simulation of the
Glasma coupled to fermions. In (figure 8.9) we plot the profile of the longitudinal component of
the chromo-electric energy density, with a lattice average taken in x-direction, for a simulation
with fermions of mass m = 8.33 MeV (top) and a simulation with fermions of mass m = 83.3
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MeV (bottom) at early times. Plotting the transverse component of the energy density of the
chromo-electric field, or the longitudinal or transverse component of the energy density of the
chromo-magnetic field reveals a similar picture [126], hence the plots are not given here.

Figure 8.10: Profile of the longitudinal chromo-electric energy density ǫEL (t) for a simulation with
fermions of mass m = 8.33 MeV (top) and fermions of mass m = 83.3 MeV (bottom), at times
t ∈ {1.68, 1.92, 3.84} fm. A lattice averaged has been taken in x-direction. The simulations have been
performed on a 50× 50× 50 lattice, with spacing a = 0.24 fm, coupling g = 2 and a stochastic fermion
ensemble of size Nens = 750.

We find, that the initial lines of constant energy are slowly erased in a simulation with
fermions present. At the hydrodynamization time thydro = 1 fm, a „melting“ of the lines can be
observed for both masses. Continuing the evolution in time, depicted in (figure 8.10), the lines
are completely erased and we arrive at a spacial homogeneous energy density, characterized by
random local fluctuations. We emphasize that this effect is essentially caused by the interaction
of the classical Yang-Mills fields with the fermions produced in the Glasma, because it is not
present in the pure Yang-Mills simulation (figure 8.8).

Having studied the profile of the energy density of the Yang-Mills sector, let us turn to the
fermion sector. We plot the longitudinal part of the fermion energy density ǫψL(t) in (figure 8.11),
where a lattice average has been taken in x-direction. We observe, that the fermions partially
copy the initial structure of the longitudinal lines of constant energy at initial times. This is most
likely the case, because the gauge links directly enter the energy density observable of the fermion
sector (eq. 6.34), as soon as both sectors are coupled at the first time-step. As a consequence,
the initial energy density profile of the fermion sector resembles the profile of the longitudinal
chromo-electric part of the energy density (figure 8.9). Nevertheless, the lines of constant energy
in longitudinal direction are only slightly visible and quickly erased during the evolution of the
system, when compared to the Yang-Mills sector. This matches our previous observation for the
pressure to energy ratio of the individual Yang-Mills and fermion sector in (figure 8.7), where
we observed that the fermion sector reaches P/ǫ→ 1/3 faster than the Yang-Mills sector.
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Figure 8.11: Profile of the longitudinal energy density of the fermion sector ǫΨL (t) for a simulation
with fermions of mass m = 8.33 MeV (top) and fermions of mass m = 83.3 MeV (bottom), at times
t ∈ {0.12, 0.96, 1.44} fm. A lattice averaged has been taken in x-direction. The simulations have been
performed on a 50× 50× 50 lattice, with spacing a = 0.24 fm, coupling g = 2 and a stochastic fermion
ensemble of size Nens = 750.

We can conclude that shifting energy back- and fourth between the Yang-Mills and fermion
sector during the evolution of the system erases the lines of constant energy, characteristic
for the initial Glasma state and causes the energy density to become homogeneous. We
will compare this process to the idea of explicitly breaking boost invariance on the level
of the initial conditions later.

8.1.4 Gauge Invariant Occupation of Energy Modes

Having discussed how signals of isotropization can be found in the profile of the energy density,
let us finally turn to the occupation of energy modes. We have defined the gauge invariant
occupation of energy modes in (section 6.3.1), making use of the Fourier transform of the energy
density, weighted by the appropriate lattice dispersion relation of bosons or fermions. With the
fermions being initialized as vacuum fermions, their energy modes are completely unoccupied
before the fermion- and Yang-Mills sector are coupled at the first time-step in the simulation. On
the other hand, we expect low energy modes to be highly occupied in the Yang-Mills sector, due
to the overoccupied classical field modes in the Glasma. Keep in mind, that we have initialized
the Yang-Mills sector, by solving the Poisson equation in the transverse plane and later copied
the result into longitudinal direction, setting Uz = 1 and generating the characteristic color
flux-tubes of the Glasma (see section 3.4). As a consequence, energy modes with pz = 0 are not
occupied at initial time.

Having seen previously, that there is no significant difference for the two different fermion
masses considered m = 8.33 MeV and m = 83.3 MeV, we restrict our discussion to the lighter
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mass. We plot the occupation of energy modes (eq. 6.71) for the Yang-Mills sector in (figure 8.12).
The energy modes ωp are given by the lattice dispersion relation of massless bosons (eq. 6.66).

Figure 8.12: Occupation of energy modes in the Yang-Mills sector for a simulation with fermions
of mass m = 8.33 MeV. The simulation has been performed on a 50 × 50 × 50 lattice, with lattice
spacing a = 0.24 fm, coupling g = 2 and a stochastic fermion ensemble of size Nens = 750. The y-axis
is logarithmically scaled on the right-hand side.

As expected, we observe that the distribution is peaked for low energy modes at initial times.
When evolving in time, higher energy modes become more and more occupied, as can be seen on
the right-hand side of (figure 8.12). It is furthermore possible to identify two separated ribbons
at initial times, where the upper ribbon corresponds to energy modes with pz = 0. The energy
modes with pz 6= 0 are unoccupied at initial time, as can be seen from the black lower ribbon
on the right-hand side of (figure 8.12), which is located at numerical zero. During the evolution
of the system, these modes become more and more occupied, causing the ribbon to move up.

Figure 8.13: Occupation of energy modes in a pure Yang-Mills simulation (left) and a lattice average
of the occupation in the transverse plane (right). The simulation has been performed on a 62× 62× 62
lattice, with lattice spacing a = 0.19 fm and coupling g = 2. The physical parameters as box size,
energy and saturation scale Qs are kept constant, when compared to a simulation with fermions.

The situation is completely different for a pure Yang-Mills simulation. We plot the occupation
of energy modes in a pure Yang-Mills simulation in (figure 8.13). In contrast to the simulation
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with fermions, the occupation of energy modes is not modified during the evolution of the
system. Especially, energy modes with pz 6= 0 are not occupied. The reason for that is that
the classical Hamilton equations of motion of the pure Yang-Mills system (section 2.1) preserve
boost invariance. As a consequence, the boost invariant construction of the initial conditions is
preserved, which translates to the occupation of energy modes.

On the opposite, in a simulation with fermions present, energy is transferred back and forth
between the Yang-Mills and fermion sector, due to the coupling of the sectors in (eq. 4.1) and a
back-coupling of fermions onto the Yang-Mills fields in (eq. 5.50). Because of that, the energy
modes of the fermion sector become occupied, as soon as both sectors couple at the first time-step.
We demonstrate this for the fermion sector by plotting the occupation of energy modes as a
function of the lattice dispersion relation for Wilson fermions (eq. 6.68) in (figure 8.14). As can
be seen in the left-hand plot, the low energy modes become more and more occupied, because
energy is transfered from the Yang-Mills to the fermion sector during the evolution. This shift
of energy between sectors slows down, as soon as a balanced situation is reached at late times,
as discussed in the context of the energy density (figure 8.2). The energy back-transfer from
the fermion sector to the Yang-Mills sector now causes the energy modes with pz 6= 0 and
high energy modes to become occupied during the evolution of the system, as seen in (figure 8.12).

On top of that, we observe in (figure 8.14) that the two ribbon structure is slightly present
in the fermion sector at early times. This matches our previous observation for the energy
density profile of the fermion sector, where we have seen that the longitudinal lines of constant
energy of the Yang-Mills sector are copied to the fermion sector at early times (figure 8.11).
Nevertheless we emphasize, that the splitting between pz = 0 and pz 6= 0 modes is much less
present in the fermion sector and on top of that quickly erases.

Figure 8.14: Occupation of energy modes in the fermion sector for a simulation with fermions of
mass m = 8.33 MeV. The simulation has been performed on a 50× 50× 50 lattice, with lattice spacing
a = 0.24 fm, coupling g = 2 and a stochastic fermion ensemble of size Nens = 750. The y-axis is
logarithmically scaled on the right-hand side.

In (figure 8.15) we give the occupation of energy modes of the Yang-Mills and fermion sector
for large times. We observe in both cases, that energy modes tend towards an equal occupation,
which happens to be the case much faster in the fermion sector than in the Yang-Mills sector.
At a time of t ≈ 4 fm, where we have observed a longitudinal to transverse pressure ratio
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of approximately PL/PT ≈ 0.7, the occupation of energy modes already flattens out in both
sectors, indicating that high energy modes become equally occupied when compared to low
energy modes. We conclude, that an equilibration of the occupation of energy modes seems to
go hand in hand with the observation of pressure isotropization. This is especially underlined
by the finding, that both phenomena are not present in a pure Yang-Mills simulation.

Figure 8.15: Occupation of energy modes in the Yang-Mills sector (left) and the fermion sector (right)
at large times t for a simulation with fermions of mass m = 8.33 MeV, as a function of the lattice
dispersion relation of massless gauge fields and Wilson fermions. The simulation has been performed
on a 50× 50× 50 lattice, with lattice spacing a = 0.24 fm, coupling g = 2 and a stochastic fermion
ensemble of size Nens = 750.

The previous observations are supported when investigating the average of the occupation of
energy modes in the transverse momentum planes, as a function of longitudinal momentum. As
stated in the beginning, only the energy modes in the pz = 0 transverse momentum plane are
occupied at initial time, due to properties of the Glasma (see section 3.4). As stated previously,
in case of a pure Yang-Mills simulation, this situation is unchanged during the evolution of
the system, as can be seen in the right-hand plot in (figure 8.13).

Figure 8.16: Lattice averaged occupation of energy modes in the transverse plane for the Yang-Mills
sector (left) and the fermion sector (right), as a function of longitudinal momentum, for a simulation
including fermions of mass m = 8.33 MeV. The simulation has been performed on a 50× 50× 50 lattice,
with lattice spacing a = 0.24 fm, coupling g = 2 and a stochastic fermion ensemble of size Nens = 750.
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This observation differs for a simulation with fermions of mass 8.33 MeV, as can be seen
in (figure 8.16). In both cases we observe that energy modes with pz 6= 0 become more and
more occupied by time. As a consequence, we observe in (figure 8.16), that the initial peak
at pz = 0 decreases during the evolution of the system. Note that the total decrease in the
Yang-Mills sector happens, because a part of the energy is transferred to the fermion sector. For
the fermion sector we observe in (figure 8.16), that the peak at pz = 0 is copied at initial times,
supporting our previous observations. Following that, the peak decreases in analogy to the
Yang-Mills sector, leading to a situation where the fermion energy modes become approximately
equally occupied at late times.

Having observed, that high energy modes become more and more occupied during the evolution
of the system, the question arises, if it is still valid to approximate the Yang-Mills sector as
classical at late times. To study this in more detail, we have a look at the percentage of
occupied low energy modes, compared to the total amount of available modes in the system.
We set the boundary for low energy modes to be

ωboundp = αsQs ≈ 0.6 GeV, (8.6)

where αs = g2

4π
is the strong parameter and Qs = 1.867 GeV the saturation scale. We plot

the ratio for the two simulations, including fermions of different mass m = 8.33 MeV and
m = 83.3 MeV, in (figure 8.17). We find, that the initial percentage of ∼ 38% decreases
rapidly during the evolution of the system. At the final time of the simulation, the ratio of
occupied low energy modes has already dropped below ∼ 10%, making it possible to conclude,
that the Yang-Mills sector is no longer dominated by soft modes and Yang-Mills fields can
no longer be taken to be overoccupied. As a consequence it is reasonable to argue that the
classical approximation reaches its limit of validity.

Figure 8.17: Ratio of occupied low energy modes compared to the total occupation of energy modes
for two simulations with fermions of mass m = 8.33 MeV and m = 83.3 MeV. Low energy modes
are classified until a cutoff of ωboundp = αsQs ≈ 0.6 GeV. The simulations have been performed on a
50 × 50 × 50 lattice, with a lattice spacing of a = 0.24 fm, coupling g = 2 and a stochastic fermion
ensemble of size Nens = 750.
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8.1.5 Gauge Variant Occupation and Quark-Antiquark Production

In the previous section, we presented the results for the occupation of energy modes, calculated
in a gauge invariant way. To further validate this approach, we compare it to the gauge variant
definitions of the occupation of modes, familiar from the literature. As discussed in (section
6.3.2), we follow the approach of [43] and [40] to study the occupation of modes in the Yang-Mills
sector, by making use of the Fourier transform of the chromo-electric field (eq. 6.81). For the
fermion sector we follow [74], calculating a quasi quark- and anti-quark number, making use of
(eq. 6.96) and (eq. 6.97).

In (figure 8.18) we give the results of the gauge variant occupation of modes and the transverse
averaged occupation, as a function of longitudinal momentum, for the Yang-Mills sector of a
simulation with fermions of mass m = 8.33 MeV. Both gauge variant observables have been
calculated after fixing Coulomb gauge, making use of a relaxation algorithm [102]. When
comparing the gauge variant occupation of modes to the gauge invariant definition given in
(figure 8.12), (figure 8.15) and (figure 8.16) we find very good qualitative agreement. In all cases
it is possible to identify the two separated ribbons at initial time, caused by the choice of initial
conditions. These ribbons move towards each other during the evolution of the system, causing
modes with pz 6= 0 to become occupied as well. At late times high energy modes become more
and more occupied in all cases.

For the fermion sector, the definition of the gauge variant occupation of modes is different,
when compared to the definition for the Yang-Mills sector. The latter one uses the Fourier
transform of the chromo-electric fields, whereas the definition for the fermion sector (eq. 6.94)
uses projections of the full interacting fermion spinors at time t onto the free vacuum spinors. On
the other hand, the gauge invariant definition of the occupation of energy modes in the fermion
sector (eq. 6.71) uses a Fourier transform of the energy density as well. As a consequence, the
gauge links enter the gauge variant definition only implicitly, from the equation of motion of
the fermions, whereas they explicitly enter the energy density (eq. 6.34).

Figure 8.18: Gauge variant occupation of modes (left) and averaged occupation in the transverse
plane, as a function of longitudinal momentum (right) for the Yang-Mills sector of a simulation with
fermions of mass m = 8.33 MeV. The observables are calculated after fixing Coulomb gauge. The
simulation has been performed on a 50× 50× 50 lattice, with lattice spacing a = 0.24 fm, coupling
g = 2 and a stochastic fermion ensemble of size Nens = 750.
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In (figure 8.19) we plot the gauge variant occupation of modes for the fermion sector, as well as
the lattice averaged occupation in the transverse plane as a function of longitudinal momentum.

Figure 8.19: Gauge variant occupation of modes (left) and lattice averaged occupation in the
transverse plane, as a function of longitudinal momentum (right) for the fermion sector of a simulation
with fermions of mass m = 8.33 MeV. The observables are calculated after fixing Coulomb gauge. The
simulation has been performed on a 50× 50× 50 lattice, with lattice spacing a = 0.24 fm, coupling
g = 2 and a stochastic fermion ensemble of size Nens = 750.

When comparing these to the gauge invariant definition (figure 8.14) and (figure 8.16), we
again find qualitative agreement, although the gauge variant results differ in shape. The reason for
that essentially is, that the gauge links do not enter the definition of the gauge variant occupation
of the fermion sector, as stated previously. Having validated, that the two ribbon structure and
the peak observed at pz = 0 is an artifact from the Yang-Mills sector, we do not observe it in
case of the gauge variant definition for the fermion sector. Nevertheless, we observe that hard
modes become more and more occupied for the gauge variant definition as well, thus observing
qualitative agreement when compared to the gauge invariant definition, validating our approach.

Figure 8.20: Evolution of the quark number (eq. 6.96) and anti-quark number (eq. 6.97) in
a simulation with fermions of mass of m = 8.33 MeV. The simulation has been performed on a
50× 50× 50 lattice, with spacing a = 0.24 fm, coupling g = 2 and a stochastic fermion ensemble of
size Nens = 750.
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Finally, we have a look at fermion production, making use of the quasi fermion and anti-
fermion number (eq. 6.96) and (eq. 6.97). Because we start with symmetric initial conditions,
namely the free vacuum, we expect no difference for quark- and anti-quark production. The
quark/anti-quark number is given in (figure 8.20). We observe, that indeed fermions and
anti-fermions are produced to equal parts. The total production of fermions has been fitted
using a linear fit, to demonstrate that our findings in a static box match previous results
for a longitudinal expanding system, discussed in [75].

8.1.6 Towards a Temperature

Having observed in a simulation with fermions in (section 8.1.2), that the fermion sector
approaches the ultra-relativistic limit of P/ǫ → 1/3, we use this observation to attribute a
(quasi-)temperature1 to the system. This is done in a matching procedure, where we match
the lattice averaged energy density of the fermions, calculated at late times, to the energy
density of the free gas of fermions (figure 7.1). With the ultra-relativistic limit being reached,
the approach is justified because fermions in the Glasma can be expected to behave quasi free
at late times. We now take the late time asymptote of the lattice averaged energy density of
the fermion sector, derived from a fit in (figure 8.2), to extract the corresponding temperature
of the free gas of fermions as a (quasi-)temperature of the system.

Figure 8.21: Temperature extracted from a matching of the energy density of the fermion sector for
two simulations with fermion masses of m = 8.33 MeV and m = 83.3 MeV, to the energy of a free
gas of fermions, extracting the corresponding temperature. The simulation has been performed on a
50× 50× 50 lattice, with spacing a = 0.24 fm, coupling g = 2 and a stochastic fermion ensemble of
size Nens = 750 and g = 2.

The matching procedure is demonstrated in (figure 8.21). At late times it is possible to
extract a temperature of the order of ∼ 1400 MeV for both fermion masses. This result is a
factor of ∼ 10 times larger than the Hagedorn temperature, which marks a necessary lower

1We refer to the temperature as a quasi-temperature, because pressure isotropy is not a sufficient but only a
necessary condition to thermalize a system.
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limit for the appearance of a non-hadronic state. Essentially, this temperature is also a factor
of ∼ 4 times larger, than the expected temperature of ∼ 300 MeV for Pb-Pb collisions at
the LHC from experimental data [160]. Besides limitations from the matching procedure,
assuming that it is valid to treat the fermion sector as a free gas at late times, the strong
difference can also be rooted in the assumption of a static box. In reality, the QGP is a
rapidly longitudinal (and also transverse) expanding system. As a consequence, the energy
density drops as a function of time, because the volume significantly increases. This expansion
would therefore lead to a lower temperature within our matching procedure. On top of that
we have seen, that the semi-classical approximation reaches its limit of validity at late times,
because energy modes become more and more equally occupied. This imposes an additional
restriction onto the validity of the extracted temperature.

8.2 Explicit Breaking of Longitudinal Boost Invariance

Having discussed the influence of fermions onto the Glasma within the semi-classical approach,
observing (partial-)pressure isotropy at late times, we will compare these results to the
isotropization process observed in a pure Yang-Mills simulation with an explicit breaking
of longitudinal boost invariance. A key difference between the approaches is, that the fermion
fields are present at every time-step of the simulation, whereas the violation of boost invariance
is caused by a quantum fluctuation, that only enters on the level of the initial conditions in the
CGC effective theory (eq. 3.22). It has been demonstrated in [126] and [60], that a presence of
these fluctuations in the initial state causes a chromo-Weibel instability, which is the non-abelian
counterpart of a Weibel instability, first discussed in the context of electrodynamics [130]. The
chromo-Weibel instability in a pure Yang-Mills simulation can then be traced back to the
appearance of a non-linear turbulent cascade for the occupation of high energy modes, caused
by the fluctuating current in the initial state. This becomes observable as well by a development
of filaments in the energy density profile, which we will validate later in this section. To do so,
we will discuss different seeds for the initial quantum fluctuation, where a choice of ∆ = 0.1 has
been estimated to be a realistic choice for quantum fluctuations in the Yang-Mills sector [61].

The lattice spacing for the simulation of a pure Yang-Mills system has been extracted in
a matching procedure for the energy density in (section 7.5), keeping the total energy of the
system, the box size and the saturation scale Qs constant, when compared to simulations with
fermions. The appropriate lattice spacing has been extracted to be a = 0.194 fm, with a lattice
extent of 62× 62× 62 points. We emphasize, that the physical situation is comparable to the
system including fermions and only the resolution in terms of a changes.

Before turning to the comparison of a pure Yang-Mills simulation to a system with fermions, let
us discuss a simulation including fermions of mass m = 8.33 MeV, where we additionally break
the longitudinal boost invariance, introducing a quantum fluctuation (eq. 3.22) of magnitude
∆ = 0.1. Our aim is to study if the dynamics of the system is influenced in the static box, when
both mechanisms are present.

An explicit breaking of boost invariance manifests itself already in a modified occupation
of energy modes at initial time in the Yang-Mills sector, given in (figure 8.22). We observe, that
additional energy modes are occupied when introducing the fluctuation. As a consequence, the
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previously studied two ribbon structure is weakened. This translates to the lattice averaged
occupation of energy modes in the transverse plane such, that energy modes with pz 6= 0 are
already occupied at t = 0, given on the right of (figure 8.22).

Figure 8.22: Occupation of energy modes (left) and lattice averaged occupation of energy modes
in the transverse plane, as a function of longitudinal momentum (right), in the Yang-Mills sector of
simulations with and without an initial quantum fluctuations of magnitude ∆ = 0.1, at initial time
t = 0. The simulation has been performed on a 50× 50× 50 lattice, with spacing a = 0.24 fm, coupling
g = 2 and fermions of mass m = 8.33 MeV, using a stochastic fermion ensemble of size Nens = 750.

In a next step, we compare the longitudinal to transverse pressure ratio and the pressure
to energy ratio of a simulation with fermions of mass m = 8.33 MeV, with and without an
initial quantum fluctuation in (figure 8.23).

Figure 8.23: Longitudinal to transverse pressure ratio (left) and pressure to energy ratio (right)
for simulations with and without an initial quantum fluctuation in the Yang-Mills sector of strength
∆ = 0.1. The simulation has been performed on a 50 × 50 × 50 lattice, with spacing a = 0.24 fm,
coupling g = 2 and fermions of mass m = 8.33 MeV, using a stochastic fermion ensemble of size
Nens = 750.

We find, that although the initial state is modified in one simulation, there is only a negligible
difference in the two simulations. Especially at early times the data matches perfectly. This
observation is still valid, when investigating the ratio in the Yang-Mills sector only. Because the
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initial quantum fluctuation only enters the Yang-Mills sector, we can therefore conclude, that
the dynamics of a simulation with fermions is not significantly influenced when including an
explicit breaking of boost invariance. Moreover, the evolution is dominated by the interaction
with fermions in the static box.

The next step is to compare the semi-classical system with fermions of mass m = 8.33 MeV to a
pure Yang-Mills simulation. In the latter case, we impose an explicit breaking of longitudinal
boost invariance to the initial state, introducing a quantum fluctuation of different strength
∆ ∈ {0.001, 0.01, 0.1}. The results for the longitudinal to transverse pressure ratio, as well
as the pressure to energy ratio are given in (figure 8.24).

Figure 8.24: Longitudinal to transverse pressure ratio (left) and pressure to energy ratio (right) for
a simulation including fermions of mass m = 8.33 MeV, compared to a pure Yang-Mills simulation
with an explicit breaking of boost invariance of varying strength ∆. The simulation with fermions has
been performed on a 50× 50× 50 lattice, with lattice spacing a = 0.24 fm and a stochastic fermion
ensemble of size Nens = 750. The pure Yang-Mills simulation has been performed on a 62× 62× 62
lattice with spacing a = 0.19. All physical parameters as total energy, box size, saturation scale and
coupling g = 2 are kept equivalently in all simulations.

We observe, that the strength of the quantum fluctuation ∆ controls, how fast the pure
Yang-Mills system isotropizes. In general, we find that the system coupled to fermions moves
faster towards partial pressure isotropy at early times. Independently on the choice of ∆, the
longitudinal to transverse pressure ratio of the pure Yang-Mills simulation drops to a value close
to zero after the initial oscillatory phase. Following this, the actual isotropization process is
then driven by a chromo-weibel instability, as discussed in [126]. This process sets in, as soon
as the instability has been spread over the complete lattice, driving the system relatively fast
towards pressure isotropy. We will validate this statement later, by investigating the energy
density profile and the occupation of energy modes. When increasing the strength ∆ of the
initial quantum fluctuation in the Yang-Mills sector, the chromo-Weibel stability develops faster
and hence pressure isotropy is reached earlier.

In (section 8.1.2) we already saw, that the simulation with fermions does not reach PL/PT ≈ 1
at late times, whereas this seems to be the case in a pure Yang-Mills simulation with broken
boost invariance. This can now be understood from comparing the two different processes of
isotropization: While isotropization in pure Yang-Mills theory is driven from a chromo-Weibel
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instability, that spreads over the whole lattice after sufficient time-steps, the isotropization in
a simulation with fermions happens due to the interaction with fermions, starting right from
the first time-step. We have argued, that the energy transfer between the fermion and the
Yang-Mills sector slows down, as soon as a balance at late times is reached and energy modes
become equally occupied. Because more and more energy is transfered to the fermion sector,
the anisotropy in the Yang-Mills sector is no longer erased as soon as this balance is reached.
On top of that, the classical approximation reaches its limit of validity at late times, making a
further investigation with a different theoretical approach necessary.

This discussion is supported from comparing the occupation of energy modes in a simulation with
fermions to a pure Yang-Mills simulation with broken boost invariance (figure 8.25). At early
times, high energy modes are much faster occupied for a system with fermions (left), because
the energy transfer between sectors is immediately present, as soon as both sectors have been
coupled. On the other hand, we observe a cascade for the occupation of energy modes in a pure
Yang-Mills system with broken boost invariance (right), caused by the chromo-Weibel instability.
In the static box, this turns out to be slower than a coupling to fermions at early times.

Figure 8.25: Occupation of energy modes in the Yang-Mills sector for a system with fermions of mass
m = 8.33 MeV (left) and a pure Yang-Mills system with an initial quantum fluctuation of ∆ = 0.1
(right). The simulation of the system with fermions has been performed on a 50× 50× 50 lattice, with
spacing a = 0.24 fm and a stochastic fermion ensemble of size Nens = 750. The pure Yang-Mills system
on a 62× 62× 62 lattice with spacing a = 0.19 fm. All physical parameters as total energy, box size,
saturation scale and coupling g = 2 are kept equivalently in all simulations.

To study how the chromo-Weibel instability spreads over the whole lattice by time, let us
finally have a look at the energy density profile of a pure Yang-Mills simulation with broken
longitudinal boost invariance. We give the profile of the longitudinal chromo-electric energy
density, with a quantum fluctuation of magnitude ∆ = 0.1, in (figure 8.26).

Comparing it to the energy density profile of a simulation with fermions of mass m = 8.33 MeV,
(figure 8.9) and (figure 8.10), we find that the initial state shows the characteristic longitudinal
lines of constant energy as well, but this time it is possible to observe additional shadowed
regions around z/a ∼ 15 and z/a ∼ 50 in the energy density profile. These appear due to the
modification of the initial state by (eq. 3.22) and their presence is governed by the magnitude
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of the fluctuation in longitudinal direction ∆ = 0.1.2

Figure 8.26: Profile of the longitudinal energy density ǫEL (t) for a pure Yang-Mills simulation
with an explicit breaking of longitudinal boost invariance of magnitude ∆ = 0.1, at times t ∈
{0, 1.35, 1.94, 2.32, 4.06, 9.68} fm. A lattice average has been taken in x-direction. The simulations
have been performed on a 62× 62× 62 lattice, with spacing a = 0.19 fm and coupling g = 2.

During the evolution of the system, filaments arise along these shaded regions, that are caused
by the chromo-Weibel instability. In time, the instability spreads over the whole lattice and we
observe how the longitudinal lines of constant energy are more and more erased, leading to a
situation, where the energy density profile is homogenized and dominated by local fluctuations.
As in case of a system coupled to fermions, we conclude, that a homogenization of the energy
density goes hand in hand with the development of an isotropization process for the pressure of
the system.

Importantly, the longitudinal lines of constant energy are clearly present in the energy density
profile of the pure Yang-Mills system around the hydrodynamization time of thydro ≈ 1 fm, in
contrast to the simulation with fermions, where the lines are already partly erased at every
lattice point (see figure 8.9). The reason for that is, that the instability has not yet been spread
over the whole lattice. Moreover, at thydro only the regions close to the maxima of the quantum
fluctuation are influenced, as can be seen in (figure 8.26). This supports our previous conclusion,
that pressure isotropization initially takes longer in pure Yang-Mills simulation with broken boost
invariance, because it takes longer until the chromo-Weibel instability develops. Nevertheless,
as soon as the instability has grown, the system is rapidly driven towards pressure isotropy.

2The fluctuation is modeled as a cos-function in (eq. 3.22), causing the observed structure of maxima and
minima along longitudinal direction in the energy density profile.
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8.3 Dependence on the Choice of Coupling

In this section, we will study the dependence on the coupling g, that controls the strength of the
interaction of the classical fields with the fermion fields. It enters not only the chromo-electric
field equation of motion (eq. 5.50), that controls the back-coupling of fermions onto the Yang-
Mills fields, but also the observables themselves. Varying the value of the coupling g therefore
is a test, how adapting the interaction strength between the Yang-Mills and fermion sector
influences the dynamics of the system. Because the physical reality at the early stage in a heavy
ion collision requires a choice of g ≈ 2, it is not possible to repeat a matching procedure for
the energy density for smaller couplings. As a consequence, we leave the model parameters as
box size, saturation scale Qs and lattice spacing a constant. The results for the longitudinal to
transverse pressure ratio and the pressure to energy ratio for a simulation with fermions of mass
m = 8.33 MeV and three different choices of coupling g ∈ {0.01, 0.1, 0.5} are given in (figure
8.27). To reduce computational time, the simulations have been performed with a temporal
spacing of at = 0.03a, that still satisfies the Courant-Levi condition (eq. 7.23).

Figure 8.27: Longitudinal to transverse pressure ratio (left) and pressure to energy ratio (right) for
simulations with different couplings g ∈ {2, 0.5, 0.1, 0.01}. The simulations have been performed at a
fixed saturation scale of Qs = 1.867 GeV, on a 50× 50× 50 lattice, with spacing a = 0.24 fm, including
fermions of mass m = 8.33 MeV and a stochastic fermion ensemble of size Nens = 750.

We find, that pressure isotropy is reached in all cases. In contrast to the simulation with
coupling g = 2, the longitudinal to transverse pressure ratio for all other choices of g drops to a
small fraction close to zero after the initial oscillatory phase. The system therefore does not move
towards partial isotropy at early times, especially not around the estimated hydrodynamization
time of thydro = 1 fm. The actual process of isotropization sets in later, determined from the
strength of the coupling g, with the smallest coupling taking the longest time. The same
observations are true for the pressure to energy ratio, given on the right-hand side of (figure
8.27), where the ratio in all simulations moves towards the equilibrium value of 1/3, in decreasing
order as a function of the coupling.

At late times we find, that the system moves closer towards perfect pressure isotropy PL/PT → 1
for smaller coupling. The reason for this can be understood by recalling that the energy transfer
between the fermion and Yang-Mills sector, that causes high energy modes to become occupied,
marks a necessary ingredient for pressure isotropization. We argued, that this process is slowed
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down as soon as a balanced situation between Yang-Mills and fermion sector is reached at late
times for g = 2, with a significant amount of energy stored in the fermion sector. For small
couplings, both sectors are coupled weaker and hence the energy transfer is reduced. As a
consequence, isotropization sets in later, as observed in (figure 8.27), but on the other hand,
less energy is transfered to the fermion sector. Because a balanced situation at late times is
not reached as rapidly as it is the case for g = 2, isotropization is not slowed down for smaller
g. This picture is supported from an investigation of the occupation of energy modes in the
Yang-Mills sector for simulations with different coupling in (figure 8.28). As expected, we find
that energy modes are occupied slower for small couplings g.

Figure 8.28: Occupation of energy modes in the Yang-Mills sector for simulations with fermions
of mass m = 8.33 MeV and different couplings g ∈ {2, 0.5, 0.1, 0.01} (top left to bottom right). The
simulations have been performed at a fixed saturation scale of Qs = 1.867 GeV, on a 50 × 50 × 50
lattice, with spacing a = 0.24 fm and a stochastic fermion ensemble of size Nens = 750.

In general, we find by comparing (figure 8.28) and (figure 8.27), that pressure isotropization
only sets in, as soon as the two ribbon structure of the initial state has sufficiently been
erased. These observations are of course supported by the lattice average of the occupation of
energy modes in transverse direction, plotted as a function of longitudinal momentum for the
Yang-Mills sector in (figure 8.29). For the couplings g = 2 and g = 0.5 we observe that this
occupation is equalized and the initial peak at pz = 0 is diminished. In the other two cases of
smaller couplings, we are not yet close to an equalized situation and pressure isotropization
sets in at a later time. Also note, that it is already possible to observe a slow down for
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g = 2 in the Yang-Mills sector, because more and more energy has been transfered to the
fermion sector, as can be seen in (figure 8.1) as well.

Figure 8.29: Lattice averaged occupation of energy modes in the transverse plane in the Yang-Mills
sector, as a function of longitudinal momentum, for simulations including fermions of mass m = 8.33
MeV and different couplings g ∈ {2, 0.5, 0.1, 0.01} (top left to bottom right). The simulations have
been performed at a fixed saturation scale of Qs = 1.867 GeV, on a 50× 50× 50 lattice, with spacing
a = 0.24 fm and a stochastic fermion ensemble of size Nens = 750.

The reduced interaction between fermions and gauge fields for small couplings also manifests
itself in the dominance of low energy modes in the Yang-Mills sector. In (figure 8.30) we
plot the percentage of occupied low energy modes, compared to the total amount of available
modes in the system. The low energy modes are again classified up to a cutoff (eq. 8.6). As
expected, we find that low energy modes dominate the Yang-Mills sector more, the smaller the
coupling. Additionally, for small values of g, the percentage even increases at initial time. The
reason for that is rooted in the initial conditions: At initial time, only modes with pz = 0 are
occupied. As a consequence, there are still low energy modes with pz 6= 0 available at the first
time-steps of a simulation. For a vivid interaction between the fermion and Yang-Mills sector,
as it is the case when choosing g = 2, not only these low energy modes are occupied, but high
energy modes are rapidly occupied as well. This situation changes, if g is reduced. For small
couplings a significantly smaller amount of energy is transfered to the fermion sector. As a
consequence, a smaller fraction of this energy is transfered back to the Yang-Mills sector, due
to the back-coupling of fermions onto the Yang-Mills sector. Naturally, an occupation of the
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low energy modes is preferred, causing the percentage in (figure 8.30) to move up.

Figure 8.30: Ratio of occupied low energy modes compared to the total occupation of energy modes for
simulations with fermions of mass m = 8.33 MeV and different choices of coupling g ∈ {0.01, 0.1, 0.5, 2}.
Low energy modes are classified up to a cutoff of ωboundp = αsQs ≈ 0.6 GeV. The simulations have
been performed at a fixed saturation scale of Qs = 1.867 GeV, on a 50× 50× 50 lattice, with spacing
a = 0.24 fm and a stochastic fermion ensemble of size Nens = 750.

8.4 Two Degenerate Quark Flavors

Finally, let us investigate a simulation with two degenerate quark flavors present. We want to
study, if a doubling of the degrees of freedom in the fermion sector influences the dynamics
of the system. With the masses of the up- and down-quark being close together and having
seen, that we are close to the ultra-relativistic limit in the highly energetic Glasma in (section
8.1.1), it is justified to consider the up- and down-quark to be approximately degenerate.
We have performed a matching procedure for the energy density in the Nf = 2 flavor case
in (section 7.5), to extract the appropriate lattice spacing of a = 0.27 fm and we keep the
box size constant, choosing a lattice of 44 × 44 × 44 points. The fermion mass is chosen
to be m = 0.01/a ≈ 7.34 MeV, hence we are at the order of the up- and down-quark mass.
To check for the ultra-relativistic limit again, we compare the results to a mass of m ≈ 0.734 MeV.

In (figure 8.31) we give the longitudinal to transverse pressure ratio comparing a simulation
with one fermion of mass m = 8.34 MeV, a simulation with two degenerate fermions of mass
m = 7.34 MeV and of mass m = 0.734 MeV. We find, that the results for the two simulations
with degenerate fermions present coincide, hence we are close to the ultra-relativistic limit. On
top of that, for two degenerate flavors, the initial pressure anisotropy is diminished even faster
at early times. This is intuitive, because we have doubled the degrees of freedom in the fermion
sector, enhancing the energy exchange between the fermion and Yang-Mills sector, that plays
an important role for the genesis of an isotropization process. Within the hydrodynamization
time of thydro = 1 fm, the longitudinal to transverse pressure ratio even surpasses PL/PT ≈ 0.6
and a ratio of PL/PT = 0.7 is already reached around t ≈ 3 fm, which is a significant speed
up when compared to the one flavor case in (section 8.1.2).
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Figure 8.31: Longitudinal to transverse pressure ratio for a simulation with one fermion of mass
m = 8.33 MeV, a simulation with two degenerate fermions of mass m = 7.34 MeV and a simulation with
two degenerate fermions of mass m = 0.734 MeV. The simulation parameters as box size, saturation
scale, energy density, coupling g = 2 and ensemble size Nens = 750 are kept constant in all simulations.
The Nf = 1 simulation has been performed on a 50× 50× 50 lattice, with spacing a = 0.24 fm and the
Nf = 2 simulations on a 44× 44× 44 lattice, with spacing a = 0.27 fm.

For late times, the ratios of the one and two flavor case move towards each other. This goes
hand in hand with the fermion sector acquiring more and more energy in both simulations,
as depicted on the left of (figure 8.32).3 As argued previously, as soon as the energy transfer
between sectors reaches a balance, isotropization slows down and the two curves in (figure
8.31) move towards each other. This observation is supported by the pressure to energy ratio,
given on the right-hand side of (figure 8.32). As expected, the two flavor system tends towards
Pi/ǫ = 1/3 faster, when compared to the one flavor system.

Figure 8.32: Energy density (left) and pressure to energy ration (right), in a simulation with one
fermion of mass m = 8.33 MeV and with two degenerate fermions of mass m = 7.34 MeV. The
simulation parameters as box size, saturation scale, energy density, coupling g = 2 and ensemble size
Nens = 750 are kept constant in all simulations. The Nf = 1 simulation has been performed on a
50× 50× 50 lattice, with spacing a = 0.24 fm and the Nf = 2 simulation on a 44× 44× 44 lattice,
with spacing a = 0.27 fm.

3The small difference in the total lattice averaged energy density for the one and two flavor system is rooted
in the restriction to even integer numbers for the lattice extent, when performing the matching procedure.



Part II

Simulating in an Expanding Box

Visualization of the early phase in a heavy ion collision [161].
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9
The Expanding System

In the following chapter, we want to extend the previously discussed semi-classical model from
a static to a longitudinally expanding box. In fact, a longitudinally expanding system matches
much better the physical reality of a heavy ion collision: The QGP-plasma, expands in all
spacial directions, but with the ions being accelerated along the beam direction one can expect
the longitudinal expansion to dominate, especially at initial times. For this reason we neglect a
transverse expansion in our ansatz.

As stated previously, we consider the beam along the z-direction, therefore we require a
coordinate system that is able to describe a longitudinally expansion in z-direction. Such a
system has first been discussed by Bjorken [12], describing the QGP in terms of relativistic
hydrodynamics. The Bjorken flow model uses a comoving coordinate system referred to as
Milne or Bjorken coordinates, where the longitudinal expansion is inherent in the definition of
the coordinate system. In this chapter we will introduce this coordinate system and present
how to formulate QCD in Milne coordinates.

9.1 Milne Coordinates

Milne coordinates are related to Cartesian coordinates in the following way

τ =
√
t2 − z2, t = τ cosh η

η = atan

(

z

t

)

=
1

2
ln

(

t+ z

t− z

)

, z = τ sinh η (9.1)

x⊥ = (x, y).

The quantity τ replaces the Minkowski time t and can be interpreted as a proper time of the sys-
tem. The z-direction is replaced by the space-time rapidity η, which is a dimensionless quantity.
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Figure 9.1: Minkowski diagram for two colliding nuclei, residing on the lightcone. Figure taken from
[58]

In (figure 9.1), the proper time τ and the space-time rapidity η are depicted in a Minkowski
diagram for a heavy ion collision. The two incoming nuclei reside on the lightcone and the plasma
is formated after the collision. Its expansion in longitudinal direction for increasing proper
time τ can be observed in the Minkowski diagram, by considering a fixed space-time rapidity
η. We will later discuss how to fix η in our lattice simulation, restricting ourself to the area
of central rapidity. In an experiment typically two units of space-time rapidity can be covered [62].

In general, the four-vector of Milne coordinates can be written as

xµ = (τ, x, y, η). (9.2)

In contrast to the Minkowski metric, the new coordinate system has a non-trivial metric gµν , de-
rived from

gµν =
∂xα

∂x′µηαβ
∂xβ

∂x′ν . (9.3)

Using (eq. 9.1) one derives

gµν = diag
(

1,−1,−1,−τ 2
)

, gµν = diag

(

1,−1,−1,− 1

τ 2

)

, gµνg
να = δ α

µ . (9.4)

When integrating position and proper time one has to include a Jacobi determinant in the
integration measure, which can be calculated from the metric of Milne coordinates (eq. 9.4)

det gµν = g = −τ 2, dV =
√−gdτd2x⊥dη. (9.5)

When changing the coordinate system one has to transform the derivative operator accordingly

∂

∂xβ
=
∂x′α

∂xβ
∂

∂x′α = Λ α
β

∂

∂x′α . (9.6)
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∂α = Λ β
α ∂

′
β, →








∂t
∂x
∂y
∂z








=








cosh η 0 0 − 1
τ

sinh η
0 1 0 0
0 0 1 0

− sinh η 0 0 1
τ

cosh η















∂τ
∂x
∂y
∂η







. (9.7)

The Cartesian time and z-direction derivative operators are therefore replaced by

∂t = cosh η ∂τ −
1

τ
sinh η ∂η, (9.8)

∂z = − sinh η ∂τ +
1

τ
cosh η ∂η,

in Milne coordinates. These transformations of the derivative operators in Milne coordinates
have important consequences for the Dirac equation, that we will discuss in the next section.

9.1.1 The Dirac Equation in Milne Coordinates

When introducing Milne coordinates, the time and z-direction derivative operators in the free
Dirac equation (eq. 1.28) are replaced by (eq. 9.8)

γ0∂0 + γ3∂3 = γ0

(

cosh η ∂τ −
1

τ
sinh η ∂η

)

+ γ3

(

− sinh η ∂τ +
1

τ
cosh η ∂η

)

. (9.9)

In (Appendix C.1) we show, that this can be rewritten as

γ0∂0 + γ3∂3 = γ0e−ηγ0γ3

∂τ +
1

τ
γ3e−ηγ0γ3

∂η, (9.10)

allowing us to write the Dirac equation in Milne coordinates in the following way
[

iγ0e−ηγ0γ3

∂τ +
i

τ
γ3e−ηγ0γ3

∂η + iγi∂i −m
]

ψ(x) = 0. (9.11)

It is possible to simplify (eq. 9.11) further by multiplying it with e− η
2
γ0γ3

from the left and
commute this factor with the gamma matrices, using {γ0, γi} = {γ0, γ3} = {γ3, γi} = 0

0 = e− η
2
γ0γ3

[

iγ0e−ηγ0γ3

∂τ +
i

τ
γ3e−ηγ0γ3

∂η + iγi∂i −m
]

ψ(x) (9.12)

=

[

iγ0e− η
2
γ0γ3

∂τ +
i

τ
γ3e− η

2
γ0γ3

∂η + iγie− η
2
γ0γ3

∂i −me− η
2
γ0γ3

]

ψ(x).

Letting the η-derivative operator act on the matrix exponential one can simplify this result

i

τ
γ3∂η

(

e− η
2
γ0γ3

ψ(x)
)

=
i

τ
γ3γ3γ0 1

2
e− η

2
γ0γ3

ψ(x) +
i

τ
γ3e− η

2
γ0γ3

∂ηψ(x) (9.13)

= − i

2τ
γ0e− η

2
γ0γ3

ψ(x) +
i

τ
γ3e− η

2
γ0γ3

∂ηψ(x).

Substitution leads to
[

iγ0∂τ +
i

τ
γ3∂η +

i

2τ
γ0 + iγi∂i −m

]

e− η
2
γ0γ3

ψ(x) = 0. (9.14)
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Finally we make use of

iγ0∂τ
(√

τψ(x)
)

= iγ0 1

2
√
τ
ψ(x) + iγ0

√
τψ(x), (9.15)

hence multiplying the Dirac equation with
√
τ leads to

[

iγ0∂τ +
i

τ
γ3∂η + iγi∂i −m

]√
τe− η

2
γ0γ3

ψ(x)
︸ ︷︷ ︸

:=ψ̂(τ,x⊥,η)

= 0. (9.16)

In the last step we redefined the spinor, following the strategy first proposed in [74]. The given
redefinition will turn out to be very useful when solving the Dirac equation in an expanding
geometry. In the following, the redefined spinor will be referred to as expanding box spinor.
The associated scalar product of fermions in Milne coordinates is given as [74]

∫

ψ†(τ,x⊥, η)τe−ηγ0γ3

ψ(τ,x⊥, η)dx⊥dη =
∫

ψ̂†(τ,x⊥η)ψ̂(τ,x⊥, η)dx⊥dη. (9.17)

Another important consequence of the redefinition of the spinor in the expanding geometry

is that the dimension is reduced by a factor of
√

[length], due to the additional factor of√
τ entering the spinor definition

[

ψ̂(τ,x⊥, η)
]

∼ 1

[length]
. (9.18)

In the next section we will discuss, how this translates to the fermion Lagrangian and especially
how the corresponding action can be written.

An interaction of fermion fields with the gauge fields is introduced to (eq. 9.16), by replacing
the derivative operator by their covariant counterpart

∂i → Di, ∂η → Dη. (9.19)

This leads to the full interacting Dirac equation in an expanding geometry
[

iγ0∂τ +
i

τ
γ3Dη + iγiDi −m

]

ψ̂(τ,x⊥, η) = 0. (9.20)

We have chosen Aτ = 0 in (eq. 9.20), also known as Fock-Schwinger gauge, eliminating
one of two gauge degrees of freedom.

9.2 The Lagrangian in an Expanding Box

Having discussed the Dirac equation in an expanding box, let us now turn to the definition
of the Lagrange density and action of QCD in an expanding geometry, making use of Milne
coordinates. For the action of the Yang-Mills sector of QCD, introducing Milne coordinates
and including the correct integration measure (eq. 9.5), leads to

SYM [A] =
∫

−1

2
tr
[

F µνFµν
]

τdτd2x⊥dη. (9.21)
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Explicitly writing the contraction of the field-strength tensor in Milne coordinates, we find

FµνF
µν = Fµνg

µαgνβFαβ =2
[

Fτ1g
ττg11Fτ1 + Fτ2g

ττg22Fτ2 + Fτηg
ττgηηFτη (9.22)

+ F12g
11g22F12 + F1ηg

11gηηF1η + F2ηg
22gηηF2η

]

=− 2

[

F 2
τ1 + F 2

τ2 +
1

τ 2
F 2
τη − F 2

12 −
1

τ 2
F 2

1η −
1

τ 2
F 2

2η

]

=− 2

[

F 2
τi +

1

τ 2
F 2
τη − F 2

12 −
1

τ 2
F 2
iη

]

,

where we used the metric (eq. 9.4). The Yang-Mills action can now be written as

SYM [A] =
∫

tr

[

τF 2
τi +

1

τ
F 2
τη − τF 2

12 −
1

τ
F 2
iη

]

dτd2x⊥dη. (9.23)

For the derivation of the corresponding equations of motion of the classical theory, one would
have to make use of the variational principle to minimize the action

δS = 0. (9.24)

A crucial difference to the static case is, that one has to take care of the additional factor of
τ , entering the Yang-Mills action due to the Jacobian (eq. 9.5). The procedure has in detail
been discussed in [162, 163] and it turned out to be convenient to redefine the Lagrangian
of Yang-Mills theory in an expanding geometry,

LexpYM [A] = tr

[

τF 2
τi +

1

τ
F 2
τη − τF 2

12 −
1

τ
F 2
iη

]

= −τ
2

tr
[

F µνFµν
]

, (9.25)

where we included the additional factor τ in the definition of the Lagrangian [61]. On the one
hand, this changes the dimensionality of the Lagrangian by a factor of length, but on the other
hand it significantly simplifies the derivation of the equations of motion, allowing us to simply
apply the Euler-Lagrange equation.

To derive the corresponding Hamiltonian of the theory, let us perform a Legendre transformation
of (eq. 9.25). To do so, we have to derive the conjugate fields at first, that can again be
interpreted as chromo-electric fields E. In contrast to the static box, the chromo-electric fields
now split into a transverse and a longitudinal field,

Ea
i (x) =

∂LexpYM

∂
(

∂τAai (x)
) =

∂

∂
(

∂τAai (x)
)tr

[

τF 2
τj +

1

τ
F 2
τη − τF 2

12 −
1

τ
F 2
jη

]

= τ
∂

∂
(

∂τAai (x)
)tr

[

F 2
τj

]

=
τ

2

∂

∂
(

∂τAai (x)
)

(

∂τA
b
j(x)

)2
= τ∂τA

a
i (x) = τF a

τi(x), (9.26)

Ea
η (x) =

∂LexpYM

∂
(

∂τAaη(x)
) =

∂

∂
(

∂τAaη(x)
)tr

[

τF 2
τj +

1

τ
F 2
τη − τF 2

12 −
1

τ
F 2
jη

]

=
1

τ

∂

∂
(

∂τAaη(x)
)tr

[

F 2
τη

]

=
1

2τ

∂

∂
(

∂τAaη(x)
)

(

∂τA
b
η(x)

)2
=

1

τ
∂τA

a
η(x) =

1

τ
F a
τη(x), (9.27)
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Making use of these definitions, we can rewrite the Lagrangian of the Yang-Mills sector
(eq. 9.25) in the following way

LexpYM = tr

[

1

τ
E2
i + τE2

η − τF 2
12 −

1

τ
F 2
iη

]

. (9.28)

The corresponding Hamiltonian of Yang-Mills theory in an expanding box is then given as

Hexp
YM = tr

[

1

τ
E2
i +

1

τ
F 2
ηi + τE2

η + τF 2
xy

]

. (9.29)

One easily checks, that this result does not have the dimension of an energy density, because of
the redefinition of the Lagrangian in the expanding box. We will discuss how to connect it to
the energy density of the Yang-Mills sector later.

For the fermion sector of QCD in an expanding box, the Lagrangian is deduced from the
Dirac equation (eq. 9.20) as it has been the case in the static box

Lexpf = ˆ̄ψ

[

iγ0∂τ +
i

τ
γ3Dη + iγiDi −m

]

ψ̂. (9.30)

As expected, it has the same reduced dimensionality as the Lagrangian of the Yang-Mills sector,
due to the redefinition of the spinor. The action is thus given by using (eq. 9.17), leading to

Sf =
∫

ˆ̄ψ

[

iγ0∂τ +
i

τ
γ3Dη + iγiDi −m

]

ψ̂dτd2x⊥dη. (9.31)

Of course, the dimensionality of the action is unchanged when compared to the static box,
as it should be the case. Finally, it is straight forward to derive the Hamiltonian of the
fermion sector from (eq. 9.30), making use of a Legendre transformation. Summing the
result with the previously derived Hamiltonian of the Yang-Mills sector (eq. 9.29), we find
the Hamiltonian of QCD in an expanding geometry

Hexp
QCD = tr

[

1

τ
E2
i +

1

τ
F 2
ηi + τE2

η + τF 2
xy

]

− i

τ
ˆ̄ψγ3Dηψ̂ − i ˆ̄ψγiDiψ̂ +m ˆ̄ψψ̂. (9.32)

This result has dimension ∼ 1
L3 , because we derived it from the expanding box Lagrangian of

reduced dimensionality. It can therefore not be directly interpreted as the energy density of the
system [61].

The action of QCD in the expanding box is simply given by summing the Yang-Mills and fermion
sector

SQCD =
∫
(

tr

[

τF 2
τi +

1

τ
F 2
τη − τF 2

12 −
1

τ
F 2
iη

]

+ ˆ̄ψ

[

iγ0∂τ +
i

τ
γ3Dη + iγiDi −m

]

ψ̂

)

dτd2x⊥dη,

(9.33)

with corresponding Lagrangian

LexpQCD = tr

[

τF 2
τi +

1

τ
F 2
τη − τF 2

12 −
1

τ
F 2
iη

]

+ ˆ̄ψ

[

iγ0∂τ +
i

τ
γ3Dη + iγiDi −m

]

. (9.34)
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Initial Conditions for the Expanding System

In this chapter we will discuss the initial conditions of the semi-classical approximation of QCD
in the expanding box. As it has been the case for the static system, the Yang-Mills sector
is initialized, solving the Poisson equation of the CGC effective theory, creating the Glasma.
The fermions enter the simulation as free vacuum fermions, making it necessary to solve the
corresponding free Dirac equation (eq. 9.20) in the expanding geometry.

10.1 Initialization of the Gauge Fields

The construction of the ensemble of gauge links {Ui} in the expanding box is completely
equivalent to what has been discussed in (section 3.3.1). At first, the gauge links are initialized
in the transverse plane, which is not affected by the expansion in the longitudinal direction.
As a consequence, we can reuse all equations of (section 3.3.1). The gauge link ensemble is
thus defined in a single transverse slice at η = 0 . Afterwards we extend it in longitudinal
direction, as discussed in (section 3.4), by copying it to the other space-time rapidity planes,
creating the familiar color-flux tube structure of the Glasma. When doing so, we set all
longitudinal gauge links to one

Uη = 1. (10.1)

This construction requires us to specify the longitudinal extent of the three dimensional lattice.
In contrast to the static box, where we assumed a cubic lattice, the longitudinal and transverse
direction in an expanding geometry have to be treated independently. We have to specify
the units of space-time rapidity that will be covered by the transverse lattice extent in our
simulation, corresponding to the area indicated in (figure 9.1). We choose

Lη = 3. (10.2)

units of space-time rapidity for the longitudinal lattice extent.1 This area matches well the
central rapidity regime, that is covered by the experiment [61].

1In most of the literature Lη = 2. is chosen. We chose a slightly larger area, having obtained numerically
more stable results in a simulation with fermions.
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As in the static box, the chromo-electric fields are only defined in the longitudinal direction
at initial time, hence we set the transverse direction to zero

E⊥(x) = 0. (10.3)

In the longitudinal direction they can be constructed from the gauge link ensemble of the
CGC in similar fashion as in the static box, solving

Ēa
η (x) = − i

2

2∑

i=1

tr

[

T a
([

Ui(x)− 1
][

U
(2)†
i (x)− U (1)†

i (x)
]

(10.4)

+
[

U †
i (x− î)− 1

][

U
(2)
i (x− î)− U (1)

i (x− î)
])

− h.c.

]

.

10.2 Vacuum Fermions in an Expanding Geometry

As stated in the introduction, the fermion fields are initialized as free vacuum fermions. In
an expanding geometry, this turns out to be more involved as in the static case, due to the
non-linearity of the Dirac equation in Milne coordinates (eq. 9.20). Before turning to the
solution of the equation, let us in general discuss the concept of longitudinal boost invariance
of fermion spinors. In a next step, we will first solve the spacial part of (eq. 9.20) and
finally the non-linear proper time dependent part. We finish the discussion by normalizing the
vacuum solution of the spinor and relate it to the static box solution. Finally we discretize
our result, making it accessible in a lattice simulation.

10.2.1 Boost Invariance of a Fermion Spinor

In analogy to the static box, we take the ansatz for the Fourier decomposition of an expanding box
spinor

ψ̂(τ,x⊥, η) =
∫ 2∑

s=1

Nc∑

a=1

(

âs,a(k⊥, yk)ψ̂
+
k⊥,yk,s,a

(τ,x⊥, η) (10.5)

+ b̂†
s,a(k⊥, yk)ψ̂

−
k⊥,yk,s,a

(τ,x⊥, η)
)
d2k⊥

(2π)2
dyk,

where we introduced ψ0±
s,p(x) as mode functions and identified the momentum rapidity yp = pz

Ep
.

The mode functions are constructed such, that they solve the expanding box Dirac equation
[

iγ0∂τ + iγi∂i +
i

τ
γ3∂η −m

]

ψ̂±
k⊥,yk,s,a

(τ,x⊥, η) = 0. (10.6)

As it is the case for the initial conditions of the Yang-Mills sector, the spinors that enter our
system require to be longitudinal boost invariant as well. To study how longitudinal boost
invariance manifests itself for a fermion spinor, let us first discuss how a static box vacuum
spinor transforms under a boost in longitudinal direction. The mode functions of a free Dirac
spinor in a static box are given as (compare to eq. 6.87)

ψ0+
s,p(x) =us(p)e−ipx = us(p)e−iEpteipx = us(p)e−iEpteip⊥x⊥eipzz, (10.7)

ψ0−
s,p(x) =vs(p)eipx = vs(p)eiEpte−ipx = vs(p)eiEpte−ip⊥x⊥e−ipzz. (10.8)



10. Initial Conditions for the Expanding System 133

We now perform a Lorentz boost in longitudinal direction, setting yp = 0 at initial time in the
comoving frame. For the time component t a longitudinal boost leads to

t → t′ =t cosh(yp)− z sinh(yp) =
1

2

[

t
(

eyp + e−yp
)

− z
(

eyp − e−yp
)]

(10.9)

=
1

2

√

(t− z)(t+ z)

[

eyp
√

t− z
t+ z

+ e−yp

√

t+ z

t− z

]

=
1

2

√
t2 − z2

︸ ︷︷ ︸

=τ

[

eyp exp

(

ln

(√

t− z
t+ z

)

︸ ︷︷ ︸

=− 1
2

ln

(
t+z
t−z

)

=−η

)

+ e−yp exp

(

ln

(√

t+ z

t− z

)

︸ ︷︷ ︸

= 1
2

ln

(
t+z
t−z

)

=η

)]

=
1

2
τ
[

eyp−η + e−yp+η
]

= τ cosh(yp − η),

where we identified the proper time τ and the space-time rapidity η. We define

Ep(yp = 0) =
√

p2
⊥ +m2 := Mp, (10.10)

leading to the following transformation of the time dependent part of the Fourier kernel,
when performing a boost in z-direction

e−iEpt z-boost→ e−Mpτ cosh(yp−η), eiEpt z-boost→ eMpτ cosh(yp−η). (10.11)

For the basis spinors, we have to Lorentz boost the spinors in the longitudinal direction [149]

S(Λ) = exp
(

iΘ03S
03
)

= exp

(

1

2
ypγ

0γ3

)

, Sµν =
i

4

[

γµ, γν
]

. (10.12)

The basis spinor then transforms according to

us(p)
z-boost→ S(Λ)us(p⊥, yp = 0) = e

1
2
ypγ0γ3

us(p⊥, yp = 0), (10.13)

vs(p)
z-boost→ S(Λ)vs(p⊥, yp = 0) = e

1
2
ypγ0γ3

vs(p⊥, yp = 0). (10.14)

Combining both results (eq. 10.11) and (eq. 10.13), we find the following rapidity dependence
of the static box mode functions

ψ0+
s,p(x)

z-boost→ ψ0+
s,p⊥,yp

(τ,x⊥, η) = e
1
2
ypγ0γ3

us(p⊥, yp = 0)e−iMp⊥
τ cosh(yp−η)eip⊥x⊥ , (10.15)

ψ0−
s,p(x)

z-boost→ ψ0−
s,p⊥,yp

(τ,x⊥, η) = e
1
2
ypγ0γ3

vs(p⊥, yp = 0)eiMp⊥
τ cosh(yp−η)e−ip⊥x⊥ . (10.16)

When defining the expanding box spinor in (eq. 9.16), the given boosted spinors are modified
by multiplying them with

ψ̂0+
s,p⊥,yp

(τ,x⊥, η) =
√
τe

1
2

(yp−η)γ0γ3

us(p⊥, yp = 0)e−iMp⊥
τ cosh(yp−η)eip⊥x⊥ , (10.17)

ψ̂0−
s,p⊥,yp

(τ,x⊥, η) =
√
τe

1
2

(yp−η)γ0γ3

vs(p⊥, yp = 0)eiMp⊥
τ cosh(yp−η)e−ip⊥x⊥ . (10.18)

We find that for the definition of the spinor in an expanding system, the rapidity dependence
only enters as a difference of momentum and spacetime rapidity yp − η, making the spinor
longitudinal boost invariant, as discussed in [74].
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This simple rapidity dependence of the expanding box spinor can be used to simplify (eq.
10.5). To do so, let us consider an arbitrary function f = f(yp − η) that only depends on the
difference of rapidities: A Fourier transformation with respect to yp then leads to

f̃(ν, η) =
∫

f(yp − η)eiνypdyp, f(yp, η) =
∫

f̃(ν, η)e−iνyp
dν

2π
. (10.19)

Because we know, that the function in position space depends only on the difference of rapidities
f(yp, η) = f(yp − η), the Fourier transform picks up a trivial η dependence, with

f̃(ν, η) = eiνηf̃(ν), (10.20)

because

f(yp, η) =
∫

f̃(ν, η)e−iνyp
dν

2π
=
∫

f̃(ν)e−iν(yp−η) dν

2π
= f(yp − η). (10.21)

Making use of (eq. 10.21) we can rewrite the expanding box spinor in the following way

ψ̂±
k⊥,yk,s,a

(τ,x⊥, η) → ψ̂±
k⊥,ν,s,a

(τ,x⊥, η) =
∫

ψ̂±
k⊥,yk,s,a

(τ,x⊥, η)eiνykdyk. (10.22)

We can now trade our yk with a ν dependence in (eq. 10.5), performing a Fourier transformation
with respect to ν and arrive at

ψ̂(τ,x⊥, η) =
∫ 2∑

s=1

Nc∑

a=1

(

âs,a(k⊥, ν)ψ̂+
k⊥,ν,s,a

(τ,x⊥, η) + b̂†
s,a(k⊥, ν)ψ̂−

k⊥,ν,s,a
(τ,x⊥, η)

)
d2k⊥

(2π)2

dν

2π
,

(10.23)

where the rapidity dependence of the mode functions is simply given as

ψ̂±
k⊥,ν,s,a

(τ,x⊥, η) = eiνηψ̂±
k⊥,ν,s,a

(τ,x⊥). (10.24)

The corresponding Dirac equation of the mode functions then reduces to
[

iγ0∂τ + iγi∂i −
1

τ
νγ3 −m

]

ψ̂±
k⊥,ν,s,a

(τ,x⊥) = 0. (10.25)

10.2.2 Solution of the Free Dirac Equation in Milne Coordinates:
Differential Equation

Let us now solve the free Dirac equation of the mode functions (eq. 10.25). We start with
the position dependence, making the familiar ansatz from the static box

ψ̂±
k⊥,ν,s,a

(τ,x⊥) = e±ix⊥k⊥ψ̂±
k⊥,ν,s,a

(τ). (10.26)

Inserting this into (eq. 10.25) we find

0 =

[

iγ0∂τ ∓ γiki⊥ −
1

τ
νγ3 −m

]

e±ix⊥k⊥ψ̂±
k⊥,ν,s,a

(τ). (10.27)
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Note that the remaining equation (eq. 10.27) is only a differential equation for the proper
time τ , but it is non-linear because of the additional 1/τ dependence. To solve this equa-
tion, we have to diagonalize it at first. We do this by stripping of the factor e±ix⊥k⊥ and
applying another time derivative

∂2
τ ψ̂

±
k⊥,ν,s,a

(τ) = −iγ0∂τ

[

± γiki⊥ +
1

τ
νγ3 +m

]

ψ̂±
k⊥,ν,s,a

(τ) (10.28)

= −iγ0

[

± γiki⊥ +
1

τ
νγ3 +m

]

∂τ ψ̂
±
k⊥,ν,s,a

(τ) +
i

τ 2
νγ0γ3ψ̂±

k⊥,ν,s,a
(τ).

We can now reuse (eq. 10.27) to substitute the term ∂τ ψ̂
±
k⊥,ν,s,a

(τ). The first term of
(eq. 10.28) is then given as

−iγ0

[

± γiki⊥ +
1

τ
νγ3 +m

]

(−i)γ0

[

± γiki⊥ +
1

τ
νγ3 +m

]

(10.29)

= −
[

− γiki⊥γjkj⊥ ∓
1

τ
νki⊥ {γi, γ3}

︸ ︷︷ ︸

=0

+
1

τ 2
ν2 +m2

]

= −
[

k2
⊥ +

1

τ 2
ν2 +m2

]

,

where we used that

−γiki⊥γjkj⊥ = −1

2

(

γiγj + γiγj
)

ki⊥k
j
⊥ = −1

2
{γi, γj}ki⊥kj⊥ = −ηijki⊥kj⊥ = ki⊥k

i
⊥ = k2

⊥. (10.30)

We can now identify Mk⊥
, previously defined in (eq. 10.10), rewriting (eq. 10.28) in the following

form

∂2
τ ψ̂

±
k⊥,ν,s,a

(τ) = −
[

M2
k⊥

+
1

τ 2
ν2 − i

τ 2
νγ0γ3

]

ψ̂±
k⊥,ν,s,a

(τ). (10.31)

When multiplied by τ 2, this can be written in a more compact form
[

τ 2∂2
τ + τ 2M2

k⊥
− iν

(

iν + γ0γ3
)
]

ψ̂±
k⊥,ν,s,a

(τ) = 0. (10.32)

This equation already looks very much like a variant of the Bessel equation [164], but it is
still a non-diagonal, matrix valued equation, because of the γ0γ3 term. We can eliminate this
dependence and diagonalize the equation by making use of projection operators

P± =
1

2

(

1± γ0γ3
)

. (10.33)

Making use of the following properties of the projection operators

γ0γ3P+ = P+, γ0γ3P− = −P−, P+ + P− = 1, (10.34)

we can rewrite (eq. 10.32)

0 =

[

τ 2∂2
τ + τ 2M2

k⊥
− iν

(

iν + γ0γ3
)
]
(

P+ + P−
)

ψ̂±
k⊥,ν,s,a

(τ) (10.35)

=

[

τ 2∂2
τ + τ 2M2

k⊥
− iν

(

iν + 1
)
]

P+ψ̂±
k⊥,ν,s,a

(τ) +

[

τ 2∂2
τ + τ 2M2

k⊥
− iν

(

iν − 1
)
]

P−ψ̂±
k⊥,ν,s,a

(τ).
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The resulting equations for the projections of the mode function P±ψ̂±
k⊥,ν,s,a

(τ) are diagonal and
have to be satisfied individually. We conclude, that as soon as we find their solution, we can
construct the full solution of (eq. 10.32).

We make the following ansatz for the time dependence of ψ̂±
k⊥,ν,s,a

(τ)

ψ̂±
k⊥,ν,s,a

(τ) = P+ψ̂±
k⊥,ν,s,a

(τ) + P−ψ̂±
k⊥,ν,s,a

(τ) (10.36)

= T±
k⊥,ν

(τ)P+ψ̂±
k⊥,ν,s,a

+ T̃±
k⊥,ν

(τ)P−ψ̂±
k⊥,ν,s,a

,

where T±
k⊥,ν

(τ) and T̃±
k⊥,ν

(τ) are scalar functions. These functions have to satisfy the non-
linear differential equations

[

τ 2∂2
τ + τ 2M2

k⊥
− iν

(

iν + 1
)
]

T±
k⊥,ν

(τ) = 0, (10.37)

[

τ 2∂2
τ + τ 2M2

k⊥
− iν

(

iν − 1
)
]

T̃±
k⊥,ν

(τ) = 0. (10.38)

Both equations are a variant of the Bessel equation [164] and their solution is constructed from
Bessel functions2

T±
k⊥,ν

(τ) =
√
τ
(

c±
1 Jiν+ 1

2

(

Mk⊥
τ
)

+ c±
2 Yiν+ 1

2

(

Mk⊥
τ
))

, (10.39)

T̃±
k⊥,ν

(τ) =
√
τ
(

c̃±
1 Jiν− 1

2

(

Mk⊥
τ
)

+ c̃±
2 Yiν− 1

2

(

Mk⊥
τ
))

. (10.40)

We use the integration constants c±
1/2 and c̃±

1/2 to rewrite our result in terms of Hankel functions,

which will turn out to be useful later. To do so, we set c+
2 = −ic+

1 = c+ and c−
2 = ic−

1 =
c− (and the same for the c̃±

i ), arriving at

T±
k⊥,ν

(τ) = c±√τH(2)/(1)

iν+ 1
2

(

Mk⊥
τ
)

, T̃±
k⊥,ν

(τ) = c̃±√τH(2)/(1)

iν− 1
2

(

Mk⊥
τ
)

, (10.41)

where the Hankel functions are given as

H
(1)

iν± 1
2

(

Mk⊥
τ
)

= Jiν± 1
2

(

Mk⊥
τ
)

+ iYiν± 1
2

(

Mk⊥
τ
)

, (10.42)

H
(2)

iν± 1
2

(

Mk⊥
τ
)

= Jiν± 1
2

(

Mk⊥
τ
)

− iYiν± 1
2

(

Mk⊥
τ
)

. (10.43)

Up to this point, we found the following solution of the free Dirac equation in Milne coordinates
(eq. 10.25)

ψ̂±
k⊥,ν,s,a

(τ) =
√
τ
(

c±H
(2)/(1)

iν+ 1
2

(

Mk⊥
τ
)

P+ + c̃±H
(2)/(1)

iν− 1
2

(

Mk⊥
τ
)

P−
)

ψ̂±
k⊥,ν,s,a

. (10.44)

10.2.3 Solution of the Free Dirac Equation in Milne Coordinates:
Matrix Equation

Having solved the differential equation for the mode functions (eq. 10.25) by diagonalizing the
equation, we now have to insert the solution (eq. 10.44) into the non-diagonalized equation.

2Note the explicit factor of
√
τ appearing, which matches the definition of the expanding box spinor (eq.

9.16).
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After a lengthy calculation that can be found in (Appendix C.2), one arrives at

0 =
√
τ

[

c̃±H
(2)/(1)

iν− 1
2

(

Mk⊥
τ
)

P− + c±H
(2)/(1)

iν+ 1
2

(

Mk⊥
τ
)

P+

][

±Mk⊥
γ0 ∓ γiki⊥ −m

]

ψ̂±
k⊥,ν,s,a

.

(10.45)

The leftmost term of (eq. 10.45) has been checked for roots, identifying only the pole at τ = 0,
characteristic for the expanding geometry. Because we have to consider a finite initial time in
a simulation in an expanding box, we can eliminate this term, leading to

[

±Mk⊥
γ0 ∓ γiki⊥ −m

]

ψ̂±
k⊥,ν,s,a

=

(

±Mk⊥
γ0 −m ∓ki⊥σi

±ki⊥σi ∓Mk⊥
−m

)

ψ̂±
k⊥,ν,s,a

= 0. (10.46)

This algebraic matrix valued equation has a similar structure as the momentum space free
Dirac equation in the static box (eq. 1.34), hence we make the following ansatz for the
expanding box mode functions

ψ̂±
k⊥,ν,s,a

=

(

ϕ(k⊥, ν)
χ(k⊥, ν)

)

. (10.47)

We find two equations, that are effectively two dimensional

(∓Mk⊥
+m)ϕ(k⊥, ν)± ki⊥σiχ(k⊥, ν) = 0, (10.48)

(∓Mk⊥
−m)χ(k⊥, ν)± ki⊥σiϕ(k⊥, ν) = 0. (10.49)

Starting with the solution for ψ+, the second equation of (eq. 10.48) leads to

χ(k⊥, ν) =
ki⊥σi

Mk⊥
+m

ϕ(k⊥, ν). (10.50)

Inserting this result into the first equation of (eq. 10.48), we find

(−Mk⊥
+m)ϕ(k⊥, ν) +

ki⊥σik
j
⊥σj

Mk⊥
+m

ϕ(k⊥, ν) = 0. (10.51)

Using the following identity

ki⊥σik
j
⊥σj =

1

2
{σi, σj}
︸ ︷︷ ︸

=2δij

ki⊥k
j
⊥ = k2

⊥ = M2
k⊥
−m2 = (Mk⊥

−m)(Mk⊥
+m), (10.52)

we find

(−Mk⊥
+m)ϕ(k⊥, ν) +

(Mk⊥
−m)(Mk⊥

+m)

Mk⊥
+m

ϕ(k⊥, ν) = 0. (10.53)

Note that this equation is always satisfied, independently on the choice of ϕ. As a conse-
quence, we have the freedom of choosing ϕ, which is familiar from solving the free Dirac
equation in the static box

ϕ1 =

(

1
0

)

, ϕ2 =

(

0
1

)

. (10.54)
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Making use of (eq. 10.50), we are now able to construct the first basis spinor

us(k⊥, yk = 0) = N




ϕs

ki
⊥
σi

Mk⊥
+m

ϕs



 , (10.55)

where we included a normalization constant N that has to be specified later. Note, that in
contrast to the basis spinor in the static box (eq. 1.35), the result in the expanding box is no
longer rapidity dependent, which is connected to the longitudinal boost invariance, discussed
earlier. We are now able to repeat the calculation for ψ−, leading to

vs(k⊥, yk = 0) = N





ki
⊥
σi

Mk⊥
+m

χs

χs



 , (10.56)

where χs is given as

χ1 =

(

0
1

)

, χ2 =

(

1
0

)

. (10.57)

We want our basis spinors to be orthonormal, as it has been the case in the static box (eq.
1.39). We can achieve this by fixing the normalization constant N , deriving

u†
s(k⊥, yk = 0)ur(k⊥, yk = 0) =|N |2δrs

2Mk⊥

Mk⊥
+m

, (10.58)

v†
s(k⊥, yk = 0)vr(k⊥, yk = 0) =|N |2δrs

2Mk⊥

Mk⊥
+m

.

To achieve ortho-normality, we set the normalization factor N to

N =

√

Mk⊥
+m

2Mk⊥

, (10.59)

to reproduce the properties of the basis spinors (eq. 1.39) and (eq. 1.37).

10.2.4 Normalization of the Free Expanding Box Spinor

Having constructed the solution of the free Dirac equation in an expanding geometry, we
finally have to identify the integration constants. Before doing so, we use the freedom to
rewrite the integration constants, setting

c± = −ie∓iπ
4 b±, c̃± = −ie±iπ

4 b±. (10.60)

This allows us to write the solution of the free Dirac equation in a more compact form

ψ̂+
k⊥,ν,s,a

(τ) = −ib+
√
τ
(

e−iπ
4H

(2)

iν+ 1
2

(

Mk⊥
τ
)

P+ + eiπ
4H

(2)

iν− 1
2

(

Mk⊥
τ
)

P−
)

us,a(k⊥, yk = 0),

(10.61)

ψ̂−
k⊥,ν,s,a

(τ) = −ib−√τ
(

eiπ
4H

(1)

iν+ 1
2

(

Mk⊥
τ
)

P+ + e−iπ
4H

(1)

iν− 1
2

(

Mk⊥
τ
)

P−
)

vs,a(k⊥, yk = 0). (10.62)

We require two conditions to fix the integration constants b+ and b−. A first condition is
provided by a connection of the spinor to the static box solution. As a second condition we
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consider the large time asymptotes of the expanding box spinors, taking τ ≫ 1. For large
times, the asymptotes of the Hankel functions are given as

H
(1)

iν± 1
2

(

Mk⊥
τ
)

≈
√

2

πMk⊥
τ
e

i

(

Mk⊥
τ− iνπ

2
∓π

4
−π

4

)

, (10.63)

H
(2)

iν± 1
2

(

Mk⊥
τ
)

≈
√

2

πMk⊥
τ
e

−i

(

Mk⊥
τ− iνπ

2
∓π

4
−π

4

)

.

Inserting those leads to

ψ̂+
k⊥,ν,s,a

(τ)
τ≫1
= − ib+

√

2

πMk⊥

e−iMk⊥
τe− νπ

2 eiπ
4 us,a(k⊥, yk = 0), (10.64)

ψ̂−
k⊥,ν,s,a

(τ)
τ≫1
= − ib−

√

2

πMk⊥

eiMk⊥
τe

νπ
2 e−iπ

4 vs,a(k⊥, yk = 0). (10.65)

At very large τ ≫ 1 the equation of motion of the mode functions (eq. 10.25) becomes
effectively two dimensional

[

iγ0∂τ ∓ γiki⊥ −m+O
(

1

τ

)]

ψ̂±
k⊥,ν,s,a

=
[

±Mk⊥
γ0 ∓ γiki⊥ −m

]

u/vs,a(k⊥, yk = 0) = 0.

(10.66)

As a result we conclude, that the solution (eq. 10.61) should not be ν dependent in this limit, iden-
tifying

b+ = e
νπ
2 a, b− = e− νπ

2 a. (10.67)

The solution (eq. 10.61) can then be written as

ψ̂+
k⊥,ν,s,a

(τ,x⊥, η) = −iaeiνη+k⊥x⊥e
νπ
2
√
τ (10.68)

×
(

e−iπ
4H

(2)

iν+ 1
2

(

Mk⊥
τ
)

P+ + eiπ
4H

(2)

iν− 1
2

(

Mk⊥
τ
)

P−
)

us,a(k⊥, yk = 0),

ψ̂−
k⊥,ν,s,a

(τ,x⊥, η) = −iaeiνη−k⊥x⊥e− νπ
2
√
τ (10.69)

×
(

eiπ
4H

(1)

iν+ 1
2

(

Mk⊥
τ
)

P+ + e−iπ
4H

(1)

iν− 1
2

(

Mk⊥
τ
)

P−
)

vs,a(k⊥, yk = 0),

and in total the spinor is given as

ψ(τ,x⊥, η) =
∫ 2∑

s=1

Nc∑

a=1

(

âs,a(k⊥, ν)ψ̂+
k⊥,ν,s,a

(τ,x⊥, η) + b̂†
s,a(k⊥, ν)ψ̂−

k⊥,ν,s,a
(τ,x⊥, η)

)

d2k⊥

(2π)2

dν

2π
.

(10.70)

To fix the remaining integration constant, let us consider the norm of the expanding box spinor,
making use of the scalar product in the expanding geometry (eq. 9.17)

∫

|ψ(x)|2d3x =
∫ ∫

ψ̂†(τ,x⊥, η)ψ̂(τ,x⊥, η)d2x⊥dη (10.71)
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Inserting the spinor solution (eq. 10.68), a lengthy calculation that can be found in (Appendix
C.3), leads to

∫

|ψ(x)|2d3x =|a|2τ
∫ 2∑

s=1

Nc∑

a=1

[

â†
s,a(k⊥, ν)âs,a(k⊥, ν)eνπ

(∣
∣
∣H

(2)

iν+ 1
2

(

Mk⊥
τ
)∣
∣
∣

2
+
∣
∣
∣H

(2)

iν− 1
2

(

Mk⊥
τ
)∣
∣
∣

2
)

+ b̂s,a(k⊥, ν)b̂†
s,a(k⊥, ν)e−νπ

(∣
∣
∣H

(1)

iν+ 1
2

(

Mk⊥
τ
)∣
∣
∣

2
+
∣
∣
∣H

(1)

iν− 1
2

(

Mk⊥
τ
)∣
∣
∣

2
)]

d2k⊥

(2π)2

dν

2π
.

(10.72)

Let us compare this result to the familiar result in the static box

∫

|ψ(x)|2d3x =
∫ 2∑

s=1

Nc∑

a=1

(

â†
s,a(k)âs,a(k) + b̂s,a(k)b̂†

s,a(k)
)
d3k

(2π)3
. (10.73)

The solution of the free spinor in the expanding box should of course be a solution of the
Dirac equation at all times, hence also at late times τ ≫ 1. We now use the late time
asymptotes of the Hankel functions (eq. 10.63)

∣
∣
∣H

(2)

iν+ 1
2

(

Mk⊥
τ
)∣
∣
∣

2 ≈ 2

πMk⊥
τ
e−πν ,

∣
∣
∣H

(2)

iν− 1
2

(

Mk⊥
τ
)∣
∣
∣

2 ≈ 2

πMk⊥
τ
e−πν (10.74)

∣
∣
∣H

(1)

iν+ 1
2

(

Mk⊥
τ
)∣
∣
∣

2 ≈ 2

πMk⊥
τ
eπν ,

∣
∣
∣H

(1)

iν− 1
2

(

Mk⊥
τ
)∣
∣
∣

2 ≈ 2

πMk⊥
τ
eπν , (10.75)

to rewrite (eq. 10.72)

∫

|ψ(x)|2d3x = |a|2 4

πMk⊥

∫ 2∑

s=1

Nc∑

a=1

[

â†
s,a(k⊥, ν)âs,a(k⊥, ν) + b̂s,a(k⊥, ν)b̂†

s,a(k⊥, ν)

]

d2k⊥

(2π)2

dν

2π
.

(10.76)

From a comparison to the static box result3 (eq. 10.73), we conclude

|a|2 =
πMk⊥

4
, ⇒ a =

1

2

√

Mk⊥
π. (10.77)

We found the following solutions for the mode functions

ψ̂+
k⊥,ν,s,a

(τ,x⊥, η) = − i

2

√

πMk⊥
τeiνη+ik⊥x⊥e

νπ
2 (10.78)

×
(

e−iπ
4H

(2)

iν+ 1
2

(

Mk⊥
τ
)

P+ + eiπ
4H

(2)

iν− 1
2

(

Mk⊥
τ
)

P−
)

us,a(k⊥, yk = 0),

ψ̂−
k⊥,ν,s,a

(τ,x⊥, η) = − i

2

√

πMk⊥
τeiνη−ik⊥x⊥e− νπ

2 (10.79)

×
(

eiπ
4H

(1)

iν+ 1
2

(

Mk⊥
τ
)

P+ + e−iπ
4H

(1)

iν− 1
2

(

Mk⊥
τ
)

P−
)

vs,a(k⊥, yk = 0),

that enters the Fourier representation of the free spinor in an expanding geometry

ψ̂(τ,x⊥, η) =
∫ 2∑

s=1

Nc∑

a=1

(

âs,a(k⊥, ν)ψ̂+
k⊥,ν,s,a

(τ,x⊥, η) + b̂†
s,a(k⊥, ν)ψ̂−

k⊥,ν,s,a
(τ,x⊥, η)

)

d2k⊥

(2π)2

dν

2π
.

(10.80)
3As seen earlier, the late time behavior of the expanding box solution should be connected to the static result,

since the box becomes infinitely large in η direction, hence the effect of expansion can be neglected and the
solution becomes effectively two dimensional.
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10.3 Lattice Discretization of the Free Spinor in an Ex-

panding Geometry

In this final section, we want to discretize the result of the free spinor in an expanding geometry
(eq. 10.80). We start the discussion, by discretizing the η-direction. On the lattice, we
replace the continuous derivative operator by

i

τ
γ3∂η =

i

2aητ

(

γ3δη+âη ,η − γ3δη−âη ,η

)

. (10.81)

The Dirac equation for the mode functions (eq. 10.25) now reads

0 =

[

iγ0∂τ + iγi∂i +
i

2aητ
γ3
(

eiνaη − e−iνaη

)

−m
]

eiνηψ̂±
k⊥,ν,s,a

(τ,x⊥) (10.82)

=

[

iγ0∂τ + iγi∂i −
1

aητ
sin

(

aην
)

−m
]

eiνηψ̂±
k⊥,ν,s,a

(τ,x⊥),

where we were able to identified the lattice momentum sν for the longitudinal direction. The
transverse direction can be treated in a similar fashion, introducing the discrete lattice derivative
operator and identifying the lattice momenta

0 =

[

iγ0∂τ ∓
1

a⊥
γi sin

(

a⊥k
i
⊥

)

− 1

aητ
sin

(

aην
)

−m
]

e±ix⊥k⊥ψ̂±
k⊥,ν,s,a

(τ). (10.83)

As discussed in case of the static box, we do not discretize time at this point, but we require a
discretization later, to solve the equations of motion in a leap-frog scheme in the lattice simulation.

It is now straight forward to repeat all previous steps to solve the time dependent part of the
expanding box Dirac equation on the lattice (eq. 10.83). We will repeat the calculation, because
it is possible to construct the result from the continuum solution (eq. 10.78) by substituting

ν → 1

aη
sin

(

aην
)

, ki⊥ → 1

a⊥
sin

(

a⊥k
i
⊥

)

=
1

a⊥
si⊥, (10.84)

Revisiting the solution of the time dependent part of the continuum free expanding box
Dirac equation, we have a look at the following intermediate result (eq. 10.45), which is
now expressed in terms of lattice momenta

0 =
√
τ

[

c̃±H
(2)/(1)

i i

aη
sin(aην)− 1

2

(

Mk⊥
τ
)

P− + c±H
(2)/(1)

i

aη
sin(aην)+ 1

2

(

Mk⊥
τ
)

P+

]

(10.85)

×
[

±Mk⊥
γ0 ∓ 1

a⊥
γisi⊥ −m

]

ψ̂±
k⊥,ν,s,a

.

As it has been the case in the continuum, checking the left-hand term for roots,does not reveal
any, besides the initial time singularity in an expanding geometry τ = 0. As discussed previously,
we exclude the singularity in a simulation by specifying a finite initial time, allowing us to get
rid of the time dependent term. We find the following lattice version of the matrix equation

0 =

[

±Mk⊥
γ0 ∓ 1

a⊥
γisi⊥ −m

]

ψ̂±
k⊥,ν,s,a

. (10.86)
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We now note, that Mk⊥
can be identified as the lattice counterpart of the effective dispersion

relation in case of an expanding box. It is effectively two dimensional and the η-dependence
has been eliminated due to the boost invariance. The equation is solved for

Mk⊥
=

√

1

a2
⊥
s2
i (k⊥) +

1

a2
⊥
m̄2 =

1

a⊥

√

s2
i (k⊥) + m̄2. (10.87)

When comparing the lattice dispersion relation (eq. 10.87) to its continuum counterpart (eq.
10.10), it is straight forward to see, that the lattice dispersion relation in the expanding box
(eq. 10.87) suffers from the same problem as discussed in the static box. We have additional
poles at the edges of the Brioullin zone and the dispersion relation „bends“ towards these edges.
To cure this problem, we introduce a transverse Wilson term

0 =

[

±Mk⊥
γ0 ∓ 1

a⊥
γisi⊥ −

(

m+
r⊥

a⊥

2∑

i=1

(

1− cos
(

a⊥k
i
⊥

))
)]

ψ̂±
k⊥,ν,s,a

. (10.88)

The lattice dispersion relation now reads

Mk⊥
=

1

a⊥

√

s2
i (k⊥) + µ2(k⊥), µ(k⊥) = m̄+ r⊥

2∑

i=1

(

1− cos
(

a⊥k
i
⊥

))

, (10.89)

where we defined the lattice mass, including the transverse Wilson term. We can now solve
(eq. 10.88) to obtain the basis spinors4

us(k⊥) =

√
√
√
√
M̄k⊥

+ µ(k⊥)

2M̄k⊥




ϕs

si
⊥
σi

M̄k⊥
+µ(k⊥)

ϕs



 , vs(k⊥) =

√
√
√
√
M̄k⊥

+ µ(k⊥)

2M̄k⊥





si
⊥
σi

M̄k⊥
+µ2(k⊥)

χs

χs



 .

(10.90)

The lattice mode functions in the expanding box, that enter the free solution of the Dirac
spinor, can now be written as

ψ̂+
k⊥,ν,s,a

(τ,x⊥, η) = − i

2

√

πM̄k⊥
τ̄ eiνη+ik⊥x⊥e

π
2aη

sin(aην)
(10.91)

×
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2

(
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P+ + eiπ
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(2)
i
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sin(aην)− 1

2

(

M̄k⊥
τ̄
)

P−
)

us,a(k⊥, yk = 0),

ψ̂−
k⊥,ν,s,a

(τ,x⊥, η) = − i

2

√
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τ̄ eiνη−ik⊥x⊥e

− π
2aη

sin(aην)
(10.92)

×
(

eiπ
4H

(1)
i

aη
sin(aην)+ 1

2

(

M̄k⊥
τ̄
)

P+ + e−iπ
4H

(1)
i

aη
sin(aην)− 1

2

(

M̄k⊥
τ̄
)

P−
)

vs,a(k⊥, yk = 0).

For the Fourier representation of the free spinor on the lattice, integrals are replaced by sums

ψ̂(τ,x⊥, η) =
1

V

∑

k⊥,ν

2∑

s=1

Nc∑

a=1

(

âs,a(k⊥, ν)ψ̂+
k⊥,ν,s,a

(τ,x⊥, η) + b̂†
s,a(k⊥, ν)ψ̂−

k⊥,ν,s,a
(τ,x⊥, η)

)

.

(10.93)

Details on the implementation in a real-time lattice simulation can be found in (Appendix C.3.1).

4The bar above M̄k⊥
= a⊥Mk⊥

indicates rescaling in terms of the lattice spacing a⊥. The index i is only
summed from i ∈ {1, 2}.



11
Equations of Motion for the Expanding System

Having discussed the formalism and the initial conditions for a semi-classical simulation in an
expanding box, we now derive the model and present the corresponding equations of motion in
this section. As it has been the case in the static box, the equations of motion of the semi-classical
approximation will be derived from the semi-classical partition function and the Dirac equation.
The main difference is, that the longitudinal expansion will manifest itself in a splitting of the
gauge link and the chromo-electric field equation into a longitudinal and transverse part. We
start our discussion with the time evolution equation of the gauge links and the fermion fields.
In a next step, we introduce the semi classical model in the expanding box and derive the
corresponding equation of motion for the chromo-electric field, as well as the Gauss constraint.
We close the chapter with a comment on renormalization. As discussed in the context of the
static box, we discretize the proper time in this section, introducing a temporal spacing aτ ≪ a⊥.

11.1 Evolution Equation of the Gauge Links

The evolution equation of the gauge links is again found from the temporal plaquette. When
applying the Fock-Schwinger gauge (Aτ = 0) to eliminate one of the two gauge degrees of freedom,
we find

Uτµ(x) = Uµ(x+ τ̂)U †
µ(x) = exp

(

igaτaµFτµ(x) +O(a3)
)

. (11.1)

It is now possible to identify the expanding box chromo-electric fields (eq. 9.26) and (eq. 9.27).
Because of the splitting of the expanding box chromo-electric fields, into a transverse and a lon-
gitudinal part, we obtain two equations of motion for the transverse and longitudinal gauge links

Ui(x+ τ̂) = exp

(

i
aτ
τ
Ei(x)

)

Ui(x), (11.2)

Uη(x+ τ̂) = exp
(

iaτaητEη(x)
)

Uη(x). (11.3)

Making use of the discretized proper time with spacing aτ , it is straight forward to implement
the equation of motion in a real-time lattice simulation.
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11.2 Equation of Motion of the Fermion Fields

The equation of motion of the expanding box spinor has already been derived in (section 9.1.1)
and is given by the Dirac equation in Milne coordinates. The coupling to the classical gauge
field is realized by replacing the derivative operators by their covariant counterpart

[

iγ0∂τ + iγiDi + i
1

τ
γ3Dη −m+

r⊥

2
a⊥�

⊥
W

]

ψ̂(x) = 0, (11.4)

where we have formally introduced a transverse Wilson term. Discretizing the covariant
derivatives we find the following lattice version of the equation

∂τ ψ̂G(x) =− 1

2a⊥
γ0

2∑

i=1

[(

γi − ir⊥
)

Ui(x)ψ̂G(x+ î)−
(

γi + ir⊥
)

U †
i (x− î)ψ̂G(x− î)

]

(11.5)

− 1

2aητ
γ0γ3

[

Uη(x)ψ̂G(x+ η̂)− U †
η(x− η̂)ψ̂G(x− η̂)

]

− i

(

m+
2r⊥

a⊥

)

γ0ψ̂G(x),

where we also applied a gender index to the spinors, because the Dirac equation is the evolution
equation of each of the gendered fermions in the stochastic ensemble Nens. As discussed
already, when implementing the given equation (eq. 11.5) in a real-time lattice simulation,
we have to discretize the proper time

∂τ ψ̂G(x) =
1

2aτ

(

ψ̂G(x+ τ̂)− ψ̂G(x− τ)
)

. (11.6)

At the first time-step, we do not have access to the field ψ̂G(x − τ̂) and therefore use only
a forward time derivative once

∂τ ψ̂G(x) =
1

aτ

(

ψ̂G(x+ τ̂)− ψ̂G(x)
)

. (11.7)

Introducing dimensionless lattice quantities1, by rescaling all quantities in terms of the lattice
spacing a⊥, setting

ˆ̃ψ(x) = a⊥ψ̂(x), (11.8)

and introducing āτ = aτ/a⊥, τ̄ = τ/a⊥, m̄ = a⊥m, we arrive at the following equation of motion
of the fermion fields, which can directly be implemented in a lattice simulation

ˆ̃ψG(x+ τ̂) = ˆ̃ψG(x− τ̂)− āτγ0
2∑

i=1

[(

γi − ir⊥
)

Ui(x) ˆ̃ψG(x+ î)−
(

γi + ir⊥
)

U †
i (x− î) ˆ̃ψG(x− î)

]

− āτ
aη τ̄

γ0γ3
[

Uη(x) ˆ̃ψG(x+ η̂)− U †
η(x− η̂) ˆ̃ψG(x− η̂)

]

− 2iāτ
(

m̄+ 2r⊥
)

γ0 ˆ̃ψG(x)

(11.9)

1Keep in mind, that the spinor in the expanding box is of reduced dimension when compared to the static
box, given by ψ ∼ length−1.
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11.3 The Semi-Classical Model in an Expanding Box

Let us now formulate the semi-classical model in the expanding box. We adopt the procedure
presented in the context of the static box in (section 4.3) and assume the Yang-Mills fields to
be overoccupied and dominated by classical modes. This allows us to use the ansatz (eq. 4.12)
for the Yang-Mills fields and linearize the action in the quantum fluctuation Ã. As discussed
in (chapter 9), an important difference for Yang-Mills theory in the expanding box, is that
one has to take care of the non-trivial metric of Milne coordinates. The linearized Yang-Mills
action (eq. 4.16) in the expanding box is then given as

SYM [A] ≈
∫

C+
Ãaν(x)

[

∂µF
µν,a[Ā](x)− gfabcĀbµ(x)F µν,c[Ā](x)

]

τdτd2x⊥dη, (11.10)

where we included the Jacobian (eq. 9.5) in the integration measure. For the fermion sector,
we start from (eq. 9.33) and introduce the inverse propagator to rewrite the action

Sf [ψ̂,
ˆ̄ψ] =

∫

ˆ̄ψ(x)
[

iγ0∂τ + iγiDi +
i

τ
γ3Dη −m

]

ψ̂(x)dτd2x⊥dη (11.11)

=
∫

ˆ̄ψ(x)iDC[A]−1(x, y)ψ̂(y)d4xd4y,

where we introduced the following short notation x = (τ,x⊥, η) and y = (τ,x′
⊥, η

′). The
inverse propagator is given as

iD−1
C [A] =

(

i/∂ − g
(

/̄A(x) +
1

2
sgnC /̃A

)

−m
)

δC(x, x), (11.12)

where we introduced Feynman slash notation in the expanding geometry, which is defined in the
following way

/̄A(x) = γµĀµ(x) = γ0Ā0(x) +
2∑

i=1

γiĀi(x) +
1

τ
γ3Ā3(x). (11.13)

Integrating the fermion fields, specifies the effective partition function of the semi-classical model

ZC,exp =
∫

ρA(τ0)det
[

D−1
C [A]

]

eiSYM [A][dA] =
∫

ρA(τ0)e
Trlog

(

D−1
C

[A]

)

+iSYM [A]
[dA]. (11.14)

As it has been the case in the static box, we use a Taylor expansion for the fermion determinant,
expanding it in terms of the quantum gauge field Ãµ. To do so, we take the derivative
with respect to Ã at first

∂

∂Ãµ
log
(

D−1
C [A]

)
∣
∣
∣
∣
∣
Ã=0

= DC[Ā]
∂

∂Ãµ
D−1

C [A]

∣
∣
∣
∣
∣
Ã=0

= DC[Ā]igγµ
1

2
sgnC, (11.15)

where we use short notation for the γ-matrices

µ ∈ {0, i, η}, with γη =
1

τ
γ3. (11.16)

We therefore find

Tr logD−1
C [A] ≈ Tr logD−1

C [A]

∣
∣
∣
∣
∣
Ã=0

+
ig

2
Tr

[

DC[Ā]sgnC

(

γ0Ã0 + γiÃi +
1

τ
γ3Ãη

)

︸ ︷︷ ︸

≡ /̃A

]

+O(Ã2).

(11.17)
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As discussed in the static box, the first term cancels on the forward and backward branch
of the (proper-)time contour (figure 4.1) and we are left with

ig

2
Tr
[

DC[Ā]sgnC /̃A
]

= ig

τf∫

τ0

∫

tr
[

F̂Ā(x, x)γµT a
]

Ãaµ(x)dτd2x⊥dη, (11.18)

where we identified the statistical propagator. Now we can define the fermion current in the
expanding box, using the short notation for the gamma matrices (eq. 11.16)

Jµ,a
Ā,exp

= −gtr
[

F̂Ā(x, x)γµT a
]

. (11.19)

In a final step, we integrate the quantum field Ã, arriving at the partition function of the
semi-classical approximation of QCD in a longitudinally expanding geometry

ZC,exp =
∫

ρĀ(τ0)δ
[

∂µτF
µν,a[Ā](x)− gτfabcĀbµ(x)F µν,c[Ā](x)− Jν,a

Ā,exp

]

[dĀ]. (11.20)

From this result, we can deduce the equation of motion of the semi-classical model, in an expand-
ing system

∂µτF
µν,a[Ā](x)− gτfabcĀbµ(x)F µν,c[Ā](x) = Jν,a

Ā,exp
= −gtr

[

F̂Ā(x, x)γνT a
]

. (11.21)

The evolution equation of the chromo-electric field now splits into a longitudinal and a transverse
part. The transverse part is derived by setting ν = i, with i ∈ {1, 2} and the longitudinal
part is derived by setting ν = η. Identifying the transverse chromo-electric field (eq. 9.26),
the corresponding equation of motion of the field is given as

∂τE
a
i (x) =τ

∑

j 6=η

(

∂jF
a
ji[Ā](x)− gfabcĀbj(x)F c

ji[Ā](x)

)

(11.22)

+
1

τ

(

∂ηFηi[Ā](x)− gfabcĀbη(x)F c
ηi[Ā](x)

)

+ gtr
[

F̂Ā(x, x)γiT a
]

.

In the longitudinal direction, we find the following equation, after identifying the longitudinal
chromo-electric field (eq. 9.27)

∂τE
a
η (x) =

1

τ

2∑

j=1

(

∂jF
a
jη[Ā](x)− gfabcĀbj(x)F c

jη[Ā](x)

)

+
g

τ
tr
[

F̂Ā(x, x)γ3T a
]

. (11.23)

In a final step, we discretize (eq. 11.22) and (eq. 11.23), making it accessible in a real-time
lattice simulation. When doing so, one has to keep in mind, that we are dealing with two
different kinds of lattice spacing in the expanding geometry: In transverse direction the lattice
spacing a⊥ of dimension length and in longitudinal direction the dimensionless lattice spacing
aη. In transverse direction, we have to include the Wilson term as well, when discretizing
the equation of motion. All in all, we arrive at the following expanding box chromo-electric
field equations of motion on the lattice

Ēa
i (x+ τ) = Ēa

i (x)+2āτ Imtr

[

T aτ̄
∑

i6=j

(

Uji(x) + U−ji(x)
)

+
1

τ̄ a2
η

T a
(

Uηi(x) + U−ηi(x)
)
]

+g2āτRetr
[

ˆ̄F (x+ î, x)
(

γi − ir⊥
)

T aUi(x)
]

, (11.24)

Ēa
η (x+ τ) = Ēa

η (x)+
2āτ
τ̄ aη

2∑

i=1

Imtr
[

T a
(

U−iη(x) + Uiη(x)
)]

+
g2āτ
τ̄

Retr
[

ˆ̄F (x+ η̂, x)γ3T aUη(x)
]

,

(11.25)
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where we rescaled all quantities in terms of the lattice spacing a⊥ and discretized the proper time
by

∂τ̄ Ē
a
i (x) =

1

āτ

(

Ēa
i (x+ τ̂)− Ēa

i (x)
)

. (11.26)

The statistical propagator, that enters the expanding box fermion current (eq. 11.19) can
be calculated in the simulation, making use of an ensemble average of stochastic low-cost
fermions. Neglecting the fermion contribution, reproduces the familiar evolution equations of
the chromo-electric fields in an expanding system of pure Yang-Mills theory [61].

11.3.1 Gauss Constraint

The ν = 0 component of the equation of motion of the semi-classical model in the expanding
box (eq. 11.21) can be interpreted as the expanding box variant of the Gauss constraint

τ
2∑

i=1

∂iF
iτ,a[Ā](x) + τ∂ηF

ητ,a[Ā](x)− gτfabc
2∑

i=1

Ābi(x)F iτ,c[Ā](x) (11.27)

− gτfabcĀbη(x)F ητ,c[Ā](x) = −gtr
[

F̂Ā(x, x)γ0T a
]

.

Identifying the chromo-electric fields (eq. 9.26) and (eq. 9.27), this equation can be written as

2∑

i=1

(

∂iEi[Ā](x)− gT afabcĀbi(x)Ec
i [Ā](x)

)

(11.28)

+

(

∂ηEη[Ā](x)− gT afabcĀbη(x)Ec
η[Ā](x)

)

= −gT atr
[

F̂Ā(x, x)γ0T a
]

When discretizing the equation, we replace

2∑

i=1

(

∂iEi[Ā](x)− gT afabcĀbi(x)Ec
i [Ā](x)

)

=
1

a⊥

2∑

i=1

(

Ei(x)− U †
i (x− î)Ei(x− î)Ui(x− î)

)

,

(11.29)

for the transverse part and in a similar fashion for the longitudinal part
(

∂ηEη[Ā](x)− gT afabcĀbη(x)Ec
η[Ā](x)

)

=
1

aη

(

Eη(x)− U †
η(x− η̂)Eη(x− η̂)Uη(x− η̂)

)

.

(11.30)

For the fermion current we apply the Fock-Schwinger gauge Aτ = 0

−gT atr
[

F̂Ā(x, x)γ0T a
]

= −gT atr
[

F̂ (x+ τ̂ , x)γ0T a
]

. (11.31)

We can now define the color-matrix C(x), that is used in the algorithm to restore the Gauss con-
straint [143]

C(x) = g2T atr
[

ˆ̄F (x+ τ̂ , x)γ0T a
]

+
2∑

i=1

(

Ēi(x)− U †
i (x− î)Ēi(x− î)Ui(x− î)

)

(11.32)

+
1

aη

(

Ēη(x)− U †
η(x− η̂)Ēη(x− η̂)Uη(x− η̂)

)

.
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We already introduced dimensionless lattice fields, by rescaling the fields in terms of a⊥. The
proper time dependent measure of the amount of Gauss violation can thus be defined as

C(τ) =

√
√
√
√

1

V

∑

x⊥,η

tr
[

C†(x)C(x)
]

. (11.33)

For the restoration of Gauss law, the chromo-electric fields are updated according to

Ēi(x) → Ēi(x) + γ
[

Ui(x)C(x+ î)U †
i (x)− C(x)

]

(11.34)

Ēη(x) → Ēη(x) + γ
[

Uη(x)C(x+ η̂)U †
η(x)− C(x)

]

. (11.35)

11.4 Renormalization

Finally, let us comment on a renormalization procedure for the semi-classical model in the
expanding box. As it has been the case in the static box, our theory is naturally regularized
by the lattice momentum cutoff, that can not be removed due to the UV-divergence of the
semi-classical model in the continuum limit. As a consequence, renormalization plays the role of
weighting the fermion and gauge sector appropriately, to maintain the correct dynamics of the
system.

In analogy to the static box, the renormalization Z-factor can be evaluated from the fermion
self energy, derived from the effective one-loop equation of motion of the semi-classical model
(eq. 5.20). It is straight forward to repeat the derivation in the expanding box, leading to2

∂µτ F̄
µν,a − gτfabcĀbµF̄ µν,c − 2gtr

[

F̂ (x, x)γνT a
]

+
∫

Σ̂µν,ab(x− z)Ābµ(z)d4z = 0. (11.36)

Choosing the scale of renormalization, setting k = 0, the fermion self-energy in the expand-
ing box can be written as

Σµν,ab
0 (τ − τ ′) = ig2

∫

tr
[

D̂<
p⊥,νp

(τ − τ ′)γµT bD̂>
p⊥,νp

(τ ′ − τ)γνT a (11.37)

− D̂>
p⊥,νp

(τ − τ ′)γµT bD̂<
p⊥,νp

(τ ′ − τ)γµT b
]
d2p⊥dνp

(2π)3
.

The renormalization Z-factor has to be time and frame independent. Furthermore, it should
preserve the longitudinal boost invariance and should not be depending on the initial time.
We therefore derive it from the large time limit of the expanding box spinors, with the limit
naturally satisfying both conditions. The large proper time mode functions are given as

ψ̂+
k⊥,ν,s,a

(τ,x⊥, η)
τ≫1
= − i√

2
e−iMk⊥

τ+ik⊥x⊥+iνηeiπ
4 us,a(k⊥), (11.38)

ψ̂−
k⊥,ν,s,a

(τ,x⊥, η)
τ≫1
= − i√

2
eiMk⊥

τ−ik⊥x⊥−iνηe−iπ
4 vs,a(k⊥). (11.39)

2The hat indicates, that the statistical propagator and fermion self-energy has to be evaluated by making use
of the expanding box spinors (eq. 9.16).
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Using these expressions, we obtain the following lattice version of the expanding box spinor at
large proper times

ψ̂(τ, x⊥, η)
τ≫1
= − i√

2V

∑

k⊥,ν

2∑

s=1

Nc∑

a=1

(

âs,a(k⊥, ν)e−iMk⊥
τ+ik⊥x⊥+iνηeiπ

4 us,a(k⊥) (11.40)

+ b̂†
s,a(k⊥, ν)eiMk⊥

τ−ik⊥x⊥−iνηe−iπ
4 vs,a(k⊥)

)

.

We can now derive the Wightman functions D̂≶
p⊥,νp

(τ − τ ′) of free fermions in an expanding
geometry. On the lattice we have

D̂>
p⊥,ν,αβ

=
∑

x⊥,η

e−ip⊥x⊥−iην
〈

ψ̂α(τ,x⊥, η) ˆ̄ψβ(τ ′,0)
〉

, (11.41)

D̂<
p⊥,ν,αβ

= −
∑

x⊥,η

e−ip⊥x⊥−iην
〈

ˆ̄ψβ(τ ′,0)ψ̂α(τ,x⊥, η)
〉

. (11.42)

The derivation is identical to the derivation of the Wightman functions in the static box
(compare to Appendix B.3), leading to

〈

ψ̂α(τ,x⊥, η) ˆ̄ψβ(τ ′,0)
〉

=
1

V

∑

k⊥,ν

1

2Mk⊥

(

γ0Mk⊥
+ γisi(k⊥) + µ(k⊥)

)

αβ
e−iMk⊥

(τ−τ ′)+ik⊥x⊥+iην .

(11.43)
〈

ˆ̄ψβ(τ ′,0)ψ̂α(τ,x⊥, η)
〉

=
1

V

∑

k⊥,ν

1

2Mk⊥

(

γ0Mk⊥
+ γisi(k⊥)− µ(k⊥)

)

αβ
eiMk⊥

(τ−τ ′)−ik⊥x⊥−iην .

(11.44)

We are now able to repeat all the steps presented previously in context of the static box in
(section 5.3). The only difference is, that our result in the expanding box is effectively two
dimensional, due to the longitudinal boost invariance

δZ = − g2

4V⊥

∑

k⊥

s2(k⊥)

M5
k⊥

, (11.45)

where V⊥ = NxNy. We also note, that the familiar fermion dispersion relation of the expanding
geometry enters (eq. 11.45).

We are now able to perform a systematic counterterm renormalization for the semi-classical
theory in the expanding box. This procedure leads to the following equations of motion
of the chromo-electric fields

Ēa
i (x+ τ) = Ēa

i (x)+2āτ Imtr

[

T aτ̄
∑

i6=j

(

Uji(x) + U−ji(x)
)

+
1

τ̄ a2
η

T a
(

Uηi(x) + U−ηi(x)
)
]

(11.46)

+g2 āτ
Z

Retr
[

ˆ̄F (x+ î, x)
(

γi − ir⊥
)

T aUi(x)
]

,

Ēa
η (x+ τ) = Ēa

η (x)+
2āτ
τ̄ aη

2∑

i=1

Imtr
[

T a
(

U−iη(x) + Uiη(x)
)]

+
g2āτ
Zτ̄

Retr
[

ˆ̄F (x+ η̂, x)γ3T aUη(x)
]

,

(11.47)
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and to the following color matrix C(x), that enters the restoration of Gauss law

C(x) = g2T atr
[

ˆ̄F (x+ τ̂ , x)γ0T a
]

+Z
2∑

i=1

(

Ēi(x)− U †
i (x− î)Ēi(x− î)Ui(x− î)

)

(11.48)

+
Z

aη

(

Ēη(x)− U †
η(x− η̂)Ēη(x− η̂)Uη(x− η̂)

)

.



12
Expanding Box Observables

Having derived the equations of motion of the semi-classical approximation of QCD in the
expanding geometry, we finally have to specify the observables, that will be measured in a
lattice simulation of the system. As done in the static box, we derive the energy density
and pressure from the diagonal components of the QCD energy-momentum tensor. To do so
we have to specify the tensor in the expanding box at first. The same is true for the gauge
invariant occupation of energy modes and we will again define it from the Fourier transform
of the energy density. Having observed good agreement, when comparing the gauge variant
and gauge invariant definition of the occupation of energy modes in the static box, we will
restrict ourselves to the gauge invariant definition in the expanding box.

12.1 QCD Energy-Momentum Tensor in an Expanding

Box

The energy-momentum tensor of a field theory can in general be derived from Noethers
theorem, by considering translations in time and space for the Lagrangian of the theory
(see e.g. [149]). In this section, we sketch the derivation of a tensor associated to these
translations, from the Lagrangian of the expanding system (eq. 9.34). From Noethers theorem,
this tensor can be derived from

Θµν
exp =

∂Lexp

∂
(

∂µAaα
)∂νAaα +

∂Lexp

∂
(

∂µψ
)∂νψ − gµνLexp. (12.1)

Restricting ourselves to the Yang-Mills sector at first, we find

Θµν
exp,Y M = −τZF µα,a∂νAaα +

Z

4
τgµνFαβ,aF a

αβ, (12.2)

in a straight forward calculation. This result is neither symmetric nor gauge invariant. This
problem is well known as non-uniqueness of the energy-momentum tensor in Yang-Mills
theories and a solution has first been proposed in [165]. The idea is to add an additional,
divergence free tensor to the given result. This has to be done in such a way, that the
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resulting new tensor is symmetric and gauge invariant. In our case, the Belinfante tensor
in an expanding system is given as

χµβν = −2
∂Lexp
∂F a

µβ

Aν,a = τF µβ,aAν,a. (12.3)

Adding this tensor and using the Yang-Mills equations of motion of the expanding box, we
find the following symmetrized and gauge invariant result

T µνexp,Y M = −τZF µβ,aF ν a
β +

1

4
gµντFαβ,aF a

αβ. (12.4)

Due to the appearance of an additional factor of τ , the resulting tensor does not have the same
dimension as the energy-momentum tensor in a static box (eq. 6.5). Because of that it is not
possible to naively identify the diagonal components of the tensor as physical quantities. We
will discuss how to connect the diagonal components of (eq. 12.4) to the physical observables
later in this section.1

It is straight forward to repeat the calculation for the Lagrangian of the fermion sector of
QCD in an expanding system (eq. 9.30), leading to

T µνψ =− gµν ˆ̄ψ
(

iγiDi +
i

τ
γ3Dη −m+ r

a⊥

2
�⊥
W

)

ψ̂ (12.5)

+
1

4

(

ˆ̄ψiDµγνψ̂ + ˆ̄ψiDνγµψ̂ + ˆ̄ψi
←−
Dµγνψ̂ + ˆ̄ψi

←−
D νγµψ̂

)

,

where we have formally included the transverse Wilson term and used short notation for

γη =
1

τ
γ3. (12.6)

Note that this result has the same dimension as the Yang-Mills tensor (eq. 12.4).

12.1.1 Energy Density and Pressure in Yang-Mills Theory

Let us start the derivation of the energy density and pressure by restricting ourselves to the Yang-
Mills theory. The energy density should be connected to the 00-component of the tensor (eq. 12.4)

T 00
exp,Y M =− τZF 0β,aF 0 a

β +
Z

4
g00τFαβ,aF a

αβ (12.7)

=
τZ

2

[

F a2
τi +

1

τ 2
F a2
τη + F a2

12 +
1

τ 2
F a2
iη

]

= Ztr

[

τF 2
τi +

1

τ
F 2
τη + τF 2

12 +
1

τ
F 2
iη

]

.

It is possible to identify the chromo-electric fields (eq. 9.26) and (eq. 9.27), arriving at

T 00
exp,Y M = Ztr

[

1

τ
E2
i + τE2

η + τF 2
12 +

1

τ
F 2
iη

]

≡ Hexp,Y M . (12.8)

1In fact, the name energy-momentum tensor seems not to be appropriate in this case, because the tensor
has a different dimensionality. The resulting tensor should more likely be viewed as the tensor associated to
translations in time and space of the expanding box Lagrangian of the semi-classical model in the expanding
box, derived within Noethers’ theorem.
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As expected, the result is identical to the Hamiltonian of Yang-Mills theory in the expanding
box, (eq. 9.29). The corresponding Hamilton function is now given by integrating position2

HYM =
∫

Hexp
YMd

2x⊥dη =
∫

Ztr

[

1

τ
E2
i + τE2

η + τF 2
12 +

1

τ
F 2
iη

]

d2x⊥dη. (12.9)

The Hamilton function represents the energy of the system, which is observable in an experiment.
On the other hand we know that the energy can also be written as

HYM =
∫

ǫYM(τ,x⊥, η)τd2x⊥dη, (12.10)

where ǫYM(τ,x⊥, η) is the energy density of the system in Milne coordinates. Comparing both
equations, we can deduce the physical energy density from the 00-component of the tensor
(eq. 12.4) of Yang-Mills theory in the expanding box

ǫYM(τ,x⊥, η) =
Z

τ
Hexp
YM = tr

[

1

τ 2
E2
i + E2

η + F 2
12 +

1

τ 2
F 2
iη

]

. (12.11)

We point out, that this result is equivalent to the definition in [61]. We have derived the
energy density in the expanding box the other way around: We derived a gauge invariant tensor
from the Lagrangian of the semi-classical approximation of QCD in the expanding box, using
Noethers theorem. Afterwards, we connected the diagonal components of the resulting tensor
to the measurable energy density.

The lattice discretized version of the energy density of Yang-Mills theory in the expanding box, is
given as

g2a4
⊥ǫYM(τ,x⊥, η) = ZRetr

[

1

τ̄ 2
Ē2
i + Ē2

η + 2
(

1− U12

)

+
2

a2
η τ̄

2

2∑

i=1

(

1− Uiη
)
]

. (12.12)

We already rescaled this result in terms of the lattice spacing a⊥, making it dimensionless. In
analogy to the static box, we can additionally define a longitudinal and a transverse, as well
as chromo-electric and chromo-magnetic part of the energy density

g2a4
⊥ǫ

E
L (τ) =

Z

V

∑

x

trĒ2
η , g2a4

⊥ǫ
E
T (τ) =

Z

V

∑

x

1

τ̄ 2

2∑

i=1

trĒ2
i , (12.13)

g2a4
⊥ǫ

B
L (τ) =

Z

V

∑

x

2Retr
(

1− U12

)

, g2a4
⊥ǫ

B
T (τ) =

Z

V

∑

x

2

a2
ητ

2

2∑

i=1

Retr
(

1− Uiη
)

, (12.14)

where we have taken a lattice average as well.

We now repeat the previous discussion for the pressure. This can be done in a straight
forward way in case of the transverse pressure, starting from the ii-component of the tensor
(eq. 12.4), with i ∈ {1, 2}

T iiexp,Y M =− τZF iβ,aF i a
β +

Z

4
giiτFαβ,aF a

αβ (12.15)

=− τZF a2
τi +

Z

2τ
F a2
τη +

Z

τ
F a2
iη +

τZ

2
F a2

12 +
Z

2

2∑

i=2

(

τF a2
τi −

Z

τ
F a2
iη

)

.

2The factor of
√−g = τ does not appear in the integration, because we already included it in the definition

of the Yang-Mills Lagrangian for an expanding geometry, (eq. 9.25).
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After identifying the chromo-electric fields (eq. 9.26) and (eq. 9.27), this can be written as

T iiexp,Y M =− Z

τ
Ea2
i (x) +

τZ

2
Ea2
η +

Z

τ
F a2
iη +

τZ

2
F a2

12 +
Z

2τ

2∑

i=1

(

Ea2
i − F a2

iη

)

. (12.16)

We can now define the transverse component of the tensor on the lattice, discretizing the tensor
and rescaling all fields in terms of a⊥, making them dimensionless

g2a3
⊥T

YM
exp,T =

g2a3
⊥

2

2∑

i=1

T iiexp,Y M = τ̄ZRe tr

(

Ē2
η(x) + 2

(

1− U12

)
)

. (12.17)

The longitudinal direction is given by the ηη-component of the tensor (eq. 12.4),

T ηηYM =− τZF ηβ,aF η a
β +

Z

4
gηητFαβ,aF a

αβ = −Z
τ 3
gαβF a

ηαF
a
ηβ −

Z

4τ
Fαβ,aF a

αβ (12.18)

=− Z

2τ 3
F a2
τη +

Z

2τ 3

2∑

i=1

F a2
iη +

Z

2τ
F a2
τi −

Z

2τ
F a2

12 .

Making use of the chromo-electric fields (eq. 9.26) and (eq. 9.27) again and discretizing the
result, using dimensionless lattice quantities, we find

g2a5
⊥T

ηη
YM =

Z

τ̄
Re tr

(

Ē2
η +

2

a2
η τ̄

2

2∑

i=1

(

1− Uiη
)

+
1

τ̄ 2
Ē2
i − 2

(

1− U12

)
)

. (12.19)

Comparing the transverse and the longitudinal component (eq. 12.17) and (eq. 12.19), one
notices, that they have a different dimensionality. This occurs because of the additional
appearance of a factor of 1/τ 2 in the longitudinal component, due to the metric of Milne
coordinates (eq. 9.4). This appearance changes the dimensionality of the longitudinal component
by a factor of lenght2. We follow [61] and compensate this, by additionally including an explicit
factor of τ 2 in the longitudinal component

g2a3
⊥τ̄

2T ηηYM =τ̄ZRe tr

(

Ē2
η +

2

a2
η τ̄

2

2∑

i=1

(

1− Uiη
)

+
1

τ̄ 2
Ē2
i − 2

(

1− U12

)
)

(12.20)

We can now define the pressure of the system in a similar fashion as presented in case of the energy
density3

P̄ YM
T = g2a4

⊥P
YM
T =ZRe tr

(

Ē2
η(x) + 2

(

1− U12

)
)

, (12.21)

P̄ YM
L = g2a4

⊥P
YM
L =ZRe tr

(

E2
η +

2

a2
ητ

2

2∑

i=1

(

1− Uiη
)

+
1

τ 2
E2
i − 2

(

1− U12

)
)

. (12.22)

This result can also be written as a function of the longitudinal and transverse components
of the chromo-electric and chromo-magnetic energy density

P̄ YM
T (τ) =

(

ǭEL (τ) + ǭBL (τ)
)

, (12.23)

P̄ YM
L (τ) =

(

ǭET (τ) + ǭBT (τ)− ǭEL (τ)− ǭBL (τ)
)

. (12.24)

3We emphasize that this definition again matches the definition in [61].
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12.1.2 Energy Density and Pressure of the Fermion Sector of QCD

Let us now turn to the derivation of the energy density and pressure for the fermion sector
of QCD. Again, the starting point is provided by the tensor (eq. 12.5), derived from the
Lagrangian of the fermion sector of QCD in an expanding geometry. As done in case of the
Yang-Mills sector, we will connect the 00-component of the tensor to the physical energy density
in the expanding box. The 00-component is given as

T ττψ,exp =− gττLexpf +
1

4

(

ˆ̄ψiDτγ0ψ̂ + ˆ̄ψiDτγ0ψ̂ + ˆ̄ψi
←−
D τγ0ψ̂ + ˆ̄ψi

←−
D τγ0ψ̂

)

= −Lexpψ + ˆ̄ψiγ0Dτ ψ̂.

(12.25)

Discretizing this result, we find

T ττψ,exp =

[

ˆ̄ψ

(

m+
2r⊥

a⊥

)

ψ̂ − i

2aητ

(

ˆ̄ψ(x)γ3Uη(x)ψ̂(x+ η̂)− ˆ̄ψ(x)γ3U †
η(x− η̂)ψ̂(x− η̂)

)

− i

2a⊥

2∑

i=1

(

ˆ̄ψ(x)
(

γi − ir⊥
)

Ui(x)ψ̂(x+ î)− ˆ̄ψ(x)
(

γi + ir⊥
)

U †
i (x− î)ψ̂(x− î)

)]

,

(12.26)

where we included the transverse Wilson term as well. As observed in case of the Yang-
Mills sector, this result is equivalent to the Hamiltonian of the fermion sector of QCD in
an expanding geometry (eq.9.32)

T ττψ,exp ≡ Hexp
f . (12.27)

In contrast to the Yang-Mills sector, where the gauge fields are assumed to be classical to leading
order, the fermion fields are of quantum nature, hence (eq. 12.26) is an operator. The observable
therefore has to be calculated by taking an expectation value of (eq. 12.26) with respect to the
semi-classical partition function (eq. 11.20). As it has been the case in the static box, taking
the expectation value allows us to rewrite the observable in terms of the statistical propagator

g2a3
⊥T

ττ
ψ,exp =

g2

V

∑

x

[

−
(

m̄+ 2r⊥
)

tr
[

ˆ̄F (x, x)
]

(12.28)

+
i

2aη τ̄

(

tr
[

ˆ̄F (x+ η̂, x)γ3Uη(x)
]

− tr
[

ˆ̄F (x− η̂, x)γ3U †
η(x− η̂)

]

+
i

2

2∑

i=1

(

tr
[

ˆ̄F (x+ î, x)
(

γi − ir
)

Ui(x)
]

− tr
[

ˆ̄F (x− î, x)
(

γi + ir
)

U †
i (x− î)

]))

,

where we introduced dimensionless lattice quantities, by rescaling in terms of the lattice spacing
a⊥. In the lattice simulation, the statistical propagator can be calculated from an ensemble
average of stochastic low-cost fermions, as discussed in (section 2.2.2). Keeping in mind, that at
initial time τ0, the statistical fermion propagator is calculated with respect to the free vacuum
|0〉. When doing so, we already discussed in context of the static box in (section 6.2.2), that the
fermion expectation values pick up a vacuum contribution, that is infinite in the continuum
limit, but naturally regularized on the lattice. Consequently, we have to subtract this vacuum
contribution to obtain the correct expectation value.
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The total energy of the system is given from integrating (eq. 12.28), making use of the
definition of the scalar product of the expanding box spinors (eq. 9.17)

Hf =
∫

Hexp
f d2x⊥dη. (12.29)

As presented previously in context of Yang-Mills theory, we now use the total energy of the
fermion sector, to connect (eq. 12.28) to the energy density, making use of (eq. 12.10)

ǭψ,exp = g2a4
⊥ǫψ,exp =

g2a4
⊥

τ
Hexp
f . (12.30)

We can now repeat all previous steps for the spacial diagonal components of (eq. 12.5), connecting
them with the pressure of the system. We start with the 11-component

T 11
ψ,exp =− g11Lexpf +

1

4

(

ˆ̄ψig11D1γ
1ψ̂ + ˆ̄ψig11D1γ

1ψ̂ + ˆ̄ψig11←−D 1γ
1ψ̂ + ˆ̄ψig11←−D 1γ

1ψ̂
)

(12.31)

=Lexpf −
1

2

(

ˆ̄ψiD1γ
1ψ̂ + ˆ̄ψi

←−
D 1γ

1ψ̂
)

.

We now use, that the expanding box Dirac equation (eq. 9.20) is satisfied at every time-step
of the simulation. Because it directly enters the Lagrangian of the fermion sector (eq. 9.30),
it does not contribute in (eq. 12.31) and can be eliminated

T 11
ψ,exp =− i

2

(

ˆ̄ψD1γ
1ψ̂ + ˆ̄ψ

←−
D 1γ

1ψ̂
)

= −i ˆ̄ψD1γ
1ψ̂. (12.32)

In a next step, we discretize the result and introduce rescaled, dimensionless lattice quan-
tities. Furthermore, we take the expectation value with respect to the partition function
of the semi-classical effective theory (eq. 11.20), making it possible to identify the sta-
tistical fermion propagator

g2a3
⊥T

11
ψ,exp =

ig2

2

(

tr
[

ˆ̄F
(

x+ 1̂, x
)(

γ1 − ir⊥
)

U1(x)
]

+ 2ir⊥tr
[

ˆ̄F (x, x)
]

(12.33)

− tr
[

ˆ̄F
(

x− 1̂, x
)(

γ1 + ir⊥
)

U †
1(x− 1̂)

])

.

A similar calculation can easily be repeated for the 22-component of (eq. 12.5) and combining
both, we are able to define the transverse component

g2a3
⊥T

T
ψ,exp =

g2a3
⊥

2

2∑

i=1

T iiψ,exp =
ig2

4

2∑

i=1

(

tr
[

F
(

x+ î, x
)(

γi − ir⊥
)

Ui(x)
]

+ 2ir⊥tr
[

F̂ (x, x)
]

− tr
[

F
(

x− î, x
)(

γi + ir⊥
)

U †
i (x− î)

])

.

(12.34)

Next we consider the longitudinal direction, given by the ηη-direction of (eq. 12.5)

T ηηψ,exp =− gηηLexpf +
1

4

(

ˆ̄ψigηηDη
1

τ
γ3ψ̂ + ˆ̄ψigηηDη

1

τ
γ3ψ̂ + ˆ̄ψigηη

←−
D η

1

τ
γ3ψ̂ + ˆ̄ψigηη

1

τ

←−
D ηγ

3ψ̂
)

=
1

τ 2
Lexpf −

1

2τ 3

(

ˆ̄ψiDηγ
3ψ̂ + ˆ̄ψi

←−
D ηγ

3ψ̂
)

. (12.35)
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Again we can eliminate the Lagrangian, making use of the Dirac equation (eq. 9.20)

T ηηψ,exp = − 1

2τ 3

(

ˆ̄ψiDηγ
3ψ̂ + ˆ̄ψi

←−
D ηγ

3ψ̂
)

= − 1

τ 3

ˆ̄ψiDηγ
3ψ̂. (12.36)

As discussed previously in the context of the Yang-Mills sector, the result differs in dimensionality
when compared to the transverse direction, due to the additional contribution of 1/τ 2, entering
from the metric of Milne coordinates (eq. 9.4). We compensate this in similar fashion as
presented in case of the Yang-Mills sector, defining

τ 2T ηηψ,exp = −1

τ
ˆ̄ψiDηγ

3ψ̂. (12.37)

In a final step, we discretize the result, introducing dimensionless, rescaled fields and take the
expectation with respect to the partition function of the semi-classical effective theory (eq. 11.20),

g2a3
⊥τ

2T ηηψ,exp =
ig2

2aη τ̄

(

tr
[

ˆ̄F
(

x+ η̂, x
)

γ3Uη(x)
]

− tr
[

ˆ̄F
(

x− η̂, x
)

γ3U †
η(x− η̂)

])

. (12.38)

As discussed in the context of the energy density, we have to renormalize the expectation
values at initial time, making it finally possible to define the pressure of the fermion sector
in analogy to the Yang-Mills sector

g2a4
⊥P

T
ψ,exp =g2a4

⊥
1

τ
T Tψ,exp, (12.39)

g2a4
⊥P

L
ψ,exp =g2a4

⊥
1

τ

(

τ 2TLψ,exp
)

. (12.40)

The traces of statistical propagators can be evaluated in the lattice simulation by making
use of ensemble averages of stochastic low-cost fermions.

12.1.3 Longitudinal Rapidity Fluctuations

As discussed in (section 3.4), in a pure Yang-Mills simulation of the Glasma, no pressure
isotropy has been reached, because the boost invariance of the initial state is preserved by the
covariant Hamilton equations of motion [61, 62]. We showed in (section 8.2), that pressure
isotropy is reached in a static box, when explicitly breaking longitudinal boost invariance.
The isotropization is then caused from the development of a chromo-Weibel instability. In the
expanding box pressure isotropization is still prevented by the rapid longitudinal expansion of the
system, also when explicitly breaking boost invariance, as pointed out in [61, 62]. Nevertheless
it is possible to identify the development of an instability in the expanding system. It has been
shown in [61] that the evolution of this instability can be studied from the Fourier transform
of the longitudinal pressure component of the Yang-Mills sector

P̃L
YM(τ, ν) =

∫ ∫

eiηνPL(τ, x⊥, η)dηd2x⊥. (12.41)

The transverse direction has simply been integrated. The discretized version of (eq. 12.41) is
therefore given as

P̃L
YM(τ, ν) =

1

N2
⊥

∑

x⊥

1

Nη

∑

η

eiνηPL(τ, x⊥, η). (12.42)
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Note that the given quantity (eq. 12.42) is not an observable quantity in an experiment. Only the
ν = 0 component corresponds to the longitudinal pressure, that can indeed be measured. Besides
this, the ν 6= 0 components of the Fourier transformed pressure give interesting information on
the evolution of the system. As argued in [61] one can show, that in the boost invariant case,
the quantity (eq. 12.42) is strictly zero, except of the ν = 0 component. On the other hand,
for non-vanishing quantum fluctuations of magnitude ∆, (eq. 12.42) picks up a contribution
in longitudinal Fourier modes with ν 6= 0 [61]. In practice, we will restrict ourselves to ν = 1
because it maximizes the Fourier transform besides the ν = 0 case.

The reason for this behavior is connected to the physical interpretation of the Fourier conjugate
of the space-time rapidity η, the wave number ν. It can be interpreted as a measure to
quantify inhomogenity along the longitudinal beam axis [112]. An observable with ν = 0 thus
represents the boost invariant „background“, whereas the other components can be interpreted
as fluctuations on that background. If these fluctuations increase exponentially during the
evolution of the system, such a process is known as the development of a (quantum) instability.
For more details see [112].

We will use this approach to search for an instability in the semi-classical effective theory
of QCD as well, that could possibly be caused from the interaction of the classical Yang-Mills
fields of the Glasma with fermions. We emphasize, that the scenario with fermions is different
when compared to the pure Yang-Mills simulation, because quantum fluctuations do not enter
from a modification of the initial conditions (eq. 3.22) only, but dynamically at every time-step
of the simulation. The idea therefore is, to measure the effect of the back-coupling of fermions
onto the Yang-Mills fields, in the rapidity distribution of the Fourier transformed longitudinal
pressure of the Yang-Mills sector and compare it to the pure Yang-Mills scenario.

12.2 Gauge Invariant Occupation of Energy Modes

To study the occupation of energy modes, that provides interesting insights into the dynamics
of the system and the validity of the classical approximation, we define the gauge invariant
occupation of energy modes in the expanding box. As in case of the static box, starting point
for the gauge invariant definition is the Fourier transform of the energy density. In case of
an expanding geometry, it is constructed by combining the Fourier transform of transverse
position x⊥ and the Fourier transform of the space-time rapidity η

˜̄ǫ(τ,k⊥, ν) =
1√
V⊥

Nx−1∑

nx=0

Ny−1
∑

ny=0

e
−i

2∑

i=1

k̄ini 1
√

Nη

Nη−1
∑

nη=0

ǭ(τ,x⊥, η)e−iν̄nη , (12.43)

where we defined k̄i = a⊥ki and ν̄ = aην and the reciproke lattice is given as

Λ̃ =

{

k =
(

k⊥, ν
)

; k⊥,i =
2π

a⊥N⊥,i
n⊥,i, ν =

2π

aηNη

nη, (12.44)

n⊥,i ∈
[

−N⊥,1/2 + 1, ..., 0, ..., N⊥,i/2
]

, nη ∈
[

−Nη/2 + 1, ..., 0, ..., Nη/2
]
}

.

The most important difference in the definition of the occupation of energy modes in the
expanding geometry, when compared to the static box, is the lattice dispersion relation of
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the fields, that enters the definition. The definition of the occupation of energy modes in the
static box is frame dependent. Adopting this definition in the expanding box would lead to a
situation, where the longitudinal modes change by time and no longitudinal boost invariance is
given. As a consequence, an invariant definition can only be provided if we restrict ourselves to
the transverse planes with fixed longitudinal Fourier mode ν. In [58] it has been argued that
this approach is reasonable in a highly anisotropic system, with the characteristic transverse
momenta being much larger than the longitudinal ones

ω2
p ≈ p2

⊥, ω2
p ≈M2

p⊥
, (12.45)

for massless bosons and massive fermions respectively. Note, that the latter one matches our
previous observation for the solution of the free Dirac equation in an expanding geometry in
(section 10.2), where Mp⊥

has been identified as the effectively two-dimensional dispersion
relation of fermions in the expanding box. Because of the Glasma initial conditions (section 3.4),
only energy modes with ν = 0 are initially occupied in the Yang-Mills sector. When evolving
the system in time, we expect the occupation of energy modes to spread from the plane with
ν = 0 to the other planes.

For the definition of the gauge invariant occupation of energy modes in the expanding box,
we weight the Fourier modes of the energy density (eq. 12.43) with the corresponding lattice
dispersion relation, either for the massless gauge fields or the massive fermion fields. The
effective two dimensional dispersion relation in the different rapidity planes, is given as

p̂2 =
4

a2
⊥

2∑

i=1

sin2

(

a⊥p
i

2

)

, (12.46)

in case of massless Yang-Mills fields and in case of the fermion sector it has already been derived in
(eq. 10.10)

ω2
p = M2

p⊥
=

1

a2
⊥

2∑

i=1

sin
(

a⊥p
i
)

+ µ2(p⊥). (12.47)

We define the occupation of modes in the transverse plane at fixed longitudinal Fourier mode ν as

n̄YM(τ, ν, p̂) =
1

p̂

〈∣
∣
∣˜̄ǫYM(τ, ν,p⊥)

∣
∣
∣

〉

p⊥

, (12.48)

n̄ψ(τ, ν,Mp⊥
) =

1

Mp⊥

〈∣
∣
∣˜̄ǫψ(τ, ν,p⊥)

∣
∣
∣

〉

p⊥

, (12.49)

where
〈

...
〉

p⊥

marks the average of modes with the same dispersion relation in the rapid-

ity plane. We will also compute the averages of the occupation in the transverse plane
n̄YM(τ, ν) and n̄ψ(τ, ν), to demonstrate how planes with ν 6= 0 become occupied during
the evolution of the system.
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13
Results for the Expanding Box

In this chapter we give the results of simulations of the semi-classical approximation of QCD
in a longitudinal expanding system. We initialize the Yang-Mills fields by making use of the
CGC effective theory, creating the Glasma at initial time. We furthermore introduce vacuum
fermions to the Glasma and couple the Yang-Mills and fermion fields at the first time-step of
the simulation. As discussed in (chapter 9), the longitudinal expansion of the system has been
realized by introducing Milne (Bjorken) coordinates.

We do not modify the parameters for the construction of the initial gauge link ensemble,
presented in [126] and previously discussed in (chapter 8). We choose the infrared cutoff for
the solution of the Poisson equation to be m/Q = 0.1 and the number of infinitesimally thin
color sheets Ny = 30. The UV-momentum cutoff is provided by the lattice cutoff pi = π

ai
. We

introduced an additional index for the lattice spacing ai, because we have to deal with two
different spacings in case of a longitudinal expanding system, a transverse lattice spacing a⊥
and a dimensionless longitudinal lattice spacing aη. As discussed in (section 3.5), the physical
parameters entering the CGC effective theory are chosen such, that they correspond to Pb-Pb
collisions at center-of-mass energies of

√
s = 5.02 TeV at the LHC. The corresponding momentum

scale for gluon saturation is given as Qs = 1.867 GeV and the appropriate coupling at the
saturation scale is given as g ≈ 2.

Fermion observables are computed by making use of the stochastic low-cost method (section
2.2.2), choosing a stochastic fermion ensemble of size Nens = 750. Because the expanding
geometry has a singularity at τ = 0, we have to choose a finite initial time τ0. As initial time we
choose a time of τ0 = 0.1 fm, which is assumed to be the formation time of the Glasma [38], but
enters the solution of vacuum fermions in an expanding box (eq. 10.80) as well. We choose a
value of γ = 0.01 for the parameter entering the restoration algorithm of Gauss law (eq. 11.34),
having observed good convergence for this choice.

In the following, we will discuss how to introduce a physical scale in a simulation in a
longitudinally expanding box at first. Next, our main focus will lie on a comparison of
simulations with fermions of different mass. These fermion masses are again chosen to be
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of the order of the up/down- and strange quark mass. Following this, we will compare the
results of the simulations with fermions of different mass to the dynamics of a pure Yang-Mills
system, with an explicitly breaking of boost invariance. Finally we discuss various choices
of g to test our model for a dependence on the coupling and investigate a simulation with
two degenerate fermions present, setting Nf = 2.

13.1 Scale Setting

As stated previously, the longitudinal and the transverse direction have to be discretized
independently in a longitudinally expanding box. We therefore introduce a dimensionless
longitudinal lattice spacing1 aη and a transverse spacing a⊥ of dimension length. The latter one
is fixed within a matching procedure for the energy density, as discussed already in context
of the static box. The estimated energy density of the early phase of a heavy ion collision at
τ ≈ 0.1 fm has been given in (eq. 3.5). We will measure the energy density of our system in
the simulation, choosing different lattice spacings a⊥. In a next step it is possible to extract
the appropriate lattice spacing a⊥, where the lattice averaged energy density of our system at
initial time, matches the early time estimate of the energy density of the Glasma.

Keeping the transverse box size fixed, making use of the estimated size of the incoming
Lorentz-contracted Pb-nucleus, the transverse lattice spacing in physical units is given as

a⊥ =
12

N⊥
fm. (13.1)

As in case of the static box, we are restricted to a choice of an even integer number for the
lattice extent in transverse direction N⊥.

Before presenting the results of the matching procedure for the transverse lattice spacing,
let us specify the longitudinal lattice spacing aη first. As discussed in (section 10.1), we choose
our longitudinal lattice extent to cover η = 3 units of space-time rapidity, corresponding in
good approximation to the central rapidity region, which is accessible in the experiment. The
dimensionless longitudinal lattice spacing is then given as

aη =
3

Nη

. (13.2)

In practice, we choose Nη = 40 for the longitudinal lattice extent in most of our simulations,
but we will test our results for a dependence on aη later.

To solve the equations of motion of the semi-classical model in an expanding box, using
a leap-frog integrator, we have to specify the temporal spacing aτ as well. When discretizing the
temporal direction, we have to take care of the Courant-Levi condition. Due to the appearance
of an additional lattice spacing in longitudinal direction and the necessity of setting an initial
time in Milne coordinates, we are dealing with an additional Courant-Levi constraint in case of
the expanding box. On the one hand, we have the familiar condition from the static box

aτ < a⊥, (13.3)

1The lattice spacing is dimensionless, because the space-time rapidity η is dimensionless itself, when introducing
Milne coordinates (eq. 9.1).
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on the other hand, we require2

aτ < aητ. (13.4)

We choose τ0 = 0.1 fm as initial time, leading to the following initial time-step

nτ0 =
0.1 fm

āτa⊥
, (13.5)

where we introduced the temporal spacing in lattice units āτ = aτ/a⊥. With this result, we
derive the following constraint from (eq. 13.4), that has to be satisfied

1 < aηnτ0 = aη
0.1 fm

āτa⊥
. (13.6)

We find that this requirement is proportional to ∼ 1
āτ

, which motivates a small choice of
āτ = 0.01 for the temporal spacing in lattice units, leading to numerically stable results. Note
that this choice naturally satisfies (eq. 13.3) as well.
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Figure 13.1: Lattice averaged energy density in a simulation of the semi-classical model for different
lattice spacings a⊥ in the expanding box. The energy density has been computed at an initial time
of τ0 = 0.1 fm with a fixed fermion mass of am = 0.01 and an ensemble size of Nens = 750. The
longitudinal lattice extend is given as Nη = 40 with longitudinal lattice spacing aη = 0.075. The total
energy density ǫ is extracted at initial times as a function of the transverse lattice extent N⊥.

The simulations for the matching procedure have been performed with fermions of (lattice
dimensionless) mass m̄ = 0.01. We give the results for the matching procedure, as a function
of the transverse lattice extent N⊥ in (figure 13.1). We can extract the lattice spacing for
approximately matching energy densities from the inlay plot, with the corresponding lattice
extent given as N⊥ = 50

a⊥ =
12

N⊥
≈ 0.24 fm. (13.7)

2The appearance of the additional factor of τ in the Courant-Levi condition is rooted in the Jacobian√−g = τ .
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Note, that this choice matches our previous result for the static box in (chapter 7.5). We
emphasize, that the condition a⊥ > aη is satisfied for the given choice of parameters. The
initial time-step for the initialization is given as

nτ0 =
0.1 fm

āτa⊥
= 41.67 ≈ 42. (13.8)

One quickly verifies, that this choice satisfies the second Courant-Levi condition (eq. 13.4)

1 < nτ0aη = 3.15. (13.9)

We choose the following fermion masses in later simulations

m̄ = 0.01 → m = 8.33 MeV ∼ O(mu/d), m̄ = 0.1 → m = 83.3 MeV ∼ O(ms), (13.10)

which parametrically match the mass of the up-/down-quark and the mass of the strange quark.
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Figure 13.2: Lattice averaged energy density in a simulation of the semi-classical model for different
lattice spacings a⊥ in the expanding box. The energy density has been computed at an initial time of
τ0 = 0.1 fm, in a simulation with two fermions of degenerate mass am = 0.01 and an ensemble size
of Nens = 750. The longitudinal lattice extend is given as Nη = 40 with longitudinal lattice spacing
aη = 0.075. The total energy density ǫ is extracted at initial times as a function of the transverse
lattice extent N⊥.

We repeat the matching procedure for two degenerate quarks, setting Nf = 2. The result is
given in (figure 13.2). It is possible to extract the following lattice spacing for approximately
matching energy densities, with a corresponding lattice extent of N⊥ = 44

a⊥ =
12

N⊥
=

12

44
fm. (13.11)

The initial time-step is then given as

nτ0 =
0.1 fm

āτa⊥
= 36.67 ≈ 37. (13.12)
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This result satisfies the second Courant-Levi condition (eq. 13.4) as well

1 < nτ0aη = 2.775. (13.13)

In future simulations we choose the following quark mass

m̄ = 0.01 → m = 7.34 MeV ∼ O(mu/d), (13.14)

that parametrically matches the mass of the up-/down-quark.

Finally we perform a matching for a pure Yang-Mills simulation in an expanding geometry. We
keep all parameters unchanged, varying only the transverse lattice spacing a⊥ as a function
of the lattice extent and give the results in (figure 13.3).
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Figure 13.3: Lattice averaged energy density in a simulation of the semi-classical model for different
lattice spacings a⊥ in the expanding box. The energy density has been computed at an initial time of
τ0 = 0.1 fm in a pure Yang-Mills simulation. The longitudinal lattice extend is given as Nη = 40 with
longitudinal lattice spacing aη = 0.075. The total energy density ǫ is extracted at initial times as a
function of the transverse lattice extent N⊥.

From the inlay plot of (figure 13.3), we are able to extract the lattice spacing in a
pure Yang-Mills simulation

a⊥ =
12

N⊥
=

12

62
fm. (13.15)

The corresponding initial time-step is then given as

nτ0 =
0.1 fm

āτa⊥
= 51.67 ≈ 52, (13.16)

and the second Courant-Levi condition (eq 13.4) is satisfied

1 < nτ0aη = 3.9. (13.17)
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Fermion Masses

We start our discussion for an expanding box by comparing results from simulations with
fermions of different mass. As discussed already, these masses are parametrically of the order
of the mass of the up-/down-quark and the strange quark, choosing m = 8.33 MeV and
m = 83.3 MeV. Our main goal is to test the system for pressure isotropization, measuring
the longitudinal to transverse pressure ratio, as well as the pressure to energy ratio. To gain
more insights into the dynamics of the system, we will investigate the profile of the energy
density, as well as the occupation of energy modes.

13.2.1 Energy Density

Let us start with an investigation of the energy density of the system with fermions. The
energy density has been matched to the estimated energy density of the Glasma (section 3.5)
at the formation time of τ0 = 0.1 fm. In contrast to the static box, the energy density of the
system will no longer be constant, because of the longitudinal expansion of the system and
therefore decrease by time. In (figure 13.4) we give the energy density for a simulation of
the semi-classical effective theory in an expanding box, choosing two different fermion masses
of m = 8.33 MeV (left) and m = 83.3 MeV (right).

Figure 13.4: Energy density in a simulation with fermions of mass m = 8.33 MeV (left) and m = 83.3
MeV (right). The simulation has been performed on a 50 × 50 × 40 lattice, with coupling g = 2, a
transverse lattice spacing of a⊥ = 0.24 fm and a longitudinal lattice spacing of aη = 0.075, setting the
initial time to τ0 = 0.1 fm. A stochastic fermion ensemble of size Nens = 750 has been used.

The y-axis in (figure 13.4) has been plotted on a logarithmic scale. As expected, the energy
density decreases in the expanding system as a function of proper time τ . To extract the time
dependence, we have fitted the total energy density using

ǫ(τ) = aτ b + c, (13.18)

extracting for both masses b ≈ −1. This scaling behavior of the energy density along 1
τ

is
familiar from the free-streaming limit in a heavy ion collision, where the quarks and gluons
move (quasi-)free in the medium.
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When comparing (figure 13.4) to the results of the static box (figure 8.1), one notices that
less energy is transfered from the Yang-Mills to the fermion sector. The rapid expansion
competes with the interaction between the sectors and hence the energy transfer is reduced.
This finding does not strongly dependent on the tested fermion masses, which matches previous
observations in the static box. Also note, that we observe the quench at the first time-
step, familiar from the static box as well.

13.2.2 Pressure

Let us now turn to the question if pressure isotropy is reached in the expanding box. As
a first observable, we give the longitudinal to transverse pressure ratio in a simulation with
fermions of mass m = 8.33 MeV and m = 83.3 MeV in (figure 13.5). In both cases, no pressure
isotropy is reached, independently on the chosen fermion mass. On the opposite, the ratio
drops to zero instead. This is equivalent to a vanishing longitudinal pressure PL = 0 at late
times, hence the expansion in the longitudinal direction dominates the dynamics of the system.
This matches observations in pure Yang-Mills simulations of the Glasma, where no pressure
isotropy is achieved as well and the free-streaming limit is reached.

Figure 13.5: Longitudinal to transverse pressure ratio in a simulation with fermions of mass m = 8.33
MeV and a simulation with fermions of mass m = 83.3 MeV. The simulations have been performed
on a 50 × 50 × 40 lattice, with coupling g = 2, a transverse lattice spacing of a⊥ = 0.24 fm and a
longitudinal lattice spacing of aη = 0.075, setting the initial time to τ0 = 0.1 fm. A stochastic fermion
ensemble of size Nens = 750 has been used. For comparison, the result of a pure Yang-Mills simulation
with equivalent physical parameters is shown as well. In the right-hand plot, the x-axis is plotted
logarithmically.

On the right-hand side of (figure 13.5), one can clearly see, that the simulation with fermions
enters an oscillatory phase at early times. In contrast to the the pure Yang-Mills simulation, the
total amplitude of these oscillations is reduced, but the frequency is enhanced by the coupling
to fermions. We will trace back the effect of the fermions on to the system in the following sections.

In (figure 13.6) we give the pressure to energy ratio for the two systems including fermions of
different mass. In the static box we have seen, that approaching pressure isotropy goes hand
in hand with approaching the (ultra-relativistic) limit of Pi/ǫ = 1/3 for the pressure to energy
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ratio. In case of the expanding box, neither of the limits is approached.

Figure 13.6: Pressure to energy ratio for a simulation with a fermion of mass m = 8.33 MeV (left)
and a fermion of mass m = 83.3 MeV (right). The simulation has been performed on a 50× 50× 40
lattice, with coupling g = 2, a transverse lattice spacing of a⊥ = 0.24 fm and a longitudinal lattice
spacing of aη = 3/Nη, setting the initial time to τ0 = 0.1 fm. A stochastic fermion ensemble of size
Nens = 750 has been used. For comparison, the result of a pure Yang-Mills simulation with equivalent
physical parameters is shown as well.

With the longitudinal pressure dropping to zero, the longitudinal pressure to energy ratio
drops to zero as well. On the other hand, the transverse pressure to energy ratio approaches
a constant value of PT

ǫ
= 1

2
. This result is familiar from pure Yang-Mills simulations in an

expanding box (see e.g. [166]) and is yet another manifestation of the free-streaming limit. We
conclude, that the longitudinal expansion dominates the dynamics of the system, causing the
fermions and (classical) bosons to behave (quasi-)free at late times, making it impossible to
reach an isotropy.

We have shown, that a coupling to fermions does not drive the system towards pressure
isotropy in the expanding box. This arises the question in which sense the dynamics of the
system is influenced by the coupling to fermions, when compared to a pure Yang-Mills simulation.
To study this, we use a method first discussed in [61, 62] in context of an explicit breaking of
boost invariance on the level of the initial conditions. It has been argued in [61], that a breaking
of boost invariance induces an instability, that could drive the system towards pressure isotropy3,
but this instability is not strong enough to succeed over the rapid longitudinal expansion. Our
goal is, to look for traces of a similar effect in case of a simulation of the Glasma in a longitudinal
expanding box, coupled to fermions.

As argued in (section 12.1.3), a possible observable for such an instability is the Fourier
transformed longitudinal pressure of the Yang-Mills sector. An instability can then be observed
in exponentially increasing contributions to higher order Fourier modes of the observable.
We derived the corresponding lattice quantity in (eq. 12.42). Because of the longitudinal
boost invariant construction of the initial Glasma state from the CGC effective theory, the
unperturbed system does not pick up a contribution to these Fourier modes, with the trivial
mode ν = 0 being the exception. To validate this statement numerically, we have plotted

3Which is actually the case in a static box, see [60].
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the next to lowest order ν0 = 1 of the Fourier transformed longitudinal pressure in a pure
Yang-Mills simulation on the left of (figure 13.7). We indeed find, that the contribution is
equivalent to zero, up to machine precision.

Figure 13.7: Fourier mode ν0 = 1 of the Fourier transformed longitudinal pressure of the Yang-Mills
sector, for a pure Yang-Mills simulation (left) and two simulations including fermions of mass m = 8.33
MeV and 83.3 MeV. The simulations with fermions have been performed on a 50 × 50 × 40 lattice,
with coupling g = 2, a transverse lattice spacing of a⊥ = 0.24 fm and a longitudinal lattice spacing of
aη = 0.075, setting the initial time to τ0 = 0.1 fm. A stochastic fermion ensemble of size Nens = 750
has been used. The pure Yang-Mills simulation uses equivalent physical parameters as initial time,
total energy, saturation scale and box size.

On the right-hand side of (figure 13.7) we give the results of the contribution to the Fourier
mode ν0 = 1 for two simulations including fermions of mass m = 8.33 MeV and 83.3 MeV.
We observe, that indeed a contribution is picked up. To demonstrate that this contribution
is exponentially increasing, we have fitted the data to a function of the form

g2τ |PL(ν0)|/Q3 ∼ a exp
(

bQτ
)

+ c. (13.19)

The fit parameter could be extracted to be b ≈ 0.032. Because of the exponential increase, this
can be referred to as a pressure instability, induced by the coupling to fermions. We conclude,
that due to the coupling to fermions, a pressure instability arises in our system, but it is not
strong enough to drive the system towards pressure isotropy.

13.2.3 Occupation of Energy Modes and Energy Density Profile

Although pressure isotropy is not reached in a simulation with fermions in the expanding box,
we have seen that the dynamics of the system is influenced by the coupling to fermions. To
study the dynamics in more detail, let us investigate the profile of the energy density at first.
We restrict ourselves to the chromo-electric longitudinal part of the energy density and perform
an average in x-direction. We give the results for a simulation including fermions of mass
m = 8.33 MeV in (figure 13.8) and of mass m = 83.3 MeV in (figure 13.9).
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Figure 13.8: Profile of the longitudinal chromo-electric energy density ǫEL (t) in a simulation with
fermions of mass m = 8.33 MeV at times τ = {0.1, 1.54, 4.9, 7.3, 8.5, 9.7} fm (top left to bottom right).
The simulation has been performed on a 50× 50× 40 lattice, with coupling g = 2, a transverse lattice
spacing of a⊥ = 0.24 fm and a longitudinal lattice spacing of aη = 0.075, setting the initial time to
τ0 = 0.1 fm. A stochastic fermion ensemble of size Nens = 750 has been used and the x-direction has
been averaged.

Figure 13.9: Profile of the longitudinal chromo-electric energy density ǫEL (t) in a simulation with
fermions of mass m = 83.3 MeV at times τ = {0.1, 1.54, 4.9, 7.3, 8.5, 9.7} fm (top left to bottom right).
The simulation has been performed on a 50× 50× 40 lattice, with coupling g = 2, a transverse lattice
spacing of a⊥ = 0.24 fm and a longitudinal lattice spacing of aη = 0.075, setting the initial time to
τ0 = 0.1 fm. A stochastic fermion ensemble of size Nens = 750 has been used and the x-direction has
been averaged.

In both cases, we identify the lines of constant energy along longitudinal direction, caused by
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the color-flux tubes of the Glasma. When comparing to the results in a static box, (figure 8.9)
and (figure 8.10), we see that this initial structure is much better preserved during the evolution
of the system. For the static box, we argued, that a homogenization of the energy density,
that goes hand in hand with an occupation of high energy modes, is a necessary condition for
pressure isotropization to develop. Observing no similar process in the expanding box supports
the finding, that no pressure isotropy is reached.

Nevertheless, the lines of constant energy are slightly affected from the energy transfer between
the Yang-Mills and fermion sector in the expanding box. This becomes utterly clear, when
comparing to a pure Yang-Mills simulation in the expanding box (figure 13.10), where the
lines of constant energy are not at all affected during the evolution of the system. Their
modification in an expanding box can therefore clearly be traced back to be rooted in the
interaction between fermion and Yang-Mills fields.

Figure 13.10: Profile of the longitudinal chromo-electric energy density ǫEL (t) in a pure Yang-Mills
simulation at times τ = {0.1, 1.55, 4.9, 7.3, 8.5, 9.7} fm (top left to bottom right). The simulation has
been performed on a 62× 62× 40 lattice, with coupling g = 2, a transverse lattice spacing of a⊥ ≈ 0.19
fm and a longitudinal lattice spacing of aη = 3

Nη
, setting the initial time to τ0 = 0.1 fm. The x-direction

has been averaged and all physical parameters as energy, saturation scale Qs and nucleus size are kept
constant when compared to the simulation with fermions.

Finally let us turn to the occupation of energy modes. In general, the lattice averaged energy
density decreases by an overall factor of ∼ 1

τ
during the evolution, as seen in (figure 13.4). With

the gauge invariant occupation of energy modes being derived from the Fourier transform of the
energy density, it is affected by this decrease as well. To compensate this effect, making the
occupation of energy modes comparable at different time-steps, we multiply (eq. 12.48) by a
factor of τ .
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Having observed only marginal differences for simulations with fermions of mass m = 8.33
MeV and with fermions of mass m = 83.3 MeV, we restrict our discussion to the smaller
mass. As discussed in (section 12.2), an evaluation of the occupation of energy modes in the
expanding box is only possible when restricting ourselves to the transverse planes, labeled by
the longitudinal Fourier mode ν. In (figure 13.11) we plot the occupation of energy modes in
the transverse planes as a function of the lattice dispersion relation of the Yang-Mills fields
(eq. 12.46), or the fermion fields (eq. 10.10).

Figure 13.11: Occupation of energy modes in the transverse planes as a function of the lattice
dispersion relation ωp and the longitudinal Fourier mode ν, for a simulation with fermions of mass
m = 8.33 MeV. We give the result for the Yang-Mills sector on the left-hand side and the result for the
fermion sector on the right-hand side. The simulation has been performed on a 50× 50× 40 lattice,
with coupling g = 2, a transverse lattice spacing of a⊥ = 0.24 fm and a longitudinal lattice spacing of
aη = 0.075, setting the initial time to τ0 = 0.1 fm. A stochastic fermion ensemble of size Nens = 750
has been used.

In case of the fermion sector, plotted on the right-hand side in (figure 13.11), we find that
the energy modes in the transverse planes are equally occupied, with low energy modes slightly
favored. This is in total correspondence to what we have seen in case of the static box (figure
8.14). A key difference between the static and the expanding system is the occupation of energy
modes in the Yang-Mills sector, given on the left-hand side of (figure 13.11). As familiar from
the static box and rooted in the construction of the initial conditions, we observe that low
energy modes in the plane with ν = 0 initially dominate the system. For the static system we
found, that this initial dominance is erased within the evolution of the system and high energy
modes are occupied during the evolution, until finally, a nearly balanced situation is reached
(compare to figure 8.15 and figure 8.16). This is certainly not the case in the expanding system,
where a clear separation between the plane with ν = 0 and the other planes remains visible
right until the final time of the simulation.

Nevertheless it is possible to observe, that high energy modes become occupied during the
simulation, due to an energy exchange between the Yang-Mills and fermion sector, although
the exchanged is reduced. This is essentially caused by a coupling of the classical Yang-Mills
fields to fermions, comparing it to the occupation of energy modes in a pure Yang-Mills
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simulation, given in (figure 13.12). Because the boost invariance of the Glasma is preserved
by the equations of motion in the pure Yang-Mills system, the occupation of energy modes
does not change during the evolution of the system, matching our previous observation for
the energy density profile (figure 13.10).

Figure 13.12: Occupation of energy modes in the transverse planes (left) and an average of these
planes (right), as a function of the longitudinal Fourier mode ν, for a pure Yang-Mills simulation. The
simulation has been performed on a 62 × 62 × 40 lattice, with coupling g = 2, a transverse lattice
spacing of a⊥ ≈ 0.19 fm and a longitudinal lattice spacing of aη = 0.075, setting the initial time to
τ0 = 0.1 fm. All physical parameters as energy, saturation scale Qs and nucleus size are kept constant
when compared to the simulation with fermions.

The evolution of the occupation of energy modes in planes with ν 6= 0 can be studied, looking
at the averaged occupation in the transverse planes as a function of the longitudinal Fourier
mode ν, given for a simulation with fermions of mass m = 8.33 in (figure 13.13). We restricted
ourselves to the Yang-Mills sector, having already seen in (figure 13.11), that energy modes in
the fermion sector are equally occupied during the evolution of the system.

In the Yang-Mills sector, the averaged occupation of energy modes in the transverse plane
is initially sharply peaked at ν = 0, as expected for the Glasma. We find that this peak
is diminished very slowly by time. Plotting the y-axis logarithmically, on the right-hand
side of (figure 13.13) reveals that energy modes in the transverse planes with ν 6= 0 become
occupied during the evolution of the system, but this happens rather slowly, when compared
to the static box (figure 8.16). In general the initial distribution is erased much slower in the
expanding box. This happens, because on the one hand the longitudinal expansion counteracts
the interaction of the classical Yang-Mills fields with the fermion fields and hence the energy
exchange between the sectors is significantly reduced and on the other hand, more and more
low energy longitudinal modes are created because of the rapid expansion, preserving the
dominance of low modes in our system. As a consequence, this also influences the validity of the
classical approximation. In the expanding system, higher order energy modes are occupied much
slower than it has been the case in the static box (figure 8.17) and therefore the dominance
of low energy modes, associated with overoccupied classical Yang-Mills fields is preserved,
supporting the validity of the classical approximation.
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Figure 13.13: Average of the occupation of energy modes in the transverse planes, as a function
of the longitudinal Fourier mode ν, for the Yang-Mills sector of a simulation with fermions of mass
m = 8.33 MeV in an expanding box. The simulation has been performed on a 50 × 50 × 40 lattice,
with coupling g = 2, a transverse lattice spacing of a⊥ = 0.24 fm and a longitudinal lattice spacing of
aη = 0.075, setting the initial time to τ0 = 0.1 fm. A stochastic fermion ensemble of size Nens = 750
has been used.

13.3 Discretization in Longitudinal Direction

We fixed the longitudinal lattice spacing aη by choosing an area of 3 units of space-time
rapidity η to be covered by the longitudinal lattice extent. The lattice spacing has thus been
given as aη = 3/Nη. We have chosen, without further specification, Nη = 40, leading to
numerically stable results with manageable computational time, while satisfying aη < a⊥. In
this section, we vary Nη ∈ {40, 50, 60}, moving to finer lattice spacings aη. If the choice of
Nη = 40 is reasonable, we expect our previous results not to vary significantly. All other
parameters entering the simulation are left constant.

Figure 13.14: Longitudinal to transverse pressure ratio (left) and pressure to energy ratio (right)
for a simulation with fermions of mass m = 8.33 MeV, choosing different longitudinal spacings
aη ∈ {0.075, 0.06, 0.05}. The simulation has been performed with a fixed transverse lattice extent
N⊥ = 50, with lattice spacing a⊥ = 0.24 fm, a coupling g = 2, initial time τ0 = 0.1 fm and a stochastic
fermion ensemble of size Nens = 750.



13. Results for the Expanding Box 175

In (figure 13.14) we compare the longitudinal to transverse pressure ratio (left) and the
pressure to energy ratio (right) in a simulation including fermions of mass m = 8.33 MeV, for
different choices of aη. We find that independently on the choice of aη, no pressure isotropy is
reached in all three cases. The results only differ in small fluctuations, that are caused numerically
and are most likely rooted in a different construction of initial conditions for the Yang-Mills
sector and a different initialization of fermions for the choices of aη. Moreover the results agree in
amplitude, shape and evolution, finding no dependence of the physical results on the choice of aη.

This observation is supported by the pressure to energy ratio of the individual sectors, given in
(figure 13.15). We see that neither the evolution of the Yang-Mills, nor the evolution of the fermion
sector changes, making it possible to conclude that a choice of aη = 0.075 is sufficiently fine.

Figure 13.15: Pressure to energy ratio for the Yang-Mills sector (left) and the fermion sector
(right) in a simulation with fermions of mass m = 8.33 MeV for different longitudinal lattice spacing
aη ∈ {0.075, 0.06, 0.05}. The simulation has been performed with a fixed transverse lattice extent
N⊥ = 50, with lattice spacing a⊥ = 0.24 fm, a coupling g = 2, initial time τ0 = 0.1 fm and a stochastic
fermion ensemble of size Nens = 750.

13.4 Explicitly Breaking Longitudinal Boost Invariance

Having studied the influence of fermions in a simulation of the semi-classical effective theory
in an expanding box, we want to compare our results to a pure Yang-Mills simulation with
an explicit breaking of longitudinal boost invariance, introducing a quantum fluctuation in
longitudinal direction of magnitude ∆ (eq. 3.22). Such a system has previously been studied in
[61, 62] and it has been shown, that a pressure instability (eq. 12.42) develops. On the downside,
this instability is not strong enough to succeed over the rapid longitudinal expansion and drive
the system towards pressure isotropy. On the opposite, the system reaches the free-streaming
limit, where the classical Yang-Mills fields propagate quasi-free.

We compare the longitudinal to transverse pressure ratio and the pressure to energy ratio in
pure Yang-Mills simulations with different choices of fluctuation strength ∆ ∈ {0, 0.01, 0.1}, to a
simulation with a fermion of mass m = 8.33 MeV in (figure 13.16). To compare all simulations,
we keep the parameters total energy, longitudinal lattice extent, spacing aη, transverse box
size, saturation scale Qs and the initial time τ0 constant. We find in all cases, that no pressure
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isotropy is reached and the pressure to energy ratio approaches the free-streaming limit, where
the longitudinal pressure drops to zero and PT/ǫ → 1/2.

Figure 13.16: Longitudinal to transverse pressure ratio (left) and pressure to energy ratio (right), for
a pure Yang-Mills simulations with an explicit breaking of longitudinal boost invariance of magnitude
∆ = {0, 0.01, 0.1} and a simulation including fermions of mass m = 8.33 MeV. The simulation including
fermions has been performed on a 50× 50× 40 lattice, with transverse lattice spacing a⊥ = 0.24 fm
and a stochastic fermion ensemble of size Nens = 750. The pure Yang-Mills simulations have been
performed on a 62× 62× 40 lattice, with transverse lattice spacing a⊥ = 0.19 fm. In all simulations,
the initial time is set to τ0 = 0.1 fm and the longitudinal lattice spacing is fixed to aη = 0.075. All
physical parameters as total energy, saturation scale Qs and transverse lattice size are constant in all
simulations.

Next, we want to investigate possible differences for the simulation with fermions and the
pure Yang-Mills simulations with an explicit breaking of boost invariance. For this purpose
we study the profile of the energy density and compare it to the energy density profile of a
simulation with fermions (figure 13.8) and (figure 13.9). We restrict ourselves to the fluctuation
of amplitude ∆ = 0.1 and give the chromo-electric energy density in (figure 13.17). A lattice
average in x-direction has been performed.

For early times, it is possible to identify the lines of constant energy, which are slightly
modified due to the appearance of vertically shaded regions. As discussed in the context of the
static box, these shaded regions are caused from the rapidity fluctuation (eq. 3.22) entering
the initial condition of the Glasma and their strength is controlled by ∆. During the evolution
of the system, it is possible to observe the development of filaments along the shaded regions,
which extent over the whole lattice more and more. At the final time, the longitudinal lines of
constant energy are nearly completely erased. This is again an evidence for the development
of a chromo-Weibel instability, discussed in the context of the static box (figure 8.26), that
homogenizes the energy density, as soon as it it is spread over the whole lattice. We emphasize,
that this observation matches the previous study of an equivalent system in [61, 62].

When comparing to the energy density profile of a simulation with fermions of mass m = 8.33
MeV (figure 13.8), we find that the energy density in the latter case is homogenized slower. The
reason for that has to be rooted in the fact, that the homogenization is caused by two completely
different processes. On the one hand from a chromo-Weibel instability, that spreads over the
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whole lattice by time and on the other hand, by an energy exchange between the fermion and
Yang-Mills sector, which is slowed down, because of the rapid longitudinal expansion of the
system. On top of that, the fermions are initialized to preserve boost invariance as well, which
is why it takes more time for an instability to develop in this case.

Figure 13.17: Profile of the longitudinal chromo-electric energy density ǫEL (t) for a pure Yang-
Mills simulation with an explicit breaking of boost invariance of magnitude ∆ = 0.1 at times τ =
{0.1, 1.55, 4.9, 7.3, 8.5, 9.7} fm (top left to bottom right). The simulation has been performed on a
62 × 62 × 40 lattice, with transverse lattice spacing a⊥ = 0.19 fm and longitudinal lattice spacing
aη = 0.075. The x-direction has been averaged and the coupling is chosen to be g = 2. All physical
parameters as total energy, saturation scale Qs and transverse box size are kept constant when compared
to a simulation with fermions.

Finally, we give the results for the occupation of energy modes in the transverse planes and
an average in these planes, as a function of the longitudinal Fourier mode ν, for pure Yang-Mills
simulations with fluctuations of ∆ = 0.01 and ∆ = 0.1 in (figure 13.18) and (figure 13.19).
We observe that some energy modes with ν 6= 0 are now occupied at initial time, due to the
introduction of the rapidity fluctuation in longitudinal direction (eq. 3.22). This effect becomes
more present, when choosing a larger amplitude ∆ for the fluctuation. In analogy to the static
box, we observe a cascade for the occupation of energy modes, where higher energy modes are
occupied more and more during the evolution of the system. This happens to be faster when
choosing a larger ∆.

Comparing these results to the occupation of energy modes in the transverse planes for a
simulation with fermions (figure 13.11) and (figure 13.13), the key difference is, that the initial
peak remains present in a simulation with fermions. Although the energy transfer between the
fermion and Yang-Mills sector leads to an occupation of high energy modes, we do not observe
a similar cascade as in case of a chromo-Weibel instability. In the latter case, energy modes are
evenly occupied to a maximum at ν = 0, leading to a triangular shape of the peak, whereas
in a simulation with fermions, the distribution is more sharply peaked around ν = 0.
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Figure 13.18: Occupation of energy modes in the transverse planes (left) and an average of these
planes (right), as a function of the longitudinal Fourier mode ν, for a pure Yang-Mills simulation with
an explicit breaking of boost invariance of strength ∆ = 0.01. The simulation has been performed on a
62× 62× 40 lattice, with transverse lattice spacing a⊥ = 0.19 fm, initial time τ0 = 0.1 fm, coupling
g = 2 and a longitudinal lattice spacing of aη = 0.075. All physical parameters as energy, saturation
scale Qs and nucleus size are kept constant when compared to the simulation with fermions.

Figure 13.19: Occupation of energy modes in the transverse planes (left) and an average of these
planes (right), as a function of the longitudinal Fourier mode ν, for a pure Yang-Mills simulation with
an explicit breaking of boost invariance of strength ∆ = 0.1. The simulation has been performed on a
62× 62× 40 lattice, with transverse lattice spacing a⊥ = 0.19 fm, initial time τ0 = 0.1 fm, coupling
g = 2 and a longitudinal lattice spacing of aη = 0.075. All physical parameters as energy, saturation
scale Qs and nucleus size are kept constant when compared to the simulation with fermions.

We have seen, that a chromo-Weibel instability develops in a pure Yang-Mills simulation
in the expanding box, if longitudinal boost invariance is explicitly broken, but it is not strong
enough to drive the system towards pressure isotropy. The same has been true for a coupling
to fermions and as a consequence, we now want to study what happens when both effects are
combined. We simulate a system with fermions of mass m = 8.33 MeV and introduce a quantum
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fluctuation of amplitude ∆ = 0.1. In (figure 13.20) we give the result for the longitudinal to
transverse pressure ratio (left) and the pressure to energy ratio (right) of the system.

Figure 13.20: Longitudinal to transverse pressure ratio (left) and pressure to energy ratio (right) for
a simulation with fermions of mass m = 8.33 MeV, with and without an explicit breaking of boost
invariance of strength ∆ = 0.1. The simulation has been performed on a 50× 50× 40 lattice, with
transverse lattice spacing a⊥ = 0.24 fm, initial time τ0 = 0.1 fm, coupling g = 2, longitudinal lattice
spacing aη = 0.075 and a stochastic fermion ensemble of size Nens = 750.

We find no difference for the pressure ratio, when comparing to a simulation with fermions
only. In both cases, the dynamics of the system is dominated by the longitudinal expansion
and no isotropy is reached. To study the interplay of both mechanisms, we investigate the
occupation of energy modes in the Yang-Mills sector, given in (figure 13.21).

Figure 13.21: Occupation of energy modes in the transverse planes (left) and an average of these
planes (right) as a function of the longitudinal Fourier mode ν, for a simulation including fermions
of mass m = 8.33 MeV and an explicit breaking of longitudinal boost invariance of strength ∆ = 0.1.
The simulation has been performed on a 50× 50× 40 lattice, with coupling g = 2, a transverse lattice
spacing of a⊥ = 0.24 fm and a longitudinal lattice spacing of aη = 0.075, setting the initial time to
τ0 = 0.1 fm. A stochastic fermion ensemble of size Nens = 750 has been used.
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It is clearly visible, that high energy modes become occupied during the evolution of the
system. When comparing the right-hand plot in (figure 13.21) to the simulation with fermions
and without an explicit breaking of longitudinal boost invariance (figure 13.13), we find that
the peak at ν = 0 of the initial state remains present in (figure 13.21), but it is broadened. This
happens due to the additional instability induced by the explicit breaking of boost invariance.
On the other hand, low momentum modes are occupied earlier, when compared to a pure
Yang-Mills simulation with an initial quantum fluctuation of strength ∆ = 0.1 (figure 13.19).
This happens because of the additional energy exchange between the fermion and Yang-Mills
sector in a simulation with fermions. On top of that, the separation of the occupation in the
ν = 0 plane, compared to planes with ν 6= 0 is much more present without a longitudinal
rapidity fluctuation (figure 13.11) as it is the case with a fluctuation (figure 13.21).

13.5 Coupling Dependence

Having studied the evolution of the Glasma coupled to fermions in the expanding box, with an
appropriate coupling of g ≈ 2, let us now test our model for its dependence on the coupling. As
presented for the static box, we choose couplings of g ∈ {0.01, 0.1, 0.5} and compare the results
to the realistic choice. Because the strength of the coupling mediates the interaction of classical
gluons and fermions, we expect the occupation of high energy modes to slow down even further.
Subsequently, no pressure isotropy should be reached by the expanding system in any of these
cases. To compare to a simulation with g = 2, we do not vary the transverse lattice spacing
a⊥ = 0.24 fm and keep the longitudinal lattice spacing aη = 0.075 and extent Nη = 40 constant
as well, covering 3 units of space-time rapidity. All physical parameters as the transverse lattice
size and the saturation scale Qs are left constant. The simulations have been performed choosing
a fermion mass of m = 8.33 MeV and a stochastic fermion ensemble of Nens = 750.

Figure 13.22: Longitudinal to transverse pressure ratio (left) and pressure to energy ratio (right) for
simulations with fermions of mass m = 8.33 MeV and different choices of coupling g ∈ {0.01, 0.1, 0.5, 2}.
The simulations have been performed on a 50×50×40 lattice, with transverse lattice spacing a⊥ = 0.24
fm, longitudinal lattice spacing of aη = 0.075. The initial time is chosen to be τ0 = 0.1 fm and the
stochastic fermion ensemble size is given as Nens = 750.

In (figure 13.22) we give the longitudinal to transverse pressure ratio (left) and the pressure
to energy ratio (right) for the different choices of coupling g. As expected, we observe in all
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cases, that neither a pressure isotropy is reached, nor the ultra-relativistic limit of Pi/ǫ→ 1/3
for the pressure to energy ratio. On the opposite, the longitudinal pressure PL drops to zero
after an initial oscillatory phase and the free-streaming limit, characterized by PT/ǫ → 1/2
as well, is reached. The only difference can be noticed at early times, where it is possible to
observe that the amplitude of the initial oscillatory phase is modified by the different choices of
g. This is essentially a consequence of the reduced interaction strength between the Yang-Mills
and fermion sector, where the latter one acquires less energy for smaller choices of g, hence its
contribution to the total pressure of the system is reduced. As a result, the dynamics of the
whole system resembles much more the dynamics of a pure Yang-Mills system for small choices
of g.

The reduced influence of fermions onto the dynamics of the system for small choices of g,
also manifests itself on the level of the contribution to the ν 6= 0 modes of the Fourier transfered
longitudinal pressure of the Yang-Mills sector (eq. 12.42). In (section 13.2.2), we where able
to identify an exponentially increasing instability, that could in principle drive the system
towards pressure isotropy, but is prevented by the longitudinal expansion. In (figure 13.23),
we give the results of the instability for different couplings, setting ν0 = 1. It is possible
to identify an exponentially increasing instability in all cases, but we find that the order of
magnitude varies for the different choices of coupling4.

Figure 13.23: Fourier mode ν0 = 1 of the Fourier transformed longitudinal pressure of the Yang-
Mills sector, for simulations including fermions of mass m = 8.33 MeV, with different couplings
g ∈ {0.01, 0.1, 0.5, 2}. The simulations have been performed on a 50× 50× 40 lattice, with transverse
lattice spacing a⊥ = 0.24 fm, longitudinal lattice spacing of aη = 0.075. The initial time is chosen to
be τ0 = 0.1 fm and the stochastic fermion ensemble size is given as Nens = 750.

This translates to the occupation of energy modes in the transverse plane. We give the results
for different couplings g ∈ {0.5, 0.1, 0.01} of the occupation and an average in the transverse
planes in (figure 13.24), (figure 13.25) and (figure 13.26). Again we restricted ourselves to the
Yang-Mills sector. Comparing these results to the occupation for g = 2 (figure 13.11), we find
that for larger choices of g high energy modes are occupied earlier. This is especially evident,

4Note that these differences are beyond O(g2).
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when looking at the lattice averages of the occupation in the transverse planes, plotted on the
right-hand side. Nevertheless, the initial peak at ν = 0, caused from the construction of the
Glasma initial conditions remains present for all choices of coupling g. Note that the difference
for g = 2 and g = 0.5 is approximately one order of magnitude. As discussed previously, the
reason for this observation is, that the interaction between fermions and classical gauge fields
is further reduced in the expanding box, when lowering the coupling g.

Figure 13.24: Occupation of energy modes in the transverse planes (left) and an average of these
planes (right), as a function of the longitudinal Fourier mode ν, for a simulation including fermions of
mass m = 8.33 MeV. The simulation has been performed on a 50× 50× 40 lattice, with initial time
τ0 = 0.1 fm, transverse lattice spacing a⊥ = 0.24 fm, longitudinal lattice spacing of aη = 0.075. The
coupling is chosen to be g = 0.5 and the stochastic fermion ensemble size is Nens = 750.

Figure 13.25: Occupation of energy modes in the transverse planes (left) and an average of these
planes (right), as a function of the longitudinal Fourier mode ν, for a simulation including fermions of
mass m = 8.33 MeV. The simulation has been performed on a 50× 50× 40 lattice, with initial time
τ0 = 0.1 fm, transverse lattice spacing a⊥ = 0.24 fm, longitudinal lattice spacing of aη = 0.075. The
coupling is chosen to be g = 0.1 and the stochastic fermion ensemble size is Nens = 750.
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Figure 13.26: Occupation of energy modes in the transverse planes (left) and an average of these
planes (right), as a function of the longitudinal Fourier mode ν, for a simulation including fermions of
mass m = 8.33 MeV. The simulation has been performed on a 50× 50× 40 lattice, with initial time
τ0 = 0.1 fm, transverse lattice spacing a⊥ = 0.24 fm, longitudinal lattice spacing of aη = 0.075. The
coupling is chosen to be g = 0.01 and the stochastic fermion ensemble size is Nens = 750.

13.6 Slow Expansion

Although we found, that the coupling of the classical Yang-Mills fields of the Glasma to fermion
fields leads to a pressure isotropy in the static box, this could not be observed in a longitudinally
expanding box. Essentially, we identified the rapid longitudinal expansion as the reason that
pressure isotropy is prevented. This arises the question what happens, if the expansion is slowed
down. Because the expansion is inherently embedded in the geometry of the system, from
choosing Milne coordinates (eq. 9.1), the simplest way to „slow down“ the expansion is to
initialize the system at a later time τ0 [58]. One easily convinces oneself, regarding (figure 9.1),
that the expansion of such a system is slowed down.

With pressure isotropization being driven from the back-coupling of the fermion fields onto
the classical Yang-Mills fields, or by an explicit breaking of boost invariance, we study both
mechanisms in the following. In one simulation, we couple the system to fermions of mass
m = 8.33 MeV only and in a second simulation, we combine this with a longitudinal quantum
fluctuation of magnitude ∆ = 0.1. The simulations have been performed with a constant
transverse lattice spacing a⊥ = 0.24 fm to maintain comparability to the previous simulations.
The lattice extent is chosen to be 50× 50× 40, with longitudinal lattice spacing of aη = 0.075,
covering 3 units of space-time rapidity. The physical parameters as saturation scale and
transverse lattice size are kept constant. To slow down the expansion, we choose an initial time
of τ ≈ 2 fm.5 We emphasize, that this choice is already beyond the estimated hydrodynamization
time of τhydro = 1 fm and therefore only represents a test for our model to study, if pressure

5With the energy of the system, that is initialized at τ0 = 2 fm being different when compared to a simulation
initialized at τ0 = 0.1 fm, a matching can not be performed, because the given estimate for the energy of the
Glasma is only valid at τ0 = 0.1 fm.
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isotropization is indeed prevented by a rapid expansion. With the initial time of τ0 ≈ 2 fm
being much larger than τ0 = 0.1, we are able to use a coarser temporal spacing, while satisfying
the Courant-Levi condition (eq. 13.4). We choose aτ = 0.03a⊥.

In (figure 13.27) we give the result for the longitudinal to transverse pressure ratio (left)
and the pressure to energy ratio (right) for a slowly expanding system. Although no pressure
isotropy is reached, we indeed find that the longitudinal to transverse pressure ratio does not
drop to zero, as it has been the case previously, when initializing at τ0 = 0.1 fm (figure 13.5).
On top of that, it is possible to observe that the pressure ratio moves towards isotropy earlier,
in a simulation where fermions and the initial quantum fluctuation in the Yang-Mills sector
have been combined, which supports our previous analysis as well. Nevertheless, the ratio is still
far from a pressure isotropy. The same is true for the pressure to energy ratio, as can be seen
in the right-hand plot of (figure 13.27). These observations support our previous conclusion,
that the rapid longitudinal expansion prevents the system from isotropizing.

Figure 13.27: Longitudinal to transverse pressure ratio (left) and pressure to energy ratio (right)
for simulations with fermions of mass m = 8.33 MeV, with and without an explicit breaking of boost
invariance of strength ∆ = 0.1. The initial time is set to τ0 ≈ 2 fm, corresponding geometrically to a
slow longitudinally expanding system. The simulations have been performed on a 50× 50× 40 lattice,
with transverse lattice spacing a⊥ = 0.24 fm, longitudinal lattice spacing of aη = 0.075. The coupling
is g = 2 and the stochastic fermion ensemble size is given as Nens = 750.

Following the discussion of the previous chapter, we expect the energy density profile of
the two simulations in a slowly expanding system to homogenize. We give the profile of the
longitudinal chromo-electric part of the energy density for the slow expanding simulations
including fermions, with and without an explicit breaking of longitudinal boost invariance in
(figure 13.29) and (figure 13.28). Starting from the longitudinal lines of constant energy of
the Glasma, we find that the energy density profile homogenizes in both cases. As expected,
this happens to be faster in case of a simulation where fermions and an explicit breaking of
boost invariance are combined. In this case, it is also possible to identify the shaded regions at
initial time that are caused by the quantum fluctuation of magnitude ∆ = 0.1. Later on, an
instability arises along these regions, that spreads over the whole lattice by time. In contrast,
without an explicit breaking of boost invariance, the energy exchange between the fermion and
Yang-Mills sector homogenizes the energy density at every lattice point.
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Figure 13.28: Profile of the longitudinal chromo-electric energy density ǫEL (t) in a simulation with
fermions of mass m = 8.33 MeV at times τ = {2, 3.45, 4.9, 7.4, 8.5, 9.9} fm (top left to bottom right).
The initial time is set to τ0 ≈ 2 fm, corresponding geometrically to a slow longitudinally expanding
system. The simulation has been performed on a 50× 50× 40 lattice, with transverse lattice spacing
a⊥ = 0.24 fm and a longitudinal lattice spacing of aη = 0.075. The coupling is g = 2 and the stochastic
fermion ensemble size is given as Nens = 750.

Figure 13.29: Profile of the longitudinal chromo-electric energy density ǫEL (t) in a simulation with
fermions of mass m = 8.33 MeV and with an explicit breaking of boost invariance of strength ∆ = 0.1,
at times τ = {2, 3.45, 4.9, 7.4, 8.5, 9.9} fm (top left to bottom right). The initial time is set to τ0 ≈ 2
fm, corresponding geometrically to a slow longitudinally expanding system. The simulation has been
performed on a 50× 50× 40 lattice, with transverse lattice spacing a⊥ = 0.24 fm and a longitudinal
lattice spacing of aη = 0.075. The coupling is g = 2 and the stochastic fermion ensemble size is given
as Nens = 750.
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Finally, we have a look at the occupation of energy modes in the transverse planes, as well
as at an average in these planes. We give the results for the Yang-Mills sector in a simulation
with fermions only in (figure 13.30) and the result for a simulation with an additional quantum
fluctuation of magnitude ∆ = 0.1 in (figure 13.31).

Figure 13.30: Occupation of energy modes in the transverse planes (left) and an average of these
planes (right), as a function of the longitudinal Fourier mode ν, for a simulation including fermions
of mass m = 8.33 MeV. The initial time is set to τ0 ≈ 2 fm, corresponding geometrically to a slow
longitudinally expanding system. The simulation has been performed on a 50× 50× 40 lattice, with
transverse lattice spacing a⊥ = 0.24 fm and a longitudinal lattice spacing of aη = 0.075. The coupling
is chosen to be g = 2 and the stochastic fermion ensemble size is Nens = 750.

Figure 13.31: Occupation of energy modes in the transverse planes (left) and an average of these
planes (right), as a function of the longitudinal Fourier mode ν, for a simulation including fermions
of mass m = 8.33 MeV and a fluctuation of strength ∆ = 0.1. The initial time is set to τ0 ≈ 2 fm,
corresponding geometrically to a slow longitudinally expanding system. The simulation has been
performed on a 50× 50× 40 lattice, with transverse lattice spacing a⊥ = 0.24 fm and a longitudinal
lattice spacing of aη = 0.075. The coupling is chosen to be g = 2 and the stochastic fermion ensemble
size is Nens = 750.
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In contrast to the occupation of energy modes in a rapidly expanding system, (figure 13.11)
and (figure 13.13), the initial peak is erased during the evolution of the system and high energy
modes become approximately equally occupied. This happens to be the case in both simulations,
with and without an explicit breaking of longitudinal boost invariance. The main difference for
the two scenarios is how the occupation of energy modes in the transverse planes proceeds. In a
simulation with fermions only, the peak at ν = 0 is much better pronounced and it is broadened
when additionally breaking boost invariance, leading to a shape that resembles the triangular
shape, familiar from the pure Yang-Mills case (figure 13.19). This supports our conclusion,
that there is an interplay of both mechanisms, hence the occupation of high energy modes is
governed by an energy exchange between the fermion and Yang-Mills sector, plus an instability
caused by the explicit breaking of boost invariance.

With the occupation of energy modes becoming approximately equal at late times in case
of a slowly expanding system, the classical approximation of the Yang-Mills sector can be
expected to reach its limit of validity, as discussed in the context of the static box already. The
overoccupation of classical field modes is erased during the evolution, causing the classicality
to break down. This could also explain, why a slow down of the isotropization is observed
in (figure 13.27) at late times. With the fail of the classical approximation at late times, the
dynamics of the system is no longer well described in terms of the semi-classical model.

13.7 Two Degenerate Quark Flavors

Finally, let us investigate a simulation with two fermions of degenerate mass in the expanding
box, setting the number of flavors to Nf = 2. In case of the static box, we have already seen
that doubling the degrees of freedom in the fermion sector enhances the isotropization process.
Having observed no pressure isotropy in the rapidly longitudinal expanding box, we will test
if this situation changes, when considering two fermion flavors. We extracted the transverse
lattice spacing in case of two degenerate fermions to be a⊥ ≈ 0.27 fm, with a transverse lattice
extent of N⊥ = 44, within a matching procedure presented in the beginning of this chapter.
For the longitudinal lattice spacing we choose aη = 0.075, with Nη = 40, covering 3 units of
space-time rapidity η. The mass of the two degenerate quarks is given as m = 7.34 MeV, which
is parametrically of the order of the mass of the up-/down quark.

In (figure 13.32), we give the result for the longitudinal to transverse pressure ratio (left)
and the pressure to energy ratio (right) in a simulation with Nf = 1 and Nf = 2 degenerate
fermions. We find in both cases, that the longitudinal pressure drops to zero after an initial
oscillatory phase and no pressure isotropy is reached. At the same time, the free streaming
limit is approached by the system, with the transverse pressure to energy ratio taking the
value of PT/ǫ→ 1/2. In contrast to the static box, we do not observe a significant difference
regarding pressure isotropization, when considering two degenerate quark flavors and still no
isotropy is reached. The only difference is present in the initial oscillatory phase, where the
frequency in case of a simulation with fermions turns out to be even higher in a simulation
with two fermions present, which has to be connected to the fact that the degrees of freedom
in the fermion sector have been doubled.
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Figure 13.32: Longitudinal to transverse pressure ratio (left) and pressure to energy ratio (right) for
a simulation with Nf = 1 fermions of mass m = 8.33 MeV and Nf = 2 fermions of mass m = 7.34 MeV.
The simulation for Nf = 1 has been performed on a 50× 50× 40 lattice, with a⊥ = 0.24 fm and for
Nf = 2 on a 44× 44× 40 lattice, with a⊥ = 0.27 fm. The longitudinal lattice spacing is aη = 0.075, the
initial time is set to τ0 = 0.1 fm, the coupling to g = 2 and the fermion ensemble size is Nens = 750.

This is supported by the occupation of energy modes in the transverse plane and the
lattice average in these planes. We give the occupation for the Yang-Mills sector, in the two
flavor case in (figure 13.33). Comparing it to the one flavor case (figure 13.11) and (figure
13.13), we find that there is only a small deviation for occupied high energy modes. As
expected, high energy modes become occupied slightly earlier in case of two flavors, which
can be seen best for the lattice averaged occupation in the transverse plane. Nevertheless,
the rapid longitudinal expansion dominates the dynamics of the system, not leading to an
approximately equal occupation of energy modes at late times.

Figure 13.33: Occupation of energy modes in the transverse planes (left) and an average of these
planes (right) as a function of the longitudinal Fourier mode ν, for a simulation with Nf = 2 fermions
of mass m = 7.34 MeV. The simulation has been performed on a lattice with 44× 44× 40 points, with
a⊥ = 0.27 fm. The longitudinal lattice spacing is aη = 0.075, the initial time is set to τ0 = 0.1 fm, the
coupling to g = 2 and the fermion ensemble size is Nens = 750.



Conclusion and Research Perspectives

In this thesis we investigated the impact of fermions coupled to classical Yang-Mills fields of the
Glasma, on the dynamics of the system, in a static and a longitudinally expanding box. The
non-equilibrium Glasma has been constructed from the Color-Glass-Condensate effective theory
for the early phase of a heavy ion collision, after τ ≈ 0.1 fm and used as an initial condition
for the Yang-Mills sector, whereas the fermions entered as vacuum fermions. The dynamics
has been governed from the equations of motion of a semi-classical approximation of QCD,
where we have seen, that the fermions enter as a color current. We presented a systematic
renormalization and derived the observables, measured in the lattice simulation. With the
classical lattice theory being UV-divergent and a continuum limit therefore not being possible,
we fixed the lattice spacing, by matching the energy density to an estimate for the early phase
of a heavy ion collision, based on a saturation model [132].

We found in the static box, that in contrast to pure Yang-Mills simulations, the initially
highly anisotropic pressure of the Glasma isotropizes, when coupling the system to fermions.
We additionally found, that the limit of P/ǫ→ 1/3, familiar from an ultra-relativistic gas of free
particles, is reached for the pressure to energy ratio, for both, the total system and the individual
fermion and Yang-Mills sector. We saw, that this observation is not strongly dependent on the
fermion mass, testing for masses that are parametrically of the order of the strange-quark mass
and the up/down-quark mass. We identified a redistribution from overoccupied low, to high
energy modes, caused from an energy exchange between the Yang-Mills and fermion sector,
as a necessity for the development of pressure isotropy. This process essentially compares to
the energy cascade necessary for thermalization (cf. [58]) and caused from a chromo-Weibel
instability in a pure Yang-Mills system with broken boost invariance. We found, that the process
is supported, when doubling the degrees of freedom in the fermion sector, setting Nf = 2, but
suppressed, when reducing the interaction strength of fermions and Yang-Mills fields, namely
the coupling g. All in all, a coupling to fermions drives the Glasma towards pressure isotropy
in a static box. However, no perfect isotropy is reached at the time where hydrodynamics
is expected to become applicable thydro ≈ 1 fm, but the system is far from the free-streaming limit.

From a matching of the late time energy density of the fermion sector to the energy density of a
free gas, we extracted a temperature of the order of T ∼ 1400 MeV, that is much larger than an
estimate of T ∼ 300 MeV for the QGP from experimental data [160]. This approach is limited,
because we neglected the longitudinal expansion of the system and treated the fermions as a
free gas at late times. On top of that, we saw that the overoccupation of low energy modes is
erased during the evolution. As a consequence, classical field modes are no longer overoccupied
and the approximation breaks down at late times in the static box.

In a second part of this work, we extended the model to a longitudinally expanding box,
presenting the equations of motion and observables and the vacuum solution of the Dirac
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equation in Milne coordinates, used as an initial condition for the fermion sector. The lattice
spacing could again be fixed from a matching procedure. We performed simulations in the
central rapidity region, using the formation time of the Glasma τ ≈ 0.1 fm as an initial time. We
found, that no pressure isotropization is reached in the expanding box, independent on fermion
masses, parametrically of the order of the up/down- and strange-quark mass. On the opposite,
the system falls into the free-streaming limit, where the fermions and classical gluons evolve
(quasi-)free at late times. It was possible to identify the characteristics of the free-streaming
limit, familiar from pure Yang-Mills simulations. We saw, that the energy density decreases
with ∼ 1

τ
, the longitudinal pressure drops to zero and the ratio of the transverse pressure to

energy reaches PT/ǫ→ 1/2.

Although the coupling to fermions leads to an occupation of high energy modes in the expanding
box as well, this turns out to happen much slower than in the static box and no approximate
uniform occupation is reached at late times, leading to no pressure isotropization. An arising
instability, identified in the Fourier transformed longitudinal pressure of the Yang-Mills sector,
is not strong enough to succeed over the rapid longitudinal expansion and pressure isotropy is
prevented. This remains to be true, when additionally breaking longitudinal boost invariance in
the Yang-Mills sector, or considering two degenerate fermions. That this is indeed rooted in the
rapid longitudinal expansion of the system could be demonstrated, by investigating a slowly
expanding system, where the free-streaming limit is not reached, when coupling to fermions.

For the occupation of energy modes, the reduced energy exchange between the sectors and
the generation of additional low energy modes in longitudinal direction due to the expansion,
causes low energy modes to remain overoccupied in the expanding box. As a consequence, the
classical approximation does not break down at late times, in contrast to the static box. On
the downside, we have seen that pressure isotropy can only be reached in a system, where the
occupation of energy modes is equalized. In general, it turns out that reaching pressure isotropy
competes with the validity of the classical approximation.

In a future work, one could use the results of this thesis for a matching to QCD kinetic
theory and/or hydrodynamics as discussed e.g. in [50]. Another approach could be a treatment
of the Yang-Mills UV-modes in a systematic way, using either Vlasov equations [167, 168, 169],
or the NLO calculations presented in [63, 64]. On top of that, considering nuclei of finite
thickness, has turned out to be a promising improvement of the model [65, 66, 67]. For the
fermions, it could be interesting to initialize them in the background of the static color sources
of the CGC effective theory. A formalism for the expanding box has been presented in[74], but
it has (yet) never been realized in a simulation.

Finally, having seen that the overoccupation of classical field modes breaks down when
moving towards pressure isotropy, an important question is a running of coupling. Due to
the breakdown, it is no longer valid to take the coupling to be fixed at the scale of gluon
saturation Qs from the CGC. One would expect a running towards strong coupling, that
could have important consequences on the thermalization of the system [170]. Especially
quantum effects would become more important for the dynamics of the system and an inclusion
would be inevitable, also putting the applicability of perturbative methods under question
and demanding a different theoretical description.



A
Appendix A - Quantum Chromodynamics on

the Lattice

A.1 Pauli matrices

The Pauli matrices are given as

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

. (A.1)

A.2 Dirac matrices

The gamma matrices in the Dirac basis are given as

γ0 =

(

✶ 0
0 −✶

)

, γi =

(

0 −σi
σi 0

)

, (A.2)

with σi denoting the Pauli matrices (eq. A.1). We do not specify the euclidean Dirac matrix γ4,
that only appears in the euclidean formulation of lattice QCD, because we consider real time only.

A.3 Generators of SU(3)

The generators of the SU(3) Lie-group are given as

T a =
λa

2
. (A.3)

They satisfy the following Lie-algebra
[

T a, T b
]

= ifabcT c, (A.4)
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with structure constants fabc given as

f 123 = 1,

f 147 = −f 156 = f 246 = −f 257 = f 345 = −f 367 =
1

2
, (A.5)

f 458 = f 678 =

√
3

2
.

All other structure constants, not related to the given ones by permutation, are vanishing.

The generators of SU(3) Yang-Mills theory T a, with a ∈ {1, ..., N2
c − 1} are defined from

the Gell-Mann matrices λa

λ1 =






0 1 0
1 0 0
0 0 0




 , λ2 =






0 −i 0
i 0 0
0 0 0




 , λ3 =






1 0 0
0 −1 0
0 0 0




 ,

λ4 =






0 0 1
0 0 0
1 0 0




 , λ5 =






0 0 −i
0 0 0
i 0 0




 , (A.6)

λ6 =






0 0 0
0 0 1
0 1 0




 , λ7 =






0 0 0
0 0 −i
0 i 0




 , λ8 =

1√
3






1 0 0
0 1 0
0 0 −2




 .

A.4 Derivation of the lattice Yang-Mills equation

We present the derivation of the classical Yang-Mills equation on the lattice by making use of
dimensionless quantities, rescaling all using the lattice spacing a. As discussed in (section 2.1),
the classical equation of motion of the lattice chromo-electric field can be derived from

∂t̄Ē
a
i (x) =− g2a4 ∂HYM

∂Ãai (x)
= − ∂

∂Āai (x)
Retr

[

Ēk(y)Ēk(y) + 2
∑

k<j

(

1− Ukj(y)
)
]

(A.7)

=2
∂

∂Āai (x)

∑

k<j

Retr

[

Uk(y)Uj(y + k̂)U †
k(y + ĵ)U †

j (y)

]

.

Taking the derivatives we find

∂

∂Āai (x)
Uk(y) =

∂

∂Āai (x)
eiĀb

k
(y)T b = iδabT

beiĀb
k

(y)T bδxyδik = iT aδxyδikUk(y), (A.8)

∂

∂Āai (x)
Uj(y + k̂) = iT aδijδx,y+k̂Uj(y + k̂), (A.9)

∂

∂Āai (x)
U †
j (y) =

∂

∂Āai (x)
e−iĀbj(y)T b = −iδabδijδxye

−iĀbj(y)T bT b = −iδijδxyU
†
j (y)T a, (A.10)

∂

∂Āai (x)
U †
k(y + ĵ) = −iδikδx,y+ĵU

†
k(y + ĵ)T a. (A.11)
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Using these results leads to

∂t̄Ē
a
i (x) = 2

∑

k<j

Retr

[

iT a
(

Uk(y)Uj(y + k̂)U †
k(y + ĵ)U †

j (y)δikδxy (A.12)

+ Uj(y + k̂)U †
k(y + ĵ)U †

j (y)Uk(y)δijδx,y+k̂

− U †
j (y)Uk(y)Uj(y + k̂)U †

k(y + ĵ)δikδx,y+ĵ

− Uk(y)Uj(y + k̂)U †
k(y + ĵ)U †

j (y)δijδxy

)]

,

where we used the cyclicity of the trace. It is now possible to identify the lattice plaquettes, lead-
ing to

∂t̄Ē
a
i (x) = 2

∑

k<j

Retr

[

iT a
(

Ukj(y)δikδxy + Uj,−k(y + k̂)δijδx,y+k̂ (A.13)

− U−jk(y + ĵ)δikδx,y+ĵ − Ukj(y)δijδxy

)]

= 2
∑

k<j

Retr

[

iT a
(

Ukj(x)δik + Uj,−k(x)δij − U−jk(x)δik − Ukj(x)δij

)]

.

Finally, we use Re(iz) = −Im(z) and Imtr
[

T aUji(x)
]

= −Imtr
[

T aUij(x)
]

, and make use of
the Kronecker deltas for Lorentz indices

∂t̄Ē
a
i (x) = 2Imtr

[

T a
∑

i<j

(

Uji(x) + U−ji(x)
)

+ T a
∑

i>j

(

Uji(x) + U−ji(x)
)]

(A.14)

= 2
∑

j 6=i
Imtr

[

T a
(

Uji(x) + U−ji(x)
)]

,

with T a† = T a and U †
ij(x) = Uji(x).

A.5 Equivalence of the lattice and the continuum equa-

tion

In this appendix we briefly motivate, how the continuum equation of motion for the chromo-
electric field can be reproduced from the corresponding lattice equation of motion, when
taking the continuum limit a → 0. This is possible to show from (eq. 2.13), making use
of the Baker-Campbell-Hausdorff formula

eXeY = eX+Y+ 1
2

[X,Y ]+ 1
12

[X,[X,Y ]]− 1
12

[Y,[X,Y ]], (A.15)

with X and Y denoting two arbitrary matrices of the same dimension. We use the Baker-
Campbell-Hausdorff formula to rewrite the lattice plaquette entering the equation of motion
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of the chromo-electric field (eq. 2.13), neglecting all terms of the order O(a4)

Uji(x) =eiagAj(x)eiagAi(x+ĵ)e−iagAj(x+î)e−iagAi(x) (A.16)

= exp

[

iag
((

Ai(x+ ĵ)− Ai(x)
)

−
(

Aj(x+ î)− Aj(x)
))

− 1

2
a2g2

([

Aj(x), Ai(x+ ĵ)
]

+
[

Aj(x+ î), Ai(x)
])

+
1

2
a2g2

[

Aj(x) + Ai(x+ ĵ), Aj(x+ î) + Ai(x)
]

− i

12
a3g3

([

Aj(x),
[

Aj(x), Ai(x+ ĵ)
]]

−
[

Ai(x+ ĵ),
[

Aj(x), Ai(x+ ĵ)
]]

−
[

Aj(x+ î),
[

Aj(x+ î), Ai(x)
]]

+
[

Ai(x),
[

Aj(x+ î), Ai(x)
]])

− i

4
a3g3

([

Aj(x) + Ai(x+ ĵ),
[

Aj(x+ î), Ai(x)
]]

−
[[

Aj(x), Ai(x+ ĵ)
]

, Aj(x+ î) + Ai(x)
])

+
i

12
a3g3

([

Aj(x) + Ai(x+ ĵ),
[

Aj(x) + Ai(x+ ĵ), Aj(x+ î) + Ai(x)
]]

+
[

Aj(x+ î) + Ai(x),
[

Aj(x) + Ai(x+ ĵ), Aj(x+ î) + Ai(x)
]])

+O(a4)

]

It is possible to simplify the majority of the commutators, by making use of

Ai(x+ ĵ) = Ai(x) + a∂jAi(x) +O(a2). (A.17)

Inserting this and simplifying the commutators in a tedious calculation finally leads to

Uji(x) = exp

(

ia2g
(

∂jAi(x)− ∂iAj(x)
)

− a2g2
[

Aj(x), Ai(x)
]

+
1

2
a3g2

(

2
[

∂jAi(x), Aj(x)
]

− 2
[

∂iAj(x), Ai(x)
]

+
[

∂jAi(x), Ai(x)
]

−
[

∂iAj(x), Aj(x)
])

(A.18)

− i

2
a3g3

([

Aj(x),
[

Aj(x), Ai(x)
]]

+
[

Ai(x),
[

Aj(x), Ai(x)
]])

+O(a4)

)

.

It is possible to repeat all previous steps for the plaquette U−ji, this time making use of

Ai(x− ĵ) = Ai(x)− a∂jAi(x) +O(a2). (A.19)

After expanding the exponential function, the sum of both plaquettes is given as

Uij(x)+U−ji(x) (A.20)

=2 + ia3g
(

∂j∂jAi(x)− ∂i∂jAj(x)
)

+ i2a3g2
([

∂jAj(x), Ai(x)
]

+
[

Aj(x), ∂jAi(x)
])

+ i2a3g2
([

Aj(x), ∂jAi(x)
]

−
[

Aj(x), ∂iAj(x)
]

+ ig
[

Aj(x),
[

Aj(x), Ai(x)
]])

.

We can now insert the continuum field strength tensor (eq. 1.12) and use

∂jFji(x) =∂j∂jAi(x)− ∂j∂iAj(x) + ig∂j
[

Aj(x), Ai(x)
]

(A.21)

=∂j∂jAi(x)− ∂j∂iAj(x) + ig
([

∂jAj(x), Ai(x)
]

+
[

Aj(x), ∂jAi(x)
])

,
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finally obtaining

Uij(x) + U−ji(x) =2 + ia3g
(

∂jFji(x) + ig
[

Aj(x), Fji(x)
])

+O(a4) (A.22)

=2 + ia3g
(

∂jF
b
ji(x)T b − gf bdeT bAdj (x)F e

ji(x)
)

+O(a4).

We can now take the color trace

2tr
[

T a
(

Uij(x) + U−ji(x)
)]

=2tr
[

2T a + ia3g
(

∂jF
b
ji(x)T bT a − gf bdeT bT aAdj (x)F e

ji(x)
)]

=4 trT a
︸ ︷︷ ︸

=0

+ia3g
(

∂jF
b
ji(x)2 tr

[

T bT a
]

︸ ︷︷ ︸

= 1
2
δab

−gf bde2 tr
[

T bT a
]

︸ ︷︷ ︸

= 1
2
δab

Adj (x)F e
ji(x)

)

=ia3g
(

∂jF
a
ji − gfabcAbj(x)F c

ji(x)
)

. (A.23)

Inserting this result into (eq. 2.13) we find

∂t̃Ẽ
a
i (x) = ga3∂tE

a
i (x) =2

∑

j 6=i
Imtr

[

T a
(

Uji(x) + U−ji(x)
)]

(A.24)

=
∑

j 6=i
Im
[

ia3g
(

∂jF
a
ji − gfabcAbj(x)F c

ji(x)
)]

=ga3
∑

j 6=i

[

∂jF
a
ji − gfabcAbj(x)F c

ji(x)
]

,

demonstrating the equivalence of continuum and lattice equation of motion, in the limit a→ 0.

A.6 Naive Free Fermion Propagator on a Minkowski lat-

tice

The (naive) Dirac operator of free fermions on a Minkowski lattice is given as

ψ̄(x)

(

iγ0δ(x0 − y0)∂y0δxy +
3∑

i=1

i

2a
γi
(

δx+î,y − δx−î,y

)

δ(x0 − y0)−mδxyδ(x
0 − y0)

)

ψ(y)

= ψ̄(x)D(x, y)ψ(y). (A.25)

The lattice propagator of a free Dirac field is now given by inverting the Dirac operator. The
inversion is done in momentum space, preforming a spacial discrete Fourier transformation
and a continuous Fourier transformation in time

D̃(p, q) =
1

|Λ|
∫

∑

x,y∈Λ

e−ipxD(x, y)eiqydx0dy0, (A.26)

with Λ =
{

xi|xi = ani, ni ∈ (0, ..., Ni)
}

the (isotropic) spacial lattice. Note that

∑

x,y∈Λ

e−ipxδx+î,ye
iqy =

∑

x∈Λ

e−ipxeiq(x+µ̂) =
∑

x∈Λ

e−i(p−q)xeiqia, (A.27)

∑

x,y∈Λ

e−ipxδx−î,ye
iqy =

∑

x∈Λ

e−ipxeiq(x−î) =
∑

x∈Λ

e−i(p−q)xe−iqia.
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We arrive at

D̃(p, q) =
1

|Λ|
∫
∑

x∈Λ

(

− γ0q0 +
3∑

i=1

i

2a
γi
(

eiqia − e−iqia
)

︸ ︷︷ ︸

=− 1
a
γi sin(qia)

−m
)

e−i(p−q)xdx0. (A.28)

We found

D̃(p) = −γ0p0 −
1

a

3∑

i=1

γi sin
(

pia
)

−m. (A.29)

To invert the operator, let us consider

D̃(p) =

(

− γ0p0 −
1

a

∑

i = 13γi sin
(

pia
)

−m
) −γ0p0 − 1

a

3∑

i=1
γi sin

(

pia
)

+m

−γ0p0 − 1
a

∑3
i=1 γ

i sin
(

pia
)

+m
(A.30)

=

p2
0 +

3∑

i,j=1

1
a2η

ij sin(pia) sin(pja)−m2

−γ0p0 −
3∑

i=1

1
a
γi sin

(

pia
)

+m
,

where we used
{

γµ, γν
}

= 2ηµν . (A.31)

Inverting the Dirac operator then leads to

D̃−1(p) = −
γ0p0 +

3∑

i=1

1
a
γi sin

(

pia
)

−m

p2
0 +

3∑

i,j=1

1
a2ηij sin(pia) sin(pja)−m2

. (A.32)



B
Appendix B - Derivation of the Semi-Classical

Model in the Static Box

B.1 Linearization of the Yang-Mills Action

In this appendix, we linearize the Yang-Mills action on the real-time Schwinger-Keldysh contour
(figure 4.1)

SYM [Ā, Ã] = −1

4

∫

C
F a
µν [Ā, Ã](x)F µν,a[Ā, Ã](x)d4x, (B.1)

in the quantum fluctuation Ãµ. Using the ansatz (eq. 4.12), the linearized field-strength-tensor is
given as

F a
µν =

(

∂µĀ
a
ν − ∂νĀaµ

)

+
(

∂µÃ
a,±
ν − ∂νÃa,±µ

)

− gfabc
(

ĀbµĀ
c
ν + ĀbµÃ

c,±
ν + Ãb,±µ Ācν

)

+O
(

Ã2
)

.

(B.2)

To shorten the notation, we define

G̃a,±
µν =∂µÃ

a,±
ν − ∂νÃa,±µ , Ḡa

µν = ∂µĀ
a
ν − ∂νĀaµ, (B.3)

leading to

F a
µν [Ã, Ā] = Ḡa

µν + G̃a,±
µν − gfabc

(

ĀbµĀ
c
ν + ĀbµÃ

c,±
ν + Ãb,±µ Ācν

)

+O
(

Ã2
)

. (B.4)

We now have to consider the contraction of the field-strength-tensor with itself. We neglect all
O(Ã2) contributions and the lengthy calculation can significantly be simplified by making
use of the following identities

fabcḠa
µν

(

Āµ,bÃν,c,± + Ãµ,b,±Āν,c
)

=fabcḠa
µνĀ

µ,bÃν,c,± + facbḠa
νµÃ

ν,c,±Āµ,b (B.5)

=2fabcḠa
µνĀ

µ,bÃν,c,±,

197
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and

fabcfade
(

Āµ,bÃν,c,±ĀdµĀ
e
ν + Ãµ,b,±Āν,cĀdµĀ

e
ν + Āµ,bĀν,cĀdµÃ

e,±
ν + Āµ,bĀν,cÃd,±µ Āeν

)

(B.6)

=fabcfaedĀµ,bÃν,c,±ĀdµĀ
e
ν + facbfadeÃν,c,±Āµ,bĀeνĀ

d
µ + fabcfaedĀµ,dĀν,eĀbµÃ

c,±
ν

+ facbfadeĀν,dĀµ,eÃb,±ν Ācµ

=4fabcfaedĀµ,bÃν,c,±ĀdµĀ
e
ν .

As well as

fabcG̃a,±
µν Ā

µ,bĀν,c =fabc
(

∂µÃ
a,±
ν − ∂νÃa,±µ

)

Āµ,bĀν,c (B.7)

=fabc
(

∂µÃ
a,±
ν

)

Āµ,bĀν,c − facb
(

∂µÃ
a,±
ν

)

Āν,cĀµ,b = 2fabc
(

∂µÃ
a,±
ν

)

Āµ,bĀν,c,

and

G̃µν,a,±Ḡa
µν =

(

∂µÃ
a,±
ν − ∂νÃa,±µ

)

Ḡµν,a = ∂µÃ
a,±
ν Ḡµν,a − ∂µÃa,±ν Ḡνµ,a = 2

(

∂µÃ
a,±
ν

)

Ḡµν,a. (B.8)

Combining all results, we arrive at

F µν,aF a
µν =Ḡµν,aḠa

µν + 4
(

∂µÃ
a,±
ν

)

Ḡµν,a (B.9)

− 4gfabcḠa
µνĀ

µ,bÃν,c,± − 2gfabcḠa
µνĀ

µ,bĀν,c − 4gfabc
(

∂µÃ
a,±
ν

)

Āµ,bĀν,c

+ g2fabcfadeĀµ,bĀν,cĀdµĀ
e
ν + 4g2fabcfaedĀµ,bÃν,c,±ĀdµĀ

e
ν

=Ḡµν,aḠa
µν − 2gfabcḠa

µνĀ
µ,bĀν,c + g2fabcfadeĀµ,bĀν,cĀdµĀ

e
ν

+ 4
(

∂µÃ
a,±
ν

)[

Ḡµν,a − gfabcĀµ,bĀν,c
]

− 4gĀbµÃ
c,±
ν fabc

[

Ḡµν,a − gfadeĀµ,dĀν,e
]

=F̄ µν,aF̄ a
µν + 4

(

∂µÃ
a,±
ν

)

F̄ µν,a − 4gfabcĀbµÃ
c,±
ν F̄ µν,a.

After renaming some indices, we find the following result for the linearized Yang-Mills action

SYM [Ã, Ā] = −1

4

∫

C

(

F̄ µν,aF̄ a
µν + 4

(

∂µÃ
a,±
ν

)

F̄ µν,a + 4gfabcÃa,±ν ĀbµF̄
µν,c

)

d4x+O(Ã2). (B.10)

B.2 Derivation of the Fermion Self Energy

Before turning to the derivation of (eq. 5.20), let us introduce some useful propagators and
identities for real time statistical quantum field theory. In the real time formalism, the fermion
propagator is defined on the Schwinger-Keldysh time contour (figure 4.1) and therefore becomes
matrix valued, because fields can either be located on the upper or lower branch of the contour.
As a consequence, the fields entering the propagator can either be located on the same branch

D++(x, y) = 〈ψ+(x)ψ̄+(y)〉 , D−−(x, y) = 〈ψ−(x)ψ̄−(y)〉 , (B.11)

or mix branches

D+−(x, y) = 〈ψ+(x)ψ̄−(y)〉 , D−+(x, y) = 〈ψ−(x)ψ̄+(y)〉 . (B.12)
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These definitions are related to the Wightman-functions, cf. (chapter 5.3)

D++(x, y) = D>(x, y)Θ(x0 − y0) +D<(x, y)Θ(y0 − x0) (B.13)

D−−(x, y) = D>(x, y)Θ(y0 − x0) +D<(x, y)Θ(x0 − y0) (B.14)

D+−(x, y) = −D<(x, y) (B.15)

D−+(x, y) = −D>(x, y), (B.16)

where Θ(y0 − x0) denotes the Heaviside-function. At equal time and equal position, these
relations simplify in the following way

D++(x, x) = D>(x, x)Θ(x0 − x0) +D<(x, x)Θ(x0 − x0) = D>(x, x) +D<(x, x) (B.17)

D−−(x, x) = D>(x, x)Θ(x0 − x0) +D<(x, x)Θ(x0 − x0) = D>(x, x) +D<(x, x) (B.18)

⇒ D++(x, x) = D−−(x, x). (B.19)

To evaluate the four-point vacuum expectation values of fermion fields entering (eq. 5.17)
and (eq. 5.18), we have to make use of the Wick theorem

〈ψ±
1 ψ

±
2 ψ̄

±
3 ψ̄

±
4 〉 ∼ − 〈ψ±

1 ψ̄
±
3 〉 〈ψ±

2 ψ̄
±
4 〉 = D±±(x1 − x3)D

±±(x2 − x4). (B.20)

Using these relations, the first four-point fermion vacuum expectation value entering (eq. 5.17)
can be evaluated using real-time propagators,
〈

ψ̄+(x)γνT aψ+(x)ψ̄+(z)γµT bψ+(z)
〉

=
〈

ψ̄+
α,i(x)γναβT

a
ijψ

+
β,j(x)ψ̄+

δ,n(z)γµδσT
b
nmψ

+
σ,m(z)

〉

(B.21)

=
〈

ψ̄+
α,i(x)ψ+

β,j(x)ψ̄+
δ,n(z)ψ+

σ,m(z)
〉

γναβT
a
ijγ

µ
δσT

b
nm

=
〈

ψ+
β,j(x)ψ̄+

α,i(x)
〉 〈

ψ+
σ,m(z)ψ̄+

δ,n(z)
〉

γναβT
a
ijγ

µ
δσT

b
nm

−
〈

ψ+
β,j(x)ψ̄+

δ,n(z)
〉 〈

ψ+
σ,m(z)ψ̄+

α,i(x)
〉

γναβT
a
ijγ

µ
δσT

b
nm

=tr
(〈

ψ+(x)ψ̄+(x)
〉

γνT a
)

tr
(〈

ψ+(z)ψ̄+(z)
〉

γµT b
)

− tr
(〈

ψ+
β,j(x)ψ̄+

δ,n(z)
〉

γµT b
〈

ψ+
σ,m(z)ψ̄+

α,i(x)
〉

γνT a
)

=tr
(

D++(x, x)γνT a
)

tr
(

D++(z, z)γµT b
)

− tr
(

D++(x, z)γµT bD++(z, x)γνT a
)

.

For the other four-point expectation values in (eq. 5.17) and (eq. 5.18) one finds a similar result,

〈

ψ̄−(x)γνT aψ−(x)ψ̄−(z)γµT bψ−(z)
〉

=tr
(

D−−(x, x)γνT a
)

tr
(

D−−(z, z)γµT b
)

(B.22)

− tr
(

D−−(x, z)γµT bD−−(z, x)γνT a
)

,

〈

ψ̄+(x)γνT aψ+(x)ψ̄−(z)γµT bψ−(z)
〉

=tr
(

D++(x, x)γνT a
)

tr
(

D−−(z, z)γµT b
)

(B.23)

− tr
(

D+−(x, z)γµT bD−+(z, x)γνT a
)

,
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〈

ψ̄−(x)γνT aψ−(x)ψ̄+(z)γµT bψ+(z)
〉

=tr
(

D−−(x, x)γνT a
)

tr
(

D++(z, z)γµT b
)

(B.24)

− tr
(

D−+(x, z)γµT bD+−(z, x)γνT a
)

.

The combination of four-point vacuum expectation values entering (eq. 5.17) hence can be written
as

〈

ψ̄+(x)γνT aψ+(x)ψ̄+(z)γµT bψ+(z)
〉

−
〈

ψ̄+(x)γνT aψ+(x)ψ̄−(z)γµT bψ−(z)
〉

(B.25)

=tr
(

D++(x, x)γνT a
)

tr
(

D++(z, z)γµT b
)

− tr
(

D++(x, z)γµT bD++(z, x)γνT a
)

− tr
(

D++(x, x)γνT a
)

tr
(

D−−(z, z)γµT b
)

+ tr
(

D+−(x, z)γµT bD−+(z, x)γνT a
)

=− tr
(

D++(x, z)γµT bD++(z, x)γνT a
)

+ tr
(

D+−(x, z)γµT bD−+(z, x)γνT a
)

,

and in case of (eq. 5.18)

〈

ψ̄−(x)γνT aψ−(x)ψ̄−(z)γµT bψ−(z)
〉

−
〈

ψ̄−(x)γνT aψ−(x)ψ̄+(z)γµT bψ+(z)
〉

(B.26)

=− tr
(

D−−(x, z)γµT bD−−(z, x)γνT a
)

+ tr
(

D−+(x, z)γµT bD+−(z, x)γνT a
)

.

In a next step, we replace the real-time propagators by Wightman-functions, using the relations
(eq. B.13) introduced earlier

tr
[

D++(x, z)γµT bD++(z, x)γνT a
]

(B.27)

= tr
[(

D>(x, z)Θ(x0 − z0) +D<(x, z)Θ(z0 − x0)
)

γµT b

(

D>(z, x)Θ(z0 − x0) +D<(z, x)Θ(x0 − z0)
)

γνT a
]

= tr
[

D>(x, z)γµT bD<(z, x)γνT a
]

Θ(x0 − z0) + tr
[

D<(x, z)γµT bD>(z, x)γνT a
]

Θ(z0 − x0)

+

(

tr
[

D>(x, z)γµT bD>(z, x)γνT a
]

+ tr
[

D<(x, z)γµT bD<(z, x)γνT a
])

Θ(x0 − z0)Θ(z0 − x0),

where we used that Θ2(x0 − z0) = Θ(x0 − z0). In a similar way we find

tr
[

D−−(x, z)γµT bD−−(z, x)γνT a
]

(B.28)

= tr
[(

D>(x, z)Θ(z0 − x0) +D<(x, z)Θ(x0 − z0)
)

γµT b

(

D>(z, x)Θ(x0 − z0) +D<(z, x)Θ(z0 − x0)
)

γνT a
]

= tr
[

D>(x, z)γµT bD<(z, x)γνT a
]

Θ(z0 − x0) + tr
[

D<(x, z)γµT bD>(z, x)γνT a
]

Θ(x0 − z0)

+

(

tr
[

D>(x, z)γµT bD>(z, x)γνT a
]

+ tr
[

D<(x, z)γµT bD<(z, x)γνT a
])

Θ(x0 − z0)Θ(z0 − x0).
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For the branch mixing propagators, we find

tr
[

D+−(x, z)γµT bD−+(z, x)γνT a
]

= tr
[

D<(x, z)γµT bD>(z, x)γνT a
]

, (B.29)

tr
[

D−+(x, z)γµT bD+−(z, x)γνT a
]

= tr
[

D>(x, z)γµT bD<(z, x)γνT a
]

. (B.30)

When integrating with respect to z, the double Heaviside contribution is vanishing

∞∫

−∞

Θ(x0 − z0)Θ(z0 − x0)f(z)dz0 =

x0∫

x0

f(z)dz0 = F (x0)− F (x0) = 0, (B.31)

therefore it can be neglected.

Combining all results, we can rewrite the fermion four-point interaction in (eq. 5.17) as

ig2
∫ ( 〈

ψ̄+(x)γνT aψ+(x)ψ̄+(z)γµT bψ+(z)
〉

−
〈

ψ̄+(x)γνT aψ+(x)ψ̄−(z)γµT bψ−(z)
〉)

Ābµ(z)d4z

=ig2
∫ (

tr
[

D<(x, z)γµT bD>(z, x)γνT a
](

1−Θ(z0 − x0)
)

(B.32)

− tr
[

D>(x, z)γµT bD<(z, x)γνT a
]

Θ(x0 − z0)
)

Ābµ(z)d4z.

Making use of the identity
(

1 − Θ(z0 − x0)
)

= Θ(x0 − z0) we finally find

ig2
∫ (

tr
[

D<(x, z)γµT bD>(z, x)γνT a
]

− tr
[

D>(x, z)γµT bD<(z, x)γνT a
])

Ābµ(z)Θ(x0 − z0)d
4z

= ig2
∫

Θ(x0 − z0)tr
[

D<(x, z)γµT bD>(z, x)γνT a −D>(x, z)γµT bD<(z, x)γνT a
]

Ābµ(z)d4z.

(B.33)

We can repeat this calculation for the four-point fermion interaction of (eq. 5.18)

−ig2
∫ (〈

ψ̄−(x)γνT aψ−(x)ψ̄−(z)γµT bψ−(z)
〉

(B.34)

−
〈

ψ̄−(x)γνT aψ−(x)ψ̄+(z)γµT bψ+(z)
〉)

Ābµ(z)d4z

= ig2
∫

Θ(x0 − z0)tr
[

D<(x, z)γµT bD>(z, x)γνT a −D>(x, z)γµT bD<(z, x)γνT a
]

Ābµ(z)d4z,

leading to the identical result.
For the tadpole contributions in (eq. 5.17) and (eq. 5.18) it is possible to write

〈

ψ̄+(x)γνT aψ+(x)
〉

= tr
[

D++(x, x)γνT a
]

= 2tr
[

F (x, x)γνT a
]

, (B.35)

〈

ψ̄−(x)γνT aψ+(x)
〉

= tr
[

D−−(x, x)γνT a
]

= 2tr
[

F (x, x)γνT a
]

, (B.36)

where we used (eq. B.17) and identified the statistical propagator

D++(x, x) = D>(x, x) +D<(x, x) = 2F (x, x). (B.37)
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We found, that (eq. 5.17) and (eq. 5.18) are identical

∂µF̄
µν,a − gfabcĀbµF̄ µν,c − 2gtr

[

F (x, x)γνT a
]

(B.38)

+ ig2
∫

Θ(x0 − z0)tr
[

D<(x, z)γµT bD>(z, x)γνT a −D>(x, z)γµT bD<(z, x)γνT a
]

Ābµ(z)d4z = 0.

Identifying x0 = t and z0 = t′ in (eq. B.38) and use t = 0 as initial time, it is possible
to introduce the fermion self energy Σ

ig2
∫

Θ(x0 − z0)tr
[

D<(x, z)γµT bD>(z, x)γνT a −D>(x, z)γµT bD<(z, x)γνT a
]

Ābµ(z)d4z

= ig2

t∫

0

tr
[

D<(t− t′,x− z)γµT bD>(t′ − t, z− x)γνT a (B.39)

−D>(t− t′,x− z)γµT bD<(t′ − t, z− x)γνT a
]

Ābµ(t′, z)dt′d3z

=

t∫

0

Σµν,ab(t− t′,x− z)Ābµ(t′, z)dt′d3z,

which leads to the familiar form of the equation of motion (eq. 5.20)

∂µF̄
µν,a − gfabcĀbµF̄ µν,c − 2gtr

[

F (x, x)γνT a
]

+

t∫

0

Σµν,ab(x− z)Ābµ(z)d4z = 0. (B.40)

B.3 Wightman-Functions of Free Vacuum Fermions

In this appendix, we will derive the result for the Wightman-functions of free fermions, evaluated
with respect to the vacuum state (eq. 5.23).
Recalling the definition of the Wightman-functions

D>
αβ(x, y) =

〈

ψα(x)ψ̄β(y)
〉

, D<
αβ(x, y) = −

〈

ψ̄β(y)ψα(x)
〉

, (B.41)

we first apply a spacial Fourier transformation. Because the Wightman-functions are only
dependent on spacial differences in case of vacuum fermions, we find

D>
p,αβ(t, t′) =

∫

e−ipx
〈

ψα(t,x)ψ̄β(t′,0)
〉

d3x (B.42)

D<
p,αβ(t, t′) = −

∫

e−ipx
〈

ψ̄β(t′,0)ψα(t,x)
〉

d3x. (B.43)

Next we insert the Fourier decomposition of the fermion spinor (eq. 1.29)

ψα(t,x) =
∫ 2∑

s=1

(

as(k)uα,s(k)e−iωkt+ikx + b†
α,s(k)vs(k)eiωkt−ikx

)
d3k

(2π)3
. (B.44)

Inserting leads to

〈

ψα(t,x)ψ̄β(t′,0)
〉

=
∫ ∫ 2∑

s,r=1

〈0| as(k)a†
r(q) |0〉uα,s(k)ūβ,r(q)e−iωkt+iωqt′+ikx d3k

(2π)3

d3q

(2π)3
,

(B.45)
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where we have neglected all vacuum expectation values with annihilation operators acting on
the vacuum state.
The remaining vacuum expectation value is solved, by making use of the commutator (eq. 1.30)

〈0| as(k)a†
r(q) |0〉 = (2π)3δrsδ(k− q) 〈0 | 0〉 − 〈0| a†

r(q)as(k) |0〉 = (2π)3δrsδ(k− q). (B.46)

We arrive at

〈

ψα(t,x)ψ̄β(t′,0)
〉

=
∫ 2∑

s=1

uα,s(k)ūβ,s(k)e−iωk(t−t′)+ikx d3k

(2π)3
(B.47)

=
∫ 1

2ωk

(

/k +m
)

αβ
e−iωk(t−t′)+ikx d3k

(2π)3
,

where we performed the spin sum using (eq. 1.37) in the last step.

For the other Wightman-function we have

〈

ψ̄β(t′,0)ψα(t,x)
〉

=
∫ ∫ 2∑

s,r=1

〈0| br(q)b†
s(k) |0〉 vα,s(k)v̄β,r(q)e−iωqt′+iωkt−ikx d3k

(2π)3

d3q

(2π)3
.

(B.48)

Using

〈0| bs(k)b†
r(q) |0〉 = (2π)3δrsδ(k− q), (B.49)

then leads to

〈

ψ̄β(t′,0)ψα(t,x)
〉

=
∫ 2∑

s=1

vα,s(k)v̄β,r(k)eiωk(t−t′)−ikx d3k

(2π)3
(B.50)

=
∫ 1

2ωk

(

/k −m
)

αβ
eiωk(t−t′)−ikx d3k

(2π)3
.

Inserting these results now leads to

D>
p,αβ(t, t′) =

∫

e−ipx
〈

ψα(t,x)ψ̄β(t′,0)
〉

d3x (B.51)

=
∫

e−ipx

∫ 1

2ωk

(

/k +m
)

αβ
e−iωk(t−t′)+ikx d3k

(2π)3
d3x

=
∫ 1

2ωk

(

/k +m
)

αβ
e−iωk(t−t′)

∫

e−ix(p−k)d3x
d3k

(2π)3

=
∫ 1

2ωk

(

/k +m
)

αβ
e−iωk(t−t′)δ(p− k)d3k

=
1

2ωp

(

/p+m
)

αβ
e−iωp(t−t′).

The other Wightman function is derived in similar fashion

D<
p,αβ(t, t′) = −

∫ 1

2ωk

(

/k −m
)

αβ
eiωk(t−t′)δ(p + k)d3k. (B.52)
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Note that

/p = γαpα = γ0ωp + γipi (B.53)
p→−p⇒ γ0ω−p − γipi = γ0ωp + γ0γiγ0pi = γ0γαpαγ

0 = γ0
/pγ

0,

where we used −γi = γi† = γ0γiγ0. We finally arrive at

D<
p,αβ(t, t′) =− 1

2ωp

(

γ0
(

/p−m
)

γ0
)

αβ
eiωp(t−t′). (B.54)

B.4 Evaluating the Dirac Traces

In this appendix, we evaluate the Dirac traces of (eq. 5.28). We start with

tr
[

γ0
(

/p−m
)

γ0γµ
((

/p− /k
)

+m
)

γν
]

(B.55)

=tr
[

γ0
/pγ

0γµ
(

/p− /k
)

γν − γ0mγ0γµ
(

/p− /k
)

γν + γ0
/pγ

0γµmγν − γ0mγ0γµmγν
]

=tr
[

γ0γαγ0γµγβγν
]

pα(p− k)β −m2tr
[

γµγν
]

.

For the mass term we have

tr
[

γµγν
]

= 4ηµν , (B.56)

and for the other term

tr
[

γ0γαγ0γµγβγν
]

pα(p− k)β =tr
[

γ0γ0γ0γµγβγν
]

p0(p− k)β + tr
[

γ0γiγ0γµγβγν
]

pi(p− k)β

=tr
[

γ0γµγβγν
]

p0(p− k)β − tr
[

γiγµγβγν
]

pi(p− k)β, (B.57)

where we used that {γ0, γi} = 0. A trace of four gamma matrices is given as

tr
[

γαγµγβγν
]

=4
(

ηαµηβν − ηανηµβ + ηαβηµν
)

. (B.58)

Inserting this result leads to

tr
[

γ0γαγ0γµγβγν
]

pα(p− k)β =4
(

η0µηβν − η0νηµβ + η0βηµν
)

p0(p− k)β (B.59)

− 4
(

ηiµηβν − ηiνηµβ + ηiβηµν
)

pi(p− k)β

=4ηµν
(

ωpωp−k + p(p− k)
)

+ 4(p− k)ν
(

p0η
0µ − piηiµ

)

− 4(p− k)µ
(

p0η
0ν − piηiν

)

.

In total we have

tr
[

γ0
(

/p−m
)

γ0γµ
((

/p− /k
)

+m
)

γν
]

=4ηµν
(

ωpωp−k + p(p− k)−m2
)

(B.60)

+ 4(p− k)ν
(

p0η
0µ − piηiµ

)

− 4(p− k)µ
(

p0η
0ν − piηiν

)

.
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For the other trace we have

tr
[(

/p+m
)

γµγ0
((

/p− /k
)

−m
)

γ0γν
]

=tr
[

γαγµγ0γβγ0γν
]

pα(p− k)β −m2tr
[

γµγν
]

(B.61)

=tr
[

γ0γβγ0γνγαγµ
]

pα(p− k)β −m2tr
[

γµγν
]

.

The Dirac trace for the mass term is the same as found previously. For the first term we have

tr
[

γ0γβγ0γνγαγµ
]

pα(p− k)β =tr
[

γ0γ0γ0γνγαγµ
]

pα(p− k)0 + tr
[

γ0γiγ0γνγαγµ
]

pα(p− k)i

=tr
[

γ0γνγαγµ
]

pα(p− k)0 − tr
[

γiγνγαγµ
]

pα(p− k)i. (B.62)

Making use of the result for a trace of four gamma matrices again, we find

tr
[

γ0γβγ0γνγαγµ
]

pα(p− k)β =4
(

η0νηαµ − η0µηνα + η0αηνµ
)

pα(p− k)0 (B.63)

− 4
(

ηiνηαµ − ηiµηνα + ηiαηνµ
)

pα(p− k)i

=4ηµν
(

ωpωp−k + p(p− k)
)

+ 4pµ
(

(p− k)0η
0ν − (p− k)iη

iν
)

− 4pν
(

(p− k)0η
0µ − (p− k)iη

iµ
)

.

Putting everything together we find

tr
[(

/p+m
)

γµγ0
((

/p− /k
)

−m
)

γ0γν
]

= 4ηµν
(

ωpωp−k + p(p− k)−m2
)

(B.64)

+ 4pµ
(

(p− k)0η
0ν − (p− k)iη

iν
)

− 4pν
(

(p− k)0η
0µ − (p− k)iη

iµ
)

.

To shorten notation, we rewrite
(

(p− k)0η
0ν − (p− k)iη

iν
)

=
(

(p− k)0η0ν + (p− k)iηiν
)

=
∑

α

(p− k)αηαν , (B.65)

to avoid confusion, we will explicitly write the sum when using short notation.
We reproduce (eq. 5.28)

tr
[(

/p+m
)

γµγ0
((

/p− /k
)

−m
)

γ0γν
]

=4ηµν
(

ωpωp−k + p(p− k)−m2
)

(B.66)

+
∑

α,β

4ηµαηνβ
(

pα(p− k)β − pβ(p− k)α
)

,

tr
[

γ0
(

/p−m
)

γ0γµ
((

/p− /k
)

+m
)

γν
]

=4ηµν
(

ωpωp−k + p(p− k)−m2
)

(B.67)

+
∑

α,β

4ηµαηνβ
(

pα(p− k)β − pβ(p− k)α

)

.
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C
Appendix C - The Semi-Classical Model in the

Expanding Box

C.1 Simplifying the Dirac Equation in Milne Coordi-

nates

Starting from

γ0∂0 + γ3∂3 = γ0

(

cosh η ∂τ −
1

τ
sinh η ∂η

)

+ γ3

(

− sinh η ∂τ +
1

τ
cosh η ∂η

)

, (C.1)

let us simplify this result, that is used to define the Dirac equation in Milne coordinates (eq.
9.11).
Explicitly inserting the matrix representation of the Dirac gamma matrices allows us to write

γ0∂0 + γ3∂3 =








cosh η 0 − sinh η 0
0 cosh η 0 sinh η

sinh η 0 cosh η 0
0 − sinh η 0 − cosh η







∂τ (C.2)

+
1

τ
γ3








cosh η 0 − sinh η 0
0 cosh η 0 sinh η

sinh η 0 cosh η 0
0 − sinh η 0 − cosh η







∂η.

We now consider the following matrix exponential

e−ηγ0γ3

= exp








0 0 −η 0
0 0 0 η
−η 0 0 0
0 η 0 0







. (C.3)

It can be evaluated by diagonalizing the matrix

e−ηγ0γ3

= V eDV −1, (C.4)

207



208 C.2. Deriving the Matrix Equation for Free Expanding Box Fermions

with D denoting the diagonal matrix, constructed from the eigenvalues of −ηγ0γ3 and V a
transformation matrix, constructed from the eigenvectors.
The eigenvectors and eigenvalues are given as

λ1 = −η, vT1 =
(

0 −1 0 1
)

, (C.5)

λ2 = −η, vT2 =
(

1 0 1 0
)

, (C.6)

λ3 = η, vT3 =
(

0 1 0 1
)

, (C.7)

λ4 = η, vT4 =
(

−1 0 1 0
)

. (C.8)

Now, we can construct the transformation matrices

V =








0 1 0 −1
−1 0 1 0
0 1 0 1
1 0 1 0







, V −1 =

1

2








0 −1 0 1
1 0 1 0
0 1 0 1
−1 0 1 0







. (C.9)

Evaluating the matrix exponential now leads to

e−ηγ0γ3

=
1

2








0 1 0 −1
−1 0 1 0
0 1 0 1
1 0 1 0















e−λ 0 0 0
0 e−λ 0 0
0 0 eλ 0
0 0 0 eλ















0 −1 0 1
1 0 1 0
0 1 0 1
−1 0 1 0








=
1

2








e−λ + eλ 0 e−λ − eλ 0
0 e−λ + eλ 0 eλ − e−λ

e−λ − eλ 0 eλ + e−λ 0
0 eλ − e−λ 0 eλ + e−λ








(C.10)

=








cosh η 0 − sinh η 0
0 cosh η 0 sinh η

sinh η 0 cosh η 0
0 − sinh η 0 − cosh η







.

Using this result, we find

γ0∂0 + γ3∂3 = γ0e−ηγ0γ3

∂τ +
1

τ
γ3e−ηγ0γ3

∂η. (C.11)

This result can now directly be used to define the Dirac equation in Milne coordinates (eq. 9.11).

C.2 Deriving the Matrix Equation for Free Expanding

Box Fermions

In this appendix, we want to derive the matrix equation (eq. 10.45) for the free spinor
solution in an expanding geometry. Starting point is the Dirac equation for the mode functions
(eq. 10.25). When inserting the solution of the mode functions (eq. 10.44), we have to
calculate the time derivative

∂τ ψ̂
±
k⊥,ν,s,a

(τ) = ∂τ
√
τ
(

c±H
(2)/(1)

iν+ 1
2

(

Mk⊥
τ
)

P+ + c̃±H
(2)/(1)

iν− 1
2

(

Mk⊥
τ
)

P−
)

ψ̂±
k⊥,ν,s,a

. (C.12)
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When calculating the derivative, the following relations for Hankel functions will be of great use
[164]

∂xH
(2)/(1)
µ (x) = H

(2)/(1)
µ−1 (x)− µ

x
H(2)/(1)
µ (x), (C.13)

∂xH
(2)/(1)
µ (x) =

µ

x
H(2)/(1)
µ (x)−H(2)/(1)

µ+1 (x). (C.14)

We find

∂τ
√
τH

(2)/(1)

iν+ 1
2

(

Mk⊥
τ
)

(C.15)

=
1

2
√
τ
H

(2)/(1)

iν+ 1
2

(

Mk⊥
τ
)

+
√
τMk⊥

H
(2)/(1)

iν− 1
2

(

Mk⊥
τ
)

− i√
τ
νH

(2)/(1)

iν+ 1
2

(

Mk⊥
τ
)

− 1

2
√
τ
H

(2)/(1)

iν+ 1
2

(

Mk⊥
τ
)

=
√
τMk⊥

H
(2)/(1)

iν− 1
2

(

Mk⊥
τ
)

− iν√
τ
H

(2)/(1)

iν+ 1
2

(

Mk⊥
τ
)

,

∂τ
√
τH

(2)/(1)

iν− 1
2

(

Mk⊥
τ
)

(C.16)

=
1

2
√
τ
H

(2)/(1)

iν− 1
2

(

Mk⊥
τ
)

+
i√
τ
νH

(2)/(1)

iν− 1
2

(

Mk⊥
τ
)

− 1

2
√
τ
H

(2)/(1)

iν− 1
2

(

Mk⊥
τ
)

−
√
τMk⊥

H
(2)/(1)

iν+ 1
2

(

Mk⊥
τ
)

=
iν√
τ
H

(2)/(1)

iν− 1
2

(

Mk⊥
τ
)

−
√
τMk⊥

H
(2)/(1)

iν+ 1
2

(

Mk⊥
τ
)

,

leading to

∂τ ψ̂
±
k⊥,ν,s,a

(τ) =
√
τ

[

c±
(

Mk⊥
H

(2)/(1)

iν− 1
2

(

Mk⊥
τ
)

− iν

τ
H

(2)/(1)

iν+ 1
2

(

Mk⊥
τ
)
)

P+ (C.17)

+ c̃±
(

iν

τ
H

(2)/(1)

iν− 1
2

(

Mk⊥
τ
)

−Mk⊥
H

(2)/(1)

iν+ 1
2

(

Mk⊥
τ
)
)

P−
]

ψ̂±
k⊥,ν,s,a

.

Now, we can use the following identities for the projection operators

γ0P+ =
1

2

(

γ0 + γ0γ0γ3
)

=
1

2

(

γ0 − γ0γ3γ0
)

=
1

2

(

1− γ0γ3
)

γ0 = P−γ0, (C.18)

γ0P− =
1

2

(

γ0 − γ0γ0γ3
)

=
1

2

(

γ0 + γ0γ3γ0
)

=
1

2

(

1 + γ0γ3
)

γ0 = P+γ0, (C.19)

to rewrite

iγ0∂τ ψ̂
±
k⊥,ν,s,a

(τ) =

[

ic±√τMk⊥
H

(2)/(1)

iν− 1
2

(

Mk⊥
τ
)

P− − ic̃±√τMk⊥
H

(2)/(1)

iν+ 1
2

(

Mk⊥
τ
)

P+ (C.20)

+ c± ν√
τ
H

(2)/(1)

iν+ 1
2

(

Mk⊥
τ
)

P− − c̃± ν√
τ
H

(2)/(1)

iν− 1
2

(

Mk⊥
τ
)

P+

]

γ0ψ̂±
k⊥,ν,s,a

.

Using properties of the projection operators

γ3P+ =
1

2

(

γ3 + γ3γ0γ3
)

=
1

2

(

γ3 − γ0γ3γ3
)

=
1

2

(

1− γ0γ3
)

γ3 = P−γ3, (C.21)

γ3P− =
1

2

(

γ3 − γ3γ0γ3
)

=
1

2

(

γ3 + γ0γ3γ3
)

=
1

2

(

1 + γ0γ3
)

γ3 = P+γ3, (C.22)
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we can rewrite the γ3-term of (eq. 10.25)

−1

τ
νγ3ψ̂±

k⊥,ν,s,a
(τ) =

[

− c± ν√
τ
H

(2)/(1)

iν+ 1
2

(

Mk⊥
τ
)

P−γ3 − c̃± ν√
τ
H

(2)/(1)

iν− 1
2

(

Mk⊥
τ
)

P+γ3

]

ψ̂±
k⊥,ν,s,a

.

(C.23)

Combining both terms, we now have
(

iγ0∂τ−
1

τ
νγ3

)

ψ̂±
k⊥,ν,s,a

(τ) (C.24)

=

[

ic±√τMk⊥
H

(2)/(1)

iν− 1
2

(

Mk⊥
τ
)

P− − ic̃±√τMk⊥
H

(2)/(1)

iν+ 1
2

(

Mk⊥
τ
)

P+

]

γ0ψ̂±
k⊥,ν,s,a

+

[

c± ν√
τ
H

(2)/(1)

iν+ 1
2

(

Mk⊥
τ
)

P−
(

γ0 − γ3
)

− c̃± ν√
τ
H

(2)/(1)

iν− 1
2

(

Mk⊥
τ
)

P+
(

γ0 + γ3
)
]

ψ̂±
k⊥,ν,s,a

.

For the second term, we use

P−
(

γ0 − γ3
)

=
1

2

(

γ0 − γ3 − γ0γ3
(

γ0 − γ3
))

=
1

2

(

γ0 − γ3 + γ3 − γ0
)

= 0, (C.25)

P+
(

γ0 + γ3
)

=
1

2

(

γ0 + γ3 + γ0γ3
(

γ0 + γ3
))

=
1

2

(

γ0 + γ3 − γ3 − γ0
)

= 0, (C.26)

to simplify the previous result
(

iγ0∂τ−
1

τ
νγ3

)

ψ̂±
k⊥,ν,s,a

(τ) (C.27)

=
√
τ

[

ic±H
(2)/(1)

iν− 1
2

(

Mk⊥
τ
)

P− − ic̃±H
(2)/(1)

iν+ 1
2

(

Mk⊥
τ
)

P+

]

Mk⊥
γ0ψ̂±

k⊥,ν,s,a
.

The remaining terms of (eq. 10.25) are given by
[

∓γiki⊥ −m
]

ψ̂±
k⊥,ν,s,a

(τ) (C.28)

=
[

∓ γiki⊥ −m
]√

τ
(

cH
(2)/(1)

iν+ 1
2

(

Mk⊥
τ
)

P+ + c̃H
(2)/(1)

iν− 1
2

(

Mk⊥
τ
)

P−
)

ψ̂±
k⊥,ν,s,a

.

We can use

γiP+ =
1

2

(

γi + γiγ0γ3
)

=
1

2

(

γi − γ0γiγ3
)

=
1

2

(

γi + γ0γ3γi
)

=
1

2

(

1 + γ0γ3
)

γi = P+γi,

(C.29)

γiP− =
1

2

(

γi − γiγ0γ3
)

=
1

2

(

γi + γ0γiγ3
)

=
1

2

(

γi − γ0γ3γi
)

=
1

2

(

1− γ0γ3
)

γi = P−γi,

(C.30)

which finally leads to
[

∓γiki⊥ −m
]

ψ̂±
k⊥,ν,s,a

(τ) (C.31)

=
√
τ
(

c±H
(2)/(1)

iν+ 1
2

(

Mk⊥
τ
)

P+ + c̃±H
(2)/(1)

iν− 1
2

(

Mk⊥
τ
)

P−
)[

∓ γiki⊥ −m
]

ψ̂±
k⊥,ν,s,a

.

Combining this with (eq. C.27), we arrive at (eq. 10.45)

0 =
√
τ

[

c̃±H
(2)/(1)

iν− 1
2

(

Mk⊥
τ
)

P− + c±H
(2)/(1)

iν+ 1
2

(

Mk⊥
τ
)

P+

][

±Mk⊥
γ0 ∓ γiki⊥ −m

]

ψ̂±
k⊥,ν,s,a

.

(C.32)
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C.3 Normalization of the Free Fermion Spinor in an

Expanding Geometry

In this appendix, we want to derive the normalization condition of the expanding box spinor,
given from the scalar product of spinors in Milne coordinates (eq. 9.17),
∫

|ψ(x)|2d3x =
∫ ∫

ψ̂†(τ,x⊥, η)ψ̂(τ,x⊥, η)d2x⊥dη (C.33)

=
∫ ∫

[
∫ 2∑

r=1

Nc∑

b=1

(

â†
r,b(p⊥, ν

′)ψ̂+,†
p⊥,ν′,r,b(τ,x⊥, η) + b̂r,b(p⊥, ν

′)ψ̂−,†
p⊥,ν′,r,b(τ,x⊥, η)

)

d2p⊥

(2π)2

dν ′

2π

]

×
[
∫ 2∑

s=1

Nc∑

a=1

(

âs,a(k⊥, ν)ψ̂+
k⊥,ν,s,a

(τ,x⊥, η) + b̂†
s,a(k⊥, ν)ψ̂−

k⊥,ν,s,a
(τ,x⊥, η)

)

d2k⊥

(2π)2

dν

2π

]

d2x⊥dη.

When inserting the solution of the free expanding box spinor, including the explicit solution for
the mode functions (eq. 10.68), one can immediately eliminate the η dependence, by identifying

∫

eiη(ν−ν′)dη = (2π)δ(ν − ν ′), (C.34)

in every combination of ψ̂±,†
p⊥,ν′,r,b(τ,x⊥, η)ψ̂±

k⊥,ν,s,a
(τ,x⊥, η). In a next step, we can do a similar

thing for the dependence on x⊥, leading to
∫

|ψ(x)|2d3x (C.35)

=
∫ 2∑

s,r=1

Nc∑

a,b=1

[

â†
r,b(p⊥, ν)âs,a(k⊥, ν)ψ̂+,†

p⊥,ν,r,b
(τ)ψ̂+

k⊥,ν,s,a
(τ)

∫

e−ix⊥(p⊥−k⊥)d2x⊥
︸ ︷︷ ︸

=(2π)2δ(p⊥−k⊥)

+ â†
r,b(p⊥, ν)b̂†

s,a(k⊥, ν)ψ̂+,†
p⊥,ν,r,b

(τ)ψ̂−
k⊥,ν,s,a

(τ)
∫

e−ix⊥(p⊥+k⊥)d2x⊥
︸ ︷︷ ︸

=(2π)2δ(p⊥+k⊥)

+ b̂r,b(p⊥, ν)âs,a(k⊥, ν)ψ̂−,†
p⊥,ν,r,b

(τ)ψ̂+
k⊥,ν,s,a

(τ)
∫

eix⊥(p⊥+k⊥)d2x⊥
︸ ︷︷ ︸

=(2π)2δ(p⊥+k⊥)

+ b̂r,b(p⊥, ν)b̂†
s,a(k⊥, ν)ψ̂−,†

p⊥,ν,r,b
(τ)ψ̂−

k⊥,ν,s,a
(τ)

∫

eix⊥(p⊥−k⊥)d2x⊥
︸ ︷︷ ︸

=(2π)2δ(p⊥−k⊥)

]

d2k⊥

(2π)2

d2p⊥

(2π)2

dν

2π
.

We find

∫

|ψ(x)|2d3 =
∫ 2∑

s,r=1

Nc∑

a,b=1

[

â†
r,b(k⊥, ν)âs,a(k⊥, ν)ψ̂+,†

k⊥,ν,r,b
(τ)ψ̂+

k⊥,ν,s,a
(τ) (C.36)

+ â†
r,b(−k⊥, ν)b̂†

s,a(k⊥, ν)ψ̂+,†
−k⊥,ν,r,b

(τ)ψ̂−
k⊥,ν,s,a

(τ)

+ b̂r,b(−k⊥, ν)âs,a(k⊥, ν)ψ̂−,†
−k⊥,ν,r,b

(τ)ψ̂+
k⊥,ν,s,a

(τ)

+ b̂r,b(k⊥, ν)b̂†
s,a(k⊥, ν)ψ̂−,†

k⊥,ν,r,b
(τ)ψ̂−

k⊥,ν,s,a
(τ)

]

d2k⊥

(2π)2

dν

2π
.
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Let us exemplary have a look at the first term of the previous equation, inserting (eq. 10.68)

ψ̂+,†
k⊥,ν,r,b

(τ)ψ̂+
k⊥,ν,s,a

(τ) =|a|2τeνπu†
r,b(k⊥, yk = 0)

(

eiπ
4H

(2),⋆

iν+ 1
2

(

Mk⊥
τ
)

P+ + e−iπ
4H

(2),⋆

iν− 1
2

(

Mk⊥
τ
)

P−
)

×
(

e−iπ
4H

(2)

iν+ 1
2

(

Mk⊥
τ
)

P+ + eiπ
4H

(2)

iν− 1
2

(

Mk⊥
τ
)

P−
)

us,a(k⊥, yk = 0)

=|a|2τeνπu†
r,b,α(k⊥, yk = 0)

(∣
∣
∣H

(2)

iν+ 1
2

(

Mk⊥
τ
)∣
∣
∣

2
P+
αβ +

∣
∣
∣H

(2)

iν− 1
2

(

Mk⊥
τ
)∣
∣
∣

2
P−
αβ

)

× us,a,β(k⊥, yk = 0), (C.37)

where we explicitly wrote the Dirac indices in the last step and used the following properties
of the projection operator

P±,† =
1

2

(

1±
(

γ0γ3
)†)

=
1

2

(

1± γ3,†γ0,†
)

=
1

2

(

1∓ γ3γ0
)

=
1

2

(

1± γ0γ3
)

= P±, (C.38)

P±P∓ =
1

4

(

1± γ0γ3
)(

1∓ γ0γ3
)

=
1

4

(

1 + γ0γ3γ3γ0
)

=
1

4

(

1− 1
)

= 0, (C.39)

P±P± =
1

4

(

1± γ0γ3
)(

1± γ0γ3
)

=
1

4

(

1± 2γ0γ3 − γ0γ3γ3γ0
)

=
1

4

(

2± 2γ0γ3
)

= P±. (C.40)

We now have to calculate the following combinations of basis spinors

u†
r,b(k⊥, yk = 0)P±us,a(k⊥, yk = 0) =

1

2
u†
r,b(k⊥, yk = 0)

(

1± γ0γ3
)

us,a(k⊥, yk = 0). (C.41)

First, we use that the basis spinors are orthogonal

u†
r,b(k⊥, yk = 0)us,a(k⊥, yk = 0) = δrs. (C.42)

For the remaining term we have

±u†
r,b(k⊥, yk = 0)γ0γ3us,a(k⊥, yk = 0) =

Mk⊥
+m

2Mk⊥

(

ϕ†
r ϕ†

r
ki

⊥
σi

Mk⊥
+m

)(

0 σ3

σ3 0

)



ϕs
kj

⊥
σj

Mk⊥
+m





=
Mk⊥

+m

2Mk⊥

(

ϕ†
r ϕ†

r
ki

⊥
σi

Mk⊥
+m

)



σ3

kj
⊥
σj

Mk⊥
+m

σ3ϕs



 (C.43)

=
1

2Mk⊥

ϕ†
r {σ3, σi}
︸ ︷︷ ︸

=0

ki⊥ϕs = 0.

We showed

ψ̂+,†
k⊥,ν,r,b

(τ)ψ̂+
k⊥,ν,s,a

(τ) = δrsδab|a|2τeνπ
(∣
∣
∣H

(2)

iν+ 1
2

(

Mk⊥
τ
)∣
∣
∣

2
+
∣
∣
∣H

(2)

iν− 1
2

(

Mk⊥
τ
)∣
∣
∣

2
)

. (C.44)

In the same manner, one finds

ψ̂−,†
k⊥,ν,r,b

(τ)ψ̂−
k⊥,ν,s,a

(τ) = δrsδab|a|2τe−νπ
(∣
∣
∣H

(1)

iν+ 1
2

(

Mk⊥
τ
)∣
∣
∣

2
+
∣
∣
∣H

(1)

iν− 1
2

(

Mk⊥
τ
)∣
∣
∣

2
)

. (C.45)
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We are now left with the off-diagonal combinations. First note, that

v†
r,b(−k⊥, yk = 0)us,a(k⊥, yk = 0) =

Mk⊥
+m

2Mk⊥

(

−χ†
r

ki
⊥
σi

Mk⊥
+m

χ†
r

)




ϕs
kj

⊥
σj

Mk⊥
+m

ϕs



 (C.46)

=
1

2Mk⊥

(

− χ†
rk
i
⊥σiϕs + χ†

rk
i
⊥σiϕs

)

= 0,

u†
r,b(−k⊥, yk = 0)vs,a(k⊥, yk = 0) =

Mk⊥
+m

2Mk⊥

(

ϕ†
r −ϕ†

r
ki

⊥
σi

Mk⊥
+m

)




kj
⊥
σj

Mk⊥
+m

χs

χs



 (C.47)

=
1

2Mk⊥

(

ϕ†
rk
i
⊥σiχs − ϕ†

rk
i
⊥σiχs

)

= 0.

For the products including the gamma matrices, we have

±v†
r,b(−k⊥, yk = 0)γ0γ3us,a(k⊥, yk = 0) (C.48)

=± Mk⊥
+m

2Mk⊥

(

−χ†
r

ki
⊥
σi

Mk⊥
+m

χ†
r

)(

0 σ3

σ3 0

)



ϕs
kj

⊥
σj

Mk⊥
+m

ϕs





=± Mk⊥
+m

2Mk⊥

(

−χ†
r

ki
⊥
σi

Mk⊥
+m

χ†
r

)



σ3

kj
⊥
σj

Mk⊥
+m

ϕs

σ3ϕs





=± 1

2Mk⊥

(

− χ†
r

ki⊥σiσ3σjk
j
⊥

Mk⊥
+m

ϕs +
(

Mk⊥
+m

)

χ†
rσ3ϕs

)

=± 1

2Mk⊥

(

χ†
r

ki⊥σ3σiσjk
j
⊥

Mk⊥
+m

ϕs +
(

Mk⊥
+m

)

χ†
rσ3ϕs

)

=± 1

2Mk⊥

(

χ†
r

k2
⊥σ3

Mk⊥
+m

ϕs +
(

Mk⊥
+m

)

χ†
rσ3ϕs

)

= ±χ†
rσ3ϕs,

±u†
r,b(−k⊥, yk = 0)γ0γ3vs,a(k⊥, yk = 0) (C.49)

=± Mk⊥
+m

2Mk⊥

(

ϕ†
r −ϕ†

r
ki

⊥
σi

Mk⊥
+m

)(

0 σ3

σ3 0

)



kj
⊥
σj

Mk⊥
+m

χs

χs





=± Mk⊥
+m

2Mk⊥

(

ϕ†
r −ϕ†

r
ki

⊥
σi

Mk⊥
+m

)




σ3χs

σ3
kj

⊥
σj

Mk⊥
+m

χs





=± 1

2Mk⊥

(
(

Mk⊥
+m

)

ϕ†
rσ3χs − ϕ†

r

ki⊥σiσ3σjk
j
⊥

Mk⊥
+m

χs

)

=± 1

2Mk⊥

(
(

Mk⊥
+m

)

ϕ†
rσ3χs + ϕ†

r

ki⊥σ3σiσjk
j
⊥

Mk⊥
+m

χs

)

=± 1

2Mk⊥

(
(

Mk⊥
+m

)

ϕ†
rσ3χs + ϕ†

r

k2
⊥σ3

Mk⊥
+m

χs

)

= ±ϕ†
rσ3χs.
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We start with the off-diagonal combination

ψ̂+,†
−k⊥,ν,r,b

(τ)ψ̂−
k⊥,ν,s,a

(τ) =|a|2τu†
r,b(k⊥, yk = 0)

(

eiπ
4H

(2),⋆

iν+ 1
2

(Mk⊥
τ)P+ + e−iπ

4H
(2),⋆

iν− 1
2

(Mk⊥
τ)P−

)

×
(

eiπ
4H

(1)

iν+ 1
2

(

Mk⊥
τ
)

P+ + e−iπ
4H

(1)

iν− 1
2

(

Mk⊥
τ
)

P−
)

vs,a(k⊥, yk = 0)

=|a|2τu†
r,b(k⊥, yk = 0)

(

eiπ
2H

(2),⋆

iν+ 1
2

(Mk⊥
τ)H

(1)

iν+ 1
2

(

Mk⊥
τ
)

P+ (C.50)

+ e−iπ
2H

(2),⋆

iν− 1
2

(Mk⊥
τ)H

(1)

iν− 1
2

(

Mk⊥
τ
)

P−
)

vs,a(k⊥, yk = 0)

=|a|2τ
(

eiπ
2H

(2),⋆

iν+ 1
2

(Mk⊥
τ)H

(1)

iν+ 1
2

(

Mk⊥
τ
)

ϕ†
rσ3χs

− e−iπ
2H

(2),⋆

iν− 1
2

(Mk⊥
τ)H

(1)

iν− 1
2

(

Mk⊥
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,

where we insert the result for the product of basis spinors derived previously. We can now
use the following property of the Hankel functions [164]
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Rewriting the Hankel functions by making use of the given properties, we finally find
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A similar calculation leads to the result of the other off-diagonal combination
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Combining all of the given results, we showed that
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C.3.1 Implementation of the Free Expanding Box Spinor on the Lat-
tice

In this appenndix we show, how to implement the free expanding box spinor on the lattice by
making use of the stochastic low-cost method. As rigorously discussed in (section 2.2.2),
we replace the creation and annihilation operators by complex numbers, drawn from an
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appropriate Gaussian distribution (eq. 2.48). The Fourier representation of the low-cost
gendered fermion spinor is then given as

ψ̂M/F (τ,x⊥, η) =
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We can now use ensemble averages of low-cost fermions to calculate the statistical fermion
propagator in the expanding box. We implement the lattice solution of the free expanding box
spinor (eq. 10.93) as initial condition for the fermion sector. This requires an evaluation of the
Hankel functions in the simulation. We compute them using the following algorithm

• Starting point is the following relation from [164]
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where Ji(x) is the Bessel function of the first kind. The Bessel function of the first kind is
related to the generalized gamma function via
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• Using the previous identities, we can directly represent the Hankel functions in terms of
gamma functions
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×
[(

M̄k⊥
τ̄

2

) i

aη
sin(aην)± 1

2 exp
(

−
(

i
aη

sin(aην)± 1
2

)

πi
)

Γ
(

i
aη

sin(aην)± 1
2

+ n+ 1
)

−
(

M̄k⊥
τ̄

2

)− i

aη
sin(aην)∓ 1

2 1

Γ
(

− i
aη

sin(aην)∓ 1
2

+ n+ 1
)

]

H
(2)

i

aη
sin(aην)± 1

2

(M̄k⊥
τ̄) =

i

sin
((

i
aη

sin(aην)± 1
2

)

π
)

∞∑

n=0

(

− M̄2
k⊥
τ̄ 2

4

)n
1

Γ(n+ 1)
(C.60)
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.

In the simulation, we compute these expressions iteratively, cutting the sum as soon as a
precision of 10−15 has been reached.
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