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Overview

Introduction

Symmetry, as wide or as narrow as you may define its
meaning, is one idea by which man through the ages has
tried to comprehend and create order, beauty and perfection.

— Hermann Weyl, Symmetry [Wey52]

In mathematics, a symmetry is a transformation of a mathematical object
that preserves its structure or some of its properties. Classical types of
symmetries are linear transformations in Euclidean space such as reflection,
rotation, translation, or scaling. In the 19th century, mathematicians began
to study more abstract types of symmetries, also called automorphisms, and
group theory was developed as an algebraic tool to describe their properties.
For example, Galois discovered that the solvability of a polynomial equation
by radicals depends on the group of symmetries of its roots.

In this thesis we study certain symmetries of systems of linear equations,
using matroid theory and tropical geometry. For example, consider the set

A := {x = 0, y = 0, z = 0, x = y, x = z, y = z}
of equations in the real variables x, y, and z. Geometrically, we can interpret
the variables as Cartesian coordinates for the three-dimensional Euclidean
space R3. Then every equation in A defines a plane through the origin and one
can consider the classical symmetries that preserve this plane arrangement.
For A, there are the following symmetries and their combinations:

(1) There is a group action of the symmetric group S3 since A is
completely symmetric in the variables {x, y, z}. Geometrically, S3

acts by rotations and reflections through a plane, depending on
the sign of the permutation. For example, interchanging x and y
corresponds to the reflection through the plane x = y.

(2) Since the equations in A are homogeneous, multiplying all variables
by the same non-zero factor preserves every plane. By taking the
quotient with respect to scalar transformations, we can also consider
A as line arrangement in the projective plane P2.

(3) The linear map

x ↦→ x, y ↦→ x− y, z ↦→ x− z

preserves the set A. For example, the equation x = y is sent to the
equation x = x − y, which is equivalent to y = 0. Geometrically,
this map corresponds to a non-orthogonal reflection through the line
x = 2y = 2z.
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y = z

y = 0

x = 0 x = z z = 0

x = y

Figure 1. A geometric representation of A as line arrange-
ment in the projective plane.

However, there also exists a non-linear symmetry in this example. Con-
sider the quadratic transformation

x ↦→ yz, y ↦→ xz, z ↦→ xy,

which is known as Cremona transformation in projective geometry, named
after Italian mathematician Luigi Cremona (1830–1903), see [Trk08]. The
image of A under the Cremona transformation is given by

A′ := {yz = 0, xz = 0, xy = 0, yz = xz, yz = xy, xz = xy}.
Each quadratic equation in A′ can be decomposed into two linear equations:

yz = 0 ⇐⇒ y = 0 or z = 0

xz = 0 ⇐⇒ x = 0 or z = 0

xy = 0 ⇐⇒ x = 0 or y = 0

yz = xz ⇐⇒ y = x or z = 0

yz = xy ⇐⇒ z = x or y = 0

xz = xy ⇐⇒ z = y or x = 0

. . . and the equations on the right hand side are exactly the equations in A!
But some equations appear with multiplicity 3, according to a scheme that is
reminiscent of the matrix multiplication⎛⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 1
1 0 1 0 1 0
1 1 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
1
1
1
1
1
1

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
3
3
3
1
1
1

⎞⎟⎟⎟⎟⎟⎟⎠ .

The goal of this thesis is to gain a better understanding of these Cremona
symmetries. When do they exist and which groups do they generate? Are
there other types of non-linear symmetries? The search for answers will lead
us to matroid theory.
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Matroids are combinatorial objects that generalize the notion of depen-
dence from linear algebra. For example, the two equations x = y and y = 0
together imply the equation x = 0. In the language of matroid theory,
x = 0 lies in the closure cl({x = y, y = 0}) of the set {x = y, y = 0}.
There is no other equation in A that follows from x = y and y = 0, thus
{x = y, y = 0, x = 0} is a closed set, also called a flat of the matroid
M associated to A. Geometrically, the flats of M describe the intersection
behavior of the planes in A.

The set {x = 0, y = z} is also a flat of M , but it only contains two
elements. Such a flat is called disconnected, in contrast to the connected flat
{x = y, y = 0, x = 0}. There are three other connected flats of “rank 2”:
{y = 0, z = 0, y = z}, {x = 0, z = 0, x = z}, and {x = y, x = z, y = z}.

The structure of the matroid M can be visualized via its minimal nested
set complex N . In our example, this is a graph whose vertices are the elements
of A plus the connected flats of rank 2. From every connected flat of rank 2
we draw an edge to each of its elements, and we add edges between each pair
of elements that form a disconnected flat.

x = 0

x = y = 0

y = 0

y = z = 0

z = 0

x = z = 0

x = y

y = z

x = z
x = y = z

Figure 2. The minimal nested set complex of the matroid
associated to A.

Every classical symmetry of A induces an automorphism of N that maps
elements to elements and connected flats to connected flats. However, rotating
the outer hexagon by 180 degrees induces an automorphism of N that does
not have this property. This is an example for a combinatorial Cremona
automorphism, as defined by Shaw and Werner in their recent paper [SW23].
As we will see, geometric and combinatorial Cremona symmetries are closely
related, and their connection can be described using tropical geometry.
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Background

Recently, exciting new connections between algebraic geometry and com-
binatorics have been discovered. An important tool is the so-called tropi-
calization process that translates algebraic varieties into polyhedral objects.
The simplest examples are linear spaces, and their tropical analogs are closely
related to matroids.

More precisely, given an essential hyperplane arrangement A in projective
space over a field with trivial valuation, its complement ΩA can be identified
with a linear subvariety of the algebraic torus. The tropicalization of this
variety is the support of a polyhedral fan and depends only on the matroid
M(A) associated to A. By generalizing this construction, one can associate to
every matroid M a tropical linear space trop(M), even if M is not realizable
as a hyperplane arrangement, see [MS15, Section 4.2]. This new geometric
approach led to great progress in matroid theory, including the development
of a combinatorial Hodge theory for matroids, see [Ard18] for a survey. In
2022, June Huh was awarded the Fields Medal for his contributions to these
breakthroughs.

There are several natural fan structures on the set trop(M), and in
this thesis we will distinguish between the coarse Bergman fan Bc(M), the
minimal nested set fan Bm(M), and the fine Bergman fan Bf (M). These fan
structures were studied in [AK06] and [FS05], and Feichtner and Sturmfels
gave a criterion for the coarse Bergman fan and the minimal nested set fan
to coincide ([FS05, Theorem 5.3]).

Fan structures on trop(M(A)), where M(A) is the matroid associated
to a hyperplane arrangement A as above, can be used to construct tropical
compactifications of the complement ΩA by taking the closure in the asso-
ciated toric varieties ([Tev07, Proposition 2.3]). In this way, the minimal
nested set fan induces the minimal wonderful compactification defined by
de Concini and Procesi ([DCP95]), and the coarse Bergman fan induces the
visible contour compactification defined by Kapranov ([Kap93]).

Assuming that A is connected, Kurul and Werner proved that every
birational automorphism f of ΩA can be extended to an automorphism of
its visible contour compactification ([KW19, Theorem 5.1]). In the proof,
they show that f induces an automorphism of the intrinsic torus whose
tropicalization preserves the coarse Bergman fan. By [Kur17, Theorem 7.7],
this gives rise to an embedding of the birational automorphism group Aut(ΩA)
into the automorphism group Aut(Bc(M(A))) of the coarse Bergman fan.
Thus automorphisms of Bergman fans can be viewed as analogs of birational
automorphisms for matroids.

In their aforementioned paper [SW23] about the birational geometry of
matroids, Shaw and Werner studied automorphism groups of Bergman fans,
using tools from the newly developed Hodge theory for matroids such as
the Chow ring of a matroid. For a simple matroid M that is not totally
disconnected, they prove that every automorphism of the fine Bergman fan
Bf (M) is induced by a matroid automorphism of M ([SW23, Theorem 6.3]).
However, depending on the matroid M , there may exist automorphisms of the
coarse Bergman fan Bc(M) that are not induced by matroid automorphisms.
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The arrangement A that we considered in the introduction, which is also
known as the essential braid arrangement of type A3, and more generally all
root system matroids M(An) with n ≥ 3 are examples for this phenomenon.
By [AP18], the automorphism group of the moduli space M trop

0,n of stable tropi-
cal curves of genus 0 with n ≥ 5 marked points is isomorphic to the symmetric
group Sn. As explained in [SW23, Example 3.1], the coarse Bergman fan
Bc(M(An)) can be identified with M trop

0,n+2, hence Aut(Bc(M(An))) ∼= Sn+2

is larger than Aut(M(An)) ∼= Sn+1.
In order to describe these additional automorphisms, Shaw and Werner in-

troduced combinatorial Cremona automorphisms of Bergman fans by proving
the following theorem:

Theorem ([SW23, Theorem 8.3]). Let B be a basis of a simple connected
matroid M on the ground set E. The Cremona map cremB : RE → RE given
by

vb ↦→ vcl(B\{b}) for all b ∈ B and ve ↦→ ve for all e ∈ E \B
induces an automorphism of the coarse Bergman fan Bc(M) if and only if
the sets {cl({b, b′}) \ {b, b′}}b,b′∈B form a partition of E \B.

This combinatorial condition on a basis of a matroid will be the starting
point for our investigations.
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Summary

In Chapter 1 we lay the combinatorial groundwork by studying Cremona
bases of matroids, which we define as follows:

Definition (1.3.1). Let M be a matroid on the ground set E. A basis B of
M is called a Cremona basis of M if⋃︂

b,b′∈B
cl({b, b′}) = E.

For all results in this chapter, we assume that the matroid M is simple, and
in this case the definition is equivalent to the condition in [SW23, Theorem
8.3], as we show in Proposition 1.3.2. We will see that the existence of such
a basis has strong implications for the structure of the matroid.

With respect to a Cremona basis B, the matroid M can be represented
by its support graph GB(M), which is allowed to have parallel edges, see
Definition 1.3.4. The vertices of GB(M) correspond to the basis elements B
and the edges of GB(M) correspond to the non-basis elements E \B. More
precisely, for an element e ∈ E \B, the assumption that B is a Cremona basis
implies that the fundamental circuit CB(e) of e with respect to B contains
exactly two elements of B, and we define these to be the endpoints of e.

In general, for a subset S ⊆ E we define its support suppB(S) with
respect to B as the smallest set of basis elements whose closure contains S,
see Proposition 1.2.8. In this way, S can be represented by a subgraph GB(S)
of GB(M) whose set of vertices is suppB(S). If this graph is connected, then
we call S support-connected with respect to B. By Proposition 1.4.7, this
condition is weaker than the usual notion of connectivity for matroids.

In Section 1.5, we apply these tools to describe the flats and the rank
function of matroids that have a Cremona basis. We show that the flats can
be classified into two types:

Theorem (1.5.2). Let M be a simple matroid that admits a Cremona basis B
and let F be a support-connected flat of M . Then exactly one of the following
is true:

(1) F is a coordinate flat, that is, F ∩B = suppB(F ).
(2) F is a non-coordinate flat, that is, F ∩B = ∅ ≠ F .

The rank rk(S) of every subset S ⊆ E is determined by the cardinality
of its support and the type of the closure cl(S). This follows from Corollary
1.4.8 and the following theorem:

Theorem (1.5.5). Let M be a simple matroid on the ground set E that
admits a Cremona basis B and let S ⊆ E be a subset.

(1) cl(S) is a coordinate flat if and only if rk(S) = | suppB(S)|.
(2) If cl(S) is a support-connected non-coordinate flat, then rk(S) =

| suppB(S)| − 1.

We emphasize that the notions of support and (non-)coordinate flats
depend on the choice of a Cremona basis B, and in Sections 1.6–1.8 we
consider the case that a matroid has more than one Cremona basis. Every
matroid automorphism sends Cremona bases to Cremona bases, thus there
is a group action of Aut(M) on the set CB(M) of Cremona bases of M . By
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studying the shape of the support graph GB(B
′) for Cremona bases B and

B′ of M in Section 1.6, we show that this action is always transitive:

Theorem (1.7.2). Let M be a simple matroid on the ground set E that admits
two Cremona bases B and B′. Then there exists an involutive automorphism
fBB′ of M with

fBB′(B) = B′, fBB′(B′) = B, and fBB′ |E\(B∪B′) = id.

In particular, the matroid automorphism fBB′ induces an isomorphism be-
tween the support graphs GB(M) and GB′(M). We call fBB′ the Cremona
base change automorphism with respect to the Cremona bases B and B′.

If we additionally assume that M and the contractions M/e are connected
for all e ∈ E, then the Cremona base change automorphisms generate the
symmetric group Sym(CB(M)):

Theorem (1.7.6). Let M be a simple matroid of rank at least 3 on the ground
set E. If M and the contractions M/e are connected for all e ∈ E, then the
group action Aut(M) → Sym(CB(M)) is surjective.

This leads to a representability criterion for matroids that admit more
than one Cremona basis.

Theorem (1.8.2). Let M be a simple connected matroid of rank at least 3 on
the ground set E and assume that the contractions M/e are connected for all
e ∈ E. If M admits more than one Cremona basis, then M is representable
over any field K with |K| ≥ |E| − rk(M) + 1.

In Section 2.1, we recall the definitions of the tropical linear space trop(M),
the fine Bergman fan Bf (M), and the coarse Bergman fan Bc(M) of a
matroid M . Moreover, there is the minimal nested set fan Bm(M), which is
constructed from the minimal nested set complex N (M) of a matroid M .

Automorphisms of these matroid fans are by definition linear maps that
preserve the fan structure and are induced by lattice automorphisms. By
Lemma 2.2.3, matroid automorphisms induce automorphisms of these fans,
and conversely, by Proposition 2.2.4, every automorphism of the coarse
Bergman fan that induces a permutation of the rays corresponding to single-
tons comes from a matroid automorphism.

In Section 2.3, we study the standard Cremona transformation

crem: Pd
K Pd

K , [x0 : . . . : xd] ↦→
[︃
1

x0
: . . . :

1

xd

]︃
in the projective space Pd

K over a field K and determine the hyperplane
arrangements for which it induces an automorphism of the complement.

Theorem (2.3.5). Let A be a hyperplane arrangement in Pd
K . The standard

Cremona transformation crem induces an automorphism of the complement
ΩA if and only if

A = {V (xi) | 0 ≤ i ≤ d} ∪ {V (xi + zxj) | 0 ≤ i < j ≤ d, z ∈ Zij}
for some collection Z = {Zij}0≤i<j≤d of sets Zij ⊆ K× with the property
that all sets Zij are closed under taking multiplicative inverses.

In particular, in this case the coordinate hyperplanes form a Cremona
basis of the associated matroid M(A).
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In Chapter 3, we study the Cremona automorphisms defined by Shaw
and Werner. We give an example where the combinatorial Cremona map is
the tropicalization of the Cremona transformation on projective space, using
[Kur17, Theorem 7.7]. Moreover, we prove the following criterion for the
Cremona map to preserve the minimal nested set structure:
Theorem (3.1.7). Let M be a simple connected matroid of rank at least 3 and
assume that M has a Cremona basis B such that GB(M) is a complete graph.
Then the Cremona map cremB induces an automorphism of the minimal
nested set fan Bm(M).

In Section 3.2, we describe the structure of the Cremona group Cr(M) of
a matroid M , which we define as the subgroup of Aut(Bc(M)) generated by
matroid automorphisms and Cremona automorphisms.
Theorem (3.2.5). Let M be a simple connected matroid of rank at least 3.
For every Cremona basis B of M , the Cremona group Cr(M) is generated by
matroid automorphisms and the Cremona automorphism cremB.

Under the additional assumption that the contractions M/e are connected
for all e ∈ E, we have Aut(M)/AutCB(M) ∼= Sk by Theorem 1.7.6, where
k ∈ N0 is the number of Cremona bases and AutCB(M) ⊆ Aut(M) is the
normal subgroup of matroid automorphisms that preserve every Cremona
basis. In the Cremona group the degree of the symmetric group increases by
1, like in the example M(An):
Theorem (3.2.8). Let M be a simple connected matroid of rank at least 3
and assume that the contractions M/e are connected for all e ∈ E. Then
Cr(M)/AutCB(M) ∼= Sk+1.

For a simple matroid M of rank 3 it has been shown in [SW23, Theorem
9.2] that the automorphism group Aut(Bc(M)) of the coarse Bergman fan
coincides with the Cremona group Cr(M), if M is not a non-trivial parallel
connection. In Section 3.3, we show a similar result for the minimal nested
set complex N (M):
Theorem (3.3.2). Let M be a simple connected matroid of rank 3.

(1) If M is the matroid associated to a self-dual non-degenerate projective
plane, then Aut(M) is a subgroup of Aut(N (M)) of index 2.

(2) Otherwise, Aut(N (M)) is generated by matroid automorphisms and
Cremona automorphisms.

In Chapter 4, we apply our results to root system matroids and obtain
a new proof for the isomorphism Aut(Bc(M(An))) ∼= Sn+2 for all n ≥ 3 by
showing that M(An) has n+ 1 Cremona bases. For the other root systems,
we show the following:
Theorem (4.3.3, 4.3.13). For all n ≥ 3, the root system matroid M(Bn)
has a unique Cremona basis and Aut(Bc(M(Bn))) ∼= Aut(M(Bn))× Z/2Z
is generated by matroid automorphisms and the unique Cremona map.
Theorem (4.4.10). For all n ≥ 4, the root system matroid M(Dn) has no
Cremona bases and Aut(Bc(M(Dn))) is isomorphic to Aut(M(Dn)).
Theorem (4.6.5). The root system matroid M(F4) has no Cremona bases
and Aut(Bc(M(F4))) is isomorphic to Aut(M(F4)).
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CHAPTER 1

Cremona bases of matroids

1.1. Introduction

Let E be a finite set of vectors in some vector space V , let’s say over the
real numbers. For a set of vectors S ⊆ E we define its rank as

rk(S) := dim(⟨S⟩),

where ⟨S⟩ denotes the linear span of S. In this way, we obtain a function
rk : 2E → N0 on the power set 2E that assigns a non-negative integer to
every subset of E. Now let us forget the vector space V and just consider
E as an abstract set equipped with the function rk. We notice that we can
recover some information about the vectors in E from the rank function.
For example, a subset I ⊆ E was linearly independent in V if and only if
rk(I) = |I|. Moreover, since the rank function is constructed from a vector
space, we can deduce that it has the following properties:

(1) The linear span of n vectors cannot have dimension larger than n.
Thus rk(S) ≤ |S| for all S ⊆ E.

(2) By adding vectors, the dimension of the linear span can only increase.
Thus for all subsets S ⊆ T ⊆ E we have rk(S) ≤ rk(T ).

(3) For two subsets S, T ⊆ E, the linear span satisfies the relations
⟨S ∪ T ⟩ = ⟨S⟩+ ⟨T ⟩ and ⟨S ∩ T ⟩ ⊆ ⟨S⟩ ∩ ⟨T ⟩. Thus the dimension
formula for linear subspaces implies

rk(S ∩ T ) ≤ dim(⟨S⟩ ∩ ⟨T ⟩) = rk(S) + rk(T )− rk(S ∪ T ).

A finite set E together with a function rk : 2E → N0 satisfying these three
conditions is one of many equivalent ways to define a matroid. Conversely,
one might ask: given a matroid (E, rk), can we identify E with vectors in a
vector space over some field such that the function rk is induced as above
from the vector space structure? If this is the case, then the matroid is called
representable, but in fact, most matroids are not representable ([Nel18]).
There are many other classes of matroids that arise naturally in various
contexts, for example in graph theory.

This means that matroids can be used to generalize and compare notions
from different areas of mathematics. Motivated by linear independence in
vector spaces, we obtain a more general notion of independence by defining
a subset I ⊆ E of an arbitrary matroid to be independent if rk(I) = |I|.
Other basic concepts for matroids include bases, circuits, closure, flats, and
connectivity, and we will summarize these definitions in Sections 1.2 and 1.4.
For a detailed introduction to matroid theory we recommend the book by
Oxley ([Oxl11]).
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The goal of this chapter is to introduce a new class of matroids, or more
precisely, a certain type of bases that we call Cremona bases. These bases
have interesting properties that will help us to understand the structure of
matroids where Cremona bases exist.

The following example illustrates some of the ideas in this chapter. Let
B := {x1, . . . , x10} be a basis of a real vector space V and consider the set

S := {x1, x1 − x2, x3 + x4, x3 − x4, x5 − x6,

x5 − x7, x6 − x7, x8 − x9, x8 − x10, x9 + x10}.
What is the rank of S? We could construct the 10-by-10-matrix representing
S and compute its rank, but in this case there exists another approach that
we can also apply to non-representable matroids. Note that every vector in
S only depends on at most two basis vectors – this is the defining property
of a Cremona basis, see Section 1.3. Thus we can visualize S as a graph
(with parallel edges allowed) where basis vectors are vertices and linear
combinations of two basis vectors are edges:

x1 x2 x3 x4

x5

x6 x7

x8

x9 x10

Figure 3. The support graph of S with respect to the Cre-
mona basis B.

The resulting graph, which we call the support graph of S, is disconnected
and we can consider each of the 4 components separately. By construction,
the linear span of all elements of S that belong to the same component is
contained in the coordinate subspace spanned by the vertices, so for example
⟨x3 + x4, x3 − x4⟩ ⊆ ⟨x3, x4⟩, and in many cases these subspaces coincide.
Indeed, we always have equality in a component where S contains a vertex
(such as x1) or that has parallel edges (such as x3 + x4 and x3 − x4). The
other two components have identical graphs, but behave differently since
the vectors {x5 − x6, x5 − x7, x6 − x7} are linearly dependent and generate a
non-coordinate subspace of dimension 2. Subspaces corresponding to different
components are independent, hence we deduce rk(S) = 2+ 2+2+3 = 9. We
will make this precise in Section 1.5.

Since the support graph depends on the choice of a Cremona basis,
we consider in Sections 1.6–1.8 the case that matroid has more than one
Cremona basis. Like bases of vector spaces, but unlike bases of matroids in
general, Cremona bases have the property that a change of basis is possible.
Moreover, assuming a certain connectivity condition, we will prove that every
simple matroid with more than one Cremona basis is representable over any
sufficiently large field.
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1.2. Matroids

In this section, we summarize some basic notions of matroids and define
two examples of simple rank 3 matroids that we will refer to repeatedly
throughout this thesis. Except for the support, all these definitions can be
found in [Oxl11, Chapter 1].

Definition 1.2.1. A matroid M is a finite set E together with a rank function
rk : 2E → N0 on the power set 2E that satisfies the following axioms:

(1) For all S ⊆ E we have rk(S) ≤ |S|.
(2) For all S, T ⊆ E with S ⊆ T we have rk(S) ≤ rk(T ).
(3) For all S, T ⊆ E we have rk(S ∪ T ) + rk(S ∩ T ) ≤ rk(S) + rk(T ).

We then say that M is a matroid on the ground set E. For a subset
S ⊆ E, the number rk(S) is called the rank of S, and the rank of M is
defined as rk(M) := rk(E).

A subset I ⊆ E is called independent if rk(I) = |I|, and dependent other-
wise. Subsets of independent sets are independent and maximal independent
subsets are called bases. Conversely, supersets of dependent sets are depen-
dent and minimal dependent subsets are called circuits. The collections of
independent sets, bases, and circuits each determine the matroid uniquely
and provide equivalent definitions of a matroid. If all circuits have at least
three elements, then the matroid is called simple.

Example 1.2.2. Let V be a vector space over some field K. As in the
introduction, if E is a finite set of vectors in V , then the map

rk : 2E → N0, S ↦→ dim(⟨S⟩)
defines a rank function on E and we call the resulting matroid M(E) the
vector matroid of E. Important examples are root system matroids, which
we will study in Chapter 4. A subset I ⊆ E is independent in M(E) if and
only if it is linearly independent in V .

Slightly more generally, let (v1, . . . , vn) be a finite sequence of vectors in
V that might contain repetitions of the same vector. Then the vector matroid
of (v1, . . . , vn) is the matroid on the ground set {1, . . . , n} with rank function

rk : 2{1,...,n} → N0, S ↦→ dim(⟨vi | i ∈ S⟩).

Example 1.2.3. The cycle matroid M(G) of a graph G is the matroid on the
set of edges of G whose independent subsets are exactly the subsets I ⊆ E(G)
such that the induced subgraph G[I] is a forest. The corresponding rank
function is given by

rk : 2E(G) → N0, S ↦→ |V (G[S])| − ω(G[S]),

where ω(G[S]) denotes the number of components of G[S].

Definition 1.2.4. Let M and M ′ be matroids with ground sets E and
E′, respectively. A matroid isomorphism f : M → M ′ is a bijective map
f : E → E′ with rkM ′(f(S)) = rkM (S) for all S ⊆ E.

The automorphisms of a matroid M , i.e., isomorphisms M → M , form a
group Aut(M) under composition, called the automorphism group of M . A
matroid is called representable if it is isomorphic to some vector matroid.

13



Proposition 1.2.5. Let M be a matroid on the ground set E. Then the
closure operator

cl : 2E → 2E , S ↦→ {e ∈ E | rk(S ∪ {e}) = rk(S)}
has the following properties:

(1) For all S, T ⊆ E with S ⊆ T we have cl(S) ⊆ cl(T ).
(2) For all S ⊆ E we have S ⊆ cl(S) and cl(S) = cl(cl(S)).
(3) For all S ⊆ E we have rk(cl(S)) = rk(S).

A subset S ⊆ E is called spanning if cl(S) = E, which is equivalent to
rk(S) = rk(E). A basic fact about matroids is that all bases are spanning
and thus have the same number of elements.

Another important way to describe matroids is by their flats. A flat of
M is a subset F ⊆ E with cl(F ) = F . If F and F ′ are flats of M , then their
join F ∨ F ′ := cl(F ∪ F ′) and their intersection F ∩ F ′ are flats as well since
cl(F ∩ F ′) ⊆ cl(F ) ∩ cl(F ′) = F ∩ F ′. Together with these operations, the
partially ordered set of flats forms a lattice, called the lattice of flats L(M)
of M .

If M is the vector matroid of some set of vectors E, then the closure
cl(S) of a set S ⊆ E is equal to the intersection of E with the linear span
⟨S⟩, hence the flats of M(E) correspond bijectively to the linear subspaces
of V that can be spanned by subsets of E.

Every matroid has the trivial flats cl(∅), the unique flat of rank 0, and
E, the unique flat of rank rk(M). Flats of rank rk(M) − 1 are also called
hyperplanes. In a simple matroid, the rank 1 flats are exactly the singletons
{e} with e ∈ E and we have cl(∅) = ∅. Therefore, a simple matroid of rank
3 is uniquely determined by its hyperplanes, and in this case we will call a
hyperplane connected if it has more than two elements (see Section 1.4 for
the general definition of connectedness).

Example 1.2.6. There exists a unique simple rank 3 matroid M1 on the
ground set {1, . . . , 5} whose connected hyperplanes are {1, 2, 4} and {1, 3, 5}.
Indeed, M1 is isomorphic to the vector matroid of

E := {x1, x2, x3, x1 − x2, x1 − x3},
where x1, x2, x3 denotes the standard basis of R3.

We can visualize simple matroids of rank 3 by their geometric representa-
tion, that is, for each element of the ground set we draw a point in the affine

1

2

3

4

5

Figure 4. The geometric representation of M1.
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plane and for each connected hyperplane we draw a line or a circle through
all its points.

Every automorphism of M1 must fix the element 1, since it is the only
element that is contained in two connected hyperplanes. In particular, since
some bases contain 1 and some do not, the automorphism group of M1 does
not act transitively on the set of bases. A permutation of {2, 3, 4, 5} induces
an automorphism of M1 if and only if it preserves the partition {{2, 4}, {3, 5}},
hence the automorphism group of M1 is isomorphic to the dihedral group D4

of symmetries of a square (imagine {2, 4} and {3, 5} being the diagonals).

Example 1.2.7. There exists a unique simple rank 3 matroid M2 on the
ground set {1, . . . , 7} whose connected hyperplanes are {1, 2, 4, 5}, {1, 3, 6},
{2, 3, 7}, and {4, 6, 7}. Indeed, M2 is isomorphic to the vector matroid of

E := {x1, x2, x3, x1 − x2, x1 + x2, x1 − x3, x2 − x3},
where x1, x2, x3 denotes the standard basis of R3.

1

2

3

4

5

6

7

Figure 5. The geometric representation of M2.

Again, the automorphism group of M2 does not act transitively on the
set of bases of M2 since every automorphism of M2 fixes the element 5 and
thus induces a permutation of {1, 2, 4}. Conversely, every permutation of
{1, 2, 4} can be extended uniquely to an automorphism of M2, hence Aut(M2)
is isomorphic to the symmetric group S3.

We will continue these examples in Section 1.3 by determining the Cre-
mona bases and the support graph of these matroids. For the rest of this
section, let I be an independent set of a matroid M .

Proposition 1.2.8. For every subset S ⊆ cl(I), the collection I := {I ′ ⊆ I |
S ⊆ cl(I ′)} has a unique minimal element suppI(S).

Proof. By assumption, I is non-empty, so it suffices to show that I is closed
under intersection. Let I ′, I ′′ ⊆ I with S ⊆ cl(I ′) and S ⊆ cl(I ′′). As subsets
of the independent set I, the sets I ′ and I ′′ as well as their intersection I ′∩I ′′

and their union I ′ ∪ I ′′ are all independent. Since S ⊆ cl(I ′ ∪ I ′′), we have

rk((I ′ ∩ I ′′) ∪ S) = rk((I ′ ∪ S) ∩ (I ′′ ∪ S))

≤ rk(I ′ ∪ S) + rk(I ′′ ∪ S)− rk(I ′ ∪ I ′′ ∪ S)

= |I ′|+ |I ′′| − |I ′ ∪ I ′′| = |I ′ ∩ I ′′| = rk(I ′ ∩ I ′′)
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and thus I ′ ∩ I ′′ ∈ I. □

We call suppI(S) the support of S with respect to I. For a single
element e ∈ cl(I), we also write suppI(e) instead of suppI({e}). Clearly,
suppI(e) = {e} if e ∈ I.

Example 1.2.9. Let E be a finite set of vectors in a vector space V over
some field K and assume that E contains a basis B := {x1, . . . , xn} of V .
Then B is also a basis of the associated matroid M(E) and for every vector
v ∈ E we have

suppB(v) = {xi | ai ̸= 0},
where the scalars a1, . . . , an ∈ K are the coefficients in the unique expression
v =

∑︁n
i=1 aixi of v as linear combination of the basis vectors.

Corollary 1.2.10. If e ∈ cl(I)\I, then CI(e) := suppI(e)∪{e} is the unique
circuit of M with CI(e) ⊆ I ∪ {e}, called the fundamental circuit of e with
respect to I.

Proof. If e /∈ I, then the map I ′ ↦→ I ′ ∪ {e} is an order-preserving bijection
between the sets I ′ ⊆ I with e ∈ cl(I ′) and the dependent subsets of I ∪ {e}.
Now the claim follows from Proposition 1.2.8. □

Corollary 1.2.11. Assume that M is simple.
(1) For all e ∈ cl(I) \ I we have | suppI(e)| ≥ 2.
(2) For all I ′ ⊆ I with |I| = 2 we have {e ∈ cl(I) | suppI(e) = I ′} =

cl(I ′) \ I ′.

Proof. Follows from Corollary 1.2.10 since every circuit of a simple matroid
has size at least 3. □

The following properties of the support will be used frequently:

Proposition 1.2.12. Let S ⊆ cl(I) be a subset.
(1) suppI(S) =

⋃︁
e∈S suppI(e).

(2) suppI(cl(S)) = suppI(S).
(3) rk(S) ≤ | suppI(S)|.

Proof. For all I ′ ⊆ I we have

S ⊆ cl(I ′) ⇐⇒ ∀e ∈ S : e ∈ cl(I ′) ⇐⇒ ∀e ∈ S : suppI(e) ⊆ I ′

⇐⇒
⋃︂
e∈I

suppI(e) ⊆ I ′,

thus the minimality of the support implies suppI(S) =
⋃︁

e∈I suppI(e). In
particular, we deduce suppI(S) ⊆ suppI(cl(S)). Conversely, the inclusion
S ⊆ cl(suppI(S)) implies rk(S) ≤ rk(cl(suppI(S))) = | suppI(S)| and cl(S) ⊆
cl(suppI(S)), hence suppI(cl(S)) ⊆ suppI(S). □
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1.3. Cremona bases and support graphs

Let M be a matroid on the ground set E.

Definition 1.3.1. A basis B of M is called a Cremona basis of M if⋃︂
b,b′∈B

cl({b, b′}) = E.

In other words, the rank 2 flats generated by the elements of a Cremona basis
cover the ground set.

The following proposition shows that this definition is equivalent to the
condition in [SW23, Theorem 8.3] for a simple matroid.

Proposition 1.3.2. If M is simple, then the following are equivalent for a
basis B of M :

(1) B is a Cremona basis of M .
(2) | suppB(e)| = 2 for all e ∈ E \B.
(3) The sets {cl({b, b′}) \ {b, b′}}b,b′∈B form a partition of E \B.

We use the convention that the empty set is allowed as an element of a
partition.

Proof. Assume that B is a Cremona basis of M and let e ∈ E \ B. Then
there exist b, b′ ∈ B with e ∈ cl({b, b′}), thus suppB(e) = {b, b′} and b ̸= b′

since M is simple (Corollary 1.2.11).
For any basis B, the equivalence classes with respect to the relation

e ∼ e′ :⇐⇒ suppB(e) = suppB(e
′)

form a partition of E \B. Condition (2) and Corollary 1.2.11 imply that these
equivalence classes are exactly the non-empty sets of the form cl({b, b′})\{b, b′}
with b, b′ ∈ B. (Note that cl({b, b′}) \ {b, b′} = ∅ if b = b′.)

If B is a basis with property (3), then E \B ⊆
⋃︁

b,b′∈B cl({b, b′}), hence
B is a Cremona basis of M . □

In particular, if a simple matroid has a Cremona basis, then knowing
the maximal size of the rank 2 flats gives an upper bound on the cardinality
of the ground set. This will be an important criterion to show that a given
matroid does not admit a Cremona basis.

Corollary 1.3.3. If M is simple and has a Cremona basis, then

|E| ≤ rk(M) +

(︃
rk(M)

2

)︃(︁
max

rk(F )=2
|F | − 2

)︁
.

Proof. We use the notation
(︁
B
2

)︁
for the collection of subsets I ⊆ B with

|I| = 2. If B is a Cremona basis of M , then Proposition 1.3.2 (3) implies

|E| = |B|+ |E \B| = rk(M) +
∑︂

{b,b′}∈(B2)

| cl({b, b′}) \ {b, b′}|

= rk(M) +
∑︂

{b,b′}∈(B2)

(| cl({b, b′})| − 2)

≤ rk(M) +

(︃
rk(M)

2

)︃(︁
max

rk(F )=2
|F | − 2

)︁
. □
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Property (2) in Proposition 1.3.2 allows us to visualize simple matroids
with a Cremona basis as graphs, where vertices correspond to elements of
the Cremona basis and edges correspond to the remaining elements of the
ground set.

Definition 1.3.4. Assume that M is simple and has a Cremona basis B.
The support graph GB(S) of a subset S ⊆ E with respect to B is defined as
the graph with vertices suppB(S) and edges S \B, where the endpoints of
an edge e are the vertices in suppB(e).

Note that we allow parallel edges in the support graph. We also write
GB(M) instead of GB(E) and call it the support graph of the matroid
M . If S′ ⊆ S ⊆ E, then GB(S

′) is a subgraph of GB(S). Note that the
support graph of a subset S ⊆ E is the smallest subgraph of GB(M) with
S ⊆ V (GB(S)) ∪ E(GB(S)).

Example 1.3.5. Let M1 be the matroid from Example 1.2.6. Out of the 8
bases of M1, exactly the 4 bases containing the element 1 are Cremona bases:

• {1, 2, 3} is a Cremona basis since 4 ∈ cl({1, 2}) and 5 ∈ cl({1, 3}).
• {1, 2, 5} is a Cremona basis since 3 ∈ cl({1, 5}) and 4 ∈ cl({1, 2}).
• {1, 3, 4} is a Cremona basis since 2 ∈ cl({1, 4}) and 5 ∈ cl({1, 3}).
• {1, 4, 5} is a Cremona basis since 2 ∈ cl({1, 4}) and 3 ∈ cl({1, 5}).
• {2, 3, 4} is not a Cremona basis since | supp{2,3,4}(5)| = 3.
• {2, 3, 5} is not a Cremona basis since | supp{2,3,5}(4)| = 3.
• {2, 4, 5} is not a Cremona basis since | supp{2,4,5}(3)| = 3.
• {3, 4, 5} is not a Cremona basis since | supp{3,4,5}(2)| = 3.

The support graph GB(M1) with respect to the basis B := {1, 2, 3} is a
path of length 2:

1

2

3

4

5

Figure 6. The support graph GB(M1).

The automorphism group Aut(M1) ∼= D4 acts transitively on the set of
Cremona bases. We will prove in Section 1.7 that this is always the case,
which implies that the support graph GB(M1) of M1 is independent of the
chosen Cremona basis B up to isomorphism.

Example 1.3.6. Let M2 be the matroid from Example 1.2.7. As we will
check later in Example 1.7.5, M2 has exactly 3 Cremona bases, {1, 2, 3},
{1, 4, 6}, and {2, 4, 7}. The support graph GB(M1) with respect to the basis
B := {1, 2, 3} is a triangle with one pair of parallel edges.

Note that for every two distinct Cremona bases B and B′ of M2 we have
|B ∩B′| = 1. This will be a special case of the star property in Section 1.6.
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Figure 7. The support graph GB(M2).

Example 1.3.7 ([Oxl11, Example 1.2.7]). Let m and n be non-negative
integers with m ≤ n. The uniform matroid Um,n is the rank m matroid
on the ground set {1, . . . , n} with rank function rk(S) := min{|S|,m} for
all S ⊆ {1, . . . , n}. Every permutation of the ground set induces a matroid
automorphism, thus Aut(Um,n) is the symmetric group Sn.

If m ≥ 3, then
⋃︁

b,b′∈B cl({b, b′}) = B for every basis B, thus Um,n has a
Cremona basis if and only if m = n. Otherwise, if m ≤ 2, then every basis is
a Cremona basis. Thus U3,4 is the smallest matroid with no Cremona bases.

Note that every simple matroid of rank 2 or less is isomorphic to a uniform
matroid and thus there is no difference between Cremona bases and normal
bases. Therefore, we are mainly interested in matroids of rank at least 3.

Example 1.3.8. Let E be a finite set of vectors in a vector space V over
some field K and assume that E contains a basis B := {x1, . . . , xn} of V .
By Example 1.2.9, B is a Cremona basis of the matroid M(E) if and only
if every vector v ∈ E is of the form v = axi + bxj for some a, b ∈ K and
i, j ∈ {1, . . . , n}.
Example 1.3.9. Let G be a finite group and r ≥ 3 an integer. The Dowling
matroid Qr(G) is a certain simple matroid on the ground set

{1, . . . , r} ∪ {(g, i, j) | g ∈ G, 1 ≤ i < j ≤ r}
such that cl({i, j}) = {i, j} ∪ {(g, i, j) | g ∈ G} for all 1 ≤ i < j ≤ r.
Thus B := {1, . . . , r} is a Cremona basis of Qr(G) and the support graph
GB(Qr(G)) is a complete graph with r vertices and |G| edges joining any
given pair of vertices. There are also rank 2 circuits of non-basis elements
that are determined by the group structure as follows: For all g, h ∈ G and all
1 ≤ i < j < k ≤ r the set {(g, i, j), (h, i, k), (gh, i, k)} is a circuit of Qr(G).

If |G| ≥ 2, then B is the only Cremona basis of Qr(G), as will follow from
Lemma 1.6.7. For more information about Dowling matroids, see [Oxl11,
Section 6.10]. In fact, in order to describe these matroids, Oxley uses a graph
that coincides with the support graph GB(Qr(G)) up to the addition of loops.

There are two cases that we will consider in more detail in Chapter 4: If
the group G is trivial, then Qr(G) is isomorphic to the matroid associated to
the root system Ar, and if G is isomorphic to Z/2Z, then Qr(G) is isomorphic
to the matroid associated to the root system Br.

By [Oxl11, Theorem 6.10.10], the Dowling matroid Qr(G) is representable
over a field K if and only if G is isomorphic to a subgroup of K×. The
Klein four-group Z/2Z× Z/2Z cannot be embedded into the group of units
of any field, since it contains three elements of order 2, but the polynomial
X2 − 1 has at most two roots over any field. Thus the Dowling matroid
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Qr(Z/2Z × Z/2Z) is an example for a non-representable matroid with a
Cremona basis.

Example 1.3.10. Let M be the simple rank 3 matroid associated to a finite
non-degenerate projective plane of order k ≥ 2. Then M has k2 + k + 1
elements and every rank 2 flat has cardinality k + 1. If M had a Cremona
basis, then Corollary 1.3.3 would imply

k2 + k + 1 ≤ 3 +

(︃
3

2

)︃
(k − 1) = 3k.

But for all k ≥ 2 we have k2 + k + 1 ≥ 3k + 1.
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1.4. Connectivity

Motivated by graph theory, another important concept in matroid theory
is connectivity, see [Oxl11, Chapter 4]. Usually, the connectedness of a
matroid is defined using circuits, but instead we choose an equivalent approach
using separators (cf. [Oxl11, Proposition 4.2.1]). This has the advantage that
it is easier to compare with the notion of support-connectedness that we
introduce in the second part of this section.

Let M be a simple matroid on the ground set E.

Definition 1.4.1. Let S ⊆ E be a subset. A separator of S is a subset
T ⊆ S such that

rk(S) = rk(T ) + rk(S \ T ).
The components of S are the minimal non-empty separators of S. We call S
connected if it has exactly one component, and disconnected otherwise.

Note that by our definition the empty set is not connected. Separators of E
are also called separators of M , and the matroid M is called connected if E is
connected. Note that for every subset T ⊆ S we have rk(S) ≤ rk(T )+rk(S\T )
by the axioms of the rank function. Every set S has the two trivial separators
∅ and S itself. One can show that the collection of separators of S is closed
under union, intersection, and complement, hence the components of S form
a partition of S. If T is a separator of S, then every separator of T is also a
separator of S, thus the components of S are connected. Moreover, if T is a
separator of S, then cl(T ) ∩ cl(S \ T ) = ∅ since

rk(cl(T ) ∩ cl(S \ T )) ≤ rk(cl(T )) + rk(cl(S \ T ))− rk(cl(T ) ∪ cl(S \ T ))
= rk(T ) + rk(S \ T )− rk(S) = 0.

In particular, we have cl(T ) ∩ S = T , hence separators of flats are flats.

Lemma 1.4.2. Let S′ ⊆ S ⊆ E be subsets. If T is a separator of S, then
T ′ := T ∩ S′ is a separator of S′.

Proof. Using that T is a separator of S, we compute

rk(T ′) + rk(S′ \ T ′) = rk(T ∩ S′) + rk((S \ T ) ∩ S′)

≤ rk(T ) + rk(S′)− rk(T ∪ S′)

+ rk(S \ T ) + rk(S′)− rk((S \ T ) ∪ S′)

= 2 rk(S′) + rk(S)− rk(T ∪ S′)− rk((S \ T ) ∪ S′)

≤ rk(S′). □

This implies that every connected subset of S is contained in a component
of S, hence the components of S are exactly the maximal connected subsets
of S. In particular, the union of two connected sets S and S′ with S ∩S′ ̸= ∅
is again connected.

Corollary 1.4.3. Let T1, . . . , Tk be separators of a subset S ⊆ E that form
a partition of S. Then rk(S) =

∑︁k
i=1 rk(Ti).

Proof. Clear for k ≤ 2. If k ≥ 3, then rk(S) = rk(
⋃︁k−1

i=1 Ti) + rk(Ti) and
T1, . . . , Tk−1 are separators of

⋃︁k−1
i=1 Ti by Lemma 1.4.2, hence the claim

follows by induction on k. □
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Lemma 1.4.4. A basis B of M is a Cremona basis if and only if B ∩ S is a
Cremona basis of M |S for every component S of M .

Proof. First assume B is a Cremona basis of M . Let S be a component of
M and let e ∈ S \B. Since B is a Cremona basis of M , there exist b, b′ ∈ B
with e ∈ cl({b, b′}), and it suffices to show that b, b′ ∈ B ∩ S. If b, b′ ∈ B \ S,
then e ∈ cl({b, b′}) ⊆ E \ S since E \ S is a flat of M , contradiction. Thus
we may assume b ∈ B ∩ S and then we deduce b′ ∈ cl({b, e}) ⊆ S since S is
a flat of M .

Conversely, let e ∈ E \ B and assume that B ∩ S is a Cremona basis
of M |S , where S is the component of M containing e. Then there exist
b, b′ ∈ B ∩ S ⊆ B with e ∈ cl({b, b′}). □

Assumption. For the rest of this section, assume that M has a Cremona
basis B in the sense of Definition 1.3.1.

The following property of subsets of E with respect to the Cremona basis
B will be useful.

Definition 1.4.5. Let S ⊆ E be a subset. A support separator of S is a
subset T ⊆ S such that

suppB(T ) ∩ suppB(S \ T ) = ∅.
The support components of S are the minimal non-empty support separators of
S, and S is called support-connected if it has exactly one support component.

Note that these definitions depend on the choice of the Cremona basis
B. Like separators, Proposition 1.2.12 shows that the collection of support
separators is closed under union, intersection, and complement, hence the
support components of S form a partition of S.

Lemma 1.4.6. The support components of a subset S ⊆ E correspond
bijectively to the components of its support graph GB(S). In particular, S is
support-connected if and only if GB(S) is connected.

Proof. If T is a support separator of S, then GB(S) is the disjoint union of
GB(T ) and GB(S \ T ), thus GB(T ) is the subgraph induced by the vertices
suppB(T ). Conversely, if vertices I ⊆ suppB(S) form a union of components
of GB(S), then

S = (S ∩ cl(I)) ∪ (S ∩ cl(B \ I)),
thus T := S ∩ cl(I) is a support separator of S. These constructions are
inverse to each other and order-preserving, hence the support components of
S correspond to the components of GB(S). □

This also implies that every support-connected subset of a set S ⊆ E is
contained in a support component of S. The next proposition shows that
support-connectivity is weaker than connectivity.

Proposition 1.4.7. Let S ⊆ E. Every support separator of S is a separator
of S. In particular, if S is connected, then S is support-connected.

Proof. For every subset T ⊆ S we have

S = T ∪ (S \ T ) ⊆ cl(suppB(T )) ∪ cl(suppB(S \ T )) =: S′.

22



Assume that T is a support separator of S. We claim that T ′ := cl(suppB(T ))
is a separator of S′. First note that cl(suppB(S \ T )) is the complement of
T ′ in S′. Indeed, if e ∈ T ′ ∩ cl(suppB(S \ T )), then we have suppB(e) ⊆
suppB(T )∩suppB(S \T ) = ∅, contradicting the assumption that M is simple.
Thus

rk(T ′) + rk(S′ \ T ′) = | suppB(T )|+ | suppB(S \ T )|
= | suppB(T ) ∪ suppB(S \ T )| = rk(S′).

Now Lemma 1.4.2 implies that T ′ ∩ S is a separator of S. Since T ⊆ T ′ and
S \ T ⊆ S′ \ T ′, we conclude T ′ ∩ S = T . □

Corollary 1.4.8. Let S ⊆ E. Then rk(S) =
∑︁k

i=1 rk(Si), where S1, . . . , Sk

are the support components of S.

Proof. Follows from Proposition 1.4.7 and Corollary 1.4.3. □

Proposition 1.4.9. Let S ⊆ E. If S is support-connected, then cl(S) is also
support-connected.

Proof. Assume that S is support-connected and let T be a support separator
of cl(S). We may assume S ∩ T ̸= ∅, otherwise replace T by cl(S) \ T .
Then S ∩ T is a support separator of S since suppB(S ∩ T ) ⊆ suppB(T )
and suppB(S \ T ) ⊆ suppB(cl(S) \ T ), so we deduce S ⊆ T ⊆ cl(S) and
thus suppB(T ) = suppB(cl(S)) by Proposition 1.2.12. We conclude that
suppB(cl(S) \ T ) = ∅ and hence T = cl(S) since M is simple. □

Lemma 1.4.10. Every separator of M is a support separator of M . In
particular, M is connected if and only if GB(M) is connected.

Proof. For a separator S of M let I1 := S ∩ B and I2 := B \ S. Then
S ⊆ cl(I1) and E \ S ⊆ cl(I2) since

rk(E) = |B| = |I1|+ |I2| = rk(I1) + rk(I2) ≤ rk(S) + rk(E \ S) = rk(E).

Hence suppB(S) ∩ suppB(E \ S) ⊆ I1 ∩ I2 = ∅. □

Definition 1.4.11. Let T ⊆ E. Then the contraction M/T is the matroid
on the ground set E \ T with rank function

rkM/T (S) := rkM (S ∪ T )− rkM (T )

for all S ⊆ E \ T .

Lemma 1.4.12. Assume that M is connected.
(1) For all e ∈ E \B, the contraction M/e is connected.
(2) For all b ∈ B, the contraction M/b is connected if and only if the

deletion GB(M)− b is connected.

Proof. For the proof of (1), let e ∈ E \B and let S ⊆ E \ {e} be a separator
of M/e. We may assume S ∩ B ̸= ∅, else replace S by its complement in
E \ {e}.

Claim: If b, b′ ∈ B are adjacent in GB(M) and b ∈ S, then also b′ ∈ S.
Indeed, if suppB(e) = {b, b′}, then {b, b′} is a circuit of M/e, hence
b′ ∈ S since S is a flat of M/e. Otherwise, by assumption there
exists e′ ∈ E \B with suppB(e

′) = {b, b′}. Then C := {b, b′, e′} is a
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circuit of M with e /∈ clM (C), thus C is also a circuit of M/e with
C ∩ S ̸= ∅. Since S is a separator of M/e, we deduce C ⊆ S.

Hence B ⊆ S since GB(M) is connected by Lemma 1.4.10, and we conclude
cl(S) = E \ {e}.

For (2), let I ⊆ B \ {b} be a set of vertices that form a component of
GB(M)− b. Then E ⊆ cl(I ∪{b})∪ cl(B \ I) and cl(I ∪{b})∩ cl(B \ I) = {b}.
This implies

rk(M/b) = |I|+ 1 + |B| − |I| − 2

= rkM (cl(I ∪ {b})) + rkM (cl(B \ I))− 2

= rkM/b(cl(I ∪ {b}) \ {b}) + rkM/b(cl(B \ I)),
hence cl(I ∪ {b}) \ {b} is a separator of M/b.

Conversely, let S be a separator of M/b. Then

|B| − 1 = |S ∩B|+ |(B \ {b}) \ S|
≤ rkM/b(S) + rkM/b((E \ {b}) \ S) = rk(E \ {b}) = |B| − 1,

thus S = clM/b(S ∩B) and (E \ {b}) \S = clM/b((B \ {b}) \S). This implies
E ⊆ cl((S ∩B)∪{b})∪ cl(B \S), hence the vertices S ∩B form a component
of GB(M)− b. □

Corollary 1.4.13. GB(M) is 2-connected if and only if M is connected and
M/e is connected for all e ∈ E.
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1.5. Coordinate and non-coordinate flats

In this section, we describe the flats and the rank function of matroids
that have a Cremona basis. Throughout this section, let M be a simple
matroid on the ground set E that admits a Cremona basis B.

Definition 1.5.1. Let F be a flat of M .
(1) F is called a coordinate flat if F ∩B = suppB(F ).
(2) F is called a non-coordinate flat if F ∩B = ∅ ≠ F .

This definition depends on the chosen Cremona basis, so we will also say
that a flat F is a (non-)coordinate flat with respect to B. Note that every
non-empty subflat of a non-coordinate flat is a non-coordinate flat.

Theorem 1.5.2. Every support-connected flat of M is either a coordinate
flat or a non-coordinate flat.

Proof. Let F be a support-connected flat of M . If e ∈ F \ B is an edge
joining two vertices b, b′ ∈ suppB(F ) such that b ∈ F , then {b, b′, e} is a
circuit, hence

b′ ∈ cl({b, e}) ⊆ cl(F ) = F.

This means that the vertices F ∩B form a (possibly empty) union of compo-
nents of GB(F ). But GB(F ) is connected by Lemma 1.4.6, so we have either
F ∩B = suppB(F ) or F ∩B = ∅. □

Corollary 1.5.3. Let S ⊆ E be support-connected. If S ∩B ̸= ∅, then cl(S)
is a coordinate flat.

Proof. The closure cl(S) is also support-connected by Proposition 1.4.9 and
cannot be a non-coordinate flat since cl(S) ∩B ⊇ S ∩B ̸= ∅, hence cl(S) is
a coordinate flat by Theorem 1.5.2. □

Proposition 1.5.4. The coordinate flats of M correspond bijectively to the
subsets of B.

Proof. If I is a subset of B, then cl(I) ∩B = I and

suppB(cl(I)) = suppB(I) =
⋃︂
e∈I

suppB(e) =
⋃︂
e∈I

{e} = I

by Proposition 1.2.12, hence F := cl(I) is a coordinate flat. Conversely, if F is
a coordinate flat, then F = cl(I) for I := suppB(F ). Indeed, by Proposition
1.2.12 we have

F ⊆ cl(suppB(F )) = cl(F ∩B) ⊆ cl(F ) = F

and hence equality throughout. These constructions are inverse to each
other. □

Theorem 1.5.5. Let S ⊆ E be a subset.
(1) cl(S) is a coordinate flat if and only if rk(S) = | suppB(S)|.
(2) If cl(S) is a support-connected non-coordinate flat, then rk(S) =

| suppB(S)| − 1.
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Proof. If cl(S) is a coordinate flat, then cl(S) = cl(suppB(cl(S))) by Propo-
sition 1.5.4 and hence

rk(S) = rk(cl(S)) = rk(cl(suppB(cl(S)))) = | suppB(cl(S))| = | suppB(S)|.
Conversely, if rk(cl(S)) = rk(S) = | suppB(S)|, then the inclusion of flats
cl(S) ⊆ cl(suppB(S)) is an equality.

Now assume that cl(S) is a support-connected non-coordinate flat. We
choose a vertex b ∈ suppB(cl(S)) and consider the flat F := cl(S∪{b}). Then
F is support-connected with suppB(S) = suppB(F ) and rk(F ) = rk(S) + 1.
Since F ∩ B ≠ ∅, F is a coordinate flat by Corollary 1.5.3, hence part (1)
implies rk(S) = rk(F )− 1 = | suppB(F )| − 1 = | suppB(S)| − 1. □

Lemma 1.5.6. A coordinate flat F is connected if and only if it is support-
connected.

Proof. Follows from Lemma 1.4.10 applied to the restriction matroid M |F . □

Proposition 1.5.7. The support graph GB(F ) of a non-coordinate flat F is
simple. In particular, |F | ≤

(︁| suppB(F )|
2

)︁
.

Proof. Let F be a flat whose support graph contains a pair of parallel edges
e, e′ ∈ F \ B with endpoints b, b′ ∈ B. Then the set {b, b′, e, e′} has rank
2, thus {b, b′} ⊆ cl({e, e′}) ⊆ cl(F ) = F . In particular, F ∩ B ̸= ∅. By
contraposition, if F is a non-coordinate flat, then GB(F ) is simple. The
second claim follows from the inequality |E(G)| ≤

(︁|V (G)|
2

)︁
for a simple graph

G. □

Corollary 1.5.8. Let C be a rank 2 circuit of M . Then | suppB(C)| ∈ {2, 3}.
If | suppB(C)| = 3, then GB(C) is a simple triangle.

Proof. The closure cl(C) is a connected rank 2 flat and in particular support-
connected by Proposition 1.4.7. If cl(C) is a coordinate flat, then we have
| suppB(C)| = rk(C) = 2 by Theorem 1.5.2. Otherwise, cl(C) is a non-
coordinate flat and | suppB(C)| = rk(C)+ 1 = 3 by Theorems 1.5.2 and 1.5.5.
In the latter case, Proposition 1.5.7 implies that GB(C) is a simple graph
with 3 vertices. Since |C| = |C \B| = 3, the graph must be a triangle. □

Lemma 1.5.9. A non-coordinate flat F with | suppB(F )| ≥ 3 is connected if
and only if GB(F ) is 2-connected.

Proof. Let S be a subset of F and let S1, . . . , Sk be its support components.
Then for all i ∈ {1, . . . , k} the closure cl(Si) is contained in F and thus a
non-coordinate flat. Thus Corollary 1.4.8 and Theorem 1.5.5 imply

rk(S) =

k∑︂
i=1

rk(Si) =

k∑︂
i=1

| suppB(Si)| − 1 = | suppB(S)| − k.

Hence the restriction matroid M |F is isomorphic to the cycle matroid
M(GB(F )), see Example 1.2.3. By [Oxl11, Proposition 4.1.7], the cycle
matroid M(G) of a graph G is connected if and only if G is 2-connected. □

Corollary 1.5.10. Let F be a connected non-coordinate flat and let b ∈
suppB(F ). Then

F−b := {e ∈ F | b /∈ suppB(e)} ⊆ F
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is either empty or a support-connected non-coordinate flat. In both cases, we
have F = F−b ∨ {e} for every e ∈ F \ F−b.

Proof. F−b is a flat since it is the intersection of F with the coordinate flat
cl(E \ {b}). Note that GB(F−b) and the deletion graph GB(F )− b have the
same set of edges and for the vertices we have the inclusion suppB(F−b) ⊆
suppB(F ) \ {b}. The graph GB(F )− b might contain additional vertices of
degree 0, however, GB(F ) − b is connected by Lemma 1.5.9, so this only
happens if GB(F )− b consists of a single vertex and F−b is empty. In this
case, F = {e} is a singleton by Proposition 1.5.7 and the claim is trivial.

Otherwise, we have GB(F−b) = GB(F )− b, so F−b is support-connected.
Moreover, Theorem 1.5.5 implies

rk(F−b) = | suppB(F−b)| − 1 = | suppB(F )| − 2 = rk(F )− 1.

In particular, for every e ∈ F \ F−b we have rk(F−b ∨ {e}) = rk(F ) and
F−b ∨ {e} ⊆ F , hence F−b ∨ {e} = F . □

Lemma 1.5.11. Let F and F ′ be connected flats of M(An). Then F ∨ F ′ is
disconnected if suppB(F ) ∩ suppB(F

′) = ∅ and at least one of F and F ′ is a
non-coordinate flat.

Proof. Assume that F ∨ F ′ is connected. If exactly one of F and F ′ is a
coordinate flat, then F ∨ F ′ is a coordinate flat by Corollary 1.5.3, thus

| suppB(F ) ∪ suppB(F
′)| = | suppB(F ∨ F ′)| = rk(F ∨ F ′)

≤ rk(F ) + rk(F ′) = | suppB(F )|+ | suppB(F ′)| − 1

by Proposition 1.2.12 and Theorem 1.5.5. Otherwise, if F and F ′ are both
non-coordinate flats, then

| suppB(F ) ∪ suppB(F
′)| − 1 = | suppB(F ∨ F ′)| − 1 ≤ rk(F ∨ F ′)

≤ rk(F ) + rk(F ′) ≤ | suppB(F )|+ | suppB(F ′)| − 2

by Proposition 1.2.12 and Theorem 1.5.5. In both cases, we deduce that the
intersection suppB(F ) ∩ suppB(F

′) is non-empty. □

Lemma 1.5.12. Let F and F ′ be support-connected flats of M with

| suppB(F ) ∩ suppB(F
′)| = 1.

Then F ∨ F ′ is a non-coordinate flat if and only if both F and F ′ are non-
coordinate flats.

Proof. Since F and F ′ are support-connected flats and the intersection
suppB(F ) ∩ suppB(F

′) is non-empty, their join F ∨ F ′ is also support-
connected. If at least one of F and F ′ is a coordinate flat, then F ∨ F ′

is a coordinate flat by Corollary 1.5.3. Otherwise, if F and F ′ are both
non-coordinate flats, then we have

rk(F ∨ F ′) ≤ rk(F ) + rk(F ′) = | suppB(F )|+ | suppB(F ′)| − 2

= | suppB(F ) ∪ suppB(F
′)|+ | suppB(F ) ∩ suppB(F

′)| − 2

= | suppB(F ∨ F ′)| − 1,

hence F ∨ F ′ is a non-coordinate flat by Theorems 1.5.2 and 1.5.5. □
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1.6. The star property

We saw in examples that a matroid may have more than one Cremona
basis, and in this case the notions of support and (non-)coordinate flats
depend on the chosen Cremona basis. How are different Cremona bases
related to each other? The goal of this section is to compare two Cremona
bases by studying the shape of the support graph of one Cremona basis with
respect to the other.

We need the following terminology from graph theory. Every connected
graph G satisfies the formula |E(G)| ≥ |V (G)| − 1 and G is called a tree if
equality holds. Every tree is simple. A disjoint union of trees is also called a
forest. A connected graph G is called a star if there exists a vertex v ∈ V (G)
(called central vertex ) such that every edge e ∈ E(G) is incident to v. In
particular, a central vertex is adjacent to every other vertex. Every simple
star is a tree. Conversely, if G is a tree, then a vertex adjacent to every other
vertex is central. If |V (G)| ≥ 3, then G has at most one central vertex.

Throughout this section, let M be a simple matroid on the ground set E
and assume that M admits two Cremona bases B and B′. We will consider
the support graph GB(B

′) of B′ with respect to B, so all notions related to
support are understood to be with respect to B unless stated otherwise. We
will refer to the following theorem as the star property of Cremona bases.

Theorem 1.6.1. Assume that no component of M has rank 2. Then GB(B
′)

is a spanning forest of stars and B ∩B′ is a collection of exactly one central
vertex for each star. In particular, |B ∩B′| ≥ 1 with equality if and only if
B′ is support-connected with respect to B.

We will prove this theorem in several steps. First note that GB(B
′)

is a spanning subgraph of GB(M). Indeed, for every basis B′ we have
suppB(B

′) = suppB(cl(B
′)) = suppB(E) by Proposition 1.2.12. Moreover,

by Lemma 1.4.6, every component of GB(B
′) is of the form GB(I

′), where I ′

is a support component of B′ with respect to B.

Lemma 1.6.2. Let I ′ be an independent subset of M that is support-connected
with respect to B.

(1) We have |I ′ ∩B| ≤ 1.
(2) If |I ′ ∩B| = 1, then GB(I

′) is a tree.
(3) GB(I

′) has at most one pair of parallel edges.

Proof. Since I ′ is support-connected, we have

|I ′ \B| = |E(GB(I
′))| ≥ |V (GB(I

′))| − 1 = | suppB(I ′)| − 1.

On the other hand, | suppB(I ′)| ≥ rk(I ′) = |I ′| by Proposition 1.2.12, hence

|I ′ ∩B| = |I ′| − |I ′ \B| ≤ |I ′| − | suppB(I ′)|+ 1 ≤ 1.

If |I ′ ∩B| = 1, then cl(I ′) is a coordinate flat by Corollary 1.5.3, thus GB(I
′)

is a tree since the equality | suppB(I ′)| = rk(I ′) = |I ′| in Theorem 1.5.5
implies

|E(GB(I
′))| = |I ′ \B| = |I ′| − 1 = | suppB(I ′)| − 1 = |V (GB(I

′))| − 1.

If GB(I
′) has at least two pairs of parallel edges, then by removing one edge

from each pair we obtain a subset I ′′ ⊆ I ′ with |I ′′ \ B| = |I ′ \ B| − 2 and
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suppB(I
′′) = suppB(I

′). By construction, I ′′ is still support-connected, thus
Proposition 1.2.12 and Theorem 1.5.5 imply

rk(I ′) ≤ | suppB(I ′)| = | suppB(I ′′)| ≤ rk(I ′′) + 1 = |I ′′|+ 1 = |I ′| − 1,

contradicting the assumption that I ′ is independent. □

Using that B′ is a Cremona basis, we show that every support component
I ′ of B′ that fulfills the condition |I ′ ∩B| = 1 is not only a tree, but also a
star.

Proposition 1.6.3. Let I ′ be a support component of B′ with respect to B.
If |I ′ ∩B| = 1, then GB(I

′) is a simple star with central vertex b ∈ I ′ ∩B.

Proof. Let I ′ ∩B = {b}. By Lemma 1.6.2 (2), the support graph GB(I
′) of

I ′ is a tree and it suffices to show that b is adjacent to every other vertex.
Let b′ ∈ suppB(I

′) \ {b}. Then b′ /∈ I ′, thus also b′ /∈ B′ since I ′ is a support
component of B′. By assumption, B′ is a Cremona basis of M , so the
fundamental circuit C := CB′(b′) ⊆ B′ ∪ {b′} has rank 2. Since C ∩B ̸= ∅,
Corollary 1.5.3 implies that cl(C) is a coordinate flat, hence C is contained in
the rank 2 flat cl({b′, b′′}) for some vertex b′′ ∈ B. If b′′ /∈ B′, then C would
contain two parallel edges, contradicting the fact that GB(I

′) is simple. Thus
b′′ ∈ B′ and C = {b′, e, b′′} for some edge e ∈ B′ with suppB(e) = {b′, b′′}.
Since I ′ is a support component of B′, we have e, b′′ ∈ I ′, hence b′′ = b. This
shows that b and b′ are adjacent in GB(I

′). □

It remains to show that, under the conditions of Theorem 1.6.1, we have
|I ′ ∩B| = 1 for every support component I ′ of B′.

Lemma 1.6.4. If two vertices b1, b2 ∈ B that are adjacent in GB(M) lie in
different components of GB(B

′), then b1, b2 ∈ B′.

Proof. Let e ∈ E \B be an edge with suppB(e) = {b1, b2}. By assumption,
b1 and b2 lie in different components of GB(B

′), so we have e /∈ B′. Since
B′ is a Cremona basis, the fundamental circuit C := CB′(e) has rank 2, say
C = {e, e1, e2} for some e1, e2 ∈ B′. If cl(C) were a non-coordinate flat, then
by Corollary 1.5.8 the support graph GB(C) would be a triangle, but then e1
and e2 would form a path in GB(B

′) between b1 and b2, contradicting the
assumption. Thus Theorem 1.5.2 implies that cl(C) is a coordinate flat and
hence equal to cl({b1, b2}). But e1 and e2 cannot be edges since b1 and b2
are not adjacent in GB(B

′), hence {b1, b2} = {e1, e2} ⊆ B′. □

Proposition 1.6.5. Assume that M has no component of rank 2. Then
|I ′ ∩B| = 1 for every support component I ′ of B′ with respect to B.

Proof. Let I ′ be a support component of B′ with respect to B. By Lemma
1.6.2 (1), we have |I ′ ∩B| ≤ 1 and it remains to show the converse inequality.
By Lemma 1.4.10, I ′ is contained in a component S of M and without loss
of generality we may assume that M is connected. Otherwise, we replace M
with M |S and replace the Cremona bases B and B′ with B ∩ S and B′ ∩ S,
respectively, using Lemma 1.4.4.

First assume that I ′ is a proper support component of B′. Since M is
connected, the support graph GB(M) is connected by Lemma 1.4.10, thus
there exists an edge e ∈ E \B between I ′ and some other support component
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of B′. Then the endpoints of e are contained in B′ by Lemma 1.6.4, hence
|I ′ ∩B| ≥ 1.

Otherwise, we have I ′ = B′, i.e., B′ is support-connected with respect to
B. By Lemma 1.6.2 (3), GB(B

′) contains at most one pair of parallel edges.
Since rk(M) ̸= 2, we can choose a vertex b1 ∈ B that is not incident to a pair
of parallel edges in GB(B

′). We are done if b1 ∈ B ∩B′, so assume b1 /∈ B′.
Then the fundamental circuit C := CB′(b1) has rank 2, say C = {b1, e1, e2}
for some e1, e2 ∈ B′. Since C ∩B ≠ ∅, Corollary 1.5.3 implies that cl(C) is a
coordinate flat, hence C is contained in the rank 2 flat cl({b1, b2}) for some
vertex b2 ∈ B. By choice of b1, only one of e1 and e2 can be an edge and the
other is equal to b2, hence b2 ∈ B ∩B′ = B ∩ I ′. □

This completes the proof of Theorem 1.6.1.
Example 1.6.6. Let M be the uniform matroid of rank 2 on the ground
set {1, 2, 3, 4} (cf. Example 1.3.7). Then B := {1, 2} and B′ := {3, 4} are
Cremona bases of M with B ∩B′ = ∅.

The existence of a second Cremona basis B′ of M has consequences for
the shape of the support graph GB(M) with respect to B:
Lemma 1.6.7. Assume that M has no component of rank 2. Then for all
b1, b2 ∈ B \B′ we have

| cl({b1, b2}) \ {b1, b2}| ≤ 1.

Proof. Let b1, b2 ∈ B \ B′ with cl({b1, b2}) \ {b1, b2} ≠ ∅. Then cl({b1, b2})
is connected and we have b1 ̸= b2 since M is simple. Proposition 1.4.7 and
Theorem 1.5.2 imply that cl({b1, b2}) is either a coordinate flat or a non-
coordinate flat with respect to B′. By interchanging the roles of B and B′ in
Theorem 1.6.1, we deduce that GB′(B) is simple, so b1 and b2 are edges with
different support with respect to B′. In particular, | suppB′(cl({b1, b2}))| >
2 = rk(cl({b1, b2})), hence cl({b1, b2}) is a non-coordinate flat with respect
to B′ by Theorem 1.5.5. But then we have | cl({b1, b2})| ≤ 3 by Proposition
1.5.7. □

Lemma 1.6.8. Let I ′ be a support component of B′ with I ′∩B = {b0}. Then
the vertices suppB(I

′) \ {b0} form a union of components of GB(M)− b0.
Proof. Assume that there exist vertices b1 ∈ suppB(I

′) \ {b0} and b2 ∈
B \ suppB(I ′) that are adjacent in GB(M)− b0. By assumption, they lie in
different components of GB(B

′), so Lemma 1.6.4 implies b1 ∈ B′ and thus
b1 ∈ I ′ since I ′ is a support component of B′. But then we have b1 = b0 by
Lemma 1.6.2, contradiction. □

Proposition 1.6.9. Assume that M and the contractions M/b are connected
for all b ∈ B. If rk(M) ̸= 2, then B = B′ or |B ∩B′| = 1.
Proof. Assume B ̸= B′. Then there exists a support component I ′ of B′

with |I ′| ≥ 2. Since M is connected and rk(M) ̸= 2, Proposition 1.6.5
implies |I ′ ∩B| = 1, say I ′ ∩B = {b0}. It suffices to show that I ′ = B′. By
assumption, M/b0 is connected, which is equivalent to GB(M) − b0 being
connected by Lemma 1.4.12. Now Lemma 1.6.8 implies that suppB(I ′) \ {b0}
is empty or equal to B \ {b0}, but the former is not possible since |I ′| ≥ 2.
Hence suppB(I

′) = B and thus I ′ = B′. □
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1.7. Cremona base change

Using the star property, we will show in this section that there exists a
matroid automorphism interchanging any given pair of Cremona bases.

Lemma 1.7.1. Let M and M ′ be matroids with ground sets E and E′,
respectively. If f : E → E′ is a bijective map such that rkM ′(f(F )) ≤ rkM (F )
for all connected flats F of M and rkM (f−1(F ′)) ≤ rkM ′(F ′) for all connected
flats F ′ of M ′, then f is a matroid isomorphism.

Proof. Let S ⊆ E and let S1, . . . , Sk be the components of clM (S). Then by
assumption we have rkM ′(f(Si)) ≤ rkM (Si) for all i, hence

rkM ′(f(S)) ≤ rkM ′(f(clM (S))) = rkM ′

(︃
f
(︁ k⋃︂
i=1

Si

)︁)︃
= rkM ′

(︃ k⋃︂
i=1

f(Si)

)︃

≤
k∑︂

i=1

rkM ′(f(Si)) ≤
k∑︂

i=1

rkM (Si) = rkM (cl(S)) = rkM (S)

by Corollary 1.4.3.
Conversely, let S′

1, . . . , S
′
k be the components of clM ′(f(S)). Then by

assumption we have rkM (f−1(S′
i)) ≤ rkM ′(S′

i) for all i, hence

rkM (S) ≤ rkM (f−1(clM ′(f(S)))) = rkM

(︃
f−1

(︁ k⋃︂
i=1

S′
i

)︁)︃

= rkM

(︃ k⋃︂
i=1

f−1(S′
i)

)︃
≤

k∑︂
i=1

rkM (f−1(S′
i))

≤
k∑︂

i=1

rkM ′(S′
i) = rkM ′(clM ′(f(S))) = rkM ′(f(S))

by Corollary 1.4.3. □

Theorem 1.7.2. Let M be a simple matroid on the ground set E that admits
two Cremona bases B and B′. Then there exists an involutive automorphism
fBB′ of M with

fBB′(B) = B′, fBB′(B′) = B, and fBB′ |E\(B∪B′) = id.

The involution fBB′ is called the Cremona base change automorphism
with respect to B and B′.

Proof. By constructing fBB′ separately on each component of M , we may
assume that M is connected (see Lemma 1.4.4). Setting fBB′(e) := e for all
e ∈ E \ (B ∪ B′) and fBB′(b) := b for all b ∈ B ∩ B′, it remains to define
fBB′ on the symmetric difference of B and B′.

If M has rank 2, then M is a uniform matroid and any permutation
of the ground set is a matroid automorphism (cf. Example 1.3.7), thus any
bijection between B \ B′ and B′ \ B gives rise to an involution with the
desired properties.

Otherwise, we know by Theorem 1.6.1 that GB(B
′) is a spanning forest

of stars and that the intersection B ∩B′ contains exactly one central vertex
of each star. Thus for any vertex b ∈ B \ B′ there exists a unique edge
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e ∈ B′ \B joining b to a central vertex b0 ∈ B ∩B′ of the corresponding star
component and we set fBB′(b) := e. Note that

suppB(fBB′(b)) = {b0, b} = {b0} ∪ suppB(b).

Conversely, every edge e ∈ B′ \ B connects a central vertex b0 ∈ B ∩ B′

of the corresponding star component with a vertex b ∈ B \ B′ and we set
fBB′(e) := b. Note that

suppB(e) = {b0, fBB′(e)} = {b0} ∪ suppB(fBB′(e)).

By construction, fBB′ is an involution on E with the desired properties.
Furthermore, we claim that for every edge e ∈ E with endpoints b1, b2 ∈ B\B′

we have

suppB′(e) = {fBB′(b1), fBB′(b2)} = fBB′(suppB(e)). (⋆)

Indeed, Lemma 1.6.4 implies that b1 and b2 lie in the same support component
I ′ of B′. Since B′ is a Cremona basis, the fundamental circuit C := CB′(e)
has rank 2, say C = {e, e1, e2} for some e1, e2 ∈ I ′. By Theorem 1.6.1, we
have |I ′ ∩B| = 1, say I ′ ∩B = {b0}, and GB(I

′) is a simple star with central
vertex b0. In particular, b0 ∈ suppB(b

′) for all b′ ∈ I ′, hence b0 ∈ suppB(C).
Now Corollary 1.5.8 implies that GB(C) is a simple triangle with vertices
{b0, b1, b2}. But fBB′(b1) and fBB′(b2) are the unique edges in GB(I

′) joining
b0 with b1 and b2, respectively, hence C = {e, fBB′(b1), fBB′(b2)}.

In order to prove that the involution fBB′ is a matroid automorphism,
by Lemma 1.7.1 it suffices to show the inequality

rk(fBB′(F )) ≤ rk(F )

for all connected flats F of M . Every connected flat of M is either a
coordinate flat or a non-coordinate flat with respect to B by Proposition
1.4.7 and Theorem 1.5.2.

First let F be a connected coordinate flat of M . Then Proposition 1.2.12
and Theorem 1.5.5 imply

rk(fBB′(F )) ≤ | suppB(fBB′(F ))| and | suppB(F )| = rk(F ),

so we are done if suppB(fBB′(F )) ⊆ suppB(F ). Otherwise, choose a vertex
b0 ∈ suppB(fBB′(F )) \ suppB(F ). By construction of fBB′ , this means that
b0 is a central vertex of a support component I ′ of B′ and that F contains
a vertex b ∈ B \B′ adjacent to b0 in GB(I

′). By Lemma 1.6.8, the vertices
suppB(I

′) \ {b0} form a union of components of GB(M) − b0. Since F is
connected and b0 /∈ suppB(F ), we deduce that F = cl(I) for some subset
I ⊆ suppB(I

′) \ {b0}. In particular, we have cl(I) ∩ B′ = ∅, and for every
edge e ∈ F \ I we have

fBB′(e) = e ∈ cl(suppB′(e))
(⋆)
= cl(fBB′(suppB(e))) ⊆ cl(fBB′(I)).

Hence fBB′(F ) ⊆ cl(fBB′(I)) and we conclude

rk(fBB′(F )) ≤ rk(fBB′(I)) ≤ |fBB′(I)| = |I| = rk(I) = rk(F ).

Now let F be a connected non-coordinate flat of M with fBB′(F ) ̸= F .
Then F contains an edge e ∈ B′ \B and the star property implies that e is
incident to a central vertex b0 ∈ B ∩B′ of the corresponding star component
I ′ of B′. By Lemma 1.5.9, GB(F )−b0 is a connected subgraph of GB(M)−b0,
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so we deduce suppB(F ) ⊆ suppB(I
′) using Lemma 1.6.8. In particular, for

all b ∈ suppB(F ) \ {b0}, the image fBB′(b) is an edge joining b and b0. Since
fBB′ is an involution, the vertex fBB′(e) is contained in the set

I := {b ∈ suppB(F ) \ {b0} | fBB′(b) ∈ F},
which forms a union of components of GB(F ) − b0. Indeed, if e′ ∈ F is
an edge joining two vertices b, b′ ∈ suppB(F ) \ {b0} such that fBB′(b) ∈ F ,
then CB′(e′) = {e′, fBB′(b), fBB′(b′)} by (⋆) and thus fBB′(b′) ∈ F . But
GB(F )− b0 is connected, hence I = suppB(F ) \ {b0}.

We claim that fBB′(F ) ⊆ cl(I) and thus

rk(fBB′(F )) ≤ rk(I) = | suppB(F )| − 1 = rk(F )

by Theorem 1.5.5. Let e ∈ F . If b0 /∈ suppB(F ), then e /∈ B′, so we have
fBB′(e) = e ∈ cl(I). Otherwise, we have suppB(e) = {b0, b} for some b ∈ I.
Then fBB′(b) ∈ F is an edge parallel to e, but GB(F ) is a simple graph by
Proposition 1.5.7, hence e = fBB′(b) and fBB′(e) = b ∈ cl(I). This completes
the proof. □

Corollary 1.7.3. For all Cremona bases B and B′ of M the support graphs
GB(M) and GB′(M) are isomorphic.

Proof. The base change automorphism fBB′ induces an isomorphism between
GB(M) and GB′(M) since it maps vertices to vertices and for any edge
e ∈ E \B of GB(M) we have suppB′(fBB′(e)) = fBB′(suppB(e)). □

Every matroid automorphism permutes the set CB(M) of Cremona bases
of M and Theorem 1.7.2 shows that the group action Aut(M) → Sym(CB(M))
is transitive, where Sym(CB(M)) denotes the symmetric group.

Example 1.7.4. Let M1 be the matroid from Example 1.2.6. We saw in
Example 1.3.5 that M1 has four Cremona bases, B23 := {1, 2, 3}, B25 :=
{1, 2, 5}, B34 := {1, 3, 4}, and B45 := {1, 4, 5}. We obtain the following
Cremona base change automorphisms:

• fB23B25 and fB34B45 are the transposition (3 5).
• fB23B34 and fB25B45 are the transposition (2 4).
• fB23B45 and fB25B34 correspond to the permutation (2 4)(3 5).

The set of Cremona base change automorphisms forms the Klein four group,
which is a proper abelian subgroup of Aut(M1) ∼= D4. The automorphism
group Aut(M1) is a proper subgroup of Sym(CB(M)) ∼= S4.

Example 1.7.5. Let M2 be the matroid from Example 1.2.7. In Example
1.3.6 we determined the support graph GB0(M2) with respect to the Cremona
basis B0 := {1, 2, 3} and claimed that M2 has two other Cremona bases, B1 :=
{1, 4, 6} and B2 := {2, 4, 7}. Indeed, for every Cremona basis B′ ̸= B0 we have
|B0∩B′| = 1 by Proposition 1.6.9. With respect to B0, GB0(B1) is a spanning
star with central vertex 1 and GB0(B2) is a spanning star with central vertex
2. Lemma 1.6.7 implies that there is no Cremona basis with central vertex 3.
We obtain the following Cremona base change automorphisms:

• fB0B1 is the permutation (2 4)(3 6).
• fB0B2 is the permutation (1 4)(3 7).
• fB1B2 is the permutation (1 2)(6 7).
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The Cremona base change automorphisms generate the whole automorphism
group Aut(M2) ∼= S3.

Theorem 1.7.6. Let M be a simple matroid of rank at least 3 on the ground
set E. If M and the contractions M/e are connected for all e ∈ E, then the
group action Aut(M) → Sym(CB(M)) is surjective.

Proof. Let B0, B1, and B2 be pairwise different Cremona bases. By Propo-
sition 1.6.9, we have |Bi ∩ Bj | = 1 for all i ̸= j, say B0 ∩ B1 = {b1} and
B0 ∩ B2 = {b2}. The Cremona base change automorphism fB0B1 from
Theorem 1.7.2 swaps B0 and B1 and satisfies fB0B1 |E\(B0∪B1) = id. Since
the symmetric group is generated by transpositions, it suffices to show
that fB0B1(B2) = B2. If b1 = b2, then by construction of fB0B1 we have
fB0B1(b1) = b1 and hence fB0B1 |B2 = id. Now assume b1 ̸= b2. By The-
orem 1.6.1, GB0(B1) and GB0(B2) are simple spanning stars with central
vertices b1 and b2, respectively, thus B1 ∩ B2 = {e} for some edge e with
suppB0

(e) = {b1, b2}. By construction of fB0B1 we have fB0B1(e) = b2 and
fB0B1(b2) = e, hence fB0B1(B2) = B2. □
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1.8. Representability criterion

We conclude this chapter with a representability criterion for matroids
that admit more than one Cremona basis.

Theorem 1.8.1. Let M be a simple connected matroid on the ground set
E. If there exist Cremona bases B and B̃ of M with |B ∩ B̃| = 1, then M is
representable over any field K with |K| ≥ |E| − rk(M) + 1.

Proof. If M has rank 1, then the statement is trivial, and if M has rank 2,
then M is the uniform matroid U2,|E| (see Example 1.3.7), which is known
to be representable over a field K if and only if |K| ≥ |E| − 1, see [Oxl11,
Proposition 6.5.2].

Let n := rk(M)− 1 and write B = {b0, . . . , bn} with B ∩ B̃ = {b0}. By
Theorem 1.6.1, GB(B

′) is a simple spanning star with central vertex b0. We
decompose the set of edges E \B into the subset

E0 := {e ∈ E \B | b0 ∈ suppB(e)}
of edges incident to b0 and the subset

E+ := {e ∈ E \B | b0 /∈ suppB(e)} = cl(B \ {b0}) \B
of edges not incident to b0. Since cl(B \ {b0}) ∩B′ = ∅, we have

E+ = cl(B \ {b0}) ∩ fBB′(cl(B \ {b0}))
by construction of the Cremona base change automorphism fBB′ from Theo-
rem 1.7.2. In particular, E+ is a flat of M , which is by definition either empty
or a non-coordinate flat, thus its support graph is simple by Proposition
1.5.7.

On the set E0, we consider the equivalence relation

e ∼ e′ :⇐⇒ E+ ∨ {e} = E+ ∨ {e′}.
Let K be a field with |K| ≥ |E| − rk(M) + 1 and let B′ := {v0, . . . , vn} be
a basis of the vector space Kn+1. Then |E0/∼| ≤ |E \ B| ≤ |K×|, thus we
choose an injective map ι : E0/∼ → K× and construct a map f : E → Kn+1

as follows:
(1) If bi ∈ B is a basis vector for any i ∈ {0, . . . , n}, then we set

f(bi) := vi.
(2) If e ∈ E0 is an edge with suppB(e) = {b0, bi} for some i ∈ {1, . . . , n},

then we set f(e) := v0 − ι([e])vi. Note that ι([e]) ̸= 0.
(3) If e ∈ E+ is an edge with suppB(e) = {bi, bj} for some i, j with

1 ≤ i < j ≤ n, then we set f(e) := vi − vj .
Let M ′ be the matroid associated to the set of vectors E′ := f(E). By
construction, B′ is a Cremona basis of M ′ (cf. Example 1.3.8) and f is support-
preserving with respect to B and B′, i.e., suppB′(f(e)) = f(suppB(e)) for all
e ∈ E. We claim that f induces an isomorphism of matroids between M and
M ′.

First, we have to check that f is injective. Since GB(E+) is simple, for
all 1 ≤ i < j ≤ n there exists at most one edge e ∈ E \B with suppB(e) =
{bi, bj}. Therefore it suffices to consider part (2) of the construction. Let
e, e′ ∈ E0 be edges with f(e) = f(e′). Then e and e′ are parallel, say
suppB(e) = suppB(e

′) = {b0, bi} for some i ∈ {1, . . . , n}, and we have
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E+ ∨ {e} = E+ ∨ {e′}. If bi /∈ suppB(E+), then clearly e = e′. Otherwise,
let F be the support component of E+ with bi ∈ suppB(F ), which is a
non-coordinate flat. Then F ∨ {e} and F ∨ {e′} are support components of
E+ ∨{e} and E+ ∨{e′}, respectively, thus E+ ∨{e} = E+ ∨{e′} implies that
we have F ′ := F ∨ {e} = F ∨ {e′}. Now Lemma 1.5.12 shows that F ′ is a
non-coordinate flat, hence Proposition 1.5.7 implies e = e′.

It remains to verify that f satisfies the condition from Lemma 1.7.1. By
Theorem 1.5.2, there are four cases to consider:

(1) Let F be a connected coordinate flat of M . Since f is support-
preserving, we have rkM ′(f(F )) ≤ | suppB′(f(F ))| = | suppB(F )| =
rkM (F ) by Proposition 1.2.12 and Theorem 1.5.5.

(2) Let F be a connected non-coordinate flat of M . If b0 /∈ suppB(F ),
then f(F ) is contained in the linear subspace

U := ⟨vi − vj | 1 ≤ i < j ≤ n, bi, bj ∈ suppB(F )⟩.
Otherwise, if b0 ∈ suppB(F ), then for all e, e′ ∈ F ∩ E0 we have
F−b0 ∨{e} = F = F−b0 ∨{e′} by Corollary 1.5.10. Since F−b0 ⊆ E+,
we see that all edges e ∈ F ∩E0 have the same image a ∈ K× under
the embedding ι. This means that f(F ) is contained in the linear
subspace

U := ⟨v0 − avi | 1 ≤ i ≤ n, bi ∈ suppB(F )⟩
+ ⟨vi − vj | 1 ≤ i < j ≤ n, bi, bj ∈ suppB(F )⟩.

In both cases, the subspace U has dimension | suppB(F )| − 1 and
we conclude rk(f(F )) ≤ dim(U) = | suppB(F )| − 1 = rk(F ) using
Theorem 1.5.5.

(3) Let F ′ be a connected coordinate flat of M ′. Since f is bijective,
the inverse f−1 is also support-preserving and as in case (1) we have
rkM (f−1(F ′)) ≤ | suppB(f−1(F ′))| = | suppB′(F ′)| = rkM ′(F ′).

(4) Let F ′ be a connected non-coordinate flat of M ′. If v0 /∈ suppB′(F ′),
then f−1(F ′) is contained in the non-coordinate flat E+. Otherwise,
if v0 ∈ suppB′(F ′), let e, e′ ∈ F ′ be edges incident to v0, say e =
v0 − avi and e′ = v0 − bvj for some a, b ∈ K× and i, j ∈ {1, . . . , n}.
By Corollary 1.5.10, we have F ′

−v0 ∨ {e} = F ′
−v0 ∨ {e′}. Since

F ′
−v0 ⊆ {vi − vj | 1 ≤ i < j ≤ n}, this implies a = b. Thus f−1(F ′)

is contained in the non-coordinate flat E+ ∨ {e}.
In both cases, we see that f−1(F ′) is a non-coordinate flat, hence

rk(f−1(F ′)) ≤ | suppB(f−1(F ′))| − 1 = | suppB′(F ′)| − 1 = rk(F ′)
by Theorem 1.5.5. □

Corollary 1.8.2. Let M be a simple connected matroid of rank at least 3
on the ground set E and assume that M/e is connected for all e ∈ E. If M
admits more than one Cremona basis, then M is representable over any field
K with |K| ≥ |E| − rk(M) + 1.

Proof. Follows from Proposition 1.6.9 and Theorem 1.8.1. □
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1.9. Conclusion

In this chapter, we defined Cremona bases of matroids and studied
their properties. In particular, the distinction between coordinate and non-
coordinate flats will be important for the construction of combinatorial
Cremona automorphisms in Section 3.1 and for our computations with root
system matroids in Chapter 4. Moreover, the existence of Cremona base
change automorphisms will be an important tool to study the structure of
the Cremona group of a matroid in Section 3.2.

As the example of the root system Dn in Section 4.4 shows, the results
of this section can also be applied to matroids that do not admit a Cremona
basis, but can be embedded into a matroid that does. One could try to find
a criterion for when such an embedding exists.

If A is a hyperplane arrangement in projective space such that the stan-
dard Cremona transformation induces an automorphism of the complement
ΩA, then the coordinate hyperplanes form a Cremona basis of the matroid
M(A), as we will show in Section 2.3. It would be interesting to know if
there are other contexts where matroids with Cremona bases arise.

Matroid theory is a rich field and there are many other questions that one
could ask about Cremona bases. How do Cremona bases behave with respect
to other concepts in matroid theory such as duality? Can we describe the
class of matroids that admit a Cremona basis, for example using excluded
minors? How are matroids that admit a Cremona basis related to other
classes of matroids? One obvious relation is that a non-uniform matroid M
of rank at least 4 that admits a Cremona basis cannot be a paving matroid.
This leads us to believe that matroids with Cremona bases are very rare.

Conjecture 1.9.1 (cf. [Oxl11, Conjecture 15.5.8]). Asymptotically, almost
every matroid does not admit a Cremona basis.
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CHAPTER 2

Matroid fans and hyperplane arrangements

2.1. Matroid fans

In this section, we summarize the construction of fans on the tropical
linear space associated to a matroid. For more details see [AK06], [MS15,
Section 4.2], and [FS05].

Let M be a simple connected matroid on the ground set E. For an
element e ∈ E we define the function ve : E → R by

ve(e
′) =

{︄
1, if e = e′

0, if e ̸= e′
.

The functions {ve}e∈E form a basis of the vector space RE of real-valued
functions on E and for a subset S ⊆ E we write vS :=

∑︁
e∈S ve.

If w ∈ RE is a vector and S ⊆ E a subset, then w(S) :=
∑︁

e∈S w(e) is
called the w-weight of S, and therefore the vectors in RE are also called
weight vectors. Given a weight vector w ∈ RE , we obtain a flag

∅ = S0 ⊊ · · · ⊊ Sk+1 = E

of subsets of E by sorting the elements of E by w-weight in descending order,
i.e., such that

(1) w is constant on Si+1 \ Si for all 0 ≤ i ≤ k and
(2) w|Si\Si−1

> w|Si+1\Si
for all 1 ≤ i ≤ k.

We denote this flag by F(w).

Theorem 2.1.1 ([AK06, Proposition 1 and Theorem 1]). The following are
equivalent for a weight vector w ∈ RE:

(1) For every circuit C of M , the minimum of the numbers (w(i))i∈C
is attained at least twice.

(2) The flag F(w) is a flag of flats of M .
(3) The bases of M with maximal w-weight cover the ground set E.

Clearly, these conditions are all invariant under translation along the line
⟨vE⟩ and thus well-defined on vectors in the quotient space RE/⟨vE⟩.

Definition 2.1.2. The tropical linear space trop(M) of a matroid M , also
called the matroid fan or the Bergman fan, is the set of all weight vectors
w ∈ RE/⟨vE⟩ that satisfy the equivalent conditions from Theorem 2.1.1.

For a flag F of flats of M given by ∅ ⊊ F1 ⊊ · · · ⊊ Fk ⊊ E, we define the
cone ρF := ⟨vF1 , . . . , vFk

⟩R≥0
.

Theorem 2.1.3 ([MS15, Theorem 4.2.6]). The cones ρF , where F ranges
over the flags of flats of M , form a polyhedral fan with support trop(M).
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This fan is called the fine Bergman fan Bf (M) of M .

Example 2.1.4. Let M1 be the matroid from Example 1.2.6. This is a
matroid on the ground set E := {1, . . . , 5} and we identify RE with R5. The
circuits of M1 are {1, 2, 4}, {1, 3, 5}, and {2, 3, 4, 5}. One can check that a
weight vector w = (w1, . . . , w5) ∈ R5 satisfies condition (1) from Theorem
2.1.1 if and only if at least one of the following conditions holds:

(1) w2 = w4 ≤ w1 = w3 ≤ w5

(2) w2 = w4 ≤ w1 = w5 ≤ w3

(3) w2 = w4 ≤ w3 = w5 ≤ w1

(4) w3 = w5 ≤ w1 = w2 ≤ w4

(5) w3 = w5 ≤ w1 = w4 ≤ w2

(6) w3 = w5 ≤ w2 = w4 ≤ w1

(7) w1 = w2 = w3 ≤ w4 ≤ w5

(8) w1 = w2 = w3 ≤ w5 ≤ w4

(9) w1 = w2 = w5 ≤ w3 ≤ w4

(10) w1 = w2 = w5 ≤ w4 ≤ w3

(11) w1 = w4 = w3 ≤ w2 ≤ w5

(12) w1 = w4 = w3 ≤ w5 ≤ w2

(13) w1 = w4 = w5 ≤ w2 ≤ w3

(14) w1 = w4 = w5 ≤ w3 ≤ w2

The equivalence between conditions (1) and (2) in Theorem 2.1.1 shows
that these 14 cases correspond to the 14 chains in the proper part of the
lattice of flats of M1.

124 34 45 23 25 135

4 2 1 3 5

Figure 8. The underlying complex of the fine Bergman fan Bf (M1).

Proposition 2.1.5 ([FS05, Proposition 2.5]). The tropical linear space
trop(M) is a subset of the normal fan of the matroid polytope PM , which is
defined as the convex hull of the vectors {vB | B basis of M}.

The induced fan structure on trop(M) is called the coarse Bergman
fan Bc(M) of M . By construction, two vectors w,w′ ∈ trop(M) lie in the
interior of the same cone of the coarse Bergman fan if and only if the bases
with maximal w-weight coincide with the bases with maximal w′-weight.
By [Ham14, Proposition 3.4.1], the coarse Bergman fan is the coarsest fan
structure on trop(M).

Definition 2.1.6. A non-empty set S of proper connected flats of M is
called nested if for any antichain A ⊆ S with |A| ≥ 2 the join

⋁︁
F∈A F is

disconnected. The nested sets of M form an abstract simplicial complex
N (M), the minimal nested set complex of M .

In particular, two proper connected flats F and F ′ of M are adjacent in
the 1-skeleton of N (M) if and only if F and F ′ are comparable or F ∨ F ′ is
reducible.

For a nested set S of M we define the cone ρS := ⟨vF | F ∈ S⟩R≥0
.

Theorem 2.1.7 ([FS05, Theorem 4.1]). The cones ρS , where S ranges over
the nested sets of M , form a fan that refines the coarse Bergman fan Bc(M).
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This fan is called the minimal nested set fan Bm(M) of M .

Theorem 2.1.8 ([FS05, Theorem 5.3]). Assume that M is connected. Then
the minimal nested set fan and the coarse Bergman fan coincide if and only
if the matroid (M/F )|G\F is connected for every pair of flats F ⊆ G with G
connected.

Example 2.1.9. We continue Example 2.1.4 with the matroid M1. The
cones containing the weight vectors w ∈ R5/⟨R(1, . . . , 1)⟩ corresponding to
the cases w2 = w4 ≤ w3 = w5 ≤ w1 and w3 = w5 ≤ w2 = w4 ≤ w1 both
induce the same set

{{1, 2, 3}, {1, 2, 5}, {1, 3, 4}, {1, 4, 5}}
of w-maximal bases. In this way, the coarse structure can be obtained from
the fine structure by replacing every vertex of degree 2 by an edge.

124 135

4 2 3 5

Figure 9. The underlying complex of the coarse Bergman fan Bc(M1).

In the minimal nested set complex N (M1), we also remove the rays
corresponding to the disconnected flats {2, 3}, {2, 5}, {3, 4}, and {4, 5}, but
we keep the ray corresponding to the connected singleton {1}.

124 135

4 2 1 3 5

Figure 10. The minimal nested set complex N (M1).
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2.2. Automorphisms of matroid fans

In this section, we define automorphisms of matroid fans and we study
how the automorphisms groups with respect to different fan structures are
related to each other and to the group of matroid automorphisms.

Let M be a simple connected matroid of rank r ≥ 3 on the ground set E.

Definition 2.2.1 ([SW23, Definition 2.5]). Let Σ be a fan with support
trop(M). An automorphism of Σ is the R-linear extension of an automorphism
of the lattice ZE/⟨vE⟩ such that the image of every cone of Σ is again a cone
of Σ.

We denote by Aut(Σ) the automorphism group of such a fan Σ. Note
that trop(M) generates RE/⟨vE⟩ since M is simple, thus an automorphism
φ of Σ is uniquely determined by its restriction φ|trop(M).

Lemma 2.2.2. Let φ be the R-linear extension of an automorphism of
ZE/⟨vE⟩.

(1) If φ is an automorphism of a fan Σ with support trop(M), then
φ(trop(M)) = trop(M).

(2) If φ(trop(M)) = trop(M), then φ is an automorphism of the coarse
Bergman fan Bc(M).

In particular, Aut(Bf (M)) and Aut(Bm(M)) are subgroups of Aut(Bc(M)).

Proof. Let φ be an automorphism of a fan Σ with support trop(M). Then by
definition φ is an automorphism of the vector space RE/⟨vE⟩, thus φ preserves
the dimensions of all cones of Σ. In particular, φ(trop(M)) = trop(M).

For (2), assume φ(trop(M)) = trop(M). Then the cones φ(ρ), where
ρ ranges over the cones of the coarse Bergman fan Bc(M), form a fan Σ′

with support trop(M). By [Ham14, Proposition 3.4.1], the coarse Bergman
fan Bc(M) is the coarsest fan on trop(M), thus Σ′ is a triangulation of
Bc(M). On the other hand, Σ′ has the same number of cones as Bc(M),
hence Σ′ = Bc(M). This shows that φ maps cones of Bc(M) to cones of
Bc(M). □

For a permutation f of the ground set E let φf : RE/⟨vE⟩ → RE/⟨vE⟩
be the automorphism induced by the map

ZE → ZE , ve ↦→ vf(e).

Lemma 2.2.3. Let f be a matroid automorphism of M . Then φf is an
automorphism of B∗(M) for every fan structure ∗ ∈ {f, c,m}.

Proof. If f is a matroid automorphism of M , then it maps flags of flats to
flags of flats and nested sets to nested sets. Hence the automorphism φf

is an automorphism of both the fine Bergman fan Bf (M) and the minimal
nested set fan Bm(M). Now the claim for the coarse Bergman fan follows
from Lemma 2.2.2. □

Proposition 2.2.4. Let φ be an automorphism of the coarse Bergman fan
Bc(M) that induces a permutation of the rays corresponding to flats of rank
1. Then φ is induced by a matroid automorphism of M .
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Proof. For any subset S ⊆ E we have the equivalence

vS ∈ trop(M) ⇐⇒ S is a flat of M (⋆)

by Theorem 2.1.1. Assume there exists a permutation f : E → E such that
φ(⟨ve⟩) = ⟨vf(e)⟩ for all e ∈ E. Since M is connected, for every e ∈ E we
have

−vf(e) = vE\{f(e)} /∈ trop(M)

by (⋆) and thus ⟨φ(ve)⟩≥0 = ⟨vf(e)⟩≥0. Moreover, by definition φ is derived
from a lattice automorphism, hence φ = φf .

It remains to show that f is an automorphism of M . If F is a flat of
M , then vF ∈ trop(M) by (⋆). Since φ is an automorphism of Bc(M), we
deduce φ(vF ) = vf(F ) ∈ trop(M), hence f(F ) is a flat of M by (⋆). □

Depending on the matroid M and on the chosen fan structure, there
may or may not exist fan automorphisms that are not induced by matroid
automorphisms. For the fine Bergman fan Bf (M), there is the following
result:

Theorem 2.2.5 ([SW23, Theorem 6.3]). Let M be a simple matroid that is
not totally disconnected. Then every automorphism of the fine Bergman fan
Bf (M) is induced by a matroid automorphism.

For the coarse Bergman fan, however, Shaw and Werner introduced
combinatorial Cremona maps as examples for fan automorphisms that are
not induced by matroid automorphisms. We will review their construction in
Chapter 3.
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2.3. Hyperplane arrangements and the Cremona transformation

Let V be a d-dimensional vector space over some field K.

Definition 2.3.1. A (linear) hyperplane of V is a linear subspace H ⊆ V
with dimK(H) = dimK(V )−1. A finite set A = {H1, . . . ,Hk} of hyperplanes
of V is also called a hyperplane arrangement in V .

Proposition 2.3.2. Let A be a hyperplane arrangement in V . Then

2A → N0, S ↦→ codimK

(︁ ⋂︂
H∈S

H
)︁

defines a rank function on A.

Proof. By choosing normal vectors of the hyperplanes in A, we may write
A = {v⊥1 , . . . , v⊥k } for some v1, . . . , vk ∈ V . Then for any set I ⊆ {1, . . . , k}
we have

codimK

(︁⋂︂
i∈I

v⊥i
)︁
= codimK(⟨vi | i ∈ I⟩⊥) = dimK⟨vi | i ∈ I⟩.

Hence M(A) is isomorphic to the vector matroid associated to the vectors
{v1, . . . , vk}. □

In this way, every hyperplane arrangement A induces a simple matroid
M(A). Let π : V → P(V ) be the canonical projection to the projective
space P(V ). If A is a hyperplane arrangement in V , then A′ := {π(H)} is a
hyperplane arrangement in P(V ) and we denote by ΩA′ := P(V ) \

⋃︁
A′ the

arrangement complement.
Let d ≥ 3 and fix coordinates x0, . . . , xd on the projective space Pd

K .
Then the standard Cremona transformation is the birational map

crem: Pd
K Pd

K , [x0 : . . . : xd] ↦→
[︃
1

x0
: . . . :

1

xd

]︃
,

which can also be represented by

[x0 : . . . : xd] ↦→
[︃ d∏︂
i=0
i ̸=0

xd :

d∏︂
i=0
i ̸=1

xd : . . . :

d∏︂
i=0
i ̸=d

xd

]︃
.

We denote by Td
K ⊆ Pd

K the standard torus.

Lemma 2.3.3. Let U ⊆ Pd
K be an open subscheme. Then crem induces an

automorphism of U if and only if U ⊆ Td
K and crem(U) ⊆ U .

Proof. crem is an involutive automorphism of Td
K and contracts all coordinate

hyperplanes V (xi) (intersected with the domain of definition of crem) to a
single point. Thus U ⊆ Td

K is a necessary condition for crem|U to be injective.
Clearly, crem|U ∈ Aut(U) implies crem(U) ⊆ U .

Conversely, let U ⊆ Td
K and assume that crem(U) ⊆ U . Since crem is

involutive, crem|U ◦ crem|U = (crem ◦ crem)|U = idU , hence crem|U is an
automorphism. □

Note that crem(U) ⊆ U is equivalent to crem(Td
K \ U) ⊆ Td

K \ U : If
crem(U) ⊆ U and crem(x) ∈ U for some x ∈ Td

K\U , then crem(crem(x)) ∈ U
contradicts crem ◦ crem = id, and vice versa.
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Lemma 2.3.4. Let A be a hyperplane arrangement in Pd
K and let V (f) ⊆ Pd

K
be an irreducible hypersurface. If a dense subset of V (f) is contained in

⋃︁
A,

then V (f) ∈ A, so in particular deg(f) = 1.

Proof. By assumption we have

V (f) = V (f) ∩
⋃︂

A =
⋃︂
H∈A

(︁
V (f) ∩H

)︁
=

⋃︂
H∈A

(︁
V (f) ∩H),

using that A is finite. Since V (f) is irreducible, there is a hyperplane H ∈ A
with V (f) ⊆ H. Moreover, H is irreducible and dimV (f) = dimH, hence
V (f) = H. □

To a collection Z = {Zij}0≤i<j≤d of subsets Zij ⊆ K× we associate the
hyperplane arrangement

A(Z) := {V (xi) | 0 ≤ i ≤ d} ∪ {V (xi + zxj) | 0 ≤ i < j ≤ d, z ∈ Zij}.

Theorem 2.3.5. Let A be a hyperplane arrangement in Pd
K . The standard

Cremona transformation crem induces an automorphism of the complement
ΩA if and only if A = A(Z) for some collection Z as above with the property
that all sets Zij are closed under taking multiplicative inverses.

Proof. Consider the hyperplane arrangement A(Z) for some Z as above.
Then by construction ΩA(Z) ⊆ Td

K . Moreover, for every hyperplane H :=
V (xi + zxj) ∈ A(Z) we have

crem(H ∩ Td
K) = V (xi + z−1xj) ∩ Td

K .

Since Zij is closed under taking multiplicative inverses, we have V (xi +
z−1xj) ∈ A(Z) and hence

crem
(︁⋃︂

A(Z) ∩ Td
K

)︁
⊆

⋃︂
A(Z) ∩ Td

K .

By Lemma 2.3.3, the Cremona transformation induces an automorphism of
ΩA(Z) = Td

K \ (
⋃︁
A(Z) ∩ Td

K).
Conversely, assume that crem|ΩA is an automorphism. Then

{V (xi) | 0 ≤ i ≤ d} ⊆ A and crem
(︁⋃︂

A ∩ Td
K

)︁
⊆

⋃︂
A ∩ Td

K (⋆)

by Lemma 2.3.3. Let H := V (a0x0 + · · ·+ adxd) be a hyperplane in A that
is not a coordinate hyperplane, i.e., |{k | ak ̸= 0}| ≥ 2.

Claim: |{k | ak ̸= 0}| = 2.
Assuming the claim, we get H = V (aixi + ajxj) = V (xi +

aj
ai
xj) for some

0 ≤ i < j ≤ d and some z :=
aj
ai

∈ K×. By writing all such hyperplanes
H in this form, we obtain a unique collection Z with A = A(Z). For every
hyperplane H = V (xi + zxj) ∈ A we have

crem(H ∩ Td
K) = V (xi + z−1xj) ∩ Td

K .

From (⋆) we deduce V (xi + z−1xj) ⊆
⋃︁
A and hence V (xi + z−1xj) ∈ A

by Lemma 2.3.4. This implies that all sets Zij are closed under taking
multiplicative inverses. □
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Proof of the claim. Assume that |{k | ak ̸= 0}| > 2. Let V (f) ⊆ Pd
K be the

hypersurface cut out by the homogeneous polynomial

f :=
a0x1 · · ·xd + a1x0x2 · · ·xd + · · ·+ adx0 · · ·xd−1∏︁

{k|ak=0} xk
.

Then the equation

crem(H ∩ Td
K) = V

(︂a0
x0

+ · · ·+ ad
xd

)︂
∩ Td

K

= V (a0x1 · · ·xd + a1x0x2 · · ·xd + · · ·+ adx0 · · ·xd−1) ∩ Td
K

= V (f) ∩ Td
K

and (⋆) imply

V (f) ⊆ crem(H ∩ Td
K) ∪ (Pd

K \ Td
K) ⊆

⋃︂
A.

By construction, f is not divisible by any non-trivial monomial. It suffices to
show that f is irreducible, since then Lemma 2.3.4 would imply V (f) ∈ A,
contradicting

deg(f) = d− |{k | ak = 0}| = |{k | ak ̸= 0}| − 1 ≥ 2.

Let f = g · h be a factorization of f . Then

1 = |{k | ai ̸= 0}| − (|{k | ai ̸= 0}| − 1)

=
∑︂
i

degxi
(f)− deg(f)

=
∑︂
i

(︁
degxi

(g) + degxi
(h)

)︁
−
(︁
deg(g) + deg(h)

)︁
=

(︃∑︂
i

degxi
(g)− deg(g)

)︃
⏞ ⏟⏟ ⏞

≥0

+

(︃∑︂
i

degxi
(h)− deg(h)

)︃
⏞ ⏟⏟ ⏞

≥0

,

where deg without index denotes the total degree. Without loss of generality,
we may assume that the first summand is 0. This means that g is a monomial,
hence g must be constant. □

Corollary 2.3.6. Let A be a hyperplane arrangement in Pd
K such that crem

induces an automorphism of ΩA. Then the set of coordinate hyperplanes
B := {V (x0), . . . , V (xd)} is a Cremona basis of the associated matroid M(A).

Proof. By Theorem 2.3.5, A is of the form A(Z) for some Z. If H is a
hyperplane of the form V (xi+ zxj), then suppB(H) = {V (xi), V (xj)}, hence
the coordinate hyperplanes form a Cremona basis of M(A). □

Example 2.3.7. Consider the hyperplane arrangement

A := {V (x0), V (x1), V (x2), V (x0 − x1), V (x0 − x2)}
in P2

K . Then by Theorem 2.3.5 the Cremona transformation induces an
automorphism of ΩA. The matroid M(A) is isomorphic to the matroid M1

from Example 1.2.6.
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CHAPTER 3

Cremona automorphisms of matroid fans

3.1. Construction

In this section, we review the construction of Cremona automorphisms of
the coarse Bergman fan, based on [SW23, Chapter 8].

Let M be a simple connected matroid of rank r ≥ 3 on the ground set E
that admits a Cremona basis B.

Definition 3.1.1 ([SW23, Definition 8.1]). The Cremona map with respect
to B is defined as the R-linear map cremB : RE → RE given by

vb ↦→ vcl(B\{b}) for all b ∈ B, ve ↦→ ve for all e ∈ E \B.

In other words, the vector corresponding to a basis element b ∈ B is
sent to the indicator vector of the coordinate hyperplane cl(B \ {b}), but the
vectors corresponding to non-basis elements are fixed. Since M has rank at
least 3, the Cremona map is not induced by a matroid automorphism in the
sense of Lemma 2.2.3. The following proposition determines the images of
coordinate flats under the Cremona map.

Proposition 3.1.2 ([SW23, Lemma 8.4]). For all I ⊆ B we have

cremB(vcl(I)) = vcl(B\I) + (|I| − 1)vE .

In particular, the Cremona map cremB induces an involution on RE/⟨vE⟩.
Proof. Let I ⊆ B. Then we compute

cremB(vcl(I)) = cremB

(︃∑︂
b∈I

vb +
∑︂

e∈E\B
suppB(e)⊆I

ve

)︃

=
∑︂
b∈I

vcl(B\{b}) +
∑︂

e∈E\B
suppB(e)⊆I

ve

=
∑︂
b∈I

(︃ ∑︂
b′∈B\{b}

vb′ +
∑︂

e∈E\B
b/∈suppB(e)

ve

)︃
+

∑︂
e∈E\B

suppB(e)⊆I

ve

= |I|
(︃ ∑︂

b′∈B\I

vb′ +
∑︂

e∈E\B
suppB(e)∩I=∅

ve

)︃

+ (|I| − 1)

(︃∑︂
b′∈I

vb′ +
∑︂

e∈E\B
| suppB(e)∩I|=1

ve +
∑︂

e∈E\B
suppB(e)⊆I

ve

)︃

= vcl(B\I) + (|I| − 1)vE .
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In particular, we have cremB(vE) = (r − 1)vE , thus cremB descends to a
R-linear map RE/⟨vE⟩. Moreover, for all b ∈ B we have cremB(vcl(B\{b})) =
vb + (r − 2)vE , hence the induced map is an involution. □

From now on, by the Cremona map cremB we mean the induced map
RE/⟨vE⟩ → RE/⟨vE⟩ on the quotients.

Theorem 3.1.3 ([SW23, Theorem 8.3]). The Cremona map cremB preserves
the tropicalization trop(M) ⊆ RE/⟨vE⟩.

To prove this, it suffices to show that every cone of the fine Bergman fan
is contained in a cone of the minimal nested set fan. For details, see [SW23,
Theorem 8.3].

Example 3.1.4. As in the introduction, let M(A) be the matroid associated
to the hyperplane arrangement

A := {V (x), V (y), V (z), V (x− y), V (x− z), V (y − z)}.

Then the Cremona map cremB : R6 → R6 is given by the matrix⎛⎜⎜⎜⎜⎜⎜⎝
0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
0 0 1 1 0 0
0 1 0 0 1 0
1 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

which is the transposition of the matrix from the introduction, and the
induced map cremB : R6/⟨vE⟩ → R6/⟨vE⟩ on the quotients is given by⎛⎜⎜⎜⎜⎝

−1 1 1 0 0
0 0 1 0 0
0 1 0 0 0
−1 0 1 1 0
−1 1 0 0 1

⎞⎟⎟⎟⎟⎠ ,

with respect to the basis {v1, . . . , v5}.

Example 3.1.5. Let K be a field and consider the hyperplane arrangement

A := {V (x), V (y), V (z), V (x− y), V (x− z)}

in P2
K . Then the coordinate hyperplanes B := {V (x), V (y), V (z)} form a Cre-

mona basis of the corresponding matroid and by Theorem 2.3.5 the Cremona
transformation induces an automorphism of the arrangement complement
ΩA. The map

j : P2
K → P4

K , [x : y : z] ↦→ [x : y : z : x− y : x− z]

identifies the complement ΩA with the linear variety V (x0 − x1 − x3, x0 −
x2−x4) in the torus T4

K ⊆ P4
K . If we define the monomial map φ : T4

K → T4
K

by
[x0 : x1 : x2 : x3 : x4] ↦→ [x1x2 : x0x2 : x0x1 : −x2x3 : −x1x4],
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then the diagram

ΩA

crem

↓↓

↘ ↙ j →→ T4
K

φ

↓↓

[x : y : z] � →→
_

↓↓

[x : y : z : x− y : x− z]
_

↓↓
ΩA
↘ ↙ j →→ T4

K [yz : xz : xy] � →→ [yz : xz : xy : z(y − x) : y(z − x)]

commutes. The embedding Aut(ΩA) ↪→ Aut(Bc(M)) from [Kur17, Theorem
7.7] maps crem to the tropicalization trop(φ) of this map φ. Thus trop(φ) is
the linear map given by multiplication with the matrix⎛⎜⎜⎜⎜⎝

0 1 1 0 0
1 0 1 0 0
1 1 0 0 0
0 0 1 1 0
0 1 0 0 1

⎞⎟⎟⎟⎟⎠
and hence coincides with the definition of the combinatorial Cremona auto-
morphism cremB.

The following example shows that Cremona maps may not preserve the
minimal nested set structure:

Example 3.1.6. Let M1 be the simple rank 3 matroid on the ground set
{1, . . . , 5} with rank 2 circuits {1, 2, 4} and {1, 3, 5}. Then B := {1, 2, 3} is a
Cremona basis of M , but the coordinate flat cl({2, 3}) = {2, 3} is disconnected.
This means that the ray ⟨v1⟩ is a cone of the minimal nested set fan, but
the ray ⟨cremB(v1)⟩ = ⟨v23⟩ is not, hence the Cremona map cremB does not
induce an automorphism of the minimal nested set fan Bm(M).

Theorem 3.1.7. Assume that M has a Cremona basis B such that GB(M)
is a complete graph. Then the Cremona map cremB induces an automorphism
of the minimal nested set fan Bm(M).

Proof. Since GB(M) is a complete graph, all coordinate flats of M are
connected by Lemma 1.5.6 and thus the Cremona map cremB preserves the
rays of the minimal nested set fan.

It remains to show that cremB maps nested sets to nested sets. Let
S ⊆ Lconn(M) \ {∅, E} be a nested set of proper connected flats of M and let
A be an antichain in S ′ := {cremB(F ) | F ∈ S}. If A ⊆ S, then

⋁︁
F∈A F is

disconnected by assumption, so we may assume that A contains a coordinate
flat.

On the other hand, we claim that every antichain A ⊆ S ′ contains at most
one coordinate flat. Indeed, if F1, F2 ∈ S ′ are coordinate flats, then cremB(F1)
and cremB(F2) are coordinate flats in S and their join is connected since
GB(M) is a complete graph. Since S is nested, cremB(F1) and cremB(F2)
are comparable, hence the same is true for F1 and F2.

Now let I ⊆ B such that cl(I) is the unique coordinate flat in A. We
claim that suppB(F ) ⊆ B \ I for all flats F ∈ A \ {cl(I)}. Otherwise, if
suppB(F ) ∩ I ≠ ∅ for some flat F , then {F, cl(B \ I)} is an antichain in S
since cremB(cl(I)) = cl(B \ I), thus F ∨ cl(B \ I) is disconnected. Then
F ∨ cl(B \ I) is not a coordinate flat and not support-connected by Corollary
1.5.3, hence F ⊆ cl(I), contradicting the antichain property of A.
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We deduce that
⋁︁

F∈A\{cl(I)} F is a flat with support contained in B \ I.
By assumption it is disconnected and thus not a coordinate flat. Hence⋁︁

F∈A F = cl(I) ∨ (
⋁︁

F∈A\{cl(I)} F ) is disconnected by Lemma 1.5.11. □
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3.2. The Cremona group of a matroid

Let M be a simple connected matroid of rank r ≥ 3.

Definition 3.2.1. The Cremona group Cr(M) of M is the subgroup of
Aut(Bc(M)) generated by matroid automorphisms and Cremona automor-
phisms.

By definition, Cr(M) = Aut(M) if M does not admit a Cremona basis.

Corollary 3.2.2. Assume that M has a Cremona basis B such that GB(M)
is a complete graph. Then Cr(M) ⊆ Aut(Bm(M)).

Proof. If M has a Cremona basis B such that GB(M) is a complete graph,
then by Corollary 1.7.3 this is true for every Cremona basis of M . Thus the
claim follows from Theorem 3.1.7. □

Proposition 3.2.3. If M has exactly one Cremona basis, then Cr(M) ∼=
Aut(M)× Z/2Z.

Proof. Let B be the unique Cremona basis of M and let f be a matroid
automorphism of M . Since matroid automorphisms preserve Cremona bases,
we have f(B) = B. Thus for all b ∈ B we have

(cremB ◦ f)(vb) = cremB(vf(b)) = vcl(B\{f(b)})

= f(vcl(B\{b})) = (f ◦ cremB)(vb)

and for all e ∈ E \B we have

(cremB ◦ f)(ve) = cremB(vf(e)) = vf(e) = f(ve) = (f ◦ cremB)(ve),

hence cremB commutes with f . Now the claim follows since cremB is an
involution by Proposition 3.1.2. □

We now show that Cremona automorphisms with respect to different
Cremona bases are conjugate by matroid automorphisms.

Proposition 3.2.4. Assume that M has two Cremona bases B and B′. Then
the Cremona automorphisms cremB and cremB′ satisfy the relation

fBB′ ◦ cremB = cremB′ ◦ fBB′ ,

where fBB′ is the Cremona base change automorphism from Theorem 1.7.2.

Proof. We verify that fBB′ ◦ cremB and cremB′ ◦ fBB′ agree on the spanning
set {ve | e ∈ E} of RE/⟨vE⟩. First let b ∈ B∩B′. Then fBB′(b) = b and thus

(fBB′ ◦ cremB)(vb) = fBB′(vcl(B\{b})) = vcl(B′\{b})

= cremB′(vb) = (cremB′ ◦ fBB′)(vb).

Now let b ∈ B \B′ and e ∈ B′ \B with fBB′(b) = e. Then

(fBB′ ◦ cremB)(vb) = fBB′(vcl(B\{b})) = vcl(B′\{e})

= cremB′(ve) = (cremB′ ◦ fBB′)(vb)

and

(fBB′ ◦ cremB)(ve) = fBB′(ve) = vb = cremB′(vb) = (cremB′ ◦ fBB′)(ve).
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The last case where e ∈ E \ (B ∪B′) is trivial:

(fBB′ ◦ cremB)(ve) = fBB′(ve) = ve = cremB′(ve) = (cremB′ ◦ fBB′)(ve).

This completes the proof. □

In particular, we deduce the following theorem.

Theorem 3.2.5. For every Cremona basis B of M , the Cremona group
Cr(M) is generated by matroid automorphisms and the Cremona automor-
phism cremB.

Proof. Follows from Proposition 3.2.4. □

Example 3.2.6. Let M1 be the matroid from Example 1.2.6 on the ground
set {1, . . . , 5} with automorphism group Aut(M1) ∼= D4. We saw in Example
1.3.5 that M1 has four Cremona bases, B23 := {1, 2, 3}, B25 := {1, 2, 5},
B43 := {1, 4, 3}, and B45 := {1, 4, 5}, and we computed the Cremona base
change automorphisms of M1 in Example 1.7.4. In Example 2.1.9 we com-
puted the coarse Bergman fan Bc(M1):

124 135

4

2 3

5

Figure 11. The underlying complex of the coarse Bergman
fan Bc(M1).

We deduce that
Aut(Bc(M1)) ⊆ (S3 × S3)⋊ Z/2Z

since the complement graph of the underlying complex of Bc(M1) is the
disjoint union of two triangles.

The matroid automorphisms induce automorphisms of the coarse Bergman
fan that can be represented by permutations of the set of vertices

{2, 3, 4, 5, 124, 135}.
For example, the transpositions (2 4) and (3 5) are realized by matroid
automorphisms as well as the permutation (2 3)(4 5)(124 135).

We compute the Cremona automorphisms:

cremB23 : v1 ↦→ v{2,3}, v2 ↦→ v{1,3,5}, v3 ↦→ v{1,2,4}, v4 ↦→ v4, v5 ↦→ v5

cremB25 : v1 ↦→ v{2,5}, v2 ↦→ v{1,3,5}, v3 ↦→ v3, v4 ↦→ v4, v5 ↦→ v{1,2,4}

cremB43 : v1 ↦→ v{4,3}, v2 ↦→ v2, v3 ↦→ v{1,2,4}, v4 ↦→ v{1,3,5}, v5 ↦→ v5

cremB45 : v1 ↦→ v{4,5}, v2 ↦→ v2, v3 ↦→ v3, v4 ↦→ v{1,3,5}, v5 ↦→ v{1,2,4}

The Cremona group contains for example the map

(3 5) ◦ cremB23 ◦ cremB25 ,

52



which is the transposition (3 124). The matroid automorphisms together
with this transposition generate (S3 × S3)⋊ Z/2Z, hence

Aut(Bc(M1)) = Cr(M1) = (S3 × S3)⋊ Z/2Z.

Proposition 3.2.7. Assume that M has two Cremona bases B and B′ with
|B ∩B′| = 1. Then the Cremona automorphisms cremB and cremB′ satisfy
the relation

cremB ◦ cremB′ = fBB′ ◦ cremB,

where fBB′ is the Cremona base change automorphism from Theorem 1.7.2.

Proof. As in the proof of Proposition 3.2.4, we verify that cremB ◦ cremB′

and fBB′ ◦ cremB agree on the spanning set {ve | e ∈ E} of RE/⟨vE⟩. First
let b ∈ B ∩B′. Then by assumption cl(B′ \ {b}) is a non-coordinate flat with
respect to B and thus

(cremB ◦ cremB′)(vb) = cremB(vcl(B′\{b})) = vcl(B′\{b})

= fBB′(vcl(B\{b})) = (fBB′ ◦ cremB)(vb).

Now let b ∈ B \ B′ and e ∈ B′ \ B with fBB′(b) = e. Then cl(B \ {b}) =
cl(B′ \ {e}), thus we compute

(cremB ◦ cremB′)(vb) = cremB(vb) = vcl(B\{b}) = vcl(B′\{e})

= fBB′(vcl(B\{b})) = (fBB′ ◦ cremB)(vb)

and

(cremB ◦ cremB′)(ve) = cremB(vcl(B′\{e})) = cremB(vcl(B\{b}))

= vb = fBB′(ve) = (fBB′ ◦ cremB)(ve).

The last case where e ∈ E \ (B ∪B′) is trivial:

(cremB ◦ cremB′)(ve) = cremB(ve) = ve = fBB′(ve) = (fBB′ ◦ cremB)(ve).

This completes the proof. □

Let AutCB(M) be the subgroup of Aut(M) defined by

AutCB(M) := {f ∈ Aut(M) | f(B) = B for every Cremona basis B of M}.

Theorem 3.2.8. Assume that the contraction M/e is connected for all e ∈ E.
Then Cr(M)/AutCB(M) ∼= Sk+1, where k ∈ N0 is the number of Cremona
bases of M .

Proof. By Theorem 1.7.6, the action of Aut(M) on the set of Cremona
bases of M is surjective. By construction, AutCB(M) is the kernel of this
action, thus Aut(M)/AutCB(M) ∼= Sk. The same argument as in the proof
of Proposition 3.2.3 shows that Cremona automorphisms commute with all
elements in AutCB(M). Let {B1, . . . , Bk} be the set of Cremona bases of
M . Then for every i ∈ {1, . . . , k} the Cremona automorphism cremBi can be
identified with the transposition swapping i and k+1. Indeed, by Propositions
3.2.4 and 3.2.7 we have the relations

cremBi ◦ cremBj = cremBj ◦ fBiBj = fBiBj ◦ cremBi

and these elements all correspond to the 3-cycle (j i n+ 1). □
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Corollary 3.2.9. Assume that the contraction M/e is connected for all
e ∈ E. Then the index of Aut(M) in Cr(M) is equal to the number of
Cremona bases plus 1.

Example 3.2.10. Let M2 be the matroid from Example 1.2.7. Since GB(M2)
is a complete graph, Corollary 1.4.13 shows that the condition in Theorem
3.2.8 is fulfilled. We saw in Example 1.7.5 that M2 has three Cremona
bases and that Aut(M2) is isomorphic to the symmetric group S3. Hence
AutCB(M2) is trivial and Cr(M2) ∼= S4.
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3.3. Automorphisms of the minimal nested set complex in rank 3

For matroids of rank 3, the following is known:

Theorem 3.3.1 ([SW23, Corollary 9.5]). Let M be a simple matroid of rank
3 which is not a non-trivial parallel connection. Then Aut(Bc(M)) = Cr(M).

In this section, we will show a similar result for the automorphism group
Aut(N (M)) of the minimal nested set complex N := N (M). The difference
between Aut(N (M)) and Aut(Bm(M)) is that there might be automorphisms
of N that are not induced by lattice automorphisms.

Theorem 3.3.2. Let M be a simple connected matroid of rank 3.
(1) If M is the matroid associated to a self-dual non-degenerate projective

plane, then Aut(M) is a subgroup of Aut(N (M)) of index 2.
(2) Otherwise, Aut(N (M)) is generated by matroid automorphisms and

Cremona automorphisms.

We will prove this theorem in several steps. Since M has rank 3, the
minimal nested set complex N (M) is a graph with vertices E ⊔ H, where
E denotes the set of singletons (lines) of M and H the set of connected
hyperplanes of M . For an automorphism f of N (M), we denote by

Einv(f) := {ℓ ∈ E | f(ℓ) ∈ H} and Hinv(f) := {H ∈ H | f(H) ∈ E}

the set of lines and hyperplanes, respectively, whose rank is inverted by f .
Clearly, |Einv(f)| = |Hinv(f)| and we call this number the inversion index
inv(f) of f . We have 0 ≤ inv(f) ≤ min{|E|, |H|} and f is called rank-
preserving if and only if inv(f) = 0, which is equivalent to being a matroid
automorphism, see for example [BdM06, Corollary 2.9].

Lemma 3.3.3. Let f be an automorphism of the minimal nested set complex
N (M) of M .

(1) If H ∈ H is a hyperplane with H ∩ Einv(f) ̸= ∅, then H ∈ Hinv(f).
(2) Let ℓ, ℓ′ ∈ Einv(f) with ℓ ≠ ℓ′. Then ℓ and ℓ′ are not adjacent in

N (M) and have exactly one common neighbor in N (M), namely
the unique hyperplane ℓ ∨ ℓ′ containing both.

(3) Let H,H ′ ∈ Hinv(f) with H ̸= H ′. Then H and H ′ have exactly
one common neighbor ℓ in N (M), namely ℓ = H ∩H ′. Moreover,
ℓ ∈ Einv(f).

Proof.
(1) Let ℓ ∈ H ∩ Einv(f). If f(H) is a hyperplane, then f(ℓ) and f(H)

would be hyperplanes adjacent in N (M), contradiction.
(2) If ℓ and ℓ′ were adjacent in N , then f(ℓ) and f(ℓ′) would be hyper-

planes adjacent in N , contradiction. This means that their closure
cl({ℓ, ℓ′}) is an irreducible hyperplane of M and thus a common
neighbor of ℓ and ℓ′. On the other hand, since two distinct hy-
perplanes of a simple rank 3 matroid have at most one common
element, f(ℓ) and f(ℓ′) have at most one common neighbor. The
claim follows by applying f−1.

(3) By assumption, f(H) and f(H ′) are lines and lie in Einv(f
−1). Now

(2) implies that f(H) and f(H ′) have a unique common neighbor in
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N , which is a hyperplane H ′′. Applying f−1 shows that f−1(H ′′) is
the unique common neighbor of H and H ′, hence ℓ := f−1(H ′′) ∈
Einv(f). □

Theorem 3.3.4. If N has an automorphism f with inversion index |E|, then
M is the matroid associated to a self-dual non-degenerate projective plane.
In this case, Aut(M) is a subgroup of Aut(N ) of index 2.

Proof. Let f be an automorphism of N with inv(f) = |E|. Then f gives a
bijection between E and H. Indeed, if H ∈ H is any hyperplane and ℓ ∈ H,
then f(H) is adjacent to the hyperplane f(ℓ) and must be a line, hence
Hinv(f) = H. By Lemma 3.3.3 (2), N is a bipartite graph, so we can regard
N as incidence structure with points E and lines H. Moreover, Lemma
3.3.3 (2) and (3) translate exactly to the axioms of a projective plane. The
projective plane is non-degenerate since |H| = |E| implies that M has more
than one irreducible hyperplane, and f corresponds to a self-duality of the
plane.

Since N is a connected bipartite graph, any f ′ ∈ Aut(N ) has inversion
index 0 or |E|. If f ′ is another automorphism of N with inversion index |E|,
then f ′ ◦ f is rank-preserving, thus Aut(N ) is generated by Aut(M) and f .
Since f2 is rank-preserving, Aut(M) is a subgroup of Aut(N ) of index 2. □

Conversely, if M is a self-dual non-degenerate projective plane with points
P , then the self-duality clearly corresponds to an automorphism f of the
minimal nested set complex with inv(f) = |P |.

Example 3.3.5. The Fano matroid is the simple rank 3 matroid F7 on
the ground set E := {1, . . . , 7} with rank 2 flats {1, 2, 4}, {1, 3, 6}, {1, 5, 7},
{2, 3, 5}, {2, 6, 7}, {3, 4, 7}, and {4, 5, 6}. The map

v1 ↦→ v{2,3,5}, v2 ↦→ v{1,3,6}, v3 ↦→ v{1,2,4}, v4 ↦→ v{3,4,7},

v5 ↦→ v{1,5,7}, v6 ↦→ v{2,6,7}, v7 ↦→ v{4,5,6}

corresponding to the self-duality of F7 induces an involution φ : RE/⟨vE⟩ →
RE/⟨vE⟩ that preserves the tropicalization trop(M) and gives rise to an
automorphism of the minimal nested set complex N (M).

However, φ is not an automorphism of the coarse Bergman fan since is not
induced by a lattice automorphism: With respect to the basis {v1, . . . , v6},
we can represent φ by the matrix⎛⎜⎜⎜⎜⎜⎜⎝

0 1 1 −1 0 −1
1 0 1 −1 −1 0
1 1 0 0 −1 −1
0 0 1 0 −1 −1
1 0 0 −1 0 −1
0 1 0 −1 −1 0

⎞⎟⎟⎟⎟⎟⎟⎠
whose determinant is −8.

Proposition 3.3.6. Let f ∈ Aut(N ). Then inv(f) ̸= 2.

Proof. Let Einv(f) = {e1, e2}. Then H := cl({e1, e2}) ∈ Hinv(f) by Lemma
3.3.3 (1) and (2). Let H ′ be the other hyperplane in Hinv(f). By Lemma
3.3.3 (3), we may assume H ∩H ′ = {e1}.
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Claim: deg(e1) = 2.
By construction, H and H ′ are neighbors of e1 and by Lemma 3.3.3
(1) e1 is not contained in any other hyperplane. Assume there exists
a line ℓ adjacent to e1. Then ℓ is not adjacent to e2, since H is the
unique common neighbor of e1 and e2 by Lemma 3.3.3 (2). Consider
the irreducible hyperplane H ′′ := cl({ℓ, e2}). By Lemma 3.3.3 (1),
H ′′ ∈ Hinv(f). If H ′′ = H, then e1 ∈ H ′′, contradicting the choice
of ℓ, but if H ′′ = H ′, then e2 ∈ H ∩H ′, contradiction.

But deg(e1) = deg(f(e1)) and the hyperplane f(e1) must have degree ≥ 3,
contradiction. □

Theorem 3.3.7. Let f ∈ Aut(N ) with inversion index 1 < inv(f) < |E|.
Then B := Einv(f) is a Cremona basis of M such that GB(M) is a complete
graph. In particular, inv(f) = rk(M) = 3.

Proof. Let n := inv(f). We call the elements e1, . . . , en of Einv(f) coordinates.
By Lemma 3.3.3 (1) and (2), the coordinate hyperplanes Hij := cl({ei, ej})
lie in Hinv(f) for all i, j ∈ {1, . . . , n} with i ̸= j.

Claim 1: Let ℓ ∈ E \ Einv(f). Then there exists a unique hyperplane
H ∈ Hinv(f) with ℓ ∈ H. Moreover, H is a coordinate hyperplane
with |H ∩ Einv(f)| ≥ n− 1.

By Lemma 3.3.3 (2), ℓ is adjacent to at most one coordinate,
say e1. Using n > 1, we consider the irreducible hyperplanes Hi :=
cl({ℓ, ei}) for i ∈ {2, . . . , n}. By Lemma 3.3.3 (1), Hi ∈ Hinv(f) for
all i. On the other hand, since ℓ /∈ Einv(f), Lemma 3.3.3 (3) implies
that ℓ is contained in at most one hyperplane H ∈ Hinv(f), hence
H := Hi = Hj for all i, j ∈ {2, . . . , n}. In particular, {e2, . . . , en} ⊆
H ∩ Einv(f). Since n > 2 by Proposition 3.3.6, this means that H is
a coordinate hyperplane.

Since inv(f) < |E|, such a line ℓ ∈ E \ Einv(f) exists and by the claim we may
assume that H := cl({e2, . . . , en}) is a hyperplane.

Claim 2: rk({e1, . . . , en}) = 3 and Hinv(f) = {H12, . . . ,H1n, H}.
If e1 ∈ H, then H is the only coordinate hyperplane and Claim 1
implies E ⊆ H, contradiction to rk(M) = 3. Hence e1 /∈ H and
rk({e1, . . . , en}) = 3. In particular, H ̸= H1i for all i ∈ {2, . . . , n}.
Moreover, if H1i = H1j for some i, j ∈ {2, . . . , n}, then {ei, ej} ⊆
H1i ∩H, hence i = j. Now the claim follows from |Hinv(f)| = n.

Since e1 ∈ H12 \H, we have |H12 ∩H| ≤ 1 and thus H12 ∩Einv(f) = {e1, e2}.
Let ℓ ∈ H12 \ Einv(f). Then ℓ is adjacent to ei for all i ∈ {3, . . . , n}. Indeed,
if ℓ and ei lie in a common hyperplane H ′, then H ′ ∈ Hinv(f) by Lemma
3.3.3 (1), so H ′ = H12 by Claim 1, contradiction since ei /∈ H12. But Lemma
3.3.3 (2) shows that ℓ is adjacent to at most one coordinate, hence n = 3.

Together with Claim 2, this means that Einv(f) is a basis of M and Claim
1 shows that Einv is a Cremona basis. □

Proposition 3.3.8. Let f ∈ Aut(N ) with Einv(f) = {ℓ} and Hinv(f) = {H}.
Then ℓ /∈ H.

Proof. Assume ℓ ∈ H and let k,m ∈ N be minimal with fk(ℓ) = H and
fm(H) = ℓ. We show that all cases lead to contradictions:
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Case 1: k ≥ 2.
Claim 1: ℓ is not adjacent to f i(ℓ) for all 0 < i < k.

Since i + 1 ≤ k, f(ℓ) and f i+1(ℓ) are both hyperplanes, thus
not adjacent. The claim follows by applying f−1.

Claim 2: We have k ≤ m.
Applying fm to the edge {H, ℓ} implies that ℓ = fm(H) and
fm(ℓ) are adjacent. If m < k, then this contradicts Claim 1.

Claim 3: ℓ is adjacent to fk+i(ℓ) for all 0 ≤ i < k.
Clear for i = 0, so assume i > 0. Since i < m by Claim 2,
ℓ′ := fk+i(ℓ) is a line with ℓ′ ̸= ℓ. Moreover, ℓ′ /∈ H, else
applying f−k to the edge {ℓ′, H} would contradict Claim 1. By
Lemma 3.3.3 (1), there is no hyperplane containing both ℓ and
ℓ′, hence ℓ and ℓ′ are adjacent.

Now applying f−1 to Claim 3 shows that f−1(ℓ) ∈ H ∩ f−1(H).
Let ℓ′ ∈ f−1(H) \ {f−1(ℓ), f−2(ℓ)}. Since ℓ′ ̸= f−1(ℓ), we have
ℓ′ /∈ H, so by Lemma 3.3.3 (1) ℓ′ and ℓ are adjacent. Applying f
shows that f(ℓ′) is adjacent to both H and f(ℓ) = f−1(H), hence
f(ℓ′) = f−1(ℓ), contradiction to ℓ′ ̸= f−2(ℓ).

Case 2: k = 1, m ≥ 2.
Then Hinv(f

2) = Hinv(f) and Lemma 3.3.3 (1) implies f−1(ℓ) /∈ H ′

for all hyperplanes H ′ ≠ H. On the other hand, f−1(ℓ) /∈ H. Indeed,
applying f to the edge {ℓ,H} shows that f(H) ∈ H. Since m ≥ 2,
f(H) ̸= ℓ, so f(H) and ℓ are not adjacent. Applying f−1 shows
that f−1(ℓ) /∈ H.

Hence f−1(ℓ) is not contained in any irreducible hyperplane and
we have

|E| − 1 = deg(f−1(ℓ)) = deg(ℓ) ≤ |E|+ 1− |H| ≤ |E| − 2,

contradiction.
Case 3: k = 1, m = 1.

Let ℓ1, ℓ2 ∈ H \ {ℓ} with ℓ1 ≠ ℓ2 and consider the lines f(ℓ1) and
f(ℓ2). Since ℓ1 and ℓ2 are adjacent to H, f(ℓ1) and f(ℓ2) are adjacent
to f(H) = ℓ. In particular, since ℓ ∈ H, f(ℓ1) and f(ℓ2) are not
elements of H. Moreover, since ℓ1 and ℓ2 are not adjacent to each
other, neither are f(ℓ1) and f(ℓ2). Thus f(ℓ1) and f(ℓ2) are both
adjacent to H ′ := cl({f(ℓ1), f(ℓ2)}) ∈ H. Clearly H ′ ̸= ℓ, thus
f−1(H ′) ̸= f−1(ℓ) = H.

If f−1(H ′) and H are distinct hyperplanes with two common
neighbors, ℓ1 and ℓ2, then we have a contradiction. Thus f−1(H ′)
must be a line, hence H ′ = H. But H ′ ̸= H since f(ℓ1) ∈ H ′ \H,
contradiction. □

Corollary 3.3.9. There is no automorphism f of N (M) with inversion
index 1.

Proof. Assume there exists an automorphism f of N (M) with inversion index
1. Let Einv(f) = {ℓ} and Hinv(f) = {H}. By Lemma 3.3.3 (1), ℓ /∈ H ′ for all
H ′ ∈ H \ {H}, and by Proposition 3.3.8, ℓ /∈ H. Thus deg(ℓ) = |E| − 1, since
ℓ is not contained in any irreducible hyperplane, i.e., totally disconnected to
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any other line. But fk(ℓ) = H for some k ∈ N, hence

|H| = deg(H) = deg(ℓ) = |E| − 1.

We deduce H = E \ {ℓ}, which means that H is a proper separator of M ,
contradicting the assumption that M is connected. □

This completes the proof of Theorem 3.3.2.
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CHAPTER 4

Root system matroids

4.1. Introduction

A root system Φ is a finite set of non-zero vectors (called roots) in
Euclidean space with special geometric properties, one of them being that the
reflection across the linear hyperplane α⊥ perpendicular to any root α ∈ Φ
maps the root system to itself. These reflections generate a finite group
of isometries, called the Weyl group W (Φ) of the root system. Every root
system can be decomposed into irreducible root systems, which have been
completely classified: There are four infinite families An, Bn, Cn, Dn and five
exceptional cases E8, E7, E6, F4, G2. Root systems are closely connected
to Coxeter groups and play an important role in the theory of Lie groups
and Lie algebras, for more information see for example [Bou02, Chapter 6]
or [Hum90].

The goal of this chapter is to investigate the existence of Cremona
bases and Cremona automorphisms for the vector matroids that arise from
irreducible root systems. More precisely, since root systems contain for
every root α also its negative −α, we are interested in the associated simple
matroids.

Definition 4.1.1. Let Φ be a root system. Then the following matroids are
isomorphic:

(1) The simplification of the vector matroid of Φ.
(2) The vector matroid associated to any subset Φ+ ⊆ Φ with the

property |Φ+ ∩ {α,−α}| = 1 for all α ∈ Φ.
(3) The matroid of the hyperplane arrangement {α⊥ | α ∈ Φ}.

We call this matroid M(Φ) the root system matroid associated to the root
system Φ.

Proof. Follows from Proposition 2.3.2 and from the fact that a root system
has the property ⟨α⟩ ∩ Φ = {α,−α} for all α. □

While the roots of a root system are required to satisfy the so-called
integrality condition with respect to the inner product, the root system
matroid does not remember the lengths of the roots nor the inner product
on the vector space. First, this implies that the irreducible root systems Bn

and Cn give rise to the same matroid, since they differ only by the lengths
of their roots. Second, this means that root system matroids can be also
represented over other fields than the real numbers.

The rank of a root system is defined as the dimension of the vector space
spanned by the roots, and thus coincides with the rank of the corresponding
root system matroid. As we are only interested in matroids of rank at least
3, we will not consider the exceptional root system G2 of rank 2.
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Since reflections preserving the root system induce automorphisms of the
corresponding matroid, root system matroids have a large automorphism
group that is similar to the Weyl group of the root system. The Weyl groups
and the matroid automorphism groups are known for all irreducible root
systems.
Theorem 4.1.2 ([DSFT11, Theorem 1.2]). For the matroid M(Φ) associated
to an irreducible root system Φ, the number of elements and the automorphism
group are given in the following table:

Φ |M(Φ)| Aut(M(Φ))

An
n(n+1)

2 W (An) ∼= Sn+1

Bn n2 W (Bn)/{±id} ∼= (Z/2Z)n−1 ⋊ Sn

Dn n(n− 1)
W (F4)/{±id} if n = 4

W (Bn)/{±id} if n ≥ 5

E6 36 W (E6)

E7 63 W (E7)/{±id}
E8 120 W (E8)/{±id}
F4 24 W σ(F4)/{±id}

Here, W σ(F4) denotes the group generated by the Weyl group W (F4) and a
certain isometry σ of R4.

As we mentioned in the introduction, the automorphism group of the
coarse Bergman fan is known for the root system An:
Theorem 4.1.3 ([SW23, Section 3], [AP18, Theorem 3.13]). For all n ≥ 3,
the automorphism group of Bc(M(An)) is isomorphic to the symmetric group
Sn+2. It is generated by matroid automorphisms and a Cremona map.

By applying our results from Chapters 1 and 3, we are able to give a new
proof of this result and to compute the automorphisms of the coarse Bergman
fan for other root system matroids. The following theorem summarizes our
results in this chapter:
Theorem 4.1.4. We show the following results on the number of Cremona
bases and the automorphism groups of the coarse Bergman fan and the minimal
nested set complex for root system matroids:

Φ |CB(M(Φ))| Aut(Bc(M(Φ))) ∼= Cr(M(Φ))

An n+ 1 Sn+2

Bn 1 Aut(M(Bn))× Z/2Z
Dn 0 Aut(M(Dn))

E6, E7, E8 0 open

F4 0 Aut(M(F4))

To prove these results, we consider each root system matroid in a separate
section. We will make repeated use of the following fact:
Theorem 4.1.5 ([ARW07, Theorem 1.2]). For root system matroids, the
coarse Bergman fan and the minimal nested set fan coincide.
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4.2. An

Let x1, . . . , xn be a basis of a vector space V over some field K and
assume n ≥ 3. We define the root system matroid M(An) corresponding to
the irreducible root system An (divided by the lineality space) as the vector
matroid associated to the set of roots

Φ+(An) := {xi | 1 ≤ i ≤ n} ∪ {xi − xj | 1 ≤ i < j ≤ n}.
(We will sometimes use xj−xi as alternative notation for the matroid element
xi − xj in order to avoid case distinctions.)

M(An) is a simple matroid of rank n and isomorphic to the Dowling
matroid Qn(G) for the trivial group G = {e}, see Example 1.3.9.

In this section we give a new proof of Theorem 4.1.3 that does not rely on
the interpretation of Bc(M(An)) as a moduli space. We start by determining
the Cremona bases of M(An).

Theorem 4.2.1. M(An) has exactly the following n+ 1 Cremona bases:
(1) B := B0 := {xi | 1 ≤ i ≤ n} is a Cremona basis of M(An).
(2) Bi := {x1−xi, . . . , xi−1−xi, xi, xi−xi+1, . . . , xi−xn} is a Cremona

basis of M(An) for all 1 ≤ i ≤ n.
The support graph GB(M(An))) is the complete simple graph on n vertices.

Proof. B is clearly a basis of M(An) and we have suppB(xi−xj) = {xi, xj} for
all 1 ≤ i < j ≤ n, thus B is a Cremona basis. Since | cl({xi, xj})\{xi, xj}| = 1
for all 1 ≤ i < j ≤ n, the support graph GB(M(An)) of M(An) with respect
to B is the complete simple graph on the vertices x1, . . . , xn. In particular,
M(An) is connected by Lemma 1.4.10 and for every root v ∈ Φ+(An) the
contraction M(An)/v is connected by Lemma 1.4.12.

Moreover, for any 1 ≤ i ≤ n, the basis Bi is a Cremona basis of M(An):
• We have suppBi

(xj) = {xi, xi − xj} for all 1 ≤ j ≤ n with j ̸= i.
• We have suppBi

(xj − xk) = {xi − xj , xi − xk} for all 1 ≤ j < k ≤ n
with j, k ̸= i.

With respect to B, the support graph GB(Bi) is a spanning star with central
vertex xi. It follows from Theorem 1.6.1 and Proposition 1.6.9 that there are
no other Cremona bases. □

Example 4.2.2. For n = 3, the support graph GB(M(A3)) of M(A3) with
respect to the Cremona basis B is a triangle:

x1

x2

x3

x1 − x2

x1 − x3

x2 − x3

Figure 12. The support graph GB(M(A3)).

By Theorem 4.1.2, the automorphism group of M(An) coincides with the
Weyl group of An, which is isomorphic to the symmetric group Sn+1. We
obtain a new interpretation of this isomorphism.
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Corollary 4.2.3. The group action Aut(M(An)) → Sym(CB(M(An))) ∼=
Sn+1 of matroid automorphisms on the set of Cremona bases CB(M) of M
is an isomorphism.

Proof. The isomorphism Sym(CB(M)) ∼= Sn+1 follows from Theorem 4.2.1.
The automorphisms of M(An) permute the set of Cremona bases, so for
every matroid automorphism f ∈ Aut(M(An)) there is a unique permutation
σ : {0, . . . , n} → {0, . . . , n} with f(Bi) = Bσ(i) for all 0 ≤ i ≤ n. We claim
that the induced group homomorphism from Aut(M(An)) to Sn+1 is bijective.

Indeed, if f is an automorphism of M(An) with f(Bi) = Bi for all i, then
f is the identity since it preserves the intersections B0 ∩ Bi = {xi} for all
1 ≤ i ≤ n and Bi ∩ Bj = {xi − xj} for all 1 ≤ i < j ≤ n. Surjectivity has
been shown in Theorem 1.7.6. □

Theorem 4.2.4 (cf. Theorem 4.1.3). The Cremona group of M(An) is
isomorphic to Sn+2. It is generated by matroid automorphisms and a single
Cremona automorphism.

Proof. This follows from Theorem 4.2.1 and Corollary 4.2.3 by applying
Theorem 3.2.8. □

It remains to prove that there are no other automorphisms of the coarse
Bergman fan Bc(M(An)), which coincides with the minimal nested set fan
Bm(M(An)) by Theorem 4.1.5. We will show this by computing the 1-skeleton
of the minimal nested set complex N (M(An)).

Proposition 4.2.5. Let J ⊆ {1, . . . , n} be non-empty. Then

FJ := {xi | i ∈ J} ∪ {xi − xj | i, j ∈ J, i < j}
is a connected coordinate flat of M(An) of rank |J | with support {xi | i ∈ J}.
Proof. We have

FJ =
⋃︂

i,j∈J
cl({xi, xj}) = cl({xi | i ∈ J}),

thus FJ is a coordinate flat of rank |J | with support {xi | i ∈ J}. The
support graph GB(FJ) is a complete graph, hence FJ is connected by Lemma
1.5.6. □

Proposition 4.2.6. Let J ⊆ {1, . . . , n} with |J | ≥ 2. Then

F=
J := {xi − xj | i, j ∈ J, i < j}

is a connected non-coordinate flat of M(An) of rank |J | − 1 with support
{xi | i ∈ J}.
Proof. Consider the linear subspace U of V that is obtained by intersecting
the subspace ⟨xi | i ∈ J⟩ with the hyperplane (

∑︁
i∈J xi)

⊥. Then F=
J =

Φ+(An) ∩U , thus F=
J is a non-coordinate flat of M(An). The support graph

GB(F
=
J ) is the complete graph with vertices {xi | i ∈ J}, so Theorem 1.5.5

implies that F=
J has rank |J | − 1. If |J | = 2, then clearly F=

J is connected,
and for |J | ≥ 3 this follows from Lemma 1.5.9. □

Theorem 4.2.7. Every support-connected flat of M(An) is connected. The
connected flats of M(An) are exactly the flats of the form FJ and F=

J as
defined in Propositions 4.2.5 and 4.2.6, respectively.

64



Proof. Let F be a support-connected flat of M(An) with support {xi | i ∈ J}
for some J ⊆ I. Then F and J are non-empty. If F is a coordinate flat,
then F = FJ by Proposition 1.5.4, hence F is connected by Proposition 4.2.5.
Otherwise, F is a non-coordinate flat by Theorem 1.5.2 and its support graph
GB(F ) is connected by Lemma 1.4.6. Whenever xi − xj and xj − xk are
edges of GB(F ) for pairwise distinct i, j, k ∈ {1, . . . , n}, we have

xi − xk ∈ cl({xi − xj , xj − xk}) ⊆ F.

This shows that GB(F ) is a complete graph, hence F = F=
J and F is

connected by Proposition 4.2.6. □

Excluding the trivial coordinate flat F{1,...,n} = Φ+(An), these are exactly
the vertices of the minimal nested set complex N (M(An)). Next, we compute
the degrees of these vertices in the 1-skeleton of N (M(An)).

Lemma 4.2.8. Let F and F ′ be connected flats of M(An). Then F ∨ F ′ is
disconnected if and only if suppB(F ) ∩ suppB(F

′) = ∅ and at least one of F
and F ′ is a non-coordinate flat.

Proof. Assume that F ∨ F ′ is disconnected. Then F ∨ F ′ is not support-
connected by Theorem 4.2.7, thus suppB(F )∩suppB(F

′) = ∅. Moreover, if F
and F ′ were both coordinate flats, then F ∨F ′ would also be a coordinate flat
and thus connected by Proposition 4.2.5, contradiction. The other direction
was shown in Lemma 1.5.11. □

Proposition 4.2.9. Let F be a proper connected flat of M(An) of rank r.
Then F has degree

d(r, n) := 2r+1 + 2n−r+1 − n− 6

in the 1-skeleton of N (M(An)).

Proof. By Theorem 4.2.7, F is either a coordinate flat of the form FJ or
a non-coordinate flat of the form F=

J . First assume F = FJ for some
∅ ⊊ J ⊊ {1, . . . , n}. Then rk(F ) = |J | by Proposition 4.2.5. Using Theorem
4.2.7, we count the neighbors of FJ in the 1-skeleton of N (M(An)):

(1) FJ is adjacent to all smaller connected coordinate flats, i.e., to all
flats FJ ′ with ∅ ⊊ J ′ ⊊ J . There are 2|J | − 2 such flats.

(2) FJ is adjacent to all larger proper connected coordinate flats, i.e.,
to all flats FJ ′ with J ⊊ J ′ ⊊ {1, . . . , n}. There are 2n−|J | − 2 such
flats.

(3) FJ is adjacent to all smaller connected non-coordinate flats, i.e., to
all flats F=

J ′ with J ′ ⊆ J and |J ′| ≥ 2. There are 2|J | − |J | − 1 such
flats.

(4) There are no larger connected non-coordinate flats.
(5) FJ is adjacent to all proper connected coordinate flats FJ ′ such that

FJ ∨ FJ ′ is disconnected, but by Lemma 4.2.8 there are no such
flats.

(6) FJ is adjacent to all connected non-coordinate flats F=
J ′ with |J ′| ≥ 2

such that FJ ∨F=
J ′ is disconnected. By Lemma 4.2.8, this is the case

if and only if J ′ ⊆ {1, . . . , n} \ J . There are 2n−|J | − (n− |J |)− 1
such flats.
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Writing r := |J | for the rank of FJ , we see that in total FJ has degree

2r − 2 + 2n−r − 2 + 2r − r − 1 + 2n−r − (n− r)− 1

= 2r+1 + 2n−r+1 − n− 6.

Now assume F = F=
J for some J ⊆ {1, . . . , n} with |J | ≥ 2. Then rk(F ) =

|J | − 1 by Proposition 4.2.6. Using Theorem 4.2.7, we count the neighbors of
F=
J in the 1-skeleton of N (M(An)):

(1) There are no smaller connected coordinate flats.
(2) F=

J is adjacent to all larger proper connected coordinate flats, i.e.,
to all flats FJ ′ with J ⊆ J ′ ⊊ {1, . . . , n}. There are 2n−|J | − 1 such
flats.

(3) F=
J is adjacent to all smaller connected non-coordinate flats, i.e., to

all flats F=
J ′ with J ′ ⊊ J and |J ′| ≥ 2. There are 2|J | − |J | − 2 such

flats.
(4) F=

J is adjacent to all larger connected non-coordinate flats, i.e., to
all flats F=

J ′ with J ⊊ J ′ ⊆ {1, . . . , n}. There are 2n−|J | − 1 such
flats.

(5) F=
J is adjacent to all proper connected coordinate flats FJ ′ such

that F=
J ∨ FJ ′ is disconnected. By Lemma 4.2.8, this is the case if

and only if ∅ ⊊ J ′ ⊆ {1, . . . , n} \ J . There are 2n−|J | − 1 such flats.
(6) F=

J is adjacent to all connected non-coordinate flats F=
J ′ with |J ′| ≥ 2

such that F=
J ∨F=

J ′ is disconnected. By Lemma 4.2.8, this is the case
if and only if J ′ ⊆ {1, . . . , n} \ J . There are 2n−|J | − (n− |J |)− 1
such flats.

Writing r := |J | − 1 for the rank of F=
J , we see that in total F=

J has degree

2n−r−1 − 1 + 2r+1 − r − 3 + 2n−r−1 − 1

+ 2n−r−1 − 1 + 2n−r−1 − (n− r − 1)− 1

= 2r+1 + 2n−r+1 − n− 6. □

Example 4.2.10. For n = 3, we get d(1, 3) = d(2, 3) = 3, see Figure 13.

Corollary 4.2.11. The vertices of N (M(An)) with maximal degree in the
1-skeleton are exactly the singletons and the connected hyperplanes.

Proof. In Proposition 4.2.9 we saw that the degrees in the 1-skeleton are given
by the numbers d(r, n). We note the following properties of these numbers:

(1) For all 1 ≤ r < n we have d(r, n) = d(n− r, n).
(2) The first difference of d(r, n) in r is a strictly increasing function in

r:
d(r + 1, n)− d(r, n) = 2r+1 − 2n−r

In particular, d(1, n) = d(n− 1, n) is the maximal degree in the 1-skeleton
of N (M(An)). The corresponding flats are exactly the singletons and the
connected hyperplanes. □

Example 4.2.12. For the root system A10, we obtain the following degrees
in the 1-skeleton of N (M(A10)):

r 1 2 3 4 5 6 7 8 9
d(r, 10) 1012 504 256 144 112 144 256 504 1012
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{x1}

F{1,2}

{x2}

F{2,3}

{x3}

F{1,3}
{x1 − x2}

{x2 − x3}

{x1 − x3}F=
{1,2,3}

Figure 13. The minimal nested set complex N (M(A3)).

Theorem 4.2.13. The automorphism group of the coarse Bergman fan
Bc(M(An)) is generated by matroid automorphisms and Cremona automor-
phisms, hence it is isomorphic to the Cremona group Cr(M(An)).

Proof. The case n = 3 follows from Section 3.3, thus we may assume n ≥ 4.
Let f be an automorphism of Bc(M(An)). By Theorem 4.1.5, the coarse
Bergman fan Bc(M(An)) and the minimal nested set fan Bm(M(An)) coin-
cide, thus f induces an automorphism of the minimal nested set complex
N (M(An)). In particular, f preserves the subgraph G of the 1-skeleton of
N (M(An)) induced by the vertices of maximal degree.

By Corollary 4.2.11, the vertices of G are exactly the singletons and the
connected hyperplanes. Thus f induces a bijection between the sets

Einv(f) := {v ∈ Φ+(An) | rk f({v}) = n− 1}

and

Hinv(f) := {H ⊆ Φ+(An) connected hyperplane | rk f(H) = 1}.

In particular, since the vertices Hinv(f) form an independent set in G, the
same is true for Einv(f). Note that for every connected hyperplane H of
M(An) we have H ∈ Hinv(f) if H ∩ Einv(f) ̸= ∅.

If Einv(f) is empty, then Proposition 2.2.4 shows that f is induced by
a matroid automorphism, so we may assume Einv(f) ̸= ∅. Moreover, since
the group of matroid automorphisms Aut(M(An)) acts transitively on the
ground set E, we may assume Einv(f)∩B ̸= ∅, otherwise replace f by f ◦g for
a suitable automorphism g of M(An). We claim that Einv(f) is a Cremona
basis of M(An).

Case 1: |Einv(f) ∩ B| ≥ 3. Then every element v ∈ Φ+(An) \ B has
at least one neighbor in Einv(f), but Einv(f) is an independent set in
G, thus Einv(f) ⊆ B. On the other hand, H ∩ Einv(f) ̸= ∅ for every
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coordinate hyperplane of M , thus |Hinv(f)| ≥ n and we conclude
Einv(f) = B.

Case 2: |Einv(f) ∩ B| = 2. Let v ∈ Einv(f) \ B. Then suppB(v) =
Einv(f)∩B since Einv(f) is an independent set in G, but GB(M(An))
is a simple graph, hence |Einv(f)| ≤ 3. On the other hand, as in
Case 1 we have H ∩ Einv(f) ̸= ∅ for every coordinate hyperplane of
M , thus |Hinv(f)| ≥ n, contradiction.

Case 3: |Einv(f) ∩ B| = 1, say Einv(f) ∩ B = {xi} for some i ∈
{1, . . . , n}. There are n − 1 coordinate hyperplanes H of M with
xi ∈ H, thus |Einv(f)| ≥ n− 1, but then Einv(f) also contains some
non-basis element v ∈ Φ+(An) \B and we have F=

{1,...,n} ∈ Hinv(f),
hence |Einv(f)| ≥ n. On the other hand, we have b ∈ suppB(v) for
all v ∈ Einv(f) \B since Einv(f) is an independent set in G, which
implies |Einv(f)| ≤ n using that GB(M(An)) is a simple graph.

We conclude that |Einv(f)| = n and GB(Einv(f)) is a simple
spanning star of GB(M(An)) with central vertex xi, hence Einv(f)
is the Cremona basis Bi.

Since Einv(f) is a Cremona basis, the Cremona map cremEinv(f) induces
an automorphism of Bc(M(An)) by Theorem 3.1.3. It suffices to show that
cremEinv(f) ◦f is induced by a matroid automorphism. There are n coordinate
hyperplanes of M with respect to the Cremona basis Einv(f) and all of them
lie in Hinv(f). On the other hand, |Hinv(f)| = |Einv(f)| = n. This means
that f induces a bijection between the singletons corresponding to elements
of the Cremona basis Einv(f) and the coordinate hyperplanes with respect to
Einv(f). Hence the composition cremEinv(f) ◦ f maps singletons to singletons
and applying Proposition 2.2.4 completes the proof. □
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4.3. Bn

Let x1, . . . , xn be a basis of a vector space V over some field K with
char(K) ̸= 2 and assume n ≥ 3. We define the root system matroid M(Bn)
corresponding to the irreducible root system Bn as the vector matroid associ-
ated to the set of roots

Φ+(Bn) := {xi | 1 ≤ i ≤ n} ∪ {xi ± xj | 1 ≤ i < j ≤ n}.
(We will sometimes use xj−xi as alternative notation for the matroid element
xi − xj in order to avoid case distinctions.)

M(Bn) is a simple matroid of rank n and isomorphic to the Dowling
matroid Qn(Z/2Z), see Example 1.3.9.

Theorem 4.3.1. B := {xi | 1 ≤ i ≤ n} is the only Cremona basis of M(Bn).
The support graph GB(M(Bn)) is a complete graph.

Proof. B is clearly a basis of M(Bn) and for all 1 ≤ i < j ≤ n we have

cl({xi, xj}) = {xi, xj , xi + xj , xi − xj},
thus B is a Cremona basis. The support graph GB(M(Bn)) of M(Bn) with
respect to B is a complete graph with two parallel edges xi + xj and xi − xj
joining any two vertices xi and xj with i < j. In particular, M(Bn) is
connected by Lemma 1.4.10 and for every root v ∈ Φ+(Bn) the contraction
M(Bn)/v is connected by Lemma 1.4.12. It follows from Proposition 1.6.9
and Lemma 1.6.7 that there are no other Cremona bases. □

Example 4.3.2. For n = 3, the support graph of M(B3) looks like this:

x1

x2

x3

x1 − x2

x1 + x2

x1 − x3

x1 + x3

x2 − x3x2 + x3

Figure 14. The support graph GB(M(B3)).

Theorem 4.3.3. The Cremona group of M(Bn) is isomorphic to

Aut(M(Bn))× Z/2Z ∼= ((Z/2Z)n−1 ⋊ Sn)× Z/2Z.
It is generated by matroid automorphisms and the unique Cremona automor-
phism.

Proof. Follows from Proposition 3.2.3 and Theorem 4.1.2. □

Proposition 4.3.4. Let J ⊆ {1, . . . , n} be non-empty. Then

FJ := {xi | i ∈ J} ∪ {xi ± xj | i, j ∈ J, i < j}
is a connected coordinate flat of M(Bn) of rank |J | with support {xi | i ∈ J}.
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Proof. We have

FJ =
⋃︂

i,j∈J
cl({xi, xj}) = cl({xi | i ∈ J}),

thus FJ is a coordinate flat of rank |J | with support {xi | i ∈ J}. The
support graph GB(FJ) is a complete graph, hence FJ is connected by Lemma
1.5.6. □

Proposition 4.3.5. Let J ⊆ {1, . . . , n} with |J | ≥ 2 and choose a sign
function s : J → {−1, 1}. Then

F s
J := {xi − xj | i, j ∈ J, s(i) = s(j), i < j}

∪ {xi + xj | i, j ∈ J, s(i) ̸= s(j), i < j}

is a connected non-coordinate flat of M(Bn) of rank |J | − 1 with support
{xi | i ∈ J}. Note that F s

J = F−s
J .

Proof. Consider the linear subspace U of V that is obtained by intersecting
the subspace ⟨xi | i ∈ J⟩ with the hyperplane (

∑︁
i∈J s(i)xi)

⊥. Then F s
J =

Φ+(Bn) ∩ U , thus F s
J is a non-coordinate flat of M(Bn). The support graph

GB(F
s
J ) is a complete simple graph with vertices {xi | i ∈ J}, so Theorem

1.5.5 implies that F s
J has rank |J |−1. If |J | = 2, then clearly F s

J is connected,
and for |J | ≥ 3 this follows from Lemma 1.5.9. □

Theorem 4.3.6. Every support-connected flat of M(Bn) is connected. The
connected flats of M(Bn) are exactly the flats of the form FJ and F s

J as
defined in Propositions 4.3.4 and 4.3.5, respectively.

Proof. Let F be a support-connected flat of M(Bn) with support {xi | i ∈ J}
for some J ⊆ I. Then F and J are non-empty. If F is a coordinate flat,
then F = FJ by Proposition 1.5.4, hence F is connected by Proposition
4.3.4. Otherwise, F is a non-coordinate flat by Theorem 1.5.2 and its
support graph GB(F ) is connected by Lemma 1.4.6. Whenever xi − ϵ1xj and
xj − ϵ2xk are edges of GB(F ) for pairwise distinct i, j, k ∈ {1, . . . , n} and
signs ϵ1, ϵ2 ∈ {−1, 1}, we have

xi − ϵ1ϵ2xk ∈ cl({xi − ϵ1xj , xj − ϵ2xk}) ⊆ F.

This shows that GB(F ) is a complete simple graph. Choose any vertex
xi ∈ suppB(F ) and define the function

s : J → {−1, 1}, j ↦→

{︄
1 if i = j or xi − xj ∈ F

−1 if xi + xj ∈ F
.

Then by construction F = F s
J and F is connected by Proposition 4.3.5. □

Excluding the trivial coordinate flat F{1,...,n} = Φ+(Bn), these are exactly
the vertices of the minimal nested set complex N (M(Bn)). Next, we compute
the degrees of these vertices in the 1-skeleton of the minimal nested set
complex.

Lemma 4.3.7. Let F and F ′ be connected flats of M(Bn). Then F ∨ F ′ is
disconnected if and only if suppB(F ) ∩ suppB(F

′) = ∅ and at least one of F
and F ′ is a non-coordinate flat.
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Proof. Assume that F ∨ F ′ is disconnected. Then F ∨ F ′ is not support-
connected by Theorem 4.3.6, thus suppB(F )∩suppB(F

′) = ∅. Moreover, if F
and F ′ were both coordinate flats, then F ∨F ′ would also be a coordinate flat
and thus connected by Proposition 4.3.4, contradiction. The other direction
was shown in Lemma 1.5.11. □

Lemma 4.3.8. Let J ⊆ {1, . . . , n}. Then there are exactly

3|J | − 1

2
− |J |

connected non-coordinate flats F of M(Bn) with suppB(F ) ⊆ {xi | i ∈ J}.

Proof. By Theorem 4.3.6, the connected non-coordinate flats of M(Bn) with
suppB(F ) ⊆ {xi | i ∈ J} are exactly the flats of the form F s

J ′ as in Proposition
4.3.5 with J ′ ⊆ J . For a fixed J ′ ⊆ J with |J ′| ≥ 2, there are 2|J

′|−1 flats of
type F s

J ′ , since there are 2|J
′| possible choices for s, but s and −s yield the

same flat. Thus we compute:

|{F s
J ′}J ′⊆J, |J ′|≥2, s : J ′→{−1,1}| =

∑︂
J ′⊆J,|J ′|≥2

2|J
′|−1

=

|J |∑︂
k=2

(︃
|J |
k

)︃
2k−1

=
1

2

(︃ |J |∑︂
k=0

(︃
|J |
k

)︃
2k − 2|J | − 1

)︃
=

1

2

(︃
3|J | − 2|J | − 1

)︃
=

3|J | − 1

2
− |J | □

Proposition 4.3.9. Let F be a proper connected coordinate flat of M(Bn)
of rank r. Then F has degree

d1(r, n) :=
3r + 3n−r

2
+ 2r + 2n−r − n− 5

in the 1-skeleton of N (M(Bn)).

Proof. By Theorem 4.3.6, F = FJ for some J with ∅ ⊊ J ⊊ {1, . . . , n}.
Then rk(F ) = |J | by Proposition 4.3.4. Using Theorem 4.3.6, we count the
neighbors of FJ in the 1-skeleton of N (M(Bn)):

(1) FJ is adjacent to all smaller connected coordinate flats, i.e., to all
flats FJ ′ with ∅ ⊊ J ′ ⊊ J . There are 2|J | − 2 such flats.

(2) FJ is adjacent to all larger proper connected coordinate flats, i.e.,
to all flats FJ ′ with J ⊊ J ′ ⊊ {1, . . . , n}. There are 2n−|J | − 2 such
flats.

(3) FJ is adjacent to all smaller connected non-coordinate flats, i.e., to
all flats F s

J ′ with J ′ ⊆ J and |J ′| ≥ 2. By Lemma 4.3.8, there are
3|J|−1

2 − |J | such flats.
(4) There are no larger connected non-coordinate flats.
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(5) FJ is adjacent to all proper connected coordinate flats FJ ′ such that
FJ ∨ FJ ′ is disconnected, but by Lemma 4.3.7 there are no such
flats.

(6) FJ is adjacent to all connected non-coordinate flats F s
J ′ such that

FJ ∨F s
J ′ is disconnected. By Lemma 4.3.7, this is the case if and only

if J ′ ⊆ {1, . . . , n}\J . By Lemma 4.3.8, there are 3n−|J|−1
2 − (n−|J |)

such flats.
Writing r := |J | for the rank of FJ , we see that in total FJ has degree

2r − 2 + 2n−r − 2 +
3r − 1

2
− r +

3n−r − 1

2
− (n− r)

=
3r + 3n−r

2
+ 2r + 2n−r − n− 5. □

Proposition 4.3.10. Let F be a connected non-coordinate flat of M(Bn) of
rank r. Then F has degree

d2(r, n) :=
3n−r − 1

2
+ 2r+1 + 2n−r − n− 5

in the 1-skeleton of N (M(Bn)).

Proof. By Theorem 4.3.6, F = F s
J for some J ⊆ {1, . . . , n} with |J | ≥ 2 and

some s : J → {−1, 1}. Then rk(F ) = |J | − 1 by Proposition 4.3.5. Using
Theorem 4.3.6, we count the neighbors of F s

J in the 1-skeleton of N (M(Bn)):
(1) There are no smaller connected coordinate flats.
(2) F s

J is adjacent to all larger proper connected coordinate flats, i.e.,
to all flats FJ ′ with J ⊆ J ′ ⊊ {1, . . . , n}. There are 2n−|J | − 1 such
flats.

(3) F s
J is adjacent to all smaller connected non-coordinate flats, i.e.,

to all flats F s′
J ′ with J ′ ⊊ J , |J ′| ≥ 2, and s′ = ±s|J ′ . Since s′ is

uniquely determined up to sign, there are 2|J | − |J | − 2 such flats.
(4) F s

J is adjacent to all larger connected non-coordinate flats, i.e., to
all flats F s′

J ′ with J ⊊ J ′ ⊆ {1, . . . , n} and s′|J = ±s. For fixed J ′,
there are 2|J

′|−|J | possible choices for s′ up to sign, hence there are∑︂
J⊊J ′⊆{1,...,n}

2|J
′|−|J | =

n∑︂
k=|J |+1

⃓⃓
{J ′ | J ⊆ J ′ ⊆ {1, . . . , n}, |J ′| = k}

⃓⃓
· 2k−|J |

=

n∑︂
k=|J |+1

(︃
n− |J |
k − |J |

)︃
2k−|J | =

n−|J |∑︂
k=1

(︃
n− |J |

k

)︃
2k

= 3n−|J | − 1

such flats.
(5) F s

J is adjacent to all proper connected coordinate flats FJ ′ such that
F s
J ∨ FJ ′ is disconnected. By Lemma 4.3.7, this is the case if and

only if ∅ ⊊ J ′ ⊆ {1, . . . , n} \ J . There are 2n−|J | − 1 such flats.
(6) F s

J is adjacent to all connected non-coordinate flats F s′
J ′ such that

F s
J ∨F s′

J ′ is disconnected. By Lemma 4.3.7, this is the case if and only
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if J ′ ⊆ {1, . . . , n}\J . By Lemma 4.3.8, there are 3n−|J|−1
2 − (n−|J |)

such flats.
Writing r := |J | − 1 for the rank of F s

J , we see that in total F s
J has degree

2n−r−1 − 1 + 2r+1 − r − 3 + 3n−r−1 − 1

+ 2n−r−1 − 1 +
3n−r−1 − 1

2
− n+ r + 1

=
3n−r − 1

2
+ 2r+1 + 2n−r − n− 5. □

Corollary 4.3.11. The vertices of N (M(Bn)) with maximal degree in the
1-skeleton are exactly the singletons and the coordinate hyperplanes.

Proof. In Propositions 4.3.9 and 4.3.10 we saw that the degrees in the 1-
skeleton are given by the numbers d1(r, n) and d2(r, n). We note the following
properties of these numbers:

(1) For all 1 ≤ r < n we have d1(r, n) = d1(n− r, n).
(2) For all 1 ≤ r < n we have d1(r, n)− d2(r, n) =

3r+1
2 − 2r ≥ 0, hence

d1(r, n) ≥ d2(r, n) with equality if and only if r = 1.
(3) The first differences of d1(r, n) and d2(r, n) in r are strictly increasing

functions in r:

d1(r + 1, n)− d1(r, n) = 3r − 3n−r−1 + 2r − 2n−r−1

d2(r + 1, n)− d2(r, n) = −3n−r−1 + 2r+1 − 2n−r−1

In particular, d1(1, n) = d2(1, n) = d1(n− 1, n) is the maximal degree in the
1-skeleton of N (M(Bn)). The corresponding flats are exactly the singletons
and the coordinate hyperplanes. □

Example 4.3.12. For the root system B10, we obtain the following degrees
in the 1-skeleton of the minimal nested set complex:

r 1 2 3 4 5 6 7 8 9
d1(r, 10) 10342 3530 1228 470 292 470 1228 3530 10342
d2(r, 10) 10342 3529 1222 445 202 169 262 505 1012

Theorem 4.3.13 (cf. [SW23, Proposition 10.3]). The automorphism group of
the coarse Bergman fan Bc(M(Bn)) is generated by matroid automorphisms
and the unique Cremona automorphism, hence it is isomorphic to the Cremona
group Cr(M(Bn)).

Proof. Let f be an automorphism of Bc(M(Bn)). By Theorem 4.1.5, the
coarse Bergman fan Bc(M(Bn)) and the minimal nested set fan Bm(M(Bn))
coincide, thus f induces an automorphism of the minimal nested set complex
N (M(Bn)). In particular, f preserves the subgraph G of the 1-skeleton of
N (M(Bn)) induced by the vertices of maximal degree. By Corollary 4.3.11,
the vertices of G are exactly the singletons and the coordinate hyperplanes.
We compute the degrees in G:

(1) Let xi ∈ Φ+(Bn) for some i ∈ {1, . . . , n}. Then the neighbors
in G of the singleton {xi} are the n − 1 coordinate hyperplanes
containing xi and the 2

(︁
n−1
2

)︁
singletons corresponding to non-basis

elements v ∈ Φ+(Bn) with xi /∈ suppB(v), hence {xi} has degree
(n− 1) + 2

(︁
n−1
2

)︁
= (n− 1)2.
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(2) Let v ∈ Φ+(Bn)\B be a non-basis element. Then the neighbors in G
of the singleton {v} are the n− 2 coordinate hyperplanes containing
v, the n− 2 singletons corresponding to basis elements xi ∈ B with
xi /∈ suppB(v), and the 2

(︁
n−2
2

)︁
singletons corresponding to non-basis

elements v′ ∈ Φ+(Bn) with suppB(v) ∩ suppB(v
′) = ∅. Hence v has

degree 2(n− 2) + 2
(︁
n−2
2

)︁
= (n− 1)(n− 2).

(3) Let H ⊆ Φ+(Bn) be a coordinate hyperplane of B. Then the
neighbors in G of H are exactly the singletons contained in H.
Hence H has degree |H| = (n− 1) + 2

(︁
n−1
2

)︁
= (n− 1)2.

We see that the singletons corresponding to non-basis elements have smaller
degree than the other vertices, thus the set

Einv(f) := {v ∈ Φ+(An) | rk f({v}) = n− 1}
is contained in B. Moreover, f restricts to an automorphism of the subgraph
G′ induced by the coordinate singletons and coordinate hyperplanes. This is
a connected bipartite graph and thus Einv(f) is either empty or equal to the
Cremona basis B. By Theorem 3.1.3, the Cremona map cremB induces an
automorphism of Bc(M(An)), thus we may assume Einv(f) = ∅, otherwise
replace f by cremB ◦ f . Now Proposition 2.2.4 shows that f is induced by a
matroid automorphism. □
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4.4. Dn

Let x1, . . . , xn be a basis of a vector space V over some field K with
char(K) ̸= 2 and assume n ≥ 4. We define the root system matroid M(Dn)
corresponding to the irreducible root system Dn as the vector matroid asso-
ciated to the set of roots

Φ+(Dn) := {xi ± xj | 1 ≤ i < j ≤ n}.
(We will sometimes use xj−xi as alternative notation for the matroid element
xi − xj in order to avoid case distinctions.)

M(Dn) is a simple matroid of rank n. Since Φ+(Dn) is a subset of
Φ+(Bn), the root system matroid M(Dn) is isomorphic to the restriction
M(Bn)|Φ+(Dn) of the root system matroid corresponding to Bn.

Proposition 4.4.1. Let J ⊆ {1, . . . , n} with |J | ≥ 3. Then

F±
J := {xi ± xj | i, j ∈ J, i < j}

is a connected flat of M(Dn) of rank |J |.
Proof. F±

J is equal to the intersection of Φ+(Dn) with the linear subspace
⟨xi | i ∈ J⟩ and thus a flat of M(Dn). Let B be the unique Cremona basis
of M(Bn) from Theorem 4.3.1 and let v, v′ ∈ F±

J . It suffices to show that v

and v′ lie in the same component of F±
J .

If | suppB(v) ∩ suppB(v
′)| = 1, say v = xi − ϵxj and v′ = xj − ϵ′xk with

ϵ, ϵ′ ∈ {−1, 1} and i, j, k ∈ J , then xi − ϵϵ′xk ∈ cl({v, v′}) ∩ F±
J , thus v and

v′ lie in the same component of F±
J .

Otherwise, there exists an element v′′ ∈ F±
J with

| suppB(v) ∩ suppB(v
′′)| = | suppB(v′′) ∩ suppB(v

′)| = 1,

using the assumption |J | ≥ 3 in the case that suppB(v) = suppB(v
′). Then

v and v′ both lie in the component of F±
J that contains v′′. □

Proposition 4.4.2. Let J ⊆ {1, . . . , n} with |J | ≥ 2 and choose a sign
function s : J → {−1, 1}. Then

F s
J := {xi − xj | i, j ∈ J, s(i) = s(j), i < j}

∪ {xi + xj | i, j ∈ J, s(i) ̸= s(j), i < j}

is a connected flat of M(Dn) of rank |J | − 1. Note that F s
J = F−s

J .

Proof. Follows from Proposition 4.3.5 since F s
J coincides with the definition

of the flat F s
J of M(Bn), see ibid. □

Theorem 4.4.3. The connected flats of M(Dn) are exactly the flats of the
form F±

J and F s
J as defined in Propositions 4.4.1 and 4.4.2, respectively.

Proof. Let F be a connected flat of M(Dn). Then the closure F of F in
M(Bn) is a connected flat of M(Bn) with F ∩ Φ+(Dn) = F . Let J ⊆ I
such that {xi | i ∈ J} is the support of F with respect to the Cremona
basis of M(Bn). By Theorem 4.3.6, we have either F = FJ as defined in
Proposition 4.3.4 or F = F s

J as defined in Proposition 4.3.5 for some sign
function s : J → {−1, 1}. In the latter case, we have F = F s

J ∩Φ+(Dn) = F s
J

by Proposition 4.4.1, so we may assume F = FJ . We consider the following
cases:
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(1) If |J | = 1, say J = {i} for some i ∈ {1, . . . , n}, then F = {xi} ∩
Φ+(Dn) = ∅, contradicting the assumption that F is connected.

(2) If |J | = 2, say J = {i, j} for some i, j ∈ {1, . . . , n} with i < j, then
F = {xi, xj , xi ± xj} ∩Φ+(Dn) = {xi ± xj}. This is a flat of rank 2
with two elements and thus not connected, contradiction.

(3) If |J | ≥ 3, then F = FJ ∩ Φ+(Dn) = F±
J and we are done. □

Corollary 4.4.4. M(Dn) has no Cremona bases.

Proof. By Theorem 4.4.3, we have |F | ≤ 3 for all flats F of rank 2. If M(Dn)
had a Cremona basis, then Corollary 1.3.3 would imply

2

(︃
n

2

)︃
= |Φ+(Dn)| ≤ n+

(︃
n

2

)︃(︁
max

x,y∈Φ+(Dn)
| cl({x, y})| − 2

)︁
≤ n+

(︃
n

2

)︃
,

but for all n ≥ 4 we have
(︁
n
2

)︁
> n. □

Although M(Dn) has no Cremona bases, we will call flats of the form
F±
J coordinate flats and flats of the form F s

J non-coordinate flats, in analogy
to their corresponding flats in M(Bn). Let B be the unique Cremona basis
of M(Bn) from Theorem 4.3.1.

Lemma 4.4.5. Let F and F ′ be connected flats of M(Dn). Then F ∨ F ′ is
disconnected if and only if one of the following is true:

(a) suppB(F ) ∩ suppB(F
′) = ∅ and at least one of F and F ′ is a non-

coordinate flat.
(b) rk(F ) = 1 = rk(F ′) and suppB(F ) = suppB(F

′).

Proof. Let F and F ′ be connected flats of M(Dn) such that F ∨ F ′ is
disconnected. Then the closures F and F ′ of F and F ′, respectively, in M(Bn)
are connected flats of M(Bn) with F ∩ Φ+(Dn) = F and F ′ ∩ Φ+(Dn) = F ′.
Moreover, we have (F ∨ F ′) ∩ Φ+(Dn) = F ∨ F ′.

Assume first that F ∨ F ′ is disconnected. Then Lemma 4.3.7 implies
suppB(F ) ∩ suppB(F

′) = ∅ and that at least one of F and F ′ is a non-
coordinate flat, thus the same is true for F and F ′.

Now assume that F ∨ F ′ is connected and let J := suppB(F ∨ F ′). Then
by Theorem 4.3.6 we have either F ∨ F ′ = FJ or F ∨ F ′ = F s

J for some
sign function s : J → {−1, 1}. In the latter case we have F ∨ F ′ = F s

J ,
which is connected by Proposition 4.4.2, contradicting our assumption. Thus
F ∨ F ′ = FJ . If |J | ≥ 3, then we have F ∨ F ′ = F±

J , which is connected
by Proposition 4.4.1, and again we have a contradiction. Thus |J | = 2 and
F ∨ F ′ = FJ ∩ Φ+(Dn) = {xi + xj , xi − xj} for some i, j ∈ {1, . . . , n} with
i < j, hence we conclude rk(F ) = 1 = rk(F ′) and suppB(F ) = suppB(F

′).
Conversely, if condition (a) holds, then F ∨F ′ is disconnected by Lemma

1.5.11. In the case of condition (b) we have F ∨ F ′ = {xi + xj , xi − xj} for
some i, j ∈ {1, . . . , n} with i < j, hence F ∨ F ′ is disconnected. □

Proposition 4.4.6. Let F be a proper connected coordinate flat of M(Dn)
of rank r. Then F has degree

d1(r, n) :=
3r + 3n−r

2
+ 2r + 2n−r −

(︃
r

2

)︃
− n− r − 5

in the 1-skeleton of N (M(Dn)).
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Proof. By Theorem 4.4.3, F = F±
J for some J ⊆ {1, . . . , n} with |J | ≥ 3.

Then rk(F ) = |J | by Proposition 4.4.1. Using Theorem 4.4.3, we count the
neighbors of F±

J in the 1-skeleton of N (M(Dn)):

(1) F±
J is adjacent to all smaller connected coordinate flats, i.e., to all

flats F±
J ′ with J ′ ⊊ J and |J ′| ≥ 3. There are 2|J | −

(︁|J |
2

)︁
− |J | − 2

such flats.
(2) F±

J is adjacent to all larger proper connected coordinate flats, i.e.,
to all flats F±

J ′ with J ⊊ J ′ ⊊ {1, . . . , n}. There are 2n−|J | − 2 such
flats.

(3) F±
J is adjacent to all smaller connected non-coordinate flats, i.e., to

all flats F s
J ′ with J ′ ⊆ J and |J ′| ≥ 2. By Lemma 4.3.8, there are

3|J|−1
2 − |J | such flats.

(4) There are no larger connected non-coordinate flats.
(5) F±

J is adjacent to all proper connected coordinate flats F±
J ′ such

that F±
J ∨ F±

J ′ is disconnected, but by Lemma 4.4.5 there are no
such flats.

(6) F±
J is adjacent to all connected non-coordinate flats F s

J ′ such that
F±
J ∨F s

J ′ is disconnected. By Lemma 4.4.5, this is the case if and only
if J ′ ⊆ {1, . . . , n}\J . By Lemma 4.3.8, there are 3n−|J|−1

2 − (n−|J |)
such flats.

Writing r := |J | for the rank of F±
J , we see that in total F±

J has degree

2r −
(︃
r

2

)︃
− r − 2 + 2n−r − 2 +

3r − 1

2
− r +

3n−r − 1

2
− (n− r)

=
3r + 3n−r

2
+ 2r + 2n−r −

(︃
r

2

)︃
− n− r − 5. □

Proposition 4.4.7. Let F be a connected non-coordinate flat of M(Dn) of
rank r. Then F has degree

d2(r, n) :=
3n−r − 1

2
+ 2r+1 + 2n−r −

(︃
n− r − 1

2

)︃
− 2n+ r − 4

in the 1-skeleton of N (M(Dn)).

Proof. By Theorem 4.4.3, F = F s
J for some J ⊆ {1, . . . , n} with |J | ≥ 2 and

some s : J → {−1, 1}. Then rk(F ) = |J | − 1 by Proposition 4.4.2. Using
Theorem 4.4.3, we count the neighbors of F s

J in the 1-skeleton of N (M(Dn)):

(1) There are no smaller connected coordinate flats.
(2) F s

J is adjacent to all larger proper connected coordinate flats, i.e., to
all flats F±

J ′ with J ⊆ J ′ ⊊ {1, . . . , n} and |J ′| ≥ 3. If |J | = 2, then
there are 2n−|J | − 2 such flats, else there are 2n−|J | − 1 such flats.

(3) F s
J is adjacent to all smaller connected non-coordinate flats, i.e.,

to all flats F s′
J ′ with J ′ ⊊ J , |J ′| ≥ 2, and s′ = ±s|J ′ . Since s′ is

uniquely determined up to sign, there are 2|J | − |J | − 2 such flats.
(4) F s

J is adjacent to all larger connected non-coordinate flats, i.e., to
all flats F s′

J ′ with J ⊊ J ′ ⊆ {1, . . . , n} and s′|J = ±s. For fixed J ′,
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there are 2|J
′|−|J | possible choices for s up to sign, hence there are∑︂

J⊊J ′⊆{1,...,n}

2|J
′|−|J | =

n∑︂
k=|J |+1

|{J ′ | J ⊊ J ′ ⊆ {1, . . . , n}, |J ′| = k}| · 2k−|J |

=
n∑︂

k=|J |+1

(︃
n− |J |
k − |J |

)︃
2k−|J | =

n−|J |∑︂
k=1

(︃
n− |J |

k

)︃
2k

= 3n−|J | − 1

such flats.
(5) F s

J is adjacent to all proper connected coordinate flats F±
J ′ such that

F s
J ∨ F±

J ′ is disconnected. By Lemma 4.4.5, this is the case if and
only if J ′ ⊆ {1, . . . , n}\J with |J ′| ≥ 3. There are 2n−|J |−

(︁
n−|J |

2

)︁
−

(n− |J |)− 1 such flats.
(6) F s

J is adjacent to all connected non-coordinate flats F s′
J ′ such that

F s
J ∨ F s′

J ′ is disconnected. By condition (a) in Lemma 4.4.5, this is
the case if J ′ ⊆ {1, . . . , n}\J . By Lemma 4.3.8, there are 3n−|J|−1

2 −
(n− |J |) such flats. Moreover, if |J | = 2, then by condition (b) in
Lemma 4.4.5 there is one additional neighbor, which compensates
for the missing neighbor in case (2).

Writing r := |J | − 1 for the rank of F s
J , we see that in total F s

J has degree

2n−r−1 − 1 + 2r+1 − r − 3 + 3n−r−1 − 1

+ 2n−r−1 −
(︃
n− r − 1

2

)︃
− (n− r − 1)− 1 +

3n−r−1 − 1

2
− (n− r − 1)

=
3n−r − 1

2
+ 2r+1 + 2n−r −

(︃
n− r − 1

2

)︃
− 2n+ r − 4. □

Corollary 4.4.8. The vertices of N (M(Dn)) with maximal degree in the
1-skeleton are exactly the singletons.

Proof. In Propositions 4.4.6 and 4.4.7 we saw that the degrees in the 1-
skeleton are given by the numbers d1(r, n) and d2(r, n). We note the following
properties of these numbers:

(1) The first differences of d1(r, n) and d2(r, n) in r are strictly increasing
functions in r:

d1(r + 1, n)− d1(r, n) = 3r − 3n−r−1 + 2r − 2n−r−1 − r − 1

d2(r + 1, n)− d2(r, n) = −3n−r−1 + 2r+1 − 2n−r−1 + n− r − 1

(2) We have d2(1, n) > d1(n− 1, n) since d2(1, n)− d1(n− 1, n) = n− 1.
(3) We have d2(1, n) > d2(n− 1, n) since

d2(1, n)− d2(n− 1, n) =
3n−1 − 1

2
− 2n−1 − n(n− 3)

2
> 0.

(4) We have d2(1, n) > d1(2, n) since

d2(1, n)− d1(2, n) = 3n−2 + 2n−2 −
(︃
n− 2

2

)︃
− n > 0.
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Since M(Dn) has no connected coordinate flat of rank 1, this shows that
d2(1, n) is the maximal degree in the 1-skeleton of N (M(Dn)). The corre-
sponding flats are exactly the singletons. □

Example 4.4.9. For the root system D10, we obtain the following degrees
in the 1-skeleton of the minimal nested set complex:

r 1 2 3 4 5 6 7 8 9
d1(r, 10) (10341) (3527) 1222 460 277 449 1200 3494 10297
d2(r, 10) 10306 3501 1201 430 192 163 259 504 1012

Theorem 4.4.10. The automorphism group Aut(Bc(M(Dn))) of the coarse
Bergman fan coincides with the group Aut(M(Dn)) of matroid automor-
phisms.

Proof. Let f be an automorphism of Bc(M(Dn)). By Theorem 4.1.5, the
coarse Bergman fan Bc(M(Dn)) and the minimal nested set fan Bm(M(Dn))
coincide, thus f induces an automorphism of the minimal nested set complex
N (M(Dn)). In particular, f preserves the subgraph G of the 1-skeleton of
N (M(Dn)) induced by the vertices of maximal degree. By Corollary 4.4.8,
the vertices of G are exactly the singletons. Thus the claim follows from
Proposition 2.2.4. □
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4.5. E6, E7, and E8

Let x1, . . . , x8 be a basis of an 8-dimensional vector space V over some
field K with char(K) ̸= 2. We define the root system matroid M(E8) corre-
sponding to the irreducible root system E8 as the vector matroid associated
to the set of roots

Φ+(E8) := {xi ± xj | 1 ≤ i < j ≤ n}
∪ {x1 + ϵ2x2 + · · ·+ ϵ8x8 | ϵ2, . . . , ϵ8 ∈ {−1, 1}, ϵ2 · · · ϵ8 = 1}.

M(E8) is a simple matroid of rank 8. Let x∨1 , . . . , x
∨
8 be the dual basis to

x1, . . . , x8. The subset

Φ+(E7) := Φ+(E8) ∩ V (x∨7 = x∨8 )

is a flat of M(E8) of rank 7 and we define M(E7) := M(E8)|Φ+(E7). Likewise,
the subset

Φ+(E6) := Φ+(E7) ∩ V (x∨6 = x∨7 )

is a flat of M(E8) of rank 6 and we define M(E6) := M(E8)|Φ+(E6).
By calculating all closures cl({v, v′}) with v, v′ ∈ Φ+(E8), we determine

the connected flats of rank 2:

Proposition 4.5.1. M(E8) has the following connected flats of rank 2:
(1) ⟨x1 = x2 = x3⟩ := {x1 − x2, x1 − x3, x2 − x3}.
(2) ⟨x1 + x2, x3 + · · ·+ x8⟩ := {x1 + x2, x1 + x2 ± (x3 + · · ·+ x8)}.

Up to permutations and sign changes, every connected flat of rank 2 is of
exactly one of these types.

Corollary 4.5.2. M(E6), M(E7), and M(E8) have no Cremona bases.

Proof. By Proposition 4.5.1 we have |F | ≤ 3 for all connected rank 2 flats
F of M(E8). Since M(E7) and M(E6) are restrictions of M(E8), they also
have this property. If M(En) had a Cremona basis for some n ∈ {6, 7, 8},
then Corollary 1.3.3 would imply

|M(En)| ≤ n+

(︃
n

2

)︃
=

n(n+ 1)

2
.

However, we have |M(E8)| = 120 > 36 = 8·9
2 , |M(E7)| = 63 > 28 = 7·8

2 , and
|M(E6)| = 36 > 21 = 6·7

2 . □

It does not seem possible to embed these matroids into a matroid that
has a Cremona basis, as we did for the root system matroids of type Dn.
Thus classifying all connected flats seems to be difficult, in particular for E8.

Conjecture 4.5.3. For all n ∈ {6, 7, 8} we have

Aut(Bc(M(En))) = Aut(M(En)).

We believe that this can be shown by computing the degrees of all con-
nected flats in the 1-skeleton of the respective minimal nested set complexes,
and we would expect that these numbers are asymmetric like in Example
4.4.9 for D10.
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4.6. F4

Let x1, . . . , x4 be a basis of a 4-dimensional vector space V over some
field K with char(K) ̸= 2. We define the root system matroid M(F4) corre-
sponding to the irreducible root system F4 as the vector matroid associated
to the set of roots

Φ+(F4) := {xi | 1 ≤ i ≤ 4}
∪ {xi ± xj | 1 ≤ i < j ≤ 4}
∪ {x1 ± x2 ± x3 ± x4}.

M(F4) is a simple matroid of rank 4.

Proposition 4.6.1. M(F4) has the following connected flats of rank 2:
(1) ⟨x1, x2⟩ := {x1, x2, x1 ± x2}.
(2) ⟨x1, x2 + x3 + x4⟩ := {x1, x1 ± (x2 + x3 + x4)}.
(3) ⟨x1 = x2 = x3⟩ := {x1 − x2, x1 − x3, x2 − x3}.
(4) ⟨x1 = x2, x3 = x4⟩ := {x1 − x2, x3 − x4, x1 − x2 ± (x3 − x4)}.

Up to permutations and sign changes, every connected flat of rank 2 is of
exactly one of these types.

Proof. See Appendix 4.7. □

Corollary 4.6.2. M(F4) has no Cremona bases.

Proof. Proposition 4.6.1 shows that maxv,v′∈Φ+(F4) | cl({v, v′})| = 4. If M(F4)
had a Cremona basis, then Corollary 1.3.3 would imply

24 ≤ 4 + 6 ·
(︁

max
v,v′∈Φ+(F4)

| cl({v, v′})| − 2
)︁
= 16,

contradiction. □

Proposition 4.6.3. M(F4) has the following connected flats of rank 3:
(1) ⟨x1, x2, x3⟩ := {x1, x2, x3, x1 ± x2, x1 ± x3, x2 ± x3}.
(2) ⟨x1, x2, x3 = x4⟩ := {x1, x2, x1 ± x2, x3 − x4, x1 ± x2 ± (x3 − x4)}.
(3) ⟨x1 = x2 = x3 = x4⟩ := {xi − xj | 1 ≤ i < j ≤ 4} ∪ {x1 + x2 − x3 −

x4, x1 − x2 + x3 − x4, x1 − x2 − x3 + x4}.
Up to permutations and sign changes, every connected flat of rank 3 is of
exactly one of these types.

Proof. See Appendix 4.7. □

Let N (F4) be the minimal nested set complex of M(F4).

Proposition 4.6.4. Let F be a connected flat of M(F4).
(1) If rk(F ) = 1, then F has degree 26 in the 1-skeleton of N (F4).
(2) If rk(F ) = 2, then F has degree 8 or 9 in the 1-skeleton of N (F4).
(3) If rk(F ) = 3, then F has degree 16 in the 1-skeleton of N (F4).

Proof. See Appendix 4.7. □

Theorem 4.6.5. The automorphism group Aut(Bc(M(F4))) of the coarse
Bergman fan coincides with the group Aut(M(F4)) of matroid automorphisms.

Proof. Follows from Proposition 4.6.4 and Proposition 2.2.4. □
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4.7. Appendix: Computations for F4

We determine the flats of F4 by calculating the parallel classes in the
contraction M(F4)/F for every flat F . Behind each parallel class, we write
two numbers (x, y), where x is the number of elements in the parallel class
and y is the number of parallel classes of this type up to permutations and
sign changes.

(1) rank 1:
• {x1} (1, 4)
• {x1 + x2} (1, 12)
• {x1 + x2 + x3 + x4} (1, 8)

(2) rank 2 over {x1}:
• ⟨x1, x2⟩ = {x1, x2, x1 ± x2} (3, 3)
• {x1, x2 + x3} (1, 6, reducible)
• ⟨x1, x1 + x2 + x3 + x4⟩ = {x1, x1 ± (x2 + x3 + x4)} (2, 4)

(3) rank 2 over {x1 + x2}:
• ⟨x1, x2⟩ (3, 1)
• {x1 + x2, x3} (1, 2, reducible)
• ⟨x1 + x2, x1 + x3⟩ = {x1 + x2, x1 + x3, x2 − x3} (2, 4)
• ⟨x1 + x2, x3 + x4⟩ = {x1 + x2, x3 + x4, x1 + x2 ± (x3 + x4)} (3,

2)
• {x1 + x2, x1 − x2 + x3 + x4} (1, 4, reducible)

(4) rank 2 over {x1 + x2 + x3 + x4}:
• ⟨x1, x1 + x2 + x3 + x4⟩ (2, 4)
• ⟨x1 + x2, x3 + x4⟩ (3, 3)
• {x1 + x2 + x3 + x4, x1 − x2} (1, 6, reducible)

(5) rank 3 over ⟨x1, x2⟩:
• ⟨x1, x2, x3⟩ = ⟨x1, x2⟩ ∪ {x3, x1 ± x3, x2 ± x3} (5, 2)
• ⟨x1, x2, x3 + x4⟩ = ⟨x1, x2⟩ ∪ {x3 + x4, x1 ± x2 ± (x3 + x4)} (5,

2)
(6) rank 3 over {x1, x2 + x3}:

• ⟨x1, x2, x3⟩ (7, 1)
• ⟨x1, x2 + x3, x4⟩ (7, 1)
• ⟨x1, x2+x3, x2+x4⟩ = {x1}∪⟨x2+x3, x2+x4⟩ (2, 2, reducible)
• ⟨x1, x2+x3, x1+x2−x3+x4⟩ = ⟨x1, x1+x2−x3+x4⟩∪{x2+x3}

(2, 2, reducible)
(7) rank 3 over ⟨x1, x1 + x2 + x3 + x4⟩:

• ⟨x1, x2, x3 + x4⟩ (6, 3)
• ⟨x1, x1+x2+x3+x4, x2−x3⟩ = ⟨x1, x1+x2+x3+x4⟩∪{x2−x3}

(1, 3, reducible)
(8) rank 3 over ⟨x1 + x2, x1 + x3⟩:

• ⟨x1, x2, x3⟩ (6, 1)
• ⟨x1+x2, x1+x3, x4⟩ = ⟨x1+x2, x1+x3⟩∪{x4} (1, 1, reducible)
• ⟨x1+x2, x1+x3, x1+x4⟩ = {x1+x2, x1+x3, x1+x4, x2−x3, x2−
x4, x3−x4, x1+x2+x3−x4, x1−x2+x3+x4, x1+x2−x3+x4}
(6, 2)

• ⟨x1+x2, x1+x3, x1−x2−x3+x4⟩ = ⟨x1+x2, x1+x3⟩∪{x1−
x2 − x3 + x4} (1, 2, reducible)

(9) rank 3 over ⟨x1 + x2, x3 + x4⟩:
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• ⟨x1, x2, x3 + x4⟩ (5, 2)
• ⟨x1+x2, x1+x3, x1−x4⟩ = {x1+x2, x1+x3, x1−x4, x2−x3, x2+
x4, x3+x4, x1+x2+x3+x4, x1−x2+x3−x4, x1+x2−x3−x4}
(5, 2)

(10) rank 3 over {x1 + x2, x1 − x2 + x3 + x4}:
• ⟨x1, x2, x3 + x4⟩ (7, 1)
• ⟨x1+x2, x1−x2+x3+x4, x3⟩ = ⟨x3, x1−x2+x3+x4⟩∪{x1+x2}

(2, 2, reducible)
• ⟨x1 + x2, x1 + x3, x1 + x4⟩ (7, 1)
• ⟨x1+x2, x1−x2+x3+x4, x1−x3⟩ = ⟨x1+x2, x1−x3⟩∪{x1−
x2 + x3 + x4} (2, 2, reducible)

Thus we have the following irreducible flats:
(1) 4 rank 1 flats of type {x1}
(2) 12 rank 1 flats of type {x1 + x2}
(3) 8 rank 1 flats of type {x1 + x2 + x3 + x4}
(4) 6 rank 2 flats of type ⟨x1, x2⟩
(5) 16 rank 2 flats of type ⟨x1, x1 + x2 + x3 + x4⟩
(6) 16 rank 2 flats of type ⟨x1 + x2, x1 + x3⟩
(7) 12 rank 2 flats of type ⟨x1 + x2, x3 + x4⟩
(8) 4 rank 3 flats of type ⟨x1, x2, x3⟩
(9) 12 rank 3 flats of type ⟨x1, x2, x3 + x4⟩

(10) 8 rank 3 flats of type ⟨x1 + x2, x1 + x3, x1 + x4⟩
We compute the degrees in the minimal nested set complex:
(1) The 4 rank 1 flats of type {x1} have degree 26:

• 3: contained in the rank 2 flats ⟨x1, x2⟩
• 4: contained in the rank 2 flats ⟨x1, x1 + x2 + x3 + x4⟩
• 6: disconnected to the rank 1 flats {x2 + x3}
• 3: contained in the rank 3 flats ⟨x1, x2, x3⟩
• 6: contained in the rank 3 flats ⟨x1, x2, x3 + x4⟩
• 4: disconnected to the rank 2 flats ⟨x2 + x3, x2 + x4⟩

(2) The 12 rank 1 flats of type {x1 + x2} have degree 26:
• 1: contained in the rank 2 flat ⟨x1, x2⟩
• 4: contained in the rank 2 flats ⟨x1 + x2, x1 + x3⟩
• 2: contained in the rank 2 flats ⟨x1 + x2, x3 + x4⟩
• 2: disconnected to the rank 1 flats {x3}
• 4: disconnected to the rank 1 flats {x1 − x2 + x3 + x4}
• 2: contained in the rank 3 flats ⟨x1, x2, x3⟩
• 3: contained in the rank 3 flats ⟨x1+x2, x3, x4⟩, ⟨x1, x2, x3+x4⟩,

and ⟨x1, x2, x3 − x4⟩
• 4: contained in the rank 3 flats ⟨x1 + x2, x1 + x3, x1 + x4⟩
• 4: disconnected to the rank 2 flats ⟨x3, x1 − x2 + x3 + x4⟩

(3) The 8 rank 1 flats of type {x1 + x2 + x3 + x4} have degree 26:
• 4: contained in the rank 2 flats ⟨x1, x1 + x2 + x3 + x4⟩
• 3: contained in the rank 2 flats ⟨x1 + x2, x3 + x4⟩
• 6: disconnected to the rank 1 flats {x1 − x2}
• 6: contained in the rank 3 flats ⟨x1, x2, x3 + x4⟩
• 3: contained in the rank 3 flats ⟨x1 + x2, x1 + x3, x1 − x4⟩,
⟨x1 + x2, x1 − x3, x1 + x4⟩, and ⟨x1 − x2, x1 + x3, x1 + x4⟩
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• 4: disconnected to the rank 2 flats ⟨x1 − x2, x1 − x3⟩
(4) The 6 rank 2 flats of type ⟨x1, x2⟩ have degree 8:

• 4: contains 4 rank 1 flats
• 2: contained in the rank 3 flats ⟨x1, x2, x3⟩
• 2: contained in the rank 3 flats ⟨x1, x2, x3 + x4⟩

(5) The 16 rank 2 flats of type ⟨x1, x1 + x2 + x3 + x4⟩ have degree 9:
• 3: contains 3 rank 1 flats
• 3: contained in the rank 3 flats ⟨x1, x2, x3 + x4⟩
• 3: disconnected to the rank 1 flats {x2 − x3}

(6) The 16 rank 2 flats of type ⟨x1 + x2, x1 + x3⟩ have degree 9:
• 3: contains 3 rank 1 flats
• 1: contained in the rank 3 flat ⟨x1, x2, x3⟩
• 2: contained in the rank 3 flats ⟨x1 + x2, x1 + x3, x1 + x4⟩
• 1: disconnected to the rank 1 flat {x4}
• 2: disconnected to the rank 1 flats {x1 − x2 − x3 + x4}

(7) The 12 rank 2 flats of type ⟨x1 + x2, x3 + x4⟩ have degree 8:
• 4: contains 4 rank 1 flats
• 2: contained in the rank 3 flats ⟨x1, x2, x3 + x4⟩
• 2: contained in the rank 3 flats ⟨x1 + x2, x3 + x4, x1 + x3⟩

(8) The 4 rank 3 flats of type ⟨x1, x2, x3⟩ have degree 16:
• 9: contains 9 rank 1 flats
• 3: contains the rank 3 flats ⟨x1, x2⟩
• 4: contains the rank 3 flats ⟨x1 + x2, x1 + x3⟩

(9) The 12 rank 3 flats of type ⟨x1, x2, x3 + x4⟩ have degree 16:
• 9: contains 9 rank 1 flats
• 1: contains the rank 2 flat ⟨x1, x2⟩
• 4: contains the rank 2 flats ⟨x1, x1 + x2 + x3 + x4⟩
• 2: contains the rank 2 flats ⟨x1+x2, x3+x4⟩ and ⟨x1−x2, x3+x4⟩

(10) The 8 rank 3 flats of type ⟨x1 + x2, x1 + x3, x1 + x4⟩ have degree 16:
• 9: contains 9 rank 1 flats
• 4: contains the rank 2 flats ⟨x1 + x2, x1 + x3⟩
• 3: contains the rank 2 flats ⟨x1 + x2, x3 − x4⟩
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4.8. Conclusion

In this chapter, we applied our results from Chapters 1 and 3 to root
system matroids. We saw that the matroids associated to the root systems
An and Bn have Cremona bases and we determined their Cremona groups as
well as the automorphisms of their coarse Bergman fans, using computations
in the 1-skeleton minimal nested set structure. In terms of their structure
with respect to Cremona bases, these matroids are opposite extremes: An

has many Cremona bases, while Bn has only one Cremona basis. For the
root systems Dn and F4 we saw that there are no Cremona bases and
that all automorphisms of the coarse Bergman fans are induced by matroid
automorphisms.

It is a challenge to determine the class of matroids M such that the
automorphism group Aut(Bc(M)) of the coarse Bergman fan is generated by
matroid automorphisms and Cremona maps. We believe that our proofs for
An and Bn can be simultaneously generalized to prove the following:

Conjecture 4.8.1. Let M be a simple connected matroid that admits a
Cremona basis B and assume that the coarse Bergman fan Bc(M) and the
minimal nested set fan Bm(M) coincide. Then Aut(Bc(M)) is generated by
matroid automorphisms and Cremona maps.
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Zusammenfassung
Über Analoga von Cremonaautomorphismen für Matroidfächer

Symmetrie, ob man ihre Bedeutung weit oder eng faßt, ist
eine Idee, vermöge derer der Mensch durch die Jahrtausende
seiner Geschichte versucht hat, Ordnung, Schönheit und
Vollkommenheit zu begreifen und zu schaffen.

— Hermann Weyl, Symmetrie [Wey52]

In der Mathematik ist eine Symmetrie eine Transformation eines ma-
thematischen Objekts, die seine Struktur oder manche seiner Eigenschaften
erhält. Klassische Typen von Symmetrien sind lineare Transformationen im
euklidischen Raum wie Spiegelungen, Drehungen, Parallelverschiebungen und
Skalierungen. Im 19. Jahrhundert begannen Mathematiker, abstraktere Typen
von Symmetrien zu untersuchen, auch Automorphismen genannt, und die
Gruppentheorie wurde entwickelt als algebraisches Werkzeug zur Beschreibung
ihrer Eigenschaften. Zum Beispiel entdeckte Galois, dass die Auflösbarkeit
einer polynomialen Gleichung durch Radikale von der Symmetriegruppe ihrer
Nullstellen abhängt.

In dieser Arbeit benutzen wir Matroidtheorie und tropische Geometrie,
um bestimmte Symmetrien von linearen Gleichungssystemen zu untersuchen.
Betrachten wir zum Beispiel das lineare Gleichungssystem

A := {x = 0, y = 0, z = 0, x = y, x = z, y = z}
in den reellen Variablen x, y und z. Geometrisch können wir die Variablen
als kartesische Koordinaten für den dreidimensionalen euklidischen Raum R3

interpretieren. Dann beschreibt jede Gleichung in A eine Ebene durch den
Nullpunkt und wir können die klassischen Symmetrien betrachten, die dieses
Ebenenarrangement erhalten. Für A gibt es die folgenden Symmetrien und
ihre Kombinationen:

(1) Es gibt eine Gruppenoperation der symmetrischen Gruppe S3, da
A komplett symmetrisch in den Variablen {x, y, z} ist. Geometrisch
operiert S3 durch Drehungen und Ebenenspiegelungen, je nach Vor-
zeichen der Permutation. Zum Beispiel entspricht das Vertauschen
der Variablen x and y der Spiegelung an der Ebene x = y.

(2) Da die Gleichungen in A homogen sind, wird jede Ebene erhalten,
wenn alle Variablen um denselben Faktor ungleich null skaliert wer-
den. Indem wir zu dem Quotientenraum bezüglich Skalierungen
übergehen, können wir A auch als Geradenarrangement in der pro-
jektiven Ebene P2 betrachten.

(3) Die lineare Abbildung

x ↦→ x, y ↦→ x− y, z ↦→ x− z
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erhält die Menge A. Zum Beispiel wird die Gleichung x = y
abgebildet auf die Gleichung x = x − y, welche äquivalent ist
zu y = 0. Geometrisch entspricht diese Abbildung einer nicht-
senkrechten Spiegelung an der Gerade x = 2y = 2z.

y = z

y = 0

x = 0 x = z z = 0

x = y

Abb. 15. Eine geometrische Darstellung von A als Geraden-
arrangement in der projektiven Ebene.

Es gibt jedoch auch eine nichtlineare Symmetrie in diesem Beispiel. Be-
trachten wir die quadratische Transformation

x ↦→ yz, y ↦→ xz, z ↦→ xy,

welche in der projektiven Geometrie bekannt ist als Cremonatransformation,
benannt nach dem italienischen Mathematiker Luigi Cremona (1830–1903).
Das Bild von A unter der Cremonatransformation ist die Gleichungsmenge

A′ := {yz = 0, xz = 0, xy = 0, yz = xz, yz = xy, xz = xy}.
Jede quadratische Gleichung in A′ zerfällt in zwei lineare Gleichungen:

yz = 0 ⇐⇒ y = 0 or z = 0

xz = 0 ⇐⇒ x = 0 or z = 0

xy = 0 ⇐⇒ x = 0 or y = 0

yz = xz ⇐⇒ y = x or z = 0

yz = xy ⇐⇒ z = x or y = 0

xz = xy ⇐⇒ z = y or x = 0

. . . und die Gleichungen, die wir erhalten, sind genau die Gleichungen in A!
Manche Gleichungen kommen jedoch dreimal vor, das Schema erinnert an
die Matrixmultiplikation⎛⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 1
1 0 1 0 1 0
1 1 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
1
1
1
1
1
1

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
3
3
3
1
1
1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Ziel dieser Arbeit ist es, diese Cremonasymmetrien besser zu verstehen.
Wann existieren sie und welche Gruppen erzeugen sie? Gibt es andere Arten
von nichtlinearen Symmetrien? Die Suche nach Antworten führt uns zur
Theorie der Matroide.
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Matroide sind kombinatorische Objekte, die den Begriff der Abhängigkeit
aus der linearen Algebra verallgemeinern. Zum Beispiel lässt sich aus den
beiden Gleichungen x = y und y = 0 die Gleichung x = 0 folgern. In der
Sprache der Matroide sagt man, dass x = 0 im Abschluss cl({x = y, y = 0})
der Menge {x = y, y = 0} liegt. Es gibt keine andere Gleichung aus A, die
man aus x = y und y = 0 herleiten kann, daher bildet {x = y, y = 0, x = 0}
eine abgeschlossene Menge des zu A gehörigen Matroids M . Geometrisch
beschreiben die abgeschlossenen Mengen von M das Schnittverhalten der
Ebenen in A.

Die Menge {x = 0, y = z} ist auch eine abgeschlossene Menge von M ,
aber sie enthält nur zwei Elemente und wird daher unzusammenhängend
genannt, im Gegensatz zur zusammenhängenden abgeschlossenen Menge
{x = y, y = 0, x = 0}. Es gibt drei andere abgeschlossene Mengen vom Rang
2: {y = 0, z = 0, y = z}, {x = 0, z = 0, x = z} und {x = y, x = z, y = z}.

Die Struktur des Matroids M kann mithilfe des minimalen Nested-set-
Fächers N visualisiert werden. In unserem Beispiel ist dies ein Graph, dessen
Knoten die Elemente aus A plus die zusammenhängenden abgeschlossenen
Mengen vom Rang 2 sind. Von jeder zusammenhängenden abgeschlossenen
Menge vom Rang 2 aus zeichnen wir je eine Kante zu allen ihren Elementen,
außerdem fügen wir Kanten ein zwischen Paaren von Elementen, die eine
unzusammenhängende abgeschlossene Menge bilden.

x = 0

x = y = 0

y = 0

y = z = 0

z = 0

x = z = 0

x = y

y = z

x = z
x = y = z

Abb. 16. Der zu A gehörige minimale Nested-set-Fächer.

Jede klassische Symmetrie von A induziert einen Automorphismus von N ,
der Elemente auf Elemente und abgeschlossene Mengen auf abgeschlossene
Mengen abbildet. Es gibt allerdings auch einen Automorphismus von N ,
der diese Eigenschaft nicht hat, nämlich die Rotation des äußeren Sechsecks
um 180 Grad. Dieser Automorphismus ist ein Beispiel für einen kombina-
torischen Cremonaautomorphismus, wie er von Shaw und Werner in dem
kürzlich erschienenen Paper [SW23] eingeführt wurde. Wir werden sehen,
dass geometrische und kombinatorische Cremonasymmetrien eng verwandt
sind und dass sich ihr Zusammenhang mit tropischer Geometrie beschreiben
lässt.
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In letzter Zeit wurden aufregende neue Zusammenhänge zwischen alge-
braischer Geometrie und Kombinatorik entdeckt. Ein wichtiges Werkzeug ist
die sogenannte Tropikalisierung, die algebraische Varietäten in polyedrische
Objekte übersetzt. Die einfachsten Beispiele sind lineare Räume, deren
tropische Analoga eng mit Matroiden zusammenhängen.

Genauer gesagt kann das Komplement eines essentiellen Hyperebenen-
arrangements A im projektiven Raum über einem Körper mit trivialer Be-
wertung mit einer linearen Untervarietät des algebraischen Torus identifiziert
werden. Die Tropikalisierung dieser Varietät ist der Träger eines polyedrischen
Fächers und hängt nur von dem zu A gehörigen Matroid M(A) ab. All-
gemeiner kann man zu jedem Matroid M einen tropischen linearen Raum
trop(M) konstruieren, auch wenn sich M nicht als Hyperebenenarrangement
darstellen lässt, siehe [MS15, Abschnitt 4.2]. Dieser neue geometrische Ansatz
hat zu großem Fortschritt in der Matroidtheorie geführt, unter anderem zur
Entwicklung einer kombinatorischen Hodgetheorie für Matroide, siehe [Ard18]
für einen Überblick. Für seine Beiträge zu diesen Entwicklungen wurde June
Huh im Jahr 2022 mit der Fields-Medaille geehrt.

Es gibt mehrere natürliche Fächerstrukturen auf der Menge trop(M) und
in dieser Arbeit werden wir zwischen dem groben Bergmanfächer Bc(M),
dem minimalen Nested-set-Fächer Bm(M) und dem feinen Bergmanfächer
Bf (M) unterscheiden. Diese Fächerstrukturen wurden in [AK06] und [FS05]
beschrieben, und Feichtner und Sturmfels gaben ein Kriterium dafür an, dass
der grobe Bergmanfächer und der minimale Nested-set-Fächer übereinstim-
men [FS05, Satz 5.3].

Fächerstrukturen auf trop(M(A)), wobei M(A) wie oben das zu einem
Hyperebenenarrangement A gehörige Matroid ist, können benutzt werden, um
tropische Kompaktifizierungen des Komplements ΩA zu konstruieren, indem
man den Abschluss in den dazugehörigen torischen Varietäten nimmt ([Tev07,
Proposition 2.3]). Auf diese Weise induziert der minimale Nested-set-Fächer
die minimale wundervolle Kompaktifizierung von de Concini und Procesi,
während der grobe Bergmanfächer die Visible-contour-Kompaktifizierung
induziert, die von Kapranov definiert wurde ([Kap93]).

Unter der Annahme, dass A zusammenhängend ist, haben Kurul und
Werner gezeigt, dass sich jeder birationale Automorphismus f von ΩA auf
einen Automorphismus der Visible-contour-Kompaktifizierung erweitern lässt
([KW19, Satz 5.1]). In dem Beweis zeigen sie, dass f einen Automorphis-
mus des intrinsischen Torus induziert, dessen Tropikalisierung den groben
Bergmanfächer erhält. Nach [Kur17, Satz 7.7] erhält man so eine Einbettung
der birationalen Automorphismengruppe Aut(ΩA) in die Automorphismen-
gruppe Aut(Bc(M(A))) des groben Bergmanfächers. Automorphismen von
Bergmanfächern können also als Analoga von birationalen Automorphismen
für Matroide betrachtet werden.

In dem oben erwähnten Paper [SW23] über die birationale Geometrie von
Matroiden haben Shaw und Werner Automorphismengruppen von Bergman-
fächern untersucht mithilfe der neu entwickelten Hodgetheorie für Matroide,
unter anderem mithilfe des Chowrings eines Matroids. Für ein einfaches
Matroid M , das nicht total unzusammenhängend ist, zeigen sie, dass jeder
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Automorphismus des feinen Bergmanfächers Bf (M) von einem Matroid-
automorphismus von M induziert wird ([SW23, Satz 6.3]). Abhängig vom
Matroid M kann es jedoch Automorphismen des groben Bergmanfächers
geben, die nicht von Matroidautomorphismen induziert sind.

Das Arrangement A, das wir am Anfang betrachtet haben und welches
auch als essentielles Zopfarrangement A3 bekannt ist, und allgemeiner alle
Wurzelsystemmatroide M(An) mit n ≥ 3 sind Beispiele für dieses Phänomen.
Nach [AP18] ist die Automorphismengruppe des Modulraums M trop

0,n der
stabilen tropischen Kurven mit Geschlecht 0 und n ≥ 5 markierten Punkten
isomorph zur symmetrischen Gruppe Sn. Wie in [SW23, Beispiel 3.1] erklärt
wird, kann der grobe Bergmanfächer Bc(M(An)) mit M trop

0,n+2 identifiziert
werden, daher ist Aut(Bc(M(An))) ∼= Sn+2 größer als Aut(M(An)) ∼= Sn+1.

Um diese zusätzlichen Automorphismen zu beschreiben, haben Shaw
und Werner kombinatorische Cremonaautomorphismen von Bergmanfächern
eingeführt und den folgenden Satz gezeigt:

Satz ([SW23, Satz 8.3]). Sei B eine Basis eines einfachen zusammen-
hängenden Matroids M auf der Grundmenge E. Die Cremonaabbildung
cremB : RE → RE, die durch

vb ↦→ vcl(B\{b}) für alle b ∈ B und ve ↦→ ve für alle e ∈ E \B
gegeben ist, induziert genau dann einen Automorphismus des groben Bergman-
fächers Bc(M), wenn die Mengen {cl({b, b′}) \ {b, b′}}b,b′∈B eine Partition
von E \B bilden.

Diese kombinatorische Bedingung an eine Basis eines Matroids bildet den
Ausgangspunkt für unsere Untersuchungen.

In Kapitel 1 legen wir das kombinatorische Fundament und untersuchen
Cremonabasen von Matroiden, die wie folgt definiert sind:

Definition (1.3.1). Sei M ein Matroid auf der Grundmenge E. Eine Basis
B von M heißt Cremonabasis von M , wenn gilt:⋃︂

b,b′∈B
cl({b, b′}) = E.

Für alle Resultate in diesem Kapitel nehmen wir an, dass das Matroid
M einfach ist, und in diesem Fall stimmt die Definition überein mit der
Bedingung in [SW23, Satz 8.3], wie wir in Proposition 1.3.2 zeigen werden.
Wir werden sehen, dass die Existenz einer solchen Basis weitreichende Folgen
für die Struktur des Matroids hat.

Bezüglich einer Cremonabasis B kann das Matroid M durch seinen Träger-
graphen GB(M) dargestellt werden, wobei wir parallele Kanten erlauben,
siehe Definition 1.3.4. Die Knoten von GB(M) entsprechen den Basisele-
menten B und die Kanten von GB(M) entsprechen den restlichen Elementen
E \B. Genauer gesagt folgt für ein Element e ∈ E \B aus der Annahme, dass
B eine Cremonabasis ist, dass der Fundamentalkreis CB(e) von e bezüglich
B genau zwei Elemente von B enthält, und genau diese wählen wir als
Endpunkte von e.

Allgemeiner definieren wir für eine Teilmenge S ⊆ E den Träger suppB(S)
bezüglich B als kleinste Menge von Basiselementen, deren Abschluss S enthält,
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siehe Proposition 1.2.8. Auf diese Weise kann S als ein Untergraph GB(S) von
GB(M) dargestellt werden, dessen Knotenmenge suppB(S) ist. Wenn dieser
Graph zusammenhängend ist, dann nennen wir S trägerzusammenhängend
bezüglich B. Nach Proposition 1.4.7 ist diese Bedingung schwächer als der
übliche Zusammenhangsbegriff für Matroide.

In Abschnitt 1.5 wenden wir diese Begriffe an, um die abgeschlossenen
Mengen und die Rangfunktion von Matroiden, die eine Cremonabasis haben,
zu beschreiben. Wir zeigen, dass die abgeschlossenen Mengen in zwei Klassen
eingeteilt werden können:

Theorem (1.5.2). Sei M ein einfaches Matroid, das eine Cremonabasis B
hat, und sei F eine trägerzusammenhängende abgeschlossene Menge von M .
Dann ist genau eine der folgenden Aussagen wahr:

(1) F ist eine abgeschlossene Koordinatenmenge, das heißt, F ∩B =
suppB(F ).

(2) F ist eine abgeschlossene Nichtkoordinatenmenge, das heißt, F∩B =
∅ ≠ F .

Für jede Teilmenge S ⊆ E ist der Rang rk(S) festgelegt durch die
Mächtigkeit ihres Trägers und der Klasse des Abschlusses cl(S). Das folgt
aus Korollar 1.4.8 und dem folgenden Satz:

Satz (1.5.5). Sei M ein einfaches Matroid auf der Grundmenge E, das eine
Cremonabasis B hat, und sei S ⊆ E eine Teilmenge.

(1) cl(S) ist genau dann eine abgeschlossene Koordinatenmenge, wenn
rk(S) = | suppB(S)|.

(2) Wenn cl(S) eine trägerzusammenhängende Nichtkoordinatenmenge
ist, dann gilt rk(S) = | suppB(S)| − 1.

Wir betonen, dass die Begriffe Träger und abgeschlossene (Nicht-)Koordi-
natenmengen von der Wahl einer Cremonabasis B abhängen, und in den
Abschnitten 1.6–1.8 betrachten wir den Fall, dass ein Matroid mehr als eine
Cremonabasis hat. Jeder Matroidautomorphismus bildet Cremonabasen auf
Cremonabasen ab, daher gibt es eine Gruppenoperation von Aut(M) auf
der Menge CB(M) der Cremonabasen von M . Indem wir in Abschnitt 1.6
die Form des Trägergraphen GB(B

′) für Cremonabasen B und B′ von M
untersuchen, zeigen wir, dass diese Gruppenoperation immer transitiv ist:

Satz (1.7.2). Sei M ein einfaches Matroid auf der Grundmenge E, das zwei
Cremonabasen B und B′ hat. Dann gibt es einen selbstinversen Automor-
phismus fBB′ von M mit

fBB′(B) = B′, fBB′(B′) = B, und fBB′ |E\(B∪B′) = id.

Insbesondere induziert der Matroidautomorphismus fBB′ einen Isomorphis-
mus zwischen den Trägergraphen GB(M) und GB′(M). Wir nennen fBB′

den Cremonabasiswechselautomorphismus bezüglich der Cremonabasen B
und B′.

Wenn wir zusätzlich annehmen, dass M und die Zusammenziehungen
M/e für alle e ∈ E zusammenhängend sind, dann erzeugen die Cremona-
basiswechselautomorphismen die symmetrische Gruppe Sym(CB(M)):
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Satz (1.7.6). Sei M ein einfaches Matroid vom Rang mindestens 3 auf
der Grundmenge E. Wenn M und die Zusammenziehungen M/e für alle
e ∈ E zusammenhängend sind, dann ist die Gruppenwirkung Aut(M) →
Sym(CB(M)) surjektiv.

Dies führt zu einem Darstellbarkeitskriterium für Matroide, die mehr als
eine Cremonabasis haben.

Satz (1.8.2). Sei M ein einfaches zusammenhängendes Matroid vom Rang
mindestens 3 auf der Grundmenge E und nehmen wir an, dass die Zusam-
menziehungen M/e für alle e ∈ E zusammenhängend sind. Wenn M mehr
als eine Cremonabasis hat, dann ist M darstellbar über jedem Körper K mit
|K| ≥ |E| − rk(M) + 1.

In Abschnitt 2.1 wiederholen wir die Definitionen des tropischen linearen
Raums trop(M), des feinen Bergmanfächers Bf (M) und des groben Bergman-
fächers Bc(M) eines Matroids M . Es gibt außerdem den minimalen Nested-
set-Fächer Bm(M), der aus dem minimalen Nested-set-Komplex N (M) kon-
struiert wird.

Automorphismen dieser Matroidfächer sind definiert als lineare Abbil-
dungen, die die Fächerstruktur erhalten und von einem Gitterautomorphis-
mus induziert sind. Nach Lemma 2.2.3 induzieren Matroidautomorphismen
Fächerautomorphismen, und umgekehrt kommt laut Proposition 2.2.4 jeder
Automorphismus des groben Bergmanfächers, der eine Permutation der zu
den Einermengen gehörenden Strahlen induziert, von einem Matroidautomor-
phismus.

In Abschnitt 2.3 untersuchen wir die Standardcremonatransformation

crem: Pd
K Pd

K , [x0 : . . . : xd] ↦→
[︃
1

x0
: . . . :

1

xd

]︃
im projektiven Raum Pd

K über einem Körper K und bestimmen die Hyper-
ebenenarrangements, für die sie einen Automorphismus des Komplements
induziert.

Satz (2.3.5). Sei A ein Hyperebenenarrangement in Pd
K . Die Standardcre-

monatransformation crem induziert genau dann einen Automorphismus des
Komplements ΩA, wenn

A = {V (xi) | 0 ≤ i ≤ d} ∪ {V (xi + zxj) | 0 ≤ i < j ≤ d, z ∈ Zij}
gilt für eine Familie Z = {Zij}0≤i<j≤d von Mengen Zij ⊆ K× mit der
Eigenschaft, dass alle Mengen Zij abgeschlossen sind unter Kehrwertbildung.

Insbesondere bilden die Koordinatenhyperebenen eine Cremonabasis des
dazugehörigen Matroids M(A).

In Kapitel 3 betrachten wir die von Shaw und Werner eingeführten Cre-
monaautomorphismen. Wir geben ein Beispiel an, in dem die kombinatorische
Cremonaabbildung mit der Tropikalisierung der Cremonatransformation im
projektiven Raum übereinstimmt, unter Verwendung von [Kur17, Satz 7.7].
Außerdem beweisen wir folgendes Kriterium dafür, wann die Cremonaabbil-
dung die minimale Nested-set-Struktur erhält:

Satz (3.1.7). Sei M ein einfaches zusammenhängendes Matroid vom Rang
mindestens 3 und nehmen wir an, dass M eine Cremonabasis B hat, sodass
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GB(M) ein vollständiger Graph ist. Dann induziert die Cremonaabbildung
cremB einen Automorphismus des minimalen Nested-set-Fächers Bm(M).

In Abschnitt 3.2 beschreiben wir die Struktur der Cremonagruppe Cr(M)
eines Matroids M , die wir definieren als die von den Matroidautomorphismen
und den Cremonaautomorphismen erzeugte Untergruppe von Aut(Bc(M)).

Satz (3.2.5). Sei M ein einfaches zusammenhängendes Matroid vom Rang
mindestens 3. Für jede Cremonabasis B von M ist die Cremonagruppe Cr(M)
von Matroidautomorphismen und dem Cremonaautomorphismus cremB er-
zeugt.

Unter der zusätzlichen Voraussetzung, dass die Zusammenziehungen
M/e für alle e ∈ E zusammenhängend sind, haben wir nach Satz 1.7.6
Aut(M)/AutCB(M) ∼= Sk, wobei k ∈ N0 die Anzahl der Cremonabasen und
AutCB(M) ⊆ Aut(M) der Normalteiler der Matroidautomorphismen ist, die
jede Cremonabasis erhalten. In der Cremonagruppe erhöht sich der Grad der
symmetrischen Gruppe um 1, ähnlich wie im Beispiel M(An):

Satz (3.2.8). Sei M ein einfaches zusammenhängendes Matroid vom Rang
mindestens 3 und nehmen wir an, dass die Zusammenziehungen M/e für alle
e ∈ E zusammenhängend sind. Dann ist Cr(M)/AutCB(M) ∼= Sk+1.

Für ein einfaches Matroid M vom Rang 3 ist nach [SW23, Satz 9.2]
bekannt, dass die Automorphismengruppe Aut(Bc(M)) des groben Bergman-
fächers mit der Cremonagruppe Cr(M) übereinstimmt, wenn M keine nicht-
triviale Parallelverbindung ist. In Abschnitt 3.3 zeigen wir ein ähnliches
Resultat für den minimalen Nested-set-Komplex:

Satz (3.3.2). Sei M ein einfaches zusammenhängendes Matroid vom Rang 3.
(1) Wenn M das Matroid einer selbstdualen, nicht ausgearteten projek-

tiven Ebene ist, dann ist Aut(M) eine Untergruppe von Aut(N (M))
vom Index 2.

(2) Andernfalls wird Aut(N (M)) erzeugt von Matroidautomorphismen
und Cremonaautomorphismen.

In Kapitel 4 wenden wir unsere Resultate auf Wurzelsystemmatroide an
und erhalten einen neuen Beweis für den Isomorphismus Aut(Bc(M(An))) ∼=
Sn+2, indem wir zeigen, dass M(An) n+ 1 Cremonabasen besitzt. Für die
anderen Wurzelsysteme zeigen wir folgende Aussagen:

Satz (4.3.3, 4.3.13). Für alle n ≥ 3 hat das Wurzelsystemmatroid M(Bn)
genau eine Cremonabasis und Aut(Bc(M(Bn))) ∼= Aut(M(Bn))×Z/2Z wird
erzeugt von Matroidautomorphismen und der einzigen Cremonaabbildung.

Satz (4.4.10). Für alle n ≥ 4 hat das Wurzelsystemmatroid M(Dn) keine
Cremonabasen und Aut(Bc(M(Dn))) ist isomorph zu Aut(M(Dn)).

Satz (4.6.5). Das Wurzelsystemmatroid M(F4) hat keine Cremonabasen und
Aut(Bc(M(F4))) ist isomorph zu Aut(M(F4)).
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