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Abstract

The cross section for coherent photonuclear production of J/y is presented as a function of the elec-
tromagnetic dissociation (EMD) of Pb. The measurement is performed with the ALICE detector in
ultra-peripheral Pb—Pb collisions at a centre-of-mass energy per nucleon pair of \/sxy = 5.02 TeV.
Cross sections are presented in five different J/y rapidity ranges within |y| < 4, with the J/y re-
constructed via its dilepton decay channels. In some events the J/y is not accompanied by EMD,
while other events do produce neutrons from EMD at beam rapidities either in one or the other beam
direction, or in both. The cross sections in a given rapidity range and for different configurations
of neutrons from EMD allow for the extraction of the energy dependence of this process in the
range 17 < Wyppn < 920 GeV, where Wypy , is the centre-of-mass energy per nucleon of the yPb
system. This range corresponds to a Bjorken-x interval spanning about three orders of magnitude:
1.1 x 107 < x < 3.3 x 1072, In addition to the ultra-peripheral and photonuclear cross sections,
the nuclear suppression factor is obtained. These measurements point to a strong depletion of the
gluon distribution in Pb nuclei over a broad, previously unexplored, energy range. These results,
together with previous ALICE measurements, provide unprecedented information to probe quantum
chromodynamics at high energies.
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1 Introduction

One of the main research topics in quantum chromodynamics (QCD) today is the study of the hadronic
structure when probed at high energies, corresponding to low values of the fraction of the hadron mo-
mentum carried by the colliding parton (Bjorken-x). The gluon distribution inside the proton has been
observed to increase steeply at low values of x [1]. At some point, this growth must stop to preserve
unitarity. In QCD this is achieved by a dynamic equilibrium of gluon splitting and annihilation pro-
cesses. This regime of the gluon distribution is known as saturation, see Ref. [2] for a recent review. In
a nucleus with A nucleons, the parton distributions would naively be A times those in a single nucleon,
but modifications, known as nuclear shadowing, are observed at small x [3]. Similar considerations to
those for a single nucleon regarding unitarity imply that saturation is expected to set in for large nuclei
at lower energies (higher x values) than in protons, with this behaviour scaling roughly as A'/3 [4].

Diffractive production of J/y vector mesons off nuclear targets is a powerful tool to study the energy
evolution of the structure of heavy nuclei. The interaction can involve the full nucleus or only one
nucleon; these cases are called coherent and incoherent production, respectively. The coherent process
has a large experimental cross section, it is very sensitive to the gluon structure of hadrons, and it can be
described within perturbative QCD owing to the large J/y mass, which provides a hard scale to justify
the use of perturbative techniques. At the LHC, the coherent production of J/y can be measured in ultra-
peripheral collisions (UPCs) where the incoming Pb nuclei pass each other at impact parameters larger
than the sum of their radii, such that the interaction involves photons from the strong electromagnetic
field of the incoming ions [5-8].

Previous measurements of this process at the LHC were performed at different centre-of-mass energies
per nucleon pair (y/snn) and different rapidities of the J/y. Using data from LHC Run 1, where the Pb
nuclei collided at /sx\n = 2.76 TeV, the ALICE Collaboration measured the coherent photoproduction
of J/ys in UPCs at forward rapidity [9] and midrapidity [10], while the CMS Collaboration provided a
cross section for this process at an intermediate rapidity range [[11]. For LHC Run 2, the energy of Pb—Pb
collisions was raised to /snn = 5.02 TeV and new measurements of this process were performed by the
ALICE Collaboration at mid [[12,13] and forward rapidity [14] as well as by the LHCb Collaboration at
forward rapidity [15].

The importance of a wide experimental rapidity coverage is that the rapidity of the J/y in this process
is related to the centre-of-mass energy per nucleon in the yPb system by (Wyppn)> = m/snnexp(—y),
where m is the mass of the J/y and y its rapidity in the laboratory frame measured with respect to the
direction of the incoming Pb nucleus. (Natural units are used in all equations.) At the LHC, either of the
two incoming Pb ions can be the source of the photon and, in this circumstance, the cross section for the
coherent photoproduction of J/y in UPCs as a function of rapidity has two components [16]

d(:f)t:Pb = ny(y,{b})oypo(y) +ny(—y,{b})oypp(—), M

where Gypp () is the photonuclear cross section for the coherent production of a J/y at rapidity y, and
ny(y) is the photon flux which, in the equivalent photon approximation [5], quantifies the number of pho-
tons with energy k = (m/2)exp(—y). The notation {b} signifies that the flux is obtained by integrating
over a range on impact parameter b.

A study of the rapidity dependence of oypy, was performed in Ref. [17] using ALICE Run 1 data at
V/SNN = 2.76 TeV. The analysis is based on two facts: (1) at y = 0 both contributions in Eq. (D) are
equal, so that knowledge of the photon flux n,(y = 0) yields o,py, at the corresponding Wypp , = 92 GeV;
(2) at the largest rapidities accessible to ALICE, the first term in the right-hand side of Eq. (I)) contributes
only about 5% so that the UPC cross section is dominated by the second term in Eq. (IJ) corresponding to
interactions with low-energy photons at Wypp , = 20 GeV for the ALICE data used in the analysis. The
extracted cross sections are discussed in Sec.
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In order to extract the full energy dependence of oypp from the UPC cross section, at least two measure-
ments at the same rapidity but with different photon fluxes are needed. Up to now, there are two proposals
on how to achieve this. Both utilise the fact that the photon flux also depends on the impact-parameter
range where the YPb interaction takes place. One proposal, presented in Ref. [18], makes use of the
coherent production of J/y measured in peripheral collisions originally reported by the ALICE Col-
laboration [[19] and later on confirmed by the STAR [20], ALICE [21]], and LHCb [22] Collaborations.
Applying this approach to ALICE data at \/syny = 2.76 TeV for the coherent photonuclear production
of J/y measured in peripheral collisions and in UPCs, in Ref. [18] the cross sections for Oypp at three
values of Wypp 5: 18 GeV, 92 GeV, and 470 GeV are obtained. The extracted cross sections are discussed
in Sec.[6.2] The other proposal, presented in Refs. [23,124], utilises the fact that the electromagnetic fields
of the incoming nuclei are so strong that there is a sizeable probability of a second photon exchange be-
tween the colliding nuclei, which may result in the electromagnetic dissociation (EMD) of at least one of
the interacting nuclei [25]. The presence of neutrons from EMD of one or both nuclei, which can be de-
termined using zero-degree calorimeters, can be used to tag specific ranges of the impact parameter. This
is so because high energy photons are emitted at smaller impact parameters than low energy photons and
in order to induce the dissociation of a nucleus a photon needs a minimum energy of the order of 10 MeV.
This means that events where EMD has occurred select a photon flux with {b} covering smaller impact
parameters than events without EMD. In this way, the measurement of coherent J/y photoproduction in
UPCs with no, single, or mutual EMD can be used to disentangle the two different oypy contributions in
Eq. (@) [24]. The tagging of single and mutual EMD has been successfully tested; first, in the measure-
ment of coherent p® photoproduction at midrapidity by the ALICE Collaboration [26-28], and later in
the measurement of Yy — u*u~ and yy — eTe~ in UPCs by the CMS and ATLAS Collaborations [29—
31]. These ATLAS and CMS measurements have been successfully described by the newest version of
the SuperChic Monte Carlo generator [32]. More recently, the CMS Collaboration submitted results on
the coherent photoproduction of J/y accompanied by EMD in a rapidity range complementary to the
one explored in this analysis [33].

In this article, the cross section for the coherent photoproduction of J/y accompanied by nuclear EMD
is presented (Sec. [6.I). The measurement is carried out in five rapidity regions covering the intervals
ly] < 0.8 and 2.5 < [y| < 4.0. These measurements are used to extract the photonuclear cross section
Oypp in the range 17 < Wyppn < 920 GeV, which corresponds to a Bjorken-x in the range 1.1 x 1073 <
x < 3.3x 1072, where x = m?/ Wyzpbm (Sec.[6.2)). In addition, the nuclear suppression factor is obtained
in this kinematic region (Sec. [6.3). The measurements are compared to theoretical models covering
a wide spectrum of approaches going from models assuming no nuclear dynamics, to state-of-the-art
computations based on perturbative QCD.

2 Theoretical models

Many different models provide predictions for the coherent photoproduction of J/y in UPCs; for exam-
ple, those presented in Refs. [16, 134-40]. Predictions for this process when accompanied by EMD of
the incoming nuclei exist for only a few of the models, which are discussed in Sec. All the models
are based on the computation of the two elements shown in Eq. (I): the photon flux n,(y) and the pho-
tonuclear cross section Gypb(y). There is also an interference term [41], but its effect, when the cross
section is integrated over the transverse momentum of the J/y as for the results presented here, can be
neglected.

2.1 The photon flux

The predictions and the experimental results discussed below utilise photon fluxes based on the approach
of the STARIlight [16, 42] and n8n models [43]. There are two steps to compute the photon fluxes:
obtaining the total flux, and computing the fractions of the flux that are assigned to the different EMD
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classes presented in Sec. 4.3

The total flux as implemented in both STARIight and n8n is computed in the semi-classical approxi-
mation (for details see, e.g. Ref. [5]). In this approach, the form factor of the Pb ion is modelled with
a Woods—Saxon distribution, while the coherence condition is supplemented by the requirement of no
hadronic interactions, as obtained with a Poissonian model based on the nuclear overlap function and the
total nucleon—nucleon cross section.

Both STARIlight [23] and n8n [43] compute the fractions of the total fluxes for each EMD scenario based
on photoproduction data measured at lower energies and extrapolations to LHC energies. There are two
relevant differences between STARIight and ngn. First, STARIight uses the Lorentz-line parameteri-
sation of the giant-dipole resonance data described in Ref. [44], while n8n uses the data directly; the
numerical difference between them is negligible. Second, ngn uses photonuclear Pb data in the nucleon
resonance region [45], while STARIight uses data from photon—nucleon interactions [46, 47] in this re-
gion. Both models provide similar fluxes apart from the most forward rapidity region. In this kinematic
range, the fluxes differ by up to 20%. As n8n uses experimental data on yPb collisions, the fluxes from
this model are used in Sec. to extract the photonuclear cross section.

2.2 The photonuclear cross section

The photonuclear cross section can be computed using various theoretical approaches. The impulse
approximation (IA) assumes that the nuclear scattering is given by the superposition of the scattering
on the individual nucleons [48]. In the context of the coherent production of J/y, a nuclear suppression
factor can be defined using IA, and the associated cross section G;Apb. This factor quantifies the difference
between the nucleus being a set of independent nucleons and a real nucleus:

Seb (Wypbn) = Pyl (2)

The square root in Eq. (2) is motivated by the fact that the diffractive photoproduction of J/y is pro-
portional to the square of the gluon distribution of the target within the leading log approximation of
QCD [49].

The model for the photonuclear cross section by Klein and Nystrand [16], implemented in STARIlight,
is based on the following steps. A parameterisation of HERA data on the exclusive forward production
of J/y is converted, using the vector dominance model (VDM) [50], into the forward cross section for
J/w+p — J/w+p; using the optical theorem, this cross section yields the total J/y + p cross section,
which is introduced into a classical Glauber prescription to produce the total cross section for J/y + Pb.
Finally, the optical theorem and VDM are used again to obtain the forward o, p,. The nuclear form factor
is used to obtain the total Gypp.

The model by Guzey, Kryshen, and Zhalov [34] is based on the leading logarithmic approximation of
perturbative QCD [49] for the exclusive production of J/y at zero momentum transfer for yp collisions.
This cross section is scaled to the nuclear case using the square of the ratio of the gluon distribution in
the Pb nucleus to the gluon distribution in the proton scaled by the Pb mass number. The computation
is performed for two cases. The first one is based on the EPS09-LO parameterisation of nuclear parton
density functions [S1]. The second one relies on the leading twist approximation (LTA) of gluon shad-
owing [52]. This model includes the nuclear form factor computed with a Woods—Saxon prescription.
The photon fluxes needed to compute the UPC cross section are obtained from the flux fractions given
by STARIight. The theoretical uncertainties explored in this model originate in the spread of predictions
from the nuclear parton distribution functions (PDFs) for the EPS09-LO case, and in the uncertainty on
the parameters of LTA obtained by fits to HERA diffractive data. For the LTA case, the uncertainty on the
predicted cross sections reaches up to 30%, while for EPS09-LO it can be as large as a factor of 2. The
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authors of the LTA computations provided the upper and lower limits of their predictions. The average
of these numbers is depicted in the figures shown in Sec.[6l These figures also show the predictions for
the EPS09-based model, using the central value of the EPS09 parameterisation.

The model by Bendova et al. [38] is based on the solution of the impact-parameter dependent Balitsky—
Kovchegov (b-BK) equation, as discussed in Ref. [53] and references therein. There are two models
presented in Ref. [38]. One uses the b-BK equation to evolve the amplitude for the interaction of a
colour dipole with a proton towards higher energies, and then uses this amplitude to compute the yp
cross section at the given energy followed by the application of the Glauber—Gribov approach [54], in
order to obtain the photonuclear cross section. The second model, shown in the figures below with
the notation b-BK-A, starts with a nuclear initial condition for the b-BK equation whose solutions at
higher energies can then be directly used to obtain the photonuclear cross section without the need of a
Glauber-Gribov prescription. The photon fluxes needed to compute the UPC cross section are given by
the n8n model. There are some theoretical uncertainties associated with this type of model [S5]. The
main two uncertainties are related to the use of the Glauber—Gribov approach instead of a nuclear initial
condition, and to the approach used to compute the J/y wave function. The first uncertainty changes
the cross section for coherent production of J/y up to 30% [38], while the J/y wave function produces
an uncertainty up to about 20% [37, 156]. This model is valid only at small Bjorken-x, so the cross
section in UPCs for |y| larger than about three cannot be predicted as these rapidities are dominated by
contributions with Bjorken-x larger than 0.01.

The model by Cepila et al. [36] is based on the colour-dipole approach to QCD, including gluon satura-
tion effects, framed within the Good—Walker formalism for diffraction [57-59]. In this model, hadrons
are constituted by hot spots with the hadronic structure fluctuating event by event. For a recent review,
see Ref. [[60]. This type of model describes HERA data [61],162]. In the model by Cepila et al. the number
of hot spots increases as Bjorken-x decreases and the transition from proton to nuclear targets is based
on the Glauber—Gribov prescription. The theoretical uncertainties coming from the wave function of the
J/y are the same as described above. Other uncertainties related to the fluctuation of the colour fields
were explored in Ref. [61] and found to be small with respect to the current precision of the experimen-
tal data. The uncertainty on the modelling of the nuclear case was explored in Ref. [36] by comparing
the Glauber—Gribov prescription with results based on a geometric-scaling approach. Differences of up
to 30% were found, with recent data [[12] clearly preferring the Glauber—Gribov prescription, which is
shown in the figures below with the notation GG-HS. Also in this case, the photon fluxes needed to
compute the UPC cross section are given by the n8n model.

3 Experimental set-up

The results presented here are based on a data sample collected with the ALICE detector in 2018, when
the LHC provided collisions of Pb nuclei at /sy = 5.02 TeV. The experimental signature of the events
of interest for this analysis consists of a pair of leptons, from the J/y decay, the potential presence of
neutrons emitted at beam rapidities by EMD, and no other signal above the noise threshold recorded in the
detector. The two tracks produced by the leptons are measured with the central barrel detectors (dimuon
and dielectron decay channels of the J/y) to obtain the results for |y| < 0.8, discussed in Sec. 3.1} or
with the muon spectrometer (dimuon channel only) to obtain the results for 2.5 < |y| < 4.0, described
in Sec 3.2l Forward detectors located in the A and C sides of the experimen are used to record the
neutrons and to veto other activity; they are introduced in Sec.[3.3] The triggers used in this analysis,
and the associated luminosity, are presented in Sec.[3.4l The full description of the ALICE detector and
its performance can be found in Refs. [63, 64].

IThe A and C nomenclature is used LHC wide and refers to the direction of flight of the beams in the accelerator as being
anti- or clockwise when the LHC is seen from the top.
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3.1 Central barrel detectors

Three central barrel detectors, the Inner Tracking System (ITS), the Time Projection Chamber (TPC),
and the Time-of-Flight (TOF) were used to record data for this analysis. These detectors are surrounded
by a large solenoid magnet producing a magnetic field of B = 0.5 T. Their common pseudorapidity
acceptance is 17| < 0.9.

The ITS [65] consists of six cylindrical layers of silicon detectors. The innermost layer is at a radius of
3.9 cm with respect to the beam axis, while the outermost layer is at 43 cm. The two layers closest to the
beam form the Silicon Pixel Detector (SPD) and cover the range in pseudorapidity |n| < 1.4. The SPD
is a fine granularity detector with about 10 million pixels. It serves as a tracking device and can also be
used to issue triggers. Surrounding the SPD there are two layers of silicon drift chambers and then two
layers of silicon microstrips. These four outer layers of the ITS are used in this analysis exclusively for
tracking.

The TPC [66] is a five metre long cylindrical chamber separated into two drift volumes by a 100 kV
central electrode. The two end-plates are 250 cm away from the central electrode along the beam di-
rection; they are instrumented with multi-wire proportional chambers that are readout by about 560 000
pads allowing for high precision tracking in the transverse plane. The longitudinal coordinate is given
by the drift time of ionisation electrons in the TPC electric field. For each individual track, the TPC
provides up to 159 track points, which also provide energy-loss measurements that are used for particle
identification (PID). In the momentum range of the tracks considered in this analysis (from 1 to 2 GeV/c)
the PID from the TPC allows for a clean separation of electrons from muons. The TPC covers the range
In| <0.9.

The TOF detector consists of a barrel of multi-gap resistive plate chambers that provide a high precision
timing for tracks traversing TOF [67]. It surrounds the TPC and has a pseudorapidity coverage of |n| <
0.9. The TOF readout channels are arranged into 18 azimuth sectors that can provide topological trigger
decisions [68].

3.2 The muon spectrometer

The muon spectrometer, located in the C side of the experiment, covers the pseudorapidity interval
—4 < n < —2.5. The composition of the muon spectrometer, when seen from the nominal interaction
point (IP), is as follows. First, there is a ten hadronic interaction-length absorber—made of carbon,
concrete, and steel—with the task of filtering out hadrons produced in the collisions. The absorber is
followed by five tracking stations, each made of two planes of cathode pad chambers. The third station is
inside a dipole magnet producing a 3 T'm integrated magnetic field. The next element is an iron wall with
a thickness of 7.2 hadronic interaction lengths, which is followed by the muon trigger system consisting
of two stations, each instrumented with two layers of resistive plate chambers. In addition, a conical
absorber made of tungsten, lead, and steel surrounds the beam pipe at small polar angles (less than 2°)
with the mission of shielding the spectrometer from secondary particles. Muon tracks detected in the
trigger stations are used by the trigger and matched offline to the tracks reconstructed in the five tracking
stations. The trigger system provides single-muon and dimuon triggers for tracks above a programmable
transverse-momentum threshold. For the 2018 data used in this analysis the threshold was set to 1 GeV/c.
The trigger efficiency for tracks measured with both the trigger and the tracking chambers increases with
transverse momentum and it is approximately 50% at 1 GeV/c.

3.3 Forward detectors

The zero-degree neutron calorimeters, ZNA and ZNC, are two 8.7 interaction-length calorimeters made
of a tungsten alloy with embedded quartz fibres [69,70]. They are located +£112.5 m, respectively, from
the TP along the beam direction. They detect neutral particles produced at a pseudorapidity |n| > 8.8.
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Each calorimeter is segmented into four towers. Half the optical fibres, which are uniformly distributed
in the calorimeter, are read out by four photomultipliers (PMTs) and the other half are read out by a
single fifth photomultiplier common to all towers. The signals collected from the PMTs are used to
determine the energy deposition. The relative energy resolution for one neutron is about 20% [71]. In
addition, each calorimeter provides timing information obtained with a TDC (time-to-digital converter).
The detectors can also provide a trigger signal.

Two systems, VO [72] and AD [73], are used to veto other activity in the events. Both VO and AD are
based on plastic scintillators and wave-length shifters; the light is captured using PMTs. Each system has
two counters that are placed at both sides of the IP along the beam direction. The VO counters have 32
scintillator tiles each. They cover the pseudorapidity ranges 2.8 <1 < 5.1 (VOA)and —3.7<n < —1.7
(VOC) and are located at 340 cm and 90 cm from the interaction point, respectively. The AD system
consists of two arrays, each of 8 scintillator modules. The arrays are arranged in two layers of four
modules. The AD arrays cover the pseudorapidity ranges 4.7 <1 < 6.3 (ADA) and —6.9 < n < —4.9
(ADC), and are located 17 m and 19.5 m from the IP, respectively. Both VO and AD have a timing
resolution well below 1 ns, and both can be used to veto hadronic interactions at the trigger level.

3.4 Triggers and luminosity

The analysis is based on two triggers: one to select candidate events with the two leptons from the decay
of the J/y detected by the central barrel detectors (denoted as CBtrig below) and the other to select
candidate events where the muons are measured by the muon spectrometer (denoted as MStrig below).
They use trigger inputs from AD, VO, TOF, SPD and the muon trigger system.

AD and VO provide triggers based on the timing of the signal. Two time windows are defined: one to
trigger by events compatible with an interaction at the IP (beam—beam window) and another compatible
with interactions happening behind one of the two counters of each system (beam-gas window). In
the triggers described below, the requested input is the logical negation of a trigger in the beam—beam
window. For the VO the following nomenclature is used: notVBA (notVBC) for the veto of activity in
VOA (VOC). The corresponding triggers for AD are notUBA and notUBC.

The SPD is read out by 400 (800) chips in the inner (outer) layer with each of the readout chips providing
a trigger signal if at least one of its pixels is fired. When projected into the transverse plane, the chips
are arranged in 20 (40) azimuth regions in the inner (outer) layer allowing for a topological selection of
events at the trigger level. In particular, a trigger element, denoted by STG below, requires at least two
pairs of chips where each pair has a trigger signal in the inner and in the outer layer in the same azimuth
region and the pairs are back-to-back in azimuth.

A similar trigger, called OMU, is based on the trigger signals from TOF where between 2 and 6 signals
from TOF are required, such that at least two of them are back-to-back in azimuth.

Using these elements CBtrig is the logical AND of: notVBA, notVBC, notUBA, notUBC, STG, and
OMU. MStrig is given by the logical AND of MUL and notVBA, where MUL stands for a dimuon with
the tracks having opposite electric charge and each of them is above the transverse-momentum threshold
of 1 GeV/c as measured by the trigger chambers of the muon spectrometer.

The integrated luminosity (Liy) of the samples selected by the central barrel and the muon spectrometer
triggers just described is determined using reference cross sections measured in van der Meer scans [74]
and amounts to 23347 ub~! and 533+ 13 ub~!, respectively.
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4 Data samples
4.1 Event selection with the central barrel detectors

The event selection is the same as that of Ref. [12]. Events are kept for further analysis if:

— CBtrig is fired.

— There is a reconstructed primary vertex, determined using at least two reconstructed tracks, and
having a position within 15 cm of either side of the IP along the beam direction.

— There are, in the central barrel, exactly two good reconstructed tracks of opposite electric charge.
Good reconstructed tracks are made of signals from the ITS and the TPC. Each track has to cross at
least 70 (out of a maximum of 159) TPC pad rows and it also has to include signals from both SPD
layers. Each track must have a distance of closest approach to the primary vertex, in the direction
along the beam line, of less than 2 cm.

— The transverse momentum of the pair fulfils pr < 0.2 GeV/c, in order to select a data sample
enriched with coherently produced events.

— Events have to pass the offline selection using the reconstructed information from VO and AD. The
offline selection in these detectors is more precise than vetoes at the trigger level, because it relies
on larger time windows than the trigger electronics and on a more refined algorithm to quantify
the signal.

The PID capabilities of the TPC are used to determine the mass to be associated with a track according
to the proximity of the energy lost by ionisation to that expected by an electron or muon hypothesis. The
selected events are distributed into two rapidity intervals, |y| < 0.2 and 0.2 < |y| < 0.8. They are the
input for the midrapidity analysis described below.

4.2 Event selection with the muon spectrometer

The event selection follows closely that used in Ref. [14]; the difference being that in 2015 the trigger
included, in addition to a veto in VOA as in 2018, vetoes in ADA, ADC, and VOC. The 2018 data sample,
which has less vetoes, is used for this analysis. As the data sample is smaller in this analysis than for
the results presented in Ref. [14], the integrated luminosity is correspondingly reduced. Note also, that
after the publication of Ref. [14], the luminosity determination was better understood [[74]] which reflects
in a substantially smaller uncertainty for the luminosity in the present work. Events are kept for further
analysis if:

— MStrig is fired.

— There are, in the muon spectrometer, exactly two good reconstructed tracks of opposite electric
charge. Good reconstructed tracks have a pseudorapidity —4 < 1 < —2.5; their radial position
at the exit of the absorber lies within 17.5 cm and 89.5 cm to ensure that they pass through the
homogeneous region of the absorber; the information of the trigger chambers matches that from
the tracking chambers; the track momentum multiplied by the distance of closest approach of the
track to the interaction point is below a set threshold to remove beam-induced background.

— The four-momentum of the track pair, constructed using the muon mass, has to have a rapidity in
the range 2.5 < |y| < 4. The transverse momentum of the pair is less than 0.25 GeV/c.

— The event passes an offline veto, which is applied using the reconstructed information from VOA.
At most two tiles in VOC have a signal in the beam—beam window, in order to allow for a maximum
of two muons crossing this counter.
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The selected events are distributed into three rapidity intervals, 2.5 < |y| < 3.0, 3.0 < |y| < 3.5, and
3.5 < |y| < 4.0. They are the input for the forward rapidity analysis described below.

4.3 Event classification using ZNA and ZNC

The selected events are classified into three neutron classes depending on the presence of signals in the
neutron zero-degree calorimeters. The presence of a neutron is determined using the timing capabilities
of the calorimeter. If the TDC registers a signal that has an energy over a threshold around 500 GeV, then
the event is tagged as having at least one neutron emitted near beam rapidities. The following classes
can be formed:

— No neutrons are registered either in ZNA or in ZNC. This class is denoted as OnOn below.

— At least one neutron is observed in one of the calorimeters, but not in the other. There are two
cases: (i) ZNA detects at least one neutron and ZNC shows no neutron activity, or (ii) ZNC detects
neutron(s) and ZNA does not. They are denoted as OnXn or XnOn, respectively. For the data
sample at midrapidity, both cases are combined in one class: OnXn+XnOn. For the data sample at
forward rapidity, the OnXn sample has a large contamination from incoherent J/y production [24],
so only the class XnOn is considered for further analysis.

— Both ZNA and ZNC detect at least one neutron. This case is denoted as XnXn.

4.4 Monte Carlo samples

The STARIlight Monte Carlo (MC) [42] (version: 1299) is used to generate event samples for the
following five processes in Pb—Pb UPC: coherent and incoherent production of both J/y — 71~ and
v — J/w+X as well as yy — [T1~, where [ denotes a lepton. The generated particles are propagated
through a model of the ALICE experimental set-up implemented in GEANT 3.21 [75]. The simulation
matches the time evolution of the detector conditions during the data-taking period. The simulated data
sets are passed through the same analysis chain as the real data, which allows for using the coherent MC
sample to compute the acceptance and efficiency of the detector for signal, and all samples to be used to
determine the background.

S Analysis procedure

The cross section for coherent J/y photoproduction in UPC for a given neutron class and rapidity interval
is given by
dopbpy Ny/y

dy  (Axe)xBRI/y —It17) X Ly x Ay’ )

where Ny, represents the J /v yield, (A x €) takes into account the acceptance and efficiency of the
detector, BR(J/w — [717) is the branching ratio, Li, stands for the integrated luminosity of the corre-
sponding data sample, and Ay is the width of the rapidity interval.

5.1 Yield extraction

In order to make the best use of the limited amount of data at midrapidity, specially for the XnXn
neutron class, the data samples for the two decay channels (J/y — eTe™ and J/w — ut ™) are joined
and analysed together. Note that in our previous analysis [12], it was demonstrated that both decay
channels produce compatible cross sections for coherent J/y production, justifying our decision to join
the samples.
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Figure 1: Invariant-mass distributions for events in the OnOn (left) and XnXn (right) neutron classes measured at
mid (top) and forward rapidity (bottom). The solid black markers represent data, the vertical line through each of
them is the associated statistical uncertainty. The blue lines depict the fit models, described in the text, which are
composed of a signal (shown in magenta) and a background (shown in green) contribution. In the lower left plot
the contribution from ¥ is clearly visible (shown in yellow).

The extraction of the J/y yield involves three steps: a fit to the invariant mass distribution of the lepton
pairs; the subtraction of contributions from y’ feed-down and from incoherent J/y production; and a
correction to account for the migration across the different neutron classes.

The invariant mass distribution is modelled with two Crystal Ball [76] functions, to describe the J/y
and Y’ signals, and a term to take into account the background, mostly from two-photon production
of dilepton pairs. For the analysis at midrapidity, this background is represented by an exponential
distribution, while for the analysis at forward rapidity it is parameterised using a fourth-order polynomial
that turns smoothly into an exponential tail for masses larger than 4 GeV/c?. The tail parameters of the
Crystal Ball functions are fixed to the values found by fits to the MC samples. The mass difference
between the Y’ and the J/y is fixed according to the values from Ref. [77]. The width parameter for the
v’ is fixed to the width parameter of the J/y multiplied by the ratio of the widths of the ¥’ to the J/y
obtained from fits to the MC samples. The J/y pole mass and width are left free. At forward rapidity,
the polynomial parameters for the background are fixed to the values from a fit to the MC samples of the
vy — utu process. The slope of the exponential is left free. The main output of the fit is the number of
J/y candidates (Njg) and its associated uncertainty. Examples of the fit to the invariant mass distribution
for the mid and forward rapidity analyses for two different neutron classes are shown in Fig. [Il
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Figure 2: Transverse momentum distributions for events of the OnOn (left) and XnXn (right) neutron classes
measured at mid (top) and forward rapidity (bottom). The solid black markers represent data, the vertical line
through each of them is the associated statistical uncertainty. The black lines depict the fit model described in the

text.

The number of candidates from the fit contains contributions from coherent and incoherent processes as
well as from feed-down from y’. The number of coherent candidates is given by:

Nt
1+ fi+fo’

where the fractions fi = Nincoh /Neoh and fp = Need-down /Neoh correct for the number of J/y coming from
the incoherent process (Nincon) and from decays of W' (Nfeed-down)- The fraction fp is obtained directly
from data as explained in Ref. [12] for the midrapidity and in Ref. [14] for the forward rapidity analysis.
The values found are fp = 0.039 +0.006 and fp = 0.055 %+ 0.010, respectively.

Neon = (4)

The fraction fj, see Table 3 is obtained from a fit to the transverse momentum distribution of lepton
pairs in a restricted range of the invariant mass of the pair around the J/y pole mass (2.9 < m < 3.2
GeV/c? and 2.85 < m < 3.35 GeV/c? for the analysis at mid and at forward rapidities, respectively). This
fit uses MC templates from STARIight for coherent and incoherent J/y production, J/y from decays of
coherent and incoherent ¥’ production, and from the yy — [~ process. In addition, incoherent J/y
production with nucleon dissociation, a process not included in the STARlight MC but present in data, is
taken into account, to describe the large transverse momentum region, with a template based on the H1
parameterisation of this process [78]. The normalisation of the templates from feed-down is constrained
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by the value of fp, while the normalisation of the yy — [T/~ template is fixed by the fits to the invariant
mass distribution. The three free parameters of the fit are the normalisation of both incoherent templates
and of the coherent template. Examples of the fit to the transverse momentum distributions for the mid
and forward rapidity analyses for two different neutron classes are shown in Fig.[2l

The last step to extract the J/y yield in a given class is to take into account the possibility of misclassifi-
cation of events. There are two potential effects: that a neutron is not measured (ZNA, ZNC efficiency)
which could move an event, for example, from the XnOn into the OnOn class; and, that a neutron from
a collision of an independent pair of Pb ions is detected (pile-up), which may then shift an event, for
example, from the OnOn to the XnOn class. The pile-up probability is determined using a special data
sample collected with an unbiased trigger; it amounts to 0.0237 4 0.0005 and 0.0238 + 0.0006 for ZNA
and ZNC, respectively. The efficiency of detecting at least one neutron in a Xn event is determined as
explained in Ref. [79] and amounts to 0.933 +0.017 for ZNA and 0.931 +0.017 for ZNC. The effects
of pile-up and inefficiencies give rise to a migration matrix which is applied to the N, values of the
different classes to obtain the Ny, values. Note that migration does not change the total number of J/y
candidates, so this correction introduces anti-correlated uncertainties.

5.2 Corrections

The term (A x €), in Eq. (3)) is the product of three factors: (A X €)det, €pu, and Eemg. (A X €)ger accounts
for the acceptance and efficiency of the detector, including the trigger system, to measure the decay
products of the coherently produced J/y; it is obtained from the data sample of MC simulated events.
These events were produced under the assumption of transverse polarisation as expected for the case
of photoproduction and recently confirmed by the ALICE Collaboration [80]. Polarisation could also
play a role at midrapidity due to the interference of the two possible photon sources. As the incoming
photon is linearly polarised, the interference causes an azimuthal anisotropy that can be observed in the
final state [81],82]. Interference effects appear at low values of transverse momenta and at midrapidity
where both amplitudes are similar [41/]. As the measurements presented here are integrated over trans-
verse momentum, the potential impact of the interference is suppressed. Furthermore, the interference
contributes mainly at small impact parameters, that is in the XnXn class, where our data sample has the
largest statistical uncertainty and the contribution of interference effects is not visible.

The other two terms, &y, and &g, take into account the effects of pile-up. The first one, &,,, accounts for
cases where, in addition to the coherent production of J/y, another independent collision leaves signals
in VO or AD causing the event to be rejected at the trigger level. The pile-up probability is measured
using data selected with an unbiased trigger based on the timing of bunches crossing the IP. For the
midrapidity analysis &, = 0.920 +=0.002, while for the forward rapidity sample &,, = 0.962 & 0.001;
the uncertainty comes from the size of the unbiased data sample. The second pile-up factor, &g, takes
into account events where the dissociation of the incoming nucleus produces, in addition to neutrons,
charged particles that leave a signal in AD or V0. These extra particles come from EMD events with the
neutron emission accompanied by the emission of protons or pions. According to Ref. [83], the corre-
sponding cross sections are expected to be large. This factor is determined with a data sample triggered
by an energy deposition over the threshold in either ZNA or ZNC; this sample is populated by EMD
events [79]. For the OnOn events &9 = 1.0 as there is no nuclear dissociation. For the analysis at midra-
pidity €emg = 0.74 £ 0.04 and &g = 0.57 £ 0.05 for the OnXn+XnOn and XnXn classes, respectively.
For the analysis at forward rapidity €pq = 0.88 20.01 and &g = 0.84 +0.05 for the XnOn and XnXn
classes, respectively. The uncertainty reflects the size of the data sample used to determine these factors.

5.3 Systematic uncertainties

A number of studies were undertaken to estimate potential systematic uncertainties. Their effect on the
measured cross sections is summarised in Tables [Tl and 21
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Table 1: Summary of the systematic uncertainties, given in percent, related to the measurements performed
with the central barrel detectors. The minus sign in the entry for migrations in the OnOn class signifies that this
uncertainty is anti-correlated with those from migrations in the OnXn+XnOn and XnXn classes. The second column
identifies the type of uncertainty (U=uncorrelated, C=correlated, A=anticorrelated) as used in Eq. (@).

Iy <0.2 02<y <08
Source Type OnOn OnXn+XnOn XnXn OnOn OnXn+XnOn XnXn
Signal extraction U 1.5 1.5 1.5 1.5 1.5 1.5
Incoherent fraction U 0.1 1.5 1.3 0.1 1.5 1.3
Coherent shape C 0.1 0.8 0.6 0.1 0.8 0.6
Feed-down C 0.6 0.6 0.6 0.6 0.6 0.6
Branching ratio C 0.5 0.5 0.5 0.5 0.5 0.5
Luminosity C 2.5 2.5 2.5 2.5 2.5 2.5
Trigger live time C 1.5 1.5 1.5 1.5 1.5 1.5
ITS-TPC matching  C 2.8 2.8 2.8 2.8 2.8 2.8
TOF trigger C 0.7 0.7 0.7 0.7 0.7 0.7
SPD trigger C 1 1 1 1 1 1
Epu C 3 3 3 3 3 3
€emd C 0 3.2 35 0 3.2 35
Migrations A -39 34 09 -3.6 3.1 1.1

Table 2: Summary of the systematic uncertainties, given in percent, related to the measurements performed with
the muon spectrometer. The minus sign in the entry for migrations in the OnOn class signifies that this uncertainty
is anti-correlated with those from migrations in the OnXn+Xn0On and XnXn classes. The second column identifies
the type of uncertainty (U=uncorrelated, C=correlated, A=anticorrelated) as used in Eq. (3).

2.5 <]y <3.0 3.0<|y] <35 3.5< |y <4.0

Source Type OnOn XnOn XnXn OnOn XnOn XnXn OnOn XnOn XnXn
Signal extraction U 0.2 1.3 0.8 0.1 0.6 0.7 0.5 0.5 0.9
Incoherent fraction U 0.4 0.6 1.6 0.4 0.9 33 0.4 0.5 22
Coherent shape C 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Feed-down C 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
Branching ratio C 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
Luminosity C 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
Tracking C 3 3 3 3 3 3 3 3 3
Trigger C 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2
Matching C 1 1 1 1 1 1 1 1 1
Epu C 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
€emd C 0 1.1 6 0 1.1 6 0 1.1 6
Migrations A 03 3.8 33 —-02 3.6 36 —02 33 3.6

To study the uncertainty on the model used for the signal extraction at midrapidity, the yield according to
the Crystal Ball function is compared to counting the events under the peak region after the background
is subtracted using the exponential shape from the fit. The model based on the Crystal Ball function
is used as the baseline and half of the difference, amounting to 1.5%, is assigned as the systematic
uncertainty. Another contribution to the uncertainty on the signal extraction comes from the description
of the background. This was estimated by varying the fit range which produces a 0.3% effect which is
added in quadrature to the uncertainty on the modelling of the signal. For the analysis at forward rapidity
the uncertainty is estimated by varying the values of the tail parameters of the Crystal Ball function in
the ranges found by fits to the signal in the simulated MC samples. This uncertainty varies from 0.1% to
1.3% and is considered uncorrelated across rapidity and neutron classes.
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There is an uncorrelated source of uncertainty for the determination of fi that originates in the mod-
elling of the different templates needed for the fit to the transverse momentum distribution described in
Sec. 51l For the midrapidity analysis, it is estimated by using for the template of the yy — "]~ pro-
cess either the transverse momentum distribution obtained at either side of the J/y peak in the invariant
mass distribution or the template from the STARIlight MC. For the forward analysis, the shape of the
incoherent distribution is obtained either from the fit described in Sec.[3.1] or it is constrained by fitting
the transverse momentum distribution of the OnXn sample with the requirement of activity in the ADC
detector; this sample is dominated by incoherent production. The uncorrelated uncertainty for fi varies
from a fraction of a percent to a few percent.

There is also a correlated uncertainty related to the extraction of the incoherent contamination. It is
known that the STARIlight MC does not describe correctly the shape of the transverse momentum distri-
bution for the coherent production of J/y [13]. A different shape for the transverse momentum depen-
dence of coherent production was used in the fit and half the difference in the results is assigned as an
uncertainty. The effect is below 1% and it is larger for the midrapidity analysis since the resolution of
the muon spectrometer is not as good as for the central barrel detectors, so it is not so sensitive to this
effect.

The uncertainty on feed-down is estimated by varying fp within its uncertainty. As the determination
of feed-down is independently done using the central barrel detectors and the muon spectrometer, this
uncertainty is correlated only across the corresponding measurements and it is uncorrelated between the
results obtained at mid and forward rapidities. It amounts to 0.6% and 0.7%, respectively.

Two other sources of uncertainties are also considered as correlated: the uncertainty on the branching
ratios is obtained from Ref. [77]; the uncertainty on the determination of the luminosity, coming from
the measurement of the reference cross sections and from the stability of the calibration over time, is
taken from Ref. [[74] and amounts to 2.5%. For CBtrig there is another source of uncertainty related to
the luminosity of the data sample, namely the precision to which the live time of the trigger is known,
which is 1.5%. The live time of MStrig is known with a very good precision and produces a negligible
uncertainty.

For the central barrel analysis there are four uncertainty sources that are correlated across the correspond-
ing measurements. A systematic uncertainty on the tracking efficiency of 2% per track is estimated by
comparing, in data and in MC, the matching efficiency for track segments reconstructed in the TPC and
in the ITS. This leads to a 2.8% systematic uncertainty for two tracks. The uncertainty of the TOF trigger
efficiency due to the spread of the arrival times of various particle species to TOF is evaluated as 0.5%
per track (1% in total). The uncertainty associated with the determination of the trigger efficiency of the
SPD is obtained directly from data by varying the requirements to select the tracks used to measure this
efficiency. This uncertainty amounts to 1%.

There are three correlated uncertainties associated with the muon spectrometer. The uncertainty on the
tracking efficiency amounts to 3%. It is estimated by comparing the single-muon tracking efficiency
values obtained in MC and data, with a procedure that exploits the redundancy of the information from
the tracking chambers [84]. The systematic uncertainty on the dimuon trigger efficiency has two con-
tributions. The uncertainty on the intrinsic efficiencies of the muon trigger chambers is determined by
varying them in the MC by an amount equal to the statistical uncertainty on their measurement with a
data-driven method and amounts to 1.5%. The uncertainty on the response of the trigger algorithm is
obtained by comparing the trigger response function between data and MC; it amounts to 6.0%. These
two contributions are added in quadrature. There is also a 1% uncertainty on the matching efficiency of
tracks reconstructed with the tracking and the trigger chambers.

The uncertainty on &, for the forward rapidity analysis is obtained by varying this factor within its
uncertainty. It amounts to 0.2%. As there are more detector systems contributing to &, in the CBtrig
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Table 3: Values for the number of J/y candidates (NVg,), the incoherent fraction (fi), correction for the detector
acceptance and efficiency ((A X €)4e¢) and the measured cross section (dopypy/dy) for the different neutron classes
and rapidity ranges. The first uncertainty in the last column is statistical, the rest are systematic. The second
uncertainty is uncorrelated, the third correlated, and the fourth originates from migrations across neutron classes.
Note that for each rapidity range the OnOn uncertainty related to migrations is preceded by a F, while the other
neutron classes have a £; this means that these uncertainties are anti-correlated.

Class Niit fI (A X g)det debpb/dy (mb)

ly| <0.2

OnOn 1744£49  0.014+0.002 0.053 3.130£0.090£0.047£0.164 1 0.122
OnXn+XnOn 412£23  0.179+0.011 0.053 0.730£0.050+0.015£0.045 £ 0.025
XnXn 84+11 0.144+0.021 0.053 0.250£0.024 +0.005£0.016 £ 0.002
02< 1y <0.8

OnOn 2179+£54  0.0144+0.002 0.024 2.900£0.070+£0.044 £0.152F+0.104
OnXn+XnOn 597+£28  0.179+0.011 0.024 0.800£0.040+0.017 £0.050 £ 0.025
XnXn 134+13  0.144+0.021 0.024 0.300£0.029 +0.006 £ 0.019 +0.003
25< |y <3.0

OnOn 2939+£84 0.0140£0.0038 0.069 2.668 £0.076 +0.011 £0.199 3 0.009
XnOn 318+28  0.070£0.0061 0.069 0.242£0.021+£0.003 £0.018 +0.009
XnXn 247+£23 0.1180£0.0159 0.069 0.256 £0.024 +0.005 £ 0.024 + 0.009
3.0< [y[ <35

OnOn 7102+£102 0.0130+£0.0041 0.194 2.322£0.033+0.010£0.173 3 0.005
XnOn 638 £37 0.0480=£0.0090 0.194 0.172£0.010+£0.002£0.013 £ 0.006
XnXn 450£32 0.1590+0.0332 0.194 0.161 £0.011+0.005£0.015+0.006
3.5< |y <40

OnOn 240374 0.0070£0.0037 0.097 1.590£0.049+0.010£0.11930.003
XnOn 189+16 0.0270=£0.0053 0.097 0.101 £0.009 +0.001 £ 0.008 +0.003
XnXn 111£16 0.1650£0.0223 0.097 0.079£0.011+0.002 £ 0.008 +0.003

case, the uncertainty for the midrapidity measurements is estimated by repeating the analysis without the
offline veto from AD and V0, which increases both the yield and &p,. These increases do not compensate
exactly and the ensuing difference of 3% is assigned as a systematic uncertainty. The uncertainty on &g
is obtained by varying it within its uncertainty. It is of the order of a few percent, differing among the
neutron classes and rapidity intervals.

The uncertainty on migrations across the different neutron classes is obtained by varying the pile-up in
ZNA and ZNC as well as the efficiencies of these detectors within their uncertainties. At midrapidity the
efficiency is the leading uncertainty for the XnXn neutron class, while pile-up dominates the other two
neutron classes. At forward rapidities the efficiency is the leading uncertainty. The largest difference,
with respect to the nominal measurement, from all variations is taken as the uncertainty. As mentioned
above, these uncertainties are anti-correlated across the neutron classes within one rapidity range.

6 Results
6.1 Cross section in UPC

Using the analysis strategy described in Sec. [5 the cross section for the coherent production of J/y
vector mesons in UPCs of Pb nuclei at /sy = 5.02 TeV is obtained. The measurements are reported
in Table 3l along with other numerical values needed in Eq. (3) and ).

The results are compared to the predictions from different models in Fig.[3l The theoretical uncertainties
associated to each model are discussed in Sec.[2l In all cases the IA calculation is well above the data
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Figure 3: Measured cross section for the coherent production of J/y in UPCs at \/sny = 5.02 TeV. The solid
markers represent the measured cross section (the measurement at 0.2 < |y| < 0.8 is shown at negative rapidities and
reflected into positive rapidities with an open marker). The vertical line across a marker is the sum in quadrature of
the statistical and uncorrelated systematic uncertainty. The width of the boxes depicts the range in rapidity covered
by each measurement, while the height of a box is the sum in quadrature of the correlated systematic uncertainties
and the effect of migrations across neutron classes. Note that the uncertainties from migrations are anti-correlated
between the OnOn and the other two neutron classes in each rapidity interval. The lines depict the prediction of the
different models discussed in Sec.

signalling important shadowing effects that have a similar magnitude in each of the different neutron
emission classes. The STARIlight model describes well the data at forward rapidity in the OnOn class,
while overestimating the data in all the other classes. At midrapidity, this model does not describe the
data in any of the neutron classes. The predictions of the other four models—EPS09-LO, LTA, b-BK-A,
and GG-HS—are qualitatively similar, while quantitatively they differ with the maximum spread given
by the GG-HS and b-BK-A models, whose predictions differ by up to about 20%. These four models
describe the data reasonably well, except for the rapidity range 3.5 < |y| < 2.5 in the OnOn class, where
the data are clearly above the predictions. For the XnXn neutron class the data at forward rapidity are
systematically slightly above the predictions.

The IA and STARIlight models do not include gluon shadowing or saturation effects. The EPS09-LO
and LTA models do not include explicitly gluon saturation, while the b-BK-A and GG-HS predictions do
not include explicitly shadowing effects beyond saturation. The data indicate that the IA and STARlight
predictions are disfavoured, implying the need of some QCD dynamic effect, beyond what is included in
these models, to describe the measurements. Within the experimental precision and the large theoretical
uncertainties mentioned in Sec. 2] models that include either shadowing or gluon saturation give an
equally good description of the data.
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Table 4: Theoretical input needed to obtain the photonuclear cross section and the nuclear suppression factor.
Photon fluxes, see Eq. (1), computed with ngn for the different neutron classes and rapidity ranges. The last
column shows the value of G}I,Apb as computed in Ref. [17].

y ny(On0n) ny(OnXn+XnOn) n,(XnXn) o5, (Ub)

Y
35<y<4 17851 18.18 6.34 10
3<y<35  162.99 18.19 6.34 14
25<y<3 14746 18.19 6.34 19
02<y<08  77.88 17.88 6.33 48
—02<y<02 6286 17.47 6.27 58
—08<y<—-02 4831 16.75 6.18 71
—3<y<-25 391 4.97 278 176
—35<y< -3 1.22 2.15 1.42 215
—4<y<-35 0.26 0.61 0.48 262

6.2 Extraction of the photonuclear cross section

Having several independent UPC measurements allows for the extraction of the two photonuclear cross
sections in each rapidity interval. A x> minimisation is applied to the three measurements in each y
range. The used y? approach incorporates the correlated uncertainties through nuisance parameters and
the uncorrelated and statistical ones utilising relative uncertainties. This method has already been used
by the ALICE Collaboration to extract the energy dependence of exclusive photoproduction of J/y in
p—Pb collisions [85, 86] and it was originally used by the H1 Collaboration for the measurement of the
inclusive deeply inelastic cross section at HERA [87]. The x? definition is given by

. <mi — X, vjmb;— ui)2
12 (71.B) = Z ] Y ST + ;bg. )

Here, u' is the measured central value at a point i, m' are given by the right-hand side of Eq. (1) with the
fluxes computed with the n8n program [43] (see Sec.2.1land Table @l for the flux values), and o,p,(+y)
the two parameters to be extracted from the fit. Note that for the rapidity range |y| < 0.2 there is only
one photonuclear cross section. The relative statistical and uncorrelated systematic uncertainties for each
rapidity range (see Tables [[land 2) are given by & siat = Aistat/ 1’ and &;uncor = Aiuncor/ L', Tespectively.
Finally, }/; is the matrix of the correlated systematic uncertainty for the source of type j at the point i,
where b; is the associated set of nuisance parameters.

The uncertainties for the measurement of oyp,(y) are obtained as follows. A fit including the statistical
as well as the correlated and uncorrelated systematic uncertainties is performed. Another fit including
only the statistical and uncorrelated systematic uncertainties is performed. The uncertainty from this
second fit is quoted as the uncorrelated uncertainty. The difference between the uncertainties from the
first and second fit, taken in quadrature, are quoted.

There are two contributions to the uncertainty associated to the photon fluxes. One is related to the
total flux and the other to the fractions of the total flux in each neutron class. The first contribution is
obtained by varying the parameter of the nuclear radius in the Woods—Saxon distribution according to
neutron-skin measurements [88]; this uncertainty amounts to 2% correlated over all rapidity intervals
and neutron classes. This factor is already taken into account in the correlated uncertainties mentioned
in the previous paragraph. The second contribution is estimated by varying by +5% all cross sections
used as input in n8n for the computation of the photon flux fractions (see also Ref. [89]). The relative
change in the photon fluxes goes from 1% to 8% depending on rapidity and neutron class. These changes
are anti-correlated in neutron classes for each rapidity interval. To compute the associated uncertainties,
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Table 5: Photonuclear cross sections extracted from the UPC measurements using the procedure described in
the text. The quoted uncertainties are uncorrelated (unc.), correlated (corr.), caused by migrations across neutron
classes (mig.) and by variations of the flux fractions in the different classes (flux frac.). The lines separate the
different ranges in |y|. Note that two photonuclear cross sections in each rapidity interval are anti-correlated.

y Wypbn (GeV)  oypp (Ub) unc. (ub) corr. (ub) mig. (ub) flux frac. (ub)
35<y<4 19.12 8.84 0.30 0.68 0.02 0.04
—4<y<-=35 813.05 57.32 20.77 7.57 6.41 6.56
3<y<35 24.55 13.89 0.23 1.08 0.05 0.08
—35<y< -3 633.21 46.58 6.61 5.73 3.77 3.63
25<y<3 31.53 16.89 0.59 1.32 0.11 0.18
—3<y<-25 493.14 44.68 6.38 5.15 2.73 2.97
02<y<0.8 97.11 21.73 5.12 3.12 4.32 2.73
—08<y<—-0.2 160.10 25.00 7.33 4.88 5.43 3.91
-02<y<02 124.69 24.15 0.69 1.37 0.50 0.06
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Figure 4: Photonuclear cross section for the y+Pb — J/y +Pb process as a function of Wyp;, , (lower axis) or
Bjorken-x (upper axis). The solid markers represent the measured cross section. The vertical line across a marker
is the uncorrelated uncertainty. The height of an empty box is the sum in quadrature of the correlated systematic
uncertainties and the effect of migrations across neutron classes. The gray box represents the theoretical uncertainty
coming from the computation of the photon flux. The lines depict the prediction of the different models discussed
in Sec.[2l The open triangular and square markers show the cross sections extracted in Refs. [[17, 18] using ALICE
Run 1 data.

fits—including the statistical, correlated and uncorrelated systematic uncertainties—are performed using
the modified fluxes. The largest difference, divided by v/2, between these fits and the fit with the default
photon-flux values from n8n is taken as the uncertainty originating from the photon flux. If the fluxes

of STARIlight were used, instead of those from ngn, then the results would vary by less than one per-
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cent, except for the two largest energies, where the cross sections would be larger by 2.6% and 7.7% at
Wyppn = 633 GeV and Wyp, , = 813 GeV, respectively. This is well within the uncorrelated uncertainties
of the measurement.

Uncertainties caused by the migrations across neutron classes are treated in a similar way to those asso-
ciated with the photon flux. The input UPC cross sections are modified by the migration uncertainties,
new fits are performed and the largest difference, divided by v/2, with respect to the fit that uses the
unmodified UPC cross sections is taken as the systematic uncertainty due to migration effects.

The results obtained by following this procedure are listed in Table [5] and shown in Fig. 4] where they
are compared to the predictions of the different models. Note that according to Eq. () the results for the
cross section at low and high W, py, , in one rapidity interval are anti-correlated. Note that the uncertainties
for the high W, py, , region are large, reaching about 30% at Wypy , = 813 GeV. The predictions obtained
with A [[17] are consistent with the data for the energy region below 40 GeV, although systematically
above the data; at all other energies the predictions from IA are well above the measurements with the
difference increasing with energy. STARlight predictions describe the data for energies below 40 GeV,
but overestimate the measurements at all other energies. None of the EPS09-LO, LTA, b-BK-A, and
GG-HS models describe the data in the Wypy , range from about 25 to 35 GeV. The EPS09-LO model
describes the measurements at the lowest energy and at intermediate energies, but overestimates the
measurements at the highest energies. The GG-HS model does not include the reduction of phase space
at low Wypy 5, but it describes the data, except for the mentioned energy range, for all other measurements,
with the predictions systematically on the higher side of the measurements. The predictions of the LTA
and b-BK-A models are very similar and describe the data fairly well at all energies, except for the energy
range from about 25 to 35 GeV.

The photonuclear cross sections extracted in Refs. [17, [18] using ALICE Run 1 data are also shown in
Fig.dl The cross sections at the two highest Wypb,n, namely 92 GeV and 470 GeV, agree with the new
measurements presented here, while the two cross sections at low Wypy, , are below the new measure-
ments by around 1.5 standard deviations. The fact that the cross sections extracted using the peripheral
and ultra-peripheral results from Run 1 and the new measurements presented here agree reasonably well
is remarkable, because they involve a different set of systematic uncertainties. It is also worth noting
that the new measurements extend the range in Wypy, , by about 350 GeV, up to Wypy , = 813 GeV, with
respect to the maximum energy reached by ALICE Run 1 data.

As mentioned above, the CMS Collaboration submitted results on this process [33]. The CMS data cover
the ranges around 40 GeV to 50 GeV and 300 to 400 GeV in Wypy 5. These ranges lie in between the
ranges covered by the ALICE forward and midrapidity analyses. The results of the CMS Collaboration
smoothly follow the same trend as the cross sections measured by ALICE. At low energies the measure-
ments are compatible with the STARIight predictions and at high energies with the LTA and b-BK-A
predictions.

6.3 Nuclear suppression factor

The nuclear suppression factor is defined in Eq. (2)). To obtain it, the measured photonuclear cross sec-
tions are divided by the IA values, where we use the implementation from Ref. [17]. The corresponding
values of IA are listed in Table [ According to Ref. [17] the computation of IA has an uncertainty of
about 5%, which reflects the uncertainties related to the experimental input data and its parameterisation.
This uncertainty is taken into account in the results shown below.

The nuclear suppression factor is important because it provides a quantitative measure of shadowing in
this process and several theoretical uncertainties, e.g. that associated to the J/y wave function, should
largely cancel in the ratio. Not all uncertainties cancel out completely; for example, in Ref. [17] it is
argued that the interpretation of the nuclear suppression factor in terms of the gluon shadowing factor
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Figure 5: Nuclear suppression factor for the y+Pb — J/y + Pb process as a function of Wypp, (lower axis)
or Bjorken-x (upper axis). The solid markers represent the measurement. The vertical line across a marker is
the uncorrelated uncertainty. The height of an empty box is the sum in quadrature of the correlated systematic
uncertainties and the effect of migrations across neutron classes. A gray box represents the theoretical uncertainty
coming from the computation of the photon flux and of the impulse approximation. The lines depict the prediction
of the different models discussed in Sec.[2l The open triangular and square markers show the nuclear suppression
factor extracted in Refs. [17,118] using ALICE Run 1 data.

has a theoretical uncertainty due to corrections, amounting to about 10%, that account for the skewedness
and the real part of the amplitude.

The nuclear suppression factor is shown in Fig. 5] where the measurement is compared with the predic-
tions of the different models. The nuclear suppression factor at low energies is about 0.94, decreases to
values slightly above 0.64 at intermediate energies, and decreases further down to about 0.47 at the high-
est measured energies. The STARIlight model describes only the Wypy, , range from about 25 to 35 GeV.
The other four models do not describe this energy range, but provide a fair description at higher energies,
except for the EPS09-LO model, which predicts a nuclear suppression factor that remains constant with
increasing Wypy, 5, while the data and the other models exhibit a decreasing trend. The predictions of LTA
and b-BK-A are quite close to each other and follow the behaviour of data at all energies, except for the
range from about 25 to 35 GeV.

7 Summary and outlook

The coherent photonuclear production of J/y accompanied by electromagnetic dissociation (EMD) was
measured in a wide kinematic domain. Cross sections are reported for five rapidity intervals and three
EMD classes. These measurements are used to extract the photonuclear cross section Gypy, in the kine-
matic range 17 < Wypp 5 < 920 GeV, which corresponds to a Bjorken-x interval of about three orders of
magnitude: 1.1 x 107 < x < 3.3 x 1072, In addition, the nuclear suppression factor was measured in the
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same energy range. These results, together with previous ALICE measurements, provide unprecedented
information to probe quantum chromodynamics at high energies.

The results are compared to cross sections and nuclear suppression factors obtained from ALICE Run 1
data. The new measurements agree with the lower energy results, provide a large improvement in preci-
sion, and extend the reach of ALICE data in Wypy, ,, by about 350 GeV, up to Wypp , = 813 GeV.

The results are also compared with different theoretical models. At low energies, predictions from IA are
consistent with data, albeit systematically above them, while with increasing energies IA overestimates
data more and more, signalling important energy-dependent shadowing effects. The STARIlight model
describes the low energy data, but overestimates the measurements at large energies. As neither IA nor
STARIight include shadowing or saturation effects, their comparison with data points to the presence
of nuclear QCD phenomena at high energies beyond what is included in these two predictions. All
other models considered—based on EPS09-LO, the leading-twist approximation, solutions of the impact-
parameter dependent BK equation, and an energy-dependent hot-spot approach—describe correctly the
data at high energy, correspondingly small Bjorken-x, but underpredict the data in the Wypy, , range from
about 25 to 35 GeV. Within the uncertainties, both saturation or shadowing models give a reasonable
description of data. The nuclear suppression factor varies from about 0.95 to 0.47 as the energy (Bjorken-
X) increases (decreases).

New data to be collected during Run 3 and 4 at the LHC will provide substantially larger data sam-
ples [90], and the ALICE detector has been upgraded to fully exploit the new data sets [91]. These
improvements should allow for more detailed studies and a reduction of the size of uncertainties. Fur-
thermore, the measurement of the coherent photoproduction of J/y in peripheral Pb—Pb collisions will
provide an alternative set of measurements, with different uncertainty sources, to extract the energy
dependence of this process. Under these circumstances, a global analysis of all data promises a measure-
ment of the photonuclear cross section o,py, over three orders of magnitude in Bjorken-x with a small
experimental uncertainty.
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