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Abstract

The study of (anti-)deuteron production in pp collisions has proven to be a powerful tool to investigate
the formation mechanism of loosely bound states in high energy hadronic collisions. In this paper
the production of (anti-)deuterons is studied as a function of the charged particle multiplicity in
inelastic pp collisions at y/s = 13 TeV using the ALICE experiment. Thanks to the large accumulated
integrated luminosity, it has been possible to measure (anti-)deuteron production in pp collisions up
to the same charged particle multiplicity (dN.,/dn ~ 26) as measured in p—Pb collisions at similar
centre-of-mass energies. Within the uncertainties, the deuteron yield in pp collisions resembles the
one in p—Pb interactions, suggesting a common formation mechanism behind the production of light
nuclei in hadronic interactions. In this context the measurements are compared with the expectations
of coalescence and Statistical Hadronisation Models (SHM).
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1 Introduction

High energy collisions at the Large Hadron Collider (LHC) create a suitable environment for the pro-
duction of light (anti-)nuclei. In ultra-relativistic heavy-ion collisions light (anti-)nuclei are abundantly
produced [1H3], but in elementary pp collisions their production is lower [1, 4H6]]. As a consequence,
there are only few detailed measurements of (anti-)nuclei production rate in pp collisions. However, with
the recently collected large data sample it is now possible to perform more differential measurements of
light (anti-)nuclei production as a function of multiplicity and transverse momentum. In this paper, we
present the detailed study of the multiplicity dependence of (anti-)deuteron production in pp collisions
at /s = 13 TeV, the highest collision energy so far delivered at the LHC.

The production mechanism of light (anti-)nuclei in high energy hadronic collisions is not completely
understood. However, two groups of models have turned out to be particularly useful, namely Statistical
Hadronisation Models (SHM) and coalescence models. The SHMs, which assume particle production ac-
cording to the thermal equilibrium expectation, have been very successful in explaining the yields of light
(anti-)nuclei along with other hadrons in Pb—Pb collisions [[7], suggesting a common chemical freeze-out
temperature for light (anti-)nuclei and other hadron species. The ratio between the pr-integrated yields
of deuterons and protons (d/p ratio) in Pb—Pb collisions remains constant as a function of centrality, but
rises in pp and p—Pb collisions with increasing multiplicity, finally reaching the value observed in Pb—Pb
[L} I8, 9]. The constant d/p ratio in Pb—Pb collisions as a function of centrality is consistent with ther-
mal production, suggesting that the chemical freeze-out temperature in Pb—Pb collisions does not vary
with centrality [10]. Assuming thermal production in pp collisions as well, the lower d/p ratio would
indicate a lower freeze-out temperature [10]. On the other hand, the ratio between the pr-integrated
yields of protons and pions (p/7 ratio) does not show a significant difference between pp and Pb-Pb
collisions [[11} [12]]. Also, for p—Pb collisions the freeze-out temperature obtained with SHMs using only
light-flavoured particles is constant with multiplicity and its value is similar to that obtained in Pb—Pb
collisions [13]]. Thus, the increase of the d/p ratio with multiplicity for smaller systems cannot be ex-
plained within the scope of the grand-canonical SHM as is done in case of Pb—Pb. It is also not consistent
with a simple SHM that the d/p and p/x ratios behave differently as a function of multiplicity even though
numerator and denominator differ in both cases by one unit of baryon number. Nonetheless, a process
similar to the canonical suppression of strange particles might be worth considering also for baryons. A
recent calculation within the SHM approach with exact conservation of baryon number, electric charge,
and strangeness focuses on this aspect [[14].

In coalescence models (anti-)nuclei are formed by nucleons close in phase-space [[15]]. In this approach,
the coalescence parameter B, quantitatively describes the production of (anti-)deuterons. B, is defined

as
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where E is the energy, p is the momentum, pr is the transverse momentum and y is the rapidity. The
labels p and d are used to denote properties related to protons and deuterons, respectively. The invariant
spectra of the (anti-)protons are evaluated at half of the transverse momentum of the deuterons, so that
ph= p‘T’ /2. Neutron spectra are assumed to be equivalent to proton spectra, since neutrons and protons
belong to the same isospin doublet. Since the coalescence process is expected to occur at the late stage of
the collision, the parameter B; is related to the emission volume. In a simple coalescence approach, which
describes the uncorrelated particle emission from a point-like source, B; is expected to be independent
of pr and multiplicity. However, it has been observed that B, at a given transverse momentum decreases
as a function of multiplicity, suggesting that the nuclear emission volume increases with multiplicity
[2, 19 16]. In Pb-Pb collisions the B, parameter as a function of pr shows an increasing trend, which
is usually attributed to the position-momentum correlations caused by radial flow or hard scatterings
[L7, [18]. Such an increase of B, as a function of pr has in fact also been observed in pp collisions
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at /s =7 TeV [6]. However, if pp collisions are studied in separate intervals of multiplicity, B; is
found to be almost constant as a function of pt [8]]. Similarly, B, does not depend on pt in multiplicity
selected p—Pb collisions [9]. Moreover, the highest multiplicities reached in pp collisions are comparable
with those obtained in p—Pb collisions and not too far from peripheral Pb—Pb collisions. Therefore, the
measure of B, as a function of p for finer multiplicity intervals in pp collisions at 1/s = 13 TeV gives the
opportunity to compare different collision systems and to evaluate the dependence on the system size.

The paper is organized as follows. Section [2] discusses the details of the ALICE detector. Section [3]
describes the data sample used for the analysis and the corresponding event and track selection criteria.
Section [] presents the data analysis steps in detail, such as raw yield extraction and various corrections,
as well as the systematic uncertainty estimation. In Section [5] the results are presented and discussed.
Finally, conclusions are given in Section [0]

2 The ALICE detector

A detailed description of the ALICE detectors can be found in [19] and references therein. For the present
analysis the main sub-detectors used are the VO, the Inner Tracking System (ITS), the Time Projection
Chamber (TPC) and the Time-of-Flight (TOF), which are all located inside a 0.5 T solenoidal magnetic
field.

The VO detector [20] is formed by two arrays of scintillation counters placed around the beampipe on
either side of the interaction point: one covering the pseudorapidity range 2.8 < 1 < 5.1 (VOA) and the
other one covering —3.7 < n < —1.7 (VOC). The collision multiplicity is estimated using the counts in
the VO detector, which is also used as trigger detector. More details will be given in Section 3]

The ITS [21], designed to provide high resolution track points in the proximity of the interaction region, is
composed of three subsystems of silicon detectors placed around the interaction region with a cylindrical
symmetry. The Silicon Pixel Detector (SPD) is the subsystem closest to the beampipe and is made of
two layers of pixel detectors. The third and the fourth layers consist of Silicon Drift Detectors (SDD),
while the outermost two layers are equipped with double-sided Silicon Strip Detectors (SSD). The inner
radius of the SPD, 3.9 cm, is essentially given by the radius of the beam pipe, while the inner field cage
of the TPC limits the radial span of the entire ITS to be 43 cm. The ITS covers the pseudorapidity range
In| < 0.9 and it is hermetic in azimuth.

The same pseudorapidity range is covered by the TPC [22], which is the main tracking detector, consist-
ing of a hollow cylinder whose axis coincides with the nominal beam axis. The active volume, filled with
a Ne/CO,/N, gas mixture (Ar/CO,/N; in 2016), at atmospheric pressure, has an inner radius of about
85 cm, an outer radius of about 250 cm, and an overall length along the beam direction of 500 cm. The
gas is ionised by charged particles traversing the detector and the ionisation electrons drift, under the in-
fluence of a constant electric field of ~ 400 V/cm, towards the endplates, where their position and arrival
time are measured. The trajectory of a charged particle is estimated using up to 159 combined measure-
ments (clusters) of drift times and radial positions of the ionisation electrons. The charged-particle tracks
are then formed by combining the hits in the ITS and the reconstructed clusters in the TPC. The TPC is
used for particle identification by measuring the specific energy loss (dE /dx) in the TPC gas.

The TOF system [23] covers the full azimuth for the pseudorapidity interval |n| < 0.9. The detector is
based on the Multi-gap Resistive Plate Chambers (MRPCs) technology and it is located, with a cylindri-
cal symmetry, at an average distance of 380 cm from the beam axis. The particle identification is based
on the difference between the measured time-of-flight and its expected value, computed for each mass
hypothesis from track momentum and length. The overall resolution on the time-of-flight of particles is
about 80 ps.

A precise starting signal for the TOF system can be also provided by the TO detector, consisting of two
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arrays of Cherenkov counters, TOA and TOC, which cover the pseudorapidity regions 4.61 <1 < 4.92
and 3.28 < n < 2.97, respectively [24].

3 Data sample

The data samples used in this work consist of approximately 950 million minimum bias pp events col-
lected during the LHC proton runs in 2016 and 2017. The data were collected using a minimum-bias
trigger requiring at least one hit in both the VO detectors. Moreover, the timing information of the VO
scintillators is used for the offline rejection of events triggered by interactions of the beam with the resid-
ual gas in the LHC vacuum pipe. To ensure the best possible performance of the detector, events with
more than one reconstructed primary interaction vertex (pile-up events) were rejected.

The production of primary (anti-)deuterons is measured around mid-rapidity. In particular, the spectra are
provided within a rapidity window of |y| < 0.5. To ensure that all tracks have the maximal length, only
those in the pseudorapidity interval |1| < 0.8 are selected. In order to guarantee good track momentum
and dE /dx resolution in the relevant pr ranges, the selected tracks are required to have at least 70
reconstructed points in the TPC and two points in the ITS. In addition, at least one of the ITS points has
to be measured by the SPD in order to assure for the selected tracks a resolution better than 300 yum on
the distance of closest approach to the primary vertex in the plane perpendicular (DCA,y) and parallel
(DCA.,) to the beam axis [19]. Furthermore, it is required that the ¥ per TPC reconstructed point is less
than 4 and tracks originating from kink topologies of weak decays are rejected.

Data are divided into ten multiplicity classes, identified by a roman number from I to X, going from the
highest to the lowest multiplicity. However, in this analysis classes IV and V are merged into a single
class to achieve a better statistical precision. The multiplicity classes are determined from the sum of the
VO signal amplitudes and defined in terms of percentiles of the INEL> O pp cross section as described
in Ref. [25]]. The mean charged particle multiplicity (dN,,/dn) for each class is reported in Table

4 Data analysis
4.1 Raw yield extraction

The identification of (anti-)deuterons is performed with two different methods, depending on their trans-
verse momentum. For pr < 1 GeV/c, the identification is done using a measurement of the dE /dx in
the TPC only. In particular, for each pt interval the number of (anti-)deuterons is extracted through a fit
with a Gaussian with two exponential tails to the ns distribution. Here, ns is the difference between the
measured TPC dE /dx and the expected one for (anti-)deuterons divided by the TPC dE /dx resolution.
However, for pt > 1 GeV/c it is more difficult to separate (anti-)deuterons from other charged particles
with this technique. Therefore, the particle identification in this kinematic region is performed using the
TOF detector. The squared mass of the particle is computed as m?> = p? (I%OF JL*—1/ cz), where froF is
the measured time-of-flight, L is the length of the track and p is the momentum of the particle. In order
to reduce the background, only the candidates with a dE/dx measured in the TPC compatible within
30 with the expected value for a (anti-)deuteron are selected. The squared-mass-distributions are fitted
with a Gaussian function with an exponential tail for the signal. A significant background is present for
pt > 1.8 GeV/c and is modelled with two exponential functions. In the range where the background is
negligible, the raw yield is extracted by directly counting the candidates. Otherwise, the squared-mass
distribution is fitted with the described model, using an extended-maximum-likelihood approach. The
(anti-)deuteron yield is then obtained by a fit parameter.
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4.2 Efficiency and acceptance correction

A correction for the tracking efficiency and the detector acceptance must be applied to obtain the real
yield. The correction is evaluated from Monte Carlo (MC) simulated events. The events are generated
using the standard generator PYTHIA8 (Monash 2013)[26]. However, PYTHIAS does not handle the
production of nuclei. Therefore, in each event it is necessary to inject (anti-)deuterons. In each pp col-
lision one deuteron or one anti-deuteron is injected, randomly chosen from a flat rapidity distribution in
the range |y| < 1 and a flat pr distribution in the range pr € [0,10] GeV/c. The correction is defined
as the ratio between the number of reconstructed (anti-)deuterons in the rapidity range |y| < 0.5 and in
the pseudorapidity interval || < 0.8 and the number of generated ones in |y| < 0.5. The correction is
computed separately for deuterons and anti-deuterons and for the TPC and TOF analyses.

Another correction is related to the trigger efficiency. All the selected events are required to have at least
one charged particle in the acceptance, i.e. in the pseudo-rapidity region |1| <1 (INEL > 0) [25]]. Due to
the imperfection of the trigger, some INEL > 0 events are wrongly rejected (event loss). Consequently,
all the (anti-)deuterons produced in the erroneously rejected events are lost as well (signal loss). There-
fore, it is necessary to correct the spectra for the event and the signal losses. Event loss is more relevant
at low multiplicity and almost negligible at high multiplicity (~ 12% for multiplicity class X and < 1%m
for multiplicity class I). The corrections are computed from MC simulations, because both the number of
rejected events and the number of (anti-)deuterons produced in those same events are known. However,
it is not possible to count the number of lost (anti-)deuterons directly, because the artificial injection of
one (anti-)deuteron per event will bias the number of lost candidates that can be extracted from this MC
data set. Instead, the number of lost pions, kaons and protons are extracted from a different MC data set
and then these values are extrapolated to the deuteron mass. The standard transport code used in ALICE
simulations is GEANT3. However, it is known from other ALICE analyses on nuclei that GEANT4 pro-
vides a more realistic transport of (anti-)nuclei. The GEANT3 response is hence scaled to the GEANT4
one to take into account this effect. Moreover, the spectra obtained with TOF are further corrected to
take into account the TPC-TOF matching efficiency using a data-driven approach. This correction was
evaluated for the analysis of the (anti-)deuteron production in the p—Pb data sample collected in 2013 [9]].
In that year not all the modules of the Transition Radiation Detector (TRD), which is located between
the TPC and the TOF, were already installed. In this way it was possible to compute the effects of the
presence of the TRD, comparing the (anti-)deuteron yields in the regions where the TRD modules were
present and in those where they were not yet installed.

4.3 Subtraction of secondary deuterons

Secondary deuterons are produced in the interaction of particles with the detector material and their
contribution must be subtracted from the total measured deuteron yield. However, the production of
secondary anti-deuterons is extremely rare due to baryon number conservation. Hence, the correction is
applied only to the deuteron spectra. The fraction of primary deuterons is evaluated via a fit to the DCA,,
distribution of the data, as described in [[1]]. The template for primary deuterons is obtained from the
measured DCA,, of anti-deuterons. The template from secondary deuterons is instead obtained from MC
simulations. The production of secondary deuterons is more relevant at low pt (at pt = 0.7 GeV/c the
fraction of secondary deuterons is ~ 60%) and decreases exponentially with the transverse momentum
(< 5% for pr = 1.4 GeV/c). The only other possible contribution to secondary deuterons that is known
is the decay /3\H — d+p+ 7. However, 3 H production has not yet been observed in pp collisions and
its production yield is therefore lower than that of >He, which is less than a thousandth of the deuteron
production rate [6].

4.4 Systematic uncertainties

A list of all the sources of systematic uncertainty is shown in Table [T} The values are reported for the
multiplicity classes I and X, for the lowest and highest pt values.
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The track selection criteria are a source of systematic uncertainty. In this category we include all the
contributions related to the single-track selection: DCA, number of clusters in the TPC and, for the TOF
analysis, the width of the dE /dx selection applied in the TPC. These uncertainties are evaluated by vary-
ing the relevant selections. At low pt (pr < 1 GeV/c) the contribution is 2% for deuterons due to the
DCA; and DCA,, selections, which influence the estimation of the fraction of primary deuterons, while
for anti-deuterons this systematic uncertainty is around 1%. It increases with pt and the growth is more
pronounced for low multiplicity. The systematic uncertainty on the signal extraction is evaluated by di-
rectly counting the (anti-)deuteron candidates. It is obtained by varying the interval in which the direct
counting is performed. Its contribution is ~ 1% at low pt and increases with pr. Another source of
systematic uncertainty is given by the incomplete knowledge of the material budget of the detector in the
Monte Carlo simulations. The effect is evaluated by comparing different MC simulations in which the
material budget was increased and decreased by 4.5%. This value corresponds to the uncertainty on the
determination of the material budget by measuring photon conversions. This particular systematic uncer-
tainty is below 1%. The imperfect knowledge of the hadronic interaction cross section of (anti-)deuterons
with the material contributes to the systematic uncertainty as well. Its effect is evaluated with the same
data-driven approach used to investigate the TOF-matching efficiency, as described in section 4.2} Half
of the correction is taken as its uncertainty, contributing 4% to the systematic uncertainty for deuterons
and 7.5% for anti-deuterons. Similarly, an uncertainty related to the ITS-TPC matching is considered.
It is evaluated from the difference between the ITS-TPC matching efficiencies in data and MC and its
contribution is less than 2.5%. Finally, a source of systematic uncertainties results from the signal loss
correction. It is assumed to be half of the difference between the signal-loss correction (described in
section[4.2) and 1. It is strongly dependent on the event multiplicity: it is negligible at high multiplicity
(multiplicity classes from I to VII) and contributes up to 6% in the lowest multiplicity class (class X).
Where present, it decreases with pr.

Table 1: Summary of the main contributions to the systematic uncertainties for the extreme multiplicity classes
I and X. Values in brackets are referred to anti-deuterons. If they are not present, the systematic uncertainty is
common for deuterons and anti-deuterons. More details about the sources of the uncertainties can be found in the
text.

Source d (d)
Multiplicity Class I Class X
pr (GeV/c) 0.7 3.8 0.7 2.6
Track selection 2% (1%) 2% (3%) 2% (1%) 5% (6%)
Signal extraction 1% T% (7%) 1% 5% (5%)
Material budget < 1% <1% <1% <1%
TPC-TOF matching 4% (71.5%) 4% (7.5%) 4% (7.5%) 4% (7.5%)
ITS-TPC matching 1% 2.5% 1% 2.5%
Signal Loss - - 6% 3%
Total 5% (8%) 9% (11%) 8% (10%) 10% (12%)

5 Results and Discussion

The transverse momentum spectra of deuterons and anti-deuterons in different multiplicity classes as
well as INEL>0 pp collisions are reported in Figure |1 The spectra normalised to inelastic pp colli-
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deuterons, pp, Vs = 13 TeV
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Figure 1: Transverse-momentum spectra of deuterons (top) and anti-deuterons (bottom) measured in pp collisions
at /s = 13 TeV in different multiplicity classes and in INEL>0 events. The mean charged-particle multiplicity
for classes I and X are reported in the figures and all the values for the multiplicity classes can be found in Table 2}
The statistical uncertainties are represented by vertical bars while the systematic uncertainties are represented by
boxes. The dashed lines are individual fits with a Lévy-Tsallis function [27]].

sions (INEL) are included in the data provided with this paper. The mean charged-particle multiplicity
(dN.,/dn) for each class is reported in Table 2| The spectra exhibit a slight hardening with increasing
multiplicity: the slope of the spectra becomes less steep and the mean transverse momentum (py) moves
towards higher values. This effect is similar to that observed in Pb—Pb collisions, where it is explained
with the presence of increasing radial flow with centrality [1} 28]]. However, in pp collisions the intensity
of the hardening is much lower. The ratio between the spectra of anti-deuterons and deuterons for all the
multiplicity classes under study is reported in Figure[2] The ratio is compatible within uncertainties with
unity in all multiplicity classes.

To calculate the integrated yield (dN/dy) and the mean pr the spectra have been fitted with the Lévy-
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Tsallis function [27, 29, [30]:

d’N _dN pr(n—1)(n—2) |y M om -
dydpr  dy nC[nC+m(n—2)] nC ’

2

where m is the particle rest mass (i.e. the mass of the deuteron), mt = /m?+ p% is the transverse

mass, while n, dN/dy and C are free fit parameters. The Lévy-Tsallis function is used to extrapolate
the spectra in the unmeasured regions of pr. One contribution to the systematic uncertainty is obtained
by shifting the data points to the upper border of their systematic uncertainty and to the corresponding
lower border. The difference between these values and the reference one is taken as an uncertainty.
Another contribution to the systematic uncertainty is estimated by using alternative fit functions such as
simple exponentials depending on pt and mrt, as well as a Boltzmann function. The two contributions
are summed in quadrature. The extrapolation amounts to 25% of the total yield in the highest multiplicity
class, where the widest pt range is measured, and increases up to 35% in the lowest multiplicity class.

The statistical uncertainty on the integrated yield is obtained by moving the data points randomly within
their statistical uncertainties, using a Gaussian probability distribution centered at the measured data
point, with a standard deviation corresponding to the statistical uncertainty. In the unmeasured regions
at low and high pr, the value of the fit function at a given prt is considered. In this case the statistical
uncertainty is estimated as the uncertainty of the integral of the fit function over a region around that
particular pt value and with a predefined width. The extrapolated points are then coherently moved by
a random fraction of their statistical uncertainties. This operation is repeated 1000 times and for each
variation an integrated yield is evaluated. The resulting yield distribution is fitted with a Gaussian and
the width of this distribution is taken as the statistical uncertainty. Following the same procedure, the
(pr) and its statistical and systematic uncertainties are computed. The resulting mean pr and dN/dy, as
well as the parameters of the individual Lévy-Tsallis fits, are listed in Table 2]

VOM Multiplicity Classes

VIl

did

did

did

P, (GeVic)

Figure 2: Ratio between the transverse momentum spectra of anti-deuterons and deuterons in different multi-
plicity classes. The statistical uncertainties are represented by vertical bars while the systematic uncertainties are
represented by boxes.
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Table 2: Summary of the relevant information about the multiplicity classes and the fits to the measured transverse
momentum spectra. (dN,,/dn) is the mean pseudorapidity density of the primary charged particles [25]. n and C
are the parameters of the Lévy-Tsallis fit function [27]]. dN/dy is the integrated yield, with statistical uncertainties,
multiplicity-uncorrelated and multiplicity-correlated systematic uncertainties (see the text for details). (pr) is the
mean transverse momentum.

Mul:;:::c“y (AN, /dn) n C (GeV) dN/dy (x1074) (p1) (GeVie)

I 2602+035| 743 |037+005| 160+04+05+1.8 | 1.57+0.08 = 0.05 = 0.03

1 20024027 | 743 0324004 | 122+£02+04+14 | 1.43 +0.04 £ 0.04 = 0.02

1 16174022 | 642 | 0274003 | 94+01+0.3+1.1 | 131003003004
IV+V | 12914013 | 8£3 | 0274003 | 7.13+0.08 £ 0.20 = 0.79 | 1.21 % 0.02 % 0.01 = 0.03
VI 10.0240.14 | 7+2 | 023+0.03 | 5.34+0.07 £ 0.20 £ 0.59 | 1.12 % 0.02 % 0.01 = 0.03

VII 795+0.11 | 6+2 | 0.19+0.03 | 3.99 £ 0.07 £ 0.20 = 0.44 | 1.06 % 0.02 % 0.01 = 0.03
VIII 6.32+0.09 | 17413 | 023 £0.03 | 2.73 £ 0.04 £ 0.06 = 0.30 | 0.98 % 0.01 % 0.01 = 0.03

IX 4504007 | 1045 | 0.19£0.03 | 1.64 £ 0.03 £ 0.06 = 0.19 | 0.92 % 0.01 % 0.01 = 0.03

X 2554004 | 10£5 | 0.15%0.02 | 0.59 = 0.02 + 0.04 £ 0.07 | 0.82 £ 0.01 % 0.02 = 0.02

The coalescence parameter as a function of the transverse momentum is shown in Figure [3] The trans-
verse momentum spectra needed for the B, computation are taken from Ref. [31]]. The B, values for
INEL>0 collisions show a significant deviation from a transverse momentum independent coalescence
parameter as expected by the simplest implementation of the coalescence model. However, it has been
shown [8]] that the the multiplicity-integrated coalescence parameter is distorted because deuterons are
biased more towards higher multiplicity than protons, and consequently have harder pr spectra than
expected from inclusive protons. The coalescence parameter evaluated in fine multiplicity classes is
consistent with a flat behaviour, in agreement with the expectation of the simple coalescence model.

anti-deuterons, pp, /s = 13 TeV
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Figure 3: Coalescence parameter B, for different multiplicity classes and for INEL>0 collisions. The statistical
uncertainties are represented by vertical bars while the systematic uncertainties are represented by boxes. B, is
shown as a function of pr/A, being A = 2 the mass number of the deuteron.
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The evolution of the coalescence parameter as a function of the charged particle multiplicity is sensitive
to the production mechanism of deuterons. Recent formulations of the coalescence model [32] [33]] im-
plement an interplay between the size of the collision system and the size of the light nuclei produced
via coalescence.

Figure ] shows how the By, for a fixed transverse momentum interval, evolves in different systems as a
function of the charged particle multiplicity. B; is shown at pyr = 0.75 GeV/c, which was measured
in all the analyses. However, the trend is the same for other pr values. The measurements are com-
pared with the model descriptions detailed in [33]]. The two descriptions use different parameterisations
for the size of the source: one uses the ALICE measurements of system radii from HBT studies[34];
the other one is fixed to describe the B, of deuterons in central Pb—Pb collisions at /sy = 2.76 TeV.
The first parameterisation (dashed red line) describes well the measured B; in pp and p—Pb collisions,
while it overestimates the measurements in Pb—Pb collisions. However, as outlined by the authors in
[33], a more refined parameterisation of the HBT radius evolution through different systems might re-
duce the observed discrepancy. The parameterisation of the source size fixed to the By measurement in
central Pb—Pb collisions already departs from the measurements in peripheral Pb—Pb collisions and it
underestimates the coalescence parameter for small colliding systems.
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Figure 4: Coalescence parameter B, at pr/A = 0.75 GeV/c as a function of multiplicity in pp collisions at
Vs = 13 TeV and in /s = 7 TeV [8], in p-Pb collisions at \/s\n = 5.02 TeV [9] and in Pb—Pb collisions
at \/sNn = 2.76 TeV [1]]. The statistical uncertainties are represented by vertical bars while the systematic uncer-
tainties are represented by boxes. The two lines are theoretical predictions based on two different parameterisations
of the HBT radius, see text for details.

Figure 5| shows the ratio of the pr-integrated yields of deuterons and protons for different multiplicities
in different collisions systems and at different energies. The ratio increases monotonically with multi-
plicity for pp and p—Pb collisions and eventually saturates for Pb—Pb collisions. The experimental data
are compared with a SHM prediction. In this implementation of the model, called the Canonical Statisti-
cal Model (CSM), exact conservation of baryon number (B), charge (Q), and strangeness (§) is enforced
using the recently developed THERMAL-FIST package [14]]. The calculations with the CSM are per-
formed using 155 MeV for the chemical freeze-out temperature, B = Q = § = 0 and two different values
of the correlation volume, expressed in terms of dV /dy, corresponding to one and three units of rapidity,
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respectively. The model qualitatively reproduces the trend observed in data. This might suggest that
for small collision systems the light (anti-) nuclei production could be canonically suppressed and that a
canonical correlation volume might exist. The correlation volume required to describe the measurements
is larger than one unit of rapidity. However, such a canonical suppression should also affect the p/7 ratio
in a similar way and this is not observed in the experimental measurements [11}[35]].

A full coalescence calculation, taking into account the interplay between the system size and the width
of the wave function of the produced (anti-)deuterons, is also able to describe the measured trend of the
d/p ratio [36] and it describes the data consistently better than CSM for all system sizes.
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Figure 5: Ratio between the pr-integrated yields of deuterons and protons for different multiplicities in pp
collisions at /s = 13 TeV and in \/s = 7 TeV [8], in p-Pb collisions at \/sxy = 5.02 TeV [9] and in
Pb-Pb collisions at \/syy = 2.76 TeV [1]]. The statistical uncertainties are represented by vertical bars while
the systematic uncertainties are represented by boxes. The two black lines are the theoretical predictions of the
Thermal-FIST statistical model [[14] for two sizes of the correlation volume V, while the magenta line represents
the expectation from a coalescence model [36].

6 Conclusions

The results on (anti-)deuteron production presented in this paper display a smooth evolution with mul-
tiplicity across different reaction systems, in agreement with the measurements of other light-flavoured
hadrons. This suggests that a common physics process might be able to describe the nuclei production
in all hadronic collision systems. Coalescence and statistical hadronisation models are able to describe
qualitatively the observed trend in the d/p ratio and B; as a function of the charged particle multiplicity.
However, with the precision of the current measurements it is not possible to distinguish which mecha-
nism drives the (anti-)deuteron production. On the other hand, it is not clear whether the CSM would be
able to describe simultaneously the d/p and the p/x ratios with the same chemical freeze-out conditions.

Since no substantial differences are seen in the dependence of nuclei production on the charged multiplic-
ity in pp and p—Pb collisions, it will be interesting to see whether ALICE, with the enhanced luminosity
in LHC Run 3, can confirm this dependence when measuring nuclei production in pp collisions with
charged particle multiplicities comparable to those measured in Pb-Pb collisions.
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