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Abstract

This dissertation is concerned with the task of map-based self-localization,

using images of the ground recorded with a downward-facing camera. In this

context, map-based (self-)localization is the task of determining the position

and orientation of a query image that is to be localized. The map used for

this purpose consists of a set of reference images with known positions and

orientations in a common coordinate system. For localization, the considered

methods determine correspondences between features of the query image and

those of the reference images.

In comparison with localization approaches that use images of the surrounding

environment, we expect that using images of the ground has the advantage

that, unlike the surrounding, the visual appearance of the ground is often long-

term stable. Also, by using active lighting of the ground, localization becomes

independent of external lighting conditions.

This dissertation includes content of several published contributions, which

present research on the development and testing of methods for feature-based

localization of ground images. Our first contribution examines methods for the

extraction of image features that have not been designed to be used on ground

images. This survey shows that, with appropriate parametrization, several of

these methods are well suited for the task.

Based on this insight, we develop and examine methods for various subtasks

of map-based localization in the following contributions. We examine global

localization, where all reference images have to be considered, as well as local

localization, where an approximation of the query image position is already

known, which allows for disregarding reference images with a large distance to

this position.

In our second contribution, we present the first systematic comparison of

state-of-the-art methods for ground texture based localization. Furthermore,

we present a method, which is characterized by its usage of our novel feature

matching technique. This technique is called identity matching, as it matches

only those features with identical descriptors, in contrast to the state-of-the-art
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that also matches features with similar descriptors. We show that our method

is well suited for global and local localization, as it has favorable scaling with

the number of reference images considered during the localization process. In

another contribution, we develop a variant of our localization method that is

significantly faster to compute, as it applies a sampling approach to determine

the image positions at which local features are extracted, instead of using

classical feature detectors.

Two further contributions are concerned with global localization. The first

one introduces a prediction model for the global localization performance,

based on an evaluation of the local localization performance. This allows us

to quickly evaluate any considered parameter settings of global localization

methods. The second contribution introduces a learning-based method that

computes compact descriptors of ground images. This descriptor can be used

to retrieve the overlapping reference images of a query image from a large set

of reference images with little computational effort.

The most recent contribution included in this dissertation presents a new

ground image database, which was recorded with a dedicated platform using a

downward-facing camera. In addition to the data, we also explain our guidelines

for the construction of the platform. In comparison with existing databases,

our database contains more images and presents a larger variety of ground

textures. Furthermore, this database enables us to perform the first systematic

evaluation of how localization performance is affected by the time interval

between the point in time at which the reference images are recorded and the

point in time at which the query image is recorded. We find out that for outdoor

areas all ground texture based localization methods have reliability issues, if

the time interval between the recording of the query and reference images is

large, and also if there are different weather conditions. These findings point

to remaining challenges in ground texture base localization that should be

addressed in future work.

iv



Kurze Zusammenfassung

Diese Dissertation beschäftigt sich mit der Aufgabe der kartenbasierten Eigen-

lokalisierung anhand von Bodenbildern, die mit einer nach unten gerichteten

Kamera aufgenommen werden. Als kartenbasierte (Eigen-)Lokalisierung beze-

ichnen wir die Bestimmung der Position und Orientierung eines zu lokalisieren-

den Bildes in einer Karte. Die dabei verwendete Karte wird aus Referenzbildern

zusammengesetzt, deren Position und Orientierung zuvor bestimmt wurde. Für

die Lokalisierungsaufgabe werden Methoden betrachtet, die Korrespondenzen

zwischen Bildmerkmalen aus diesen Referenzbildern und einem zu lokalisieren-

den Bild identifizieren. Wir erwarten, dass ein Vorteil dieses Ansatzes gegenüber

der Lokalisierung anhand von Bildern der Umgebung darin bestehen kann,

dass das visuelle Erscheinungsbild des Bodens langfristig stabiler ist als das der

Umgebung. Durch den Einsatz einer aktiven Beleuchtung des Bodens wird die

Lokalisierung zudem unabhängig vom Umgebungslicht.

In den in dieser Dissertation präsentierten Beiträgen werden neue Verfahren

für die bildmerkmalsbasierte Lokalisierung von Bodenbildern entwickelt und

getestet. Unser erster Beitrag untersucht Bildmerkmalsextraktionsmethoden,

die ursprünglich nicht für Bodenbilder entwickelt wurden, auf ihre Eignung

für die bodentexturbasierte Lokalisierung. Dabei zeigt sich, dass bei passender

Parametrisierung einige dieser Methoden gut für die Aufgabe geeignet sind.

Ausgehend von dieser Erkenntnis entwickeln und untersuchen wir in den da-

rauf folgenden Beiträgen Verfahren für verschiedene Teilaufgaben der karten-

basierten Lokalisierung. Wir betrachten sowohl den Fall der globalen Lokali-

sierung, bei der alle Referenzbilder in Betracht gezogen werden müssen, sowie

die lokale Lokalisierung bei der die aktuelle Position bereits ungefähr bekannt

ist, sodass weit von dieser Position entfernte Referenzbilder bei der Lokalisie-

rung nicht berücksichtigt werden müssen. In unserem zweiten Beitrag präsen-

tieren wir einen systematischen Vergleich aktueller Methoden zur bodentextur-

basierten Lokalisierung, und untersuchen dabei detailliert die Lokalisierungsleis-

tung der Methoden für die globale und lokale Lokalisierung. Zudem stellen

wir eine neue Lokalisierungsmethode vor, die sich insbesondere durch eine

neue von uns eingeführte Technik zur Korrespondenzfindung zwischen den
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Bildmerkmalen auszeichnet. Dabei handelt es sich um den Identitätsabgle-

ich, bei dem ausschließlich Merkmale mit identischen Merkmalsbeschreibun-

gen als mögliche Korrespondenzen berücksichtigt werden. Dies steht im Kon-

trast zu üblichen Verfahren der Korrespondenzfindung, die auch ähnliche

Deskriptoren berücksichtigen. Wir zeigen, dass unsere Methode gut für beide

Lokalisierungsmodi geeignet ist, da sie vorteilhaft mit der Anzahl der berück-

sichtigten Referenzbilder skaliert. In einem weiteren Beitrag entwickeln wir

eine Variante dieser Lokalisierungsmethode, die durch den Einsatz eines Stich-

probenverfahrens anstatt eines klassischen Merkmalsdetektionsverfahrens

deutlich weniger Rechenaufwand verursacht.

In zwei weiteren Beiträgen stellen wir Verfahren für die globale Lokalisierung

vor. Zum Einen entwickeln wir eine modellbasierte Vorhersage, welche auf

Grundlage einer Evaluation der lokalen Lokalisierungsleistung einer Methode,

dessen Erfolgsrate bei der globalen Lokalisierung prädiziert. Diese Vorhersage

nutzen wir zur schnelleren Auswertung möglicher Parametrisierungen von glob-

alen Lokalisierungsmethoden. Zum Zweiten entwickeln wir ein neues Verfahren

des maschinellen Lernens für die Beschreibung von Bodenbildern anhand

eines kompakten Deskriptors. Dieser Deskriptor kann dafür genutzt werden,

die überlappenden Referenzbilder eines zu lokalisierenden Bildes mit geringem

Rechenaufwand aus einer großen Menge Referenzbilder herauszusuchen.

Der chronologisch letzte Beitrag, der in diese Dissertation aufgenommen wurde,

präsentiert eine neue Datenbasis von Bodenbildern. Diese wurde mit ein-

er eigens dafür aufgebauten Aufnahmeplattform mit nach-unten-gerichteter

Kamera aufgenommen. Die Leitlinien für den Aufbau dieser Plattform präsen-

tieren wir ebenfalls. Unsere Datenbasis enthält im Vergleich zu vorhandenen

Datenbasen deutlich mehr Bilder und bietet eine größere Anzahl verschiedener

Bodentexturen. Außerdem können wir mit dieser Datenbasis erstmals systema-

tisch untersuchen, wie die Lokalisierungsleistung von der Zeitspanne zwischen

dem Zeitpunkt der Kartierung des Anwendungsbereichs und der Aufnahme

des zu lokalisierenden Bildes abhängt. Hier zeigt sich, dass große Zeitspannen

eine Herausforderung für alle aktuellen Lokalisierungsmethoden sind, wenn

die Bilder in Außenbereichen aufgenommen wurden. Ebenfalls erweist sich

die Korrespondenzfindung als schwierig, wenn Karte und Lokalisierungsbild

bei unterschiedlichen Wetterbedingungen aufgenommen worden sind. Diese

Erkenntnisse weisen auf verbleibende Probleme im Bereich der bodentextur-

basierten Lokalisierung hin, die in Zukunft untersucht werden sollten.
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Ausführliche Zusammenfassung

Dies ist eine ausführliche Zusammenfassung der zugrundeliegenden Motiva-

tion sowie der enthaltenen wissenschaftlichen Beiträge dieser Dissertation.

Motivation

Eine zuverlässige und präzise Eigenlokalisierung ist die Grundlage für viele Auf-

gaben selbständig handelnder Agenten, wie Roboter oder autonome Fahrzeuge.

Die bodentexturbasierte Lokalisierung anhand von visuellen Merkmalen des

Bodens ist dabei ein vielversprechender Ansatz mit einigen entscheidenden

Vorteilen gegenüber Lokalisierungsmethoden, die beispielsweise visuelle Merk-

male aus der Umgebung verwenden. Ein Vorteil besteht darin, dass der Boden

in vielen Einsatzgebieten auch über längere Zeiträume (visuell) relativ stabil ist.

Dies gilt insbesondere für Einsatzgebiete in Innenräumen und wenn der Agent

mit einer eigenen Bodenbeleuchtung ausgestattet ist, sodass die äußerlichen

Lichtbedingungen keinen oder nur wenig Einfluss auf die Bildaufnahme haben.

Die bodentexturbasierte Lokalisierung ist daher beispielsweise eine Lösung für

Anwendungsfälle, in denen andere visuelle Orientierungspunkte regelmäßig

ihre Position ändern oder durch Hindernisse verdeckt werden, zum Beispiel

auf einem großen Parkplatz oder in einer stark frequentierten Fußgängerzone.

Ein weiterer Vorteil besteht darin, dass es mit diesem Ansatz ausreicht den

Boden zu betrachten, sodass die Privatsphäre durch den für die Lokalisierung

genutzten Sensor nicht beeinträchtigt wird.

Die in dieser Dissertation hauptsächlich betrachtete Aufgabe besteht in der

Bestimmung der Position und Orientierung eines Bildes in einer voraufgezeich-

neten Karte, die wiederum aus einer Vielzahl Referenzbilder besteht, deren Posi-

tionen und Orientierungen im Kartenkoordinatensystem zuvor bestimmt wor-

den sind. Der aktuelle Stand der Technik im Bereich der bodentexturbasierten

Lokalisierung mit Hilfe einer voraufgezeichneten Karte besteht in der Detektion

von charakteristischen visuellen Merkmalen in den kartierten Bodenbildern

und dem anschließenden Wiederauffinden der entsprechenden visuellen Merk-

vii



male in den zur Lokalisierung aufgenommenen Bildern. Die Lokalisierung

anhand von Bildmerkmalen kann in fünf Schritte unterteilt werden, wobei die

ersten drei Schritte jeweils pro Bild durchgeführt werden (inklusive der Ref-

erenzbilder), während die beiden weiteren pro Lokalisierungsvorgang durchge-

führt werden. (1) Zunächst werden charakteristische Bildbereiche bestimmt,

(2) dann wird eine Teilmenge dieser Bildbereiche für die weitere Verarbeitung

selektiert, (3) diese Bildbereiche werden dann mit Hilfe eines Verfahrens für die

Merkmalsdeskription beschrieben. (4) Nun werden die Deskriptoren der Merk-

male des zu lokalisierenden Bildes mit denen der Referenzbilder verglichen, und

anhand eines Ähnlichkeitsmaßes wird bestimmt, welche Merkmale miteinan-

der korrespondieren könnten. (5) Die in diesem Prozess gefundenen Merkmal-

skorrespondenzkandidaten können dann abschließend genutzt werden, um

die Position und die Orientierung des zu lokalisierenden Bildes relativ zu den

Referenzbildern zu ermitteln.

Auch wenn aktuelle Methoden die Lokalisierungsaufgabe bereits zuverlässig zu

lösen scheinen (siehe [Kozak and Alban, 2016, Zhang et al., 2019, Chen et al.,

2018]), handelt es sich bei den berichteten Ergebnissen um reine Selbsteval-

uationen. So fehlte es bisher einerseits an einer vergleichenden Evaluation

der vorhandenen Ansätze anhand der gleichen Lokalisierungsprobleme, und

andererseits fehlte es an einer ausgiebigen Evaluation möglicher Alternativen

und Varianten der vorgeschlagenen Methoden. Insbesondere wurde dem Prob-

lem des Rechenaufwandes, beziehungsweise der benötigten Rechenzeit, bisher

nur wenig Aufmerksamkeit geschenkt. Gerade dieser Aspekt ist jedoch für den

praktischen Einsatz vor allem auf einem kostengünstigen Roboter kritisch, da

diesem nur eine geringe Menge an Rechen- und Batteriekapazität zur Verfü-

gung steht, und weil dieser im Echtzeitbetrieb auf eine aktuelle Information der

eigenen Position angewiesen ist. Des Weiteren fehlt bisher auch eine systematis-

che Untersuchung verschiedener Ausprägungen des Lokalisierungsproblems,

beispielsweise die Lokalisierung mit Hilfe einer bereits vorhandenen groben

Schätzung der aktuellen Position. Als weitere bisher nicht untersuchte Ausprä-

gung des Lokalisierungsproblems haben wir die Lokalisierung mit wesentlicher

zeitlicher Verzögerung zwischen Kartierung und Zeitpunkt der Lokalisierung

identifiziert, wenn diese dazu führt, dass sich der Boden teilweise durch Abtra-

gungen, Verschmutzungen oder Nässe verändert hat.

Diese Dissertation adressiert unter anderem diese offenen Fragestellungen. Die

wichtigsten Beiträge dieser Arbeit werden im Folgenden dargelegt.

viii



Beiträge

Diese Dissertation besteht im Wesentlichen aus sechs wissenschaftlichen Beiträ-

gen, von denen vier ([Schmid, Simon, and Mester, 2019, 2020a,b, Schmid, Si-

mon, Radhakrishnan, Frintrop, and Mester, 2022]) in hochrangigen Konferen-

zproceedings mit einem „peer-review“-System publiziert wurden.

Studie über geeignete Bildmerkmale

Diese Studie [Schmid, Simon, and Mester, 2019] beschäftigt sich damit, einige

der am häufigsten verwendeten Merkmalsextraktionsmethoden auf ihre Eig-

nung für die bodentexturbasierte Lokalisierung zu evaluieren.

Das Ziel dieser systematischen Evaluation besteht darin, die für die bodentex-

turbasierte Lokalisierung am besten geeigneten Verfahren unter den bereits

etablierten Verfahren zur Detektion, Selektion, und Deskription von visuellen

Merkmalen zu bestimmen. Die Ergebnisse sollen bei der Konstruktion einer

bodentexturbasierten Lokalisierungsmethode als Entscheidungshilfe für ein

Vorgehen zur Merkmalsextraktion dienen. Gleichzeitig beantwortet diese Arbeit

auch die Frage, ob Merkmalsextraktionsverfahren, die für Umgebungsbilder

konstruiert wurden, auch für Bodenbilder geeignet sind, oder ob ein grundle-

gend neues Verfahren für diesen Anwendungsfall entwickelt werden muss.

Zum Zeitpunkt der Veröffentlichung dieser Studie existierten bereits Studi-

en über die Eignung von Merkmalsextraktionsverfahren für die bodentextur-

basierte Lokalisierung (siehe [Zhang et al., 2019, Kozak and Alban, 2016, Otsu

et al., 2013]). Unsere Studie geht jedoch in mehreren Punkten über diese Ar-

beiten hinaus. Insbesondere berücksichtigt sie eine größere Anzahl von Merk-

malsextraktionsmethoden. Zusätzlich zur Merkmalsdetektion und Merkmals-

deskription berücksichtigt sie noch die Merkmalsselektion, und es werden

zusätzliche Erfolgsmetriken evaluiert, sodass die Vor- und Nachteile der Metho-

den detaillierter untersucht werden können. Des Weiteren ist unsere Studie die

erste, die sowohl die Eignung für die inkrementelle Bild-zu-Bild Lokalisierung,

als auch für die absolute kartenbasierte Lokalisierung untersucht.

Zunächst untersuchen wir in dieser Studie die Merkmalsdetektion in Kom-

bination mit der Merkmalsselektion. Dabei geht es darum, eine Menge von

Bildbereichen zu bestimmen, die zuverlässig in unabhängig voneinander verar-

beiteten Bildern mit überlappender Bodenabdeckung wiedergefunden werden.

Das heißt, dass in dem überlappenden Bereich zweier Bodenbilder möglichst

die gleichen Bildbereiche bestimmt werden sollten. Um dies zu untersuchen,
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verwenden wir synthetische Bildtransformationen. Dazu wird ein Bild beispiel-

sweise gedreht, mit Rauschen versehen oder es wird durch eine Gammakorrek-

tur eine Beleuchtungstransformation durchgeführt. Ein Vorteil dieser synthetis-

chen Transformationen besteht darin, dass die untersuchten Methoden sys-

tematisch auf ihre Robustheit gegenüber den jeweiligen Transformationen

untersucht werden können. Zusätzlich zu den synthetisch transformierten

Bildpaaren untersuchen wir Paare von separat aufgenommenen überlappen-

den Bodenbildern. Hierbei betrachten wir Bildpaare, die in direkter Sequenz

nacheinander aufgenommen wurden, um die Methoden auf ihre Eignung für

die Aufgabenstellung der inkrementellen Lokalisierung zu untersuchen, und

wir betrachten unabhängig voneinander aufgenommene Bilder (unabhängige

Aufnahmezeitpunkte und unabhängige Bildorientierungen), um die Methoden

für die kartenbasierte Lokalisierung zu untersuchen.

Unsere Ergebnisse zeigen, dass die vorhandenen Methoden zur Merkmalsex-

traktion grundsätzlich für die bodentexturbasierte Lokalisierung geeignet sind.

So konnten wir für die verschiedenen Lokalisierungsprobleme jeweils Kombi-

nationen aus Merkmalsdetektor, Merkmalsselektor, und Merkmalsdeskriptor

finden, die nahezu optimale Ergebnisse erzielen. Sie ermöglichen uns also eine

ausreichend große Anzahl korrekter Bildmerkmalskorrespondenzen zu find-

en, während nur eine geringe Anzahl inkorrekter Korrespondenzen erzeugt

wird. Dabei bestätigt unsere Studie im Wesentlichen die Schlussfolgerungen

anderer Untersuchungen dazu, welche Methoden für Bodenbilder geeignet

sind. Dementsprechend ergibt sich aus unserer Studie, dass es für die unter-

suchten Aufgabenstellungen keinen dringenden Bedarf für ein grundlegend

neues Verfahren zur Merkmalsextraktion aus Bodenbildern gibt.

Lokalisierungsmethode basierend auf Identitätsabgleich und

kompakten binären Deskriptoren

In diesem Beitrag [Schmid, Simon, and Mester, 2020a] präsentieren wir eine

neue Methode für die bodentexturbasierten Lokalisierung, welche insbeson-

dere mit dem Ziel entwickelt wurde, dass sie schneller berechnet werden kann

als andere aktuelle Methoden um für den Echtzeiteinsatz geeignet zu sein.

Wir adaptieren hierzu Micro-GPS, eine Methode von Zhang et al. [2019], welche

durch den Einsatz einer geometrischen Plausibilitätsprüfung zum Aussortieren

von inkorrekt vorgeschlagenen Merkmalskorrespondenzen gekennzeichnet

ist. Außerdem setzt die Methode auf eine effiziente Suchstruktur, um für jedes

Merkmal des Lokalisierungsbildes das Merkmal aus den Referenzbildern mit
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ähnlichstem Deskriptor ausfindig zu machen. Da die Erstellung der Suchstruk-

tur mit erheblichem Rechenaufwand verbunden ist, wird diese offline, also vor

der Lokalisierung, global erstellt, sodass gleichzeitig nach Korrespondenzen im

gesamten Anwendungsgebiet gesucht wird. Diese Suchstruktur ersetzen wir

durch ein neues Verfahren zur Korrespondenzfindung: den Identitätsabgleich.

Hierbei werden alle Merkmale mit identischem Deskriptor als mögliche Korre-

spondenzen in Betracht gezogen. Wir schlagen eine kosteneffiziente Implemen-

tierung des Identitätsabgleichs mit Hilfe von kompakten binären Deskriptoren

vor. Dabei beobachten wir bei der Anwendung dieser Technik, dass jedem

Merkmal aus dem Lokalisierungsbild in der Regel eine große Anzahl möglicher

Korrespondenzen aus den Referenzbildern zugewiesen wird. Wobei nur sehr

wenige dieser vorgeschlagenen Korrespondenzen als korrekte Korresponden-

zen angesehen werden können. Um diese wiederum von den inkorrekten Kor-

respondenzen zu trennen, erweist sich die geometrische Plausibilitätsprüfung

von Zhang et al. als äußerst nützlich.

Wir führen eine ausführliche Evaluation der vorgeschlagenen Lokalisierungs-

methode durch. Dabei vergleichen wir diese auch mit der Originalimplementa-

tion von Micro-GPS, sowie zwei weiteren von uns nachimplementierten Meth-

oden: Ranger [Kozak and Alban, 2016] und StreetMap [Chen et al., 2018]. In

einem ersten Experiment testen wir, ob die Methoden in der Lage sind, sich

auf Gebieten mit Größen zwischen 17, 70 m2 bis 41, 76 m2, die von 2014 bis 4043

Referenzbildern abgedeckt werden [Zhang et al., 2019], erfolgreich lokalisieren

können. Wir finden heraus, dass unsere Methode häufiger eine korrekte Lo-

kalisierung zustande bringt, als dies mit der Vergleichsmethode der Fall ist.

Anschließend führen wir eine Evaluation durch, bei der eine ungefähre Position

des zu lokalisierenden Bildes bereits bekannt ist. Dadurch ist es bei der Lokali-

sierung möglich, den berücksichtigten Suchradius in der Karte einzuschränken,

indem lediglich die Referenzbilder in der örtlichen Umgebung der geschätzten

Position in Betracht gezogen werden. Aus der Untersuchung dieser Aufgabe

ergibt sich, dass unsere Methode etwas seltener in der Lage ist, sich korrekt

zu lokalisieren als Ranger und StreetMap. Es zeigt sich allerdings, dass unsere

Methode durch die Verwendung des Identitätsabgleichs für die Korresponden-

zfindung einen Laufzeitvorteil gegenüber den anderen Methoden hat. Dies gilt

insbesondere im Vergleich mit Micro-GPS, welches durch die Verwendung der

globalen Suchstruktur für die Korrespondenzfindung nicht in der Lage ist, die

Menge der zur Lokalisierung berücksichtigten Referenzbilder einzuschränken.

Mit unserer Methode lässt sich die Position und Orientierung des Lokalisie-

rungsbildes schnell bestimmen, jedoch gilt dies nur, wenn die Merkmalsex-
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traktion beispielsweise mit Hilfe einer schnellen Grafikkarte durchgeführt wird,

da ein rechenaufwändiges Verfahren zur Merkmalsdetektion eingesetzt wird

(SIFT [Lowe, 2004]). In einer Folgeaktivität [Schmid, Simon, and Mester, 2020b]

präsentieren wir eine Variante unserer Lokalisierungsmethode, die in der Lage

ist den Rechenaufwand noch einmal weiter zu reduzieren, sodass ein rein CPU-

basierter Echtzeiteinsatz ermöglicht wird.

Dazu ersetzen wir die Verwendung eines Merkmalsdetektors mit einem Stich-

probenverfahren, bei dem unabhängig vom eigentlichen Bildinhalt beliebige

Bildausschnitte für die Merkmalsbildung verwendet werden. Die Bildauss-

chnitte können dabei entweder zufällig oder nach einem festgelegten Muster

bestimmt werden. Ein Vorteil, der sich aus dieser Technik ergibt, besteht darin,

dass die Rechenkosten für die Merkmalsdetektion praktisch vollständig elim-

iniert werden. Als Nachteil beobachten wir hingegen, dass eine größere Anzahl

Merkmale pro Bild verwendet werden muss, um eine ähnliche Lokalisierungsleis-

tung zu erzielen wie mit den klassischen Merkmalsdetektoren. Daher erhöht

die Verwendung des Stichprobenverfahrens den Speicherbedarf.

Unsere Ergebnisse zeigen, dass sowohl unsere Lokalisierungsmethode, als auch

Ranger [Kozak and Alban, 2016] und StreetMap [Chen et al., 2018] ähnlich gute

Leistung mit unserem Stichprobenverfahren, wie mit den klassischen Merk-

malsdetektoren, erzielen können. Hinsichtlich des Rechenaufwands profitiert

dabei unsere Methode am stärksten, da sie durch die Verwendung des Iden-

titätsabgleichs sehr günstig mit der Anzahl der berücksichtigten Merkmale

skaliert. Insgesamt erreichen wir mit dieser Variante unserer Methode das Ziel

einer rein CPU-basierten echtzeitfähigen Lokalisierungsmethode.

Modellbasierte Vorhersage

Eine Erkenntnis aus unseren vorherigen Beiträgen besteht darin, dass die

Lokalisierungsleistung der untersuchten Methoden stark von der verwendeten

Parametrisierung, insbesondere die der Merkmalsextraktionsmethode, abhängt.

Aufgrund der Größe der Parameterräume der evaluierten Lokalisierungsmetho-

den ist das finden einer geeigneten Parametrisierung jedoch rechen- bezieh-

ungsweise zeitaufwändig. Daher stellen wir im Beitrag [Schmid, Simon, and

Mester, 2021] ein Vorhersagemodell vor, das wir in einem automatisierten

Parameteroptimierungsverfahren einsetzen können, um mit wenig Rechenauf-

wand geeignete Parameter zu ermitteln.

Unser Vorhersagemodell kann dafür genutzt werden, eine mögliche Parame-

trisierung zu evaluieren, ohne dass diese dafür vollständig getestet werden
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muss. Dazu wird die Lokalisierungsmethode entsprechend parametrisiert und

lediglich auf einigen wenigen Testbildern ausgewertet. Anschließend werden

wichtige sich dabei ergebende Kennzahlen, wie die Anzahl korrekter und inkor-

rekter gefundener Korrespondenzen, genutzt, um zu prädizieren, wie erfolgre-

ich die Lokalisierungsmethode wäre, wenn nicht nur wenige Testbilder, sondern

alle Referenzbilder der Karte berücksichtigt worden wären.

Unsere anschließende Evaluation zeigt, dass das Modell die Lokalisierungserfol-

gsrate ausreichend präzise vorhersagen kann, sodass wir es in einem einfachen

automatisierten Parametrisierungsverfahren für die Auswertung von in Be-

tracht gezogenen Parametrisierungen nutzen können. Wir finden mit diesem

Verfahren innerhalb einiger Stunden Parametereinstellungen für unsere Lo-

kalisierungsmethode, mit denen wir uns ähnlich oft erfolgreich lokalisieren,

wie mit unseren aufwändig manuell bestimmten Parametern. Darüber hinaus

konnte die Rechenzeit unserer Lokalisierungsmethode mit den automatisiert

gefundenen Parametern noch einmal deutlich reduziert werden. Während des

Einsatzes des Parametrisierungsverfahrens werden hunderte Parametrisierun-

gen ausgewertet. Die Auswertung für eine einzelne Parametrisierung dauert

mit unserem Modell etwa 20 Sekunden, während dies ohne die Verwendung

des Modells über 55 Minuten benötigt.

Bildabgleich für die Suche überlappender Bodenbilder

Ein erfolgversprechender Ansatz zur Verbesserung der Lokalisierungserfol-

gsrate ist die Reduzierung der Anzahl der bei der Lokalisierung berücksichtigten

Referenzbilder, die keine Überlappung mit dem Lokalisierungsbild haben. Eine

einfache Möglichkeit dies zu erreichen, besteht darin, nur die Referenzbilder

aus der tatsächlichen örtlichen Umgebung des Lokalisierungsbildes zu berück-

sichtigen. Dies ist beispielsweise möglich, wenn die ungefähre Position bereits

vor der Lokalisierung bekannt ist. Ein alternativer Ansatz, der auch ohne eine

ungefähr bekannte Position funktioniert, besteht darin, einen Bildabgleich

durchzuführen, mit dem die mit dem Lokalisierungsbild überlappenden Ref-

erenzbilder identifiziert werden können.

Ein solcher Bildabgleich wird bereits von der Lokalisierungsmethode Street-

Map [Chen et al., 2018] eingesetzt, wenn beispielsweise bei der initialen Lo-

kalisierung keine ungefähre Position bekannt ist. Hier wird ein sogenannter

Bag-of-Words (BoW) Ansatz [Galvez-López and Tardos, 2012] verwendet. Dabei

handelt es sich um einen aggregierten Bilddeskriptor, der mit Hilfe der Deskrip-

toren der aus dem Bild extrahierten Merkmale berechnet wird.
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Unser Beitrag [Radhakrishnan, Schmid, Scholz, and Schmidt-Thieme, 2021]

besteht in einem neuen, auf tiefen künstlichen neuronalen Netzen basierenden,

Verfahren für diesen Bildabgleich. Dabei lernt das Netz vorherzusagen, wie groß

die geometrische Überlappung zweier Bodenbilder ist, indem es für diese Bilder

Deskriptoren generiert, deren euklidischer Abstand umgekehrt proportional

zur Überlappung wächst. Dementsprechend werden die Gewichte des Netzes

so angepasst, dass die Abstände der Bilddeskriptoren der am stärksten überlap-

penden Bilder am kleinsten wird. Anschließend können diese Bilddeskriptoren

für die Lokalisierung verwendet werden, indem die Referenzbilder mit den

Deskriptoren mit geringstem Abstand zum Deskriptor des Lokalisierungsbildes

verwendet werden.

In unserer experimentellen Evaluation fixieren wir die Anzahl berücksichtigter

Referenzbilder mit kleinsten Deskriptorabständen zum Deskriptor des Loka-

lisierungsbildes. Dabei zeigt sich, dass mit unserer Methode ein wesentlich

größerer Anteil dieser berücksichtigten Referenzbilder tatsächlich mit dem

Lokalisierungsbild überlappt als dies mit der BoW-Methode der Fall ist. Dies

gilt insbesondere für die schwieriger zu identifizierenden Referenzbilder mit

geringer Überlappung (kleiner 40%) mit dem Lokalisierungsbild. Es zeigt sich

auch, dass die Erfolgsrate unserer Lokalisierungsmethode deutlich gesteigert

werden kann, wenn nicht alle Referenzbilder bei der Lokalisierung in Betra-

cht gezogen werden, sondern nur jene, die von unserer Bildabgleichsmethode

extrahiert wurden. Die dabei erreichte Erfolgsrate ist zudem höher, als die

Erfolgsrate bei Verwendung der BoW-Methode.

Die HD Ground Datenbasis

Die systematische Evaluation ist ein essentieller Bestandteil der Entwicklung

neuer Lokalisierungsmethoden. Während eine Evaluation im Realbetrieb dabei

Aufschluss über die tatsächliche Anwendbarkeit der Methode liefern kann, ist

diese Art der Evaluation mit erheblichen Aufwand verbunden. Zudem ist zu

erwarten, dass sich die Ergebnisse von Durchlauf zu Durchlauf unterscheiden

werden. Für eine einfache und reproduzierbare Evaluation kann stattdessen auf

eine voraufgezeichnete Datenbasis gesetzt werden. Damit die Evaluation den-

noch aussagekräftige Ergebnisse liefern kann, sollte diese Datenbasis möglichst

umfangreich sein und die relevanten Anwendungsfälle abdecken.

Für die bisher beschriebenen Beiträge haben wir die Micro-GPS Datenbasis

[Zhang et al., 2019] verwendet. Nach unserem Wissen handelt es sich hierbei

bisher um die einzige öffentlich verfügbare Datenbasis, die für die Evaluation
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bodentexturbasierter Lokalisierungsmethoden geeignet ist. In unseren vorheri-

gen Beiträgen zeigte sich jedoch, dass für viele Lokalisierungsaufgaben alle

evaluierten Methoden nahezu optimale Lokalisierungserfolgsraten erzielen.

Daher stellt sich die Frage, ob diese Datenbasis tatsächliche alle relevanten

Herausforderungen der bodentexturbasierten Lokalisierung abdeckt. So ist es

mit der Micro-GPS Datenbasis beispielsweise nicht möglich, auf systematische

Weise zu evaluieren, wie sich die Lokalisierungsleistung verhält, wenn zwischen

dem Zeitpunkt der Kartierung des Anwendungsbereichs und dem Zeitpunkt

der Bildaufnahme des Lokalisierungsbildes größere Zeitintervalle liegen. In der

Praxis ist dies relevant, da die Kartierung mit erheblichem Aufwand verbunden

sein kann, sodass man diese nicht regelmäßig wiederholen möchte. Weitere

Fragestellungen bestehen darin, wie sich die Lokalisierungserfolgsraten auf

größeren Anwendungsflächen und anderen Bodentexturen verhalten, als den

in der Micro-GPS Datenbasis enthaltenen Anwendungsflächen.

Unser Beitrag besteht in einer neuen Datenbasis für die bodentexturbasierte

Lokalisierung [Schmid, Simon, Radhakrishnan, Frintrop, and Mester, 2022]. Wir

nennen sie die HD Ground Datenbasis. Des Weiteren stellen wir unsere Auf-

nahmeplattform vor und erläutern die wesentlichen Aspekte, die bei ihrer Kon-

struktion berücksichtigt wurden. Im Vergleich mit der Micro-GPS Datenbasis

enthält unsere Datenbasis eine größere Vielfalt verschiedener Bodentypen und

deutlich mehr Bilder, die den Boden mit höherer Auflösung und mit wesentlich

weniger Bewegungsunschärfe abbilden. Die größte Anwendungsfläche unserer

Datenbasis ist mit 106, 12 m2 deutlich größer als die der Micro-GPS Datenbasis

mit 40, 76 m2. Im Vergleich deckt unsere Datenbasis eine mehr als doppelt so

große Gesamtfläche ab. Darüber hinaus ermöglicht die HD Ground Datenbasis

die zuvor beschriebene systematische Untersuchung der Lokalisierungsleis-

tung bei größer werdenden Zeitintervallen zwischen Kartierung und Lokali-

sierung. Dafür haben wir über einen Zeitraum von 24 Wochen für vier Anwen-

dungsflächen die gleichen Teststrecken im wöchentlichen Rhythmus aufgenom-

men. Außerdem ermöglicht die HD Ground Datenbasis die Untersuchung

eines „Teach-and-Repeat“-Anwendungsfalls, bei dem die Aufgabe darin beste-

ht, einen einmalig eingelernten Pfad autonom in beide Richtungen abfahren

zu können.

Teil dieses Beitrages ist auch die Fortführung der Evaluationen einiger zuvor

beschriebener Beiträge. Dabei finden wir heraus, dass die Erfolgsraten der ini-

tialen Lokalisierung auf den von uns kartierten Anwendungsflächen teilweise

deutlich geringer sind, als dies mit der Micro-GPS Datenbasis der Fall ist. Ins-

besondere auf den Anwendungsflächen im Freien hängt die Erfolgsrate hierbei
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von dem Zeitintervall zwischen Kartierung und Lokalisierung ab, wobei die

Erfolgsrate mit größer werdenden Abständen teilweise deutlich abnimmt. Für

die auf unserer Datenbasis entsprechend wesentlich größere Herausforderung

der initialen Lokalisierung erweist sich die Verwendung unseres auf tiefen

künstlichen neuronalen Netzen basierenden Bildabgleichverfahren für die

Suche überlappender Bodenbilder als vorteilhaft. Im Vergleich mit dem BoW-

Verfahren, und vor allem im Vergleich mit einer Anwendung ohne Reduzierung

der berücksichtigten Referenzbilder, ergeben sich deutlich bessere Erfolgsraten

unserer Lokalisierungsmethode. Ebenfalls beobachten wir höhere Erfolgsraten

im „Teach-and-Repeat“-Anwendungsfall.

Der Vergleich der Lokalisierungsmethoden Ranger [Kozak and Alban, 2016] und

StreetMap [Chen et al., 2018] mit unseren Lokalisierungsmethoden zeigt auf

der HD Ground Datenbasis, dass Ranger und StreetMap tendenziell höhere

Erfolgsraten erzielen. Zudem zeigen wir, dass diese Methoden ebenfalls sehr

kurze Rechenzeiten realisieren können, wenn die Bildauflösung vor der Verar-

beitung deutlich reduziert wird. Es ergibt sich jedoch weiterhin eine vorteilhafte

Skalierung der Rechenzeit unserer Methoden für größere Anzahlen berück-

sichtigter Referenzbilder, wie sie sich beispielsweise bei ungenauer Kenntnis

der aktuellen Position ergeben können.
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Mathematical Notation

Notation

General
A A set.
f A function.
a A scalar variable.
v A vector.
t A translation vector.
M A matrix.
R A rotation matrix.
[R|t ] A 2D Euclidean transformation, consisting of a rotation R

and a translation t .
Localization
R The set of reference images, covering the application area.
r ⊂ R A reference image.
TR Poses of the reference images R.
fr Image processing function extracting relevant information

from the reference images R.
m Mapping function that constructs a map from the given ref-

erence images R and their corresponding poses TR.
M The map created by m that stores the extracted information

of the reference images R.
q The query image which is to be localized.
fq Image processing function extracting relevant information

from the query image q.
g The query image pose estimation function.
[R|t ]Mq The actual pose of the query image q in the coordinate system

of the map M.
[Rest|t est]Mq An estimate of the query image pose [R|t ]Mq from the local-

ization function g.
[Rp|t p]Mq The prior, an estimation of the current pose [R|t ]Mq that is

already available during localization.
dp The expected accuracy of the prior in form of the maximum

distance of the prior pose estimate to the actual query image

pose.
dt Euclidean distance threshold to determine whether the query

image pose estimate [Rest|t est]Mq is considered to be correct.

ot Orientation threshold of the absolute angle difference to de-

termine whether the query image pose estimate [Rest|t est]Mq
is considered to be correct.
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Mathematical Notation

Feature-Based Localization
M The set of feature matches, i. e. proposed feature correspon-

dences potentially containing incorrect matches (outliers).
I ⊂ M The set of inlier matches, that are considered to represent

correct correspondences.
O ⊂ M The set of outlier matches, M = I ∪ O.
FR The set of reference features, i. e. the union of all features

extracted from the reference images.
nr The number of extracted features per reference image.
Fq The set of query image features.
m ∈ M A proposed feature match m = (fq ∈ Fq, fr ∈ FR).

Probability Theory
A An event.
Pr[A] Probability of the event A.
Pr[A∩ B] The joint probability of the events A and B.
Pr[A|B] Probability of the event A, given B.
X A random variable.
x Value that the random variable X takes.
Pr[X = x] Probability of X taking the value x.
B(i|p, n) The probability of observing i successes in n independent

Bernoulli trials, each with a success probability of p.

Modeling the Localization Success Rate
V The set of voting grid cells that received at least one vote

during the voting procedure.
VI ⊂ V The set of voting grid cells that received at least one inlier

vote during the voting procedure.
Nv
M The random variable that represents the number of votes

cast onto v ∈ V .
Nv
I The random variable denoting the number of inliers in Nv

M

for v ∈ V .
Nv
O The random variable denoting the number of outliers in Nv

M

for v ∈ V .
vp The voting peak, i. e. the voting cell that received most votes,

vp = {v ∈ V|Nv
M = maxv′∈V Nv′

M}.
pout_vote Probability of an outlier match m ∈ O casting a vote on a

particular voting cell v ∈ V , (which is the same for any voting

cell v ∈ V).
pv

in_vote Probability of query feature fq ∈ Fq of generating one inlier

vote on v ∈ V .
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1 Introduction

Contents of this chapter were partially published in [Schmid, Simon, and Mester,

2019], [Schmid, Simon, and Mester, 2020a], and [Schmid, Simon, Radhakrish-

nan, Frintrop, and Mester, 2022].

Accurate self-localization capabilities are required for nearly all robotics tasks

[Thrun et al., 2005, chap. 7]. In particular, it is a prerequisite for autonomous

agents to perform tasks such as freight and passenger transport [Cornick et al.,

2016] and it is important for the use of robotic vacuum cleaners and social

robots [Chen et al., 2014]. Available solutions such as Global Navigation Satel-

lite System (GNSS) for outdoor applications are not able to reliably provide

accurate positioning in urban environments [Cornick et al., 2016], and systems

for indoor applications such as Ultra Wideband require installation of costly

infrastructure [Chen et al., 2018, Fang et al., 2009]. Visual localization using

environmental landmarks can achieve centimeter precise localization in some

indoor applications, but might suffer from occlusions of the perceived sur-

rounding and can deviate meters from the correct position in outdoor scenarios

[Mur-Artal and Tardós, 2017].

Ground texture based localization approaches using a single downward-facing

camera, on the other hand, present promising results for a cost-effective solu-

tion for reliable localization with centimeter accuracy [Zhang et al., 2019, Chen

et al., 2018]. Suitable texture types like concrete, asphalt, or carpet are preva-

lent and remain sufficiently stable in most application areas of autonomous

agents [Zhang et al., 2019, Kelly et al., 2007]. An agent that uses the ground

instead of surrounding landmarks to localize itself has several advantages:

• it works in dynamic environments with frequently changing surrounding;

• it works with an occluded surrounding, e. g. in a busy pedestrian zone;

• it observes only the ground reducing privacy concerns;

• if the agent actively illuminates the recording area, localization becomes

robust to changes in exterior lighting conditions.

We examine the state of the art of ground texture based localization methods,
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and their key success factors. In addition, we build on the techniques we

find to be most successful to address real-world application issues, such as

the real-time applicability, efficient parametrization, and the availability of

positioning information in any situation: without having any knowledge about

the agent’s whereabouts, as well as with approximate positioning information

being available.

For the development of our own localization method, we propose a novel

feature matching technique that we call identity matching that matches only

those pairs of local visual features which have bit-identical descriptors. In order

for this case to occur with a sufficiently high probability, we employ compact

binary descriptors that describe image patches with only a small number of

bits, e. g. 15 in our first implementation. A major advantage of this approach

is its computational efficiency. On the one hand, this approach allows us to

use fast-to-compute binary descriptors, and, on the other hand, comparing for

identity presents a particularly efficient way of matching.

1.1 Problem Statement

This dissertation is mainly concerned with map-based absolute localization,

i. e. given a pre-constructed map we determine the robot positioning in the

map-coordinate system. Consider an agent such as an autonomous robot with

restricted operational area, e. g. a warehouse robot, equipped with a downward-

facing camera. To be able to take on tasks and navigate in its operational area,

the robot needs a map and needs to be able to localize itself within that map, i. e.

the robot needs to determine its own pose in the map-coordinate system. Here,

the term pose refers to the combination of the position (x- and y-coordinates),

as well as the orientation of the robot.

Figure 1.1 visualizes absolute localization. It is a two step process, in which

the pose of a query image is estimated in respect to the reference images of a

previously created map. In distinction to that incremental relative localization,

as visualized in Figure 1.2, is the task of determining the pose of one image

directly in respect to another one, which can be done for any two overlapping

ground images.

We assume to have a vertically oriented pinhole camera with constant distance

to the ground, which is considered to be locally flat. Accordingly, camera poses

are in the form of standard Euclidean transformations [R|t ] of rotation R and

translation t in two dimensions.
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Figure 1.1: Visualization of the map-based absolute localization task, where
the query image pose is estimated in respect to the reference im-
ages. Images are taken from the garage concrete dataset of our HD
Ground Database [Schmid et al., 2022]. The background presents the
mapped reference images as an image stitching, and the true query
image pose is shown by a green dashed border around the image.
Depending on the localization mode, we are either considering all
reference images for potential overlap with the query image (global
map-based localization), or an available query image pose estimate
allows to consider only the reference images of a local area (local
map-based localization). Here, we assume to have a pose estimate
available according to which the query image is located in the red
circle. It is useful to consider only the closest reference images to
the estimated query image position for potential overlap, e. g. one
could use all images with overlap to the circle area.

We distinguish between three problems to be solved for absolute localization:

1. The initial scanning of the area of operation; the agent explores the envi-

ronment, gathering observations in form of ground images, and estimates

their corresponding poses in the world. The estimated pose of any ref-

erence image in the map-coordinate system is expected to be locally

consistent with the estimated poses of its neighboring images. As a result

of this phase, we obtain a set of reference images R with known poses TR
in the map-coordinate system.

2. The creation of a map data structure from the recorded data; in order to

use the reference images for localization, they are processed to create a

3
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(a) The query image (b) The reference image (c) The image stitching

Figure 1.2: Visualization of the incremental relative localization task. Images
are taken from the parking place cobblestone dataset of our HD
Ground Database [Schmid et al., 2022]. Here, the pose of the query
image (a) is estimated in respect to a single reference image (b).
Figure (c) shows the estimated relative pose of the query image to
the reference image as a joint image stitching of the two images,
where the reference image is highlighted with a dashed border line
and the query image with a continuous border line.

map data structure M. This could mean for example that visual features

are extracted from the images and systematically stored in a data structure

that allows for efficient matching with the features found in the image

which is to be localized. In this dissertation the initial scanning and the

creation of the map are performed sequentially after each other, but in

practice they could be performed simultaneously. In our case, the initial

scanning, including the estimation of reference image poses is performed

only once, as it is independent of the further processing steps. Accordingly,

the same set of reference image poses TR is provided to all evaluated

localization methods. The procedure for map creation, on the other hand,

depends on the employed localization method.

3. The subsequent self-localization within the mapped area; once a map is

available, it can be used to localize independently recorded query images,

e. g. by searching the map for visual features that correspond to the fea-

tures of the query image q. The goal is to estimate the actual pose [R|t ]Mq
of the query image in the map coordinate system as accurately as pos-

sible. We differentiate between global localization without an available

estimate of the current pose and local localization with available prior

pose estimate. These cases are differentiated dependent on the expected

position error dp of the prior pose estimate [Rp|t p]Mq . In the following, we

will use the term prior to refer to an available estimate of the query image

pose. A localization algorithm might treat the cases of global localization

with dp = ∞ and local localization with dp ∈ R separately or it may have

a common approach to both cases. The output of the localization step
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is an estimate of the query image pose [Rest|t est]Mq , which is considered

correct if it is closer to the actual pose [R|t ]Mq than a threshold distance dt

and if the absolute angle between the two Euclidean transformations is

smaller than an orientation threshold ot.

We formalize the three introduced problems:

Problem 1 (Scanning) Create a set of observations of the environment in form

of ground images R (the reference images), and estimate their corresponding

poses TR in a common coordinate system.

Problem 2 (Map Creation) Given a set of reference images R and their poses

TR, process the images to extract relevant information using an image processing

function fr. Subsequently, construct a map M that stores the extracted informa-

tion efficiently using a mapping function m and the pose estimates TR:

M = m(fr(R), TR). (1.1)

Problem 3 (Localization) Given a map M, an observation of the environment

in form of a query image q, an image processing function fq, and a localization

prior [Rp|tp]Mq with its expected accuracy dp ∈ R ∪ {∞}, estimate the pose [R|t]Mq
of the query image using a pose estimation function g:

[Rest|test]
M
q = g(fq(q), M, [Rp|tp]

M
q , dp). (1.2)

1.2 State of the Art

The current state of the art [Kozak and Alban, 2016, Zhang et al., 2019, Chen

et al., 2018] for Problem 1 is to obtain initial pose estimates by tracking the pose

relatively for the recorded image sequence or with help of GNSS measurements.

Subsequently, local map consistency of revisited places with available image

overlaps (loop closures) is ensured through refinement of the estimated image

poses, considering correspondences of neighboring images in a nonlinear least-

squares optimization process. A variant of such an approach, which we use for

the scanning process of our own database, is introduced in Section 3.3.3.

Problems 2 and 3 are solved in conjunction as absolute localization requires

the map data structure as input. Here, the state-of-the-art methods [Kozak and

Alban, 2016, Zhang et al., 2019, Chen et al., 2018] are feature-based. For map

creation, they extract characteristic image patches (local features) from the ref-

erence images. Subsequently, for localization, they determine correspondences

5



Introduction

with the query image features. A more detailed introduction of the current state

of the art for ground texture based mapping and localization approaches is

given in Chapter 2.

1.3 Open Research Questions

While existing ground texture based localization methods are able to localize

reliably and accurately in many cases [Kozak and Alban, 2016, Zhang et al.,

2019, Chen et al., 2018], they have been constructed without extensive consid-

eration of possible alternatives. For example, the employed feature extraction

pipelines are selected without any reasoning [Chen et al., 2018], or based on

simple replacement experiments [Kozak and Alban, 2016, Zhang et al., 2019],

that consider only a small selection of available techniques, and that do not

consider parametrization of the employed techniques, which are by default not

optimized for ground images. In this respect, it is also an open question to what

extent parameter adjustments can improve the localization performance and

how to efficiently find suitable parameter settings.

Furthermore, performance of the state-of-the-art localization methods is re-

ported without comparison to each other, leaving the question of which method

works best in which situation. In particular, there are scenarios of interest that

have not been considered systemically during the performance evaluation of

ground texture based localization methods, e. g. how does localization perfor-

mance behave if the current position is known within certain bounds or how are

natural changes of the ground that occur over time, or due to weather changes,

affecting the localization capabilities.

A remaining challenge for the existing localization methods is their real-time

applicability, as they report computation times of about 100 ms [Chen et al.,

2018, Kozak and Alban, 2016] to 245 ms [Zhang et al., 2017], which is dominated

by the required time for feature extraction and the subsequent process of deter-

mining feature correspondences (matching) [Zhang et al., 2017]. This leaves

the question of possible alternative cost-effective solutions.

This dissertation aims to address these open research questions.
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1.4 Contributions

In the course of my doctoral studies, I was author of several scientific publica-

tions on the introduced subject. Their content constitutes the essential part of

this dissertation. The following list presents the publications in chronological

order of their publication date. It also states explicitly what my part, respec-

tively that of the co-authors, in these works was. Furthermore, for all listed

contributions, I did the essential part of the write-up, and I am the main author,

only in the case of [Radhakrishnan et al., 2021], I share this position with my

co-author Raaghav Radhakrishnan.

• Schmid, Simon, and Mester [2019] (peer-reviewed). This publication

provides the first extensive evaluation of available methods for the ex-

traction of local visual features for their suitability to the task of finding

correspondences between pairs of ground images. Here, we considered

both independently recorded images and synthetically transformed ones,

and we examined image pairs with similar orientations recorded in di-

rect succession, as well as image pairs that were recorded completely

independent of each other which in this case often have large orienta-

tion differences. The contribution of this work is the identification of the

most suited pipelines for feature extraction on ground images, and the

determination of appropriate parametrization for them.

My part in this work was the literature analysis for the most promising

existing feature extraction methods, and for existing surveys of local visual

features; the conceptualization and design of the experimental framework,

as well as the implementation, execution, and analysis of the experiments.

The co-authors engaged in discussions with me about the research pro-

cedure and the results obtained. Also, they supported me with helpful

comments on the manuscript.

• Schmid, Simon, and Mester [2020a] (peer-reviewed). In this work, we

introduce an extensive evaluation framework for ground texture based

localization methods and we use it to perform the first systematic compar-

ison of existing approaches. Also, we present a novel ground texture based

localization method that builds on the state-of-the-art ground texture

based localization method Micro-GPS, developed by Zhang et al. [2019].

Our method is self-contained, which means that it could be used as the

exclusive source of positioning information for an autonomous agent.

This is because, it is well suited for both localization with and without

available prior. The method is based on the employment of compact
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binary descriptors and a novel matching technique for visual features that

we call identity matching, which matches only those features that receive

bit-identical feature descriptors. In our experiments, we observe higher

localization success rates as that of the state-of-the-art methods. Also, the

method to be particularly efficient to compute if a prior is available.

My part in this work was the literature review and re-implementation of

existing ground texture based localization approaches; the experimental

evaluation; the implementation and analysis of proper design decisions

for our proposed method, as well as its parametrization. The co-authors

engaged in discussions with me about the research procedure, the exam-

ined concepts, and the results obtained. Also, they supported me with

helpful comments on the manuscript.

• Schmid, Simon, and Mester [2020b] (peer-reviewed). In this follow-up

paper, we are examining the idea of feature-based ground texture based

localization without the employment of proper keypoint detection, i. e.

local visual features are computed for arbitrarily sampled image positions.

In our results, we observe that all three evaluated state-of-the-art ground

texture based localization methods, when using this approach, reach

similar localization success rates than with their regular methods for

keypoint detection. However, our method has the greatest benefit in terms

of the resulting localization runtimes. This examination suggests that it is

not necessary to recognize distinctive features of the ground for successful

localization. Instead, the consideration of arbitrary ground regions seems

to be sufficient for this task. Based on the keypoint sampling approach,

this work contributes a real-time capable CPU-only ground texture based

localization method that presents high localization success rates on the

examined ground texture types.

My part in this work was the literature review for related work; the de-

velopment of the proposed method, including the evaluation of various

design decisions, extensions, and the parametrization; the introduction

of suitable performance metrics to be analyzed in the experimental evalu-

ation; as well as the implementation and execution of the experimental

framework and analysis of its results. The co-authors engaged in discus-

sions with me about the research procedure, the examined concepts, and

the results obtained. Also, they supported me with helpful comments on

the manuscript.

• Schmid, Simon, and Mester [2021]. This paper presents a model-based

approach to efficient estimation of the global localization performance
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of ground texture based localization methods. We derive a predictive

model based on stochastic means that requires only a small sample set

of ground images of an application area to approximate the expected

localization performance. The model is applicable to our own localization

method, as well as to Micro-GPS [Zhang et al., 2019], and it allows to

make appropriate decisions about any of their performance influencing

parameters. Accordingly, we are able to use the model in an automatic

parameter optimization framework, which we observe to be able to find

suitable texture-specific parameters in only a few hours of time, which is

in contrast to the week-long manual parametrization process we did in

previous works.

My part in this work was the literature review of existing related work;

the conceptualization and derivation of the prediction model; the imple-

mentation of the prediction model for practical use and the optimization

framework; as well as the experimental evaluation and the analysis of re-

sults. The co-authors engaged in discussions with me about the research

procedure and the results obtained. Also, they supported me with helpful

comments on the manuscript.

• Radhakrishnan, Schmid, Scholz, and Schmidt-Thieme [2021]. This paper

presents a novel approach to the task of image retrieval of ground images,

i. e. given a query image, it finds the reference images that overlap with

it. For this purpose, we use a deep metric learning approach based on a

Siamese Convolutional Neural Network (CNN) and an objective function

similar to that of Sánchez-Belenguer et al. [2020]. We show that this

approach has significantly better recall performance than the current

state of the art for this task based on the Bag of Words (BoW) technique.

Also, we are able to increase global localization performance of our ground

texture based localization method slightly compared to the case in which

we do not use image retrieval and significantly in the case in which we are

using BoW ground image retrieval.

My part in this work was the proposal to build on the overlap loss pro-

posed by Sánchez-Belenguer et al. [2020] and to transfer it to the use case

of ground image retrieval; the implementation of the baseline method

based on the BoW technique, as well as the baselines methods based on

the work of [Revaud et al., 2019] and [Gordo et al., 2017]; the evaluation of

the retrieval results for localization with the previously proposed ground

texture based localization method; as well as the general supervision of

the project. Raaghav Radhakrishnan contributed the literature review of
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related work; the implementation and evaluation of the proposed deep

metric learning model, as well as its variants, and of the baselines Ran-

dom, ResNet [He et al., 2016], and DenseNet [Huang et al., 2017]; the

parametrization of the BoW baseline; as well as the creation of visual-

izations for the manuscript. Together, Raaghav Radhakrishnan and I,

developed the evaluation setup, including the evaluated performance

metrics. The remaining co-authors engaged in discussions with us about

the research procedure and the results obtained. Also, they supported me

with helpful comments on the manuscript.

• Schmid, Simon, Radhakrishnan, Frintrop, and Mester [2022] (peer- re-

viewed). This paper presents the HD Ground Database and the setup of

our own robot with a downward-facing camera, that we used to record

the database (see Figure 1.3). To date, the HD Ground Database is the

largest collection of ground images that allows to evaluate localization

performance of methods that rely solely on ground images in varying real-

world indoor and outdoor application areas. Also, in contrast to existing

databases, our robot setup allows us to record higher-quality images with

particularly small amounts of motion blur, due to a short exposure time of

about 0.1 ms. We use the database for a re-evaluation of the current state of

the art of ground texture based localization methods, and we provide the

first systematic examination of how localization performance degrades

when the ground exhibits progressive changes with the time between map

creation and localization increasing. Additionally, with this database it is

the first time we have had the opportunity to examine a teach-and-repeat

scenario, where the robot is supposed to follow a previously taught path

autonomously in either direction.

My part in this work was the literature review of related work; the concep-

tualization and execution of the data recording strategy; the design of the

recording setup, including our own recording platform, which was con-

structed as part of a student project under my supervision; preparation

and processing of the recorded images, including the generation of ground

truth poses for reference and query images; as well as the implementation

of the experimental setup and the analysis of its results. Raaghav Radhakr-

ishnan contributed the application of our previously developed image

retrieval approach on the database. The remaining co-authors engaged in

discussions with me about the research procedure, the results obtained,

and helped with the construction of the recording platform. Also, they

supported me with helpful comments on the manuscript.

10



1.5 Structure

Figure 1.3: We modified an RT3-2 VolksBot [Surmann et al., 2008] for data
recording. The image on the left shows the setup from above, the
top right one shows it from the side, and the lower right one from
underneath. Aluminium profiles are added as handle bar and for
visual guidance during manual line following. An AVT Manta G-235C
camera is used together with synchronized pulsed LED lighting to
record images of the ground below the robot. White plastic film
prevents sunlight from falling directly on the recorded area.

1.5 Structure

This document is structured as follows.

Chapter 2 presents the technical background and the related work that is com-

mon to multiple of the following chapters. Topic-specific background informa-

tion, on the other hand, is provided in the respective chapters.

The following six chapters present novel contributions to the field of ground

texture based localization. While there are a few cross references between

the chapters, they can be read independently of each other. The chapters are

roughly aligned with the aforementioned publications.

Chapter 3 presents the ground image databases of Zhang et al. [2019], which

we call Micro-GPS databases in the following, and which were previously the

only databases that could be used to examine ground texture based localization

performance. Additionally, the chapter presents the HD Ground Database and

our own robot that we used to record the database. These are contributions

from [Schmid et al., 2022].
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Subsequently, Chapter 4 presents contents of [Schmid et al., 2019], where we

presented a survey about the suitability of existing feature extraction strategies

for the task of finding correspondences between ground image pairs.

Chapter 5 introduces the GTBL Method and evaluates on a Micro-GPS database

together with the existing state of the art for localization methods using ground

images, which are contributions from [Schmid et al., 2020a]. In addition to that,

we present the re-evaluation of the same methods from [Schmid et al., 2022] on

the HD Ground Database.

The content of [Schmid et al., 2021], in which we derive a prediction model for

global localization performance, is presented in Chapter 6.

Then, Chapter 7 presents our deep metric learning approach to the retrieval

of ground images from [Radhakrishnan et al., 2021]. Here, again, we present

additional evaluation to that from the original publication from [Schmid et al.,

2022] on the HD Ground Database.

Similarly, Chapter 8 provides the examination of our keypoint sampling strategy

for ground texture based localization from [Schmid et al., 2020b], and it is

supplemented with additional evaluations on the HD Ground Database from

[Schmid et al., 2022].

Finally, in Chapter 9, we assess the research questions of Section 1.3 and we

conclude with an outlook for possible future work.
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Contents of this chapter were partially published in [Schmid, Simon, and Mester,

2019], [Schmid, Simon, and Mester, 2020a], [Schmid, Simon, and Mester, 2020b],

[Schmid, Simon, and Mester, 2021], and [Schmid, Simon, Radhakrishnan, Frin-

trop, and Mester, 2022].

2.1 Local Image Features

In image processing, features are used to describe characteristic properties of

images [Pratt, 2007]. A feature is called local if it is only influenced by a spatially

restricted image region [Tuytelaars and Mikolajczyk, 2008], which we refer to

as image patch. In the following, we will use the term feature for local image

features. The image coordinates of the image patch are specified by the feature’s

keypoint (in the literature also referred to as interest point) and its content

is represented by the feature descriptor. In addition, we introduce the term

keypoint object, which refers to the complete spatial description of the image

patch. Typically, this includes the keypoint, as well as a size (sometimes called

scale) and an orientation.

Keypoint objects are extracted usually by a keypoint detector that searches for

characteristic patterns like edges, corners as in [Shi and Tomasi, 1994, Rosten

and Drummond, 2006, Mair et al., 2010], or blobs that stand out to their sur-

rounding as in [Lowe, 2004, Bay et al., 2006, Agrawal et al., 2008], e. g. extrema

in the Difference-of-Gaussian (DoG) pyramid.

Features are useful to relocate the same physical location or to identify an object

that is visible in one image in another image taken with a different camera pose.

However, the same physical location or object will have varying appearances:

from varying distances the corresponding features are represented by varying

amounts of pixels in the image, at different recording times the illumination

might differ, and corresponding features appear at different image locations

and with varying orientation.
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This poses the challenge of identifying the same features under varying ap-

pearance transformations. A feature detector or feature description method

can be robust to these variances, i. e. relatively small deformations still lead to

the similar results [Tuytelaars and Mikolajczyk, 2008]. In some cases, like for

the image patch rotation, the method can even be designed to be invariant to

changes of the property, i. e. the method is provably unaffected to a certain type

of transformation [Tuytelaars and Mikolajczyk, 2008].

Dependent on the use case, in order to perform reliable relocation of features,

it is desirable that features are robust to one or more of these transformations.

Robustness to scale, for example, can be achieved by searching for features on

multiple image scales that are computed through smoothing and subsampling.

From a signal processing stand point smoothing is equivalent to removing high

frequency information applying a low-pass filter. Subsampling creates image

versions of different sizes and allows to use the same descriptor pattern, i. e. the

same arrangement of sampled pixels around the keypoints, to detect features

of varying scales. Illumination variances, on the other hand, can be reduced

through normalization of pixel intensities or their derivatives.

While it seems desirable to be invariant to as many changes of appearance as

possible, Tuytelaars and Mikolajczyk [2008] explain that “[...] an increased level

of invariance typically leads to a reduced distinctiveness, as some of the image

measurements are used to lift the degrees of freedom of the transformation.”

Accordingly, the employed methods for feature extraction should be selected

carefully dependent on the use case. In the context of ground texture based lo-

calization, we might assume a constant distance between the downward-facing

camera and the observed ground. A close to constant feature scale follows from

that. Also, if we employ our own lighting of the ground, illumination variances

are kept at a low level. The requirement for robustness against rotation depends

on the exact application. In a teach-and-repeat scenario, in which a robot is

asked to move along a pre-defined path, which it is manually driven along dur-

ing the teach-phase, the moving direction of the robot is known quite precisely.

Accordingly, we can do without orientation invariance in this case. Similarly for

incremental localization updates, where the approximate robot pose is known

with good accuracy.

Once features are available, in order to find correspondences in different images,

a feature matching algorithm is employed [Szeliski, 2010]. Typically, it is unlikely

to obtain the same descriptor for corresponding physical locations, because

feature description algorithms are not able to compensate for all variances of

the feature appearance. Therefore, features with similar (rather than identical)
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feature descriptors are matched with each other. The conventional approach to

this is to define a metric to measure the distance between descriptors, and then

most similar descriptors, i. e. nearest neighbors in the descriptor space, can

be identified as correspondence candidates. In a naive brute-force approach,

distances between each pair of descriptors of two images are computed. How-

ever, in time-critical applications an approximate solution can be used ([Yan

et al., 2015]). In such a case, only Approximate Nearest Neighbors (ANNs) are

available for feature descriptor matching.

In the following, we present the methods for keypoint detection (Section 2.1.1),

and feature description (Section 2.1.2) relevant to this dissertation.

2.1.1 Keypoint Detection

Keypoint detection is concerned with the task of finding characteristic visual

phenomena that are likely to be relocated in other images containing the corre-

sponding physical location.

Keypoint detection approaches can be split into corner detectors and scale-

space detectors [Agrawal et al., 2008]. Corners mark suitable keypoints as they

tend to be robust to view changes. The Harris detector [Harris and Stephens,

1988] and Good Features To Track (GFTT) [Shi and Tomasi, 1994] approximate

the second derivative of the sum-of-squared-differences with respect to the

shift of a circular image patch to detect edges and corners. A corner is found if

both principle curvatures of the local auto-correlation function are high. An

edge is found if one curvature is high and the other is low. FAST [Rosten and

Drummond, 2006] compares intensities of center pixels with their surround-

ing pixels on a circle. A corner is detected if the circle contains a contiguous

sequence of pixels with significantly larger or lower intensity values. If this con-

dition can no longer be fulfilled it can be rejected early. To do this, a decision

tree defines the order of comparisons. Mair et al. [2010] adapt this concept for

AGAST. Instead of using a single decision tree, they switch between multiple

ones according to observed local image characteristics.

Scale-space detectors exploit image scale pyramids to find scale invariant key-

points. Mikolajczyk and Schmid [2002] extended with Harris Laplace the Har-

ris corner detector to search for corners in multiple scales using a Gaussian

scale-space. SIFT [Lowe, 2004] detects blobs using a DoG pyramid as local

minima and maxima of the intensity values in scale and space. Candidates

located on edges or with low contrast are suppressed. Orientation is deter-

mined by the dominant local intensity gradients. SURF [Bay et al., 2006] and
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CenSurE [Agrawal et al., 2008] approximate the DoG with bi-level Laplacian

of Gaussian like Difference-of-Boxes (DoB) or Difference-of-Octagons (DoO),

which can be computed efficiently using integral images. While SIFT and SURF

find keypoints using the Hessian measure, CenSurE relies on the Harris corner

response. BRISK [Leutenegger et al., 2011] and ORB [Rublee et al., 2011], on

the other hand, use efficient corner detectors like FAST on a scale pyramid to

identify repeatable keypoint objects in scale-space. Alcantarilla et al. [2012,

2013] argue that Gaussian scale-space pyramids and its approximations do

not only remove noise, but interesting image details as well. Therefore, they

propose the method AKAZE that finds keypoints as maxima of the Hessian in

non-linear scale-space.

The MSER [Matas et al., 2004] method follows a similar approach to the water-

shed segmentation algorithm [Soille and Vincent, 1991]. The image is thresh-

olded by an increasing illumination value. Regions with illumination values

below the threshold emerge and grow during this process. Keypoint objects

are identified as regions at their point of slowest growth. In MSD [Tombari and

Di Stefano, 2014] image regions that differ from their surrounding in a large

neighborhood are considered as keypoint objects.

2.1.2 Feature Description

Given an image patch defined by a keypoint object, feature description methods

are used to produce a characteristic compact representation of its visual content.

An ideal feature description method should be robust to small variances of the

image patch and its content, and its generated descriptors should be specific

(optimally they would be unique) to the underlying physical location, while they

should contain as little redundant information as possible, i. e. be represented

with as few bits as possible, for efficient further processing.

Historically, feature descriptors are real-valued. SIFT [Lowe, 2004] describes

keypoint objects using a histogram of gradient directions. Similarly, DAISY [Tola

et al., 2010] also uses quantized orientation histograms. But, its histogram bins

are distributed radially around the keypoint and smoothed increasingly with

the distance to the keypoint. SURF [Bay et al., 2006] relies on Haar-Wavelet

responses that are efficient to compute using integral images.

More recently, research started to focus on compact binary feature descrip-

tors [Pietikäinen et al., 2011]. Most of them construct descriptors as concate-

nated results of pairwise intensity comparisons. BRIEF [Calonder et al., 2010]

compares randomly paired pixels from a smoothed image patch. ORB [Rublee
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et al., 2011] uses the same approach as BRIEF, but it employs a training al-

gorithm to determine the set of pixel comparisons and rotates this pattern

according to the keypoint object orientation. BRISK [Leutenegger et al., 2011]

samples short- and long-distance pixel pairs around the keypoint. While short-

distance pairs are evaluated for the descriptor, long-distance pairs are used to

determine an orientation. A similar approach is employed by FREAK [Alahi

et al., 2012], but suitable intensity comparisons are found in a training process.

In LATCH [Levi and Hassner, 2016] triplets of image patches are compared to

each other instead of pixel pairs to increase robustness. AKAZE [Alcantarilla

et al., 2013] performs pairwise comparisons of first-order gradients.

Most recently, deep learning approaches for feature extraction are developed.

LIFT [Yi et al., 2016] is a state-of-the-art method that provides solutions for key-

point detection, orientation estimation, and feature description. The proposed

network is trained in Siamese fashion with features from a Structure-from-

Motion (SfM) algorithm, using images from photo-tourism datasets containing

many views of the same landmarks. The architecture can be trained end-to-end,

solving the whole feature extraction task in a single forward-pass. However, in

practice they train the network separately for the three tasks. Training samples

consists of four image patches, two corresponding ones for which the network

learns to produce similar output and two other patches that should result in

distinctively different network outputs.

2.2 Feature-Based Localization

A common approach to visual self-localization of autonomous agents is to

identify correspondences between mapped reference images and the query

image, representing the current view of the agent.

The set of considered reference images might contain all available reference

images of the entire application area for which we know their respective poses

in a map coordinate system (global map-based localization), or it might contain

just the reference images in the local vicinity of our current estimate of the robot

pose (local map-based localization), or it could be just the previous recording

the robot acquired (incremental localization).

The required correspondences can be found with photometric approaches [Kelly

et al., 2007], that compare image patches based on a function of image intensity

values, e. g. normalized cross correlation, or with feature-based approaches,

that propose well-matching features as correspondences [Zhang et al., 2019,
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Fang et al., 2009, Nagai and Watanabe, 2015, Kozak and Alban, 2016, Chen et al.,

2018]. Current state-of-the-art approaches to ground texture based localization

rely on feature-based localization [Kozak and Alban, 2016, Chen et al., 2018,

Zhang et al., 2019], which is why in the following we will focus on this approach.

Feature-based localization can be divided into 5 subtasks:

1. keypoint detection, finding the same keypoint objects in query and refer-

ence images from different viewpoints and under varying photometric

conditions like illumination, noise, and blur;

2. keypoint selection, selecting a subset of keypoint objects for further pro-

cessing;

3. feature description, computing descriptors that robustly take similar val-

ues for corresponding keypoint objects, and distinctively different values

for non-corresponding ones;

4. feature matching, proposing feature correspondences between the query

and the reference images;

5. pose estimation, estimating the query image pose with respect to the

reference image poses, based on the proposed correspondences.

State-of-the-art ground texture based localization methods are built according

to this scheme, employing various detector-descriptor pairings, e. g. CenSurE-

ORB [Kozak and Alban, 2016], SURF-SURF [Chen et al., 2018], or SIFT-SIFT

[Zhang et al., 2019].

For feature selection, most keypoint detectors provide a keypoint score, e. g.

representing the response strength to the employed detection criterion [Lowe,

2004], that can be used to either consider only the top-n features, or to consider

only those features with keypoint score above some threshold. Alternatively,

possibly to increase the variety of the kept feature set, a subset of the detected

features can be sampled randomly, e. g. [Zhang et al., 2019]. Features are typ-

ically matched using costly brute-force pair-wise matching as in [Kozak and

Alban, 2016, Chen et al., 2018] or ANN matching [Zhang et al., 2019].

Only a subset of the set of proposed matches M can be considered to be correct:

the set of inlier matches I . The remaining matches are considered to be incor-

rect, they form the set of outlier matches O (with M = I ∪ O). Accordingly,

the subsequent pose estimation step has to deal with this situation in which po-

tentially a significant share of proposed correspondences are incorrect. For this

purpose, all state-of-the-art approaches employ pose estimation in RANSAC

fashion [Kozak and Alban, 2016, Chen et al., 2018, Zhang et al., 2019].
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RAndom SAmple Consensus (RANSAC) [Fischler and Bolles, 1987] can be used

to estimate the optimal parameters for a model. For this purpose, RANSAC

determines a set of inliers from a set of data points, which might also contain

outliers. In the scenario of a dataset that contains both inliers and outliers,

RANSAC can be superior to other model fitting methods like least squares

optimization. The least squares method does not differentiate between inliers

and outliers, and therefore fits the model that is the best explanation to the

measurements of all data points. RANSAC, on the other hand, determines

the best fitting models of multiple randomly sampled data points. Internally,

RANSAC uses a voting scheme to find the best fitting model. Each data point

votes for models that explain its occurrence. The assumption is that outlier

votes are not consistent, while all inliers can be explained with the same model.

Typically, each randomly sampled set of data points only contains as many data

points as are required to fit parameters of a model. Then, it is examined how

many of the remaining data points can be explained with the obtained model

(as well as a certain amount of noise deviation), these are considered inliers, all

others are considered outliers. The algorithm repeats to determine the set of

inliers (consensus set) for randomly sampled data subsets until a model with a

sufficiently large consensus set is found. Afterwards, the final set of inliers can

be used jointly to determine the output model.

In the case of ground texture based localization, with an assumed constant

distance between ground and camera, the localization problem is a 2D problem

in which the camera pose can be described by a standard Euclidean trans-

formation with three variables: the x- and y-coordinates and an orientation

angle. Accordingly, a single feature correspondence with available keypoint

object orientation information, or two feature correspondences without avail-

able keypoint object orientation information, are sufficient to create a model,

i. e. a query image pose estimate. Once the RANSAC procedure terminates

successfully, the final query image pose estimate can be computed considering

all RANSAC inliers, i. e. all feature correspondences of the final consensus set.

2.3 Voting Procedure for Spatial Verification of

Feature Matches

The aforementioned RANSAC procedure for pose estimation becomes slow to

compute if the share of inliers is small compared to the number of outliers. This

is because the chance of having a sample set of only correct matches becomes
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Figure 2.1: Illustration of the voting procedure of Zhang et al. [2019] for spatial
verification of feature matches. The entire rectangle represents a
map of the (rather small) application area. A 2D histogram splits the
map into equally sized voting cells. Every proposed correspondence
from the feature matching step votes for the query image position
(circles). Some matches, the inliers, represent correct feature corre-
spondences (solid circles). They provide the required information
to find the correct query image pose estimation. Inlier votes con-
centrate close to the true query image position (red star), while
outlier votes (transparent circles) are distributed randomly. Only the
matches voting for the cell that received most votes (blue), which we
call voting peak, are used for the subsequent pose estimation step.
This figure is adapted from [Schmid et al., 2021].

small. Accordingly, many incorrect models, i. e. query pose estimates, will be

considered. Depending on the termination criterion, the procedure might even

stop before the inlier consensus set is found.

Global map-based localization, which considers features of all available ref-

erence images for feature matching, can lead to such an unfavorable situa-

tion [Zhang et al., 2019]. In such cases, prior rejection of outliers is desirable.

One approach to outlier rejection is the spatial verification of feature matches,

using Hough voting approaches [Avrithis and Tolias, 2014, Schönberger et al.,

2017, Zeisl et al., 2015]. The idea to use a voting procedure for spatial verification

of feature matches from ground images was proposed by Zhang et al. [2019].

The procedure is illustrated in Figure 2.1. Their proposed technique exploits

the fact that every match of ground features represents a query image pose

estimate. A match m is a pair of features, one from the set of query image

features Fq and one from the set of reference features FR. Given the match

m = (fq ∈ Fq, fr ∈ FR), we can derive an estimate of the query image pose
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[Rest|t est]Mq based on three transformations: (a) the transformation [R|t ]
fq
q that

maps from the query image pose to the pose of fq, (b) the transformation [R|t ]Mfr

that maps from the reference feature pose to the map coordinate system, and

(c) the transformation [R|t ]
fr
fq

that maps from the query feature pose to the

reference feature pose, which, due to the assumed (correct) correspondence of

fq and fr, is estimated to be the identity. The query image pose is estimated as

[Rest|t est]
M
q = [R|t ]Mfr

[R|t ]
fr
fq
[R|t ]

fq
q = [R|t ]Mfr

[R|t ]
fq
q . (2.1)

In order to reject outliers, the voting procedure proceeds as follows. Every

proposed match votes for the position of the query image in the map coordinate

system, using the translation component of their corresponding pose estimate.

The orientation component is ignored, as it tends to be inaccurate. Votes cast

into a similar area are summarized using a 2D histogram, i. e. a grid of equally

sized voting cells. The overall grid size corresponds to that of the mapped

environment. We call the voting cell with most votes the voting peak. Only

the matches contributing to the voting peak will be considered during the

subsequent pose estimation step, as we expect some of them to be inliers.

Even though inliers, in particular due to inaccuracies in the keypoint object

orientations, are not necessarily voting for positions precisely at the true query

image position, we expect them to concentrate close to it, while outlier votes are

scattered randomly over the voting histogram. Due to the random distribution

of outliers, which we examine in more detail in Chapter 6, there will be regions

on the voting histogram sparsely populated with outlier votes and there will be

regions densely populated with outlier votes. If the peak caused by the inliers is

larger than any peak caused by outlier votes, the approach succeeds in its task

of outlier rejection; otherwise, the actual inliers will be rejected as outliers.

2.4 Approaches to Ground Texture Based

Localization

Ground texture based localization builds on the observation that ground image

patches can be used as fingerprint-like identifiers [Zhang et al., 2019]. For the

applications considered in this dissertation, e. g. robots moving autonomously

through a warehouse or an apartment, it is reasonable to assume that the

ground is locally flat and therefore that the distance to the ground is known.

Accordingly, with a downward-facing camera, pose estimation is reduced to
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determine two coordinates for the position and one orientation angle. This

corresponds to a standard Euclidean transformation of rotation and translation

in two dimensions.

Ground texture based localization can be performed with appearance-based

approaches [Aqel et al., 2016, Zaman, 2007, Kelly et al., 2007, Nagai and Watan-

abe, 2015], e. g. using normalized cross-correlation to find reoccurring image

patches, and with feature-based approaches that find feature correspondences

[Swank, 2012, Nakashima et al., 2019, Kozak and Alban, 2016, Zhang et al., 2019,

Chen et al., 2018]. Furthermore, localization methods can be divided into ap-

proaches for map-based absolute localization with or without available prior

pose estimate, and approaches for incremental relative localization to estimate

the pose of the current camera image in respect to the previous one [Desouza

and Kak, 2002].

2.4.1 Absolute Localization

Absolute localization methods determine the query image pose in respect to a

given map, i. e. a set of reference images with known poses in a common map

coordinate system.

Two cases of absolute localization are to be distinguished: a) global localization,

and b) local localization. The global localization task requires to consider all

available mapped reference images, as there is no knowledge about the current

robots whereabouts. Global localization solves the kidnapped robot problem,

which occurs whenever an agent is not aware of how it got to its current place.

If, however, a prior is available, it is sufficient to consider only those reference

images that are spatially close to the estimated query image pose.

In the following, Section 2.4.1.1 and Section 2.4.1.2 present approaches to global

absolute localization, respectively local absolute localization.

2.4.1.1 Global localization approaches

Micro-GPS is a localization pipeline proposed by Zhang et al. [2019]. They rely

on SIFT [Lowe, 2004] for feature extraction, and construct an efficient Approx-

imate Nearest Neighbor (ANN) search structure for feature matching. Here,

they assign the extracted reference image features into 10 groups based on their

keypoint object scale. An ANN search index is constructed for each group. This

exploits the fact that the scale of corresponding features remains essentially

constant for images of a downward-facing camera with stable height, because,
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during the feature matching step, it is sufficient to search for correspondences

for a query image feature in the group of reference features with similar scale.

Per reference image 50 randomly sampled features are inserted into their re-

spective search indexes. During localization, all query image features are used

for feature matching. Each feature from the query image is paired with its ANN.

The previously introduced voting procedure is employed for outlier rejection

(see Section 2.3). Finally, only the correspondences contributing to the voting

peak are used to estimate the camera pose in RANSAC fashion.

Chen et al. [2018] developed StreetMap, which is able to make use of a localiza-

tion prior, but does not require one. While there is also a version of StreetMap

specifically for tiled ground textures, we only consider the feature-based variant.

If no prior is available, they use BoW image retrieval [Galvez-López and Tardos,

2012] to find similar reference images to the query image. For this purpose,

BoW representations of the images are computed using the SURF [Bay et al.,

2006] feature descriptors extracted from them. After retrieval of the reference

images with most similar BoW representation, their features are matched to the

features of the query image. For each feature of the query image, they search

for its nearest neighbor from the reference images and subsequently filter these

matches with the ratio test constraint [Lowe, 2004], which requires that the

most similar reference descriptor is significantly closer to the query descriptor

than the second most similar one. The Euclidean transformation of the camera

pose is finally estimated in a RANSAC procedure.

The work of Macias-Sola et al. [2021] builds on concepts of Micro-GPS and

the localization method that we introduced in [Schmid et al., 2020a]. As in

our method, which will be described in detail in Chapter 5, the authors use

SIFT [Lowe, 2004] to extract keypoint objects and LATCH [Levi and Hassner,

2016] to determine compact feature descriptors (compact in this case means

16 bits per descriptor), and they also propose only those features as matches

that have identical descriptors. In order to retrieve a mapped reference image

that can be used to match its features with that of the query image, the authors

employ a BoW-like image retrieval approach, using the histogram of feature

descriptor values of an image as image descriptor. However, the authors notice

that their method for image retrieval is not robust. This is, even though they

evaluate their approach on comparatively simple application areas, consisting

of short straight paths.
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2.4.1.2 Local localization approaches

Kelly et al. [2007], Kelly [2000] developed a photometric localization approach

using normalized cross correlation for template matching to find corresponding

image patches between query and reference images. They construct a ground

map of statistically normalized pixel intensity values using image stitching.

During localization, the output of a Kalman filter is used as a localization prior.

Peaks of a texture score function, which depends on the local intensity gradient

of the pixels, are used to define up to 16 image patches for template match-

ing. The difference between predicted and observed positions of these image

patches is combined into a pose update.

The localization pipeline of Fang et al. [2009, 2007] relies on the Iterative Closest

Point (ICP) algorithm to align reference images during mapping and to register

query images for localization. The point clouds needed for this purpose are

built using corner and edge features extracted from the images. For the final

pose estimate, the results of a robust ICP variant are fused with odometry

information in an extended Kalman filter.

Nagai and Watanabe [2015], Nagai [2007] propose a method that avoids the

need for a globally consistent map. Instead, they construct a sparse spatial map

of images. Whenever the autonomous system approaches a reference image

stored in the map, correspondences between query and reference image are

used to correct for the drift that accumulated since the last absolute localiza-

tion step. Image transformations are estimated through minimization of the

reprojection error, which is measured as cross-correlation of intensity values.

Kozak and Alban [2016] developed Ranger, a method that enables localization

at high vehicle speeds of up to 120 km/h. Ranger computes ORB [Rublee et al.,

2011], respectively rotated BRIEF [Calonder et al., 2010], feature descriptors for

CenSurE [Agrawal et al., 2008] keypoint objects. Ranger iteratively considers

the spatially closest reference image to the given prior to match its features

with that of the query image, using brute-force nearest neighbor matching. A

cross-check is performed to reject incorrect matches. This means that in order

for the reference image feature fr ∈ FR and the query image feature fq ∈ Fq

to be considered a match, fr needs to be the nearest neighbor of fq among

all reference features FR and fq needs to be the nearest neighbor of fr among

all query features Fq. The remaining correspondences are used to perform

RANSAC-based pose estimation. If at least 25 correspondences are consistent

with the obtained pose estimate, i. e. if the consensus set has a size of at least

25, the pose estimate is used as the final pose estimate output. Otherwise, the
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procedure is repeated with the next closest reference image (or localization is

aborted due to timeout).

As previously mentioned, StreetMap can also be used for local localization,

making use of a given prior [Chen et al., 2018]. In this case, instead of selecting

reference images based on BoW similarity, the images with shortest spatial

distance to the prior are taken into consideration.

2.4.2 Relative Localization

Relative, respectively incremental, localization methods determine the pose of

the most recent image recording with respect to the previously recorded images

(e. g. [Nourani-Vatani et al., 2009])

Appearance-based approaches like that of Zaman [2007] and Gilles and Ibrahim-

pasic [2021] can perform relative localization by estimating transformations

between ground images directly based on the observed appearance changes.

For example, in the case of Gilles and Ibrahimpasic [2021], using a deep neural

network that is trained in an unsupervised manner for image registration.

Feature-based approaches, on the other hand, track local visual features in

consecutively recorded images. For example, Nakashima et al. [2019] proposed

a solution based on AKAZE [Alcantarilla et al., 2013] features. They propose

to search for correspondences of a given feature from a previously recorded

image by predicting its position in the current image, which avoids to match

the feature with all features of the current image, improving robustness and

efficiency of the method.

Furthermore, methods for local absolute localization like Ranger [Kozak and

Alban, 2016] and StreetMap [Chen et al., 2018], can also be employed for relative

localization, using only the previous query image as reference image.

Methods for incremental localization, that estimate the vehicle pose relative to

a previous pose, accumulate drift and are therefore usually accompanied by an

error correction mechanism, e. g. an absolute localization method.
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3 Databases for Ground Texture

Based Localization

Contents of this chapter were partially published in [Schmid, Simon, Radhakr-

ishnan, Frintrop, and Mester, 2022].

An essential basis for the development and evaluation of methods and tech-

niques for ground texture based localization is the availability of data in form

of ground images that have been recorded in a suitable and structured man-

ner. This is to solve the Problem 1 of ground texture based localization: the

initial scanning of the application area. For this purpose, we contribute the

HD Ground Database, a comprehensive database of ground images, obtained

using a downward facing camera, which is supported by our own lighting of

the ground and which is shielded from external light sources. The database

enables the examination of localization under varying conditions, such as clean

versus dirty, and dry versus wet ground. Also, in comparison to existing ground

image databases, the HD Ground Database provides larger area coverage, has a

greater variety of textures, higher resolution images with less motion blur, and

image sequences that allow to evaluate a teach-and-repeat scenario in which

the robot is supposed to follow a previously learned path. Most importantly, the

HD Ground Database provides the novel opportunity to examine degradation

of localization performance that occurs for increasing intervals between the

point in time of reference image recording and the point in time of localization,

which turns out to be highly relevant. For this purpose, we recorded weekly test

sequences of similar paths over a period of 24 weeks.

Over the course of this dissertation, we examine state-of-the-art ground image

based localization methods on the HD Ground Database.

This chapter is structured as follows: In Section 3.1, we shortly introduce re-

lated work, while Section 3.2 introduces the work of Zhang et al. [2019], which

presents the only other available ground image databases suited for ground

texture based localization: the Micro-GPS databases. Afterwards, in Section 3.3,

we describe our database, including the employed strategies to data recording
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and mapping. Then, Section 3.4 introduces our strategy to generate ground

truth query image poses. Finally, we conclude the chapter in Section 3.5 with a

general discussion about the application of the introduced databases for the

evaluation of ground texture based localization methods.

3.1 Related Work

To the best of our knowledge the Micro-GPS databases of Zhang et al. [2019]

are the only other publicly available ground image databases suited for ground

texture based localization. We introduce them in Section 3.2.

Another publicly available database of ground images was created by Xue et al.

[2017]. It contains more than 30000 images of 40 outdoor ground types The

database is used to show the effectiveness of differential angular imaging for

in-place material recognition. Accordingly, it provides many images of the

same places from varying camera angles, but not the area coverage required to

examine localization tasks.

Alternatively, Rodriguez and Castano-Cano [2019] propose to generate image

data with a virtual camera from simulated vehicle drives over a single high-

resolution terrain image, e. g. an image stitching of ground images. This allows

to generate a virtually infinite number of different image sequences for training

and testing. However, while some image conditions like the camera position,

image resolution, motion blur, and lighting can be simulated, this does not

allow to examine the effects of actual changes that appear on the ground. In

contrast, our HD Ground Database captures changes that appear over time due

to wear and tear, as well as due to weather.

3.2 The Micro-GPS Databases

Zhang, Finkelstein, and Rusinkiewicz [2019] present two databases, one that

was recorded with a PointGrey CM3 camera (see Figure 3.1), that takes 8-bit

gray scale images, and one that was recorded with an iPhone 6 (see Figure 3.2).

For both cameras, outdoor and indoor areas are scanned by manually moving a

mobile cart on a zig-zag course over the area of interest. The cart is equipped

with its own illumination of the ground and it shields the recording area from

external illumination. In order to align the recorded images, they are stitched

together, based on feature correspondences of overlapping images. Here, the
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Figure 3.1: Example images of the Micro-GPS database [Zhang et al., 2019]
recorded with a PointGrey CM3 camera. From left to right: fine
asphalt, coarse asphalt, carpet, concrete, tiles, and wood.

Figure 3.2: Example images of the Micro-GPS database [Zhang et al., 2019]
recorded with an iPhone 6. From left to right: granite and tiles

authors proceed in three steps: a) In order to reduce computation time and the

effort of having to properly record the entire region at once, the application area

is divided into multiple smaller regions of several square meters in size. The

images of each region are stitched together by minimizing the squared global

reprojection error of feature correspondences; b) connections between the

regions are specified manually and they are aligned relatively to each other in

another optimization step; c) finally, the individual image poses in the overlap

of the smaller regions are optimized in another global optimization step, con-

sidering the feature correspondences between images from the region borders,

while image poses are kept constant if they are not overlapping with images of

other regions.

Subsequently, test images are recorded on (to the best of our knowledge) arbi-

trary paths on the application areas. For evaluation these images can be used

as query images that are to be localized.

Details on the content of the six textures of the Micro-GPS PointGrey CM3

database are presented in Table 3.1, respectively for the two textures recorded

with an iPhone 6 in Table 3.2.

In [Schmid et al., 2020a] and [Schmid et al., 2020b] the PointGrey CM3 database

was used to compare localization approaches. But for many evaluated local-

ization problems, e. g. localization with prior pose estimate (on all textures but

wood), every method reaches close to perfect success rate, raising the question

of whether the database covers all challenges of the task. For example, it is
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Table 3.1: Details about the content of the Micro-GPS PointGrey CM3
database [Zhang et al., 2017]. Reference images are the images that
have been obtained from scans of the application areas. Test images
are the images that are to be localized in respect to the reference
images. They are provided as separate sequences of consecutively
recorded images. Note that the PointGrey CM3 database provides
three different application areas with fine asphalt surface, of which
we present only the one with the largest number of images, which is
also the one that we used for the evaluations in the remainder of this
dissertation.

Fine asphalt Coarse asphalt Carpet Concrete Tiles Wood

Area covered m2 19.76 21.20 17.70 32.68 12.75 41.76
#Reference images 2215 2061 2014 3316 4043 3826
#Test images 4887 3570 8817 7012 1077 1165
#Test sequences 11 9 27 20 3 4

Table 3.2: Details about the content of the Micro-GPS iPhone 6 database [Zhang
et al., 2017].

Granite Tiles

Area covered m2 27.52 12.75
#Reference images 1229 1296
#Test images 862 1621
#Test sequences 3 3

not systematically covering ground changes that occur over time. For this and

further evaluations, we are introducing the HD Ground Database.

3.3 The HD Ground Database

We present a large database of ground images for the development and evalua-

tion of ground texture based localization methods: the HD Ground Database. It

contains reference and test images of eleven textures. Reference images cover

the application areas, and were aligned in an image stitching process, similar to

that of the Micro-GPS databases of Zhang et al. [2019].

The four main textures (see Figure 3.3) are footpath asphalt, parking place

cobblestone, office felt carpet, and kitchen laminate. For these textures, test

image sequences were captured systematically by recording a similar trajectory

on a weekly basis (detailed timings are given in Section 7.3.3). Additionally, as

presented in Figure 3.4, separate sets of trajectories were recorded in quick suc-

cession. These trajectories are following quite precisely the same path on the

coverage area, which allows to evaluate a teach-and-repeat scenario in which
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Figure 3.3: Representation of the application area, as well as example images
of the four main textures of the HD Ground Database. From left
to right: asphalt, cobblestone, carpet, and laminate. This figure is
adapted from [Schmid et al., 2022].

Table 3.3: Details of the 4 main textures of the HD Ground Database. Regular
sequences are the test sequences that we recorded on a weekly basis.

Asphalt Cobblestone Carpet Laminate

Area covered m2 106.12 59.28 90.15 16.18
#Reference images 32251 25337 33456 5812
#Test images 17483 14442 16579 9052

#Regular sequences
12 dry, 12 as it is,

22 22
9 wet 12 cleaned

a robot is steered along a specific path once, and subsequently is supposed to

follow the taught path autonomously in both directions. Table 3.3 presents fur-

ther details for the main textures. Typically, localization methods are adapted

to a database or a specific texture through training or parametrization. For this

purpose, as illustrated in Figure 3.5, we provide additional training areas: a sep-

arately recorded square meter for each of the main textures, and additionally a

2 m2 door mat. For six further textures (see Figure 3.6) reference and test images

are captured on the same day: terrace pavement (24.8 m2), garage concrete

(18.2 m2), workroom linoleum (17.1 m2), bathroom tiles (3.8 m2), checker plate

steel (3.3 m2), and ramp rubber (2.8 m2). We call these generalization textures,

as we will use them to evaluate generalization capabilities.
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Figure 3.4: Data recording setup on the footpath asphalt application area for the
teach-and-repeat scenario. First, a rope (in the image traced by the
red line) is put on the ground in an arbitrarily chosen configuration.
Then, we move the recording platform along the rope while record-
ing image sequences. The aluminium profiles attached to the sides
of the recording platform act as visual guidance for tracking the rope.
For two sequences (green arrow, as seen in the image), we follow
the rope aligning the left profile with the rope while moving in the
direction of the viewer, and for two further sequences (blue arrow),
we follow the rope while moving away from the viewer aligning the
right profile with the rope.

3.3.1 Setup of the Recording Platform

Our recording platform is a modified RT3-2 VolksBot [Surmann et al., 2008] (see

Figure 3.7). The only sensor being used for our database is the ground-facing

camera. The recording area is shielded from external lighting and illuminated

by a 24 V, 72 Watt LED ring. Pulsed LED lighting is synchronized with the camera

exposure, reducing heat generation significantly, allowing us to provide bright

illumination during recording, enabling exposure times of only about 0.09 ms,

preventing any significant motion blur at our pre-defined operational speeds

of up to 5.56 m/s. Images are recorded at a frame rate of 50 Hz. In practice,

however, we retain only every fourth frame, because we move the platform
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3.3 The HD Ground Database

Figure 3.5: Visualization of the types of data provided by the HD Ground
Database. Rectangles represent images. Each application area is
covered by a set of reference images (light blue). They form the
map in which separately acquired query images (orange) are to be
located. For the main textures, additional training areas (dark blue)
and query images (green) are recorded. This figure is taken from
[Schmid et al., 2022].

at most with a quarter of the intended maximum speed. We observe that our

lighting creates strong specular reflections on some types of ground texture.

Therefore, inspired by Kelly et al. [2007], we add a pair of polarization filters to

enable cross-polarization. Here, the polarizer in front of the LED ring lets only

light waves with a certain polarization pass. The analyzer in front of the camera

is orthogonal to the polarizer, and therefore removes exactly the light waves with

the polarization that was previously passed. Since specular reflected light keeps

its polarization, it is not reaching our camera. This method, as demonstrated in

Figure 3.8, effectively prevents specular reflections in the recordings.

It can also help with wet surfaces, as shown in Figure 3.9. However, with this

solution a significant part of the emitted light is removed: both polarizations

of the light remove about 50% of the respective incoming light. For stable

imaging, this should be compensated, but this would require an increase in

power consumption for brighter lighting or an increase in exposure time.

In the end, cross-polarization was not employed for the recordings of the HD

Ground Database, because the examined textures are not critically reflective.

Some of the most important design parameters for a recording setup with

a downward-facing camera are the exposure time τ, the longitudinal length

llong, i. e. the image size along the main direction of driving, of the recorded

image, and the camera height h. We can derive guidelines for selecting the

values of those quantities by considering our requirements for the platform: a

vehicle speed of vmax ≤ 20 km/h ≈ 5.56 m/s should be supported; for visual

odometry, consecutive images should have a longitudinal relative overlap of
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Figure 3.6: Representation of the application area, as well as example images of
additional textures of the HD Ground Database. From left to right:
pavement, concrete, linoleum, tiles, steel, and rubber. This figure is
adapted from [Schmid et al., 2022].

omin ≥ 1
3 ; and motion blur, i. e. the traveled distance during exposure b, should

be bmax ≤ 0.5 mm to allow to distinguish between small texture details. Three

more constraints are given by the maximum recording speed of our AVT Manta

G-235C camera (Sony IMX174 global shutter CMOS sensor) with f = 50 Hz;

the recording opening angle of our lens (Schneider Kreuznach Cinegon 1.4/12-

0906) of α ≈ 48 ◦ image diagonal; and the image aspect ratio of 4 : 3.

The exposure time is derived from the maximum allowed motion blur bmax and

the supported vehicle speed vmax as

τ =
bmax

vmax
≈

0.0005 m

5.56 m/s
≈ 0.09 ms. (3.1)

The longitudinal image length is defined by the vehicle speed vmax, the record-

ing frequency f, and the image overlap omin:

llong =
vmax · 1/f

1 − omin
≈

5.56 m/s · 0.02 s

1 − 1/3
≈ 0.167 m. (3.2)

Finally, the camera has to be mounted high enough to capture the diagonal of

our coverage area with length llong and width llat = llong · 3/4, given the camera

opening angle α:

h =
0.5 ·

√

l2
long + (3/4 · llong)2

tan (α/2)
≈ 0.234 m. (3.3)
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3.3 The HD Ground Database

Figure 3.7: An illustration of our recording platform. Image recording is syn-
chronized with a pulsed LED ring for illumination. A combination
of polarizer and analyzer in front of the LED ring, respectively the
camera, can be used to remove specular reflections. This figure is
adapted from [Schmid et al., 2022, accompanying video].

3.3.2 Data Recording

We differentiate three systematic setups of data recording.

• Initial scanning of the whole coverage area (reference images). The

application area is recorded lane-by-lane, with each lane having a lateral

offset of 38 to 50 mm to the previous one. That way images have approxi-

mately 2/3 overlap with neighboring images from the previous and next

lane, and, because we drive slowly during mapping, also with the previous

and next image of the same lane. Accordingly, every point on the ground

is covered by about 9 reference images, which allows us to properly align

the images during mapping.

• Recording of regular test sequences. For each main texture, we define a

regular test path. Weekly test sequences are recorded by roughly following

the respective paths. For cobblestone, two regular test paths are recorded:

one where the area is cleaned before recording and one where it is not.

For cobblestone only sequences with mostly dry surfaces are recorded.

For asphalt, on the other hand, additional sequences are recorded with

weather-caused wet surface.

• Recording of teach-and-repeat sequences. A 20 m rope is put in a curved

shape on the application area. Then, we closely follow this rope two times

in forward and backward driving direction. Five different rope configu-

rations are recorded per texture, one example for the asphalt application

area is presented in Figure 3.4.
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Figure 3.8: Comparison of ground images that have been recorded without (left)
and with (right) the cross-polarization filter solution.

For the training areas and generalization textures, test images are recorded on

arbitrary paths directly after the initial scanning. We calibrate the camera using

a pinhole model with two radial distortion parameters and use the rectified

images. Also, we compensate for vignetting (see Figure 3.10), because in our

recordings, due to the use of a ring-shaped lighting and a camera with maxi-

mum aperture, brightness quickly declines towards the borders. To do this, we

compute the average brightness image from 100 recordings of white paper and

normalize each image with it.
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3.3 The HD Ground Database

Figure 3.9: Comparison of ground images that have been recorded without (left)
and with (right) the cross-polarization filter solution on asphalt. The
ground was dry when the images of the top row were recorded, while
it was wet during the recording of the images of the bottom row.

3.3.3 Mapping

We create a map for each application and training area. They are created offline

with an image stitching process similar to that of Zhang et al. [2019], aligning

the reference images in a common map coordinate system.

A first image is put to the origin of the coordinate system and then we com-

pute relative poses of consecutively recorded images. This yields us the initial

reference image pose estimates. Relative poses are estimated with a simple

feature-based approach, using SIFT features, a ratio test based brute-force near-

est neighbor matching strategy, and final RANSAC-based pose estimation. To

map the application areas, SIFT parameters are optimized on the respective

training areas, while they were initially optimized on the Micro-GPS [Zhang

et al., 2019] database to map the training areas. This incremental pose estima-

tion quickly accumulates drift, so only a small set of 5 to 50 images is added

to the map at each iteration of the mapping process. Afterwards, we estimate

the poses of each image relative to all its (potentially) neighboring images. It

is crucial to avoid incorrect estimates at this stage. Therefore, we require that

each relative transformation of image n to one of its neighbors (image m) is
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Figure 3.10: Comparison of carpet ground images before (left) and after (right)
rectification and compensation for vignetting.

confirmed by the relative transformation of the (n − 1)-th or the (n + 1)-th

image to image m. Let [R, t ]mn denote the transformation from image n to image

m, consisting of a rotation R and a translation t , then

[R, t ]mn ≈ [R, t ]xn−1[R, t ]n−1
n , (3.4)

is required, or alternatively

[R, t ]mn ≈ [R, t ]xn+1[R, t ]n+1
n . (3.5)

Furthermore, we require the number of RANSAC inliers to exceed 100, which is

an empirical threshold that depends on the employed feature extractor and its

parametrization. Unconfirmed image pose relations are discarded.

At the final step of each mapping iteration, the set of all reference image poses

{[R, t ]} is jointly optimized, considering pairs of corresponding features ( f k
i , f k

j )

between all pairs of neighboring images (i, j), for which the relative pose esti-

mate was confirmed. Similar to Zhang et al. [2019], we formulate the optimiza-

tion as a non-linear least-squares optimization problem in Ceres1 [Agarwal

et al., 2016], using the loss function:

E = min
{[R,t ]}

∑
(i,j)

∑
( f k

i , f k
j )

([R, t ]Mi · f k
i − [R, t ]Mj · f k

j )
2. (3.6)

With [R, t ]Mi denoting the transformation mapping image i into the map M.

In contrast to Zhang et al. [2019], we consider only correspondences that are

part of the consensus set of the RANSAC-based pose estimation. This means

that we can expect all considered feature correspondences to be correct, and

1http://ceres-solver.org/
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3.3 The HD Ground Database

Figure 3.11: A small section from an image stitching of ground images with
asphalt texture. The yellow rectangle corresponds to a single image.
This figure is adapted from [Schmid et al., 2022].

that a set of two correspondences (each representing a pair of corresponding

points between query image and map) is sufficient for a near to full description

of the given constraints of an image pose relation, reducing the size of the

optimization problem.

In order to create an image stitching of the mapped reference images for visual-

ization, pixel gray values of regions contained in multiple reference images are

computed as an average value of the corresponding pixels of all overlapping im-

ages. The correctness of our maps is then confirmed by visually inspecting the

stitched maps. We observe only small amounts of smearing artifacts. Otherwise,

image transitions are smooth as in Figure 3.11 and Figure 3.12.

3.3.4 Comparison with existing databases

One of the most important novel aspects of our database is the recording of

regular test sequences for a systematic evaluation of localization performance

over time. Also, we enable the evaluation of a teach-and-repeat scenario and

our database is larger than existing ones. Table 3.4 compares the sizes of HD

Ground with the Micro-GPS databases. The largest coverage area recorded

for the HD Ground Database is 2.5 times larger than that of the Micro-GPS

databases (41.76m2 of wood for Micro-GPS compared to 106.18m2 of asphalt for

HD Ground). Larger areas can be used to evaluate the effect of visual aliasing

when considering a larger number of reference images during localization.
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Figure 3.12: A small section from an image stitching of ground images with tiles
texture. The yellow rectangle corresponds to the area covered by
a single image. This figure is adapted from [Schmid et al., 2022,
accompanying video].

Table 3.4: A comparison of the M(icro)-GPS database of Zhang et al. [2019] with
our HD Ground Database.

Database
Total area Largest #Ref- #Test #Tex- Reso- mm /
covered single erence images tures lution pixel

area images

M-GPS PointGrey 145.85 m2 41.76 m2 23 487 28 929 6 1288 × 964 0.16
M-GPS iPhone 6 40.27 m2 27.52 m2 2 525 2 483 2 1280 × 720 NA

HD Ground 347.73 m2 106.12 m2 129 965 71 463 11 1600 × 1200 0.1

In this context, visual aliasing means that different places have similar visual

appearances, leading to confusion during localization.

While Micro-GPS provides a minimal set of reference images covering the appli-

cation area, we provide overlapping reference images. This means, for example,

that our asphalt dataset, with 32251 images, contains more than 8 times as many

reference images as the wood dataset of Micro-GPS, with 3826 images, while

covering only a 2.5 times larger area. For instance, having overlapping images

available, a localization method could reduce its memory footprint storing only

those features that consistently appear in the overlap of multiple reference

images, as suggested by Schmid et al. [2020b].

Our images present the ground at a higher resolution which allows to examine

the extent to which this is beneficial. Also, our exposure time of about 0.09 ms
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3.4 Query Image Ground Truth Poses

Figure 3.13: As it can be seen in the left image from the HD Ground Database,
recording images with an exposure time of about 0.09 ms prevents
motion blur from being a problem. The other two images are taken
from the Micro-GPS database [Zhang et al., 2019]. According to
the authors, they have been recorded with an exposure time of
between 3 and 5 ms. While both images show significant motion
blur, it depends on the speed of the vehicle during recording. The
center image was recording while driving slowly and the right one
while driving faster. This figure is adapted from [Schmid et al., 2022,
accompanying video].

reduces motion blur compared to the Micro-GPS database with exposure times

of 3–5 ms [Zhang et al., 2017] as can be seen in Figure 3.13.

3.4 Query Image Ground Truth Poses

For reference images, we are using the resulting poses in the map coordinate

system from the image stitching process as ground truth. This is not possible

for query images of the independently recorded test sequences. However, for

some evaluations it is required to have ground truth poses of query images, e. g.

for parameter optimization and localization with prior.

This is why we employ a procedure similar to that proposed by Zhang et al.

[2019] to generate query image ground truth poses for our evaluations on the

Micro-GPS databases as well as for our HD Ground Database. Here, an es-

timated pose is considered to be correct if it is confirmed by a second pose

estimate. The first pose estimate is computed using a method for global map-

based localization, like Micro-GPS [Zhang et al., 2019], StreetMap [Chen et al.,

2018], or one of our own methods that are developed in this dissertation. Al-

ternatively, we employ a method for local map-based localization that takes
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advantage of an available query image pose prior to generate this initial query

image pose estimate. This is possible if, for example, we already generated a

ground truth pose for the previous image of the test sequence. A second pose

estimate of the query image, that we use to confirm or decline the first one, is

determined with a relative localization method. Here, we follow the suggestion

of Zhang et al. [2019] of using a simple SIFT-based approach, which is the same

approach we use in the mapping phase of the HD Ground Database, using

brute-force nearest neighbor feature matching, a ratio test for outlier rejection,

and RANSAC-based pose estimation, to estimate the query image pose in re-

spect to the closest reference image according to the first pose estimate. The

original pose estimate is confirmed if it is close to the second one (less than

4.8 mm in distance and 1.5 ◦ in orientation, as defined by Zhang et al. [2019]).

We repeat this procedure, using several localization approaches to generate

the first pose estimates, until a global pose estimate is successfully confirmed.

Then, we store the confirming pose estimate (the one computed with the simple

SIFT-based approach) as ground truth pose for the image.

3.5 Discussion

This chapter introduced the Micro-GPS databases and our own database: the

HD Ground Database. Both aim to solve the Problem 1: the initial scanning of

the application area.

The Micro-GPS databases are sufficient for the evaluation of typical localization

tasks like map-based localization with and without prior, as well as relative

localization, on some of the most common ground types. But, only the HD

Ground Database enables a systematic examination of more challenging sce-

narios, e. g. with significant time intervals between the initial scanning of an

application area and subsequent localization, or with significantly larger num-

bers of reference images, or with a greater variety of ground types to examine

generalization capabilities.

A caveat of all presented databases is the missing availability of actual ground

truth poses. Reference image poses are determined in the image stitching

process, which can take only local consistency of the retrieved feature corre-

spondences into account, while small errors can still accumulate to a significant

global drift between image poses in the map and their actual poses in the world.

Similarly, we can confirm only the local consistency of query image pose es-

timates. A solution to this problem would be to measure image poses during
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recording with an external reference system. However, to evaluate millimeter-

accurate positioning, as it is possible with ground texture based localization,

we demand highly accurate ground truth poses, which would require high-

precision measuring equipment available at all recorded application areas,

significantly increasing the effort and cost of data recording. Anyway, due to

the local consistency of the image poses, the available ground truth is sufficient

to examine the performance of map-based localization approaches.

The Micro-GPS database recorded with PointGrey CM3 camera will be the main

database for evaluation of localization performance in the remainder of this

dissertation, because the HD Ground Database was the last of my projects of

my doctoral period to be completed. Nevertheless, for several projects, we

performed additional evaluations on the HD Ground Database and present

them in the corresponding chapters.
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4 Local Visual Features for Ground

Texture Based Localization

Contents of this chapter were partially published in [Schmid, Simon, and Mester,

2019].

State-of-the-art methods to ground texture based localization employ feature-

based localization [Swank, 2012, Nakashima et al., 2019, Chen et al., 2018,

Kozak and Alban, 2016] that relies on the extraction of similar features from

varying views of the same location. While several feature extraction methods

were evaluated in these works, this survey is an extension. We evaluate addi-

tional methods for feature detection (e. g. AKAZE [Alcantarilla et al., 2013] and

LIFT [Yi et al., 2016]) and feature description (e. g. DAISY [Tola et al., 2010] and

LATCH [Levi and Hassner, 2016]), and we consider different techniques for key-

point selection (Non-Maximum Suppression (NMS), Adaptive Non-Maximum

Suppression (ANMS), and bucketing).

This work contributes an extensive survey using an elaborate evaluation frame-

work for ground texture based localization performance. For this purpose, we

investigate the task of finding corresponding image regions in pairs of overlap-

ping ground images. We examine relevant synthetic transformations of ground

images, perform pose estimation in respect to separately taken ground im-

ages, and introduce appropriate performance indicators to evaluate keypoint

detector performance on ground images.

In this chapter, we are concerned with map-based localization (Problem 3),

but instead of considering large maps with thousands of reference images, the

set of references images R consists for each evaluated localization attempt of

a single overlapping image with known relative transformation to the query

image. Correspondingly, the employed map object is constructed simply by

extracting features of that single reference image.

Section 4.1 summarizes other surveys of features for ground images. Then,

Section 4.2 introduces the approaches evaluated in this survey. Sections 4.3

and 4.4 describe and evaluate our experiments. Finally, Section 4.5 concludes
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the chapter with a summary of the presented content, and a discussion of the

gained knowledge.

4.1 Related Work

We present existing surveys of features for ground texture based localization.

Zhang et al. [2019] evaluate the use of SIFT [Lowe, 2004], SURF [Bay et al.,

2006], ORB [Rublee et al., 2011], and HardNet [Mishchuk et al., 2017] for their

ground texture based localization pipeline called Micro-GPS. They reduce the

descriptor dimensionality using Principal Component Analysis (PCA), match

descriptors with an ANN search structure, employ the voting procedure (Sec-

tion 2.3) for outlier rejection, and finally estimate the query image pose in

a RANSAC procedure. The authors receive the best results for keypoint ob-

jects and descriptors computed with SIFT. In a follow-up paper [Zhang and

Rusinkiewicz, 2018], the authors develop a fully convolutional neural network

trained on ground texture images that achieves higher repeatability than SIFT,

but has increased computational cost.

Kozak and Alban [2016] evaluate combinations of detector and descriptor meth-

ods on pairs of partially overlapping ground texture images, measuring the

number of correctly matched keypoint objects. Features are matched using

nearest neighbor matching with cross-check, i. e. the nearest neighbor property

is checked in both directions. They find the combination of CenSurE [Agrawal

et al., 2008] keypoint objects and SIFT descriptors to lead to the largest number

of successfully matched features. Pairings of CenSurE with ORB descriptors,

as well as SIFT detector with SIFT descriptor, also show good performance.

FAST [Rosten and Drummond, 2006], SURF, and GFTT [Shi and Tomasi, 1994]

keypoint objects, as well as descriptors provided by BRISK [Leutenegger et al.,

2011], FREAK [Alahi et al., 2012], or SURF, present significant weaknesses for at

least one of the three evaluated road surface texture types: worn asphalt, dark

asphalt, and concrete.

Otsu et al. [2013] investigate the suitability of different keypoint detectors for vi-

sual odometry from ground texture. They evaluate Harris [Harris and Stephens,

1988], GFTT, and FAST corner detectors as well as the scale-space detectors

SIFT, SURF, and CenSurE. The authors identify that none of the detectors is

suited for all situations that occur in the employed desert landscape image

datasets. Therefore, they propose to switch between detectors dependent on

the terrain.
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4.2 Evaluated Approaches to Feature-Based Localization

This chapter’s survey extends the prior work. We evaluate the computation of

keypoint objects separately like in [Otsu et al., 2013, Zhang and Rusinkiewicz,

2018], but also pair them with varying methods for keypoint selection and

feature description. In addition to the number of correctly matched keypoint

objects, which was considered in [Kozak and Alban, 2016], we evaluate the

repeatability of keypoint objects and their spatial distribution, the classification

precision of feature matches, measuring the ratio of correct matches to the

total number of proposed matches, and the pose estimation success rate. In

comparison to [Zhang et al., 2019], we evaluate a larger variety of methods for

detection and description. Furthermore, we evaluate performance on syntheti-

cally transformed images as well as on separately taken images. In case of the

separately taken images, we evaluate sequentially taken image pairs as they oc-

cur during incremental relative localization, where the transformation is close

to a pure translation, and image pairs taken at different times from independent

poses as they occur for absolute localization, which present potentially strongly

divergent orientation.

4.2 Evaluated Approaches to Feature-Based

Localization

Previously (Section 2.2), we divided the task of feature-based localization into

the 5 subtasks: a) keypoint detection, b) keypoint selection, c) feature descrip-

tion, d) feature matching, e) pose estimation.

For the first three tasks, we examine a range of popular approaches available

in OpenCV [Bradski, 2000], as well as LIFT [Yi et al., 2016], a deep learning

approach to the extraction of local visual features. For matching and pose

estimation, we revert to standard techniques. For matching, we compute the

Euclidean distance for real-valued descriptors and the Hamming distance for

binary ones. Then, features are matched with nearest neighbor matching and

the ratio test constraint as suggested by Lowe [2004]. This means that for each

query image feature the two reference image features with closest descriptors

to that of the query image feature are found. The closer one is suggested as

a match if its distance to the query image feature is smaller than that of the

second closest one multiplied with a pre-defined ratio test factor. Finally, we

estimate the relative poses of query images using the proposed feature matches

and RANSAC-based estimation of a 2D Euclidean pose transform.
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4.2.1 Evaluated Keypoint Detectors

We evaluate the following keypoint detection approaches, which have been

introduced in Section 2.1: Good Features To Track (GFTT) [Shi and Tomasi,

1994], FAST [Rosten and Drummond, 2006], AGAST[Mair et al., 2010], Harris-

Laplace (H.L.)[Mikolajczyk and Schmid, 2002], SIFT [Lowe, 2004], SURF [Bay

et al., 2006], CenSurE [Agrawal et al., 2008], BRISK [Leutenegger et al., 2011],

ORB [Rublee et al., 2011], AKAZE [Alcantarilla et al., 2013], MSER [Matas et al.,

2004], MSD [Tombari and Di Stefano, 2014], and LIFT [Yi et al., 2016].

4.2.2 Evaluated Keypoint Selection Methods

We hypothesize that one of the more difficult situations for ground texture

based localization is a case in which larger image areas are weakly textured,

i. e. areas without or with only a few contrastive image patches. To find po-

tential correspondences between query and reference images in such a case,

it is still necessary to extract a sufficiently large number of keypoint objects.

Detection parameters should be chosen with respect to this case or need to be

adapted texture dependently. Using the same parametrization for all ground

types possibly being encountered is desirable, but, a feature detector that is

parametrized to retrieve a sufficient number of features from weakly textured

images may retrieve a large number of features on other images. Therefore, in

order to limit the required processing time for localization, keypoint selection,

i. e. the reduction of considered features, has an important role for some feature

extraction methods on ground images.

One approach to keypoint selection is NMS, where only the n keypoint objects

with largest response value of their corresponding detection criterion are kept.

In order to improve the spatial distribution of keypoints, NMS can be com-

bined with bucketing [Kitt et al., 2010], where keypoint objects are detected

independently for areas defined by a regular grid. An alternative approach

is adaptive non-maximum suppression ANMS, where keypoint objects with

strong responses suppress keypoint objects in a local neighborhood.

4.2.3 Evaluated Feature Description Methods

We examine description methods generating real-valued descriptors: SIFT [Lowe,

2004], DAISY [Tola et al., 2010], SURF [Bay et al., 2006], and LIFT [Yi et al.,

2016]; and we examine description methods generating binary descriptors:
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4.3 Experimental Setups

Table 4.1: The experimental setups examined in this survey. For the task of
evaluating keypoint detection, we examine synthetically transformed
images, and evaluate performance using keypoint repeatability, our
novel ambiguity indicator, and the < n KPs indicator, which counts
the number of images for which less than n features are extracted.
Feature matching is also evaluated with synthetically transformed
ground images, based on the number of obtained correct matches,
and the classification precision of the proposed correspondences.
The final pose estimation task is examined both on synthetically trans-
formed images and actually overlapping, independently recorded
ground images. Here, we examine the success rate, i. e. the ratio of
localization attempts for which the differences between estimated
pose and ground truth pose is small (below 4.8 mm and 1.5 ◦).

Task Transformation Performance indicators

Keypoint detection Synthetic Repeatability, Ambiguity, < n KPs
Feature matching Synthetic Number of correct matches, Precision
Pose estimation Synthetic & Real Success rate

BRIEF [Calonder et al., 2010], ORB [Rublee et al., 2011], BRISK [Leutenegger

et al., 2011], FREAK [Alahi et al., 2012], LATCH [Levi and Hassner, 2016], and

AKAZE [Alcantarilla et al., 2013]. All of which were introduced in Section 2.1.

4.3 Experimental Setups

Our experimental framework consists of three separate experiments, which are

summarized in Table 4.1. The first experiment examines keypoint detection on

synthetic transformations, the second one feature matching on synthetically

transformed images, and the third experiment examines pose estimation using

both synthetic transformations and separately recorded, partially overlapping,

ground image pairs.

For synthetic transformations, correct feature matches are known and perfor-

mance can be evaluated in regard to specific types of image modifications. We

evaluate geometric and photometric transformations. Typical photometric

transformations that should be considered are Gaussian noise and illumination

changes. For this purpose, we add noise that is independent and identically

distributed (i.i.d.) and zero-mean. For illumination changes, we employ gamma

correction: pixel values g are modified as: gout = round(gmax · (
gin

gmax
)γ), where

gmax = 255. For both photometric transformations, pixel intensity values are

clipped at 0 and 255. Additionally, two geometric transformations are relevant
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when using downward-facing cameras: rotation and translation. Rotated im-

ages are computed using bicubic interpolation. In case of translation, an image

mask determines a section of the image from which features are extracted. This

mask is translated by a discrete number of pixels for testing, as illustrated in

Figure 4.1. Accordingly, different image sections with specified intersections

are evaluated. For this evaluation, only keypoint objects from the intersection

between reference mask and query mask are considered.

For separately taken images, it is difficult to obtain sufficiently accurate ground

truth in order to determine which feature matches are correct. However, they

allow us to examine localization performance with its difficulties that occur

during application in the real world. We examine image pairs that are recorded

in direct sequence, which represent the challenges of incremental localization,

and we examine image pairs that have been recorded at different times and from

independent views, which represent the challenges of absolute localization.

4.3.1 Keypoint Detection

We use synthetic transformations to examine whether the same keypoint ob-

jects are found in pairs of reference and query images. Pairs of keypoint objects

from reference and query image are considered to match and therefore to rep-

resent the same location if the IoU of their corresponding image patches in the

reference coordinate frame is greater than 0.5.

As performance metric, we evaluate the keypoint repeatability introduced by

Mikolajczyk et al. [2005]. It measures the proportion of keypoint objects from

the query image that were also found in the reference image. Additionally, we

introduce two novel performance indicators: ambiguity and < n KPs. With

ambiguity we address the problem of the repeatability metric that it does

not penalize ambiguous keypoint correspondences. This problem occurs if

a keypoint object from the query image has multiple valid matches in the

reference image, which happens for example if keypoints are densely clustered.

We compute ambiguity as the mean number of valid matches of the query

image keypoint objects with at least one valid match. Therefore, ambiguity

≥ 1.0. An ambiguity greater 1.0 suggests that the repeatability score is inflated

by ambiguous keypoint matches. The second new performance indicator that

we introduce is < n KPs, which measures how often fewer than n keypoint

objects are found in an image. This is of interest, as having only few keypoint

objects increases the risk of failure for feature-based localization.
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4.3 Experimental Setups

Figure 4.1: SIFT keypoint objects [Lowe, 2004] on a synthetically translated im-
age pair. The keypoint objects are depicted as blue circles, the image
sections from which keypoint objects are extracted are bounded by
red rectangles, and the intersection of reference image section and
translated image section is depicted as green rectangle. In this case,
the translation results in an Intersection over Union (IoU) of 0.1925.
This figure is adapted from [Schmid et al., 2019, supplementary].
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4.3.2 Feature Matching

In order to evaluate whether the obtained features are suited for the localization

pipeline, we examine feature matching performance. We evaluate the number

of correctly matched features and compute the the matching precision, based

on the number of correct matches (inliers) |I| and the number of incorrect

matches (outliers) |O|: precision = |I|
|I|+|O|

.

4.3.3 Pose Estimation

Adopting the thresholds of Zhang et al. [2019], we consider pose estimates to be

correct if their distance to the ground truth is less than dt = 4.8 mm and if their

absolute orientation error is less than ot = 1.5 ◦. We evaluate pose estimation

performance using the success rate metric, which is computed as the ratio of

the number of correct pose estimates to the number of incorrect ones.

4.4 Evaluation

For evaluation of our experimental framework, we use the six textures of the

ground image database of Zhang et al. [2019] (see 3.1), recorded with a gray-

scale PointGrey CM3 camera. An E3-1270 Intel Xeon CPU at 3.8 GHz is em-

ployed for compuation. We randomly select 3 images per texture to be used

exclusively for parameter optimization, 100 for the evaluation with synthetic

transformations, and 100 actual reference-query image pairs each for incremen-

tal and absolute localization tasks. We observed no significant performance

variations using more query images. Our strategies for parameter optimization,

and the obtained parameter settings can be found in the appendix Section A.1.

We make use of OpenCV 4.0 [Bradski, 2000] implementations for most of the

evaluated methods for feature detection and description. Due to bad perfor-

mance of the ORB implementation of OpenCV, we use its implementation that

comes with ORB-SLAM2 [Mur-Artal and Tardós, 2017]. The implementation

and the trained network weights of LIFT are provided by the authors, who claim

to achieve good generalization performance even without domain specific

training samples [Yi et al., 2016]. We exclude ORB and LIFT from the evaluation

on synthetic transformations as their implementations do not allow to restrict

the search space using a detection mask, which is what we require for the eval-

uation of synthetic translation. For feature matching, we find most similar

reference descriptors and filter them with the ratio test constraint with a factor

52



4.4 Evaluation

of 0.7. Poses are estimated using RANSAC-based estimation of a Euclidean

transformation with a maximum of 2000 iterations and the error threshold

applied in [Zhang et al., 2019] of 3.0 pixels.

Synthetic transformations are parametrized as follows: for rotation, angles

between 0 ◦ and 180 ◦; for translation, we evaluate IoUs of reference mask and

query mask between 0.2 and 1.0. Gaussian i.i.d. noise is zero-mean with stan-

dard deviation between 0.0 and 40.0; illumination values are changed non-

linearly using a gamma between 0.1 and 3.0. When presenting results from

synthetic transformations, performance indicators are averaged with equal

contribution of the results of each transformation type.

4.4.1 Evaluation of Selector-Detector Pairings

We examine the repeatability of keypoint detectors using the keypoint selection

methods introduced in Section 4.2.2 to reduce the number of keypoint objects

to 1000. Respectively, if the keypoint detection method allows to specify the

desired number of keypoint objects, we set this parameter to 1000. For keypoint

selection with ANMS, we use Suppression via Square Covering [Bailo et al.,

2018] with a tolerance of 20%. For bucketing, we received good results for

non-square buckets, using a grid of 8 rows and 6 columns. For each grid cell,

21 keypoint objects are selected using NMS resulting in a maximum of 1008

keypoint objects per image. The evaluation of a single image without the

employment of keypoint selection takes us several days, due to the large number

of retrieved keypoint objects of some detection approaches (especially AGAST

with an average of more than 200 000 keypoint objects per image) and due

to the large number of applied synthetic transformations in the experiment

conducted. Which is why for this particular experiment, we evaluate a single

query image per type of ground texture, and apply the synthetic transformations

to it. In addition to the repeatability scores, Table 4.2 presents the average

number of keypoint objects before selection. MSER does not provide a keypoint

response measure, and is therefore not well suited to be used with a selection

method. Together with FAST, AGAST, and BRISK, MSER has significantly better

repeatability without selection. In order to select MSER keypoints without

a keypoint response measure anyway, we use the order of extracted keypoint

objects as substitution for the response measure. This means that the first found

maximally stable extremal regions, which are the ones with lowest intensity

values, are considered to have the largest response. With this workaround MSER

still achieves a surprisingly large repeatability of 51% using NMS and 73% using
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Table 4.2: Evaluation of varying keypoint detection methods for the number of
keypoint objects (#KPs) before selection (w/o selection), and their
achieved repeatability if paired with one of the evaluated keypoint
selection strategies: Non-Maximum Suppression (NMS), Adaptive
Non-Maximum Suppression (ANMS), and bucketing [Kitt et al., 2010].

Detector
#KPs before Repeatability

selection w/o selection NMS ANMS Bucketing

AKAZE 10199 0.81 0.82 0.41 0.74
SIFT 755 0.82 0.82 0.82 0.77

SURF 7271 0.80 0.82 0.65 0.74
CenSurE 6434 0.83 0.76 0.39 0.70

MSD 6484 0.59 0.76 0.51 0.68
H.L. 839 0.76 0.76 0.76 0.68

MSER 15238 0.94 0.51 0.73 0.52
BRISK 58050 0.84 0.71 0.25 0.64
GFTT 894 0.69 0.69 0.69 0.29

AGAST 225361 0.93 0.64 0.22 0.57
FAST 52112 0.78 0.64 0.26 0.56

ANMS. We find MSER to be the only detector that performs best with ANMS.

For all other detectors, we use NMS in the following. The repeatability of AKAZE,

SURF and especially MSD is increased when using keypoint objects selected by

NMS instead of all available keypoint objects. This means that keypoint objects

that have been assigned low values of the keypoint response measures of these

detectors are indeed non-repeatable and are rightly removed by NMS.

In a next step, we evaluate the best performing detector-selector pairings using

the full 100 reference images for testing. Averaged results are presented in Table

4.3. For the < n KPs performance indicator, measuring the ratio of images

for which less than n keypoint objects are detected, we set n to 100, as we

noticed that localization success is low with fewer keypoint objects. For most

detectors, we were able to find parameters that allow to retrieve at least 100

keypoint objects from almost all images. But, AKAZE, H.L., and GFTT still

find fewer keypoint objects on at least 4% of the images. This problem occurs

almost exclusively on wood texture images. H.L. extracts less than 100 keypoint

objects on 49% of wood images, GFTT on 28% and AKAZE on 23%. SIFT, AKAZE,

and SURF have with 83% to 84% the best repeatability. However, SIFT has a

large ambiguity score of 1.50. This is due to SIFT generating multiple keypoint

objects with different orientations at the same position in case that there are

multiple strong orientations in the histogram of gradient directions, which

creates clusters of keypoint objects with ambiguous correspondences in the

transformed image.
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Table 4.3: Keypoint detectors are paired with their best performing keypoint
selection method, considering Non-Maximum Suppression (NMS),
Adaptive Non-Maximum Suppression (ANMS), and bucketing [Kitt
et al., 2010]. These pairings are evaluated for the < 100 KPs indicator,
which is the number of images for which less than 100 features have
been extracted, their repeatability, ambiguity, and computation time.
The evaluation is done with synthetically transformed images of the
Micro-GPS database [Zhang et al., 2019].

Selector Detector < 100 KPs Repeatability Ambiguity Comp. time ( s)

NMS AKAZE 0.05 0.84 1.00 0.40
NMS SIFT 0.00 0.83 1.50 3.27
NMS SURF 0.01 0.83 1.06 0.48
NMS CenSurE 0.00 0.79 1.00 0.08
NMS MSD 0.00 0.79 1.04 5.38
NMS H.L. 0.08 0.77 1.18 0.62

ANMS MSER 0.00 0.72 1.15 3.91
NMS BRISK 0.01 0.74 1.44 1.08
NMS GFTT 0.04 0.73 1.00 0.06
NMS AGAST 0.00 0.68 2.08 0.14
NMS FAST 0.01 0.67 1.01 0.04

Texture dependent keypoint repeatability performance is presented in Fig-

ure 4.2. Here, we observe that all evaluated detectors have their lowest keypoint

repeatability for images of wooden texture, in some cases with a significant

difference to the texture with second lowest repeatability. Among the evaluated

keypoint detectors, SIFT has the most stable performance for all textures.

For the transformation dependent repeatability performance, presented in
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Figure 4.2: Keypoint repeatability of varying keypoint detectors for different
types of ground textures from the Micro-GPS database [Zhang et al.,
2019] (fine and coarse asphalt, carpet, concrete, tiles, and wood),
averaged over all types of evaluated synthetic transformations (ro-
tation, translation, noise, and illumination changes). This figure is
adapted from [Schmid et al., 2019, supplementary].
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Figure 4.3, we find that all keypoint detectors, but SIFT, are mostly unaffected

by the synthetic translation, while the synthetic noise is the most difficult

transformation to deal with for all keypoint detectors. It becomes clear that

SIFT, AKAZE, and SURF have the best repeatability performance due to them

being less affected by the synthetic noise.

Overall, our evaluation suggests that SURF and CenSurE, as well as AKAZE for

non-wood texture, are the best detectors on ground texture images. They have

among the best repeatability, and ambiguity scores, and are, unlike SIFT and

MSD, fast to compute. Still, SIFT can be considered as well, due to its stable

performance among all evaluated textures and transformations.

4.4.2 Evaluation of Detector-Descriptor Pairings

We evaluate the pose estimation success rate for all working detector-descriptor

pairs. Some pairings are not feasible. The AKAZE description method only

allows to use AKAZE keypoint objects. DAISY requires keypoint objects to

specify orientation. The ORB description method has requirements on the

keypoint object scaling, which excludes SIFT and LIFT.

We evaluate on image pairs from incremental localization, presenting averaged

results in Table 4.4. The corresponding results for absolute localization are pre-

sented in Table 4.5. The intersection of the sequentially taken image pairs is on

average 22.7% with a maximum of 50.0%. Some almost non-overlapping pairs

with intersections as low as 1.7% are particularly challenging. The image pairs

from the absolute localization tasks have larger intersections with an average of
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Figure 4.3: Keypoint repeatability of varying keypoint detectors for the individ-
ual evaluated synthetic transformations (rotation, translation, noise,
and illumination changes), averaged over all textures of the Micro-
GPS database [Zhang et al., 2019] (fine and coarse asphalt, carpet,
concrete, tiles, and wood). This figure is adapted from [Schmid et al.,
2019, supplementary].
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Table 4.4: Pose estimation success rates evaluated for incremental localization
tasks, where the pose of one image is computed relative to that of a
consecutive image recording. For each feature description method,
we highlight in bold the respective keypoint detector pairings with
largest resulting success rates.

Detector
Descriptor

ORB BRIEF LATCH SURF SIFT AKAZE LIFT BRISK FREAK DAISY

CenSurE 0.93 0.90 0.90 0.24 0.82 NA 0.84 0.80 0.70 NA
MSD 0.93 0.90 0.90 0.68 0.83 NA 0.84 0.81 0.69 NA
H.L. 0.88 0.86 0.82 0.75 0.60 NA 0.62 0.74 0.67 NA

SURF 0.89 0.86 0.86 0.87 0.73 NA 0.40 0.72 0.73 0.72

AKAZE 0.80 0.85 0.83 0.47 0.73 0.84 0.76 0.80 0.74 0.66
FAST 0.89 0.85 0.85 0.24 0.79 NA 0.77 0.76 0.66 NA
GFTT 0.88 0.84 0.84 0.21 0.80 NA 0.80 0.79 0.68 NA
LIFT NA 0.84 0.83 0.36 0.69 NA 0.75 0.80 0.72 0.66

MSER 0.83 0.83 0.85 0.59 0.76 NA 0.47 0.62 0.56 NA
SIFT NA 0.82 0.84 0.59 0.84 NA 0.61 0.70 0.63 0.69

AGAST 0.77 0.76 0.75 0.30 0.66 NA 0.61 0.64 0.55 NA
ORB 0.70 0.71 0.71 0.73 0.58 NA 0.12 0.49 0.62 0.47

BRISK 0.66 0.69 0.70 0.61 0.61 NA 0.38 0.71 0.66 0.48

43.7%, ranging from 4.6% to 95.3%. However, in this case, the rotation between

the images is with an average of 120 ◦ (taking absolute orientation differences

with a range from 0 ◦ to 180 ◦) higher as for the pairs from incremental localiza-

tion with an average rotation of 3 ◦. Again, the number of retrieved keypoint

objects is reduced to 1000 using the respective best selection method. The best

performance for incremental localization of 93% success rate is achieved with

ORB on CenSurE or MSD keypoint objects. BRIEF and LATCH perform also well

with 90% success rate, also using CenSurE or MSD keypoint objects.

Exemplary for the texture-dependent performance, Figure 4.4 presents for in-

cremental localization the success rates of all descriptors with their respective

best performing detector pairing. In cases of multiple best performing de-

tectors, we consider the faster one as better. We observe that all of the best

descriptor-detector pairings achieve close to perfect success rates on the fine

asphalt and carpet datasets. The wood dataset presents itself to be particularly

challenging for several pairings like SIFT-SIFT, MSD-BRISK, SURF-DAISY, and

AKAZE-FREAK.

For absolute localization, most feature description methods can achieve more

than 90% success rate if paired with the right detector. SURF and DAISY are

not quite as successful as they struggle again with images of wooden texture

with success rates of their best performing pairings of 0.25 for SURF-SURF and
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Table 4.5: Pose estimation success rates evaluated for absolute localization
tasks, where the pose of one image is computed relative to that of
an independently recorded image, which has been recorded in a
separate image sequence. For each feature description method, the
respective keypoint detector pairings with largest resulting success
rates are highlighted in bold. Description methods marked with a
+-symbol can compute keypoint object orientation themselves. The
remaining description methods depend on the detector for that in-
formation. Detector methods marked with a +-symbol can provide
keypoint object orientation to the description method. If a detector
method that cannot provide keypoint object orientation is paired
with a descriptor method that depends on the detector providing that
information, performance is low for absolute localization.

Detector
Descriptor

ORB BRIEF LATCH SURF+ SIFT AKAZE+ LIFT BRISK+ FREAK+ DAISY+

CenSurE 0.14 0.11 0.09 0.50 0.10 NA 0.11 0.88 0.96 NA
MSD 0.14 0.11 0.09 0.72 0.09 NA 0.10 0.86 0.90 NA
H.L. 0.14 0.10 0.09 0.71 0.10 NA 0.10 0.87 0.89 NA

SURF+ 0.89 0.98 0.98 0.87 0.94 NA 0.91 0.96 0.98 0.70
AKAZE+

0.94 0.99 0.99 0.73 0.96 0.99 0.96 0.92 0.98 0.75

FAST 0.14 0.11 0.09 0.46 0.10 NA 0.11 0.84 0.89 NA
GFTT 0.14 0.11 0.09 0.37 0.10 NA 0.11 0.86 0.89 NA
LIFT+ NA 0.71 0.85 0.17 0.70 NA 0.52 0.46 0.73 0.24
MSER 0.13 0.10 0.09 0.76 0.09 NA 0.10 0.90 0.89 NA
SIFT+ NA 0.97 0.99 0.75 0.99 NA 0.96 0.93 0.94 0.74
AGAST 0.12 0.10 0.09 0.46 0.08 NA 0.10 0.80 0.86 NA
ORB+ 0.82 0.86 0.89 0.84 0.90 NA 0.73 0.84 0.87 0.56

BRISK+ 0.79 0.88 0.89 0.76 0.84 NA 0.84 0.87 0.89 0.53
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0.07 for AKAZE-DAISY. Detectors that provide orientation information (SIFT,

SURF, AKAZE, ORB, BRISK, and LIFT) outperform the other detectors. This

is particularly the case for the description methods ORB, BRIEF, LATCH, SIFT,

and LIFT which do not compute orientation themselves but rely on it to be

readily available. In these cases, if orientation information is not available, pose

estimation success rate drops to about 10% to 15%.

For further analysis of feature description performance, we use synthetic trans-

formations to evaluate the pairings of methods for detection and description

that performed the best on absolute localization. Again, for each description

method we consider its best performing detector pairing (based on the rounded

success rates shown in Table 4.5), using the faster one in cases of multiple best

performing ones. Additionally, for comparison, we provide the results of BRIEF

on CenSurE keypoint objects, which is one of the best performing pairings for

incremetal localization tasks, with CenSurE being one of the detectors that does

not provide orientation information and BRIEF being one of the description

methods that requires that information from the detector. Table 4.6 presents

results for feature matching and pose estimation. Here, the use of synthetic

transformations allows us to accurately evaluate classification precision and the

number of correct matches. We note that the challenges of our synthetic trans-

formations, which include severe rotations and photometric modifications,

are more similar to the ones of absolute localization. Consequentially, BRIEF

has significantly better performance using AKAZE keypoint objects instead of

CenSurE keypoint objects, which lack orientation information, but were well

suited for incremental localization. SIFT-SIFT outperforms the other feature
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Figure 4.4: Texture dependent pose estimation success rates for incremental
localization tasks, where the pose of one image is computed relative
to that of a consecutive image recording. We present the results for
each description method with its best performing detector pairing
on the incremental localization task. This figure is adapted from
[Schmid et al., 2019, supplementary].
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Table 4.6: Evaluation of detector-descriptor pairings on synthetically trans-
formed images, presenting similar challenges to those occurring for
absolute localization. We evaluate the pose estimation success rate,
the mean number of matches that are considered to be correct, and
the precision metric. The presented values are the averages over all
synthetic transformations. Each description method is evaluated
with its best performing detector pairing, according to our results on
the absolute localization task. Additionally, we evaluate the pairing
of CenSurE with BRIEF as one of the best performing pairings on the
incremental localization task. Note that neither CenSurE nor BRIEF
can compute keypoint object orientation.

Detector Descriptor Success rate #Correct matches Precision

SIFT SIFT 1.00 551 1.00
SURF BRISK 0.99 559 1.00

AKAZE AKAZE 0.98 545 0.99
AKAZE BRIEF 0.98 534 0.99
AKAZE FREAK 0.98 561 0.99
AKAZE LATCH 0.97 538 0.98
SURF SURF 0.97 509 0.99

AKAZE DAISY 0.87 410 0.98
CenSurE BRIEF 0.77 460 0.92

extraction pipelines. Also, we find precision to correlate with the pose estima-

tion success rate, while this relation is not that clear for the number of correct

matches. For example, BRIEF on CenSurE has about 50 more correct matches

than DAISY on AKAZE, despite having a significantly lower pose estimation

success rate.

In another experiment, we examine the pose estimation performance for in-

crementally recorded image pairs using different numbers of reference image

features, while the maximum number of extracted query image features is kept

constant at 1000. Results are presented in Table 4.7. Here, we find our selection

of n = 100 for the < n KPs performance indicator is validated, as localization

performance tends to be low for 100 or less reference image keypoint objects.

On the other hand, pairings like CenSurE-ORB, CenSurE-LATCH, and SIFT-SIFT

reach values close to their best performance at 300 features already. Others, like

SURF-SURF and SURF-DAISY should not be used with less than 500 features

per image.

Furthermore, assuming that the number of RANSAC inliers in successful lo-

calization attempts correlates with the number of correct matches, we find

further evidence for our observation that the number of correct matches is not

a suitable indicator for localization performance. This is as we observe that the
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Table 4.7: Pose estimation success rates for incremental localization tasks, de-
pending on the maximum number of considered features from the
reference images. Each description method has been paired with its
best performing detector, when considering 1000 features per refer-
ence image.

Detector Descriptor 10 50 100 200 300 500 750 1000 1500

CenSurE ORB 0.01 0.54 0.75 0.87 0.89 0.91 0.92 0.92 0.92
CenSurE BRIEF 0.00 0.47 0.73 0.84 0.87 0.88 0.89 0.89 0.90
CenSurE LATCH 0.13 0.65 0.77 0.84 0.86 0.88 0.88 0.89 0.89

SURF SURF 0.01 0.25 0.36 0.56 0.69 0.83 0.84 0.86 0.86
SIFT SIFT 0.12 0.56 0.71 0.80 0.82 0.83 0.84 0.83 0.84

CenSurE LIFT 0.04 0.50 0.67 0.76 0.80 0.82 0.82 0.83 0.83
AKAZE AKAZE 0.03 0.41 0.62 0.73 0.77 0.81 0.83 0.83 0.83
MSD BRISK 0.03 0.28 0.46 0.69 0.74 0.79 0.81 0.80 0.80

AKAZE FREAK 0.01 0.33 0.46 0.59 0.65 0.71 0.72 0.73 0.74
SURF DAISY 0.00 0.16 0.19 0.31 0.45 0.65 0.70 0.71 0.71

number of RANSAC inliers in successful localization attempts keeps increasing

together with the number of extracted reference image features, while the local-

ization success rates stagnate at some point. For CenSurE-BRIEF, for example,

the number of inliers in successful localization attempts increases from about

35 at 300 reference image features to 94 for 1500 reference image features, even

though success rate increases only from 87% to 90%. This suggests that once a

certain number of correct matches is available, localization performance does

not increase further.

4.5 Discussion

We examined keypoint detectors, selection methods, and feature descriptors

on synthetically transformed ground images as well as on pairs of separately

taken ground images.

In contrast to Otsu et al. [2013], we find with SIFT a keypoint detector that

performs well on all evaluated ground types. For image pairs, where the trans-

formation consists mainly of a translation, as it is the case for the task of in-

cremental localization, we can confirm the suitability of ORB descriptors on

CenSurE keypoint objects as well as SIFT features, and the weaknesses of FAST

and GFTT keypoint objects, and BRISK and FREAK descriptors, as assessed by

Kozak and Alban [2016]. This is even though our evaluation has shown that

their metric, the number of correctly matched features, is not necessarily a
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good indicator for localization performance. However, in contrast to Kozak and

Alban [2016], we observed good performance of SURF. Finally, we validated the

observation of Zhang et al. [2019] that SIFT is suited for absolute localization as

it is among the best performing methods for the estimation of transformations

between image pairs that are recorded at different times and different poses,

and the best feature extractor to deal with even more severe synthetic transfor-

mations. However, other pairings like BRIEF, LATCH, and AKAZE descriptors

on AKAZE keypoint objects perform similarly well and are significantly faster to

compute. Overall, we can recommend using ORB, BRIEF, or LATCH on CenSurE

keypoint objects for incremental localization and SIFT for absolute localization

if sufficient computation power is available. We found classical feature extrac-

tors to outperform the evaluated deep learning approach (LIFT [Yi et al., 2016]).

However, performance of deep learning approaches could be improved with

domain specific training as shown in [Zhang et al., 2019].

This survey allows us to find approaches to feature extraction and their respec-

tive parameter settings that are generally suitable for ground images. However,

we examined a simplified problem in which only a single reference image is

considered to find correspondences with the query image. In the following

chapters, we will consider more difficult localization problems with large sets

of available reference images and we will consider localization pipelines as a

whole, which, for example, use different techniques for feature matching.
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5 Identity Matching with Compact

Binary Descriptors

Contents of this chapter were partially published in [Schmid, Simon, and Mester,

2020a] and [Schmid, Simon, Radhakrishnan, Frintrop, and Mester, 2022].

Our goal in this chapter is to develop a self-contained ground texture based lo-

calization approach to solve the Problems 2 (map creation) and 3 (localization),

i. e. an approach to the map creation and localization problems that is sufficient

as the single source of localization information as it can be used for the initial

global localization as well as for subsequent local localization updates.

Previous approaches require an initial localization estimation from an external

source [Kelly et al., 2007, Fang et al., 2009, Nagai and Watanabe, 2015, Kozak and

Alban, 2016], making them unsuitable for a self-contained localization system,

or they are slow to compute for incremental localization updates [Zhang et al.,

2019, Chen et al., 2018], which limits the achievable localization accuracy. For

example, if a warehouse robot with a typical velocity of 10 km/h has a localiza-

tion latency of 200 ms, the robot moves more than 0.5 m during a localization

update. The path taken during a localization update can be estimated based on

the robot odometry, but without an absolute reference, the resulting relative

localization estimate is subject to drift.

We present an adaptation to the approach of Zhang et al. [2019] that performs

fast localization updates as it is able to focus on a restricted area of the map

according to a prior pose estimate. Our method employs compact LATCH [Levi

and Hassner, 2016] descriptors with less than two bytes per descriptor. Also,

we introduce identity matching, where only identical descriptors are consid-

ered as matches, and use it as a substitution of approximate nearest neighbor

search. These changes allow us to scale the computational effort of localization

according to the confidence in a prior pose estimate, while increasing the local-

ization success rate compared to global methods that do not take advantage

of such a prior. Furthermore, we contribute the first quantitative evaluation

of ground texture based localization approaches. We compare our approach
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to Micro-GPS [Zhang et al., 2019], a global method, Ranger [Kozak and Alban,

2016], a local method, and StreetMap [Chen et al., 2018], which can be used for

both tasks.

The related work of existing approaches to ground texture based localization

has been introduced in Section 2.4. Our localization method, the GTBL Method,

is introduced in Section 5.1. Subsequently, Section 5.2.1 presents the experi-

mental evaluation on the Micro-GPS database, including a detailed description

of our implementations of the examined localization methods. Additional ex-

perimental evaluations on the HD Ground Database [Schmid et al., 2022] are

presented in Section 5.2.2, and, lastly, we discuss our insights from the work

presented in this chapter in Section 5.3.

5.1 GTBL Method

We adapt Micro-GPS (see Section 2.4.1.1), the localization pipeline of Zhang

et al. [2019]. The authors show that Micro-GPS achieves reliable high-precision

localization on most of the evaluated ground textures, but it requires more than

hundred milliseconds for each localization request, even on a fast computer

with a dedicated graphics processing unit.

We identify the construction of a global ANN search structure for feature match-

ing, as a major drawback of Micro-GPS. It allows to perform efficient feature

matching between query and reference images; however, the structure repre-

sents a fixed set of reference images and needs to be recomputed whenever

another image is added to the map. Updating a reference image with a more

recent recording requires recomputation as well. Also, using this matching

technique means that by default correspondences are always searched globally,

considering all reference images of the map, because the method cannot use

a localization prior to reduce the number of considered reference images to

those that are close to the given position estimate.

We tackle these drawbacks, using identity matching in conjunction with com-

pact binary feature descriptors.

For feature extraction, we determine keypoint objects and their orientations

using SIFT [Lowe, 2004], and compute feature descriptors with LATCH [Levi

and Hassner, 2016]. The SIFT feature detector locates regions of interest as

local extrema on a Gaussian scale-space pyramid. LATCH computes binary

descriptors for keypoint objects through the comparison of image patch triplets.

Each patch represents k pixels× k pixels, with k being a parameter to be chosen
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5.1 GTBL Method

by the user. Levi and Hassner [2016] suggested not to smooth the image patches.

However, for our application, we observed better results employing Gaussian

blur as described in the implementation details following later. An anchor patch

pa, is extracted at the position of a keypoint object and is then compared to two

surrounding image patches p1, p2 using the Frobenius norm. Each bit value

of the LATCH descriptor is evaluated by one triplet, each of which specifies a

unique placement of p1 and p2 with respect to the anchor patch pa that remains

centered at the keypoint object position. A triplet is evaluated to 1 if pa is more

similar to p2 than to p1 and to 0 otherwise. We take advantage of the original

LATCH triplet arrangements, which have been optimized by the authors. The

order of the employed triplets is a ranking based on how many times a triplet

has the same value for corresponding keypoint objects and different values

for non-corresponding ones. Furthermore, strongly correlating triplets were

removed. In our case, we use only the concatenation of the binary responses of

the first 15 triplets as a compact binary descriptor. This number results in the

highest success rate for our number of extracted features (850). A higher number

of bits increases the inlier-to-outlier ratio, but decreases the absolute number

of inliers, i. e. the number of correctly matched features. To compensate for

this, we would have to extract more features, increasing computation cost and

memory consumption.

Our matching strategy proposes only those pairs of descriptors as matches

that have identical values. Identity matching can be implemented efficiently

as table lookup, i. e. row i of the table contains references to the features with

descriptors whose numerical representation of their binary string is equal to i.

For feature matching of binary descriptors with a dimensionality of n (n = 15

in our case), the lookup table has a length of 2n. The lookup table is created

for a set of reference image features. Then, to find matches for a query image

feature, it is sufficient to retrieve the reference features of the table row that

corresponds to the query image feature descriptor.

With identity matching, in contrast to the ANN search index employed by Zhang

et al., it is not necessary to compute one search structure for the entire map, but

feature matching can be performed on an image to image basis. Accordingly,

during mapping, we create a descriptor table for each reference image. If a

localization prior [Rp|t p]Mq is available, only the tables of the closest reference

images are considered for feature matching, e. g. all reference images with a

maximum spatial distance of dp to the prior. For global localization without

prior (dp = ∞), all tables are considered.

The use of identity matching with compact binary descriptors leads to a large
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number of incorrectly proposed matches (outliers). For example, on the Micro-

GPS database, which contains roughly 2000 to 4000 reference images per texture,

we observe for global localization (considering all reference images during the

localization attempt) that typically less than 0.015% of matches can be con-

sidered correct correspondences (considering RANSAC inliers of successful

localization attempts as correct correspondences). This is why we employ the

voting procedure of Micro-GPS [Zhang et al., 2019] for outlier rejection (see Sec-

tion 2.3). Here, the outlier matches distribute their votes for the current camera

position equally on the voting map, while the inlier votes are concentrated in

a narrow region (see Figure 5.2 on page 72). Subsequently, the matches that

voted for the map cell with most votes are used for a RANSAC-based estimation

of the camera pose.

5.2 Evaluation

We evaluate the proposed GTBL Method and state-of-the-art localization meth-

ods on the Micro-GPS database in Section 5.2.1 and on our HD Ground Database

in Section 5.2.2.

The implementations of the evaluated methods, respectively their parametriza-

tion, are slightly different for the two databases and are therefore explained in

the corresponding sections.

For both databases, we separately evaluate localization methods for initial

localization without available prior and for subsequent local localization with

available prior, i. e. an approximate pose estimate is provided as input to the

localization method. Our main performance metric is the pose estimation

success rate, i. e. the proportion of localization queries for which the estimated

pose [Rest|t est]Mq is closer to the actual pose [R|t ]Mq than dt with an absolute

angle difference of less than ot. Here, we adopt the thresholds of Zhang et al.

[2019] of dt = 4.8 mm and ot = 1.5 ◦.

For all our evaluations, the employed hardware consists of an E3-1270 Intel

Xeon CPU at 3.8 GHz, and a Quadro P2000 Nvidia graphics card (used to com-

pute SIFT features in Micro-GPS).

5.2.1 Evaluation on the Micro-GPS Database

This section presents the evaluation published in [Schmid et al., 2020a], where

we use the six texture types of the ground texture image database of Zhang et al.
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[2019] recorded with a PointGrey CM3 camera, described in Section 3.2.

Prior to the evaluation, we find suitable parameters of the examined methods,

if not specified by the respective authors, on a training set of 100 query images

per ground texture type, optimizing for pose estimation success rate first and

for computation time second. Subsequently, separate sets of 500 images per

texture type are used to evaluate our experimental setups.

Evaluation of Global Localization Besides our method, we evaluate Micro-

GPS [Zhang et al., 2019], for which the code is provided by the authors, and

StreetMap [Chen et al., 2018], which is re-implemented according to the paper.

Evaluation of Local Localization For our examination of localization perfor-

mance with available localization prior, we evaluate our method, StreetMap,

and Ranger [Kozak and Alban, 2016], which we re-implemented according to

the system description of the authors.

Here, we evaluate pose estimation success rates for varying accuracies dp of the

localization prior. The prior is generated by taking the ground truth pose of the

query image, which is then in a first step translated with a specified distance d

(dp = d) into a randomly sampled direction, and in a second step it is rotated

with an orientation angle sampled from a zero-mean normal distribution.

All of the local localization methods evaluated in this chapter use the prior only

to select a subset of closest reference images to the current pose estimate. If this

subset of considered closest reference images is too small, the reference images

actually overlapping with the query image might not be included, making

correct localization impossible. Therefore, dependent on the available prior

accuracy dp, we empirically determine sufficiently large numbers of considered

reference images, ensuring that the reference images actually overlapping with

the query image are included.

5.2.1.1 Implementation

In the following, we present implementation details of the evaluated localiza-

tion methods. We describe the respective function for image processing fq,

map creation m in the sense of Problem 2, and localization g in the sense of

Problem 3. For all of the evaluated methods, feature extraction is the same for

reference and query images (fr is equal to fq).
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GTBL Method

Image processing: We employ the SIFT [Lowe, 2004] implementation of the

OpenCV 4.0 library [Bradski, 2000] to extract keypoint objects. The number of

layers per pyramid octave is set to 11, the contrast threshold to 0.005, the edge

threshold to 13, and the sigma of the employed Gaussian filter is set to 8.5. Only

the 850 keypoint objects with largest response values are kept. Then, we extract

for each keypoint object the first 15 bit of the LATCH descriptors.

In order to deal with varying image orientations, we use the LATCH variant

that rotates the considered image patch according to the keypoint object ori-

entation. The half-size of the evaluated patches is set to 8, making the patches

17 pixels × 17 pixels, and the sigma of the employed Gaussian smoothing is set

to 2.2.

Mapping: For each reference image, the identity matching table is built. These

tables are sparsely populated, which is why we implement them as dictionaries

that map feature descriptors to lists of indexes from features with that descrip-

tors. To use available priors, a k-dimensional tree (k-d tree) is constructed from

the pose estimates of the reference images, using the nanoflann library [Blanco

and Rai, 2014].

Localization: If a localization prior is available, only the closest reference im-

ages are considered. Otherwise, we perform identity matching with all reference

images. The retrieved matches are used to cast votes for the corresponding

camera positions on a voting map. The cell size of the voting map grid is set

to 75 pixels × 75 pixels (12 mm × 12 mm). We select the matches that voted for

the voting map cell with most votes, i. e. the voting peak, and perform RANSAC-

based pose estimation with them.

Micro-GPS (code is provided by the authors)

Image processing: Zhang et al. [2019] use SiftGPU1 to extract SIFT features. As

for all evaluated localization methods, features are extracted from full-scale

images. The authors employ PCA dimensionality reduction to reduce the size

of the SIFT descriptors. In our case, the PCA basis for that purpose is created

using the entire set of reference images of the currently evaluated texture type.

We employ 16-dimensional descriptors, which the authors found to perform

better than 8-dimensional ones [Zhang et al., 2019].

Mapping: Of each reference image 50 16-dimensional SIFT features are ran-

domly sampled. The authors assume that corresponding features will have

1https://github.com/pitzer/SiftGPU
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similar scale. Therefore, they use the scale information to divide the set of ref-

erence features into 10 groups. For each group, they construct an ANN search

index with the FLANN library [Muja and Lowe, 2009].

Localization: For each 16-dimensional SIFT feature of the query image, its

ANN reference feature is retrieved, using the search index corresponding to

the feature’s scale. Each of the obtained matches casts a vote for the camera

position on a voting map with a cell size of 50 pixels × 50 pixels (8 mm × 8 mm).

Afterwards, the matches that voted for the voting map cell with most votes are

used for RANSAC-based pose estimation.

StreetMap (Without Prior)

Image processing: We extract SURF [Bay et al., 2006] features using OpenCV

[Bradski, 2000], using 4 pyramid octaves with 3 layers each, and a Hessian

threshold of 20. Per image the 1000 features with largest response values are

kept for further processing.

Mapping: For each image, a BoW representation is computed based on the

retrieved SURF features, using the FBOW library [Muñoz-Salinas and Medina-

Carnicer, 2020]. The vocabulary for that purpose was computed beforehand,

using default parameters of the library and the extracted SURF features of 1000

images per texture type.

Localization: The number of considered reference images is reduced by 80%,

by selecting the most similar ones to the query image based on their BoW

representations. This value is a trade-off between localization performance

and computation time. For matching, we find for each query image feature the

most similar reference feature from the remaining reference images, using the

L2 norm and the OpenCV brute force feature descriptor matcher. A ratio test

with a factor of 0.9 is employed for outlier rejection. Poses are estimated in a

RANSAC fashion, using the remaining feature matches.

StreetMap (With Prior)

Image processing: OpenCV [Bradski, 2000] SURF features are extracted from

an image pyramid with 5 octaves with 4 layers each. The Hessian threshold for

keypoint rejection is set to 20, and only the 768 features with largest responses

are kept.

Mapping: A k-d tree [Blanco and Rai, 2014] is built from the positions of the

reference images.
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Localization: The procedure is the same as for global localization, but the

considered reference images are selected based on closeness to the prior, using

the k-d tree.

Ranger

Image processing: Kozak and Alban [2016] use CenSurE [Agrawal et al., 2008]

keypoint objects, which are not robust to the image orientation. For street

vehicles, robustness to orientation is not required because typically the vehicle

orientation is similar during mapping and localization. In our evaluation,

however, image orientations during mapping and localization are independent

of each other. Therefore, we exchange CenSurE with AKAZE [Alcantarilla et al.,

2013] keypoint objects, which among the OpenCV [Bradski, 2000] keypoint

detectors achieved the best results for our Ranger implementation. The best

parameters we found for AKAZE are a response threshold of 10−5, and a single

image pyramid octave with two layers. Up to 1250 keypoint objects with largest

response values are kept per image. For feature description, we employ the

rotation invariant BRIEF description method variant of OpenCV with its full

size of 64 bytes.

Mapping: A k-d tree [Blanco and Rai, 2014] is built from the positions of the

reference images.

Localization: Features of query image and the closest reference image are

matched using the OpenCV nearest neighbor feature descriptor matcher with

Hamming distance. For outlier rejection, a cross-check is performed, i. e. the

nearest neighbor condition has to be true in both directions: from query image

feature descriptors to reference image feature descriptors and vice versa. The

remaining feature matches are used for RANSAC-based pose estimation. If the

estimated pose is supported by at least 25 matches, it is used as final output

of the method. Otherwise, the procedure of matching and pose estimation is

repeated with the next closest reference image, and so on. If the condition is

not met by any of the considered reference images, we use the pose estimate

with most inliers.

5.2.1.2 Results

We present the results on the Micro-GPS database.

Localization without Available Prior Pose estimation success rates for our

experimental setup for global localization are presented in Figure 5.1. We ob-
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Figure 5.1: Pose estimation success rates for the task of global localization, i. e.
without available pose approximation as prior, on the Micro-GPS
database [Zhang et al., 2019], evaluated for our GTBL Method, Micro-
GPS [Zhang et al., 2019], and StreetMap [Chen et al., 2018]. This
figure is adapted from [Schmid et al., 2020a].

serve that both types of asphalt, carpet, and tiles are particularly well suited for

ground texture based localization, as all three evaluated methods reach almost

perfect success rates. The situation is different for concrete and wood. While

our method is still able to localize correctly in 97.0% of the test cases on concrete

texture, the original Micro-GPS reaches only 88.4% success rate and StreetMap

82.0%. For wood texture, our method is again the best performing method, but

only achieves a success rate of 66.6%, while Micro-GPS and StreetMap have

51.4% and 39.0%, respectively. Further analysis shows that lower success rates

can be explained with lower numbers of inliers among the matched features.

During localization, our method identifies on average more than 40 inliers for

asphalt, carpet and tiles, but only 31.5 for concrete and 9.7 for wood texture

images. One explanation for this is a property distinguishing the wood texture

from the remaining textures of the Micro-GPS database: it has a fibrous struc-

ture. Due to this, the wood texture changes mostly in the traverse direction

of the fibers while it changes only little along the fibers. In other words, the

wood images have regions of homogeneous texture leading to visual aliasing.

As a result, we observe lower keypoint repeatability on wood images. In fact, in

Chapter 4, using pairs of synthetically transformed images, we found that wood

is the most challenging texture for keypoint detectors to retrieve corresponding

keypoint objects.

A voting map is illustrated in Figure 5.2. For better visualization, we doubled

the voting cell size to 150 pixels × 150 pixels (24 mm × 24 mm). One cell, which

is corresponding to the actual camera position, received the most votes, while

outlier votes are randomly distributed.
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Figure 5.2: Cutout of a voting map from a successful global localization attempt
of our GTBL Method. Each pixel in this visualization represents a
voting cell that covers an area of about 24 mm × 24 mm in the real
world. Pixel brightness indicates the number of feature matches
voting for it (see Section 2.3 for a detailed description of the voting
procedure of Zhang et al. [2019] that we use for our method). The
pixel, representing the voting cell that received most votes, is signifi-
cantly brighter than the others. Since matches vote for the position
of the upper left query image corner in the map coordinate system,
we highlight the true positions of the other three corners with red
pixels. This allows us to see that the voting procedure was successful
in identifying the true position of the top left corner of the query
image. This figure is taken from [Schmid et al., 2020a].

Localization with Available Prior For local localization, i. e. localization with

available prior, results are presented in Figure 5.3. As explained previously, we

empirically determined suitable numbers of reference images that are taken

into consideration for a certain prior accuracy. The corresponding fixed num-

bers can be found in Table 5.1, they are chosen conservatively, i. e. with a

tendency to a larger number than it is typically required, to avoid a situation in

which localization with the available set of reference images is not possible.

On both asphalt types, carpet, concrete, and tiles, all three evaluated methods

are almost always able to localize correctly. Again, wood (Figure 5.3(f)) presents

itself as the most challenging ground texture type. With decreasing prior accu-

racy, localization success rates of StreetMap and our method decline. Again,

this can be explained with a low number of inlier matches for wood, which

leads to a less significant inlier voting peak than there is for other textures. For

increasing numbers of considered reference images, the number of outlier votes

increases, and it becomes more likely that variations in the distribution of out-

lier votes cause higher voting peaks than the peak induced by inliers. Similarly,

the inlier-to-outlier ratio of StreetMap decreases with increasing numbers of

reference images, while Ranger considers one reference image after the other

and is therefore robust to this problem.
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(b) Asphalt (fine)
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(c) Carpet
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(d) Concrete
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(e) Tiles
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(f) Wood

Figure 5.3: Local localization success rates with varying position accuracy. Eval-
uated on the Micro-GPS database [Zhang et al., 2019] for our GTBL
Method, StreetMap [Chen et al., 2018], and Ranger [Kozak and Alban,
2016]. This figure is adapted from [Schmid et al., 2020a].

On wood, our approach is outperformed by both StreetMap and Ranger. How-

ever, they become slow for less accurate priors, due to the use of nearest neigh-

bor matching, computing distances between all possible pairings of query

feature descriptors and reference feature descriptors. Figure 5.4 presents the

required computation time of feature matching for the three evaluated localiza-

tion methods on the carpet test set. Using a prior with an expected accuracy of

0.35 m, it takes 0.19 s to match features for StreetMap and 0.26 s for Ranger, while

our method takes only 0.01 s. If the expected prior accuracy is 1.5 m, feature

matching for StreetMap takes 1.87 s and 2.72 s for Ranger, but only 0.11 s for our

method, utilizing identity matching of compact binary descriptors.
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Figure 5.4: Required computation time for feature matching on the carpet
dataset of the Micro-GPS database [Zhang et al., 2019] for varying
position prior accuracies, evaluated for our GTBL Method, Street-
Map [Chen et al., 2018], and Ranger [Kozak and Alban, 2016]. This
figure is adapted from [Schmid et al., 2020a].

Table 5.1 presents for our method and Micro-GPS the localization time, without

the required time for feature extraction. The computational effort for feature

extraction is comparable for both methods, as it is dominated by the use of

SIFT. Using SiftGPU, feature extraction takes us about 40 ms. The computa-

tional effort of our matching method grows linearly with the number of con-

sidered reference images; for large numbers, it is slower than ANN matching

approaches. Accordingly, Micro-GPS performs global localization faster than

our method. However, in practice global localization is typically performed

only in a few and not time-critical cases whenever the kidnapped robot prob-

lem occurs. Afterwards, the previous pose estimation can be used as prior for

the next localization step. With increasing accuracy of the available prior, less

reference images have to be considered, reducing the localization time of our

method. If the prior is reliably more accurate than 1.5 m, our method will be

faster than Micro-GPS. At the same time, as seen in Figure 5.3, the chance of

correct localization increases when using a prior.

The memory consumption of our method is about three and a half times as

large as that of Micro-GPS. We roughly estimate the memory requirements

as follows. Per reference image, Micro-GPS stores 50 keypoint objects using 4

floating point values for x- and y position, scale, and orientation; additionally,

it stores a 16-dimensional floating point descriptor for each keypoint object. If

we use 32 bit per floating point value, this results in a total required memory

of (50 · 4 · 32 + 50 · 16 · 32) bit = 32000 bit. Our method stores per reference

image 850 keypoint objects (with position and orientation), and a dictionary
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Table 5.1: Required time for localization without the time used for feature ex-
traction, evaluated on the carpet dataset of the Micro-GPS database
[Zhang et al., 2019] dependent on the availability and accuracy of the
position prior. We evaluate our GTBL Method and Micro-GPS [Zhang
et al., 2019], for both of which the time of feature extraction is domi-
nated by the use of SIFT [Lowe, 2004].

Position prior Number of considered Computation time (ms)
accuracy (mm) reference images Ours Micro-GPS

0 5 1.60
50 10 2.42
100 20 3.85
200 50 8.12
350 100 15.25
500 250 36.74
750 500 73.87
1000 750 108.48
1500 1000 143.65

∞ (no prior) 2014 286.47 145.55

with 850 pairs of 15-bit descriptors and integer feature indexes, resulting in

(850 · 3 · 32 + 850 · (15 + 16)) bit = 107950 bit.

5.2.2 Evaluation on the HD Ground Database

We present additional evaluations from [Schmid et al., 2022] of the GTBL

Method on our HD Ground Database. Section 5.2.2.2 presents the evaluation of

global localization, where we examine the GTBL Method and StreetMap [Chen

et al., 2018] with the employment of BoW image retrieval. In this case, we use

SIFT features as basis for the BoW image retrieval, because we observed better

performance as with SURF features (more details on this are presented in Chap-

ter 7). SIFT parameters are optimized on the respective training areas of the

HD Ground Database, and the BoW vocabulary is also created with the features

extracted on those training areas. Also, we present an experiment that examines

the application of our GTBL Method for a teach-and-repeat scenario, which is

one of the novel aspects that the HD Ground Database enables us to examine.

In Section 5.2.2.2, we perform a similar evaluation as in Section 5.2.1.2, where

a prior pose estimate is available for the localization task. Here, we compare

our GTBL Method, Ranger [Kozak and Alban, 2016] and StreetMap [Chen et al.,

2018] in its variation that makes use of an available prior. The implementa-

tions are similar to those for our evaluation on the Micro-GPS database, but

for Ranger, we employ the feature extraction pipeline originally suggested by

the authors, using oriented BRIEF descriptors on CenSurE keypoint objects,
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instead of AKAZE features as in the previous evaluation. In order to use these

features, even though CenSurE keypoint objects are rotation-variant, we use

the orientation estimate of the given prior as keypoint object orientation, as

suggested in [Schmid et al., 2020b]. The corresponding Standard Deviation (SD)

of the orientation prior is set to 3.0 ◦. A closer analysis of the implications of

this strategy of making use of the orientation prior is done at a later point in

Chapter 8.

5.2.2.1 Parameter Configuration

The examined localization methods are adapted to the HD Ground Database

using its training areas by repeating two steps: (1) randomly sample a configu-

ration from a pre-defined parameter space, (2) if it has a higher success rate,

or a similar success rate but a faster computation time than the previous best,

perform a gradient descent like optimization by evaluating configurations with

slightly changed values. In contrast to the previous evaluation on the Micro-

GPS database, we optimize texture-specifically and we add the scale at which

the images are processed as additional free parameter.

Correspondingly, the scale and the number of extracted features per image

become two of the most important parameters to optimize. Table 5.2 presents

the respective optimized values that we obtained. We observe that for most

combinations of texture and localization method, a much lower image resolu-

tion would suffice. On carpet, for example, best performance is reached using

only 0.20 to 0.35 of our recording resolution of 0.1 mm per pixel. However, in

other cases having an image scale of up to 0.88 of our native image scale is

beneficial to the success rate.

Other optimized, texture-specific parameter settings are presented in the ap-

pendix in Section A.2.

5.2.2.2 Results

We present the results of the described experiments on the HD Ground Database.

Localization without Available Prior Table 5.3 presents the success rates

for StreetMap and the GTBL Method. For this evaluation, we use the two

regular test sequence that were recorded closest in time to the initial scanning

of the application area, i. e. one being approximately one week apart and the

second one being approximately two weeks apart from the date of scanning.
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5.2 Evaluation

Table 5.2: The texture-dependent optimized image scale, indicating the down-
sizing factor of image resolution compared to the available image
resolution of the HD Ground Database [Schmid et al., 2022], and
the number of extracted features per image for our GTBL Method,
StreetMap [Chen et al., 2018], and Ranger [Kozak and Alban, 2016].

Texture Approach Image scale #Features

Asphalt
Ours 0.60 600

StreetMap 0.20 200
Ranger 0.20 400

Cobblestone
Ours 0.34 600

StreetMap 0.38 400
Ranger 0.88 650

Carpet
Ours 0.35 600

StreetMap 0.20 600
Ranger 0.20 350

Laminate
Ours 0.20 1100

StreetMap 0.70 900
Ranger 0.28 350

An analysis of performance depending on the recording date will be done later

in Chapter 7. In contrast to our evaluation on the Micro-GPS database, we

observe low localization success rates of the GTBL Method, while StreetMap

still performs well on cobblestone, carpet, and laminate, but not on asphalt.

For further examination of this phenomenon, we evaluate a variant of the GTBL

Method that employs BoW image retrieval in the same way StreetMap does,

i. e. in both cases we select the same 100 reference images with most similar

BoW representation to that of the query image. This variant also achieves

better performance on cobblestone, carpet, and laminate. BoW image retrieval

improves the localization performance, because less non-overlapping reference

images have to be considered by the localization method. A smaller number

of considered reference images reduces the probability of experiencing visual

aliasing, i. e. another place with similar feature occurrences is confused with

the actual place of the agent. However, this improvement through BoW image

retrieval does not seem to work well for asphalt, but this can be explained

with particularly poor image retrieval performance of the BoW approach for

the asphalt recorded in the HD Ground Database, as we will see later on in

Chapter 7.

We also examine the use of the GTBL Method (without the use of BoW image

retrieval) for global map-based localization in the teach-and-repeat scenario,

in which a specific path is recorded multiple times by following a rope. We use

one sequence of images recorded while following a certain rope configuration

as reference images, and the other (three) sequences following the same rope

configuration as query images. Here, localization without prior is less difficult,
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Table 5.3: Global localization success rates on the HD Ground
Database [Schmid et al., 2022], for the GTBL Method with and
without Bag of Words (BoW) image retrieval, and for StreetMap [Chen
et al., 2018] with BoW image retrieval.

Asphalt Cobblestone Carpet Laminate

StreetMap with BoW 0.033 0.401 0.756 0.673
GTBL Method with BoW 0.022 0.333 0.627 0.321

GTBL Method 0.084 0.186 0.042 0.117
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Figure 5.5: Evaluation of the GTBL Method for global localization in the teach-
and-repeat scenario. Orange dots present the true positions of the
path that was driven during the teach phase. These are overlaid by
the estimated positions of the images from the repeat phase. Here,
green dots represent successful and red dots represent unsuccessful
localization attempts. Positions on the plot axes correspond to the
actual metric map coordinates. This figure is taken from [Schmid
et al., 2022].

because the sequences are recorded in quick succession, the number of refer-

ence images is smaller, and the orientations of test and reference images are

either similar or roughly 180 ◦ rotated. We observe mean success rates of 92.9%

on cobblestone, 97.6% on carpet, 92.4% on laminate, and 95.1% on asphalt.

Figure 5.5 illustrates for each texture the course and the localization results for

one of the recorded teach-and-repeat paths.

Localization with Available Prior If a prior is available, it is sufficient to con-

sider its spatially closest reference images. The radius in which reference images

should be considered depends on the confidence in the prior accuracy dp.

We examine the localization performance of Ranger, StreetMap (without BoW

image retrieval), and the GTBL Method. Prior pose estimates are generated

in the same way as it was done for the evaluation on the Micro-GPS database,

shifting the available ground truth pose with a distance of d and an orienta-
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Figure 5.6: Success rates of local localization, i. e. with an approximate pose es-
timate as prior, on the HD Ground Database [Schmid et al., 2022] for
varying position prior accuracies, evaluated for our GTBL Method,
StreetMap [Chen et al., 2018], and Ranger [Kozak and Alban, 2016].

tion angle being sampled from a zero-mean normal distribution. Again, for

each texture, evaluation is done on the two regular test sequences that were

recorded with shortest time distance to the point in time at which the respective

application areas were initially scanned.

In our first experiment, the SD of the orientation prior is set to 3.0 ◦, while we

vary the position prior accuracy dp = d between 50 and 2000 mm. Depending

on d, we adjust the number of considered closest reference images. Let aP

denote the possible area in which we are located, aI the area covered by an

image, and ninc the number of images we expect each point on the ground to

be included in. Then, we compute the number of considered closest images as:

aP

aI
· ninc =

πd2

aI
· ninc =

πd2

0.12 m · 0.16 m
· 9. (5.1)

Texture-specific results are presented in Figure 5.6. StreetMap achieves very

high success rates, independently of the position prior accuracy. The same is

true for Ranger, except for laminate with translation distances above 250 mm.
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Figure 5.7: Required time for local localization (including the time used for fea-
ture extraction) for varying position prior accuracies, evaluated for
our GTBL Method, StreetMap [Chen et al., 2018], and Ranger [Kozak
and Alban, 2016].

The GTBL Method achieves lower success rates and suffers more from inaccu-

rate priors. However, good performance with success rates of at least 0.67 is still

reached for position prior accuracies of up to 100 mm.

We also examine the required computation time. Figure 5.7 presents the results.

Here, we measure the computation time of the whole localization procedure,

including the expensive feature extraction. Accordingly, we observe that for

small numbers of considered reference images, the computation time is dom-

inated by the time that is required for feature extraction. This is why, for the

employed parametrization, the GTBL Method is the slowest method for accu-

rate position priors. For less accurate position priors, the GTBL Method has an

advantage using the identity matching technique instead of brute-force nearest

neighbor feature matching, which means that its computation time increases

only slightly for less accurate priors.
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5.3 Discussion

We propose identity matching, a feature matching strategy based on compact

binary feature descriptors, which simplifies feature matching to a single table

lookup. Substituting Micro-GPS’s [Zhang et al., 2019] use of a global search index

for feature matching with our strategy, allowed us to reach higher localization

success rates than the state-of-the-art methods for global localization on the

Micro-GPS database. On the HD Ground Database, with larger application

areas and in particular with significantly larger numbers of reference images,

StreetMap achieves better performance, mainly due to the employment of BoW

image retrieval to reduce the number of considered reference images. Still, the

GTBL Method achieves good performance in the teach-and-repeat scenario,

for example.

Furthermore, our method allows to add, remove, and update mapped reference

images online without the need of map re-computation. Also, with our match-

ing strategy the method is able to take advantage of prior pose estimates to

perform local localization updates. In this case, apart from wood floor texture,

our method performs similarly well on the Micro-GPS database as state-of-the-

art local localization methods, while being faster to compute, especially for

inaccurate prior pose estimates. A similar trend is observed on the HD Ground

Database. In particular, for inaccurate priors, which require a larger number of

reference images to be considered, the GTBL Method tends to be faster than

StreetMap and Ranger. Lower computation times are an advantage, as it can

lead to higher effective localization accuracy, with the time between image

recording and available pose estimation being shorter, and it enables more fre-

quent pose updates or savings on the required computational power. However,

we identify that the gain in matching speed that comes with the employment

of identity matching is paid for with a larger memory consumption, due to the

larger number of stored features per reference image. Also, on the HD Ground

Database, besides the teach-and-repeat scenario, we observe good localization

success rates of the GTBL Method only for position prior accuracies of up to

100 mm.

The significant discrepancy in the localization performance of the GTBL Method

on the two evaluated databases, especially for global localization without avail-

able prior pose estimate, remains an open research question to be examined in

future research.

In the remainder of this dissertation, we will examine various ways of improving

the GTBL Method. In Chapter 6, we derive a stochastic model that allows to
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determine its success rate based on only a few test images of the application

area. This model allows us to build an automatic parameter optimization

framework that enables efficient texture-specific parametrization of the GTBL

Method. Then, in Chapter 7, we propose a method for image retrieval of ground

images, similar to BoW that we already examined here, which further improves

the global localization performance of our method. Finally, in Chapter 8, we

propose a way of avoiding to perform proper keypoint detection, which can

significantly reduce the computation time of the GTBL Method for localization

with available prior.
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6 Model-Based Parameter

Optimization

Contents of this chapter were partially published in [Schmid, Simon, and Mester,

2021].

Realizing optimal performance of localization methods typically requires the

choice of a variety of parameters, such as the number of considered visual fea-

tures per image. Finding optimal parameter settings is often a time-consuming

process, in which many possible choices are considered. For our GTBL Method,

for example, we identify about ten important parameters to be optimized. Even

if we would consider only a few possible values per parameter, the total num-

ber settings of the method to be evaluated becomes very large. It is therefore

desirable to predict the localization performance without having to extensively

evaluate the method. This becomes most critical for the time-extensive global

localization, where the whole application area is considered for the pose esti-

mation of a given query image.

We introduce a prediction model for the success rate of two state-of-the-art

methods for global localization with ground images: Micro-GPS [Zhang et al.,

2019], and our GTBL Method [Schmid et al., 2020a]. Our model requires only a

few test images of the application area, for each of which we test if the localiza-

tion methods succeed in estimating its pose in respect to the others. This allows

to quickly determine the local localization performance. Again, localization

attempts are considered to be correct if their position error is below dt = 4.8 mm

and the absolute orientation error below ot = 1.5 ◦. Assuming similar properties

over the application area, the model then uses the local knowledge to estimate

the expected global localization performance. Based on the predicted global

performance, an agent, e. g. a mobile robot, is then able to optimize the local-

ization method according to the challenges of the current ground texture type.

In comparison, a simple black-box approach to parameter evaluation would

directly evaluate the global localization performance, considering not only a

few images, but the entire set of available reference images, which is more

accurate but has significantly higher computational cost. Therefore, besides
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a deeper understanding of the factors that lead to successful localization of

the examined localization methods, our model-based performance evaluation

allows to consider more parameter configurations in the same amount of time.

Accordingly, the prediction model enables faster deployment of agents in new

application areas.

The approach that is proposed in this chapter is the first method for model-

based performance evaluation of feature-based localization methods using

images of a downward-facing camera.

The structure of the chapter is as follows. After introducing other work on the

task of parameter optimization for ground texture based localization methods

in Section 6.1, Section 6.2 defines the properties that we expect the exam-

ined localization methods to have. Section 6.3 summarizes our prediction

model, while the full derivation is presented in the Appendix (Section A.3).

Subsequently, Section 6.4 evaluates the predictive power of the model, and

we examine its suitability to be used in a parameter optimization framework.

Finally, Section 6.5 concludes with a discussion of our findings.

6.1 Related Work

Apart from the success rate, computational effort and memory consumption

of the localization method should be optimized. Less computational effort

allows to perform localization more quickly, resulting in shorter reaction time

of the localizing agent. Alternatively, lower computational effort allows to save

electrical energy from the processing or to reduce hardware cost. Optimizing

parameter configurations for these goals is a complex task that requires to

make trade-off decisions. So far, ground texture based localization methods

have been parametrized based on extensive empirical evaluation of possible

parameter values [Schmid et al., 2019, 2020a], treating the method as a black-

box, without the need of a good understanding about the impact a changed

parameter value could have.

An alternative was developed by Mount et al. [2019]. They proposed a method

to automatically determine a suitable trade-off between camera coverage area

and localization performance, using only a few pairs of aligned test images.

Similarly, our approach requires only a few test images of the application area,

but it allows to optimize any parameter of feature-based localization methods.

Since the camera coverage is not a relevant parameter for the state-of-the-art

localization methods being considered in this work, we cannot compare with
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Mount et al.’s approach. Also, the approach of Mount et al. [2019] is not model-

based, it involves evaluating all considered parameter values on the test images,

while our approach can avoid that for some parameters, like the number of

extracted features per image.

6.2 Localization Method Properties

We define the properties of the examined ground texture based methods for

global localization. The available input consists of a set of reference images R

that have already been properly aligned with each other, and a query image q

that we want to localize, which was also recorded in the mapped area.

We consider feature-based methods. The method extracts a set of reference

features FR from the reference images (nr per image), and a set of query fea-

tures Fq from the query image. Extracted keypoint objects specify the orien-

tation of their image patches. Also, keypoint objects of query features specify

their position in the query image, while keypoint objects of reference features

specify their position in the map. Then, a matching method proposes a set

of matches M as possible correspondences between the feature sets. Every

match m ∈ M is a pair consisting of a query feature and a reference feature

m = (fq ∈ Fq, fr ∈ FR). Finally, a pose estimation method uses the matches

to estimate the Euclidean transformation [R|t ]Mq projecting the query image q

onto the map M.

In addition to the previously described pipeline, we assume that, prior to the

pose estimation step, examined methods employ the previously introduced

voting procedure (Section 2.3) for the spatial verification of matches. This allows

to reject a proportion of incorrect matches (outliers), which is useful as feature-

based global localization methods on ground texture were shown to suffer from

large quantities of outliers [Zhang et al., 2019, Schmid et al., 2020a], which can

be explained with the fact that individual features are typically not unique for a

specific ground region, but rather the spatial composition of multiple features

allows for unique identification of a ground region. In this work, we consider a

match to be correct, i. e. to be an inlier, if it can be used to determine the correct

query image pose (details in Section 6.3.2).

Examined Methods Micro-GPS of Zhang et al. [2019] and the GTBL Method

[Schmid et al., 2020a] have the described properties. So, the prediction model,

introduced in the following, can be applied to both of them.
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6.3 The Prediction Model

A complete derivation of our prediction model for the success rate of a method

with the properties described in Section 6.2 is given in the appendix in Sec-

tion A.3.

The main assumption of the model is that localization succeeds if among the

matches voting for the voting peak vp are at least two inliers, denoted as N
vp

I ≥ 2.

According to our results, this is an accurate assumption. For both evaluated

localization methods, the success rate is greater than 99.3% for localization

attempts that hold the condition, while the success rate over all localization

attempts is 89.9% for Micro-GPS, and 94.3% for the GTBL Method. Also, not a

single localization attempt that does not hold the condition succeeded.

A second important assumption is made about the spatial distribution of outlier

votes on the voting map. Here, we assume to have Complete Spatial Random-

ness (CSR), i. e. the probability pout_vote of any outlier match m ∈ O, casting

a vote on the voting cell v is the same for any voting cell v ∈ V . Accordingly,

the number of outliers voting for a voting cell is binomially distributed. For

the GTBL Method, we compare the actual outlier distributions with the ones

predicted based on the CSR assumption. Figure 6.1 presents the results. We find

our predicted outlier distribution to be sufficiently accurate. While we systemat-

ically underestimate the number of voting cells that receive only very few outlier

votes, the predicted numbers of voting cells with larger amounts of outlier votes

is more accurate. In practice, only the voting cells that received most votes

influence the localization success rate. Therefore, the CSR assumption seems

to be sufficiently accurate to predict success rates.

Please refer to Section A.3 in the appendix, for the complete derivation of our

success rate prediction model. Our final equation is the following:

Pr[N
vp

I ≥ 2] = 1 −

(

∏
vi∈VI

[

1 −
(

Pr[(N
vi
I ≥ 2) ∩ (N

vi
M = N

vp

M)]
)]

)

. (6.1)

It means that the predicted success rate corresponds to the probably that,

among the voting cells that received inlier votes VI , there is at least one voting

cell vi ∈ VI , that obtained two or more inlier votes (N
vi
I ≥ 2) while it also

obtained the most votes of any voting cell, i. e. it obtained the number of votes

that the voting peak vp obtained: N
vi
M = N

vp

M.
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Figure 6.1: Evaluation showing the actually observed and the predicted out-
lier vote histograms, i. e. the ratios of voting cells receiving certain
amounts of outliers. Here, evaluated for the GTBL Method on the
datasets of the Micro-GPS database [Zhang et al., 2019]. This figure
is adapted from [Schmid et al., 2021].

6.3.1 Application of the Prediction Model

To use the model, we require some empirical observations:

• |V|, the number of voting cells with at least one vote;

• |Fq|, the number of extracted query image features;

• NM, the number of matches;

• NO, the number of outlier matches;

• VI , the set of voting cells that received inlier votes;

• for all vi ∈ VI , pv
in_vote, the probability that a query image feature generates
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an inlier vote on vi.

These model parameter values may vary on every localization attempt. There-

fore, we estimate expected values E(·) of these parameters for the prediction.

|V| scales with the coverage area size, and is not strongly dependent on the

texture type. Assuming similar overlap of the recorded reference images for

every application area, to estimate E(|V|), we take the average value of |V| per

reference image from evaluations on other application areas, and multiply it

with the number of reference images of the current application area.

To find appropriate values for the remaining model parameters, we make use

of the small collection of test images. The test images consist of a series of

consecutively recorded query images, and some additional overlapping refer-

ence images. For every query image among the test images, we perform two

evaluations in form of localization attempts using the respective localization

method with the examined parameter configuration: the first attempt is part

of the inlier evaluation, where we use all available overlapping images as ref-

erence images; and in a second attempt, for the outlier evaluation, the same

query image is used, but randomly selected non-overlapping images are used

as reference images.

We estimate E(|Fq|) as the average number of extracted query image features

from both inlier and outlier evaluations.

For Micro-GPS, the expected number of outliers is independent of the appli-

cation area size. So it is sufficient to estimate E(NO) as the average number of

proposed matches during outlier evaluation, because here all matches are out-

liers. However, for the GTBL Method, where the number of matches scales with

the application area size, we measure the average number of outliers per voting

cell with at least one vote, and then estimate E(NO) through multiplication of

that value with E(|V|).

The inlier evaluation allows us to estimate the number of inliers. We observe

that inlier votes are typically not limited to a single voting cell, but they can

be found in a local cluster of voting cells. We count how many inliers we find

on average on the voting cell with most inliers n1, the voting cell with second

most inliers n2, and so on. This is done for all voting cells that received at least

one inlier vote. Accordingly, we can approximate that there will be a voting cell

v1 ∈ VI with E(N
v1
I ) = n1 and E(p

v1
in_vote) = |Fq|/n1, a voting cell v2 ∈ VI with

E(Nv2
I ) = n2 and E(pv2

in_vote) = |Fq|/n2, and so on.
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Furthermore, we estimate

E(NI) = ∑
vi∈VI

E(N
vi
I ), (6.2)

and therefore

E(NM) = E(NO) + E(NI). (6.3)

6.3.2 What is a Correct Match of Features?

Counting inliers correctly is a key requirement for the use of the proposed pre-

diction model. In the context of this work, we defined inliers as pairs, consisting

of query and reference feature m ∈ M = (fq ∈ Fq, fr ∈ FR), that can be used

for successful pose estimation. To determine whether we are counting inliers

correctly, we observe the number of inliers on the voting peak of successful

localization attempts. Localization attempts without any inliers on the voting

peak should not succeed.

One approach to determine the correctness of a match would be to determine

whether its corresponding pose estimate itself is already correct. However, this

underestimates the actual inlier count, e. g. for Micro-GPS, on average there are

less than 0.01 matches per localization attempt satisfying this condition, while

it achieves a success rate of 90%.

Alternatively, we could take the employed pose estimation approach into ac-

count. In our case, both examined localization methods do not use the orien-

tation information of keypoint objects for the final pose estimation. Instead,

they determine the query image pose using the voting positions of two (or

more) matches. We propose three ways of counting inliers: a) the matches with

correct corresponding pose estimate, not considering the orientation error; b)

the matches that can, if paired with the right corresponding matches that also

vote for the same voting cell, create a correct pose estimate; c) the matches that

if paired with a fake keypoint object, which is positioned on the ground truth

query image position, create correct pose estimates.

We observe similar inlier counts for all three proposed measures with averages

of 7 to 8 inliers per localization attempt of Micro-GPS [Zhang et al., 2019],

respectively 76 to 79 for the GTBL Method [Schmid et al., 2020a]. Finally, we

decide to treat any match as inlier which is considered to be an inlier by at least

one of the three measures.
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Figure 6.2: Visualization of the types of images that are required to evaluate
global localization and local performance. For global localization, a
large set of partially overlapping reference images (blue) is used for
mapping, and independently recorded query images (orange) are to
be localized globally in the map. For parametrization, however, we
only evaluate local performance, using a few additional test images
(green) and their overlapping reference images (dark blue). This
figure is taken from [Schmid et al., 2021].

6.4 Evaluation

In Section 6.4.1, we will first evaluate the suitability of our model to predict the

success rate depending on the number of extracted features. Subsequently, in

Section 6.4.2, we introduce and evaluate a parameter optimization framework

which uses the model to evaluate parameter configuration candidates.

For both evaluations, we use the Micro-GPS database of Zhang et al. [2019] that

was recorded with a PointGrey CM3 camera. To determine the actual global

localization success rates, for each texture, we use the corresponding 2000 to

4000 partially overlapping recordings as reference images (blue in Figure 6.2),

and use 500 separate recordings as query images (orange in Figure 6.2).

In order to predict the value of the global success rate for individual application

areas, as described in Section 6.3.1, we require a set of test images. For this,

we evaluate localization attempts on 10 additional sequentially recorded query

images (green in Figure 6.2), each with a local map of 10 reference images (dark

blue in Figure 6.2). For inlier evaluation, we select the 10 closest reference

images of the respective query images, and, for outlier evaluation, 10 randomly

selected reference images without overlap with the query image.

The set of considered reference images for a query image from the inlier evalua-

tion should include all reference images with significant overlap. Otherwise, we

will underestimate the number of inliers. For the Micro-GPS database, taking
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the 10 closest reference images is sufficient, as the number of observed inliers

does not increase if we use more.

6.4.1 Predicting the Success Rates for Varying Numbers of

Extracted Features

Generally, using the procedure described in Section 6.3.1, the model can be

used to find suitable values for any parameter. However, two of the most im-

portant parameters, directly influencing the computational effort and memory

consumption, are the number of extracted features per reference image nr and

per query image |Fq|. As |Fq| is not a free parameter of Micro-GPS, we will

focus on nr.

To find suitable values for nr, we exploit an advantage of our model-based

parameter evaluation strategy: if we are able to estimate the impact of nr on the

model input values, we can predict the success rate for varying nr values without

even having to evaluate them on the test images. Therefore, we evaluate the

localization methods on the test images using only a single value of nr, namely

the value suggested by the corresponding authors. Then, we predict the success

rate for any nr value of interest, assuming linear correlation between N
vi
I (for

any vi ∈ VI ) and nr, and between NM and nr, while assuming constant |V|.

6.4.1.1 Baseline Approaches to Parameter Evaluation

We determine the global success rate through exhaustive evaluation of parame-

ter values for the task of localizing the 500 query images on the map. The global

success rate is an accurate representation of the actual localization capabilities

of a method and provides a good basis for parametrization decisions. Any

alternative approach to assessing the localization performance, evaluated on

the separate test images, should enable us to make similar judgments about

suitable parameter choices, i. e. a similar trend between parameter values and

localization performance should emerge.

Besides our prediction model, we evaluate two other approaches to this task.

1. Local success rate: based on the previously introduced inlier and outlier

evaluation, we propose a simpler model, which only compares voting

peaks from the inlier evaluation to that of the This represents the local suc-

cess rate on the test images. In order to determine the local success rate,

we evaluate how often a voting peak from the inlier evaluation receives
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at least two inliers and overall more votes than any voting peak observed

during the outlier evaluation.

2. Inlier ratio: the ratio of inliers among the matches might correlate with

the success rate. Therefore, we use it as second alternative approach

for performance prediction. Again, this is computed with the inlier and

outlier evaluation results.

To predict localization performance with these two alternative approaches, we

do not use our predicted model parameters for varying nr values, but perform

inlier and outlier evaluation for every considered value.

6.4.1.2 Results

We evaluate Micro-GPS for nr values ranging from 5 to 100 with increments of

5, and compute the average prediction errors over these 20 evaluations. For

every texture type, we repeat this for 15 different sets of test images, each with

10 query images and their overlapping reference images. Overall, the absolute

prediction error of our model for the global success rate is on average 0.217,

while it is 0.229 for the local success rate. Figure 6.3 presents texture-specific

results, respectively using one test image set. It also presents the inlier ratio.

Ideally, the curve of a performance indicator, should be similar to that of the

global success rate. However, it is sufficient if it presents similar trends. For

example, if the inlier ratio curve would present similar trends as that of the

global success rate, it would be suitable to make parametrization choices. But,

we observe that, while the general trend of the inlier ratio is often similar to

that of the global success rate, its curve is highly volatile, e. g. for fine asphalt

in a parameter value range between 5 and 50. One reason for this is the small

total number of observed inliers, since we, as mentioned earlier, observe an

average of about 7 to 8 inliers per localization attempt of Micro-GPS, and we

perform only 10 localization attempts for this evaluation. Additionally, Micro-

GPS uses random selection as a feature selection method to reduce the number

of considered features per image, which introduces further volatility into the

number of observed inliers. As a result, using the inlier ratio as guidance, could

lead to suboptimal parametrization or to a situation in which we get stuck in a

local maximum. The local success rate curves are more reliable. But, only the

curves of our model are smooth, monotonically increasing, and present similar

trends as the global success rate. The predicted success rates saturate for larger

values of nr as for the global success rate, which could lead to conservative

parametrization choices.
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Figure 6.3: Global, local, and predicted success rates, and the inlier ratio, for
Micro-GPS [Zhang et al., 2019] using varying numbers of reference
features. This figure is adapted from [Schmid et al., 2021].

We evaluate the GTBL Method for nr values ranging from 50 to 1000 with incre-

ments of 50. Again, evaluation is repeated for 15 test image sets. The average

error of our model is 0.058, and 0.049 for the local success rate. Figure 6.4

presents some of the results. Our model is accurate for all textures, but wood

(Figure 6.4(f)). Closer analysis shows that this is caused by an underestimation

of the globally observed number of inliers. So, in this case, the test images

were not sufficiently representative for the application area. Apart from wood,

the curves of the local success rate are similar to that of the global success

rate. However, for concrete, fine asphalt, and carpet, the local success rate

overestimates the performance of small nr values. The inlier ratio curves tend
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Figure 6.4: Global, local, and predicted success rates, and the inlier ratio, for
the GTBL Method [Schmid et al., 2020a] using varying numbers of
reference features. This figure is adapted from [Schmid et al., 2021].

to saturate only for significantly larger nr values as for the global success rate.

Further evaluation shows that having different numbers of query images in

the test image sets has no significant effect on our average prediction error.

However, the standard deviation of average errors among different sets of test

images is affected. Again, for every setting we evaluate 15 test image sets.

Using 10 query images, we observe a standard deviation of 0.022 for Micro-GPS

and 0.017 for the GTBL Method. For 3 query images, this increases to 0.038,

respectively 0.021, and for 15 query images, it decreases to 0.015, respectively

0.013.

So far, to evaluate our model, we estimated expected global numbers of inliers
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and outliers based on a single parameter evaluation of nr, using the default

settings the respective authors proposed (nr = 50 for Micro-GPS and nr = 850

for the GTBL Method), and based on the assumption of linear correlation

between nr and the number of inliers and outliers. If, instead, we use the inlier

and outlier evaluation for every considered value of nr, as it is done for the

local success rate and the inlier ratio, our average prediction error decreases

slightly to 0.199 for Micro-GPS and to 0.048 for the GTBL Method. However, the

prediction curves are no longer monotonically increasing.

6.4.2 Using the Model for Parameter Optimization

We propose a simple parameter optimization framework, which uses our suc-

cess rate prediction model to evaluate possible parameter settings, and apply it

to find texture-dependent parameter settings for the GTBL Method [Schmid

et al., 2020a].

We select ten important method parameters to be optimized: the number of

query image features |Fq|, the number of extracted features per reference image

nr, the histogram cell size of the voting procedure, the number of considered

LATCH bits, four parameters of the SIFT keypoint detection method, and two

parameters of the LATCH description method. For every parameter, a value

range and a step size is defined. This results in a parameter space with more

than 5 · 109 possible configurations.

The optimization framework continuously samples random parameter settings

from the parameter space, and evaluates them using the prediction model.

This means that the localization method is parametrized according to the

selected parameter setting, before inlier and outlier evaluations are performed

on 10 consecutive query images and their respective reference images to obtain

empiric observations, which are then used to estimate the global success rate.

Whenever the predicted success rate of a sampled parameter setting is not

lower than the predicted success rate of the previously best parameter set

minus 0.05, a local optimization is performed for that setting. Here, one of

the ten parameters is randomly selected to be optimized, and four different

values (two larger and two smaller ones) are tested for it. The four generated

parameter settings are then evaluated on the test images, except when the

number of extracted reference image features nr was chosen to be optimized.

In that case, we employ the previously described approach of predicting the

impact of the parameter change on the model input values and therefore on

the resulting success rate. This local optimization procedure is repeated as long
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as it increases the predicted method performance, but at least 12 times.

Our optimization framework keeps track of the best-performing parameter

setting, considering the predicted success rate and the computation time: a

setting is considered superior to another one if its predicted success rate is at

least 0.005 higher, or if it is not more than 0.005 smaller but is faster to compute.

6.4.2.1 Results

We run the optimization separately on all six ground textures types. For each tex-

ture, the optimization runs for 12 hours on a E3-1270 Intel Xeon CPU at 3.8 GHz.

For the final best-performing parameter configurations, the global success rate

is evaluated and compared with the results using the default configuration that

we suggested in Chapter 5, which we optimized manually in a process lasting

several weeks in total. The optimized configurations are very competitive with

the default configuration: the mean success rate over all six textures is 94.0%

compared to 94.3% with the default, while the mean localization time is reduced

from 0.997 s to 0.752 s. We also evaluate 225 randomly sampled configurations

per texture. Overall, we observe a mean success rate of 87.1% and a mean local-

ization time of 0.771 s. Particularly for wood, guided parametrization is crucial,

as the mean success rate of randomly sampled configurations is only 29.7%

compared to 68.6% when using our optimized configuration and 68.2% with

the manually optimized default configuration.

Some patterns can be observed in the optimized configurations. On the more

difficult textures wood and concrete, the optimized configurations decreased

the number of considered LATCH-bits from 15 to 14, while this number is in-

creased to 16 for the other textures. For wood, the most difficult texture, the

number of extracted reference and query features are increased from 850 to

1000, respectively from 850 to 950, while on the other textures these numbers

are decreased, e. g. to 500, respectively 600, on fine asphalt, reducing the compu-

tation time and memory consumption. The difference between our optimized

parameter settings and the setting that we previously determined manually

seem to be aligned with our analysis that we made in Chapter 5, where we fig-

ured that the decreased localization success rate on concrete and wood stems

from a lower number of inlier matches. The increased number of extracted

features will directly result in an increased number of inliers. Similarly, reducing

the number of considered LATCH-bits decreases the number false negatives

that were otherwise incorrectly rejected. Anyway, this did not result in an im-

proved success rate of the automatically optimized setting compared to the
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manually optimized one, but it represents a more conservative parametriza-

tion compared to our manual parametrization for which we chose exactly the

right amount of extracted features above which we did not observe significant

improvements in the success rate. On the remaining four textures, we already

observed success rates of close to 100% and large numbers of correctly matched

features. Accordingly, it makes sense that the automatically optimized param-

eter setting is able to save computation time on these textures, by reducing

the number of extracted features, and by increasing the number of considered

LATCH-bits, which results in a larger inlier-to-outlier ratio with a smaller overall

number of matches to process.

We also applied the local optimization procedure for each texture on the default

parameter configuration. This took on average 1550 s, and resulted in compara-

ble optimized parameter settings. The resulting average success rate is 93.9%,

while the average localization time is 0.805 s, which, again, is significantly faster

than for the default configuration.

On average it took 20.1 s to evaluate a parameter configuration during the ex-

amined optimization procedure. Further speedup would be possible through

parallelization. In comparison, evaluating the final configuration with all ref-

erence images to obtain the global success rate took on average 3347.6 s. Our

prediction model thus allows an acceleration by a factor of about 166 in the

evaluation of configurations.

6.5 Discussion

We proposed a success rate prediction model for ground texture based local-

ization methods, and used it for a parameter optimization framework. Based

on a small collection of test images, our model predicts the global localization

success rate, which can be used to optimize parameter settings accordingly.

On the example of the number of extracted features per reference image nr, we

have shown that the predictions are sufficiently accurate for parametrization.

Furthermore, due to our model-based approach to the evaluation of parameter

configurations, it is not necessary to fully evaluate every considered parameter

configuration, because for some parameters such as nr, we can accurately

estimate its impact on the model input values.

Our prediction model can be used to optimize any localization method param-

eter influencing the localization performance. Accordingly, we were able to

build a parameter optimization framework with it, which can quickly evaluate
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any considered parameter configuration. Using the configurations obtained

from the framework, we achieved a similar localization success rate as with the

original default parameter setting, while the localization time was significantly

reduced. Here, it was not to be expected that the automatically found param-

eter settings are better than those that have been determined in a laborious

weeks-long manual process, as it was done by us for evaluation of the GTBL

Method in Chapter 5. The employed parameter search space is the same in both

cases, so both approaches to parametrization are able find good solutions. But,

for the manual optimization, we performed the exhaustive evaluation of the

global success rate for any considered configuration, which is going to be more

accurate than a model-based prediction of the same. Furthermore, a human

with domain-knowledge will be able to choose suitable parameter setting can-

didates, which is likely to be more efficient than the random gradient descent

like process we employed for the automatic parameter optimization. Anyway,

the advantage of the automated approach should be that a good configuration

is found in shorter time and with much less (human-involved) effort. This goal

is already achieved by our simple parameter optimization framework, due to

the employment of the prediction model.

We assume that the proposed procedure could help with the employment of

autonomous agents using the GTBL Method or Micro-GPS for their localization

capabilities. For this purpose, the agent may have a specific parameter opti-

mization mode, in which it automatically records a suitable set of the required

test images from the destined application area. The agent may then proceed

with the optimization itself or it may send the images to a server with more

compute power that determines a suitable parameter setting for the specific

application area. Of course in a practical scenario, a proper initialization of

the parameter search will be more efficient than the random initialization per-

formed by our proposed framework. For example, as we observed in one of

our experiments, a simple local optimization starting from a default parameter

setting is sufficient to obtain a suitable set of parameters.
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7 Deep Metric Learning for Global

Localization

Contents of this chapter were partially published in [Radhakrishnan, Schmid,

Scholz, and Schmidt-Thieme, 2021] and [Schmid, Simon, Radhakrishnan, Frin-

trop, and Mester, 2022].

In this chapter, we consider the task of map-based localization, solving Prob-

lem 3 (localization). A particularly challenging manifestation of this task is

the initial localization, which is necessary when we have no knowledge about

the current location of the robot, e. g. after restart or in recovery mode after

mislocalization. This task is difficult, because it does not allow to restrict the

search space for the current query image pose based on an existing approximate

pose estimate. Therefore, features of all available reference images have to be

considered in the feature matching step, increasing the computational effort,

and increasing the number of incorrectly proposed feature correspondences,

which also increases the chance of mislocalization as we have seen in Chapter 5.

A possible solution to this problem was introduced by Chen et al. [2018]. With

the idea in mind that they would like to consider only those reference images

that are actually overlapping with the query image, they propose to apply image

retrieval, which is a technique to find similar images to a given query image in a

database of reference images [Smeulders et al., 2000]. Then, only the features of

the retrieved most-similar reference images are used for the subsequent feature

matching and pose estimation steps. Chen et al. propose a Bag of Words (BoW)

approach to image retrieval (described in Section 2.4.1.1) that makes use of the

hand-crafted SURF [Bay et al., 2006] feature extraction method.

As deep learning approaches have been very successful in computer vision

[Russakovsky et al., 2015, Goodfellow et al., 2016]; and in particular, for image

retrieval [Arandjelovic et al., 2016, Gordo et al., 2017, Revaud et al., 2019], we

propose a deep learning approach to image retrieval of ground images, based

on Deep Metric Learning (DML), to substitute the use of hand-crafted feature

extractors and the BoW technique. Still, BoW is the current state of the art

for the retrieval of ground images, and it was shown to achieve good perfor-
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mance (see Chapter 5). This is why we perform an in-depth evaluation of this

approach, searching for optimal parametrization to examine the method in its

best possible configuration.

The goal of metric learning is to compute descriptors that have small distances

between similar data points, e. g. objects of the same class, and large distances

between dissimilar data points. While classical metric learning does this by

learning a new metric, DML fixes the metric, e. g. Euclidean, but maps the data

points to a new feature space, also called embedding space, in which the goal

of decreasing the distance between similar data points and increasing it for

dissimilar ones is reached [Kaya and Bilge, 2019].

Approaches to DML are often based on Siamese or Triplet networks [Kaya

and Bilge, 2019]. During training, these process two, respectively three, input

samples simultaneously using identical networks with shared weights. The

Siamese network is shown pairs of input samples [Bromley et al., 1994, Chopra

et al., 2005], which it aims to map to embeddings with a distance according to

the objective function. The Triplet network, on the other hand, is shown three

samples: an anchor input sample together with a positive sample, e. g. from the

same class as the anchor, and a negative sample [Hoffer and Ailon, 2015].

Our DML method is summarized in Figure 7.1. It learns similarities between

ground images to represent them as compact embeddings, i. e. image descrip-

tors, for image retrieval. It consists of a Convolutional Neural Network (CNN)

that is trained in Siamese fashion, using an objective function that is adopted

from Sánchez-Belenguer et al. [2020]. Subsequently, we employ a k-d tree to

find the reference images with most similar embeddings to that of the query

image. Our results show that our method outperforms BoW image retrieval,

with significantly higher recall values especially for the most difficult cases. Also,

we evaluate the use of image retrieval for ground texture based global localiza-

tion, estimating the query image pose based on the retrieved reference images

with most similar image descriptors. On the Micro-GPS database, our GTBL

Method (see Chapter 5) performs much better when using image retrievals of

our DML method, instead of the retrievals of the BoW approach, and it per-

forms slightly better as without the employment of image retrieval, where all

reference images are considered in a brute-force fashion. On the HD Ground

Database, we observe significantly increased global localization performance

of both StreetMap [Chen et al., 2018] and the GTBL Method, compared to their

performance with BoW image retrieval or without image retrieval.

This work contributes a novel deep metric learning approach to represent

ground images with compact image descriptors, which are suited for image re-
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Figure 7.1: Overview of the training procedure of our proposed deep metric
learning approach. We use a Siamese Convolutional Neural Network
(CNN) architecture, whose final layer activations represent image
embeddings. During training, the model tries to predict the overlap
between randomly sampled pairs of images. This figure is adapted
from [Radhakrishnan et al., 2021].

trieval. We introduce a framework for the evaluation of ground image retrieval,

and, we optimize the employed BoW method, the current state-of-the-art ap-

proach to ground image retrieval, for the best performing pairing of keypoint

detection and feature description method and for the optimal number of con-

sidered features per image. Still, we show that our method outperforms BoW

both in image retrieval recall and the resulting localization performance.

7.1 Related Work

To the best of our knowledge, we propose the first deep learning approach

that can be applied directly to ground image retrieval for ground texture based

localization. Existing deep learning approaches to image retrieval are not di-

rectly applicable to this task, and would therefore require to be adapted to

this domain, which is out of the scope of our work. This is, for example, be-
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cause these methods explicitly learn camera poses, like PoseNet [Kendall and

Cipolla, 2017], which is not our desired behavior, as we would like to have a

solution that generalizes to application areas that have not been seen during

training. Furthermore, state-of-the-art methods for image retrieval such as

[Revaud et al., 2019], [Gordo et al., 2017], [Noh et al., 2017a], and [Tolias et al.,

2016], are trained with a classification loss, having places correspond to classes.

Such a classification of images is not trivially applicable to ground texture based

localization, because every query image potentially has a different set of over-

lapping reference images, which means that labels would have to be query

image specific.

Zhang and Rusinkiewicz [2018] applied deep learning to ground images, but

with the aim of keypoint object detection, which is not in the scope of our work.

The current state of the art for the task of ground image retrieval is the BoW

image retrieval method developed by Galvez-López and Tardos [2012]. BoW

is an aggregated descriptor [Duan et al., 2015]. The first step for BoW is to

build a visual vocabulary. This means that local visual features are extracted

from a set of training images, and subsequently clustered into groups of similar

features. Each cluster represents a visual word. Then, in order to compute a

BoW representation of an image, the visual vocabulary is used to map local

visual features from an image to their corresponding visual words, based on

their feature descriptors. This mapping allows to quantize continuous feature

descriptors and the resulting visual words have lower dimensionality than the

feature descriptors. Finally, the query image is represented by the histogram

of its visual words, and similar reference images can be found as the ones with

most similar histograms.

Besides BoW, there are other aggregation schemes like the Fisher Vector (FV)

[Perronnin and Dance, 2007] and the Vector of Locally Aggregated Descrip-

tors (VLAD) [Jégou et al., 2010]. Both FV and VLAD extend the BoW method

using information about the statistical distribution of local features. Also, in

comparison to BoW, FV and VLAD are able to reduce the dimensionality of

the aggregated descriptors [Duan et al., 2015]. However, these methods have

not yet been applied to the task of ground image retrieval. They, are not in the

scope of this work.

Further related work uses image retrieval for place recognition and other lo-

calization tasks. Several methods, such as StreetMap [Chen et al., 2018] and

RelocNet [Balntas et al., 2018], follow a coarse-to-fine approach for localization.

They retrieve reference images that are similar to the query image globally,

followed by a fine-grained adjustment of the estimated query pose, e. g. using

102



7.1 Related Work

the matches of local visual features.

Gordo et al. [2017] developed a deep metric learning approach for image re-

trieval, consisting of a CNN trained in Siamese fashion with triplet ranking loss.

The authors employ a R-MAC pooling layer that corresponds to a differentiable

variant of the R-MAC [Tolias et al., 2016] description method. The triplets gen-

erated for training consist of an anchor query image, a positive sample of an

image from the same class as the query image, and a negative sample of an im-

age from another class. The network learns to generate query image descriptors

that are more similar to that of the positive sample than to that of the negative

sample. In the following, we refer to this method as TL-MAC, which stands for

triplet loss with R-MAC descriptor.

Revaud et al. [2019] adapt TL-MAC. Instead of using a triplet ranking loss,

they directly optimize for the mean Average Precision (AP), considering large

numbers of images at each training step. Also, they substitute the R-MAC

pooling layer of TL-MAC [Gordo et al., 2017] with a Generalized-Mean (GeM)

pooling layer. Accordingly, we refer to this method as AP-GeM.

Sánchez-Belenguer et al. [2020] developed RISE, an image retrieval based in-

door place recognizer, which we are building upon with our DML approach.

They create a 3D map of the environment with a laser and calibrated spheri-

cal camera mounted on a backpack. For image retrieval, they train a CNN in

Siamese fashion using overlap information of image pairs. The map is voxelized,

and can be used to compute the content overlap of any two images: for each

image corresponding depth information is available; therefore, the set of visible

mapped-voxels can be identified, and the overlap is then computed as the

number of common visible voxels. This does not include voxels through which

the visual rays pass, but only those where visual rays end. During training, the

network learns to predict image pair overlaps. The activation of the final layers

represent the image embeddings. Then, the network is optimized to minimize

the error between the predicted dissimilitude (L2-Norm) of the image pairs

and their actual common overlap. After training, the network is used offline

to compute embeddings for all reference images. Subsequently, to retrieve

overlapping reference images during online place recognition efficiently, a k-d

tree is used to find the most similar reference image embeddings to the query

image embedding.
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7.2 The Deep Metric Learning Method

We propose a deep learning framework for the retrieval of overlapping ground

images. Our goal is to solve the following problem:

Problem 4 (Ground Image Retrieval) Given a set of reference ground images

R and a query ground image q, retrieve a set of similar reference images to q

R̂o ⊂ R, including as many images as possible from the set of images Ro ⊂ R

that have overlapping content with q, i. e. we desire to achieve Ro ⊆ R̂o ⊂ R.

7.2.1 Objective Function

Given two images q and r ∈ R, we normalize them and compute their embed-

dings eq and er. The distance between q and r is computed with the L2-norm:

d(q, r) = ∥eq − er∥2, which in our tests worked better than cosine similarity

(eq · eq)/(∥eq∥2 · ∥er∥2), which however would have had the advantage of nat-

urally mapping to values between 0 and 1, i. e. the minimal and maximum

possible image overlap values.

The actual overlap between the images is represented as o(q, r), it is computed

as the physical space that is covered by both images divided by the physical

space covered by a single image (we assume all our images to cover the same

amount of physical space). The goal of our training procedure is to adapt the

weights of our CNN in such a way that d(q, r) = 1 − o(q, r), e. g. we want to

have d(q, r) = 1.0 in the case of no overlap between q and r, and d(q, r) = 0.0 in

the case of full overlap. For this purpose, we adopt the overlap loss of Sánchez-

Belenguer et al. [2020] as objective function:

L = [d(q, r)− (1 − o(q, r))]2. (7.1)

But, in contrast to Sánchez-Belenguer et al., we employ 2D image overlaps,

which are available as the ground truth poses and the sizes of the areas covered

by the images are known for training images.

7.2.2 The Model and its Application

Our network architecture and its training procedure is illustrated in Figure 7.1. It

consists of a CNN that extracts image features. The activations of the final fully-

connected layer represent the image embeddings. We examine two variants
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of our architecture, one using ResNet-50 [He et al., 2016] as CNN backbone,

and the other using DenseNet-161 [Huang et al., 2017]. The proposed ground

texture DML models, using ResNet and DenseNet backbones are henceforth

referred to as DML-R and DML-D respectively.

During training, input image pairs are processed in Siamese configuration. The

network is trained with positive samples of actually overlapping pairs, (q1 with

p1 and q2 with p2 in Figure 7.1), and negative samples of non-overlapping pairs,

(q3 with n1 and q4 with n2 in Figure 7.1). For each training sample, the loss is

computed according to Equation (7.1) and backpropagated.

For the image retrieval system, a k-d tree is built from all reference image

embeddings. Then, at inference time, it can be used to retrieve the reference

images with most similar embeddings to that of the query image.

7.2.3 Implementation

We implement our deep metric image retrieval approach in PyTorch [Paszke

et al., 2019], based on the Siamese network approach for image similarity

with deep ranking of Wang et al. [2014]. Our ResNet-50 [He et al., 2016] and

DenseNet-161 [Huang et al., 2017] backbones are pre-trained on ImageNet [Rus-

sakovsky et al., 2015] for the task of object classification. Subsequently, they are

trained in Siamese configuration for ground image retrieval on the Micro-GPS

database [Zhang et al., 2019], respectively on the HD Ground Database [Schmid

et al., 2022]. For more compact image embeddings, we examined the replace-

ment of the CNN’s final pooling layers with generalized mean pooling lay-

ers [Radenović et al., 2019, Cao et al., 2020]. However, in our tests on the

Micro-GPS database this decreased performance. So, we maintain the adaptive

average pooling layers. Also, we experiment with node sizes of the final layer,

which defines the embedding size, of 1000, 2048, and 4096. We observe best

performance with an embedding size of 1000.

During training, we employ a batch size of 64 and tune the network weights

using Adam optimizer with a learning rate of 10−4, a weight decay of 10−5. After

training, for image retrieval, we find the k reference images with most similar

embeddings to the query image, using the scikit-learn [Pedregosa et al., 2011]

k-d tree.
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7.3 Evaluation

Our main evaluation of the proposed image retrieval approach is done in Sec-

tion 7.3.2 on the Micro-GPS database [Zhang et al., 2019]. Here, we make an

in-depth examination of the image retrieval performance, using the perfor-

mance metrics described in Section 7.3.1, and we examine the performance in

the case of an application for ground texture based localization. In Section 7.3.3,

we extend this evaluation with an examination of the proposed method being

applied for localization on the HD Ground Database [Schmid et al., 2022].

7.3.1 Performance Metrics

We use recall as image retrieval performance metric. Recall describes the share

of correctly retrieved images. It depends on the overall number of retrieved

images k = |R̂o|, i. e. the k reference images with most similar descriptors to

that of the query image, and the number of actually available correct retrievals,

i. e. the number of reference images with overlap with the query image, which

can be a different number for each query image. So, as a function of k, we define

the recall as:

R@k =
# correctly retrieved images

#number of actually available correct retrievals
. (7.2)

Whether a retrieved reference image is considered to be correct depends on

its overlap with the query image. Generally, we are interested in all reference

images with any overlap, but the ones with large overlap are the most valuable

ones for the localization task, as they contain potentially the most correspon-

dences of local image features with the query image. This is why we compute

R@k for varying overlap thresholds. Rx@k represents the share of correctly

retrieved reference images that have at least x % overlap with the query image.

Finally, we employ the image retrievals for ground texture based initial local-

ization. Here, we evaluate the localization success rate as proposed by Zhang

et al. [2019], where localization attempts are considered to be correct if the

estimated query image pose has a translation difference of less than 4.8 mm

and an absolute orientation difference of less than 1.5 ◦.
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7.3.2 Evaluation on the Micro-GPS Database

This section presents our evaluation on the PointGrey CM3 Micro-GPS ground

image database [Zhang et al., 2019] that was published in [Radhakrishnan et al.,

2021].

In addition to our DML methods, we evaluate BoW as the current state-of-the-

art approach, and we consider the deep metric metric learning approaches

TL-MAC and AP-GeM, which have been introduced in Section 7.1. These meth-

ods are trained with a classification loss, which, as explained earlier, prevents us

from being able to train them directly for the task of image retrieval for ground

texture based localization. However, they have been found to have good gen-

eralization capabilities [Pion et al., 2020], as they outperform other methods

for visual localization tasks without being trained on the evaluation database.

Accordingly, we employ these methods using pre-trained weights1. For TL-MAC

the model was trained on the Landmarks-clean dataset [Babenko et al., 2014].

For AP-GeM, we achieve the best recall using weights of an instance that was

trained on the Google-Landmarks Dataset [Noh et al., 2017b], which contains

more than one million images from 15000 places. Furthermore, we examine

two baseline approaches. The first is Random, sampling k reference images as

retrieval result. Our second baseline is to use the ResNet-50 [He et al., 2016] and

DenseNet-161 [Huang et al., 2017] CNNs without task-specific fine tuning, i. e.

they are only pre-trained on ImageNet [Russakovsky et al., 2015].

In Section 7.3.2.1, we describe the preparation of data for the training proce-

dure of the DML networks. Implementation details of the BoW method are

presented in Section 7.3.2.2, this includes a survey about the optimal choice of

the detector-descriptor pairing. Subsequently, we examine image retrieval per-

formance in Section 7.3.2.3 and performance on the task of initial localization

in Section 7.3.2.4. In all cases, the number of retrieved most similar reference

images is fixed to k = 100.

The BoW approach is evaluated on a Intel Core i5-3570 CPU with 32GB RAM

and 6 cores at 3.40 GHz, while our CNNs are trained and evaluated on five Titan

X Pascal 12GB GPUs and an Intel Xeon E5-2630 v4 CPU at 2.20 GHz.

7.3.2.1 Data Preparation for Training

We separate a sequence of 500 query images per texture for the evaluation, and

use the other for parameter optimization and network training.

1https://github.com/naver/deep-image-retrieval
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In order to prepare the data for training of our proposed DML-D and DML-R

models, we compute the pairwise overlap of each query image with all reference

images. This allows to identify the positive training samples of query-reference

image pairs for which we require to have at least 20% overlap, because we

observed that the models can get confused by low-overlapping positive samples,

which seem to be hard to distinguish from negative samples without any overlap.

We train our models jointly on all textures, because we aim for generalized

models. However, the number of available positive samples varies for the

different textures: roughly 3000 for concrete, tiles, and wood, and roughly

10 000 for carpet, coarse, and asphalt. To create additional training samples, we

apply random image augmentations of flips and rotations between ±45 degrees.

Finally, we obtain about 185 000 positive samples, and the same number of

negative non-overlapping samples is prepared. These pairs are shuffled to be

processed in random order to avoid processing multiple similar inputs in a row.

7.3.2.2 Implementation of the BoW Approach

We implement the BoW approach, using the FBOW library2 to create the vocab-

ulary, using the library’s default configuration, and we employ the OpenCV 4.0

[Bradski, 2000] library to extract the required local visual features. Here, an

important hyper-parameter choice is the type of the employed local visual

features. We examine the keypoint detectors and feature description method

that we found to be the most successful ones for ground images in Chapter 4:

SIFT [Lowe, 2004], SURF [Bay et al., 2006], and AKAZE [Alcantarilla et al., 2013]

are employed both as methods for detection and description, and additionally

we examine the binary description methods LATCH [Levi and Hassner, 2016]

and BRIEF [Calonder et al., 2010]. The methods are parametrized with the

corresponding optimized parameter settings of Chapter 4 that can be found in

the appendix Section A.1. For the vocabulary creation, a large set of features is

required from the application domain. For this purpose, we choose to extract

1000 features per image from 1000 reference images per texture. In order to limit

the number of extracted features per image, we employ NMS, i. e. we choose

the features with largest keypoint response values that have been assigned by

the respective keypoint detectors. Subsequently, the vocabulary is used to map

images to BoW representations using their respective set of extracted features.

Here, another important hyper-parameter choice is the size of this feature set

n. Again, we implement this choice by taking the features with largest key-

point response values. In the following, we examine the optimal choice of the

2https://github.com/rmsalinas/fbow
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Table 7.1: R@100, i. e. the recall when retrieving 100 reference images per query
image, evaluated for the Bag of Words (BoW) approach on the carpet
texture of the Micro-GPS database [Zhang et al., 2019] for varying
detector-descriptor pairings.

Detector Descriptor R@100(%)

SIFT SIFT 35.9
SURF SURF 9.4

AKAZE AKAZE 17.4
SIFT LATCH 14.1

AKAZE BRIEF 12.1
AKAZE LATCH 13.7

detector-descriptor pairing.

BoW Parameter Optimization: First, we set n = 1000 and vary the detector-

descriptor pairings. We evaluate on the carpet texture and present results of

R@100 in Table 7.1. The combination of SIFT keypoint object detection and

SIFT feature description clearly outperforms the other options. Hence, we use

this variant in the following.

We also investigate the texture-specific optimal choice of n, for values between

100 and 1000 with a step size of 100. The results can be found in the Appendix

(Section A.4). To achieve optimal BoW retrieval performance, we will always

evaluate BoW image retrieval by selecting the respective texture-specific opti-

mal choice of n.

7.3.2.3 Image Retrieval Performance

Figure 7.2 presents the results for R0@100. The random baseline has the lowest

recall results. Varying performance of this method for the different textures

can be explained by the correspondingly varying number of reference images.

Our models, DML-D and DML-R, have the best retrieval performance, clearly

outperforming BoW, the current state-of-the-art for ground image retrieval.

DML-D, with the DenseNet-161 backbone, achieves slightly better performance

than DML-R, using a ResNet-50 backbone. Also, we observe that fine-tuning

the models for the use on ground images is of great importance, as our DML

methods perform much better than the networks that have not been trained

on ground images: ResNet, DenseNet, TL-MAC, and AP-GeM. This can be

explained by the fact that the random patterns observed in ground images are

quite different to the structured environments of, for example, ImageNet.
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Figure 7.2: Texture-specific R@100 performance, i. e. the recall when retriev-
ing 100 reference images per query image, for all textures of the
Micro-GPS database [Zhang et al., 2019], evaluated for our proposed
methods DML-R and DML-D, the baseline approaches random and
Bag of Words (BoW), and the deep neural networks that have not
been trained specifically for our task ResNet-50 [He et al., 2016],
DenseNet-161 [Huang et al., 2017], TL-MAC [Gordo et al., 2017], and
AP-GeM [Revaud et al., 2019]. This figure is adapted from [Radhakr-
ishnan et al., 2021].

Matching the results of Zhang et al. [2019] and Schmid et al. [2020a] (presented

in Chapter 5), we identify concrete and wood to be the most challenging of the

evaluated textures, but Zhang et al. [2019] and Schmid et al. [2020a] observed

good results on tiles. However, concrete, wood, and tiles are also the textures for

which we have only about 3000 samples of overlapping query-reference image

pairs (without synthetic augmentation), while we have 10 000 for the others.

This might be the main reason for our poor performance on tiles and it adds to

the challenge on concrete and wood.

Table 7.2 presents R@100 averaged over all textures. Different thresholds for the

minimum required overlap of the retrievals are considered, i. e. [R0,..,R80]@100,

where Rx@100 is the value of R@100 considering only those retrievals with

greater (not equal) than x % overlap as correct. Our DML-D model has the

best retrieval performance with an average Rx@100 of 83.3% (averaged over

x ∈ {0, 20, 40, 60, 80}), outperforming the BoW approach with an average of

61.2%. The reference images with largest overlap are mostly retrieved correctly

by the BoW approach; hence, it achieves a R80@100 of 93.5%. However, most

of the reference images with only small amounts of overlap with the query
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Table 7.2: For varying values of x, Rx@100 results averaged over all textures of the
Micro-GPS database [Zhang et al., 2019], i. e. the recall performance
when retrieving 100 reference images per query image and when con-
sidering only those retrievals with greater than x% overlap as correct.
The performance is evaluated for our proposed methods DML-R and
DML-D, the baseline approaches random and Bag of Words (BoW),
and the deep neural networks that have not been trained specifically
for our task ResNet-50 [He et al., 2016], DenseNet-161 [Huang et al.,
2017], TL-MAC [Gordo et al., 2017], and AP-GeM [Revaud et al., 2019].
The respective best recall results are highlighted in bold.

Model
Rx@100(%)

R0 R20 R40 R60 R80

Random 3.7 3.7 3.7 3.8 4.0
ResNet 8.8 11.3 14.0 17.1 25.2

DenseNet 11.2 15.9 20.8 25.5 41.5
TL-MAC 12.2 17.4 22.4 28.7 41.3
AP-GeM 14.1 18.9 23.6 29.0 39.0

BoW 22.7 42.3 64.4 82.9 93.5
DML-R 51.0 68.0 81.9 90.5 93.5
DML-D 55.7 75.0 89.5 97.0 99.3

image are not correctly retrieved, which leads to poor recall values for R0@100

and R20@100 of only 22.7%, respectively 42.3%. We investigate this further by

comparing the numbers of correctly retrieved reference images with at least

40% overlap (Figure 7.3a), and with less than 40% overlap with the query image

(Figure 7.3b). Figure 7.4 presents examples where DML-D correctly retrieved

images with more, respectively less, than 40% overlap. As expected, we observe

BoW to be competitive with DML-D for retrieving the reference images with

large overlaps, while it gets outperformed by DML-D for reference image with

small overlaps. This indicates a better representation of our learned image

embeddings compared to the BoW image representations. Summarizing the re-

sults of all six textures, a maximum number of 34944 reference images with less

than 40% overlap could have been retrieved. DML-D retrieved 51.6% (18040) of

them and BoW 13.4% (4678). In contrast, of the 9921 possible retrievals with at

least 40% overlap, DML-D retrieved 89.4% (8874) and BoW 69.3% (6878).

It is also of interest to examine how often image retrieval failed completely,

i. e. not a single overlapping reference image is retrieved, because in these

cases subsequent successful pose estimation based on the retrieved images is

impossible with any localization method. For DML-D, we observe a total of

18 failure cases, 17 on concrete and one on wood. The BoW approach has 201

failure cases, 135 on wood, 53 on concrete, 7 on tiles, 5 on fine asphalt, and one

on coarse asphalt.
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(a) Considering only the reference images with ≥ 40% overlap as correct.
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(b) Considering only the reference images with < 40% overlap as correct.

Figure 7.3: Evaluation on the datasets of the Micro-GPS database [Zhang et al.,
2019] (carpet, coarse asphalt, concrete, fine asphalt, tiles, and wood):
the number of actually available correct reference image retrievals
that have ≥ 40% (a), respectively < 40% (b), overlap with the tested
query images, and the number of those reference images that is re-
trieved by our DML-D method and the Bag of Words (BoW) method.
These figures are adapted from [Radhakrishnan et al., 2021].

7.3.2.4 Initial Localization Performance

Finally, we evaluate the localization success rate of initial localization, using

BoW and DML-D image retrievals. Here, we employ the GTBL Method and

StreetMap [Chen et al., 2018], considering only the retrieved reference images

for potential feature correspondences with the query image. We examine the

localization success rate in four modes:

1. using all available references images, i. e. without (w/o) image retrieval;

2. using the ground truth (GT) set of actually overlapping reference images;

3. using the top-100 image retrievals of the BoW approach;

4. using the top-100 image retrievals of our DML-D model.
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Figure 7.4: Two example image pairings from the carpet texture of the Micro-
GPS database [Zhang et al., 2019] of a query image and the reference
image that the DML-D method determined to be the most similar
one to that query image. The image pairing on the left has an overlap
of 75.8% and the one on the right has 19.9% overlap. The green
border indicates the overlapping area. This figure is taken from
[Radhakrishnan et al., 2021].

Also, for StreetMap, we include the results that we obtained in Section 5.2.1,

where the BoW approach was applied with a different setting. In this case, we

used SURF features [Bay et al., 2006], instead of SIFT features [Lowe, 2004], as

we attempted to re-implement the technique as it was applied in the original

StreetMap implementation [Chen et al., 2018]. In the following evaluation, we

call this particular variant BoW-SURF. For BoW-SURF, instead of retrieving only

100 reference images, we considered the 20% of reference images with most

similar BoW representations, which is a number ranging from 403 for carpet to

809 for tiles. Another difference is the number of extracted features n used to

create the BoW representations, here we always used n = 1000 features instead

of selecting a texture-specific value as it is done for our optimized settings that

we obtained in this chapter. Nevertheless, the used SURF features of BoW-SURF

were optimized on the Micro-GPS database [Zhang et al., 2019] to be used for

image retrieval and subsequent feature-based localization with StreetMap (see

Section 5.2.1).

The initial localization success rates of the evaluated methods are presented

in Table 7.3. Across all textures and for both evaluated methods, we observe

improved localization success rates when using our DML-D retrievals instead

of BoW retrievals. This is an improvement from 87.3% to 96.6% for the GTBL

Method, and from 90.0% to 97.1% for StreetMap, when using our optimized

BoW settings. For comparison, the average success rate with AP-GeM is 49.9%.

The performance of StreetMap with our texture-specifically optimized settings

is still better as with BoW-SURF. This is even though we observe it to be bene-
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Table 7.3: Initial localization results of the GTBL Method [Schmid et al., 2020a]
and StreetMap [Chen et al., 2018] on the Micro-GPS database [Zhang
et al., 2019], using different methods to determine the set of reference
images that is considered for localization of a given query image. We
evaluate the performance without (w/o) image retrieval, when using
the ground truth (GT) set of actually overlapping reference images,
and when using the retrievals of DML-D and Bag of Words (BoW). For
StreetMap, we also present the results when using the BoW not as
described in this chapter, but as in Section 5.2.1 using SURF features
(BoW-SURF).

Texture Method
Success rate (%)

w/o GT DML-D BoW BoW-SURF

Carpet
GTBL Method 100 100 100 99.8

StreetMap 100 100 100 100 95.0

Coarse Asphalt
GTBL Method 100 100 100 99.8

StreetMap 100 100 100 99.8 98.0

Concrete
GTBL Method 97.8 100 92.8 81.8

StreetMap 100 100 96.6 88.4 82.0

Fine Asphalt
GTBL Method 100 100 100 98.2

StreetMap 100 100 100 99.0 98.0

Tiles
GTBL Method 100 100 99.8 98.4

StreetMap 100 100 99.8 98.6 99.2

Wood
GTBL Method 75.0 97.4 87.0 45.6

StreetMap 74.8 97.4 86.4 54.2 39.0

Average
GTBL Method 95.5 99.6 96.6 87.3

StreetMap 95.8 99.6 97.1 90.0 85.2

ficial to the success rate of StreetMap to retrieve larger numbers of reference

images, which should be in favor of BoW-SURF, which retrieves a significantly

larger number of images. This observation is also in line with StreetMap having

better performance without image retrieval as with the employment of BoW re-

trievals. It seems that a significant number of overlapping reference images are

missed by the BoW approach. The same is true for the GTBL Method. However,

image retrieval has the potential to move the success rate of both localization

methods to almost 100%, as we obtain the largest success rates when consid-

ering only the ground truth of actually overlapping reference images. And, as

a matter of fact, using our DML-D retrievals improves the overall success rate

of both methods compared to the setting without image retrieval. A look at

the detailed results shows that the success rates on concrete are actually better

without retrieval, but the performance on wood is much better using DML-D

retrievals, which leads to an overall improvement of the average success rates.

The improved performance on wood might also be valued higher, as it presents

itself as the most challenging texture for ground texture based localization.

Furthermore, the application of image retrieval also has the advantage of reduc-
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ing the required computation time for localization. In the case of StreetMap,

localization without image retrieval takes on average 12.98 s, where more than

99% (12.87 s) of this time is spent on feature matching. With our DML-D re-

trievals, on the other hand, localization takes on average 0.57 s, of which feature

matching still takes more than 80% (0.46 s). Similarly, in the case of the GTBL

Method, we observed in Section 5.2.1.2 that using just 100 instead of all 2014

references images of the carpet texture reduces the computation time for fea-

ture matching from 286.47 ms to only 15.25 ms. A robotic agent using our image

retrieval method could therefore localize faster, which can be highly beneficial

in practice.

7.3.3 Evaluation on the HD Ground Database

This section presents some results of [Schmid et al., 2022] for initial localization

on the HD Ground Database.

Here, we evaluate StreetMap and the GTBL Method in the following variants:

• GTBL Method: All reference images are considered.

• StreetMap BoW and GTBL Method BoW: Using BoW image retrieval, only

the 15 reference images with most similar BoW representations are con-

sidered.

• StreetMap DML and GTBL Method DML: Only the 15 reference images

with most similar CNN embeddings of DML-D are considered.

7.3.3.1 Training of the DML-D Model

We take the DML-D network that we already trained jointly on all textures of the

Micro-GPS database [Zhang et al., 2019], and fine-tune it on the training areas of

the HD Ground Database. Training on the Micro-GPS database was done with

a total of 370 000 image pair samples. For the HD Ground Database, again using

the image augmentations of flipping and rotating, we obtain about 112 000

positive and negative training samples, i. e. pairs of overlapping, respectively

non-overlapping, image pairs. Therefore, we perform training with 224 000

additional samples from the HD Ground Database.
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7.3.3.2 BoW Parameters

For the BoW approach, we employ SIFT with the same texture-specific parame-

ter settings optimized on the respective training areas that were also employed

for image stitching to create the maps of the HD Ground Database. Vocabu-

laries are created texture-specifically, using up to 1000 features per reference

image of the training areas.

7.3.3.3 Results

Figure 7.5 presents success rates on the regularly recorded test sequences. The

success rate is relatively stable over time for both indoor textures, while it highly

depends on the date of recording for the outdoor textures, with higher success

rates closer to the date of mapping, which is indicated by the thick vertical line.

Using image retrieval to reduce the number of considered reference images

improves the success rates. StreetMap and GTBL Method mostly achieve their

highest success rates with our DML Image Retrieval approach, while StreetMap

reliably outperforms the GTBL Method.

We observe lower success rates on the cleaned cobblestone area, compared

to the area being recorded without cleaning, e. g. for the GTBL Method, the

mean success rate of its variant without image retrieval changes from 8.1% to

7.7% on the cleaned area and with DML Image Retrieval it changes from 16.6%

to 14.1%, and for StreetMap DML it changes from 40.9% to 33.7%. However,

these changes are much smaller than the changes in success rate that occur

for varying recording dates. Therefore, cleaning might have little influence and

the lower performance on the cleaned variant might be explained by fluctua-

tions that are to be expected when examining different parts of an application

area. On the other hand, to our surprise, at corresponding recording dates, we

observe similar success rates for the cleaned and not-cleaned variants. This

means that the larger and smaller success rates, that we observe for varying

recording dates, are, in addition to the time interval to the moment of mapping,

largely explained by the overall condition the application area was in at the

point of recording, e. g. the humidity of the ground. Otherwise, we would expect

to observe random fluctuations for individual image sequences recorded at the

same date.

On the wet asphalt sequences, average success rates drop to 2% for all examined

methods. It seems to be difficult to identify feature correspondences between

the wet asphalt test images and the map that was recorded at dry condition.
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Figure 7.5: Initial localization success rates on the four main textures of the
HD Ground Database [Schmid et al., 2022] (cobblestone (clean and
dirty), asphalt (dry and wet), carpet, and laminate), for varying
time intervals between the recording date of the reference images
(indicated by the thick vertical line) and the test sequences (indi-
cated by dashed vertical lines). Note that the reference images for
cobblestones were recorded later than most of the test sequences,
while the opposite is true for the rest of the textures. The success
rates are evaluated for StreetMap [Chen et al., 2018] and the GTBL
Method [Schmid et al., 2020a], using DML-D and Bag of Words (BoW)
to retrieve the considered reference images, and in the case of the
GTBL Method also without image retrieval, i. e. all reference images
are considered. This figure is adapted from [Schmid et al., 2022].

This is in line with our previous explanation that the success rates seem to be

highly dependent on the condition of the ground at the time of recording.
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7.4 Discussion

We introduced a deep learning approach to image retrieval of ground images,

using a CNN trained in Siamese fashion for the task of predicting the over-

lap of image pairs. Our method significantly outperforms BoW [Galvez-López

and Tardos, 2012], a state-of-the-art method relying on hand-crafted features,

which was proposed by Chen et al. [2018] to be applied for the task of retriev-

ing overlapping ground images. Also, the image retrievals of our method are

significantly better suited for initial localization than that of the BoW approach.

In this work, we examined generalized models, being trained jointly on all

textures. We also examined the performance of our models if trained texture-

specifically, which did not clearly improve the image retrieval recall. The result-

ing localization success rate on the Micro-GPS database of Zhang et al. [2019]

was even slightly lower (96.0% to 96.6%).

Compared to a setting in which all reference images are considered for initial

localization, using the image retrievals of our method lead to slightly increased

success rates on the Micro-GPS database, and significant improvements on the

HD Ground Database [Schmid et al., 2022]. Better success rates with image

retrieval can be explained with the smaller number of considered reference

images without overlap with the query image that will only contribute incorrect

feature matches to the localization procedure. While we observed this advan-

tage on the Micro-GPS database, this effect seems to be even more significant

on the challenging HD Ground Database, in which the number of reference

images are larger, and in which we recorded test sequences over a long period

of time.

Similarly, the difference in localization performance between the GTBL Method

[Schmid et al., 2020a] and StreetMap [Chen et al., 2018] are emphasized on the

HD Ground Database. On the Micro-GPS database, both methods have more

than 95% success rate without retrieval and slightly higher success rates with

our DML-D retrievals. Still, StreetMap tends to perform better than the GTBL

Method. This difference increases on the more difficult HD Ground Database.

Additionally to the improvements on the localization success rate, the employ-

ment of image retrieval for initial localization reduces the computational effort

and the resulting required time for localization significantly. For a holistic con-

templation, however, we would have to include the required computational

effort for image retrieval.

Overall, it seems that the employment of image retrieval for initial ground
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texture based localization is a promising approach. While we observed volatile

performance with the BoW approach, where the retrieval performance highly

depends on used feature extractor, its parametrization, and the number of

extracted features, our DML-D approach, being trained jointly on all textures,

ensures good results across all textures of both databases and for both evaluated

localization methods.

For future research, we would like to investigate the generalization performance

to textures not being included in the training process.
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8 Faster Local Localization with

Keypoint Sampling

Contents of this chapter were partially published in [Schmid, Simon, and Mester,

2020b] and [Schmid, Simon, Radhakrishnan, Frintrop, and Mester, 2022].

In previous chapters, we have seen that state-of-the art feature-based ground

texture based localization methods like Micro-GPS [Zhang et al., 2019], Street-

Map [Chen et al., 2018], and the GTBL Method [Schmid et al., 2020a] enable

reliable centimeter precise positioning on several common ground textures.

However, these methods induce a significant computational load.

Zhang et al. identified matching as one of the most time-consuming steps of

the task, so they propose to use an Approximate Nearest Neighbor (ANN) search

index [Zhang et al., 2019].

In our previous work [Schmid et al., 2020a], presented in Chapter 5, matching is

further sped up with the identity matching approach, which matches features

only if their descriptors are identical. This also allows to take advantage of prior

pose estimates to consider only the closest reference images during feature

matching, which cannot be done with ANN matching, because the search index

is built globally for all reference images.

Based on the identity matching technique and compact binary descriptors, we

proposed the GTBL Method. This method outperforms Micro-GPS [Zhang et al.,

2019] if it can take advantage of an available prior pose estimate [Schmid et al.,

2020a].

However, one remaining bottleneck, preventing the real-time applicability of

ground texture based localization, is keypoint detection. Previously in Chap-

ters 4 and 5, we found the SIFT detector [Lowe, 2004] to be among the best

performing detectors for the application, which, however, is a costly operator

that dominates the computation time of the GTBL Method. One approach

is to use a Graphics Processing Unit (GPU) for feature extraction, but for the

application in low-cost robots it is desirable to avoid the use of such dedicated

hardware accelerators.
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We hypothesize, that for ground texture based localization with available prior,

proper keypoint detection can be disregarded. Instead, keypoints can be sam-

pled randomly, mainly because pose estimation with a downward-facing cam-

era is with good approximation a 2D problem. The camera pose can be es-

timated as an Euclidean transformation of rotation and translation in two

dimensions. Therefore, keypoint object scale is constant for corresponding im-

age regions in different images; and with an available pose prior, we can use its

orientation in the map coordinate system as keypoint orientation, reducing the

keypoint object properties that have to be determined to its image coordinates.

Accordingly, for keypoint extraction in ground texture based localization with

available prior, we are left with determining only the two degrees of freedom of

translation, which leads us to the assumption that this is a point where we can

save computational effort.

The contribution of this work is twofold. First, we show that keypoint sampling

is a valid alternative to keypoint detection for ground texture based localization

with an approximately known camera pose. This is shown as, for the three state-

of-the-art feature-based localization methods Ranger [Kozak and Alban, 2016],

StreetMap [Chen et al., 2018], and the GTBL Method [Schmid et al., 2020a], we

achieve comparable success rates using sampled keypoint objects. This sug-

gests that it is not necessary to recognize prominent features of the texture, but

that any image patch presents sufficiently unique texture details. Second, we

present GTBL RND, which stands for Ground Texture Based Localization (GTBL)

method with RaNDomly sampled keypoints. GTBL RND is an adaptation of the

GTBL Method, which uses keypoint sampling, achieves a success rate of more

than 90% on the Micro-GPS database, and that takes roughly half as long as the

next fastest method to compute.

This chapter is organized as follows. Section 8.1 introduces approaches to

keypoint detection that focus on fast computation time, also we present ex-

isting work in the area of keypoint sampling. In Section 8.2, we introduce

two novel performance metrics for local visual features, the feature repeata-

bility and the descriptor repeatability, both aiming to capture the capability of

a whole feature extraction pipeline of determining similar features for corre-

sponding places in the overlap of independently recorded images. Section 8.3

introduces our keypoint sampling strategy, which is then evaluated in Sec-

tion 8.4.1, using the Micro-GPS database, and in Section 8.4.2 using our HD

Ground Database [Schmid et al., 2022]. Finally, Section 8.5 summarizes and

discusses the obtained results.
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8.1 Related Work

We review fast-to-compute detectors and existing work on keypoint sampling.

8.1.1 Speed-Optimized Keypoint Detection

Some keypoint detectors are designed with computation speed in mind. Among

the fastest ones is FAST [Rosten and Drummond, 2006], a corner detector that

considers a pixel to be part of a corner if multiple contiguous surrounding

pixels are significantly darker or brighter. Computation speed of the method is

improved by rejecting a pixel early after only a few comparisons, if the condition

can no longer be fulfilled. Another fast-to-compute corner detector is Good

Features To Track (GFTT) [Shi and Tomasi, 1994]. It simplifies the corner-score

function of the Harris detector, which is based on an approximation of the local

intensity change.

A second type of detectors use image pyramids to find scale-invariant keypoint

objects. One of the most successful ones is SIFT [Lowe, 2004], detecting blobs

as local intensity extrema in a DoG pyramid. SURF [Bay et al., 2006] and Cen-

SurE [Agrawal et al., 2008] approximate the DoG, using the faster to compute

Difference-of-Boxes or Difference-of-Octagons.

8.1.2 Keypoint Sampling

Keypoint detection typically identifies image regions that fulfill a keypoint

criterion or that maximize a keypoint score function. Keypoint sampling, on the

other hand, determines keypoint objects independent of the image content.

Keypoints can be sampled uniformly [Chatoux et al., 2016, van de Sande et al.,

2010] or randomly [Nowak et al., 2006, Maree et al., 2005]. It has been used for

image understanding tasks, where it is not necessary to retrieve corresponding

image regions.

Tuytelaars [2010] developed a detector that starts with uniformly sampled

keypoints, but improves the keypoint repeatability, moving keypoint objects to

local optima of an interestingness measure.

Methods like DAISY [Tola et al., 2010], and SIFT flow [Liu et al., 2008] are used

to compute feature descriptors at every position of a uniform grid. They can

be used to find dense correspondences between image pairs, e. g. to compute

optical flow.
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8.2 Feature and Descriptor Repeatability

Keypoint repeatability was introduced by Mikolajczyk et al. [2005] as a quality

measure of keypoint extractors. For two overlapping images, it measures the

share of extracted keypoint objects that have been found in both images.

Whether keypoint objects are suited for a task also depends on the employed

method for feature description and the matching strategy. Therefore, we intro-

duce feature repeatability, which considers the whole feature instead of only

the keypoint object. Feature repeatability is computed as the share of features

from the overlap of two images that are correctly matched with each other. As

a reminder: our keypoint objects specify both a position and an orientation;

therefore, each match of features corresponds to a query image pose estimate.

So, we employ the strategy that we introduced in Section 6.3.2, of considering

matches to be correct if their corresponding pose estimates are correct, without

taking the orientation error into account.

Another quality of interest for our method is what we refer to as descriptor

repeatability. It measures the ratio of corresponding keypoint objects that

are evaluated to the same feature descriptor. To evaluate this, we determine

corresponding keypoint objects by projecting keypoint objects from an image a

into an overlapping image b, and compare the descriptors assigned to them in

the two images.

8.3 Method

We introduce GTBL RND. In order to be able to perform map-based localization,

it has to solve the Problems 2 and 3 of map creation and localization. We build

on the GTBL Method, but keypoint objects are not detected with SIFT, they

are sampled randomly or uniformly. For the remainder of this dissertation,

we refer to the variant of the GTBL Method using SIFT keypoint objects as

GTBL SIFT, while we call this variant using (RaNDomly) sampled keypoints

GTBL RND. We consider two possible keypoint sampling strategies: random

sampling, and uniform sampling on a grid. Figure 8.1 presents SIFT, random,

and uniformly sampled keypoint objects. Randomly sampled keypoints are

retrieved as a simple random sample of image coordinates without replacement,

which has greater computational cost than uniform sampling. However, using

uniform sampling for query and reference images could lead to a situation

where all keypoint objects are misaligned. Therefore, we extract randomly
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Figure 8.1: Illustration of keypoint objects extracted with (from left to right)
SIFT, random keypoint sampling, and uniform keypoint sampling.
Each keypoint object is visualized as a red circle. Keypoint object
size is represented based the size of the circle, while its orientation is
represented by a line from the center of the circle to its border. This
illustration uses an image of the tiles dataset from the Micro-GPS
database [Zhang et al., 2019]. This figure is taken from [Schmid et al.,
2020b].

sampled keypoint objects from the reference images and uniformly sampled

keypoint objects from query images, as computation time is not critical at map

construction time, but only at localization time. Compared to a setting in which

we also use randomly sampled keypoint objects for query images, we do not

observe an effect onto the success rate.

In addition to the keypoint, we also need to define the scale, respectively the

image patch size, and the orientation of the sampled keypoint objects. Here,

we fix the scale, which is possible due to our assumption of a constant camera

height. Further, we use the relative camera orientation to the map coordinate

system as keypoint object orientation, which is known for the reference images

and approximately known for the query images by using the orientation of the

prior pose estimate.

Extensions: Three extensions to our method are evaluated.

1. Repeatability constraint for reference features (illustrated in Figure 8.2):

only reference features with repeatable descriptors are stored during map-

ping. This can be done, if there are overlapping reference images. We

project keypoint objects into the overlapping image to check if they are

stable, i. e. if they are evaluated to the same descriptor, only then features

are stored.

2. Multi-Map (MM) approach: for the reference images multiple sets of

features are sampled. Each of them can be used during the localization

step. This is similar to having multiple internal representations of the

map, i. e. we repeat the map creation process of Problem 2 multiple times.

Hence, we call this the Multi-Map (MM) approach. It means that for each

125



Faster Local Localization with Keypoint Sampling

Figure 8.2: Illustration of the repeatability constraint: a feature (green star)
from the reference image (blue rectangle) holds the repeatability
constraint, if there is a (corresponding) keypoint object at the same
place in an overlapping reference image (dashed rectangle), which
is evaluated to the same feature descriptor. In comparison to a fea-
ture from a reference image that does not hold the repeatability
constraint, we expect a reference image feature that does hold the
repeatability constraint to possess a higher chance of having cor-
responding keypoint objects in overlapping query images (yellow
rectangle) also to be evaluated to the same feature descriptor. This
figure is taken from [Schmid et al., 2020b].

query image we perform multiple independent localization attempts (one

for each map). The final pose estimate is determined by the localization

attempt with most RANSAC inliers. Due to the use of random keypoint

sampling each map will store a different set of features.

3. Multi-Map approach with varying Orientations (MMO): this is similar

to the MM approach, but for each map we apply a slightly different ori-

entation to the keypoint objects (default is to use the known, ground

truth, orientation of the reference images). Using additional maps with

deviating orientations (e. g. with ±5 ◦) increases the independence of the

localization attempts and the robustness to orientation.

The employment of keypoint sampling for GTBL RND leads to poor keypoint re-

peatability, and consequently to poor feature repeatability. However, with more

reference features, feature repeatability increases as can be seen in Figure 8.3.

This why we increase the number of retrieved features of reference images from

850 for GTBL SIFT to 5000 for GTBL RND. Similarly, we can increase the num-

ber of correct feature matches, if we consider a larger number of query image

features. Here, we increase the number from 850 for GTBL SIFT to 2000. These
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Figure 8.3: Mean feature repeatability on the Micro-GPS database [Zhang et al.,
2019] for varying numbers of stored features per reference image, us-
ing random keypoint sampling, with and without applied repeatabil-
ity constraint, and using identity matching with 15-bit LATCH [Levi
and Hassner, 2016] descriptors as in the GTBL Method [Schmid et al.,
2020a]. This figure is adapted from [Schmid et al., 2020b].

values are a trade-off between localization success rate and computation time

(and memory consumption). We observe that the success rate of GTBL RND is

starting to saturate at these values. Accordingly, we find larger number not to

be worthwhile. Figure 8.3 also shows, that the employment of the repeatability

constraint further improves the feature repeatability. In practice, we could filter

keypoint objects based on the repeatability constraint in an offline mapping

phase, which would allow us to reduce the number of stored features, reducing

the computation effort and memory consumption of GTBL RND in the online

localization phase.

8.4 Evaluation

In our evaluation, we examine the task of absolute map-based localization with

available prior.

As in Chapter 5, in order to generate the prior pose estimates, we take the

ground truth poses, shift them with a fixed distance d into a randomly sampled

direction, and rotate it with an orientation sampled from a zero-mean normal

distribution. In our evaluations, reference images for localization are chosen

based on proximity to the prior position estimate using a k-d-tree.

In Section 8.4.1, we evaluate the proposed method extensively on the Micro-GPS

database of Zhang et al. [2019], also considering the proposed extensions, and

faster-to-compute keypoint detectors as an alternative to keypoint sampling.
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Afterwards, in Section 8.4.2, we compare GTBL RND in its default configuration

with GTBL SIFT, Ranger, and StreetMap on the HD Ground Database [Schmid

et al., 2022].

Our main performance metric is the localization success rate. Again, we adopt

the error thresholds of Zhang et al. [2019]: a localization attempt is considered

to be correct if its translation error to the ground truth pose is smaller than

4.8 mm and if the absolute orientation error is smaller than 1.5 ◦.

The experiments are evaluated with an E3-1270 Intel Xeon CPU.

8.4.1 Evaluation on the Micro-GPS Database

This section presents the evaluation published in [Schmid et al., 2020b].

We evaluate on the six ground textures (fine and coarse asphalt, carpet, concrete,

tiles, and wood) from the PointGrey CM3 database of Zhang et al. [2019].

Besides random and uniform keypoint sampling, we examine SIFT and SURF,

as well as the three detectors, which we found in Chapter 4 to be the fastest

among the implemented methods in OpenCV 4.0 [Bradski, 2000]: FAST, GFTT,

and CenSurE. Since these detectors do not provide keypoint object orientation,

we apply the same strategy as for keypoint sampling, using the orientation of

the localization prior.

In addition to our localization methods, we examine Ranger [Kozak and Alban,

2016] and StreetMap [Chen et al., 2018]. We re-implemented both, using the

details provided by the authors. All methods are evaluated with the same query

and reference images, and the same random seeds to generate the localiza-

tion prior. For all series of experiments involving random keypoint sampling,

results are averaged over three repetitions. In the following, we will mention

the corresponding keypoint extraction method after the localization method,

using the abbreviation RND for our keypoint sampling strategy that combines

random and uniform keypoint sampling, e. g. Ranger FAST, StreetMap SURF,

and StreetMap RND.

How many reference images are considered during localization attempts de-

pends on the shift distance d, i. e. the position prior accuracy. We employ the

same numbers as for our previous experiments on the Micro-GPS database,

presented in Section 5.2.1.2. They range from 5 images for experiments with

zero shift distance, over 20 images for distances of 0.1 m, to 250 images for 0.5 m.
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8.4.1.1 Implementations

For GTBL SIFT and StreetMap, we use the same implementations and parame-

ters as presented in Section 5.2.1.1, which have been optimized on the Micro-

GPS database for localization success rate and computation speed. Parameters

of FAST, GFTT, and CenSurE are taken from the feature survey of Chapter 4,

presented in the appendix Section A.1, where they were optimized for keypoint

repeatability and computation speed.

The implementation of GTBL RND is the same as for GTBL SIFT, but SIFT

keypoint detection is exchanged with our keypoint sampling strategy, and the

number of extracted features is increased. As previously mentioned, we store

5000 features per reference image, and use 2000 feature per query image for

feature matching.

For Ranger, we previously employed AKAZE, instead of using CenSurE, as pro-

posed by Kozak and Alban [2016]. This was due to CenSurE not providing

keypoint object orientations. In this evaluation, again making use of the afore-

mentioned strategy of using the orientation of the prior as keypoint object

orientation, we implement Ranger with BRIEF descriptors computed on Cen-

SurE keypoint objects. Our Ranger implementation extracts 1250 CenSurE

keypoint objects with a maximum patch size of 14, a response threshold of 0,

a projected line threshold value of 29, a binarized threshold value of 22, and a

non-maximum suppression size of 2. Keypoint objects are described using the

rotation invariant 64-byte BRIEF descriptor. Otherwise, the implementation is

the same as described in Section 5.2.1.1.

We also evaluate StreetMap and Ranger using keypoint sampling. Here, we have

to define the number of sampled keypoint objects. This parameter is optimized

again for localization success rate (primary) and computation time (secondary),

using the same set of training images used in Chapter 5, which is a separate set

of query images to those used for the performance evaluation.

8.4.1.2 Results: Descriptor and Feature Repeatability

Descriptor and feature repeatability are examined for different keypoint extrac-

tion approaches. The evaluation is done for our approach of using identity

matching with compact binary descriptors, i. e. the first 15-bit of LATCH.

Additionally, the repeatability constraint (see Figure 8.2) is examined. For this

purpose, overlapping reference images are required, but the provided reference

images in the Micro-GPS database are not significantly overlapping. Therefore,
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Table 8.1: Mean descriptor repeatability values, i. e. the ratio of corresponding
keypoint objects that have been evaluated to the bit-identical de-
scriptor value in overlapping images, for varying keypoint extraction
methods without and with applied repeatability constraint. Corre-
sponding keypoint objects are generated by projecting the extracted
keypoint objects of one image into the other. The 15-bit LATCH [Levi
and Hassner, 2016] descriptor of the GTBL Method [Schmid et al.,
2020a] is used to determine feature descriptor values. The results
of the descriptor repeatability metric have been averaged over the
evaluated textures of the Micro-GPS database [Zhang et al., 2019].

Repeatability constraint Random Uniform FAST GFTT CenSurE SIFT SURF

Without 4.2% 4.0% 5.0% 5.0% 5.1% 4.6% 6.1%
With 7.1% 7.0% 7.5% 8.0% 7.0% 6.3% 7.4%

Table 8.2: Mean feature repeatability values, i. e. the ratio of features, which
have been extracted independently for two overlapping images, that
are correctly matched with each other, for varying keypoint extrac-
tion methods without and with applied repeatability constraint. As
in the GTBL Method [Schmid et al., 2020a], we employ the 15-bit
LATCH [Levi and Hassner, 2016] descriptor and identity matching
to determine feature matches. Two different approaches to feature
selection are evaluated to determine subsets of 1000 keypoints ob-
jects per image: the Non-Maximum Suppression (NMS) technique
and simple random selection. The values have been averaged over
the evaluated textures of the Micro-GPS database [Zhang et al., 2019].

Keypoint Repeatability
Random Uniform FAST GFTT CenSurE SIFT SURFselection constraint

NMS Without 0.7%1 0.7%1 8.0% 9.8% 12.7% 13.0% 15.6%
NMS With 1.2%1 1.3%1 1.7% 4.4% 3.0% 6.3% 1.0%

Random Without 0.7% 0.7% 0.7% 9.8% 1.2% 13.0% 1.3%
Random With 1.2% 1.3% 1.3% 5.4% 2.3% 6.3% 2.5%

we use the image sequences intended for localization, which have significant

intersection area (22.7% on average), as reference images, and images intended

for mapping as query images. The results presented in Table 8.1 and 8.2 are

averaged over 600 image pairs (100 per texture type) of reference and query

image pairs with an intersection of at least 20%. From each image of these pairs

up to 1000 features, satisfying the constraint, are extracted.

Our results show that the descriptor repeatability is similar for all evaluated

keypoint extractors. Thus, the choice of the keypoint extractor does not have a

strong effect on the probability of evaluating corresponding keypoint objects

to the same 15-bit LATCH descriptor. Additionally, when storing only features

1Keypoint score not available; therefore, equivalent to random selection.
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that meet the repeatability constraint, descriptor repeatability increases for all

keypoint extractors.

The results (Table 8.2 first row) confirm our previous findings from Chapter 4

that SIFT, SURF, and CenSurE are among the best keypoint detectors for ground

texture images. Descriptor repeatability is similar for all keypoint extraction

methods. Accordingly, variances in feature repeatability result from variances

in keypoint repeatability. This explains the poor performance of randomly and

uniformly sampled keypoint objects. If we increase the number of sampled

keypoint objects from 1000 to 5000, which is the number we will use for refer-

ence images in the following evaluation of localization performance, the feature

repeatability of randomly sampled keypoint objects improves from 0.7% to

3.3%. Furthermore, the repeatability constraint increases feature repeatability

of sampled keypoints (Table 8.2 second row). Again, using 5000 instead of 1000

reference features further improves the result (from 1.2% to 5.3% for randomly

sampled keypoint objects).

Interestingly to us, the feature repeatability of proper keypoint detectors wors-

ens with applied repeatability constraint. This can be explained with the key-

point selection method. The evaluated keypoint detectors provide a keypoint

score, which is used to select the best 1000 features per image with NMS. Select-

ing a subset of the detected keypoints randomly instead, decreases the feature

repeatability (Table 8.2 third row). This is not the case for GFTT and SIFT, be-

cause, in contrast to the other methods, they find less than 1000 keypoint objects

on average (SIFT 392.5, GFTT 933.9). If we apply the repeatability constraint to

randomly selected keypoint objects, the feature repeatability is increased, as

for randomly and uniformly sampled ones (Table 8.2 fourth row). Again, this is

not the case for GFTT and SIFT, possibly because their already small number

of extracted features is further decreased with applied repeatability constraint.

Overall, only sampled keypoint objects benefit from the repeatability constraint.

For keypoint detectors it is better to rely on score based selection.

8.4.1.3 Results: Localization Performance

For the following experiments, we evaluated 500 test sequence images per

texture type. Figure 8.4 shows localization success rates for our method with

different numbers of query features and with increasing position prior error,

the applied orientation prior has a standard deviation of 5.0 ◦. We notice, using

more than our default value of 2000 query features does not increase perfor-

mance by much. A prior with translation error of up to 0.2 m decreases the
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Figure 8.4: Success rates of GTBL RND, i. e. the GTBL Method [Schmid
et al., 2020a] using random keypoint sampling (RND) instead of
SIFT [Lowe, 2004] for keypoint object extraction, with varying num-
bers of query image features, evaluated on the Micro-GPS database
[Zhang et al., 2019] for varying position prior accuracies. This figure
is adapted from [Schmid et al., 2020b].

success rate of our method only slightly: with 2000 query features it decreases

from 94.1% without error to 92.2% with an error of 0.2 m. For larger translation

errors, it decreases further (88.7% for an error of 0.5 m). Success rates of Ranger

and StreetMap are less affected by the translation error, with an error of 0.5 m

they still reach success rates of 99.8% and 97.6%, but Figure 8.5 shows that they

become slow with larger numbers of considered reference images, which can

be explained by the use of nearest neighbor matching. Ranger is particularly

fast for small translation errors (and therefore small numbers of considered

reference images), because it terminates as soon as a well matching reference

image is found. With a translation error of 0.1 m Ranger requires 14.7 ms and

StreetMap 38.8 ms for the feature matching process, with an error of 0.2 m this

increases to 47.8 ms and 96.5 ms. For our method this increases matching time

only slightly from 5.0 ms to 11.6 ms. In the following, we fix the position prior

error to 0.1 m.

A key parameter for localization with keypoint sampling is the number of fea-

tures stored per reference image. For Ranger, we find that with 750 sampled

keypoint objects it already reaches a similar success rate as with CenSurE (99.6%

to 99.9%). StreetMap benefits from larger numbers of reference features; with

2000 sampled keypoint objects it reaches 99.1% success rate. Using more key-

point objects improves performance only slightly, but significantly increases

computational cost. Our method, due to the use of identity matching, requires

more reference features to reach good performance. Here, we extract 5000

features per reference image.
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Figure 8.5: Accumulated computation time during localization (without the
time required for keypoint detection and feature description) of
StreetMap [Chen et al., 2018], Ranger [Kozak and Alban, 2016], and
the GTBL Method [Schmid et al., 2020a], using keypoint objects
extracted with SIFT [Lowe, 2004] and random keypoint sampling
(RND), evaluated on the Micro-GPS database [Zhang et al., 2019] for
varying numbers of considered reference images, based on varying
position prior accuracies. This figure is adapted from [Schmid et al.,
2020b].

The evaluation of the localization success rate for varying orientation prior

standard deviations (Figure 8.6) demonstrates the limits of our method with

sampled keypoint objects. The method relies on corresponding keypoint ob-

jects being evaluated to the same descriptor, which requires a good estimate

of keypoint object orientation. StreetMap is not affected by the orientation

prior, because during feature description SURF estimates keypoint orientation

itself. The success rates of Ranger RND are significantly decreased only for large

errors in the orientation prior beyond 7.5 ◦.

The following experiments are evaluated with an orientation prior with a stan-

dard deviation of 5.0 ◦. We evaluate the localization methods, using their default

keypoint detectors (SURF for StreetMap, CenSurE for Ranger, and SIFT for GTBL

SIFT) the fast-to-compute detectors CenSurE, FAST, and GFTT, and keypoint

sampling. Table 8.3 presents the results.

Ranger is the most successful method with 99.9% success rate using CenSurE

or FAST keypoint objects. Our method with keypoint sampling is with 25.4 ms

the fastest method, taking less than half as long as Ranger using either CenSurE

or FAST, but with 93.5% it has a lower success rate. However, closer analysis

shows that GTBL RND has a success rate of 99.8% if the sampled error of the

orientation prior is smaller than 4 ◦. The time required for the final pose esti-

mation step increases for our method when using keypoint sampling because
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Figure 8.6: Success rates evaluated on the Micro-GPS database [Zhang et al.,
2019] for increasing standard deviation of the orientation prior. The
GTBL Method [Schmid et al., 2020a], StreetMap [Chen et al., 2018],
and Ranger [Kozak and Alban, 2016] are evaluated with their respec-
tive default approach for keypoint extraction (SIFT [Lowe, 2004],
SURF [Bay et al., 2006], and CenSurE [Agrawal et al., 2008]), as well
as with random keypoint sampling (RND). This figure is adapted
from [Schmid et al., 2020b].

more matches participate in the voting procedure. Ranger and StreetMap reach

similar success rates with keypoint sampling as with their default detector (Cen-

SurE for Ranger and SURF for StreetMap), but it increases their required time

for feature matching significantly, mainly due to the use of nearest neighbor

matching. This is particularly problematic for Ranger, because it matches with

multiple reference images individually. For StreetMap, the employment of our

random keypoint sampling strategy is a suitable alternative, as it has almost

the same success rate as with SURF keypoint objects, but is overall about 35 ms

faster to compute. Using the faster to compute keypoint detectors for StreetMap

decreases computation time even further, but it also decreases the success rate.

Evaluation of the Multi-Map Approach: We evaluate the previously pro-

posed Multi-Map (MM) approach and the Multi-Map with varying Orientations

(MMO) approach. In both cases, multiple sets of features are independently

sampled for each reference image. This is analogous to having multiple copies

of each reference image, being treated independently of each other, respectively

having multiple maps of the same application area. For each available map, a

localization attempt is performed for the query image. The attempt for which

we observe the most RANSAC inliers is used as final pose estimate. In the MM

approach only the keypoint object positions vary for the different features sets

of the same reference image, while the keypoint object orientation is the same

(namely the orientation of the prior). In the MMO approach, a slightly different
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Table 8.3: Evaluation of the success rate and task-specific computation times
for varying keypoint detectors employed for Ranger [Kozak and Alban,
2016], StreetMap [Chen et al., 2018], and the GTBL Method [Schmid
et al., 2020a], for which we also test the multi-map approach (MMO-2
and MMO-4). Localization is performed with a given prior that has
a 0.1 m position error and a standard deviation of the orientation
error of 5.0 ◦. Results are averaged for the evaluated textures of the
Micro-GPS database [Zhang et al., 2019]. The best success rates and
overall computation time are highlighted in bold.

Method
Keypoint Success Computation time (ms)
detector rate Overall Detection Desc. Matching Pose est.

Ranger CenSurE 99.9% 55.7 30.4 9.5 14.7 < 0.1
Ranger FAST 99.9% 61.8 14.1 9.2 34.0 4.1
Ranger GFTT 95.0% 46.2 22.8 8.1 13.2 1.7
Ranger RND 99.6% 187.6 < 0.1 9.2 147.4 30.6

StreetMap SURF 99.2% 153.3 95.6 18.4 38.8 < 0.1
StreetMap CenSurE 83.7% 74.2 28.6 4.4 40.3 < 0.1
StreetMap FAST 63.8% 59.5 1.5 4.6 3.8 1.2
StreetMap GFTT 43.7% 62.1 22.6 3.5 34.5 1.3
StreetMap RND 99.1% 116.9 < 0.1 21.4 94.7 < 0.1

GTBL SIFT 99.1% 730.1 716.9 10.1 2.1 < 0.1
GTBL CenSurE 95.2% 40.4 29.0 8.3 2.3 < 0.1
GTBL FAST 88.1% 25.7 14.7 7.8 2.5 < 0.1
GTBL GFTT 85.9% 32.6 22.5 7.3 2.2 < 0.1
GTBL RND 93.5% 25.4 < 0.1 17.5 5.0 2.3

GTBL MMO-2 RND 97.9% 33.2 < 0.1 18.0 10.4 4.7
GTBL MMO-4 RND 99.5% 47.9 < 0.1 17.8 20.6 9.4

keypoint object orientation is applied for each feature set.

Using two maps with the MM approach increases the success rate to 95.1%

(from 93.5% with a single map), with four maps it increases to 95.6%.

The multi-map approach with applied orientation deviations further improves

performance. Using two maps with orientation deviations of {−2.5 ◦, 2.5 ◦}

increases the success rate to 97.9%, with approximately 8 ms longer computing

time. (GTBL MMO-2 in Table 8.3). With four maps and orientation deviations

of {−6.0 ◦,−2, 0 ◦, 2.0 ◦, 6.0 ◦} (GTBL MMO-4 in Table 8.3), the method has a

success rate of 99.5%, still being roughly 8 ms faster to compute than Ranger

with CenSurE.

An additional advantage of the MM approach is that with multiple localization

attempts we can perform a consistency check, requiring multiple pose esti-

mates to confirm each other. If we require that at least two of the pose estimates

are close to each other (closer than 4.8 mm and with less than 1.5 ◦ orientation

difference), we reject 63 out of 64 unsuccessful localization attempts for MMO-2,

while also rejecting 14.0% (412) of successful attempts. With MMO-4 this leads
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to a rejection of 11 of 14 unsuccessful attempts, and 1.84% (55) successful ones.

An alternative to the MM and MMO approaches of storing multiple maps with

independently sampled features, would be to simply store more features per

reference images. However, storing more than 5000 features per reference

image does not significantly increase performance. The advantage of the multi-

map approach lies in its ability to perform multiple independent localization

attempts.

8.4.2 Evaluation on the HD Ground Database

This section presents the evaluation published in [Schmid et al., 2022], examin-

ing the proposed GTBL RND method on the HD Ground Database.

We evaluate the localization performance of Ranger [Kozak and Alban, 2016] in

its default variant using CenSurE keypoint objects, StreetMap [Chen et al., 2018]

in its default variant using SURF features, GTBL SIFT [Schmid et al., 2020a], and

GTBL RND [Schmid et al., 2020b]. Again, we provide prior pose estimates, which

are generated by taking the ground truth pose of the query image, translating it

with a specified distance d into a randomly sampled direction and rotating it

with an orientation angle sampled from a zero-mean normal distribution. As

explained in Section 5.2.2.2, we obtain the number of closest reference images

that are considered during localization as

⌈

πd2

0.12 m · 0.16 m

⌉

· 9. (8.1)

For each texture, evaluation is done on the two regular test sequences that were

recorded with shortest time distance to the time of map creation.

8.4.2.1 Implementation

We implement the methods as described in Chapter 5. Additionally, we find

texture-specific parameter settings for GTBL RND, using the same parameter

optimization strategy. The found values for image scale and the number of

extracted query image features are presented in Table 8.4. The remaining

parameters are presented in the appendix in Section A.5. In comparison with

GTBL SIFT, the employed image scales are slightly smaller. This might be due

to the circumstance that processing images at a lower resolution increases the

likelihood of finding matching keypoint objects by chance with our keypoint

sampling strategy.
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Table 8.4: Texture-specific optimized values for image scale and the resulting
distance covered per pixel in millimeters, as well as the number of fea-
tures per image for GTBL RND, on the HD Ground Database [Schmid
et al., 2022].

Texture Approach Image scale mm/pixel #Features

Aphalt GTBL RND 0.20 0.50 3500
Cobblestone GTBL RND 0.23 0.43 2200

Carpet GTBL RND 0.23 0.43 2100
Laminate GTBL RND 0.15 0.67 2300

In addition to the texture-specific parameter settings, that we obtained in pre-

vious chapters, we find a set of generalized parameters for each localization

method, optimizing jointly on all training areas of the HD Ground Database.

The values are presented in the respective sections of the appendix in Chap-

ter A. We use the generalized parameter settings to examine the generalization

capabilities, respectively the sensitivity to parametrization, by comparing the

results that we obtain with the texture-specific parameter settings with those

that we obtain with the generalized parameter settings.

8.4.2.2 Results

Our first two experiments are evaluated on the main textures with texture-

specific parametrization, using the two regular test sequences with shortest

time interval to mapping. Their results are presented in Figure 8.7.

Our first experiment is similar to the one of Section 5.2.2.2. We evaluate with

the SD of the prior being fixed to 3.0 ◦ while the position prior accuracy d varies

between 50 and 2000 mm. Again, we observe that StreetMap achieves very high

success rates, independently of the position prior accuracy, while for Ranger,

success rates decrease slowly for d values above 250 mm. GTBL RND achieves

slightly lower success rates than GTBL SIFT.

We observe for small numbers of considered reference images that the overall

computation time is dominated by the required time for feature extraction,

while it is dominated by the time for feature matching for larger numbers of

considered reference images. This is why, GTBL SIFT is slow for accurate po-

sition priors. For less accurate position priors, the GTBL methods have an

advantage using the identity matching technique instead of nearest neighbor

feature matching. But, GTBL RND scales not as favorable as GTBL SIFT with

larger position prior inaccuracies, due to the large number of considered fea-

tures per reference image. However, because of the employment of keypoint
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Figure 8.7: Local localization performance of StreetMap [Chen et al., 2018],
Ranger [Kozak and Alban, 2016], and the GTBL Method [Schmid
et al., 2020a] using random keypoint sampling (RND) and
SIFT [Lowe, 2004] for keypoint extraction, averaged over the four
main textures of the HD Ground Database [Schmid et al., 2022].
The top left plot presents the success rate for varying position prior
accuracies; the top right one presents the overall localization compu-
tation time for varying position prior accuracies; the bottom left one
presents the part of the computation time that is used for feature
matching for varying position prior accuracies; and the bottom right
one presents the success rate for varying standard deviation of the
orientation prior. This figure is adapted from [Schmid et al., 2022].

sampling, the computation times for more accurate position priors is reduced.

In a second experiment (see Figure 8.7, bottom right), we fix the position prior

accuracy to d = 100 mm and vary the orientation prior SD between 1 ◦ and

90 ◦. StreetMap and GTBL SIFT determine feature orientations on their own

and are not affected by this. But Ranger and GTBL RND use the orientation

prior as orientation of the query features. Again, we find Ranger’s use of BRIEF

descriptors with nearest neighbor matching to be more robust to rotation than

GTBL RND’s 15-bit LATCH with identity matching.

Generalization Capabilities In another experiment, we assess the general-

ization capabilities of the methods, using the jointly optimized parameters.

Table 8.5 presents the success rate on the main textures as well as on the six
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Table 8.5: Local localization, i. e. localization with a given prior pose estimate,
success rates of Ranger [Kozak and Alban, 2016], StreetMap [Chen
et al., 2018], and the GTBL Method [Schmid et al., 2020a] using
SIFT [Lowe, 2004] and random keypoint sampling (RND) for key-
point extraction, evaluated on the main and generalization textures
of the HD Ground Database [Schmid et al., 2022] with the jointly
optimized parameters.

Texture type Ranger StreetMap GTBL SIFT GTBL RND

Main 0.964 0.986 0.888 0.696
Generalization 0.988 0.898 0.700 0.528

Table 8.6: Relative localization, i. e. incremental localization from one im-
age to a consecutively recorded one, success rates of Ranger [Kozak
and Alban, 2016], StreetMap [Chen et al., 2018], and the GTBL
Method [Schmid et al., 2020a] using SIFT [Lowe, 2004] and ran-
dom keypoint sampling (RND) for keypoint extraction, evalu-
ated on the main and generalization textures of the HD Ground
Database [Schmid et al., 2022] with the jointly optimized parameters.

Texture type Ranger StreetMap GTBL SIFT GTBL RND

Main 0.947 0.948 0.830 0.926
Generalization 0.976 0.956 0.485 0.624

generalization textures with a position prior accuracy of 100 mm and an ori-

entation prior SD of 3 ◦. For comparison, the corresponding average success

rates on the main textures using the texture-specific parameters are 0.961 for

Ranger, 0.986 for StreetMap, 0.775 for GTBL SIFT, and 0.716 for GTBL RND. This

means that the performance is similar for Ranger, StreetMap, and GTBL RND,

using the jointly optimized parameters, while it improved significantly for GTBL

SIFT, which could mean that its texture-specific parametrization overfitted to

the training areas. For Ranger, we observe generally very high success rates

and a better performance on the generalization textures as on the main tex-

tures, while it is the other way around for the other three localization methods,

suggesting that Ranger has the best generalization capabilities.

Relative Localization The same methods, used for localization with available

prior, can also be employed for relative localization. Here, query image poses

are estimated in respect to their predecessor image of the sequence, which

is projected onto its ground truth position. Therefore, we can evaluate the

localization success rate, and, since we know the ground truth poses of the

query images, also the translation and orientation errors. We observe an average
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movement between consecutive images of 92.2 mm and 3.1 ◦. Success rates are

presented in Table 8.6.

Again, the GTBL methods perform better on the main textures than on the

generalization textures. For this task, GTBL RND has higher success rates to

what we observed for local localization, while the success rates of Ranger and

StreetMap are similar. On the other hand, when comparing the average dis-

placement errors of successful localization attempts, we observe with 0.77 mm

a larger value for GTBL RND, than for StreetMap (0.34 mm), Ranger (0.38 mm),

and GTBL SIFT (0.39 mm). Similarly, we observe a larger average orientation

error for GTBL RND of 0.42 ◦, compared to StreetMap with 0.11 ◦, Ranger with

0.10 ◦, and GTBL SIFT with 0.17 ◦. GTBL RND tends to be less accurate than the

other methods. This is probably an effect of the random keypoint sampling

technique, where correct feature correspondences are created only by randomly

selecting image patches that are sufficiently close to each other.

8.5 Discussion

In this chapter, we examined approaches to ground texture based localization

with available prior pose estimate. For this purpose, we proposed keypoint

sampling as an alternative to proper detection of keypoint objects.

We evaluated Ranger [Kozak and Alban, 2016], StreetMap [Chen et al., 2018],

and the previously introduced GTBL Method [Schmid et al., 2020a], which we

call GTBL SIFT if used with SIFT keypoint objects and GTBL RND if used with

our keypoint sampling strategy. These methods can achieve similar localization

success with detected and sampled keypoint objects. While StreetMap and the

GTBL Method can benefit from this approach, Ranger is slowed down, due to

the increased effort for feature matching. If the translation error of the available

prior pose estimate is about 0.1 m or less, GTBL RND is significantly faster to

compute than GTBL SIFT. However, we observe that this acceleration is paid

for with slightly lower success rates.

Overall, it seems that keypoint sampling is a suitable alternative to proper

keypoint detection for ground texture based localization if a sufficiently ac-

curate prior approximation of the camera pose is available. In particular, the

method requires orientation priors of about 4 ◦ or less. In practice, this can be

realized with rapid localization updates, which are possible with the efficient

combination of identity matching, compact binary descriptors, and keypoint

sampling. Therefore, due to the availability of more accurate priors, the GTBL
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Method with keypoint sampling is probably better in practice than in some of

our experiments.

Still, considering the results on the more difficult HD Ground Database [Schmid

et al., 2022], we found StreetMap, and in particular, Ranger to have a more

reliable localization performance than both variants of the GTBL Method. With

proper parametrization and a sufficiently accurate prior, they are similarly and

sometimes even faster to compute.
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9 Conclusion and Outlook

Section 9.1 brings together the findings of the presented studies of this disserta-

tion. In Section 9.2, we will then discuss possible targets for future research.

9.1 Retrospection

We review the knowledge gain from this dissertation through an assessment of

three questions.

What to look out for when equipping a robot for ground texture based localiza-

tion? We studied this question in Chapter 3, where we presented our mobile

robot platform that we used to scan the ground of four large-scale application

areas. In this context we derived guidelines for the robot design, based on

the supported vehicle speed, the desired overlap of consecutive images, the

maximum allowed motion blur, as well as the employed camera and objective.

This allowed us to find appropriate values for the exposure time and the camera

height. Similarly, if the camera height is restricted, we could derive the required

camera opening angle, or the required recording frequency, for example.

In this context, we observed the need for short exposure times, due to the fact

that with a downward-facing camera, motion blur corresponds exactly to the

traveled distance during exposure. This led to a significantly increased image

quality for our recordings of the HD Ground Database, with a exposure time of

0.1 ms, in comparison to that of the Micro-GPS database with an exposure time

of 3 to 5 ms.

A particular difficulty occurs in the case of reflective ground textures. With

our robot setup, using an off-the-shelf LED ring for illumination, we observe

specular reflections on some ground materials and on wet surfaces, rendering

a significant part of the recorded images as useless for our task. Here, as ex-

plained in Section 3.3, we found cross-polarization to be a simple and effective

solution. However, this technique requires to compensate for the lost illumi-

nance. An alternative approach to cross-polarization is the employment of a
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dome illumination, in which the ground is illuminated homogeneously from

all directions by indirect lighting.

In addition to these findings on the preferred robot setup, consideration should

be given to an appropriate course of action for the scanning of the ground. In

particular, we found it to be helpful to record the data in a structured way, i. e.

dividing the application areas into smaller areas, each of which is scanned lane

by lane. Otherwise, without following a clear pattern during scanning, it might

be difficult to cover the application area completely, and it might be tricky to

identify the overlapping images for initial pose estimates.

During the map creation phase, it is highly desirable to avoid the inclusion of

incorrect (feature) correspondences between the images, in particular if, as in

our case, the squared reprojection error is minimized globally. For this purpose,

we proposed to perform a consistency check for the estimated reference image

pose, and to use only the RANSAC inliers of the feature-based pose estimation.

What are important trade-offs in the employment of ground texture based

localization? In our survey of suitable keypoint detectors for ground texture

based localization in Chapter 4, we observed that the detectors with particularly

short computation times (CenSurE, GFTT, and FAST) do not provide keypoint

object orientation information. Similarly, one of the main drawbacks of our

strategy to avoid proper keypoint detection with keypoint sampling, that we

proposed in Chapter 8, is the lack of keypoint object orientation information.

This indicates a trade-off between the computational effort of keypoint object

extraction and the availability of orientation information. However, missing the

orientation information is not a problem for the task of relative localization, if

the camera orientation of consecutive images changes only slightly, and it is

not a problem for the task of map-based localization if a sufficiently accurate

prior is available. In that case, as suggested and examined in Chapter 8, we

can use the approximated camera orientation in the map coordinate system

as keypoint object orientation. Accordingly, the suspected trade-off can be

resolved depending on the use case of the localization method. Furthermore,

shorter computation times for localization can result in a positive feedback

loop if it reduces the time interval between consecutively localized images.

In such a case, the available prior is more accurate, which can again result

in a further reduced computation time for localization. In such a case, the

employment of faster-to-compute methods for keypoint object extraction can

even be beneficial to the accuracy of the available orientation information.

We observed another trade-off between the feature matching speed and the
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possibility to exploit an available pose prior. This trade-off manifests in the

decision whether to use nearest neighbor matching matching, as in Street-

Map [Chen et al., 2018] and Ranger [Kozak and Alban, 2016], where each query

image feature is compared with each reference image feature, and Approx-

imate Nearest Neighbor (ANN) feature matching, where an efficient search

structure for matching is build offline, as in Micro-GPS [Zhang et al., 2019].

While nearest neighbor matching allows to select the set of considered refer-

ence image features online at localization time, its computation time grows

linearly with the size of that set. Having nq query image features, nr features

per reference image, and m considered reference images, its processing time

has a complexity of O(nq · nr · m), comparing each query feature with each

reference feature. With a pre-constructed data structure, on the other hand,

finding the nearest neighbor, or the Approximate Nearest Neighbor (ANN), of a

descriptor is more efficient to compute, e. g. using a k-d tree it has an average

complexity of O(log(nr · m)), resulting in a total average complexity for the

matching process of O(nq · log(nr · m)). But this approach is not practical if

we want to consider only those reference images that are close to our given

prior. In Chapter 5, we proposed identity matching as a novel cost-effective

solution. It has a complexity of O(nq · m) for feature matching, as it performs

a single table look-up per query feature and reference image. Also, as in the

case of classical nearest neighbor matching, identity matching allows to select

the set of considered reference images online, based on spatial distance of the

corresponding reference image pose to the prior. We found our GTBL Method

based on identity matching to be well suited for the challenges of the Micro-GPS

database [Zhang et al., 2019], for the more difficult HD Ground Database, how-

ever, we observed good performance only for accurate pose priors, or in the use

case of a teach-and-repeat scenario, where the amount of considered reference

images is significantly smaller. Also, we observed the GTBL Method to be highly

dependent on the employed parametrization. For this challenge, we proposed

in Chapter 6 a model-based prediction model of the localization success rate,

and we showed that it allows to find suitable parameters automatically in short

time. An alternative to the use of a prior pose estimate, is the employment of

image retrieval. Similarly as with a prior pose estimate, image retrieval can be

used to reduce the number of considered reference image features. The goal of

both approaches is to consider only the features of reference images that have

actual overlap with the query image. In Chapter 7, we proposed a Deep Metric

Learning (DML) approach that retrieves the overlapping images with a recall of

above 50% on the Micro-GPS database, retrieving 75% of images with at least

20% overlap, and 97% of images with at least 60% overlap. Using those retrievals
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for global localization without prior increases the success rates of StreetMap

and our GTBL Method slightly on the Micro-GPS database and significantly on

the larger HD Ground Database, compared to the case in which all reference

images are considered.

In Chapter 6, we identified the number of extracted features per reference image

as one of the most important parameters to optimize for feature-based localiza-

tion methods. A larger number of stored reference features tends to improve

the localization success rate, as it increases the chance of finding correct feature

correspondences. However, it directly increases computation time and memory

consumption of the localization methods. A proper selection of the number of

stored features per reference image depends on the feature repeatability of the

employed feature extraction and matching pipeline as defined in Section 8.2,

which directly influences the inlier-to-outlier ratio among the the proposed

correspondences, and it depends on the available compute power, time for

localization, and memory.

Another trade-off is between the use of texture-specific parameters and gener-

ally suitable ones. Here, the choice depends mainly on the texture sensitivity,

respectively the parametrization sensitivity, of the method, and the required

effort for finding texture-specific parametrization. We observed good gener-

alization capabilities of Ranger and StreetMap in Chapter 8, and also of our

DML image retrieval approach in Chapter 7. The GTBL methods, on the other

hand, presented significantly better performance on the textures they have

been trained on, compared to the performance on the generalization textures

of the HD Ground Database. In this case, however, our automatic parametriza-

tion framework, which we proposed in Chapter 6, can be used for efficient

parametrization with only a few test images per texture.

What are the biggest challenges for an autonomous agent relying on ground

texture based localization? From the technical side, high vehicle speeds are a

challenge, because, as we derived in Section 3.3.1, it necessitates correspond-

ingly short exposure times to avoid significant amounts of motion blur. For

our mobile platform, for example, we derived a maximum exposure time of

0.09 ms to support vehicle speeds of up to 20 km/h. For a street car with a simi-

lar camera setup, we would require maximum exposure times of 0.015 ms, if, for

example, we would like to support speeds of up to 120 km/h with similar image

quality as that of our setup. Such short exposure times require a correspond-

ingly bright illumination. If a cross-polarization solution is employed to avoid

specular reflections, e. g. on a wet street, this requirement is further reinforced.
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In Chapter 7, we observed a particularly large challenge in the localization

task if the state of the surface changed between the recording of reference

images and the recording of the query image. This change of state may be

caused by weather, e. g. having a dry surface during mapping and wet surface

at localization time, or it may be caused by wear-and-tear that occurs over

time. We observed both of these challenges on the outdoor textures of the HD

Ground Database deteriorating the localization success rates of all evaluated

localization methods. We observed in Chapter 4 that the employed feature

extractors are robust to the employed synthetic geometric and photometric

image transformations. Also, we observed in Chapter 5 that the evaluated

localization methods are robust to the natural changes of the ground between

mapping and localization that occur in the Micro-GPS database of Zhang et al.

[2019], i. e. varying camera positioning and orientation and small time intervals

between the image recordings. But, it seems that the changes covered in the

HD Ground Database, which appear outdoor after long time intervals or after

drastic weather changes, are sufficient to shift the observed ground features

to such an extent that finding correspondences becomes a major challenge.

Here, a map update mechanism could help to deal with appearance changes

occurring over time, i. e. the map is updated regularly based on the localized

query images. A possible approach to deal with appearance changes occurring

due to weather changes would be to design visual features robust to these

changes or the employment of multiple maps, one for each relevant state of the

ground, e. g. one map recorded with the ground being dry and one recorded

with the ground being wet.

Another challenge for ground texture based localization is the initial global

localization, where no prior pose estimate is available. Or in other words: the

less accurate the prior, the more demanding becomes the localization task. We

observed this in Chapter 5 for the wooden texture of the Micro-GPS database

and on all application areas of the HD Ground Database, all of which are covered

by many more reference images as those of the Micro-GPS database. This can be

attributed to visual aliasing that becomes a challenge with increasing numbers

of considered reference images. It means that the localization methods are

getting confused with similar looking ground patches. The more reference

images are considered, the more often this occurs, and the chance of confusing

the actually observed ground area with another area increases. Whether this

becomes a problem in practice depends mainly on the employed localization

method, the ground texture of the application area, and the actual number of

considered reference images. For the number of considered reference images,

we examined three possible ways of reducing it, all of which allowed us to
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improve localization performance significantly: (a) considering only those

images in spatial proximity to a prior pose estimate (Chapter 5 and 8), (b)

using image retrieval (Chapter 7), and (c) avoiding a complete coverage of the

application area with a teach-and-repeat scenario in which the application area

is reduced to a single path, (Chapter 5).

An additional advantage of the teach-and-repeat scenario is that it removes

the need for a full coverage scanning of large application areas. The full cover-

age is challenging because the recorded area per image might be small for a

downward-facing camera, which leads to a large number of images that have to

be recorded in a structured manner, and because map construction becomes a

compute heavy task for large application areas.

Building a large map of the ground is also challenging because it suffers from the

aforementioned visual aliasing problem. This can be avoided if the images are

recorded in a structured way that allows to derive accurate initial pose estimates,

which means that the search for correspondences can be reduced to the local

proximity of the images. Furthermore, if the map consists of a large number

of images, a path between two points in the map may pass a correspondingly

large number of image borders, even if it is the shortest possible path. On

its way, this path accumulates small errors of the estimated relative poses of

neighboring images. This is why a map created in an image stitching process

may only guarantee local consistency. We can accumulate arbitrarily large

distortions for sufficiently long paths on large maps if constructed as a simple

image stitching. A possible approach to address this problem could be to

include absolute reference points of the application area into the map. Another

approach might be to consider the input of other drift-free sensors like GNSS,

an inertial measurement unit, or a compass.

If the entire map is available during localization, having large maps with many

reference images can consume a lot of memory. To avoid memory issues the

agent could keep only a local map, i. e. a small part of the map from the current

local vicinity, in the quickly available memory. Whenever the agent moves

towards the border of the local map it is updated accordingly from a mass

storage which may be on board or external to the robot. Alternatively, some

parts or the entire localization capability may be performed externally.
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9.2 Outlook

This section presents promising directions of future research in the area of

ground texture based localization.

Development of a feature extraction pipeline for ground images In Chapter 4,

we found several existing handcrafted feature extraction pipelines being well

suited for ground texture based localization, also we observed very good perfor-

mance of multiple localization methods based on those features in Chapter 5.

However, Zhang and Rusinkiewicz [2018] and also we in Chapter 7 observed

potential improvements processing the images with deep learning pipelines.

There, we also observed significant difficulties of the existing localization meth-

ods in the task of initial localization on the HD Ground Database. In particular

localization on the outdoor textures, if the ground state is altered over time or

due to weather, is challenging for the existing methods. These difficulties arise

from a failure in finding correct feature correspondences in actually overlapping

images pairs that are subject to significant alterations. The promising results of

our deep metric learning approach for image retrieval of ground images suggest

that deep learning approaches, being specifically trained on ground images,

present a possible solution for further improvements.

Map update mechanism Another potential approach to tackle the observed

difficulties in the localization tasks with the state of the ground being altered sig-

nificantly between scanning of the ground and subsequent localization would

be a map management system with an integrated map update mechanism.

Such a system could be applied in a scenario in which the ground is recorded

on a regular basis, e. g. because robots are taking images for their localization

capabilities. The system could then use these images to keep track of changes

of the ground and a map update mechanism would allow to integrate them into

the reference database, e. g. by removing old reference images while adding

new ones, or by removing and adding individual reference features. For this

purpose, the system could keep track of how often a reference feature takes

part in a successful localization attempt and how often in unsuccessful ones.

An assessment could be derived from these statistics to decide whether old

reference features from the database are updated with newer ones; for example,

we could exchange them with the query image features that participated in a

successful localization attempt.
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A low-cost application-specific implementation While it might be of interest

to develop the most optimal recording setup for ground texture based local-

ization, a low-cost variant may also be of interest in practice. In Chapter 5, we

observed that the available resolution of the HD Ground Database was not re-

quired. Rather, on most textures, a significantly reduced resolution of only 20%

(0.50 mm pixel length) to 40% (0.25 mm pixel length) of the native resolution

achieved better localization performance. Also, in many cases it is not required

to support vehicle speeds of up to 20 km/h. Accordingly, it would be of interest

to develop a minimal system that is still sufficient for the localization task.

Moving the localization capability away from the robot In order to further

reduce the requirements on the capabilities of the robot, that is supposed to be

localized based on ground features, the localization capability could be moved

away from the robot platform onto an external server. As suggested by Kim et al.

[2019], due to possible interruptions and latencies in the communication with

the server, it might still be useful to perform incremental localization updates

on the robot itself. The map-based localization could however be performed on

the server, which would free-up some computation power on the robot and it

would remove the need to store the entire set of reference images, respectively

the extracted reference image features, on the robot itself. Alternatively, the

available set of reference images on the robot could be kept according to the

region the robot is currently located in. This would allow to store the reference

images on a slow mass storage on the robot or again on an external server.
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A Appendix

Contents of this chapter were partially published in [Schmid et al., 2019], [Schmid

et al., 2020a], [Schmid et al., 2020b], [Schmid et al., 2022], [Radhakrishnan et al.,

2021], and [Schmid et al., 2021].

A.1 Local Visual Features for Ground Texture Based

Localization: Parameter Settings

This section describes our parameter optimization strategy and the obtained

optimized parameters for our survey of suitable features for ground texture

based localization in Chapter 4.

In order to find the best parameter settings of the evaluated methods, we ex-

tract features from synthetically transformed images using varying parameter

settings, and evaluate the obtained results based on a few selected key perfor-

mance metrics.

A set of 3 non-overlapping images has been selected for each of the 6 examined

texture types (fine asphalt, coarse asphalt, carpet, concrete, tiles, and wood).

This results in a total number of 18 evaluated images, which are selected from

a training set that is not included during testing. Each image is synthetically

transformed as for testing (overall 72 synthetic transformations are tested),

which results in 1296 pairs of reference and transformed images.

For keypoint detector parameter optimization, we introduce adjusted repeata-

bility as a novel performance metric, which is a derived metric that combines

the conventional repeatability metric of Mikolajczyk et al. [2005] and our ambi-

guity score, which was defined in Section 4.3.1:

adjusted repeatability =
repeatability

ambiguity
. (A.1)
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Table A.1: Optimized parameter settings for the evaluated detection-only meth-
ods, i. e. methods that extract keypoint objects but cannot be used for
feature description. We employ the implementations of the OpenCV
library [Bradski, 2000]; accordingly, the presented parameters are
named as in the library. The reader may refer to the corresponding
documentation for a detailed description of the parameter usage.

Keypoint detector Parameters

CenSurE [Agrawal et al., 2008]
Implemented in OpenCV as
StarDetector

maxSize=11, responseThreshold=0,
lineThresholdProjected=27,
lineThresholdBinarized=24,
suppressNonmaxSize=4

FAST [Rosten and Drummond,
2006]

threshold=5, nonmaxSuppression=true,
type=TYPE_9_16

AGAST [Mair et al., 2010] threshold=5, nonmaxSuppression=false,
type=TYPE_7_12s

MSER [Matas et al., 2004] _delta=0, _min_area=160, _max_area=14400,
_max_variation=0.02

MSD [Tombari and Di Stefano,
2014]

m_patch_radius=3, m_search_area_radius=3,
m_nms_radius=5, m_nms_scale_radius=0,
m_th_saliency=30, m_kNN=50,
m_scale_factor=4.5, m_n_scales=−1,
m_compute_orientation=false

H.L. [Mikolajczyk and Schmid,
2002]

numOctaves=6, corn_thresh=0.0008,
DOG_thresh=0.001, num_layers=2

GFTT [Shi and Tomasi, 1994] qualityLevel=0.01, minDistance=5,
blockSize=5, useHarrisDetector=true,
k=0.01

The advantage of adjusted repeatability over conventional repeatability is that

it does not reward clustering of keypoint objects. The following example il-

lustrates the advantage of adjusted repeatability for parameter optimization.

Repeatability increases if keypoint objects are assigned large associated regions,

because it becomes more likely that a pair of keypoint objects from the refer-

ence image and the test image have an IoU greater 0.5. In the extreme case, if

each keypoint object region is as large as the entire image, repeatability takes

the optimal value of 1.0. This behavior of the repeatability metric is misleading

during parameter optimization. Ambiguity, on the other hand, is also increas-

ing for larger keypoint object regions. Therefore, adjusted repeatability takes a

small value if each keypoint object is as large as the whole image, which makes

it a more suited performance metric for detector parameter optimization.

We decide to optimize keypoint detector parameters for: 1. < 100 KPs, 2. ad-

justed repeatability, and 3. detection time. In order to obtain the best parameter
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Settings

Table A.2: Optimized parameter settings for the evaluated description-only
methods, i. e. methods that can be used for feature description but
not to detect keypoint objects. We employ the implementations
of the OpenCV library [Bradski, 2000]; accordingly, the presented
parameters are named as in the library. The reader may refer to
the corresponding documentation for a detailed description of the
parameter usage.

Feature description method Parameters

DAISY [Tola et al., 2010] radius=5, q_radius=3, q_theta=8, q_hist=10,
norm=NRM_NONE, interpolation=true,
use_orientation=true

BRIEF [Calonder et al., 2010] bytes=32, use_orientation=true
FREAK [Alahi et al., 2012] orientationNormalized=true,

scaleNormalized=false, patternScale=17,
nOctaves=2

LATCH [Levi and Hassner,
2016]

bytes=64, rotationInvariance=true,
half_ssd_size=6, sigma=3.6

settings, we adapt the parameters manually for each detector until performance

peaks. Table A.1 presents the final parameter settings of the methods taken

from OpenCV [Bradski, 2000] and the evaluated ORB implementation from

ORB-SLAM2 [Mur-Artal and Tardós, 2017]. For methods that allow to specify

the number of keypoint objects to retrieve, we put this value to 1000; otherwise,

NMS was used to reduce the number of keypoint objects to 1000.

To optimize the parameters of feature description methods, we employ SURF [Bay

et al., 2006] to provide the keypoint objects (besides for feature description with

AKAZE, where it had to be the AKAZE detection method) and evaluate pose

estimation performance on synthetically transformed images. The parame-

ters shown in Table A.2 are optimized for 1. pose estimation success rate, 2.

matching precision, 3. number of correct feature matches.

Parameters for feature extractors that can perform keypoint detection as well

as feature description are presented in Table A.3. We optimized these methods

first for keypoint detection and then for feature description, using the same

optimization strategies previously described.
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Table A.3: Optimized parameter settings for the evaluated feature extractors,
i. e. methods that can be used to detect keypoint objects and also to
describe features. For ORB, we use the implementation from ORB-
SLAM2 [Mur-Artal and Tardós, 2017]. Otherwise, we employ the
OpenCV library [Bradski, 2000]. The reader may refer to the corre-
sponding documentations for further details about the parameters.

Feature extractor Parameters

SIFT [Lowe, 2004] nOctaveLayers=12, contrastThreshold=0.003,
edgeThreshold=9, sigma=8.7

SURF [Bay et al., 2006] hessianThreshold=20, nOctaves=1,
nOctaveLayers=2, extended=false,
upright=false

ORB [Rublee et al., 2011, Mur-
Artal and Tardós, 2017]

scaleFactor=1.0, nlevels=1, iniThFAST=29,
minThFAST=3

BRISK [Leutenegger et al.,
2011]

thresh=6, octaves=1, patternScale=1.45

AKAZE [Alcantarilla et al., 2013] descriptor_type=DESCRIPTOR_MLDB,
descriptor_size=486,
descriptor_channels=3, threshold=0.0001,
nOctaves=2, nOctaveLayers=2,
diffusivity=DIFF_CHARBONNIER

A.2 Identity Matching with Compact Binary

Descriptors: Parameter Settings

This section presents the optimized parameters that we obtained for the GTBL

method, StreetMap, and Ranger, for the evaluation on the HD Ground Database

in Section 5.2.2 and Section 8.4.2.

A.2.1 GTBL Method

For the GTBL method, we optimize the employed image scale, the number

of extracted query and reference image features, the histogram grid cell size

of the voting procedure, the number of LATCH [Levi and Hassner, 2016] bits

considered for identity matching, and the SIFT [Lowe, 2004] parameters of

the employed OpenCV 4.0 [Bradski, 2000] implementation nOctaveLayers,

contrastThreshold, edgeThreshold, and sigma, as well as the corresponding

OpenCV 4.0 LATCH parameters half_ssd_size, and sigma.

The values, that we obtain with texture-specific optimization and with a gener-

alized optimization that jointly considers all training areas of the HD Ground
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Table A.4: The employed GTBL method [Schmid et al., 2020a] (later called GTBL
SIFT) parameter settings on the HD Ground Database [Schmid et al.,
2022]. The grid cell size is specified in millimeters for its correspond-
ing size in the real world, and in pixels for its size in the image at the
texture-specific applied image scale.

Asphalt Cobblestone Carpet Laminate Generalized

Scale 0.60 0.34 0.35 0.20 0.24
#Q. image features 600 600 600 1100 950

#Ref. image features 850 750 600 1400 850
Grid cell size ( pixels) 115 210 150 300 310
Grid cell size ( mm) ≈ 19.2 ≈ 61.8 ≈ 42.9 ≈ 150.0 ≈ 129.2

LATCH bits 21 20 20 20 19
nOctaveLayers 9 21 13 15 7

contrastThreshold 0.045 0.02 0.02 0.023 0.015
edgeThreshold 18 18 13 14 17
sigma (SIFT) 4.5 2.8 5.4 2.0 2.6
half_ssd_size 4 3 6 3 4.0
sigma (LATCH) 3.4 3.4 4.0 4.8 4.0

Database, are shown in Table A.4.

A.2.2 StreetMap

For StreetMap, we optimize the employed image scale, the number of extracted

image features, the factor applied by the ratio test for outlier rejection, and the

OpenCV 4.0 SURF [Bay et al., 2006] parameters: hessianThreshold, nOctaves,

and nOctaveLayers. Results for the case of texture-specific and generalized

optimization are presented in Table A.5.

A.2.3 Ranger

One parameter for Ranger is the number of required feature matches between

the query image and the currently considered reference image that have to

remain after the cross-check in order to estimate the query image pose based on

these matches. The default value for this parameter suggested by the authors is

25, which is also the value we used for the evaluation on the Micro-GPS database.

For the HD Ground Database, the value set as follows after optimization: 10

for asphalt, 20 for cobblestone, 8 for carpet, 10 for laminate, and 23 in the

generalized case.

Furthermore, we optimize the scale, the number of extracted features per image,

and the parameters of the OpenCV 4.0 CenSurE [Agrawal et al., 2008] imple-
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Table A.5: The employed StreetMap [Chen et al., 2018] parameter settings on
the HD Ground Database [Schmid et al., 2022].

Asphalt Cobblestone Carpet Laminate Generalized

Scale 0.20 0.38 0.20 0.70 0.30
#Image features 200 400 600 900 1150
Ratio Test Factor 0.825 0.85 0.89 0.875 0.89
hessianThreshold 36 55 14 47 70

nOctaves 1 1 5 9 1
nOctaveLayers 2 1 3 2 3

mentation called StarDetector. The texture-specific and generalized parameter

settings are shown in Table A.6.

A.3 Model-Based Parameter Optimization:

Derivation of the Prediction Model

We model the probability of successful localization for methods that have the

properties described in Section 6.2 This derivation was published in [Schmid

et al., 2021].

Let the random variable NM denote the number of proposed feature matches,

where NM = NI + NO, with NI and NO denoting the numbers of inliers, re-

spectively outliers. Furthermore, let V denote the set of voting grid cells that

received at least one vote. For a voting cell v ∈ V , Nv
M denotes the random

variable that represents the number of votes cast onto it, i. e. the number of

matches with a corresponding pose estimate that projects the query image

position into the boundaries of voting cell v. Similarly, Nv
I and Nv

O represent

respectively the number of inliers and outliers among them. The voting peak is

Table A.6: The employed Ranger [Kozak and Alban, 2016] parameter settings on
the HD Ground Database [Schmid et al., 2022].

Asphalt Cobblestone Carpet Laminate Generalized

Scale 0.20 0.88 0.20 0.28 0.60
#Image features 400 650 350 350 1000
maxSize 5 8 6 6 13

responseThreshold 14 15 9 9 9
lineThresholdProjected 21 22 30 30 45
lineThresholdBinarized 34 22 16 16 55
suppressNonmaxSize 12 9 8 8 31
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denoted as

vp = {v ∈ V|Nv
M = max

v′∈V
Nv′

M} , (A.2)

assuming there is a single voting cell with most votes.

If we assume that the pose estimation algorithm works well, localization suc-

ceeds when having two or more inliers on the voting peak, as two correct

matches are sufficient to determine the correct query image pose. Generally,

a single inlier is insufficient as it might be indistinguishable from an outlier.

Therefore, we model the localization success rate as

Pr[N
vp

I ≥ 2] . (A.3)

Let VI ⊂ V denote the subset of voting cells with at least one inlier vote. If one

of those voting cells receives two or more inlier votes and has overall more votes

than any other voting cell, localization succeeds. For a voting cell vi ∈ VI , we

compute the probability of this condition being true as

Pr[(N
vi
I ≥ 2) ∩ (N

vi
M = N

vp

M)] , (A.4)

where Pr[A∩ B] denotes the probability of both events A and B to occur to-

gether. Localization succeeds if it is not the case that this condition is not true

for any vi ∈ VI :

Pr[N
vp

I ≥ 2] =

1 −

(

∏
vi∈VI

[

1 −
(

Pr[(N
vi
I ≥ 2) ∩ (N

vi
M = N

vp

M)]
)]

)

.
(A.5)

In order to compute the probability of having j votes on voting cell v ∈ V , we

consider the number of inliers Nv
I and the number of outliers Nv

O on it:

Pr[Nv
M = j] =

j

∑
k=0

[Pr[Nv
I = k] · Pr[Nv

O = j − k|Nv
I = k]] , (A.6)

with Pr[A|B] denoting the conditional probability of A given B. As a next step,

we make an assumption about the distribution of outlier votes. Here, we assume

to have Complete Spatial Randomness (CSR) among the voting positions, i. e.

the probability pout_vote of any outlier match m ∈ O, casting a vote on the voting

cell v is the same for any voting cell v ∈ V . Furthermore, we assume to have

many matches. So, we can assume statistical independence for any two voting
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cells v1, v2 ∈ V

Pr[Nv1
M = i|Nv2

M = j] = Pr[Nv1
M = i] . (A.7)

Also, assuming to have significantly more outliers than inliers, we approximate

Pr[Nv
O = i|Nv

I = j] = Pr[Nv
O = i] . (A.8)

Based on the CSR assumption, Nv
O for v ∈ V is binomially distributed. The

distribution is characterized by the number of outliers NO, and the probability

pout_vote = 1/|V| that each of them has for casting a vote on v:

Pr[Nv
O = i] = B(i|pout_vote, NO) , (A.9)

where B(i|p, n) denotes the probability of observing i successes in n indepen-

dent Bernoulli trials, each with a success probability of p.

To estimate Nv
I , the number of inliers casting a vote on v ∈ V , we assume that

every extracted query feature fq ∈ Fq has the same probability pv
in_vote of gener-

ating one inlier vote on v (with pv
in_vote = 0 for any v ∈ V \ VI ), and we assume

that no query feature will generate more than one inlier vote for v. Accordingly,

the random variable Nv
I is binomially distributed as well, depending on pv

in_vote

and the number of extracted query image features |Fq|:

Pr[Nv
I = i] = B(i|pv

in_vote, |Fq|) . (A.10)

The upper limit for the number of votes any voting cell can receive is NM.

Considering this and Eq. (A.7), we estimate

Pr[Nvi
M = N

vp

M] =
NM

∑
j=1



Pr[Nvi
M = j] · ∏

v∈V\{vi}

Pr[Nv
M < j]



 . (A.11)

Using Eq. (A.6) and Eq. (A.8), we obtain

Pr[Nvi
M = N

vp

M] =

NM

∑
j=1





j

∑
k=0

[

Pr[Nvi
I = k] · Pr[Nvi

O = j − k]
]

· ∏
v∈V\{vi}

Pr[Nv
M < j]



 .
(A.12)
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Now, we can use this in Eq. (A.4) to obtain

Pr[(N
vi
I ≥ 2) ∩ (N

vi
M = N

vp

M)] =

NM

∑
j=2





j

∑
k=2

[

Pr[Nvi
I = k] · Pr[Nvi

O = j − k]
]

· ∏
v∈V\{vi}

Pr[Nv
M < j]



 .
(A.13)

Finally, considering Eq. (A.13) with the substitution

Pr[Nv
M < j] =

j−1

∑
k=0

Pr[Nv
M = k]

=
j−1

∑
k=0

[

k

∑
l=0

[Pr[Nv
I = l] · Pr[Nv

O = k − l]]

]

,

(A.14)

we model the probability of observing a successful localization attempt using

Eq. (A.5) as:

Pr[N
vp

I ≥ 2] = 1 − x, (A.15)

with

x = ∏
vi∈VI

[

1 −
(

Pr[(N
vi
I ≥ 2) ∩ (N

vi
M = N

vp

M)]
)]

= ∏
vi∈VI

[

1 −

(

NM

∑
j=2

[

j

∑
k=2

[

Pr[Nvi
I = k] · Pr[Nvi

O = j − k]
]

·

∏
v∈V\{vi}

j−1

∑
k=0

[

k

∑
l=0

[Pr[Nv
I = l] · Pr[Nv

O = k − l]]

]











 .

(A.16)

A.4 Deep Metric Learning for Global Localization:

BoW Parameter Settings

For our Bag of Words (BoW) [Galvez-López and Tardos, 2012] implementation

presented in Section 7.3.2.2 using SIFT features [Lowe, 2004], we show the

results of our parameter optimization for the texture-specific optimal choice of

n, i. e. the number of features that are extracted per image.

Table A.7 presents the observed recall performance on the Micro-GPS database

[Zhang et al., 2019]. It also presents the resulting texture-specific choice for n.
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Table A.7: Evaluation of the R@100 performance, i. e. the recall when retrieving
100 reference images per query image, of our Bag of Words (BoW)
[Galvez-López and Tardos, 2012] implementation on the Micro-GPS
database [Zhang et al., 2019]. For varying numbers of extracted fea-
tures per image, we present the texture-specific results. The values
highlighted in bold are the ones that are used for the respective tex-
tures when we apply the BoW procedure for image retrieval.

Texture
Number of features − R@100(%)

100 200 300 400 500 600 700 800 900 1000

Carpet 20.5 22.9 19.1 19.8 22.6 23.5 18.5 29.0 17.9 17.2
Coarse Asphalt 27.1 24.6 27.4 20.4 22.6 28.8 17.4 24.1 24.3 24.5

Concrete 12.2 7.8 17.1 12.9 8.7 20.1 5.7 20.9 10.7 13.5
Fine Asphalt 25.7 19.9 22.5 12.4 20.5 18.7 11.9 15.6 23.5 14.2

Tiles 8.9 18.1 17.7 12.8 11.1 14.1 17.0 20.5 16.6 16.0
Wood 6.1 9.4 9.2 11.4 5.7 11.3 8.6 8.3 7.9 9.4

Table A.8: The employed GTBL RND [Schmid et al., 2020b] parameter settings
on the HD Ground Database [Schmid et al., 2022]. The grid cell size
is specified in millimeters for its corresponding size in the real world,
and in pixels for its size in the image at the texture-specific applied
image scale.

Asphalt Cobblestone Carpet Laminate Generalized

Scale 0.20 0.23 0.23 0.15 0.15
#Q. image features 3500 2200 2100 2300 3300

#Ref. image features 5400 4400 2400 3800 4800
Grid cell size ( pixels) 250 240 210 295 190
Grid cell size ( mm) ≈ 125.0 ≈ 104.3 ≈ 91.3 ≈ 196.7 ≈ 126.7

LATCH bits 20 18 17 19 20
half_ssd_size 7 5 9 2 4
sigma (LATCH) 3.8 3.0 2.2 5.0 2.9

A.5 Faster Local Localization with Keypoint

Sampling: Parameter Settings

Here, we present the optimized parameters that we use for the GTBL RND

method for the evaluation on the HD Ground Database in Section 8.4.2.

We optimize the same values as for the GTBL Method, whereby in this case the

SIFT parameter setting does not matter. Our texture-specific settings, as well as

the settings for the generalized case, are shown in Table A.8.
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