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Simple Summary: Despite the implementation of efficient screening and vaccination programs,
uterine cervical cancer remains a leading cause of cancer-related mortality in women worldwide. New
therapeutic approaches have so far failed to improve treatment response and prognosis significantly,
especially in patients with recurrent disease or metastases. Further, robust molecular markers to
predict therapy response and survival are scarce and their routine use is limited in clinical practice.
Accordingly, there is an urgent need to identify and establish molecular markers to predict therapy
response and clinical outcome to improve treatment and survival in cervical cancer.

Abstract: Uterine cervical cancer is one of the leading causes of cancer-related mortality in women
worldwide. Each year, over half a million new cases are estimated, resulting in more than 300,000 deaths.
While less-invasive, fertility-preserving surgical procedures can be offered to women in early stages,
treatment for locally advanced disease may include radical hysterectomy, primary chemoradiotherapy
(CRT) or a combination of these modalities. Concurrent platinum-based chemoradiotherapy regimens
remain the first-line treatments for locally advanced cervical cancer. Despite achievements such as
the introduction of angiogenesis inhibitors, and more recently immunotherapies, the overall survival
of women with persistent, recurrent or metastatic disease has not been extended significantly in the
last decades. Furthermore, a broad spectrum of molecular markers to predict therapy response and
survival and to identify patients with high- and low-risk constellations is missing. Implementation
of these markers, however, may help to further improve treatment and to develop new targeted
therapies. This review aims to provide comprehensive insights into the complex mechanisms
of cervical cancer pathogenesis within the context of molecular markers for predicting treatment
response and prognosis.

Keywords: cervical cancer; predictive; prognostic; molecular marker; biomarker; outcome; survival;
response; chemoradiotherapy

1. Introduction

Transient infections with human papillomavirus (HPV) are common, with a life-
time probability ranging between 50% and 95% [1]. Persistent infections with oncogenic
high-risk HPV16/18 subtypes frequently progress to cervical intraepithelial neoplasia
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(CIN), a precursor lesion to invasive uterine cervical cancer [2,3]. As a consequence of
effective screening and vaccination programs, cervical cancer is largely preventable, al-
though vaccination rates remain low and only a minority of women have access to efficient
health care services [4]. Accordingly, more than half a million women worldwide are
diagnosed with cervical cancer each year, with the majority of deaths occurring in low-
and middle-income countries, indicating substantial global disparities [5,6]. The treat-
ment of cervical cancer can be roughly divided into two central therapy options. For
localized disease, without the detection of lymph node metastases or the presence of
risk factors, surgery is the preferred treatment modality. The scope of these curatively
intended interventions ranges from fertility preserving conization to radical hysterectomy
or total mesometrial resection (TMMR), including extensive pelvic and paraaortic lym-
phadenectomy. In cases of locally advanced cervical cancer (Fédération Internationale de
Gynécologie et d’Obstétrique (FIGO) ≥ IB3), definitive chemoradiotherapy (CRT) followed
by brachytherapy (BT) is the standard of care [7]. BT is an integral part of definitive
treatment regimens for patients with locally advanced cervical cancer [8]. It delivers a
highly conformal dose distribution of radiation, maximizes local control and minimizes
toxicities by adequately covering the remaining extent of disease and optimally sparing
adjacent organs at risk [9–11]. Concurrent chemotherapy has significantly improved the
survival of cervical cancer patients compared to radiotherapy alone [12,13]. Platinum-
based chemotherapy regimens are, therefore, generally preferred for patients who are
suitable for this as first-line treatment [14,15]. Further, a combination of cisplatin, paclitaxel
or topotecan plus the VEGF (vascular endothelial growth factor) inhibitor bevacizumab
showed a significantly improved the survival rate, but was also associated with increased
toxicity [16,17]. More recently, immunotherapies have transformed the management of
many solid tumors and is constantly evolving. In 2018, the American Food and Drug
Administration (FDA) approved programmed death 1 (PD-1) inhibitor pembrolizumab
for patients with recurrent or metastatic cervical cancer whose tumors express PD-L1
(combined positive score (CPS) ≥1) and with disease progression after chemotherapy [18].
Pending new evidence, numerous immune checkpoint inhibitors are currently being in-
vestigated in various settings for the treatment of cervical cancer, including the CALLA
(durvalumab), NCT02635360 (pembrolizumab), and NRG-GY017 (atezolizumab) trials.
Moreover, therapeutic vaccination strategies (e.g., NCT02853604) and adoptive cell thera-
pies (e.g., NCT03108495) are currently being tested [19]. In this regard, the FDA recently
approved the antibody-drug conjugate (ADC) tisotumab vedotin against tissue factor
and monomethyl auristatin E (MMAE) for recurrent or metastatic cervical cancer after
efficacy, and safety was demonstrated in the NCT03438396 multicenter, open-label, single
arm, phase 2 trial (innovaTV 204/GOG-3023/ENGOT-cx6) [20]. Despite these advances,
survival rates have not improved significantly over the past two decades and especially
the prognosis for women with persistent, recurrent or metastatic disease remains poor. In
addition, valid and easily accessible molecular markers for risk stratification and to predict
treatment response and survival remain elusive. These markers, however, may cover a
prerequisite to unravel the molecular pathogenesis and heterogeneity of cervical cancer
and will be crucial to further develop novel therapeutic targets and treatment approaches.

2. Clinical Parameters to Predict Outcome and Response

Surgical procedures are the standard of care for women with early-stage disease and
low-risk features [21]. For those patients, clinical characteristics and postoperative surgi-
copathologic risk factors were identified to predict local and distant control. Tumor size,
stromal invasion, lymphovascular space involvement (LVSI), pathologically confirmed
lymph node metastases, extension into parametrial tissue or positive surgical margins
are considered to predict an intermediate or high risk of recurrence after primary surgery
(Figure 1) [22,23]. According to these clearly interrelated characteristics, Sedlis’ respectively
Peters’ criteria (Table 1) were developed to decide whether postoperative radiotherapy
with or without systemic therapy is required to reduce the risk of recurrence [24,25]. For
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intermediate risk patients, adjuvant RT was associated with a 46% reduction of recurrence
and a significantly lower risk of disease progression at 5 years, although the improvement
in overall survival did not reach statistical significance [26,27]. Patients with more than
three positive lymph nodes after surgery are more likely to have extra-pelvic recurrence
than patients without lymph node involvement or less than three positive lymph nodes [28].
Therefore, cisplatin-based CRT following radical hysterectomy was associated with signifi-
cantly improved progression-free survival (63% vs. 80%, HR 2.01, p = 0.003) and overall
survival (71% vs. 81%, HR 1.96, p = 0.007) compared to RT alone, as demonstrated by the
GOG 109 landmark trial in a cohort of 268 women with high-risk cervical cancer [24].
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(accessed on 5 September 2021). 
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inconclusive. 

In addition, further cell lines of the blood count were evaluated. Cancer-related 
systemic inflammation is associated with impaired outcomes in patients with malignant 
diseases [46]. Tumor-induced neutrophilia and thrombocytosis, which may be considered 
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ratio was further identified as a predictor of survival in two studies. He et al. further 
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patients treated with RT or CRT [53]. The negative impact of a low nutritional index was 
further confirmed in a larger and more recent study [54]. Sarcopenia resulting from 
malnutrition, however, does not affect survival before initiation of treatment, whereas 

Figure 1. Clinical risk factors in cervical cancer. After primary, curatively intended surgery, Sedlis’
and Peters’ criteria were established to estimate the risk of pelvic and extra-pelvic recurrence. These
risk factors include tumor size, deep stromal invasion, involved parametria, lymphovascular space
invasion (LVSI) and the presence of lymph node metastases. Created with BioRender.com (accessed
on 5 September 2021).

Table 1. Clinical features and postoperative surgical and pathologic risk factors to assess the risk of
recurrence in cervical cancer.

Intermediate Risk (Sedlis’ Criteria) High Risk (Peters’ Criteria)

LVSI plus deep stromal invasion (outer third) Positive surgical margins

LVSI plus middle stromal invasion (one-third)
and tumor size ≥ 2 cm

Detection of pathologically-confirmed lymph
node metastases

LVSI plus superficial stromal invasion (inner
third) and tumor size ≥ 5 cm Extension into the parametrial tissue

No LVSI but deep or middle stromal invasion
and tumor size ≥ 4 cm

Importantly, prognostic factors evaluated for women with locally advanced cervical
cancer treated with concurrent CRT were similar to those after primary surgery. Tumor size,
FIGO stage, pelvic or paraaortic lymph node involvement, non-squamous-cell carcinoma,
performance status and ethnical race were significantly correlated with survival [29–33].
Total treatment time should not be longer than eight weeks [34,35]. Moreover, the omission
of brachytherapy has a stronger negative effect on survival than the exclusion of chemother-
apy [36]. To achieve a maximum of pelvic control, the combined prescription EQD2 of
external beam radiotherapy (EBRT) and brachytherapy should be greater than 80 Gy, while
higher doses can be considered for tumors with poor response to EBRT or extensive dis-
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ease [37–39]. Meanwhile, the use of intensity modulated radiotherapy (IMRT) generated
lower rates of acute and late toxicity and favorable disease-specific survival [40–42].

Hematological Parameters

Multiple hematological markers are reported to predict response to CRT as easily
accessible and feasible biomarkers. In particular, lower pre-treatment and nadir hemoglobin
levels were discussed to negatively impact on treatment response and survival [43]. In this
regard, anemia is linked to tumor hypoxia and neo-angiogenesis, which is associated with
an impaired local tumor control [44]. However, in a retrospective analysis of 2454 cervical
cancer patients by Bishop et al., the impact of anemia was relativized. Anemia was not
confirmed as an independent prognostic factor and only hemoglobin levels below 10 g/dL
during RT were associated with an inferior disease-specific survival [45]. Until now, data
about the predictive value of anemia remain inconclusive.

In addition, further cell lines of the blood count were evaluated. Cancer-related
systemic inflammation is associated with impaired outcomes in patients with malignant
diseases [46]. Tumor-induced neutrophilia and thrombocytosis, which may be considered
a sign of systemic inflammation, and relative lymphocytopenia, which occurs as part of the
antitumor immune response, are frequently observed [47]. In a meta-analysis, an elevated
pretreatment neutrophil to lymphocyte ratio was confirmed as an independent predictor
of a decreased OS and PFS, regardless of stage or primary treatment [48]. In addition,
a systemic immune inflammation index based on peripheral neutrophil, lymphocyte
and platelet counts was established in cervical cancer patients after primary surgery.
An increased immune-inflammation index was significantly correlated with poorer OS
regardless of FIGO stage [49].

Moreover, C-reactive acute phase protein (CRP), an inflammatory marker, and serum
albumin levels indicative for liver function and malnutrition were associated with impaired
immune response in cervix cancer patients [50]. The pretreatment CRP/albumin ratio was
further identified as a predictor of survival in two studies. He et al. further concluded an
increased predictive value from a combination of CRP/albumin ratio and neutrophil to
lymphocyte ratio [51,52]. Low serum albumin levels were associated with a low nutritional
index and predicted a poor prognosis in a cohort of 131 cervical cancer patients treated
with RT or CRT [53]. The negative impact of a low nutritional index was further confirmed
in a larger and more recent study [54]. Sarcopenia resulting from malnutrition, however,
does not affect survival before initiation of treatment, whereas significant loss of skeletal
muscle during CRT is associated with an impaired outcome [55–57].

Finally, elevated pretreatment levels of serum squamous cell carcinoma antigen (SCC
Ag) were associated with a larger tumor size, the involvement of lymph nodes, LVSI and
deep stromal invasion [58–61] and were confirmed to significantly correlate with an inferior
survival [62].

3. Human Papillomavirus in Cervical Cancer

Cervical cancer is a prime example of a malignancy caused by infection with human
papillomaviruses (HPV). Of at least 13 oncogenic high-risk subtypes from the same phylo-
genetic lineage, HPV16 and HPV18 are the predominant subtypes associated with disease
onset and progression [63].

3.1. HPV-DNA Integration

The integration of HPV into the host genome causes a linearization of the viral genome
and results in a partial or complete deletion of the viral genes E1 and E2. This further
suggests that both integrated viral DNA and its episomal form can be present [64]. The
status of the viral E2 gene was evaluated for its influence on therapy response. As a
regulator of viral genome replication and RNA transcription, loss of E2 function after viral
integration leads to a more radioresistant phenotype by potentiating E6 and E7 expression
and reducing pro-apoptotic signaling [65]. In line with this, there is evidence suggesting
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a favorable prognosis in patients with HPV 16+ tumors and an intact E2 gene [66,67],
while episomal expression of E2, E4 and E5 results in enhanced proliferation and increased
susceptibility to induction of cancer [68]. In a prospective cohort of 272 HPV+ cervical
cancer patients enrolled in the BioRAIDs study, several integration signatures of the HPV
genome were identified. The most frequent integration site was the MACROD2 (mono-
ADP Ribosylhydrolase 2) gene locus, followed by TP63 and MIPOL1/TTC6 loci. Although
there is a lack of evidence for the impact of the integration within MACROD2, MACROD2
deletions are associated with impaired PARP1 (poly(ADP-ribose)polymerase 1) activity and
chromosomal instability in other entities. Notably, the integration of HPV DNA was much
more frequent in cervical cancer compared with anal cancer and was associated with a low
HPV copy number (<4, ratio of the number of HPV reads over the control human kallikrein-
3 (KLK3) gene) and worse progression-free survival. Episomal forms of HPV DNA were
associated with a high HPV number and phosphatidylinositol-4,5-bisphosphat-3-kinase
(PIK3) mutations [69].

3.2. Prognostic Impact of HPV Viral Load

Determining the predictive value of the HPV viral load was the objective of several
studies. In locally advanced cervical cancer, a low HPV viral load was associated with an
impaired distant metastasis free (DMFS) and overall survival (OS), while the combined
analysis HPV viral load and tumor size were superior for predicting OS [70]. These
findings are consistent with the findings by Kim et al., who reported worse disease-free
survival (DFS) in 169 women with low HPV viral load treated with CRT [71]. A low and
persistent HPV viral load was further correlated significantly with poor local recurrence-
free survival (LRFS) in another study covering 156 cervical cancer patients treated with CRT
or radiotherapy (RT) alone [72]. Furthermore, in a cohort of 520 woman treated with surgery
or CRT, a low HPV viral load predicted poor prognosis irrespective of treatment [73]. In
contrast, at the tissue and cellular levels, Cao et al. hypothesized that a high HPV viral
load influences the tumor microenvironment (TME) towards a more immunosuppressive
milieu with an increased proportion of FOXP3-positive tumor-infiltrating regulatory T-
lymphocytes (TILs), contributing to an impaired survival rate [74].

3.3. Genetic Alterations, Immune Responses and Angiogenesis in HPV+ Cervical Cancer

Nevertheless, a persistent HPV infection is not sufficient to induce carcinogenesis per
se. Further genetic and epigenetic alterations and an interplay between infected cells, the
host immune response and the TME are required to promote malignant transformation
and propagation [75,76]. A recent genome-wide association study provided new evidence
for a genetic disposition and susceptibility of cervical cancer. Bowden et al. identified
six variants in the PAX8 (paired-box-protein 8), CLPTM1L and HLA (human leukocyte
antigen) genes that were associated with increased risk of CIN and cervical cancer. These
variants are associated with disruptions in multiple pro-apoptotic and immune function
pathways [77] and are consistent with another genome-wide association study, which
identified multiple loci affecting immune pathways of antigen presentation and immune
checkpoints associated with increased risk of cervical cancer development [78]. Further-
more, variants of major histocompatibility complex (MHC) alleles are associated with
increased risk of persistent HPV infection and cervical cancer [79].

The innate and adaptive immune response is crucial in clearing HPV infections and
in surveillance of carcinogenesis and tumor progression [80,81]. Accordingly, there are
several immune evasion mechanisms and immunomodulatory effects exploited by HPV
oncoproteins that disrupt pivotal anticancer immune response pathways. In vitro and
in vivo analyses of oncoproteins E6 and E7 revealed Toll-like receptor 9 (TLR9) downregu-
lation and suppression of C-X-C motif chemokine ligand CXCL14, which in turn reduced
the local immune response and the recruitment of antigen-presenting cells, natural killer
(NK) and T cells [82,83]. A local immune response is further compromised by E7 targeting
the stimulator of interferon gene (STING) pathway, which senses against intracellular DNA
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and activates the production of pro-inflammatory cytokines, such as interferon gamma
(IFNγ) [84,85]. E6 and E7 interact with multiple IFN-receptor pathways and impede the
phosphorylation of signal transducer and activators of transcription 1 (STAT1), STAT2 and
other JAK/STAT pathways, which are critical for IFN signaling as well as proliferation and
invasion [86]. Furthermore, activation and recruitment of immune components such as
Langerhans cells, dendritic cells, tumor-associated macrophages, CD4+ and CD8+ lympho-
cytes are enhanced by HPV fostering of an immunosuppressive tumor microenvironment
(TME) by a plethora of signaling pathways, including nuclear factor kappa B (NF-κB)
signaling, antigen presentation and the aforementioned IFN signaling pathways [81].

Finally, HPV infection is linked to angiogenesis. In a TP53-dependent manner, the
expression of thrombospondin 1, maspin and VEGF is altered by HPV E6 and E7 oncopro-
teins, enhancing angiogenesis [87]. Concerning TP53 independent pathways, Wang et al.
showed an upregulation of ribonucleotide reductase small subunit M2 (RRM2) by E7 and
enhanced angiogenesis mediated by the ROS-ERK1/2-HIF1α-VEGF axis [88].

3.4. Oncoproteins E6 and E7 Increase Radiosensitivity of HPV-Positive Cervical Cancer Cells

Importantly, HPV-associated malignancies are linked to an intrinsic radiation sensitiv-
ity, resulting in a favorable response to radiotherapy [89–92]. As summarized in Figure 2,
following the integration of the HPV genome, expression of viral oncoproteins E6 and E7
impact on pivotal cellular pathways by inactivating the tumor suppressor protein TP53
and retinoblastoma (Rb) protein, respectively. In brief, E6-mediated inactivation of TP53
requires the ubiquitin ligase E6AP, subsequently influencing cell cycle, apoptosis, cellular
stress response and genomic stability [93]. The degradation of pRb by E7 activates the tran-
scription factor E2F1, which promotes the upregulation of several S-phase genes, including
the cyclin-dependent kinase inhibitor p16ink4a. In turn, p16ink4a is directly involved in
radiation response by interfering with mechanisms of DNA damage response [94,95]. For
instance, p16ink4a suppresses nuclear RAD51 foci, a marker of homologous recombination
functionality, via downregulation of cyclin D1 [96]. Moreover, a PCR (polymerase chain
reaction) array of DNA damage response genes revealed significantly lower RAD51 and
breast cancer type 1 susceptibility protein (BRCA1) expression, indicating an impaired DNA
damage response repair capacity [97]. Targeting poly(ADP-ribose) polymerase (PARP) is
an effective treatment option in treating BRCA1 or BRCA2 negative cancers [98]. PARP1 is
thereby involved in non-homologous end-joining (NHEJ) pathway and single-strand DNA
repair. Ijff et al. recently showed that PARP1 inhibition sensitizes cervical cancer cell lines
for CRT [99]. In addition, DNA single-strand break repair is directly impaired by E6 bind-
ing X-ray repair cross-complementing protein 1 (XRCC1), while double-strand break repair
fidelity is compromised in both aTP53-dependent and -independent manner [100,101].
Notably, HPV 18+ tumors are considered to be more aggressive and display an impaired
prognosis following radiotherapy [102–104]. As a potential mechanism, expression pat-
terns of four DNA repair genes in HPV 18+ tumors were identified. TP52BP1, MCM9
(minichromosome maintenance 9 homologous recombination repair factor), POLR2F and
SIRT6 were associated with higher activity of NHEJ and homologous recombination (HR)
pathway and increased DNA repair capacity [105].
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Figure 2. E6 and E7 increase radiosensitivity of HPV-positive cervical cancer cells. An increased
sensitivity to radiation by HPV-positive malignancies has been linked to several signaling pathways,
including regulation of cell cycle progression, apoptosis and chromosomal instability. Shown is a
simplified illustration of DNA damage repair signaling pathways impaired by altered TP53 and p16
activity. After the downregulation of retinoblastoma protein (Rb) by viral oncoprotein E7, increasing
p16 levels hamper homologous recombination (HR) regulated via cyclin D1 and subsequently the
RAD51/BRCA2 axis. Rb loss further diminishes the non-homologous end-joining (NHEJ) repair
pathway. Cell cycle progression and G1-S transition are promoted by the release of the transcription
factor E2F and the inhibition of cyclin-dependent kinase (CDK) inhibitors p21 and p27, while in
contrast frequently triggered G2/M arrest reorders and arrests cancer cells at vulnerable stages
of the cell cycle. Abbreviations: ATM: ataxia telangiectasia mutated; CHK2: checkpoint kinase 2;
HPV: human papilloma virus. Adapted from “P53 Regulation and Signaling”, by BioRender.com
(accessed on 2021). Retrieved from https://app.biorender.com/biorender-templates (accessed on
October 2021).

4. Molecular Protein Markers

The Cancer Genome Atlas (TCGA) database has expanded the view of the genomic
landscape of cancer by characterizing molecular patterns of many malignancies. Based on
this database, subgroups of keratin-low and keratin-high squamous cell carcinomas and
adenocarcinoma-rich, endometrial-like cervical cancer were identified. The endometrial-
like subgroup, for instance, is associated with a high frequency of KRAS, ARID1A (AT-rich
interaction domain 1A) and phosphatase and tensin homolog (PTEN) mutations and is
predominantly HPV-negative. PIK3CA (phosphatidylinositol-4,5-bisphosphat-3-kinase,
catalytic subunit alpha), PTEN and MPK1 (mitogen-activated protein kinase 1) were
confirmed as significantly mutated genes (SMG), while ERBB3, CASP8, HLA-A and TGFBR
were identified as novel SMGs in cervical cancer. Amplifications in programmed death 1
(PD-L1) and PD-L2 and a relatively high number of gene fusions in BCAR4 are providing
possible targets for novel therapeutic approaches [106].

Genomic alterations in phosphoinositide 3-kinase (PI3K) are common in many dif-
ferent entities, including cervical cancer [107,108]. Activating mutations of PI3K and its
catalytic subunit alpha (PIK3CA) are associated with co-alterations of PTEN, MAPK and
AKT1, which are sufficient to foster tumorigenesis, tumor growth, migration, protein
synthesis and glucose metabolism in pre-clinical models [109–113]. Tumor progression
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via downstream activation of the PI3K/AKT/mammalian target of rapamycin (mTOR)
signaling cascade is thereby induced and further promoted by viral oncoproteins E5, E6
and E7 in HPV-associated malignancies [114]. Arjumand et al. indicated that cervical
cancer cells with PIK3CA-E545K mutation are more resistant to cisplatin or cisplatin-based
CRT than cells with PIK3CA wild type [115]. Although these aspects seem to influence
the treatment response and survival of cervical cancer patients, the predictive value of
PIK3CA mutations remains inconclusive. In a cohort of 89 patients with high-risk early-
stage cervical cancer who underwent post-operative radiotherapy, a PIK3CA mutation was
the most frequently detected aberration (29.2%) but displayed no prognostic impact [116].
In contrast, another study detected PIK3CA mutations in 37.3% of 161 pre-treatment spec-
imens from cervical cancer patients treated with CRT, which was associated with worse
OS in univariate analysis (p = 0.037) [117]. These discordant findings are consistent with a
systemic review by Pergialiotis and colleagues that included twelve research articles and a
total of 2196 cervical cancer patients and demonstrated no impact of PIK3CA mutations on
treatment response and survival [118].

In a comprehensive review, Noordhuis et al. described in 2011 potential markers
to predict response and survival of cervical cancer patients treated with CRT. Based on
42 eligible studies the authors identified 27 out of 82 markers that were independently
associated with survival [119]. Some of these markers have been investigated in detail in
other studies and will also be mentioned in the following paragraphs.

A hypoxic TME and a dysregulated neo-angiogenesis is a common feature in solid
tumors. Activation of hypoxia-inducible factor 1 α (HIF-1α) upregulates VEGF, which in
turn promotes angiogenesis, although also modulates TP53 activity and protects cells from
hypoxia-induced apoptosis [120]. In cervical cancer, a high expression level of HIF-1α and
its downstream target, the tumor-associated cell-surface glycoprotein carbonic anhydrase 9
(CA9), is linked with poor prognosis and therapy resistance [121–123]. In addition, overex-
pression of VEGF was correlated with a significantly worse OS and DFS/PFS with pooled
hazard ratios of 2.29 and 2.77, respectively, in a meta-analysis including 1306 patients
performed by Zhang et al. [124]. Notably, assessment of VEGF expression was performed
with a variety of methods, meaning the overall results must be evaluated in a limited way
considering the heterogeneity of the studies included. Additionally, women treated with
(chemo)radiotherapy were under-represented.

As further described by Noordhuis et al., cyclooxygenase-2 (COX-2) and the epider-
mal growth factor receptor (EGFR) pathway could be associated with therapy response
and outcome in patients with cervical cancer treated with (C)RT. COX-2 is one of two
isoenzymes that catalyze the synthesis of prostaglandins from arachidonic acid and drive
inflammation [125]. In cancer, COX-2 is frequently overexpressed and associated with
angiogenesis, disease progression, metastatic behavior and therapy resistance [126–128].
Several groups have reported a negative prognostic and predictive impact of COX-2 ex-
pression in cervical cancer patients treated with (C)RT, while others did not [129,130]. In a
recent retrospective analysis, COX-2 expression was significantly associated with LVSI but
not with any survival endpoint [131]. Data from the RTOG 0128 trial, a phase I-II study
testing the COX-2 inhibitor celecoxib and CRT in patients with locally advanced cervical
cancer, revealed that patients with low COX-2 expression treated with celecoxib plus CRT
had a worse OS compared to patients with a high COX-2 expression [132]. Nevertheless,
this approach was not pursued further due to excessively high rates of acute toxicities [133].

As upstream modulators of COX-2, members of the mitogen-activated protein kinase
(MAPK), extracellular-signal regulated kinase (ERK) family and EGFR may be indicators of
outcome and survival in cervical cancer. While data on the impact of the MAPK pathway
are limited, numerous studies exist on EGFR signaling in cervical cancer. The EGFR
receptor transmits growth signals not only via the RAS-RAF pathway, but also via PIK3
and is linked to multiple signaling cascades [134]. EGFR protein expression and gene
amplifications have been correlated with unfavorable clinical outcomes and poor response
to (C)RT in cervical cancer [135–138]. A meta-analysis on the prognostic impact of EGFR
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overexpression pooled 22 studies and demonstrated that elevated levels of EGFR were
associated with inferior OS and DFS. Moreover, EGFR overexpression was correlated with
a higher incidence of lymph node metastases and tumor size [139]. Nevertheless, it is still
controversial whether the degree of EGFR overexpression or gene amplification should be
used as a reliable and robust marker [140]. At present, the use of EGFR inhibitors has been
investigated in phase II studies in recurrent or metastatic cervical cancer patients and has
shown minimal or no benefit at all [141–144].

Other proteins orchestrating EGFR signaling, including ERK, pAKT and PTEN, were
not related to survival in patients with cervical cancer [133]. Instead, overexpression of
CD24, an upstream of glycosylphosphatidylinositol-anchored protein (GPI) stimulating
Akt, ERK, and nuclear factor kappa B (NF-κB), was associated with inferior OS in a small
cohort of cervical cancer patients [145]. Additionally, the predictive and prognostic impact
of KRAS mutations was evaluated in a cohort of 876 early-stage cervical cancer patients
(FIGO IB1-IIA2). KRAS mutations were predominant in non-squamous cell carcinomas
(8.2% vs. 2.2%, p < 0.001), associated with HPV18+ tumors (p = 0.003) and significantly
correlated with a worse RFS in univariate and multivariate analyses. Notably, these results
were not reproducible in squamous cell carcinomas and HPV16+ tumors [146].

Polo-like kinases (PLK) represent five highly conserved serine or threonine protein
kinases participating in cell cycle regulation, DNA replication, mitosis and response to
various types of cellular stress [147–149]. PLK1, the prototype member, is essential dur-
ing mitosis and closely related to cellular proliferation and tumor growth. In cervical
cancer, PLK1 overexpression was detected using RNA sequence datasets extracted from
290 cervical cancer tissue specimens. A high level of PLK1 expression had negative impact
on survival, consistent with previous findings [150,151]. Yang et al. further demonstrated
that phosphorylation of PLK1 by c-ABL regulates its activity, while knockdown of c-ABL
inhibits downstream activation of Aurora A, a key kinase in mitotic progression. Again,
c-ABL mediated phosphorylation of PLK1 was associated with a worse 5-year survival
rate, while PLK1 mutant Y425 partially inhibits tumor growth in mice [152]. Upon ligand
stimulation of CD95 (Fas receptor), PLK3 phosphorylates pro-caspase-8 on residue threo-
nine 273 and promotes apoptosis in vitro [153]. Against this background, the prognostic
impact of both PLK3 and pT273 Caspase-8 was investigated in patients with cervical cancer.
High levels of PLK3 and pT273 Caspase-8 were associated with improved survival rates
after definitive CRT [154]. In general, PLK3 is associated with cellular stress response,
linking DNA damage to DNA damage repair, cell cycle arrest, apoptosis and cellular
adhesion [148,149,155] (Figure 3).

The impacts of DNA damage response (DDR) proteins were investigated by a Cana-
dian group. In a set of pre-treatment samples from 117 cervical cancer patients treated
with CRT, the proteins ATM, PARP-1, DNA-PKcs, Ku70 and Ku86 were quantified using
fluorescence immunohistochemistry. Low expression of ATM and PARP-1 was significantly
associated with a worse 5-year PFS. Moreover, expression of ATM, PARP-1, DNA-PKcs and
Ku86 was associated with a shorter OS, while multivariate analysis confirmed ATM and
PARP-1 as independent predictors for PFS and OS. Accordingly, the authors hypothesized
that the assessment of ATM status may also be a predictive biomarker of PARP-1 inhibitor
treatment efficacy [156].

In conclusion, protein biomarkers reflect on the profound and complex genomic and
cellular alterations of cervical cancer, although single markers are less likely to predict
prognosis and treatment response at present. Small sample sizes, lack of reproducibility and
the heterogeneity of biochemical methods further complicate their practical applicability in
clinical practice. Combined marker analysis, however, may cover a possible approach to
predict treatment response and survival more precisely. Consequently, Choi et al. assessed
the expression levels of 22 proteins from pre-treatment biopsies of 181 locally advanced
cervical cancer specimens and identified a panel of BCL2, HER2, CD133, CA9 and ERCC1
as an independent predictor of survival after CRT [157].
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5. MicroRNA, Long-Non-Coding RNA and Circular RNA

MicroRNA (miRNA), long-non-coding RNA (lncRNA) and circular RNA (circRNA)
encompass a variety of RNA molecules that regulate gene expression and a multitude
of cellular signaling pathways. RNA molecules have emerged within a growing body of
evidence as potential dynamic biomarkers to predict therapeutic response and survival,
and may be useful for monitoring and detecting persistent or recurrent disease [158–161].

5.1. MicroRNAs

MicroRNAs can be classified into oncogenic and tumor suppressive miRNAs, which
affect a variety of specific target genes and impact on cell growth, malignant transformation,
cell migration, invasion and therapy resistance. Target genes are regulated by binding
specific sequence motifs within the 3’ untranslated region (UTR) of mRNAs [162–164]. In
cervical cancer, there are several types of endogenous and viral forms of RNA derived
from the HPV genome that participate in carcinogenesis and tumor progression [165]. To
identify consistent signatures of miRNA profiles, He at al. performed a comprehensive
analysis of 85 studies including 2099 non-cancerous tissue samples, 827 CIN samples
and 3095 samples from cervical cancer tissues. First, they identified 42 upregulated and
21 downregulated miRNAs from CIN to cervical cancer. In the following meta-analysis,
five upregulated miRNAs (hsa-miR-10a-5p, −16-5p, −25-5p, −92a-3p and −196a-5p) and
seven downregulated miRNAs (hsa-miR-29a, −34a, −99a-5p, −100-5p, 199a-3p, −203
and −218-5p) were confirmed to be dysregulated in CIN and cervical cancer. Inverse
miRNA and mRNA expression levels revealed that the identified miRNA signature is
involved in numerous cancer-associated pathways, such as MAPK-, WNT-, TGF-β- and
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p53-pathways, as well as cytokine receptor and extracellular matrix receptor pathways,
regulating cell cycle, proliferation and apoptosis [166]. In another systematic review of
24 studies, some overlap (miR-29a and miR-21 were reported to be most frequently down
and upregulated miRNAs in cervical cancer) with the analysis of He et al. was reported,
although in conclusion different miRNAs were used to create a diagnostic and prognostic
panel, indicating difficulties in validating a single miRNA signature [165]. Nevertheless,
overexpression of miR-21, miR-34a, miR-196a, miR-27a and miR-221 was identified as a
unique and specific miRNA signature in HPV+ squamous cell cervical cancer [167].

HPV oncoproteins E6 and E7 thereby influence miRNA expression itself. Via the degra-
dation of TP53 by E6, HPV downregulates the tumor suppressor miRNA miR-34a [168,169].
The suppression of miR-424 by E6 and E7 further results in CHK1 induction targeting DNA
damage repair [170], while low miR-424 expression is inversely correlated with CHK1
and p-CHK1 levels and associated with advanced FIGO stage, poor tumor differentiation,
lymph node metastasis and LVSI [171]. Elevated levels of miR-31 were further identified
as an independent prognostic factor associated with advanced FIGO stage, lymph node
metastases and LVSI. In this study, Wang et al. further identified ARID1A as a direct
target of miR-31 [172]. Notably, ARID1A loss is associated with trastuzumab resistance in
breast cancer [173]. In addition, upregulation of miR-20a/b was correlated with increased
proliferation, tumor growth, migration and invasion via AKT/p38 pathway activation
and inhibition of tissue inhibitor of metalloproteinase 2 (TIMP-2), fostering epithelial–
mesenchymal transition (EMT) [174,175]. Finally, overexpression of miR-375 increases
TP53, TP21, Survivin and Bax expression in line with caspase-3 and -9 activity in HPV18+
cervical cancer cells. The suppression of the insulin-like growth factor-1 receptor (IGF-1R)
could be another tumor suppressive mechanism exerted by miR-375 expression [176].

5.2. Long-Non-Coding RNAs

LncRNAs are encoded by a vast proportion of the human genome covering regulatory
transcripts exceeding 200 nucleotides that are associated with disease and cancer devel-
opment and progression by interacting with proteins, mRNAs and miRNAs [177–179].
Gene expression is regulated by cis-acting lncRNA or trans-acting lncRNAs, respectively.
Cis-acting lncRNAs recruit regulatory factors to specific gene loci, influence transcription
or splicing of genes or regulate adjacent genes and chromatin, while trans-acting lncRNAs
regulate distant gene expression via the interaction with promoters, RNA-polymerases and
other proteins [180].

HPV directly affects lncRNAs such as HOTAIR (HOX transcript antisense intergenic
RNA) and MALAT1. HOTAIR is an lncRNA encoded by the antisense strand of the HOXC
gene and controlled by HPV 16 E7. By recruiting the chromatin-remodeling complex PRC2,
HOTAIR is regulating the expression of cancer-related pathway genes [181]. Moreover,
HOTAIR sponges miRNAs such as miR-23b and miR143-3p, thereby modulating MAPK1
expression and the BCL2 axis, facilitating tumor cell proliferation and favoring metastatic
behavior [182]. In several cervical cancer cell lines, HOTAIR overexpression was shown
to have regulatory influence on additional signaling cascades such as the mTOR and the
Notch-Wnt pathway [183,184]. Additionally, HOTAIR fosters the malignant potential
via upregulation of VEGF, MMP-9 and other EMT-related genes. Therefore, HOTAIR
overexpression is associated with the presence of lymph node metastases and inferior
overall survival [185]. Remarkably, higher HOTAIR serum levels were also associated with
advanced T-stage, lymph node metastasis and LVSI, thereby impairing survival [184].

The regulation of EMT-related genes is accomplished by lncRNAs such as metastasis-
associated lung adenocarcinoma transcript 1 (MALAT1) [186]. The latter is overexpressed
in cervical cancer cell lines and in HPV-associated cervical cancer tissues sponging several
miRNAs [187]. Based on samples from 50 high-risk HPV+ cervical cancer patients, Lu et al.
demonstrated that MALAT1 expression is significantly elevated in radiation-resistant
tumors. Following radiation exposure, an inversely changed expression of MALAT1 and
the tumor suppressive miRNA miR-145 further suggests their interaction and substantiates
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the hypothesis of the regulatory effect of miR-145 on cell cycle regulators CDK6, CDK2 and
Cyclin D1 [188]. MALAT1 overexpression is further correlated with advanced tumors size
and FIGO stage, LVSI, lymph node metastases and impaired OS [189].

The lncRNA cervical carcinoma high-expressed 1 (CCHE1) is seen as a regulator
of the ERK/MAPK pathway and is considered a negative prognostic factor in cervical
cancer [190,191]. Correlated with advanced FIGO stages and other clinicopathological risk
factors, colon cancer-associated transcript 2 (CCAT2) is linked to a worse survival rate [192],
while growth arrest-specific transcript 5 (GAS5) has been identified as a tumor-suppressive
lncRNA in several entities including cervical cancer. On a mechanistic level, GAS5 may
increase radiosensitivity in cervical cancer cells via miR-106b and upregulation of forkhead
box O1 (FOXO1) and PTEN by sponging miR-196a and miR-205 [193–195].

Finally, Chen et al. established a set of six immune-related lncRNAs (AC009065.8,
LINC01871, MIR210HG, GEMIN7-AS1, GAS5-AS1 and DLEU1) to define a risk score, which
covers an independent prognostic signature in cervical cancer patients. Associated with the
Wnt and TGFβ pathways, the group hypothesized that the lncRNA prognostic signature
could help to identify subgroups of patients, which may benefit from immunotherapeutic
interventions [196]. Despite all limitations, this work, therefore, represents an interesting
approach towards personalized medicine.

5.3. Circular RNAs

CircRNAs are highly conserved, covalently closed RNA species that act in a regula-
tory network with miRNA and other inhibitory proteins, regulating and influencing gene
expression, cancer progression, EMT and the tumor microenvironment (TME) [197]. Char-
acteristic expression patterns in different types of cancer suggest circRNAs as tool to predict
and monitor disease-specific survival endpoints [198,199]. Indeed, a variety of circRNAs are
overexpressed and can function as oncogenes or tumor suppressors in cervical cancer [200].
In a microarray analysis of 35 cervical cancer tissues, 45 circRNAs were shown to be signifi-
cantly dysregulated in cervical cancer. Most prominent hsa_circ_0018289 was upregulated
in the cervical cancer tissues analyzed. In vitro and in vivo knockdown of hsa_circ_0018289
lead to decreased proliferation, migration and invasion of cervical cancer cells via sponging
miR-497 [201]. Moreover, hsa_circ_0023404 overexpression was associated with a poor
prognosis in cervical cancer and its knockdown was shown to suppress proliferation, cell
cycle progression and migration in a report by Zhang et al. [202]. Other reports classified
hsa_circ_0000263 as oncogenic circRNA affecting p53 in a regulatory network in cervical
cancer, while hsa_circ_0001445 may act as a tumor suppressor due to its ability to sponge
miR-620 [203,204]. The sequestration of miR-136 by hsa_circ_0023404 further promotes
the yes-associated protein 1 (YAP) signaling pathway via transcription factor CP2 (TFCP2)
and cancer progression, resulting in an impaired prognosis [202]. Hsa_circ_0023404 has
also been associated with VEGF induction in cervical cancer tissues, which is related to
increased metastasis rates and resistance to therapy [205]. Furthermore, a positive correla-
tion with TNM stage, tumor size and lymph node metastases and a negative prognostic
impact on survival is reported for hsa_circRNA_101996 expression [206]. Similar results
are reported for hsa_ circ_0067934 sequesting miR-545 in a regulatory network affecting
the EGFR axis [207]. Finally, in addition to endogenous circRNA, high-risk HPVs encode
oncogenic viral circRNA. CircE7 was shown to translate for E7 oncoprotein in a CaSki cell
line. Interestingly, knockdown of circE7 reduces tumor growth and malignant potential
in vitro and in vivo [208].

6. Circulating Tumor Cells (CTC), Circulating Cell-Free DNA (cfDNA) and miRNA in
Cervical Cancer

Advances in biotechnology techniques have enabled the detection of small amounts of
RNA and DNA as well as tumor cells in a patient’s peripheral blood. Circulating molecules
and markers represent a promising diagnostic, prognostic and dynamic tool and can be
easily performed as a liquid biopsy [209,210].
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6.1. Circulating Tumor Cells (CTCs)

The non-invasive, real-time collection of CTCs provides information about disease
status and progression and may help identify potential biomarkers for predicting outcome
and survival [211]. Analyzing blood samples (3.2 mL) from a cohort of 107 cervical cancer
patients, Du et al. detected one to 27 CTCs in 86 patients. Those patients had a significantly
shortened PFS. The negative impact of CTC detection on PFS was next confirmed in the
multivariate analysis [212]. In another study, a combination of CTC count and serum SCC
Ag levels was significantly associated with DFS in a cohort of 99 patients with locally
advanced cervical cancer treated with (C)RT and remained significant in multivariate
analyses [213]. Within the translational research of the randomized and prospective GOG
240 trial, the impact of the CTC count was evaluated in 176 patients with recurrent or
metastatic cervical cancer. The findings indicated that a more pronounced decrease in
the CTC count to be associated with a lower risk of death, while patients with a CTC
count ≥median revealed a significant survival benefit due to the addition of bevacizumab.
The authors consequently speculated that a high (≥median) pretreatment CTC count might
reflect increased neovascularization and vulnerability to VEGF inhibition [214].

Nevertheless, the impact of CTCs on cervical cancer remains inconclusive. This is
primarily due to the various isolation methods used for the detection of CTCs, making re-
producibility considerably more difficult, while large series for the validation of individual
methods are not available at present.

6.2. Circulating Cell-Free Tumor DNA (ctDNA)

The isolation of circulating tumor DNA (ctDNA) from the patient’s peripheral blood
allows a molecular characterization of the tumor and the identification of potential genetic
alterations [215]. In general, higher ctDNAs levels are associated with advanced FIGO
stage, tumor size, grading and lymph node metastases in small cohorts of patients with
cervical cancer [210,216]. Comparable to an extensive molecular characterization of cervical
cancer tissue, ctDNA provides information regarding mutational burden, amplifications
and alterations. Several groups have identified common target gene mutations in PIK3CA,
ALK, EGFR, ATM, BRCA2, ERBB2, APC, KRAS, BRAF, ABL1 and PTEN based on genomic
analyses of ctDNA [217–220]. The prognostic relevance of these signatures was further
evaluated by matching them with clinical data. For instance, Tian et al. identified a broad
spectrum of mutated genes in a cohort of metastatic cervical cancer patients. The presence
of any of these alterations was associated with an impaired PFS and OS. Patients with
more than two metastases had a significantly higher mutational burden than patients
with less than two metastases. In a serial ctDNA analysis, a decrease in the detected
genetic alterations was associated with treatment response, while disease progression was
inversely associated with a higher mutational burden [217].

6.3. Circulating HPV DNA

In a small cohort of 19 patients with metastatic cervical cancer, Kang et al. were
able to detect HPV cfDNA in all samples, while other authors reported the detection of
HPV related DNA from 6.9% up to 30% of invasive cervical cancer cases [221,222]. In
sequential samples from patients with complete response to CRT, a complete clearance
of HPV cfDNA became evident, while baseline HPV cfDNA levels had no impact on
treatment response [223]. This assumption was further corroborated by a meta-analysis
by Gu et al., who investigated the prognostic impact of HPV cfDNA in 684 patients from
ten studies. All studies included had a high specificity in common, whereas sensitivity
increased only in recent years. In summary, the meta-analysis revealed that HPV cfDNA
levels in liquid biopsies are suitable for diagnostic and monitoring purposes. The relatively
small sample size and the heterogeneity of the sampling methods, however, remains a
problem in assessing the prognostic value of HPV cfDNA serum levels [224].
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6.4. Circulating miRNAs

Several groups investigated singular circulating miRNAs or miRNA profiles in liquid
biopsies. Low levels of miR-218 in the serum of 90 cervical cancer patients were associated
with a higher incidence of lymph node metastases, a higher tumor volume and adenocar-
cinomas [225]. High levels of miR-205 were associated with large and less differentiated
tumors and lymph node metastases resulting in worse OS [226,227]. Similar results were
shown in small cohorts for serum levels of miR-20a and miR-101 [228,229]. Moreover,
miR-21 detection in 89 cervical cancer patients was also associated with a significantly
higher incidence of lymph node metastases. Qui et al. confirmed a significant correlation
of miR-21 levels and lymph nodes metastases in a more recent study with 112 early-stage
cervical cancer patients and 45 women diagnosed with CIN. Furthermore, high serum
levels of miR-21 were associated with impaired RFS, while similar findings were described
for low serum levels of miR-125b and miR-370 [230]. Jia et al. collected blood samples
from 213 women with early-stage disease and identified five altered circulating miRNAs
(miR-21, miR-29a, miR25, miR200a and miR486-5p) with miR-29a and miR-200a levels to
correlate with advanced tumor stages and poor differentiation [231]. Interestingly, these
results were consistent with the results from other groups investigating tissue samples
from cervical cancer patients for miRNA expression [232].

7. Tumor Microenvironment in Cervical Cancer

A network of immune and endothelial cells, fibroblasts, signaling proteins and ex-
tracellular matrix molecules within the tumor and the surrounding tissue constitutes the
TME [233]. In that context, immunosuppressive and immunogenic tumor-infiltrating im-
mune cells influence the prognostic landscape in cervical cancer, which is highly related to
and modulated by HPV [234] (Figure 4).

Tumor-infiltrating lymphocytes (TILs) interfering with immune checkpoint inhibitors
targeting PD-L1/PD-1 quickly became of interest to predict therapy response and sur-
vival [235]. HPV-related malignancies are associated with a high density of TILs. TILs
(CD3+) can be differentiated by specific markers that define corresponding subpopulations
such as helper (CD4+), cytotoxic (CD8+) and regulatory T-cells (FoxP3+, Tregs). In a cohort
of 120 patients with locally advanced cervical cancer treated with CRT, Enwere et al. were
among the first to assess the prognostic impacts of intratumoral CD8+ lymphocyte density
and PD-L1 expression. PD-L1 expression (≥1%) was recorded in 88% of patients. Neither
the presence of CD8+ lymphocytes nor PD-L1 expression was associated with survival
endpoints after primary CRT [236]. Conversely, immunohistochemical detection of CD3
(pan T-cell marker), CD4, CD8, CD20 (B-cells) CD206 (macrophages) and Tregs in a smaller
cohort of cervical cancer patients treated with CRT revealed an association of CD8+ TILS
with pelvic lymph node metastases, while elevated levels of CD3+, CD4+, CD8+, CD206+
and FoxP3+ lymphocytes were associated with improved PFS and OS [237]. Using flow
cytometry, Fan and colleagues investigated the prognostic impacts of PD-1 expression and
density of CD4+ and CD8+ lymphocytes in 47 cervical cancer patients. Here, a high PD-1
expression on CD8+ lymphocytes was significantly correlated with a higher incidence of
relapse. In addition, a low CD8/CD4-ratio was associated with poor OS in univariate and
multivariate analyses [238]. These contradictory results indicate the difficulties in estimat-
ing the prognostic and predictive value of immune parameters, which underlie circadian
fluxes and other factors. In a meta-analysis including 783 patients from seven studies, high
PD-L1 expression was associated with impaired OS (hazard ratio 2.52, p = 0.031). Notably,
in this meta-analysis only one study investigated PD-L1 expression in patients treated with
CRT [239]. Data on the impacts of TILs, as assessed in another meta-analysis, revealed a
shift from an immunosuppressive towards a highly immunogenic TME, with high levels
of cytotoxic and helper T-cells during carcinogenesis [240]. In this context, Tregs were
associated with shortened survival, suggesting their immune-inhibitory potential [241].
Another approach was pursued by Someya et al. Based on CD8, FoxP3, HLA-1, PD-L1,
and XRCC4 expression, they classified a set of 100 cervical cancers treated with CRT in
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“inflamed”, “excluded” and “cold” tumors. “Cold” malignancies were defined by a lack
of CD8+ lymphocytes in the tumor and stroma and were associated with a significantly
larger tumor volume and a worse DFS, while “inflamed” and “excluded” tumors showed
no statistical differences. The authors proposed that antitumor immunity is influenced by
radiotherapy, which may overcome the immunosuppressive TME and turn “cold” into
“hot” tumors [242]. A sufficient antitumor T-cell response requires an intact antigen presen-
tation mediated by antigen-presenting cells (APCs) and the tumor cell itself. HPV infection
modulates the innate immune system by changing human leukocyte antigen (HLA) expres-
sion and activates natural killer cell (NK cell) inhibitory receptors [243]. In addition, HPV
oncoproteins E5, E6 and E7 promote immune suppression and evasion. For instance, E5
inhibits the transport of major histocompatibility complex (MHC) molecules to the cell sur-
face, which present either viral or tumor-associated antigens [244,245]. Moreover, E6 and
E7 interact with type I IFN pathways, mitigating antiviral programs of immune response
or upregulating PD-L1 expression (E7) to facilitate lymphocyte dysfunction [234,246].
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Figure 4. Tumor microenvironment in cervical cancer (1). Immune cells, endothelial cells, fibroblasts,
signaling proteins and extracellular matrix molecules within the tumor TME and in lymph nodes
impact on tumor biology, therapy response and survival. The adaptive antitumor immune response
is mainly mediated by activated CD8+ T cells, while regulatory T cells (Tregs) and myeloid-derived
suppressor cells suppress the immune response (2). Further, the polarization status of tumor associ-
ated macrophages (TAMs) impact on treatment response and survival, while natural killer (NK) cell
activity is modulated and hindered by HPV+ tumor cells (3). Moreover, cancer-associated fibrob-
lasts (CAFs) promote apoptotic resistance, proliferation, angiogenesis, inflammation, invasion and
metastatic spread of cancer cells in a paracrine manner (4). Details are given in the text. Abbreviations:
CTLA4: cytotoxic T-lymphocyte-associated protein 4; COX2: cyclooxygenase 2; GM-CSF: granulocyte
macrophage colony-stimulating factor; PD1: programmed death 1; SDF-1: stromal cell-derived
factor 1; TCR: T-cell receptor; TGF-ß1 transforming growth factor beta 1. Adapted from “T Cell
Deactivation vs. Activation”, “Tumor-Specific T Cell Induction and Function” and “Cancer Cell
Mutations Affect Tumor Microenvironment”, by BioRender.com (accessed on 2021). Retrieved from
https://app.biorender.com/biorender-templates (accessed on October 2021).

Other immune components in the TME in cervical cancer are less well understood.
Tumor-associated macrophages (TAMs) are a major component of the TME with a pro-
nounced ability to adapt their phenotype and function in dependence of different circum-
stances within the TME [247,248]. Polarization of TAMs in proinflammatory, classically
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activated (M1) and immuno-suppressive (M2) subtypes determines their function. The
role of macrophages in tumorigenesis and treatment response remains controversial and
Janus-faced properties are considered a target for tumor-promoting and antitumor activi-
ties [249]. In cervical cancer, high counts of CD68+ (M1) and CD163+ (M2) macrophages
are significantly correlated to high-risk HPV infection and carcinogenesis. In transition
from CIN to cervical cancer, the density of CD163+ macrophages increases, indicating a
polarization towards a M2 subtype. High CD163+ counts were associated with higher
FIGO stages and the development of lymph node metastases [250]. Conducting RNA
sequencing in 90 cervical cancer patients and a comparative analysis with TCGA data from
286 patients, Qiu et al. investigated the landscape of infiltrating immune cells. In addition
to ethnical disparities, they indicated a consistent immune infiltration with high numbers
of activated dendritic cells and macrophages in HPV+ tumors. Interestingly, patients with
higher Tregs levels tend to have impaired survival, similar to M2 and resting macrophages,
which are associated with a poor prognosis [251]. Finally, a low M1/M2 ratio was an
independent predictor of poor response and worse survival in a cohort of 84 Italian woman
with locally advanced cervical cancer treated with CRT and surgery [252].

Less is known about cancer-associated fibroblasts (CAFs) in cervical cancer. In general,
CAFs are associated with malignant progression and an impaired outcome in many differ-
ent entities [253]. CAFs are known to secrete cyclooxygenase 2 (COX-2) and induce cancer
stem cell (CSC)-like activity, promoting apoptotic resistance, proliferation, angiogenesis,
inflammation, invasion and metastasis behavior of cancer cells [128]. CAFs derived from
five cervical cancer patients were evaluated in vitro for effects in co-culture with Hela cells.
Overexpression of transforming growth factor β1 (TGF-β1) and stromal cell-derived factor
1 (SDF-1) was associated with increased cell proliferation, migration, invasion, colony
formation and cell cycle progression, while apoptosis was decreased in Hela cells [254].
Furthermore, stromal remodeling processes mediated by CAFs are associated with higher
laminin-1 secretion, promoting invasion of CSCC7 cells in vitro [255]. In line with this,
Wei et al. very recently identified a pro-metastatic periostin+ subset of CAFs that is cor-
related with impaired survival. These CAFs activate an integrin–FAK/Src-VE–cadherin
signaling pathway to foster metastatic spread [256]. Regarding radiation response, Chu
et al. revealed a protective crosstalk between CAFs and cervical cancer cells mediated
by different growth factors and radiation response genes, including PDGF, VEGF, EGF,
GADD45 and BTG2 [257].

8. Microbiota in Cervical Cancer

The increasing knowledge of specific alterations in the composition of the intestinal
and cervicovaginal microbiota and its metabolites as well as interactions with neoplastic,
epithelial and immune cells in the TME demonstrates the critical role of the microbiome in
tumorigenesis and therapy [258]. Notably, global disparities in cervical cancer incidence
revealed an association between cervicovaginal infections and the incidence of CINs and
cervical cancer [259]. A recent systematic review and network meta-analysis suggested
a greater diversity of the cervicovaginal microbiota in HPV+ women, while a greater
diversity of cervicovaginal microbiota dominated by non-Lactobacilli species expect of
Lactobacillus iners was associated with high-risk HPV, CINs and cervical cancer [260,261].
The rising alpha diversity is frequently associated with bacterial vaginosis, including
Gardnerella, Prevotella, Atopobium and Sneathia, as well as the progression from CINs to
cervical cancer [262]. Gardnerella and Atopobium could be involved in forming a biofilm,
facilitating viral persistence [263,264]. In contrast, Lactobacillus crispatus was associated
with HPV clearance [260,261]. Moreover, specific bacterial species such as Fusobacterium are
under suspicion of promoting the malignant transformation in cervical cancer and other
entities [265–267].

During CRT, a significant decrease in the bacterial load of cervical cytobrush sam-
ples was observed, while neither alpha- nor beta-diversity significantly changed [268].
Sims et al. succeeded in showing that the diversity of the gut microbiota could act as pre-
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dictor of the survival of cervical cancer patients after CRT. In fecal specimens of 55 patients,
the group observed a significant enrichment of Escherichia, Shigella and Enterobacteriaceae.
Enterobacteriales species were dominant in long-term survivors. In addition, a higher diver-
sity of the gut microbiome correlated with an increased tumor infiltration of activated CD4+
lymphocytes in tumor brush samples, indicating an interaction of the microbiome and the
TME [269]. Although longitudinal studies are still lacking and are need to draw a firm
conclusion, microbiota appear to contribute to persistent HPV infection and progression of
invasive forms of cervical cancer.

9. Conclusions

To date, most approaches used to identify and validate robust and feasible biomarkers
to predict treatment response and survival for women with cervical cancer in the clinical
routine have failed. Regardless, clinical parameters form the basis of treatment decisions
and may be used to estimate prognosis. Therefore, HPV infection is an important deter-
minant of response to CRT, impacting a variety of pathways and the immunogenicity of
the tumor.

Despite the multitude of dysregulated pathways and extensive research over the
last decades, protein biomarkers are not routinely used in predicting therapy response
and survival. In contrast, miRNAs and circulating tumor cells or tumor DNA could be
used as potential dynamic biomarkers to detect persistent or recurrent disease response in
the future. Similarly, this information may help in monitoring and predicting treatment
response and outcome, as well as in identifying potential molecular targets.

Immunotherapies have rapidly transformed the treatment of solid tumors over the
past decade. In this context, the TME has increasing importance. Tumor development,
progression and metastatic behavior are critically influenced by the composition of the TME,
resulting in a close association with outcome and survival. Nevertheless, immunotherapy
only effects a restricted number of patients and conclusive results of ongoing studies
on the implementation of immunotherapy in the primary setting in cervical cancer are
still pending.

In summary, accurate prediction of treatment response and survival will help to
implement personalized therapies that may improve the treatment of cervical cancer
patients. As stated before, the identification of simple, valid and reproducible biomarkers
will cover a critical role in this process. At present, however, usage of these markers is
neither concise nor clear. Thus, further efforts are needed to implement new approaches
and to achieve and expand a holistic view of the multifaceted nature of uterine cervical
cancer. Finally, we have to make these achievements accessible to the majority of patients.
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