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SUPPLEMENTARY DISCUSSION

A. Stacking potential energy landscapes

Here we study the dependence of the total energies of 1T-TaSe2 bilayers on the local atomic stacking (Supplementary
Figure 1a) and the stacking of the CCDW centers (Supplementary Figure 1b).

Dependencies on the local atomic stacking can be inferred from the stacking potential energy landscapes derived
from our DFT calculations for undistorted bilayers of 1T-TaSe2. The non-twisted and 180○ twisted cases are shown
in Supplementary Figure 1a. For non-twisted bilayer, Ta from the top layer above Ta from the bottom layer (stacking
I) is the most stable configuration. Top layer Ta above bottom layer Se (stacking III) results to be a local minimum.
For 180○ twisted bilayer, the most stable configurations are given for Ta on top of Se (stackings III and V). Regarding
the local atomic arrangement, the honeycomb stacking discussed in the main text corresponds to configuration III.

Energy differences between different stacking configurations of the CCDW centers in the distorted non-twisted
1T-TaSe2 bilayers are given in Supplementary Figure 1b with the labeling of the configurations being defined in
Supplementary Figure 1c: AA, AB and AC refers to CCDW centers of the top layer on top of a Ta atom from
the bottom layer (local configuration I). Both, AtX and AbX refer to arrangements, where the Ta atom in the
CCDW centers from one layer is on top of / beneath Se atom sites in the other layer (local configurations III and V,
respectively). In this notation, At3 is the honeycomb stacking that is considered in the main text.

It becomes clear that the undistorted bilayer (Supplementary Figure 1a) already gives a good overall estimate of
the total stacking differences energies of the CCDW bilayer (Supplementary Figure 1b). Hence, also in the CCDW
case, the stacking potential energy landscape is dominated by contributions from the local atomic stacking.

In the CCDW non-twisted bilayer, the total stacking energies using DFT-D2 and DFT-D3 calculations are similar,
with a small deviation for the most unfavorable stackings AbX (local configuration V). The resulting crystal and band
structures in both methods (not shown) are also equivalent. The energy differences between Ta on top of Ta (AA,
AB, AC) and Ta on top of Se above the Ta plane (At1, At2, At3) are relatively small, i.e. on the order of 10 meV
per f.u.. This means that the potential energy landscapes are very flat, which is in line with realizations of multiple
stacking configurations in experiments.

Assuming that the 180○ twisted bilayer is similar to non-twisted case in that the potential energy landscape is
dominated by contributions from the local atomic stacking, we expect that stackings AtX and AbX are the most
stable ones in the 180○ twisted case. This would support formation of the honeycomb pattern in the 180○ twisted
case, while again flat potential energy landscapes are expected.

B. Wannier tight-binding model

The relevant subspace B for the low-energy bands of (distorted) CCDW 1T-TaSe2 monolayer and bilayer contains
mainly dz2 orbitals from Ta atoms in the centers of the stars-of-David (SoD, see Fig. 1). We construct a corresponding
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Supplementary Figure 1. Stacking potential landscapes for 1T-TaSe2 bilayers. a, Potential energies for undistorted
1T-TaSe2 bilayer in the non-twisted and 180○ twisted cases. The inset shows the nomenclature of the different stacking
configurations I-VI with bottom layer Ta atoms in red and Se atoms above and below the bottom Ta plane in green and pink,
respectively. The stacking of the top layer is marked with blue dots and latin numbers. Blue dots refer to the position of the Ta
atom in the top layer, starting from the perfectly aligned bilayer in I. Non-twisted bilayer shows a total minimum for stacking
I (perfect alignement), and a local metastable minimum for stacking III (Ta on top of the Se above the Ta plane). For 180○

twisted bilayer, stackings III and V are degenerate and are the most stable configurations. In the ideal honeycomb stacking,
the CCDW 1T-TaSe2 bilayers have a local stacking with the Ta in the top layer (approximately) above Se in the bottom layer,
i.e. configurations III and V. b, Total energies per formula unit and interlayer distances d versus stacking configurations in the
CCDW non-twisted bilayer 1T-TaSe2 as obtained within the DFT-D2 and DFT-D3 approaches. c, Nomenclature used for the
different CCDW stackings, where blue, green and magenta dots describe the location of the Star-of-David (SoD) centers from
the top layer. Thus, stacking AA corresponds to perfectly aligned CCDW bilayer. Stackings AtX stand for SoD central Ta
atom from the top layer aligned to the Se atom above the Ta plane from the bottom layer, and AbX for SoD center from the
top layer above the Se atom below the Ta plane from the bottom layer. DFT-D2 and DFT-D3 calculated energies are similar,
with a discrepancy of approximately 20 meV per f.u. for the AbX stackings. For Ta on top of Ta (AA, AB, AC) and Ta on
top of Se above the lower Ta plane (At1, At2, At3) energy differences are ≲10 meV per f.u.. Stacking At3 is the one considered
in the main text.
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Supplementary Figure 2. Ab-initio DFT band structure versus Wannierization for non-twisted and 180○ twisted
CCDW 1T-TaSe2 bilayer. DFT bands (red solid lines) are compared with our Wannier tight-binding model (black dashed
lines) for non-twisted (left panels) and 180○ twisted (right panels) bilayers. Top panels show the case without SOC included,
the bottom panels with SOC taken into account. Our Wannier tight-binding models fit the DFT band structures obtained for
CCDW 1T-TaSe2 bilayers very well.

minimal tight-binding model using Wannier90 code [1]. The Wannier basis is B = {dtop
z2
, dbottomz2 } for each spin, where

the superscripts refer to SoD center Ta atom from top and bottom layers. We use a Γ-centered k-mesh of 9×9×1 if
SOC is not included in the calculation, and Γ-centered k-mesh of 6×6×1 when SOC is included. In the latter case, an
inner energy window covering states at K (and K’) and M is considered, while leaving out the ones at Γ. We show in
Supplementary Figure 2 the comparison between the DFT bands and our Wannier tight-binding model. Our model
captures very well the low-energy bands of non-twisted and twisted CCDW 1T-TaSe2 bilayers.
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C. k ⋅ pk ⋅ pk ⋅ p model of low energy bands

We derive the effective model describing the low-energy band structure around the K and K’ points by using the
k ⋅ p perturbation theory [2, 3] for the perturbed Hamiltonian H = HI +HII +HIII, including Pauli-type spin-orbit
interaction, where:

HI =
h̵

m
k ⋅ p (1)

HII =
h̵

4m2c2
(∇U × p) ⋅σ ≡ h̵

4m2c2
A ⋅σ (2)

HIII =
h̵2

4m2c2
(∇U × k) ⋅σ ≡ h̵2

4m2c2
(k ×σ) ⋅ ∇U. (3)

The non-zero matrix elements of such perturbed Hamiltonian can be determined from group theory and exploiting the
transformation properties of the one-electron wave functions under the symmetry operations of the high-symmetry
point K. The knowledge of the little group of K allows to define a set of linear equations [4]:

⟨uµν ∣Oαβ ∣uij⟩ =
1

h
∑
R

∑
ν′β′j′

µD∗
ν′ν(R)αDβ′β(R)

×iDj′j(R) ⟨uµν′ ∣O
α
β′ ∣uij′⟩ (4)

where h is the order of the group, uµν represents the ν-th component of the basis function of a representation µ and
Oαβ is an operator that transforms like the β-th component of the basis function of a representation α, while iDj′j(R)
is the (j′j) element in the matrix representative of the group element R in the i-th representation. The non-twisted
(180○-twisted) CCDW bilayer belongs to the P 3̄ (P3) space group; both structures display a three-fold rotation C3

around an axis perpendicular to the bilayer, while the non-twisted stacked bilayer is also centrosymmetric, the two
layers being inversion partners. At point K only C3 symmetry is preserved, and non-relativistic bands can be grouped
in a one-dimensional single-valued irreducible representation (IR) K1 and in two-fold degenerate K2K3 IR for the
space group P 3̄; when the symmetry is lowered to P3, bands belonging to K2 and K3 are not degenerate anymore.
The single-valued IRs, the corresponding characters and the basis functions are listed in Table 1. By introducing a
general operator π with components

π1 = pz, π2 =
1√
2
(px + i py) , π3 =

1√
2
(px − i py) , (5)

each trasforming as K1,K2 and K3, respectively, one can use equation (4) to identify its symmetry-allowed non-zero
expectation values on the basis functions φ2, φ3 spanning the K2K3 IR:

⟨φ2∣π3∣φ3⟩, ⟨φ3∣π2∣φ2⟩, ⟨φ2∣π1∣φ2⟩, ⟨φ3∣π1∣φ3⟩. (6)

In this basis, therefore, the following k ⋅ p model is found to fulfill the point-group symmetries of the wave vector
at K:

H = ( λ1σz + α1(kxσy − kyσx) −h̵vfk+ + λR(iσx − σy) + λDk+σz
−h̵vfk− − λR(iσx + σy) + λDk−σz λ2σz + α2(kxσy − kyσx) )

(7)

where k± = kx ± iky and we introduced the following parametrization:

vf =
1

2m
⟨φ2∣px − ipy ∣φ3⟩

λ1 =
h̵

4m2c2
⟨φ2∣Az ∣φ2⟩

λ2 =
h̵

4m2c2
⟨φ3∣Az ∣φ3⟩

λR = −i h̵

4m2c2
1

2
⟨φ2∣Ax − iAy ∣φ3⟩

λD = −i h̵2

4m2c2
1

2
⟨φ2∣(∇U)x − i(∇U)y ∣φ3⟩

α1 =
h̵2

4m2c2
⟨φ2∣(∇U)z ∣φ2⟩

α2 =
h̵2

4m2c2
⟨φ3∣(∇U)z ∣φ3⟩. (8)
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The effective model must also obey time-reversal symmetry Θ = T̂K, whereK is the complex conjugation and T̂ = iσy11.
However, since K point is not time-reversal invariant, acting with the Θ operation will map the Hamiltonian relative
to point K to the time-reversal partner K’. Additionally, inversion symmetry also must be enforced for the non-twisted
honeycomb structure, where the inversion operation P̂ = 11Sx, swapping the basis functions, also maps the Hamiltonian
equation (7) from point K to point K’. Here S represents the sublattice pseudospin, spanning the two-dimensional
space defined by the basis functions φ2, φ3.

Imposing both time-reversal and inversion invariance, one finds that λR = 0, λD = 0 and:

λ1 = −λ2 ≡ −λSOC α1 = −α2 ≡ αR2 (9)

recovering the effective k ⋅p model of equation (1) in the main text, describing the low-energy band structure around
K, K’ points of non-twisted honeycomb CCDW bilayer. Imposing only time-reversal symmetry, as relevant for the
twisted CCDW bilayer, implies that all terms appearing in equation (7) are allowed by symmetry. Furthermore, the
lack of inversion symmetry (coinciding here with a sublattice-symmetry breaking) removes all degeneracies of the
unperturbed non-relativistic bands, thus introducing an effective mass term M that acts as a staggered potential. By
introducing the following parametrization:

B = 1

2
(λ1 + λ2) λSOC = 1

2
(λ1 − λ2)

αR1 =
1

2
(α1 + α2) αR2 =

1

2
(α1 − α2) (10)

we recover the low-energy model equation (2) in the main text, describing the band structure in the vicinity of the
K, K’ points.

We conclude this appendix noticing that the low-energy Hamiltonian equation (7) almost coincides with the one
derived in Ref. [5] for a graphene-based system with C3v symmetry, but for the additional spin-momentum coupling
term parametrized by λD and allowed here by the lower C3 symmetry. In fact, a minimal tight-binding model
reproducing the low-energy band structure in the vicinity of K and K’ points can be derived following the general
scheme outlined in Ref. [5] and taking into account the reduced symmetry. Alongside the intrinsic SOC (next-nearest
neighbor spin-conserving hopping, that is sublattice dependent due to lack of sublattice symmetry, parametrized here
by λ1, λ2), the lack of any horizontal reflection allows for the so-called “pseudospin inversion asymmetric” SOC [6]
(next-nearest neighbor spin-flipping hopping, also sublattice dependent, parametrized here by α1, α2) and, together
with inversion-symmetry breaking, for the Rashba SOC [7] (nearest-neighbor spin-flipping hopping, parametrized
by λR). The no-go arguments of Ref. [5] also implies that the lack of any vertical reflections in the C3 structural
symmetry allows for a purely imaginary nearest-neighbor spin-conserving SOC hopping, whose coupling constant can
be parametrized by λD.

We obtain all effective parameters entering in the low-energy models around K and K’ from a first-order Taylor
expansion in k-space of the Wannier tight-binding models described above in terms of the external field Ez, see
Supplementary Figure 3.

E 3+ 3− basis functions
K1 1 1 1 Pz, Az

{
K2 1 ω ω∗ Px + iPy, Ax + iAy

K3 1 ω∗ ω Px − iPy, Ax − iAy

Supplementary Table 1. Character table for the little group at K. Here ω = ei
2π
3 , and P (A) stands for polar (axial) vector.

Notice that polar and axial vectors transform in the same way under the symmetry operations of C3 point group.

D. Topology

The topological properties of the twisted and non-twisted TaSe2 bilayers without the effects of correlation are
studied using the Wannier charge center evolution, as described in [8]. Using the Wannier tight-binding Hamiltonians
as input, we determine the Z2 invariant to assess whether they describe a trivial or a quantum spin Hall insulator.

For the non-twisted structure we find that the Z2 invariant equals 1 for all values of the electric field between 0 and
0.43 mV Å−1 while Z2=0 for all other E-field strengths. For the 180○ twisted bilayer we find Z2=0 for all calculated
E-field strengths instead.

In order to understand why the 180○ twisted bilayer does not show any topologically non trivial phases we analyze
the influence of the terms entering the Hamiltonian H180○ from equation (2) of the main text. We proceed from the
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Supplementary Figure 3. Parameters of the k ⋅p expansion around Brillouin zone corners K,K ′ of the Wannier
Hamiltonitans. Parameters for a, non-twisted and b, 180○ twisted CCDW 1T-TaSe2 bilayer in vertical electric fields. The
Semenoff mass M , Kane-Mele SOC λSOC, spin-valley coupling B, and Rashba SOC λR are shown as function of vertical electric
field Ez.

Wannier Hamiltonian of the non-twisted bilayer and artificially add and vary parameters occurring in H180○ from
equation (2). Specifically, we consider a parameter space, where we vary the Semenoff mass M , the Rashba-spin
orbit term λR and the spin-valley coupling term / valley Zeeman B. To determine the topological properties of
non-interacting Hamiltonians in this parameter space, it turns out to be numerically efficient to track the minimal
gap in the band structure and to identify connected regions of the parameter space with strictly non-zero gap, which
are bounded by a submanifold of the parameter space with zero gap. If one point inside has Z2 ≠ 0 (Z2 = 0) the whole
region is topologically non-trivial (trivial). The resulting topological phase diagrams are shown in Fig. 3c of the main
text.

It is useful to compare our system to the well-known case of the ideal Kane-Mele model [7]. The characteristic
shape of the phase-diagram with the Rashba coupling (λR) on the y-axis and the staggered potential M (referred to as
Semenoff mass) on the x-axis in the ideal Kane-Mele model resembles that of an onion [7]. We observe this behavior
for the non-twisted case, see leftmost panel of Fig. 3c. The yellow horizontal line represents the trajectory of our
Hamiltonian upon changing the electric field Ez. The main effect of Ez is to change M according to M ≈M0+eEzd/ε⊥
(see Supplementary Figure 3) and hence Ez drives the 0○ twisted system from inside the topological region to the
outside.

Upon twisting, we reduce the symmetry from D6h to C3v consequently switching on various terms in H180○ , as
described in Ref. [5], among which the most important ones are the previously-mentioned Semenoff mass M , Rashba-
spin orbit λR and the spin-valley coupling B. The main effect of B is to shift two of the bands having the same
sublattice but different spin character at the K-point towards each other. This yields a deformed onion as topological
region, where the topological region on the λR axis is reduced. (See Fig. 3c of the main text for the case of
B/λSOC = 0.9.) Eventually when ∣B∣ = ∣λSOC∣ the topological non-trivial region is completely suppressed and only a
vertical band touching line remains, which, however, does not separate a trivial from a non-trivial region. The latter
case is similar to the phase diagram of the 180○ twisted TaSe2 bilayer. The effects of B and λR can, thus, qualitatively
explain the differences observed for the topological phases of the non-twisted and 180○ twisted structure. In the 180○

twisted structure, λSOC is additionally strongly reduced, which further contributes to suppressing the QSH phase.
Following this line of argumentation the electric field in the 180○ twisted case induces a gap closing and a reopening
but does not induce a topological phase transition.

In the non-twisted case, where we find QSH states in absence of interactions, we study the impact of correlations
on the topological phase diagram within the TPSC approach. These calculations confirm the generic shape of the
schematic phase diagram shown in (Fig. 2e).

It is known [9] that sufficiently strong Coulomb repulsion U can change the nature of the topological phase transition
between QSH and band insulator from continuous with a band-touching point at the transition – as in the non-
interacting Kane-Mele or Bernevig-Hughes-Zhang models – to first-order with discontinuous jump of the gap (solid
line in Fig. 2e). Since the electric field Ez directly controls M , one can possibly tune the non-twisted system through
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Supplementary Figure 4. Momentum dependent intra- and inter-sublattice parts of the self-energy as obtained
from the TPSC calculations. The a, intra- and b, inter-sublattice parts of the self-energy are obtained at T = 0.005 eV= 58 K.
The antiferromagnetic fluctuations lead to a significant non-local inter-sublattice self-energy ΣAB

.

this exotic first-order transition in experiments by varying Ez.

E. DMFT and TPSC

As shown in the main text (Fig. 2), TPSC and DMFT consistently yield quasiparticle weights Z ≈ 0.75 for
temperatures in the range 60-230 K for non-twisted CCDW 1T-TaSe2 bilayer. Also double occupancies ⟨n↓n↑⟩ ≈ 0.15
agree well between TPSC and DMFT in this temperature range. These results consistently put non-twisted CCDW
1T-TaSe2 bilayer at intermediate local correlation strength and clearly far away from a paramagnetic Mott Hubbard
transition.

The onset of non-local correlations can be inferred from the temperature dependent enhancement of antiferromag-
netic susceptibilities and correlation lengths, which we obtained with TPSC and show in the main text (Fig. 2).
These correlations manifest in sublattice off-diagonal contributions to the self-energy shown in Supplementary Figure
4.
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