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Abstract

Twisted heterostructures of van der Waals materials have received much attention

for their many remarkable properties. Here, we present a comprehensive theory of

the long-range ordered magnetic phases of twisted bilayer α-RuCl3 via a combination

of first-principles calculations and atomistic simulations. While a monolayer exhibits

zigzag antiferromagnetic order with three possible ordering wave vectors, a rich phase

diagram is obtained for moiré superlattices as a function of interlayer exchange and

twist angle. For large twist angles, each layer spontaneously picks a single zigzag

ordering wave vector, whereas, for small twist angles, the ground state involves a

combination of all three wave vectors in a complex hexagonal domain structure. This

multi-domain order minimizes the interlayer energy while enduring the energy cost due

to the domain wall formation. Our results indicate that magnetic frustration due to

stacking-dependent interlayer exchange in moiré superlattices can be used to tune the

magnetic ground state and enhance quantum fluctuations in α-RuCl3.
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α-RuCl3 is a van der Waals (vdW) magnet that has attracted a lot of attention in re-

cent years as a promising candidate for a Kitaev quantum spin liquid.1 However, its zigzag

antiferromagnetic (AFM) order below TN ∼ 7 K2–6 indicates deviations from the Kitaev

model. The specific nature of these deviations has been theoretically and experimentally

intensively scrutinized, with many works pointing to additional large anisotropic couplings

beyond the Kitaev interaction and long-range exchange likely stabilizing magnetic order.7–12

Under application of an in-plane magnetic field the zigzag order is suppressed leading to a

field-induced ‘disordered’ phase, whose nature is presently still under intensive debate, spe-

cially due to initial reports of the observation of half-quantized thermal Hall conductivity.13

This behavior would correspond to a chiral Kitaev spin liquid state.1 However, these re-

sults have not been corroborated so far.14–16 Alternatively, there have been promising routes

to investigate the emergence of novel phases beyond the zigzag AFM order by considering

such approaches as chemical doping,17 strain fields18–21 and graphene substrates.22–29 In the

present work, we explore yet a new route to modify the magnetism in α-RuCl3, by exploring

the properties of twisted bilayers of α-RuCl3.

Moiré superlattices of van der Waals materials have surfaced as new tunable quantum

platforms for the realization of emergent phases on every front including graphene,30 semi-

conductors,31 and superconductors.32 While moiré engineering of electronic phases has been

studied extensively, research in moiré superlattices comprised of magnetic materials is at

its early stages. A range of novel non-coplanar phases have been predicted in moiré vdW

magnets33–43 and some of these phases have been observed experimentally.44–46 Given that

monolayers of α-RuCl3 can be isolated by exfoliation methods47,48 and heterostructures with

other vdW materials such as graphene can be constructed,25 moiré engineering in α-RuCl3

can be explored as a means to tune its magnetism.

Here, we study the long-range ordered magnetic phases of twisted bilayer α-RuCl3 by a

combination of first-principles calculations and atomistic simulations. Our main results are

as follows: (i) we obtain the stacking dependent interlayer exchange within the moiré unit
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cell and show that the two layers are coupled antiferromagnetically for different stacking

orders. (ii) Among the three inequivalent ordering wave vectors (qi, i = 1, 2, 3) for the

zigzag AFM order (see Fig. 2), the two layers spontaneously pick different q’s on each layer

for large twist angles. This single-q phase (1q − 1q) has no domain wall but the interlayer

exchange energy averages to almost zero. (iii) For small angles or large moiré periodicity,

the ground state incorporates all of the three q’s in a complex domain structure (3q − 3q).

These domains resemble a hexagonal shape and minimize the interlayer exchange. However,

these domains are separated by domain walls that cost energy. (iv) Comparing the interlayer

exchange and domain wall energy, we obtain an analytical formula for the transition between

these two phases which agrees well with the atomistic simulations. (v) In the vicinity of the

(1q − 1q) and (3q − 3q) phase boundary, we obtain an intermediate phase with two q’s on

each layer (2q − 2q) that has both domain walls and finite interlayer exchange energy.

We start by introducing the spin Hamiltonian which describes the magnetic properties

of twisted bilayer α-RuCl3. For simplicity we limit ourselves to a minimal set of exchange

parameters, which have proven to provide a reasonable description of several experimental

observations in α-RuCl3:
9

H = H1
intra +H2

intra +Hinter, (1)

where H
1(2)
intra contains the intralayer exchange terms in layer 1 (2) and Hinter contains the

interlayer exchange,

Hintra =
∑

⟨ij⟩γ

[
J1Si · Sj +KSγ

i S
γ
j + Γ(Sα

i S
β
j + Sα

j S
β
i )
]
+ J3

∑

⟨⟨⟨ij⟩⟩⟩
Si · Sj, (2)

Hinter =
∑

⟨ij⟩
J⊥(rij)S

1
i · S2

j . (3)

where γ = x , y, z type bonds on the honeycomb lattice. J1(3) is the (third) nearest-neighbor

Heisenberg exchange, K and Γ are the Kitaev and the symmetric anisotropic exchange inter-

action terms.7,8 J⊥(rij) is the interlayer exchange coupling and rij represents the interlayer
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displacement.

For the intralayer exchange parameters, we used K = −5 meV, Γ = 2.5 meV, J1= -

0.5 meV, and J3 = 0.5 meV as obtained in Ref. 9. In order to determine the interlayer

exchange, we perform first-principles density functional theory (DFT) calculations for three

different bilayer stackings (AA, AB’, and AB) shown in Fig. 1 (details on the ab initio DFT

calculations are provided in the Supporting Information). For each stacking, we extract

the energy difference (∆E) between two spin configurations: ferromagnetic (FM), with FM

planes coupled FM out-of-plane, and antiferromagnetic (AFM), corresponding to FM planes

coupled AFM out-of-plane. Even though the magnetic ground state in RuCl3 is zig-zag-like,

as mentioned above, we use the energy difference between these simpler spin configurations

to obtain an estimate of the effective interlayer exchange. Importantly, for all stackings we

obtain a lower energy for an effective AFM interlayer coupling.

For the three stacking orders used, we construct an interlayer spin hamiltonian in which

the exchange coupling depends on the displacement, J⊥(rij) and we equate the energy dif-

ference from the ab initio DFT alculations (∆E) to the corresponding effective interlayer

spin Hamiltonian. For instance, the unit cell for the AA stacking used in the first-principles

calculations has 4 interlayer bonds with rij = 0 and 12 bonds with rij = a/
√
3 (see Fig.

1(a-c) for a schematic picture of the interlayer bonds). In this manner, we obtain three

equations for the three different stacking patterns used.

4J⊥(0) + 12J⊥(a0) = ∆EAA/2 = 3.2 meV (4)

8J⊥(a0/3) + 8J⊥(2a0/3) = ∆EAB′/2 = 1.6 meV (5)

2J⊥(0) + 18J⊥(a0) = ∆EAB/2 = 2.8 meV (6)

where a0 = a/
√
3 is the bond length on the honeycomb lattice. We implement a cut-off for the

range of the exchange interaction, J(r = 2a/3) ≥ 0 and solve the Eqs. 4, 5 and 6, obtaining

J(0) = 0.5 meV, J(a0/
√
3) = 0.2 meV and J(a0) = 0.1 meV. Similar values of the interlayer
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(d)

ABAB'AA

Figure 1: (a-c) Schematic representation of the three different stackings used in our first-
principles DFT calculations displaying the interlayer neighbors exchange couplings consid-
ered (for half a unit cell) as shown in Eqs. 4-6. (d) Continuous interlayer exchange cou-

pling function J⊥(r) = J⊥(0)e
−B

√
C2+r2

C /e−B as a function of displacement r. Here, we use
J⊥(0) = 0.5 meV obtained from our ab initio DFT estimation.

exchange parameters have been reported in previous work.49,50 To determine a continuous

J(rij), we fit these values to an exponential decaying function, J⊥(r) = J⊥(0)e
−B

√
C2+r2

C /e−B

(as shown in Fig. 1(d)) with B = 0.04898 and C = 0.02943 being the fitting parameters.

For a bilayer ‘untwisted’ α-RuCl3 with AA stacking order, the antiferromagnetic inter-

layer exchange is not frustrated and the energy is minimized when both layers have the same

single-q zigzag order. Due to the three-fold rotational symmetry, there are three possible

single-q patterns as shown in Fig. 2. On the contrary, for moiré superlattices, the real space

stacking within the moiré unit cell changes as a function of displacement R. For small twist

angles, the local stacking can by described by a translational shift, r(R) ≃ θẑ×R as shown

5



Figure 2: Spin textures for the zigzag AFM order for a 7 × 7 system. There are three
inequivalent ordering wave vectors (a) q1, (b) q2 and (c) q3 that are related with C3 symmetry.

in Fig. 3 (a). Due to this varying shift, the nearest neighbour spins in two layers cannot

be anti-parallel throughout the moiré unit cell when both layers have the same single-q or-

der. To show this effect, we present in Fig. 3 (b),(c) and (d) the projections of the nearest

neighbour spins of layer-2 on the spins of layer-1 times the exponential decaying function

e
−B

√
C2+r2

C /e−B used above for J⊥ for q1, q2, and q3 respectively. For (1q − 1q) zigzag order

with q1 on each layer, the spins are parallel at R0 with a zero shift as shown in Fig. 3 (b). At

R1 and R2, the translational shifts are a1 and a2, respectively, and both of these shifts move

a parallel spin to the location of an anti-parallel spin. The whole pattern of varying parallel

and anti-parallel local stacking orders can be obtained in this way for the q2 and q3 orders as

well. Based on the local translational shifts, the (1q− 1q) zigzag order in a 2× 2 moiré unit

cell can be divided into three equal parts as shown in Fig. 3 (b), (c), and (d). In one-third

area, the spins are aligned parallel to each other and this area is represented by red color,

whereas in the second one-third area, they are arranged anti-parallel (blue color). In the

last one-third area, the spins are both parallel and anti-parallel (white color). Therefore, the

total interlayer exchange energy averages out to zero. Even though this analysis is carried

out when both layers have the same wave vector, it holds true for different qi’s on each layer

as well.

However, the interlayer energy can be minimized if there are multiple-q zigzag patterns in

each layer that are separated by domain walls. In Fig. 3 (b), (c) and (d), the white regions

represent the areas where q1, q2 and q3 orders cannot gain interlayer energy, respectively.
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Figure 3: Moiré pattern and projection of the nearest neighbor spins of layer-2 on the spins
of layer-1 in twisted bilayer RuCl3. (a) Moiré pattern of a twisted bilayer system. For small
angle the local stackings of the moiré unit cell can be considered as the untwisted bilayer
system with one layer shifted by displacement r. (b) q1 zigzag order and the projection of
first nearest neighbour spins of layer-2 on the spins of layer-1 times an exponential decaying
function of in-plane displacement r with q1 zigzag order in both layers of a 2×2 moiré unit
cell, (L ∼ a/θ). The red and blue colors represent parallel and anti-parallel spins respectively.
(c) and (d) represent the same analysis as (b) for q2 and q3, respectively.
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(a)

0 L 2L
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0 L 2L
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Figure 4: (a) Schematic representation of constraints on the wave vectors that minimize the
interlayer exchange energy. Red, blue and green diamonds represent regions where only q1,
q2 and q3 can gain interlayer energy respectively. On the other hand, violet, yellow and pink
colors represent regions where q1, q2 and q3 on their own cannot gain energy. White color
represent regions where all the three q’s can gain interlayer energy. (b,c) Two examples of
multi-domain structures that minimize the interlayer exchange energy. Red, blue and green
colors represent q1, q2 and q3 zigzag orders respectively. The white hexagons in (b) represent
regions where any of the three q’s is allowed.

These regions are combined in a single graph in Fig. 4(a) that shows a schematic repre-

sentation of constraints on the wave vectors that minimize the interlayer exchange energy.

We implement the following color coding: the intersection of yellow and magenta bars is

represented by red diamonds where both q2 and q3 orders cannot gain energy. Therefore, the

red diamonds display q1 order. Similarly, blue and green diamonds represent regions where

only q2 and q3 can gain energy respectively. The violet, yellow and pink colors represent

regions where only q1, q2 and q3 cannot gain energy. In the white region, any of the three

wave vectors can gain energy. Applying these rules, we have constructed two examples of

multi-domain structures in Fig. 4 (b) and (c). The white hexagons in Fig. 4 (b) can be filled

with any of the three q orders. The domain structure in Fig. 4(c) was predicted in Ref. 34

using a continuum model instead. Both of these configurations ((b) and (c)) fully minimize

the interlayer energy and only differ by the domain wall length.

The competition between the domain wall and the interlayer energy leads to interesting

phases as a function of the moiré period (or twist angle) and interlayer coupling. We obtain

the corresponding phase diagram by solving the Landau-Lifshitz-Gilbert (LLG) equation51

for both layers as shown in Fig. 5(a). For the interlayer exchange, we use the form derived
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from first-principles calculations but we vary the overall amplitude, J⊥(0). For small moiré

period (or large twist angle), the ground state is in a (1q−1q) phase as shown in in Fig. 5(b).

In this phase, both layers have different single-q zigzag patterns. These zigzag patterns

are deformed from perfect order, leading to some gain in interlayer energy. The degree of

deformation increases with J⊥. For large moiré periodicity (L) and large J⊥, we obtain the

(3q−3q) phase. In this phase, all three possible zigzag patterns are formed as shown in Fig. 5

(c). This phase is consistent with Fig. 4 (b) and the shape of the zigzag patterns is hexagonal.

One of the three q’s occupies the white hexagons of Fig. 4 (b) and it forms a larger domain of

three hexagons connecting the opposite hexagons of the same q. This phase maximizes the

interlayer energy and the gain in interlayer energy in 2×2 moiré unit cells is E⊥ ∼ J⊥×N ≈

J⊥8(L/a0)2/3 where N is the number of sites and a0 is the bond length. On the other hand,

the cost of domain wall energy formation is approximately EDW ∼ 40L′×5.6623/
√
3a0 meV

where 40L′ is the length of the domain walls and L′ = L/(4 cos(π/6)) is the edge-length

of the hexagons (see Supporting Information for the derivation of EDW ). A critical moiré

period for the phase transition from (1q− 1q) to (3q− 3q) can be attained by equating EDW

and E⊥ leading to Lcrit = (14.1562 meV/J⊥)a0. We find that the second candidate domain

structure shown in Fig. 4 (c) has a longer domain wall length, and therefore it is not preferred

when compared to the hexagonal domain structure. The dashed line in Fig. 5(a) represents

the analytical estimate for the (1q − 1q) to (3q − 3q) phase transition. For intermediate

moiré periods, we obtain an intermediate (2q − 2q) phase as shown in Fig. 6. In this phase,

there are two kinds of zigzag patterns giving rise to gaining a large fraction of interlayer

energy. However, it is not possible to obtain a maximum interlayer energy from double

zigzag patterns. On the contrary, such patterns have shorter domain wall length compared

to (3q − 3q) phase. For small J⊥, the (2q − 2q) phase exists for a range of moiré periods

whereas for large J⊥ this phase exists only for a very short range of small moiré periods and

the distinction between (1q − 1q) and (2q − 2q) phases is not evident.

In conclusion, we have shown that the interplay of the stacking-dependent interlayer
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exchange and twist angle can play an important role in determining the magnetic phases of

α-RuCl3. In particular, we demonstrate that the single-domain, (1q − 1q) zigzag order can

be taken over by multi-q patterns in order to minimize the interlayer exchange energy. These

phases appear at small twist angles and can be used as a new route to introduce additional

frustration and tune the magnetic phases in α-RuCl3. Interesting future directions include

estimating the magnon spectrum in multi-q orders and incorporating substrate effects.
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Figure 5: (a) Phase diagram of twisted bilayer α-RuCl3 as a function moiré period L and
J⊥. The ab initio estimate is J⊥(0) = 0.5 meV. The inset shows the same phase diagram as
a function twisted angle θ and interlayer coupling J⊥. Magnetization texture of (b) (1q−1q)
for L = 12a0 and J⊥(0) = 0.2 meV; and (c) (3q − 3q) for L = 36a0 and J⊥(0) = 0.6 meV.
Magnetization textures are shown for 2× 2 moiré unit cells.
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Figure 6: Magnetization texture of (2q − 2q) for L = 30a0 and J⊥(0) = 0.2 meV. Magneti-
zation texture is shown for 2× 2 moiré unit cells.
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Muhammad Akram,1 Jesse Kapeghian,1 Jyotirish Das,1 Antia S. Botana,1 and Onur Erten1

1Department of Physics, Arizona State University, Tempe, AZ 85287, USA
(Dated: October 20, 2023)

I. TECHNICAL DETAILS OF THE DFT CALCULATIONS

We performed density-functional theory (DFT)-based calculations using projector augmented wave (PAW) pseu-
dopotentials [1] as implemented in the VASP code [2, 3]. For the exchange-correlation functional, the Perdew-Burke-
Ernzerhof (PBE) [4] version of the generalized gradient approximation (GGA) was chosen, on top of which the DFT-D3
van der Waals correction scheme [5] was added for structural relaxations. In agreement with the literature, an on-site
Coulomb repulsion U was included to account for correlation effects in the Ru-d electrons [6], where the Liechtenstein
[7] approach was used for the double-counting correction. The particular Hubbard U value used (1.5 eV) was chosen
by comparing the direct charge gap with the measured optical gap in the literature [8] and the Hund’s coupling JH
value (0.3 eV) was chosen to be about 20% of U . Spin-orbit coupling (SOC) was also included in the calculations.
The wave functions were expanded in the plane-wave basis with a kinetic-energy cut-off of 450 eV. The 4d and 5s
orbitals (4d75s1 configuration) were considered as valence states for the Ru atoms while for the Cl atoms the 3s and
3p orbitals (3s23p5 configuration) were considered as valence. Sampling over the Brillouin zone (BZ) was performed
with a 9× 5× 2 Monkhorst-Pack k-mesh centered on Γ.

FIG. 1. Crystal structure of bulk RuCl3 in the monoclinic (C2/m) phase showing the in-plane (a) and out-of-plane (b)
arrangement of atoms where the larger gray spheres represent Ru atoms, the smaller green spheres represent Cl atoms, and
the unit cell boundary is marked by a black dotted line. The three inequivalent nearest neighbor in-plane Ru-Ru bonds (X, Y,
and Z) are indicated in (a).

We start by relaxing the monoclinic bulk structure (as pictured in Fig. 1) using the parameters described in
the previous paragraph. We obtained in-plane lattice parameter magnitudes of a = 5.974 Å and b = 10.410 Å
(consistent with the experimental values of 5.981 and 10.354 Å, respectively [9]), and with angles α = γ = 90.000◦

and β = 108.280◦ (the latter being slightly smaller than the experimental value of 108.800◦ [9]). Note in Fig. 1 the
three inequivalent bond types between nearest neighbor in-plane Ru atoms: X, Y, and Z. The obtained bond lengths
are X = Y = 3.446 Å (consistent with the experimental value of 3.454 Å[9]) and Z = 3.487 Å (slightly larger than
the experimental value of 3.448 Å[9]).

The bilayers were built from this relaxed bulk structure. Fig. 2 shows the three bilayer stackings considered: AA,
AB’, and AB. The AA stacking (corresponding to a P31m space group) has the two layers directly aligned when
viewed out-of-plane along the c∗ (i.e. ẑ) axis. AB’ stacking (C2/m) is attained by a shift of the top layer by 1/3
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FIG. 2. Different stacking sequences for bilayer RuCl3. (a-c) Top view showing the in-plane arrangement of atoms for AA,
AB’, and AB stackings. (d-f) Side view showing out-of-plane arrangement of atoms for AA, AB’, and AB stackings. Solid
black arrows indicate the alignment of atoms between layers: AA and AB stackings have Ru atoms on top of Ru atoms and Cl
atoms on top of Cl atoms (but note that in AB, half the Ru atoms are aligned with gaps in hexagons of the other layer) while
AB’ stacking has Ru atoms aligned with Cl atoms. The larger gray (blue) spheres represent Ru atoms in the first (second)
layer and the smaller green (red) spheres represent Cl atoms in the first (second) layer. In each figure the unit cell boundary
is marked by a black dotted line.

along the
[
1 0 0

]
direction (with respect to AA stacking), resulting in Ru atoms aligned with Cl atoms. Lastly, AB

stacking (R3m) is reached from AB’ via a translation of the top layer by 1/6 along the
[
1 1 0

]
direction, leading to Cl

atoms on top of Cl atoms and half of the Ru atoms aligned with Ru atoms along c∗ while the other half fall into the
”gaps” or ”hollow” sites in the hexagons of the adjacent layer. The interlayer spacing for the bilayers was determined
by the distance required to shift the top layer by a/3 with respect to the bottom layer (as needed for AB’ stacking
order). Since tan θ = (a/3)/dinter, where θ = β − π/2, one obtains dinter = (a/3)/ tan θ ∼ 6.03 Å. The out-of-plane
lattice parameter was then chosen to be c = 27.14 Å (cz = 25.77 Å), with a vacuum of roughly 20 Å along c in order
to suppress out-of-plane interactions between neighboring bilayers.

As mentioned in the main text, in order to determine J⊥ we use the energy difference between FM and AFM
(FM planes coupled AFM out of plane) spin configurations (∆E) obtained from DFT calculations performed for the
three bilayer stackings (AA, AB’, and AB). Using the notation of Eqs 4-6 in the main text, in the AA stacking,
the following energy equations are obtained for the two spin states: EFM

AA = E0 + 4J⊥(0) + 12J⊥(a0) and EAFM
AA =

E0 − 4J⊥(0) − 12J⊥(a0). Here, E0 is the total energy for the system omitting magnetic interactions. Next, for AB’
stacking EFM

AB′ = E0 + 8J⊥(a0/3) + 8J⊥(2a0/3) and EAFM
AB′ = E0 − 8J⊥(a0/3)− 8J⊥(2a0/3). Lastly, for AB stacking

EFM
AB = E0 + 2J⊥(0) + 18J⊥(a0) and EAFM

AB = E0 − 2J⊥(0) − 18J⊥(a0). Note that in each of the expressions above,
the energy maps correspond to one unit cell (or eight formula units). Using the energy difference between these
two magnetic configurations, the interlayer exchange was derived as shown in the main text. For all stackings, the
interlayer exchange is AFM.

A. Estimation of domain wall energy cost

In order to determine the energy cost of a domain wall between two different zigzag orders, we consider a sharp
domain wall which separates q1 and q3 domains as shown in Fig. 3. The direction of red spins in q1 zigzag order is
s1 = (0.68,−0.25, 0.68) (see Fig. 3). The green spins are anti-parallel to red spin (−s1). Similarly, the brown spins in q3
domain point towards s3 = (0.68, 0.68,−0.25) and the blue spins are anti-parallel to brown spins (−s3). At the domain
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FIG. 3. Schematic of a sharp domain wall between q1 and q3 zigzag orders.

wall the nearest neighbours of s3 changes to −s1 along y-bonds to s1 along z-bonds. The energy along the y-bond

in q3 zigzag order is Ey−bond = s3Jys3 ≃ −3.7084 meV where Jy =



J1 0 Γ
0 J1 +K 0
Γ 0 J1


 is the exchange matrix along

y-bond. Similarly the energy along z-bond it is Ez−bond = s3Jz(−s3) ≃ −1.5140 meV where Jz =



J1 Γ 0
Γ J1 0
0 0 J1 +K




is the exchange matrix along z-bond. The total energy along y and z-bonds is ≃ −5.2223 meV. The energies at
domain wall along y and z-bonds are EDW

y−bond = s3Jy(−s1) ≃ −1.5445 meV and EDW
z−bond = s3Jzs1 ≃ 1.5445 meV

respectively and the total energy along these two bonds is zero. Therefore, the domain wall cost along these two
bonds is ≃ 5.2223 meV. Moreover, the third nearest bond of s3 changes from −s3 to −s1 along horizontal axis. The
energy due to third nearest neighbour in q3 zigzag order is E3rdNN = J3s3.(−s3) =-0.5 meV and the energy at the
domain wall is EDW

3rdNN = J3s3.(−s1) ≃-0.0597 meV. Energy cost due to third nearest neighbour at domain wall is
≃ −0.0597− (−0.5) ≃ 0.4403 meV. Therefore, the total cost due to first and third nearest neighbours per unit length

is (5.2223 + 0.4403)/
√
3a0 = 5.6623/

√
3a0 where a0 is the bond length (a/

√
3) of the honeycomb lattice.

II. DETAILS OF THE ATOMISTIC SIMULATIONS

In order to determine the lowest ground state of the Hamiltonian, we solve the Landau-Lifshitz-Gilbert (LLG)
equations: [10]

dS

dt
= −γS×Beff + αS× dS

dt
, (1)

where Beff = −δH/δS is the effective magnetic field, γ is the gyromagnetic ratio and α is Gilbert damping coefficient.
We solve the LLG equations in a self-consistent manner, imposing the constraint of |S| = 1 and applied periodic
boundary conditions. We use the semi-implicit midpoint method [11] in MATLAB software. We considered multiple
random and ferromagnetic spin configurations as the initial state for a particular magnetic field and twist angle and
picked the lowest energy configuration after convergence.
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