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Abstract: Acute respiratory distress syndrome (ARDS) is a major cause of patient mortality in
intensive care units (ICUs) worldwide. Considering that no causative treatment but only symptomatic
care is available, it is obvious that there is a high unmet medical need for a new therapeutic concept.
One reason for a missing etiologic therapy strategy is the multifactorial origin of ARDS, which leads
to a large heterogeneity of patients. This review summarizes the various kinds of ARDS onset with
a special focus on the role of reactive oxygen species (ROS), which are generally linked to ARDS
development and progression. Taking a closer look at the data which already have been established in
mouse models, this review finally proposes the translation of these results on successful antioxidant
use in a personalized approach to the ICU patient as a potential adjuvant to standard ARDS treatment.
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1. Introduction

Acute respiratory distress syndrome (ARDS) was originally described by Ashbaugh et al.
in 1967 [1]. Based on 12 patients with an acute onset of tachypnoea, hypoxemia, and
diminished compliance due to various causes, the authors postulated a connection between
the disease pattern and involvement of the alveolar surface. Positive end-expiratory pres-
sure (PEEP) improved atelectasis and hypoxemia, whereas corticosteroids were helpful
in medicating patients suffering from fat embolism or viral pneumonia. In the absence
of a uniform definition of ARDS based on its multiple origins, the American-European
Consensus Committee on ARDS was established in 1994. Conferences on ARDS took place
in Miami, Florida, United States of America, and Barcelona, Spain. Integrating American
and European studies, the ARDS experts provided a new definition of ARDS distinguishing
between acute lung injury (ALI) and ARDS as its severe form [2]. An acute onset as well as
bilateral infiltrates detected by a frontal chest radiograph and a pulmonary artery wedge
pressure of above 18 mm Hg or missing evidence of left atrial hypertension were set as com-
mon characteristics. Only oxygenation, estimated by the Horovitz index [3], was different
in ALI (PaO2/FiO2 < 300 mm Hg) compared to ARDS (PaO2/FiO2 < 200 mm Hg). Because
of difficulties in adhering to the definition of the chest radiograph and only moderate ac-
cordance with the definitions, novel criteria were required when comparing ARDS clinical
criteria with autopsy findings [4]. In 2005, Ferguson et al. developed a new clinical ARDS
definition based on the Delphi consensus method [5]. Focusing on ARDS as a putative inclu-
sion criterion or endpoint of clinical trials dealing with ALI, the former clinical definition of
ARDS was altered. Defined characteristics were hypoxemia with PaO2/FiO2 < 200 mm Hg
and PEEP ≥ 10 mm Hg, acute onset in <72 h, radiographic abnormalities consisting of
a bilateral airspace disease involving ≥ two quadrants on frontal chest radiograph, and
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non-cardiogenic origin, i.e., without clinical signs of congestive heart failure. Moreover, a
reduced lung compliance of <50 mL/cm H2O (tranquilized patients were adapted to a tidal
volume (Vt) of 8 mL/kg, with an ideal body weight and PEEP ≥ 10) and direct or indirect
predisposing factors linked to lung injury were defined [5]. In 2011, Raghavendran and
Napolitano discussed the existing ARDS definitions and concluded that a new definition
was again mandatory. This definition should include pulmonary vs. nonpulmonary risk
factors, PaO2/FiO2 ratio, and standard ventilator settings (PEEP/MAP) < 200 mm Hg
and exclude heart failure determined by cardiac echocardiogram [6]. So, one year later
the new so-called Berlin Definition was published [7]. With the Berlin definition, ARDS
patients are grouped according to disease burden into three states: mild, moderate, and
severe. Shared features are acute onset within 1 week, bilateral shadows determined by
radiography or computed tomography (CT), and respiratory failure independent of cardiac
failure. Differences were now made regarding oxygenation: “mild” is associated with
Horovitz 200 mm Hg < PaO2/FiO2 ≤ 300 mm Hg with PEEP or continuous positive air-
way pressure (CPAP) ≥ 5 cm H2O that can be delivered noninvasively. “Moderate” is char-
acterized by Horovitz of 100 mm Hg < PaO2/FiO2 ≤ 200 mm Hg with PEEP ≥ 5 cm H2O.
Finally, “severe” patients are defined by Horovitz index of PaO2/FiO2 ≤ 100 mm Hg with
PEEP ≥ 5 cm H2O [7]. As a conclusion, the ALI term was removed. Originally, the
Berlin definition was developed for use in high-income countries, with well-equipped
intensive care units (ICUs) only. To adapt this setting for less well equipped ICUs, an
appropriate ARDS definition was drawn up with modified criteria [8]. These included a
SpO2/FiO2 ≤ 315 because arterial blood gas diagnostics required to examine the PaO2/FiO2
ratio are often missing. Since mechanical ventilators are also rare, PEEP is not required.
Similarly, the lack of X-ray apparatus was taken into account by allowing ultrasonic
testing instead.

To date, there is still no appropriate pharmacological treatment regimen available
focusing on disease etiology. Intervention is limited to supportive therapy such as lung-
protective mechanical ventilation [9] and possibly extracorporeal membrane oxygenation
(ECMO) [10], prone positioning [11], positive end-expiratory pressure (PEEP) [12], re-
cruitment maneuvers (RM) [13], neuromuscular blockers [14], and application of systemic
corticosteroids [15]. Although high-end medicine techniques are pursued, mortality is still
up to 50–80%; therefore, new approaches should be intensively evaluated. To elucidate
putative starting points for an improved care strategy, preclinical studies are necessary to
prove the efficacies of the tested interventions.

2. Materials and Methods
2.1. Mouse Models of ARDS/ALI

Mouse models of ARDS are widely established because breeding and generation times
are short. Humanized models as well as gene knockout and knockin mice are available.
Last but not least, mouse maintenance is relatively cheap. To induce ARDS in the murine
system, two settings can be chosen (Table 1). Lung injury can be provoked directly by
targeting the alveolar epithelium or indirectly by damaging the vascular endothelial cells
(for a review see [16]). According to the workshop report published in 2011 by a com-
mission, appointed by the American Thoracic Society (ATS), four ARDS features have
been assembled for animal models [17]. Focusing on mouse models, the first of these
features is histological determination of tissue injury, i.e., neutrophil immigration into
the alveolar or interstitial space, formation of proteinaceous debris, and thickening of the
alveolar wall. The second feature is the histological breakdown of the epithelial pulmonary
capillary barrier, which can be determined by analyzing the extravascular lung water
content, using tracers to follow barrier damage or to show an increase in protein content,
especially of high-molecular-weight proteins, in bronchoalveolar lavage fluid (BALF) and
an augmented coefficient of microvascular filtration. The third aspect focuses on the inflam-
matory response, which is characterized by an increased number of neutrophils in BALF,
raised expression or activity of lung myeloperoxidase (MPO), and enhanced expression of
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proinflammatory cytokines in BALF or lung tissue. Finally, the fourth relevant attribute is
physiological lung failure, indicated by hypoxemia-accelerated alveolar–arterial oxygen
differences including ventilation/perfusion mismatches. Three of these four criteria should
be detectable to assure ARDS in the mouse. However, in a mouse model, some ARDS
characteristics that are obvious in the human patient, such as formation of hyaline mem-
branes, hemorrhage, atelectasis, enhanced lung lymph flow, or high protein concentration
in the lymph, are barely detectable. This must be considered in the selection of a mouse
ARDS model. As shown in Table 1, models directly linked to lung damage use intratracheal
or intranasal application of lipopolysaccharide (LPS) or bacteria, intratracheal instillation
of acids or bleomycin, 100% O2 and mechanical ventilation (MV) [18], or pulmonary is-
chemia/reperfusion injury. Whereas the last-mentioned intervention requires surgery, all
the other methods depend on intranasal or intratracheal application, which is easier to
achieve. The classically used treatment is LPS inhalation, acting via Toll-like receptor (TLR)
4 signaling, leading to symptoms similar to a bacterial infection, as obvious with accumu-
lation of neutrophils in the lung and induction of proinflammatory cytokines. However,
due to the missing infectious pathogen, only aspects of a bacterial infection are represented.
To induce active infection, living bacteria (such as E. coli, S. aureus, or P. aeruginosa) are
administered via the identical route [19,20]. Intratracheal instillation of HCl resembles
the aspiration of gastric contents by ICU patients. The use of intratracheal bleomycin
mimics a longer-lasting lung damage, which is useful for examining mechanisms leading
to fibrosis. Pulmonary ischemia/reperfusion is a frequently used model because it depicts
the processes found in patients requiring a lung transplantation.

Often, ARDS is not directly caused by pulmonary damage, but as a secondary event
following a different initial insult. Therefore, ARDS is frequently found in patients suffering
from sepsis. In mice, this can be achieved by an intraperitoneal (i.p.) injection of bacteria
or of a stool suspension (peritoneal cavity infection/PCI), or, with skilled surgical inter-
ventions, by cecal ligation and puncture (CLP), the gold standard of sepsis mouse models,
or a similar technique requiring a stent implantation into the colon, which is called colon
ascendens stent peritonitis (CASP). All of them result in peritonitis. To induce endotoxemia,
it is also possible to inject LPS i.p., with the limitations described above. A disease pattern
with high proinflammatory cytokine expression as well as strong activation of the immune
system results. Depending on the LPS amount applied, the model can also be lethal. Besides
sepsis, a model using i.v. oleic acid provokes fat embolism, which sometimes can be found
in patients as secondary to bone fracture. ARDS can also occur after multiple traumata, or
sometimes when patients receive multiple transfusions. In this case, it is named TRALI
for transfusion-induced acute lung injury [21]. Ischemia/reperfusion injuries can also be
produced in nonpulmonary tissues such as gut, kidney, or liver, which might be secondary
to ARDS. The i.v. injection of H2O2 can cause ARDS as well. Especially interesting for the
ICU patient are so-called two-hit models. These involve a first insult, e.g., development
of sepsis or aspiration of gastric content, demanding the use of artificial ventilation as a
second hit. This technique takes over active breathing from the lung. Thus, the method
has to be adapted to the physiological respiration variables. This means that the pressure
used to inflate the lung has to be strong enough to avoid atelectasis but should not be too
great to damage pulmonary tissue by overstretching. Because this requires very sensitive
pressure setting, ventilation-induced lung injury (VILI) cannot be completely prevented.
Hence, modeling these two-hit situations in mice is of great interest for setting up new
treatment strategies.



Biomedicines 2022, 10, 98 4 of 24

Table 1. Mouse models in ARDS research.

Direct Lung Damage [17,22,23] Route of Application ARDS-Like Affects Antioxidant Approaches
Already Used Ref.

LPS [24–26] intranasal/intratracheal
instillation

lung accumulation of
neutrophils, induction of

proinflammatory cytokines
NAC, SAMC [27–29]

Bacteria [30–32] intratracheal instillation
lung accumulation of

neutrophils, induction of
proinflammatory cytokines

CDC [33]

HCl [34–36] intratracheal instillation
neutrophil infiltration, damage

of alveolar/
vascular barrier

apocynin, MitoTempo [37,38]

Hyperoxia (HALI) [39–41] intratracheal damage of epithelial cells,
neutrophil infiltration AA, BNF, SFN, MnSOD [42–44]

MV (VILI) [45–48] intratracheal
inflammasome-mediated

proinflammatory
cytokine expression

NAC, Nrf2+/+, Nrf2−/−,
PIP-2; PC-SOD

[49–52]

Bleomycin [53–55] intratracheal instillation invertible fibrosis BRNPs, adelmidrol,
EC-SOD [56–58]

Pulmonary
ischemia/reperfusion

[59–61]

surgery; mesenteric artery
clamping or hilar ligation

and reperfusion

neutrophil infiltration, damage
of alveolar/

vascular barrier
irisin [60]

Indirect lung damage [17,22,23]

Sepsis (live bacteria, CASP, CLP,
CSI) [62–67] i.p.̧ peritonitis damage of alveolar/

vascular barrier
PC-SOD, SOD mimetic,

Prdx6−/− [51,68,69]

Endotoxemia [70–72] i.v. or i.p. damage of alveolar/
vascular barrier NAC, EUK-8, CypD [73–75]

Oleic acid [70,76,77] i.v. mimics fat embolism BAY 60-6583, leptin [76,78]

Multiple transfusions (TRALI)
[79–82] i.v.; syngeneic or allogenic

acute onset; underlying a 2-hit
onset, pulmonary

neutrophil sequestration,
involvement of MΦ

MΦ depletion, C3−/−,
C5−/−, C5aR−/− [83–85]

Multiple trauma
[86–88] externally received neutrophil infiltration,

complement activation p47phox−/− [89]

H2O2 [90–92] i.v.
increased vascular permeability

and fluid retention,
edema formation

AA, TP [93]

Nonpulmonary
ischemia/reperfusion [94–96] surgery; liver, gut, kidney

neutrophil sequestration,
acceleration of

microvascular permeability

CypDPlt−/−, SB239063,
FK866, LY333531

[97,98]

Two-hit models

LPS + MV [99–101] intratracheal, i.v., i.p. inflammasome-dependent
ATF3 OE/KD; HIF1α−/−,

enoxaparin, DJ-1,
paracoxib

[102–105]

Sepsis + MV [106–108] i.p., peritonitis,
intratracheal

augment sepsis-mediated
organ damage AM [109]

HCl + MV
[100,110–112] intratracheal enhanced HCl impact IL-6−/− [113]

+/+, wild-type mice; −/−, knockout mice; AA, ascorbic acid; AM, adrenomedullin; ATF3, activating transcrip-
tion factor 3; BAY 60-6583, adenosine A2B receptor agonist; BNF, β-naphthoflavone; BRNPs, bilirubin-derived
nanoparticles; C, complement; CASP, colon ascendens stent peritonitis; CDC, water-soluble curcumin formulation;
CLP, cecal ligation and puncture; CSI, cecal slurry injection; CybD, cyclophilin D; DJ-1, Daisuke-Junko protein
1; EC-SOD, extracellular SOD; R, receptor; FK866, competitive visfatin inhibitor; HALI, hyperoxia-induced
lung injury; HIF, hypoxia-inducible factor; IL, interleukin; i.p., intraperitoneal; i.v., intravenously; KD, knock-
down; LPS, lipopolysaccharide; LY333531, PKCβ inhibitor; MΦ, macrophage; MV, mechanical ventilation; NAC,
N-acetylcysteine; OE, overexpression; PCI, peritoneal cavity infection; PC-SOD, lecithinized SOD; PIP-2, per-
oxiredoxin 6 inhibitor peptide-2; PLT−/−, platelet-conditional knockout mice; SAMC, S-allylmercaptocysteine;
SB239063, p38 MAPK inhibitor; SFN, sulforaphane; TP, α-tocopherol; TRALI, transfusion-induced acute lung
injury; VILI, ventilator-induced lung injury.
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2.2. Oxidative Stress in Pathogenesis of ARDS/ALI

Oxidative stress can be divided into two separate categories. When the intracellular
hydrogen peroxide (H2O2) concentration is lower than 100 nM, this is then called “oxidative
eustress”, which is a physiological process important for proliferation, differentiation,
migration, and angiogenesis (for a review see [114]). This is opposed to an intracellular
reactive oxygen species (ROS) level above 100 nM and up to 10 µM, which is pathological
or related to host defense and named “oxidative distress”. It is already well established
that the generation of oxidative distress is causative in the pathogenesis and progression
of ARDS (for recent reviews see [115–117]). In brief, ROS can be formed by dying cells,
i.e., apoptotic or necrotic cell death [118], as a product of the mitochondrial respiratory
chain (Figure 1a) [119] or to fight infections by cells of the innate immune system, such as
neutrophil granulocytes or macrophages, by activation of the NADPH oxidase, which in
this case is the Nox2 (Figure 1b) [120]. In the lung, accordingly, excessive ROS are formed
by damaged pulmonary endothelial and epithelial cells as well as by infiltrating leukocytes,
which are predominantly neutrophils [121]. Moreover, alveolar and airway epithelial cells
as well as vascular endothelial cells express Nox4 (Figure 1c) [122,123]. This NADPH
oxidase, in contrast to Nox2, generates H2O2 and not O2

− [128]. Although Nox4-produced
H2O2 is an important second messenger, when its expression is induced or its function is
activated, it also contributes to lung injury [124].

Biomedicines 2022, 10, x FOR PEER REVIEW 6 of 26 
 

HCl + MV  
[100,110–112] 

intratracheal enhanced HCl impact IL-6−/− [113] 

+/+, wild-type mice; −/−, knockout mice; AA, ascorbic acid; AM, adrenomedullin; ATF3, activating transcription factor 3; 
BAY 60-6583, adenosine A2B receptor agonist; BNF, β-naphthoflavone; BRNPs, bilirubin-derived nanoparticles; C, com-
plement; CASP, colon ascendens stent peritonitis; CDC, water-soluble curcumin formulation; CLP, cecal ligation and 
puncture; CSI, cecal slurry injection; CybD, cyclophilin D; DJ-1, Daisuke-Junko protein 1; EC-SOD, extracellular SOD; R, 
receptor; FK866, competitive visfatin inhibitor; HALI, hyperoxia-induced lung injury; HIF, hypoxia-inducible factor; IL, 
interleukin; i.p., intraperitoneal; i.v., intravenously; KD, knock-down; LPS, lipopolysaccharide; LY333531, PKCβ inhibitor; 
MФ, macrophage; MV, mechanical ventilation; NAC, N-acetylcysteine; OE, overexpression; PCI, peritoneal cavity infec-
tion; PC-SOD, lecithinized SOD; PIP-2, peroxiredoxin 6 inhibitor peptide-2; PLT−/−, platelet-conditional knockout mice; 
SAMC, S-allylmercaptocysteine; SB239063, p38 MAPK inhibitor; SFN, sulforaphane; TP, α-tocopherol; TRALI, transfu-
sion-induced acute lung injury; VILI, ventilator-induced lung injury. 

 
Figure 1. Intracellular ROS production. (a) Mitochondria are an important source of intracellular 
ROS production (mod. from [114]). Being responsible for cellular ATP generation, mitochondria 
contain the electron transport chain (ETC), and when uncoupled or damaged, ROS can be formed 
accidentally. The ETC is located in the inner mitochondrial membrane. However, complexes I and 
III of the respiratory chain also mainly produce O2− in intact mitochondria [115], contributing to the 
cellular redox load [116]. (b) Phagocytes such as neutrophils and monocytes/MФ express Nox2. This 
is a component of a multiprotein complex, formed in the cell membrane upon cell activation. Besides 
Nox2, which is also named gp91phox, the subunits p40phox, p47phox, p22phox, and p67phox are 
required to transfer an electron from NADPH to FAD and then via the Fe of the two associated heme 
groups to O2, leading to generation of the superoxide radical O2−. (c) In contrast, Nox4 is expressed 

Figure 1. Intracellular ROS production. (a) Mitochondria are an important source of intracellular
ROS production (mod. from [125]). Being responsible for cellular ATP generation, mitochondria
contain the electron transport chain (ETC), and when uncoupled or damaged, ROS can be formed
accidentally. The ETC is located in the inner mitochondrial membrane. However, complexes I and III
of the respiratory chain also mainly produce O2

− in intact mitochondria [126], contributing to the
cellular redox load [127]. (b) Phagocytes such as neutrophils and monocytes/MΦ express Nox2. This
is a component of a multiprotein complex, formed in the cell membrane upon cell activation. Besides
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Nox2, which is also named gp91phox, the subunits p40phox, p47phox, p22phox, and p67phox are
required to transfer an electron from NADPH to FAD and then via the Fe of the two associated
heme groups to O2, leading to generation of the superoxide radical O2

−. (c) In contrast, Nox4 is
expressed mainly in endothelial and epithelial cells, where it is located at the endoplasmic reticulum
and mitochondria. Nox4 only requires the additional subunit p22phox for ROS production, which, in
contrast to Nox2, is situated on the E-loop and associated with a direct dismutation of O2

− to O2 and
H2O2 (mod. from [128]). Because it is constitutively active, Nox4 is regulated by its expression and
by binding to factors such as Poldip2 and tyrosine kinase substrate with five SH3 domains (TKS5)
(mod. from [129,130]).

Altering the redox balance by increasing the amount of generated ROS is counterbal-
anced in part by detoxifying enzymes such as superoxide dismutases (Figure 2). Three
isoforms of this enzyme family exist: SOD1 (CuZnSOD), SOD2 (MnSOD), and SOD3 (EC-
SOD). These enzymes catalyze the transition from superoxide O2

− to H2O2. Although
all three enzymes catalyze the same reaction, the proteins differ in their cellular localiza-
tion [131]. SOD1 is located in the cytoplasm and is important for the removal of O2

− mainly
derived from NADPH oxidases [132]. SOD2 is predominantly found in mitochondria
and is responsible for the conversion of O2

− generated from oxidative phosphorylation
reactions [133]. Finally, SOD3 is an extracellular enzyme found in the blood and attached
to the extracellular matrix, mainly expressed in the lung. SOD3 is important to reduce
pulmonary ROS [134,135]. H2O2 can be further metabolized to the hydroxyl radical by
the Fenton reaction (Fe2+ + H2O2 → Fe3+ + ˙OH + OH−), the second part of the Haber–
Weiss mechanism, leading to the hydroxyl radical (˙OH), which is highly antimicrobial
and injurious to cells [136]. To prevent cellular damage, especially in macrophages, it can
be completely detoxified by catalase to H2O and O2 (Figure 2b) [137]. In neutrophils, it
can be converted by myeloperoxidase (MPO), in the presence of a chloride anion (Cl−),
to hypochlorous acid (HOCl−) [138]. Besides enzymes, the redox-sensitive tripeptide
γ-L-glutamyl-L-cysteinyl-glycine (glutathione/GSH) is also an important cellular antioxi-
dant [139]. However, the capacity of these naturally occurring antioxidants is limited [140].
This explains why excessive ROS formation cannot be adequately compensated, conse-
quently leading to cell and organ damage [141–143]. In ARDS, the breakdown of the
endothelial/epithelial barrier is an important hallmark of disease progression [144,145].
Dysfunction of this barrier in ARDS (depicted in Figure 3) is associated with the release of
danger-associated molecular patterns (DAMPs), such as HMGB1, from damaged cells [146]
or pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharides (LPS),
originating from the outer membrane of Gram-negative bacteria, or lipoteichoic acid (LTA),
arising from Gram-positive bacteria acting via Toll-like receptor-4 or -2 dependent signaling
(Figure 3b) [147–149]. Originally located in the alveoli, these DAMPs/PAMPs can now
diffuse into the vasculature, leading to systemic inflammation (Figure 3c–f). In return,
neutrophil granulocytes can more easily pass the endothelial layer when recruited from the
blood vessels into the alveoli (Figure 3b) [121]. Thus, as shown in Figure 3c,d, excessive flu-
ids can provoke pulmonary edema, which accumulates in the lung interstitium, inhibiting
gas exchange, which is closely associated with hypoxemia, requiring artificial respiration.
When edema clearance is appropriately initiated, resolution of the inflammation phase
follows (Figure 3e), characterized by phagocytosis of apoptotic neutrophils by MΦ and
proliferation or differentiation of alveolar epithelial cells (AT-I and -II), and the function of
alveoli is restored (Figure 3f).

Mechanistically, ROS contribute to the damage of the epithelial barrier. ROS-dependent
induction of the matrix metalloproteinase (MMP)-9 causes damage, internalization, and
downregulation of proteins of intercellular connections, so-called tight junctions [150], such
as claudins, occludins, and E-cadherins, linking the extracellular glycocalyx with the intra-
cellular cytoskeleton (Figure 4a) [151,152]. The loss of cell–cell interactions consequently
is associated with an increase in permeability and gap formation [117], leading to edema
formation [153]. This is promoted by the similarly reduced expression of the epithelial
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sodium channel (ENaC), responsible for fluid retention, thus generally counteracting the
development of edema [122]. ROS-mediated modification of cysteine 43 of the β-subunit of
ENaC permits its ubiquitination by the E3 ubiquitin-protein ligase NEDD4-2, leading to
its proteasomal or lysosomal degradation (Figure 4b) [154]. In line with this, a conditional
knockout of NEDD4-2 in lung epithelial cells supports this observation [155]. However, the
knockout has an adverse effect by lowering the epithelial humidity, favoring fibrosis [155].
Increased ROS, as observed in lungs of PKCα-knockout mice, enhanced ENaC internaliza-
tion and reduced ENaC expression [156]. The ROS scavenger tempol reversed this effect,
further supporting a role of ROS in ENaC regulation [156].
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Figure 2. Reactive oxygen species (ROS) and ROS-generating and -scavenging enzymes. (a) ROS
involved in ARDS. (b) The superoxide radical O2

− is generated by the NADPH oxidase 2 (Nox2),
the xanthine oxidase (XO), and the electron transfer chain (ETC) located in the mitochondria. O2

− is
dismutated to hydrogen peroxide (H2O2) by one of three superoxide dismutases (SODs), which are
located in the cytosol (SOD1 =̂ CuZnSOD), in mitochondria (SOD2 =̂ MnSOD), or extracellularly,
often associated with the extracellular matrix (SOD3 =̂ EC-SOD). One further source of H2O2 is
Nox4, which is located in mitochondria or endoplasmic reticulum (ER) of endothelial as well as
epithelial cells. H2O2 is the substrate for the myeloperoxidase-(MPO)-derived oxidant hypochlorous
acid (HOCl−), known to cause tissue injury. Stored in neutrophil granules, MPO is released following
neutrophil activation. In the Fenton reaction, H2O2 is further metabolized to the highly antimicrobial
hydroxyl radical (˙OH). ROS-scavenging enzymes, such as catalase (CAT) or glutathione peroxidase
(GPx), detoxify H2O2 to H2O and O2. To achieve this, GPx oxidizes GSH to GSSG, which in return is
reduced via the glutathione reductase to GSH. Similarly, peroxiredoxin (Prx), belonging to a small
family of peroxidases, reduces H2O2 by oxidizing thioredoxin (Trx), which then is restored to the
reduced form by the thioredoxin reductase (not shown).
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Figure 3. Development, progression, and resolution of ARDS in response to pathogen-associated
molecular patterns (PAMPs). (a) In the healthy lung, alveoli show no neutrophil infiltration and
only limited alveolar macrophages (AΦ). Alveolar type II cells (AT-II) produce adequate surfactant
to keep the alveolar epithelium covered effectively, thus reducing the surface tension, necessary
to prevent a collapse of the alveoli after expiration. Consequently, optimal gas exchange occurs.
(b) Following inhalation of bacteria or bacterial components such as lipopolysaccharide (LPS) or
lipoteichoic acid (LTA), which are PAMPs, bronchial and alveolar epithelial cells are activated,
increasing expression of proinflammatory chemokines and cytokines. This provokes infiltration of
immune cells, mainly neutrophils and some monocytes, from the bloodstream. Consequently, the
proinflammatory response is enhanced, including proinflammatory cytokines and mediators such
as reactive oxygen species (ROS), produced primarily by the phagocytic NADPH oxidase (Nox2)
expressed by neutrophils and monocytes/MΦ. Programmed cell death (PCD) of bronchial epithelial
cells is induced and HMGB1 as a damage-associated molecular pattern (DAMP) from alveolar type I
cells (AT-I) is released, which is also associated with cell demise. (c) Cell death is linked to the damage
of the alveolar–capillary barrier, causing lung edema, which significantly reduces lung function with
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reduced blood gas exchange. (d) High numbers of neutrophils and MΦ in the alveoli, a consequence
of cell death and a proinflammatory environment, facilitate proliferation of fibroblasts, expressing
fibronectin and collagen. These contribute to fibrosis and reduce the normal function of the alveoli.
(e) Reduction of the proinflammatory profile emphasizes an anti-inflammatory response and fibrosis
is reversed. Proliferation of alveolar and bronchial cells closes the gap, which arises due to prior
cell death. Therefore, lung edema abates. Finally, (f) fibrosis completely reverses, and the cell
composition of alveoli is almost completely restored. When edema is also entirely resolved, lung
function is reestablished.
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Figure 4. Important structures in alveolar epithelial cells. (a) The connection between alveolar type I
and type II cells is mediated by occludin and claudin, two proteins involved in the formation of tight
junctions, and the calcium-dependent cell adhesion protein epithelial (E)-cadherin. These proteins
connect cells to the intracellular actin filaments and downstream signaling cascades as exemplified
by the myosin light chain kinase (MLCK) via β-catenin and the zona occludens proteins ZO-1 and
ZO-2 (mod. from [117]). (b) The epithelial sodium channel (ENaC) is a multimeric protein complex
localized in the cell membrane of the pulmonary AT-I and -II cells. It consists of the three homo-
dimeric subunits αα, ββ, and γγ and is an important mediator of pulmonary edema clearance and is
expressed in two isoforms. One is highly Na+ selective, whereas the other is a cation-nonselective
form. During ARDS, several mechanisms provoke downregulation of ENaC expression, apical
localization, and activity. ENaC is downregulated by internalization and proteasomal or lysosomal
degradation, following Nedd4-2-dependent mono- or poly-ubiquitination. During infection, the
downregulation of inflammatory cytokines TNF-α, TGF-β, IL-4, IL-13, and IL-1β contributes to this
[mod. from [157,158]).

In addition to the effect of ROS on cell–cell interactions, ROS are also involved in
altering coagulation and fibrinolysis, contributing to ARDS (Figure 5) [159–161]. How-
ever, further research is necessary to understand the underlying principles in detail [162].
Studies already performed have shown that ROS mainly contribute to a proinflamma-
tory response, which is associated with activation of platelets and subsequent trapping in
the microcirculation leading to thrombocytopenia [163,164]. Nox2 activation is critically
involved in platelet activation and thrombosis in response to oxidative stress [165]. The
coagulation factors XIIa (FXIIa) and tissue factor (TF) are involved in ROS-mediated ef-
fects as well. The contact factor FXIIa, activated by polyphenols released from activated
platelets, is an important component in clot formation [166,167], and TF promotes neu-
trophil extracellular trap (NET) formation, a process which is called NETosis [168], and
disease progression [169]. NETosis is directly associated with ROS release, as shown in
mice where NADPH oxidase inhibition blocked NETosis and improved thrombosis [163].
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Complement activation, a characteristic event in infection, is involved in thrombosis and
disseminated intravascular coagulation (DIC). This is especially true when complement
activation is unbalanced [170]. The complement factor C5a is an established chemotactic
factor attracting immune cells such as neutrophils and macrophages. Subsequently, by
binding to the phagocytes, C5a activates a G-protein-coupled signal pathway, leading to
Nox2-dependent ROS formation [171]. A similar ROS effect was observed in murine kidney
endothelial cells, leading to mitochondria-dependent apoptosis in response to C5a [172]. In
addition to compounds leading to coagulation, endogenous fibrinolysis is also reduced.
Although fibrinolysis is initially activated, this is counteracted by the simultaneous and sus-
tained upregulation of the plasminogen activator inhibitor-1 (PAI), resulting in enhanced
coagulation [173]. Taken together, these mechanisms, in combination, ensure coagulation,
thus ensuring that the risk of DIC occurrence remains high [174].
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Figure 5. Disseminated intravascular coagulation (DIC). Infectious pathogens via their associated
PAMPs release resultant DAMPs, following cell activation or damage, leading to ROS production.
These proinflammatory mediators contribute to the activation of platelets, leading to thrombo-
cytopenia [175]; attract immune cells due to the liberation of the chemotactic complement factor
C5a [89]; induce tissue factor (TF) production by endothelial cells [169]; and increase coagulation
factor FXIIa [166] and plasminogen activator inhibitor (PAI) I, reducing fibrinolysis [173].

2.3. Antioxidative Treatments

In view of the role of ROS in ARDS development and progression, various possibilities
exist to prevent their damaging impact. Pharmacologically, effector proteins, i.e., enzymes
involved in ROS formation, can be inhibited, factors important in ROS detoxification can
be activated, or their function mimicked. First, we focus on compounds that can be used
pharmacologically to reduce ROS formation.

2.3.1. Pharmacological Antioxidants

Pharmacologically, differentiation should be made between factors inhibiting ROS-
generating enzymes such as apocynin, developed to inhibit Nox2, thus preventing ARDS
in a CLP mouse model [176], or setanaxib, also known as GKT 137831, to block Nox4-
dependent H2O2 generation, which in turn reduced lung ischemia/reperfusion injury
(LIRI) in mice [177], together with so-called ROS scavengers. These are crucial to detoxify
ROS. Among them, classical SOD mimetics such as tempol [178] and EUK-8, which is also a
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catalase mimetic [73], or SOD-derived compounds such as lecithinized SOD2 (PC-SOD) [51],
or recombinant SOD1 [179] and the mitochondria-targeted antioxidants MitoQ, MitoTempo,
or tiron are available [180]. The mitochondria-targeted antioxidants are especially suitable
when ROS are generated by the mitochondrial ETC and were found to improve VILI in
mouse preclinical settings [181]. However, the most important endogenous compound in
terms of antioxidant capacity is GSH [182]. This is also true in lung inflammation [183].
As shown in Figure 2b, it is indispensable to the function of glutathione peroxidase (GPx),
which detoxifies H2O2 to H2O by oxidizing two GSH to one GSSG, which is accordingly the
oxidized form of GSH [139]. Then, the GSH pool is restored by glutathione reductase (GR),
which reduces GSSG back to GSH. Based on the pharmacologically available GSH precursor
N-acetylcysteine (NAC) (Figure 6), the quantity of GSH can be adjusted therapeutically. This
has been investigated also in infectious diseases, where NAC improved the disease pattern
and survival in the murine system [49,73,184]. Interestingly, contradictory results have also
been observed [185,186]. Therefore, the single use of NAC does not appear to be a sufficient
treatment regime in the mouse model [187]. The organoselenium compound ebselen, under
development for therapy of a variety of clinical conditions involving oxidative stress, reacts
with GSH in a cyclic mechanism similar to that of GPx, thereby inactivating hydroperoxides,
including H2O2 and regenerating GSH [188–190]. Oral administration of ebselen inhibits
ozone-induced lung inflammation in rats [191]. It has also been proposed as a potential
treatment for respiratory inflammation in COVID-19 infection, since it also reacts with the
free thiol group of the main protease (Mpro) of the coronavirus SARS-CoV-2 to inhibit the
protease [192].
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Figure 6. Therapeutic concepts to reduce and prevent ROS formation. Several approaches have
been tested in the murine model to reduce and prevent ROS formation during lung inflammation.
Considering the major factors involved in ROS formation, such as Nox2, Nox4, MPO, and the ETC,
specific inhibitors or compounds targeted to mitochondria were shown to be effective in improving
ALI. SOD mimetics, which only reduce the amount of generated O2

−, have also been found to have
an impact. Additionally, GSH precursors, maintaining a high intra- and extracellular GSH-pool,
leading to a more reductive environment, are potent in depleting ROS. Finally, activators leading to
the stabilization and thus activation of the transcription factor Nrf2 have been shown to significantly
contribute to the expression of factors important in detoxifying ROS. However, one further possibility
in the murine system, gene deletion, is still difficult to achieve in the human patient.

Vitamin C has also been identified as an antioxidant with a protective function in
murine acute lung injury [193]. The mice received either ascorbic acid (AscA) or dehy-
droascorbic acid (DHA) 30 min following abdominal sepsis induction by intraperitoneal
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cecal slurry injection [194]. Both treatments reduced lung injury by differing mechanisms,
involving reduced epithelial barrier breakdown, maintaining alveolar fluid clearance,
preventing tight junction loss, and inhibiting rearrangement of the cytoskeleton [194].

2.3.2. Nrf2

The most important transcription factor in regulating antioxidant genes is the cap-and-
collar type transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2) [195]. Its
expression is regulated under healthy conditions by Keap1, which targets Nrf2 for protea-
somal degradation by the Cullin3/Rbx1 ubiquitination system [196]. Upon (electrophilic)
oxidative stress, cysteines in Keap1 are oxidized and Nrf2 is released [196], consequently
leading to its stabilization and subsequent induction of target gene expression [197]. In
keeping with its role as a transcription factor, Nrf2 activates the expression of factors
involved in detoxifying ROS, such as glutamate-cysteine ligase catalytic subunit (GCLC),
glutamate-cysteine ligase modifier subunit (GCLM), GPx, GR, heme-oxygenase (HO-1),
Prx, and SOD3 [197]. Thus, activation of Nrf2 leads to an antioxidative response, which
is generally associated with an improved outcome of lung injury in mouse models [198].
In line with this, Nrf2-deficient mice show enhanced acute lung injury compared to wild-
type mice following intestinal ischemia/reperfusion [199]. Considering that Nrf2 binds
to antioxidative-response elements (AREs) in the promoter regions of target genes, their
activation can also be followed in an ARE-reporter mouse, where the ARE site has been
associated with a luciferase (Luc) reporter gene. In these mice, Nrf2 activation provokes lu-
ciferase expression in parallel, which can be determined by bioluminescence imaging [200].
In association with its anti-inflammatory function, Nrf2 prevents classical activation of MΦ
to an M1 phenotype and promotes alternative activation, resulting in an M2 MΦ phenotype.
This was reversed by an Nrf2 siRNA approach knocking down the transcription factor [201].
In these studies, established pharmacological treatments, such as tert-butylhydroquinone
(tBHQ) [201], bardoxolone (CDDO) [202], resveratrol [203], and sulforaphane (SFN) [200],
stabilized Nrf2 by modulating its binding to Keap1. Interestingly, stabilization of Nrf2 has
also been shown to occur indirectly. Among others, the tyrosine kinase inhibitor dasatinib
counteracts LPS-dependent ALI. This effect was associated with increased Nrf2 expression
and activation as observed by an enhanced expression of the Nrf2 target gene HO-1 in
lung tissue [204]. This treatment promotes a similar M2 polarization of MΦ. The above-
mentioned mitochondria-targeted ROS scavenger mitoQ reduced ROS formation in an
intraperitoneal LPS mouse model by activating Nrf2 and the corresponding expression of
target genes [205]. This improvement was largely abolished in Nrf2 knockout mice. Mech-
anistically, mitoQ-mediated Nrf2 stabilization induced the expression of HO-1, which in
turn blocks LPS-upregulated expression of the mitochondria fission factor Drp1 in alveolar
epithelial cells [206]. Thus, fission of mitochondria, associated with cytochrome c release,
concomitant caspase 3 activation, and apoptosis leading to the breakdown of the epithelial
barrier, is prevented [206]. Since sex-specific effects in the response to antioxidative treat-
ments are possible, Callaway et al. [42] demonstrated in a hyperoxic lung injury model that
Nrf2 knockout especially in female animals reduced survival. Independently of sex, treat-
ment with the cytochrome P450 (CYP) 1A inducer β-napthoflavone (BNF) improved animal
survival, eliminating sex differences [42]. Therefore, these data might open up a novel
option for a treatment regime in patients with a relative NRF2 deficiency. Furthermore, it
has been shown that Nrf2 induction is associated with a decrease in NF-κB activation [207].
However, recent data suggest that Nrf2 is activated in response to mild hyperoxia (30% O2),
whereas following high hyperoxia (100% O2) the increase in oxidative stress is linked to the
activation of Nrf2 and NF-κB in parallel. Very high hyperoxia (140% O2) activated NF-κB
almost exclusively [208].

2.3.3. PPARγ

This ligand-dependent nuclear hormone receptor PPARγ was identified on the basis
of its role in glucose metabolism. Recent studies support a second role of PPARγ as an anti-
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inflammatory, sometimes proapoptotic factor. It has been shown that activation of PPARγ
inhibited activation of Nox2 in macrophages [209]. It is an important regulator of MΦ polar-
ization, which was further substantiated using PPARγ knockout mice [210,211]. Moreover,
PPARγ is also a target of direct redox regulation, i.e., cysteine-residue modification [212].
In ARDS research, activation of PPARγ with the ligand rosiglitazone restored surface ex-
pression of the ENaC channel on alveolar type II epithelial cells (Figure 3a) and ameliorated
acute lung injury in an intratracheal LPS mouse model, showing upregulation of ENaC
expression as well [213]. In the study by Wang et al. [214] activation of PPARγ attenuated
LPS-induced acute lung injury by preventing HMGB1 release and decreasing RAGE levels,
both known to be upregulated in ARDS mouse models [215]. Considering PPARγ as
a negative regulator of macrophage activation [216], metabolic and epigenetic changes
leading to PPARγ expression or activation can also alter the phenotype of alveolar MΦs,
which are important contributors to sepsis-initiated ARDS. In this regard, α-ketoglutarate,
originating as an intermediate from the tricarboxylic acid (TCA) cycle, has recently been
characterized as a PPARγ agonist [217]. This is especially important in classically acti-
vated, so-called M1 MΦ, known to show a reduced TCA circle with an emphasis on the
glycolytic metabolism to generate ATP, compared to alternatively activated M2 MΦ, re-
lying on oxidative metabolism to produce ATP [218,219]. Thus, Liu et al. observed an
α-ketoglutarate-dependent inhibition of alveolar MΦs, which was corroborated by the
cellular localization of PPARγ, which was mainly nuclear after α-ketoglutarate exposure in
the murine alveolar MΦ cell line MH-S [220]. In connection with the epigenetic regulation
of PPARγ, Bao et al. demonstrated that a key epigenetic regulator, the histone methyltrans-
ferase enhancer of zeste homolog 2 (EZH2), alters the expression profile of alveolar MΦ in
LPS-mediated ARDS in mice [185]. Genetic knockdown of EZH2 and pharmacological in-
hibition of EZH2 by 3-dezaneplanocin suppressed an M1 MΦ phenotype, while promoting
M2 MΦs, by permitting activation of STAT6 and PPARγ [185]. Correspondingly, inhibition
of PPARγ is associated with an enhanced inflammatory immune response, for instance
with fibroproliferative ARDS following bleomycin intratracheal instillation [221]. However,
endogenously activated PPARγ also provoked T cell depletion in a CLP mouse model,
contributing to immune paralysis and a worse outcome [222]. Such interventions in sepsis
could, therefore, only be considered with a close assessment of the ongoing immune status.

2.4. Mouse Data Translated to the ARDS Patients’ Situation

Although antioxidative therapy concepts have been successfully employed in the
mouse model as outlined above, translating these approaches to the human patient has not
been very successful. One reason for this failure is the heterogeneous multifactorial etiology
of ARDS [223,224], which makes it difficult to establish an effective standard treatment
regime. Moreover, in the mouse models, mainly young mice of one sex have been used
to determine whether the individual treatments improved animal survival. Generally, in
animals, this type of study does not require any IC support during the experimental phase,
which is of course mandatory in the human ICU. Therefore, disease progression in the
mouse model cannot be adequately followed. Experimental settings are planned to control
the health state of mice, providing estimates of the time of disease onset, which is crucial to
start therapy on time and to draw firm conclusions from the data obtained. However, this
rating is vague, and accordingly, the evidence generated is limited. Hence, it would be more
appropriate to follow disease progression in the animal with similar equipment to that
in the human ICU which facilitates adequate translation of the mouse data to the human
situation. In addition, the mouse metabolic rate is significantly different from humans [225],
which is even enhanced during sepsis [226]. Moreover, mouse models need to be extended
to experiments with aged mice, thus better reflecting the ICU situation. Keeping in mind the
different conditions that ultimately result in ARDS, also in the murine system [100], it would
be appropriate to group data from the animals according to the specific etiologies, courses
of disease, treatments, and subsequent responses. Correspondingly, grouped animals might
lead to the identification of different treatment regimens (Figure 7a). Broadening the marker
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panel would possibly allow the inclusion of slightly differing animals into the same test
groups, to determine whether these also respond to the treatment (Figure 7b). Finally, with
treatment concepts established in this preclinical setting, data from clinical trials can be
reanalyzed in relation to the mouse results, allowing similar group assignments (Figure 7c).
Transferring these retrospective analyses to the active ICU may open new therapeutic
concepts with a special focus on personalized medicine. First attempts have been proposed
and already been made to subphenotype ARDS patients [227–230], although some data
are discouraging [231].
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Figure 7. Precision medicine from mice to men. (a) Grouping animals according to the characteristics
of ARDS origin or disease pattern might be advantageous for the optimization of treatment. However,
(b) whether a more global classification, integrating some broader aspects, will provide a greater
advance, needs to be tested. (c) This approach is also likely to be helpful for patients suffering from
ARDS, allowing specific personalized treatment of the corresponding patient group.

3. Conclusions and Outlook

Recently, two reviews summarized pharmacological treatments for patients suffering
from ARDS [232,233]. Although, the main message of both reviews is that there is no
appropriate pharmacological therapy option, but only supportive care, they agree on the
necessity to subgroup ARDS patients to identify personalized treatment concepts. With
respect to examples of mouse models of ARDS discussed here, which respond to antiox-
idative treatment, putative care concepts in the ICU might also include an antioxidative
approach as a component of the medical care. This seems especially interesting since, as an
antioxidative concept concerning viral infections associated with ARDS described here, the
use of NAC as a putative (adjuvant) therapy concept in COVID-19 infection, like that of
ebselen mentioned previously, has also been suggested [234] and summarized in [235].
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