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Abstract. We introduce a novel technique that utilizes a physics-driven deep
learning method to reconstruct the dense matter equation of state from neutron
star observables, particularly the masses and radii. The proposed framework
involves two neural networks: one to optimize the EoS using Automatic Dif-
ferentiation in the unsupervised learning scheme; and a pre-trained network to
solve the Tolman–Oppenheimer–Volkoff (TOV) equations. The gradient-based
optimization process incorporates a Bayesian picture into the proposed frame-
work. The reconstructed EoS is proven to be consistent with the results from
conventional methods. Furthermore, the resulting tidal deformation is in agree-
ment with the limits obtained from the gravitational wave event, GW170817.

1 Introduction

Neutron stars (NSs) are unique laboratories for studying the properties of strongly interact-
ing dense matter. NS observables like masses and radii are direct probes to the underlying
equation of state (EoS). The recent increase in data from electromagnetic and gravitational
wave observations of neutron stars and their mergers has resulted in an immense wave of
studies aimed at constraining the dense matter EoS [1–10]. Past attempts to reconstruct the
neutron star EoS include conventional methods like the Bayesian inference [11, 13, 20], or
the more recent supervised machine learning inference [14–17]. In this work, we introduce a
novel physics-based deep learning approach to constrain the neutron star EoS. The proposed
method involves an unsupervised learning algorithm in the Automatic Differentiation (AD)
framework. We adopt a deep neural network representation for the EoS. This allows for a
versatile and unbiased characterization of the EoS, e.g., the occurrence of a strong first order
phase transition.
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Figure 1. A schematic representation of the proposed algorithm for reconstructing the neutron star EoS
via automatic differentiation.

2 Automatic Differentiation
We present a schematic illustration of the proposed mechanism in Fig. 1. The EoS Network,
as the name suggests, is used to flexibly represent an EoS. It uses density (ρi) as the input,
and outputs the corresponding pressure (Pi). The TOV Solver Network, on the other hand
operates as an efficient emulator for the TOV equations. It is a pre-trained network that out-
puts the mass-radius (M-R) curve, given any input EoS (further details on the network struc-
ture, its training procedure, etc, can be found in [18]). The EoS Network is combined with
the well-trained TOV-Solver Network network and optimized in an unsupervised learning
scheme. As a result, the trainable parameters in the optimization procedure are the weights of
the EoS Network alone. Furthermore, we constrain the weights of the EoS Network to be
non-negative. This ensures a monotonically non-decreasing output for the EoS, so as to fulfill
thermodynamic stability. We therefore optimize the EoS Network to output an EoS, which
in turn reproduces an M-R curve that best fits the NS observations. In order to account for the
observational uncertainty, we sample several sets of M-R curves from a Gaussian distribution
of the given observations and train the network correspondingly. The optimization process
uses a gradient-based algorithm within the AD framework to minimize the loss function, χ2,

χ2 =

Nobs∑
i=1

(Mi − Mobs,i)2

∆M2
obs,i

+
(Ri − Robs,i)2

∆R2
obs,i

. (1)

Here, (Mobs,i,Robs,i) are the M-R observations, (∆Mobs,i,∆Robs,i) are their respective uncer-
tainties, and (Mi,Ri) represent the output of the TOV-Solver Network. However, the ob-
servational data is limited and not uniformly distributed across the M-R curve. Moreover,
the uncertainties of the observations used in this study vary by large factors due to different
measurement techniques. As a consequence, there is a possibility of a disordering in the M-R
pairs sampled from the normal distribution of the respective observations. To tackle the in-
duced complication, we implement the ‘closest approach’ optimization [20]. Therefore, the
loss in each iteration during the training is,

χ2 =

Nobs∑
i=1

(M(ρci) − Mobs,i)2

∆M2
obs,i

+
(R(ρci) − Robs,i)2

∆R2
obs,i

, (2)

where the central density, ρci, for every ith observation is updated as,

ρci = arg min
ρc

(M(ρc) − Mobs,i)2

∆M2
obs,i

+
(R(ρc) − Robs,i)2

∆R2
obs,i

. (3)
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We implement Eq. (3) to determine the central densities of (Mobs,Robs), such that they result
in the least distance between the M-R observations and the M-R curve obtained from the
TOV-Solver Network. We further discard any reconstructed EoS that does not comply with
the causal condition or fails to support a 1.9M⊙ star. The procedure described above was first
tested on several mock M-R data and has been proven to work efficiently [18]. In the next
section, we present the results of the reconstructed EoS using the current NS observational
data.

3 Results

In order to reconstruct the NS EoS, we use the existent M-R observational data [8, 10, 21–
23], which also include the recent NICER measurements. We approximate the uncertainty
of each M-R observational point to fit a 1D normal distribution for both mass and radius,
individually [15]. We sample 1000 M-R curves from the fitted distributions and reconstruct
the EoS from these 18 M-R observations. The resulting EoS is plotted in the left panel of
Fig. 2. The pink shaded curve depicts the 95% confidence interval (CI) of the reconstructed
EoS from the method discussed above. The mean of the reconstructed EoS curve is marked
by the dashed red line. Furthermore, the results are compatible with EoS reconstructions from
previous works that include alternate methods like Bayesian inference [24, 25] and machine
learning inference [15]. The M-R curve corresponding to the EoS in Fig. 2 is plotted in
the right panel of the same figure. Furthermore, the deduced tidal deformability of a 1.4M⊙
neutron star, Λ1.4M⊙ , from the reconstructed EoS, using the present method is evaluated at
Λ1.4 = 224+107.3

−107.3 (95% CI). This value falls within the estimated range of Λ1.4M⊙=190+390
−120,

obtained from the gravitational wave event, GW170817 [26].
The next generation telescopes and gravitational-wave detectors provide scope for higher

precision on NS observables. With the findings of this work, we therefore conclude that in
future, there is hope for a finer reconstruction of the dense matter EoS.

Figure 2. The left panel depicts the 95% CI of the reconstructed EoS from the proposed algorithm. The
corresponding M-R curve is plotted in the right panel.
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