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A B S T R A C T

This paper presents and compares Newton-based methods from the applied mathematics literature for
solving the matrix quadratic that underlies the recursive solution of linear DSGE models. The methods are
compared using nearly 100 different models from the Macroeconomic Model Data Base (MMB) and different
parameterizations of the monetary policy rule in the medium-scale New Keynesian model of Smets and Wouters
(2007) iteratively. We find that Newton-based methods compare favorably in solving DSGE models, providing
higher accuracy as measured by the forward error of the solution at a comparable computation burden. The
methods, however, suffer from their inability to guarantee convergence to a particular, e.g. unique stable,
solution, but their iterative procedures lend themselves to refining solutions either from different methods or
parameterizations.
1. Introduction

The solution of linear DSGE models requires solving a matrix
quadratic equation and standard existing methods predominantly rely
on a generalized Schur or QZ decomposition (Moler and Stewart,
1973; Golub and van Loan, 2013) for solving this underlying matrix
quadratic. While there are a few exceptions,1 alternative methods from
the applied mathematics literature have yet to be systematically studied
in a DSGE context. This paper fills part of that gap, collecting Newton-
based solution methods for matrix quadratic problems and applying
them to the solution of linear DSGE models.2 Newton methods require
an initial guess and we find that for initial guesses close to the result-
ing solution, perhaps from a nearby parameterization, these methods
perform favorably compared with QZ-based methods - a consequence
of the asymptotic quadratic convergence of Newton methods. Precisely
this iterative characteristic also enables the Newton methods we intro-
duce to linear DSGE models to correct insufficiently accurate solutions
of economic consequence as presented in Meyer-Gohde (2023).

One alternative to QZ-based methods are Newton-based algorithms,
which although familiar to economists in root-finding settings have not
yet been examined for solving linear DSGE models. The only exception
we are aware of is Dynare’s (Adjemian et al., 2011) (henceforth Dynare)
undocumented file quadratic_matrix_equation_solver.m

∗ Corresponding author.
E-mail addresses: meyer-gohde@econ.uni-frankfurt.de (A. Meyer-Gohde), saecker@hof.uni-frankfurt.de (J. Saecker).

1 Such as the methods of Blanchard and Kahn (1980), Binder and Pesaran (1997) and Anderson (2010) and the cyclic reduction method of Dynare.
2 For Bernoulli iterative methods, see Meyer-Gohde (2022), Rendahl (2017), and Binder and Pesaran (1997), and Huber et al. (2023) for doubling methods.
3 We use Dynare’s implementation of the QZ method, documented in Villemot (2011), to compare the Newton methods with.

that implements Higham and Kim’s (2001) Newton method with exact
line searches, see Section 3. The applied mathematics literature has
further developed and refined numerical methods for solving matrix
quadratic methods past generalized Schur or QZ methods based on the
classic contribution of Moler and Stewart (1973). Higham and Kim
(2001) present a Newton algorithm incorporating exact line searches
and show it improves global convergence by making it faster and
more reliable. Furthermore, they derive a conditioning number and
bound the backward error, as reviewed and applied to a DSGE context
in Meyer-Gohde (2023). Long et al. (2008) introduce two new algo-
rithms making Higham and Kim’s (2001) line searches occasional, thus
reducing the potential computational burden associated with Higham
and Kim’s (2001) method, with one producing better numerical resu-
lts.

In this paper, we present six different Newton-based solution al-
gorithms using a unified notation and for the application to solving
linear DSGE models as an alternative to QZ-based methods. We en-
gage in a number of experiments to compare the algorithms to QZ-
based methods.3 First we apply the different methods to the models in
the Macroeconomic Model Data Base (see Wieland et al., 2012, 2016)
(henceforth MMB), comparing the performance to the QZ-based
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method of Dynare both unconditionally (i.e., replacing the QZ method)
and then as a refinement (i.e., initializing the Newton methods with the
solution generated from QZ). We find that conditional on convergence
to the unique stable solution, the different Newton methods perform
favorably compared with QZ, providing a solution at the same order
of computational cost but at an order of magnitude higher accuracy.4

hat these methods are not guaranteed to converge to a specified
olution is a known limitation from the applied mathematics literature
see Higham and Kim (2001)). Initializing the methods at the zero
atrix, we find that our baseline method converges to the stable

olution for roughly half of the models, while adding line searches
ncreases this to about two-thirds.

The iterative nature of the Newton algorithms is also an advantage,
llowing us to explore their ability to refine the solutions provided by
he QZ method. Initializing at the QZ solution, the methods provide
dditional orders of magnitude in accuracy at an addition computa-
ional cost that is a fraction of the original QZ cost, with convergence
o the unique stable solvent for all of the models in the MMB. This
terative nature also lends itself to iterative parameter experiments
r estimations and we compare the Newton algorithms with the QZ
ethod in solving for different parameterizations of the monetary
olicy rule in the celebrated (Smets and Wouters, 2007) model of the
S economy. We fill in a grid with different values of the reaction of the
ominal interest rate rule to inflation and real activity; whereas the QZ
ethod starts anew at each parameterization, the Newton methods can
se the solution from the previous, nearby parameterization to initialize
he algorithm. As the density of the grid increases, we find that all of
he Newton methods surpass QZ by roughly an order of magnitude both
n terms of computation cost and accuracy as measured by the forward
rror.

The remainder of the paper is organized as follows. Section 2
ays out the general DSGE model class. In Section 3, we present the
et of different Newton-based methods we apply from the applied
athematics literature in a unified notation commensurate with our

lass of DSGE models. Section 4 examines practical and theoretical
onsiderations such as the choice of initial value, solvability, accuracy
nd convergence. In Section 5, we compare the different Newton-
ased methods to the standard QZ method in two applications, one
sing the MMB of 99 different models and the second over a range
f parameterizations within the (Smets and Wouters, 2007) model.
inally, Section 6 concludes.

. Problem statement

Standard numerical solution packages available to economists and
olicy makers – e.g., Dynare, Gensys (Sims, 2001), (Perturbation) AIM
Anderson and Moore, 1985; Anderson et al., 2006), Uhlig’s Toolkit
Uhlig, 1999) and Solab (Klein, 2000) – all analyze models that in some
ay or another can be expressed in the form of the nonlinear functional
quation

= 𝐸𝑡[𝑓 (𝑦𝑡+1, 𝑦𝑡, 𝑦𝑡−1, 𝜀𝑡)] (1)

The model equations (optimality conditions, resource constraints, mar-
ket clearing conditions, etc.) are represented by the 𝑛𝑦-dimensional
vector-valued function 𝑓 ∶ R𝑛𝑦 × R𝑛𝑦 × R𝑛𝑦 × R𝑛𝑒 → R𝑛𝑦 ; 𝑦𝑡 ∈ R𝑛𝑦

s the vector of 𝑛𝑦 endogenous variables; and 𝜀𝑡 ∈ R𝑛𝑒 the vector of
𝑒 exogenous shocks with a known distribution, where 𝑛𝑦 and 𝑛𝑒 are
ositive integers (𝑛𝑦, 𝑛𝑒 ∈ N).

The solution to (1) is sought as the unknown function

𝑡 = 𝑦(𝑦𝑡−1, 𝜀𝑡), 𝑦 ∶ R𝑛𝑦+𝑛𝑒 → R𝑛𝑦 (2)

4 Our measure of accuracy is the forward error of Meyer-Gohde (2023).
2

p

a function in the time domain that maps states, 𝑦𝑡−1 and 𝜀𝑡, into
ndogenous variables, 𝑦𝑡. An analytic form for (2) is rarely available
nd researchers and practitioners are compelled to find approximative
olutions. However, a steady state, 𝑦 ∈ R𝑛𝑦 a vector such 𝑦 = 𝑦(𝑦, 0)

and 0 = 𝑓 (𝑦, 𝑦, 𝑦, 0) can frequently be recovered, either analytically
r numerically, providing a point of expansion around which local
olutions may be recovered.

A first-order, or linear, approximation of (1) at the steady state
elivers,

= 𝐴𝐸𝑡
[

𝑦𝑡+1
]

+ 𝐵𝑦𝑡 + 𝐶𝑦𝑡−1 +𝐷𝜀𝑡 (3)

here 𝐴, 𝐵, 𝐶, and 𝐷 are the derivatives of 𝑓 in (1) with respect
o its arguments and, recycling notation, the 𝑦’s in (3) refer to (log)
eviations of the endogenous variables from their steady states, 𝑦.

In analogy to (2), the standard approach to finding a solution to the
linearized model (3) is to find a linear solution in the form

𝑦𝑡 = 𝑃 𝑦𝑡−1 +𝑄 𝜀𝑡 (4)

a recursive solution in the time domain–solutions that posit 𝑦𝑡 as a
function of its own past, 𝑦𝑡−1, and exogenous innovations, 𝜀𝑡.

Inserting (4) into (3) and taking expectations (𝐸𝑡
[

𝜀𝑡+1
]

= 0), yields
the restrictions

0 = 𝐴𝑃 2 + 𝐵𝑃 + 𝐶, 0 = (𝐴𝑃 + 𝐵)𝑄 +𝐷 (5)

Generally, a unique 𝑃 with eigenvalues inside the closed unit circle is
sought. Lan and Meyer-Gohde (2014) prove the latter can be uniquely
solved for 𝑄 if such a 𝑃 can be found. Hence, the hurdle is the former,
matrix quadratic equation.

Most linear DSGE methods use a generalized Schur or QZ decom-
position (Moler and Stewart, 1973; Golub and van Loan, 2013) of the
companion linearization of (3)5 in some form or another. We will take
a different route and instead solve for 𝑃 in (5) using Newton-based
methods to which we turn now.

3. Newton methods for linear DSGE models

This section contains the methods from the applied mathematics
literature that we will analyze in the context of solving linear DSGE
models as introduced above. We will begin by introducing Newton’s
method in a univariate context to fix ideas and then proceed to the
different methods from the literature suggested for the solution of
matrix quadratic equations.

3.1. Newton’s method

We will begin by analyzing a univariate equation, see, e.g., Judd
(1992, pp. 152–153) or Corless and Fillion (2013, pp. 113–116), to fix
ideas and illustrate some of the obstacles faced when using Newton
methods to solve quadratic equations.

Consider the root-finding problem 𝑓 (𝑥) ∶ C1 → C1

0 = 𝑓 (𝑥) , 𝑓 (𝑥) ∶ C1 → C1 (6)

and form a Taylor expansion of 𝑥̃ ≡ 𝑥 + 𝛥𝑥 at 𝑥

0 ≈ 𝑓 (𝑥) + 𝑓 ′ (𝑥) (𝑥̃ − 𝑥) (7)

Using the definition of 𝑥̃ and solving for 𝛥𝑥 yields

𝛥𝑥 = −
(

𝑓 ′ (𝑥)
)−1 𝑓 (𝑥) (8)

5 For a presentation of the QZ decomposition for solving linear DSGE
odels with the method of undetermined coefficients and a multivariate
ivoted (Blanchard, 1979) approach, see Meyer-Gohde (2023).
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Starting with some 𝑥0 and iterating through the foregoing produces a
solution for 𝑓 (𝑥) that converges quadratically asymptotically. Conver-
gence may initially be slow and may even fail, for example, if 𝑓 ′ (𝑥) = 0
for some 𝑥.

The problem generated by (5) is a (matrix) quadratic problem.
Again to fix ideas, consider its univariate equivalent

0 = 𝑓 (𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 (9)

where we consider (in accordance with our DSGE model), 𝑎, 𝑏, and
𝑐 ∈ R1. From the above, we need to form 𝑓 ′(𝑥) and solve for 𝛥𝑥.
Accordingly,

𝑓 ′ (𝑥) = 2𝑎𝑥 + 𝑏 (10)

and hence

𝛥𝑥 = −𝑎𝑥2 + 𝑏𝑥 + 𝑐
2𝑎𝑥 + 𝑏

(11)

Inspection highlights a difficulty with Newton-based methods, namely
that 2𝑎𝑥 + 𝑏 ≈ 0 will be likely ill-conditioned and produces arbitrarily
large 𝛥𝑥. Furthermore, given convergence of the algorithm, it is not
obvious a priori to which of the two roots

𝑥1,2 =
−𝑏 ±

(

𝑏2 − 4𝑎𝑐
)1∕2

2𝑎
(12)

he recursion will converge for a given initialization, 𝑥0. While this
o-called basin of attraction has been established for scalar quadratic
quations, see Corless and Fillion (2013, p. 115) or Schröder (1870),
ubic or higher order equations (as an 𝑛’th order matrix quadratic
ould generate in its determinant for example) lead to complicated

chaotic) basins, see Corless and Fillion (2013, p. 115–116) or Cayley
1879). Higham (2002) highlights this hurdle in the solution of matrix
uadratic equations, specifically if a particular solution or a solution
ith particular properties (such as the saddle point stability in DSGE
odels) is sought.

Turning now to our matrix problem, we will formalize the matrix
uadratic equation in (5). For 𝐴, 𝐵, and 𝐶 ∈ R𝑛𝑦×𝑛𝑦 , a matrix quadratic
(𝑃 ) ∶ C𝑛𝑦×𝑛𝑦 → C𝑛𝑦×𝑛𝑦 is defined as

(𝑃 ) ≡ 𝐴𝑃 2 + 𝐵 𝑃 + 𝐶 (13)

ith its solutions, called solvents, given by 𝑃 ∈ C𝑛𝑦×𝑛𝑦 if and only if
(𝑃 ) = 0. The eigenvalues of the solvent, called latent roots of the

ssociated lambda matrix6 𝑀(𝜆) ∶ C → C𝑛×𝑛 (here of degree two), are
iven via

(𝜆) ≡ 𝐴𝜆2 + 𝐵 𝜆 + 𝐶 (14)

he latent roots are (i) values of 𝜆 ∈ C such that det𝑀(𝜆) = 0 and (ii)
𝑦 − rank (𝐴) infinite roots. The intimately related quadratic eigenvalue
roblem given via

∈ C ∶
(

𝐴𝜆2 + 𝐵𝜆 + 𝐶
)

𝑥 = 0 for some 𝑥 ≠ 0 (15)

has been reviewed extensively by Tisseur and Meerbergen (2001)
and Hammarling et al. (2013) provide a comprehensive method to im-
prove the accuracy of its solutions. A result of particular interest for QZ
solutions is that of Tisseur (2000), who demonstrates the potential for
the QZ method to fail when solving polynomial eigenvalue problems.
This is due to the companion linearization (or stacking of polynomial
problems to reduce them to generalized eigenvalue problems) which
breaks the backward stability of the QZ algorithm — see Meyer-Gohde
(2023) for details in the matrix quadratic context applicable to DSGE
models.

6 See, e.g., Dennis et al. (1976, p. 835) or Gantmacher (1959, vol. I, p. 228).
3

c

The matrix quadratic (13) can be expanded following Higham and
Kim (2001) as

𝑀(𝑃 + 𝛥𝑃 ) = 𝐴 (𝑃 + 𝛥𝑃 )2 + 𝐵 (𝑃 + 𝛥𝑃 ) + 𝐶 (16)

= 𝐴𝑃 2 + 𝐵 𝑃 + 𝐶 + 𝐴𝛥𝑃 2 + 𝐴 (𝑃𝛥𝑃 + 𝛥𝑃𝑃 ) + 𝐵 𝛥𝑃 (17)

= 𝑀(𝑃 ) + (𝐴𝛥𝑃𝑃 + (𝐴𝑃 + 𝐵 )𝛥𝑃 ) + 𝐴𝛥𝑃 2 (18)

= 𝑀(𝑃 ) +𝒟𝑃 (𝛥𝑃 ) + 𝐴𝛥𝑃 2 (19)

here 𝒟𝑃 (𝛥𝑃 ) is the Fréchet derivative of 𝑀 at 𝑃 in the direction
𝑃 .

.2. Baseline Newton-based methods

Newton’s method ignores the second order term in (19) and calcu-
ates 𝛥𝑃 to solve

(𝑃 + 𝛥𝑃 ) ≈ 𝑀(𝑃 ) +𝒟𝑃 (𝛥𝑃 )
!
= 0 (20)

nd proceeds iteratively, updating 𝑃 with 𝑃 +𝛥𝑃 until convergence has
een achieved. Hence each step requires the solution of

𝛥𝑃𝑃 + (𝐴𝑃 + 𝐵 )𝛥𝑃 = −𝑀(𝑃 ) (21)

or 𝛥𝑃 given a 𝑃 .7 This gives the baseline Newton procedure as

Baseline Newton Method

• Given 𝐴, 𝐵, 𝐶, an initial 𝑃0, and a convergence criterion 𝜖
• While criterion(𝑃𝑗 ) > 𝜖

(1) Solve for 𝛥𝑃𝑗 in

𝐴𝛥𝑃𝑗𝑃𝑗 +
(

𝐴𝑃𝑗 + 𝐵
)

𝛥𝑃𝑗 = −𝑀(𝑃𝑗 ) (22)

(2) Set 𝑃𝑗+1 = 𝑃𝑗 + 𝛥𝑃𝑗

(3) Advance 𝑗 = 𝑗 + 1

• Return 𝑃𝑗

This baseline Newton’s method requires solving (21) at each step, a
eneralized Sylvester equation, delivering quadratic convergence at a
omputational cost of at least 52𝑛2 flops (Higham and Kim, 2001).

3.3. Modified Newton’s method

Long et al. (2008) (Algorithm 2.2) note that a convergent algorithm
can be designed with only partial updating of (21). For each iteration,
the algorithm solves

𝐴𝛥𝑃𝑗𝑃0 +
(

𝐴𝑃0 + 𝐵
)

𝛥𝑃𝑗 = −𝑀(𝑃𝑗 ) (23)

7 Note that 𝛥𝑃 , and hence 𝑃 + 𝛥𝑃 , will be real valued if 𝑃 is real valued
s 𝛥𝑃 solves the linear equation (21) with real valued coefficients. This is
n contrast to existing implementations of QZ which operates in the complex
omain. For real valued coefficient problems like ours, complex eigenvalues
ccur in conjugate pairs and splitting the eigenspace on an annulus ensures
hat both will either be included or excluded. Uhlig (1999) argues that the
nclusion or exclusion of both eigenvalues of any complex pair should result
n a real valued solution and Klein (2000) discusses, but his Matlab program
olab.m does not implement, a real generalized Schur approach that by

onstruction ensures the solution remains real valued.
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for 𝛥𝑃𝑗 given 𝑃𝑗 from the previous iteration and the initial 𝑃0. This
ives the following modified Newton’s algorithm

Modified Newton Method

• Given 𝐴, 𝐵, 𝐶, an initial 𝑃0, and a convergence criterion 𝜖
• While criterion(𝑃𝑗 ) > 𝜖

(1) Solve for 𝛥𝑃𝑗 in

𝐴𝛥𝑃𝑗𝑃0 +
(

𝐴𝑃0 + 𝐵
)

𝛥𝑃𝑗 = −𝑀(𝑃𝑗 ) (24)

(2) Set 𝑃𝑗+1 = 𝑃𝑗 + 𝛥𝑃𝑗

(3) Advance 𝑗 = 𝑗 + 1

• Return 𝑃𝑗

This modified Newton’s method again requires solving a generalized
Sylvester equation, now (23) at each step, but now with constant
coefficients on the left-hand side at each iteration as only 𝑃𝑗 in 𝑀(𝑃𝑗 )
on the right-hand side of (23) is updated. This simplifies the solvability
considerations, presents an opportunity to economize on computational
costs, but comes at the cost of quadratic convergence (Long et al.,
2008).

3.4. Newton’s method with Šamanskii technique

Combining the two previous techniques, the Šamanskii algorithm,
Algorithm 2.3 of Long et al. (2008), runs a fixed number of interim
modified Newton updates in between each baseline Newton step, strik-
ing a balance between the potential computational savings of the mod-
ified algorithm and the quadratic rate of convergence of the baseline
algorithm. This gives us the following algorithm

Šamanskii Technique

• Given 𝐴, 𝐵, 𝐶, an initial 𝑃0, an integer 𝑚, and a
convergence criterion 𝜖

• While criterion(𝑃𝑗 ) > 𝜖

• Set 𝑖 = 0 and 𝑃𝑗,0 = 𝑃𝑗

(1) While 𝑖 < 𝑚

(a) Solve for 𝛥𝑃𝑗,𝑖 in

𝐴𝛥𝑃𝑗,𝑖𝑃𝑗 +
(

𝐴𝑃𝑗 + 𝐵
)

𝛥𝑃𝑗,𝑖 = −𝑀(𝑃𝑗,𝑖) (25)

(b) Set 𝑃𝑗,𝑖+1 = 𝑃𝑗,𝑖 + 𝛥𝑃𝑗,𝑖

(c) Advance 𝑖 = 𝑖 + 1

(2) Set 𝑃𝑗+1 = 𝑃𝑗,𝑚

(3) Advance 𝑗 = 𝑗 + 1

• Return 𝑃𝑗

When 𝑚 = 1, the baseline Newton method is recovered. Long et al.
4

(2008) show that an 𝑚 = 2 – that is, one intermittent modified step a
delivers a cubic convergence rate in 𝑗 at an economical increase in
omputation cost over the baseline method. It is important to stress,
owever, that 𝑗 is the outer index and our comparisons in Section 5 will

not support the implication that this method has stronger convergence
properties than the other methods we examine.

3.5. Newton-based method with exact line searches

Higham and Kim (2001) lay out a Newton method with exact
line searches, which is motivated by the inaccuracies of the linear
approximation in (20) that ignores the second order term in (19). If 𝑃𝑗
is far from a solvent (𝑃 ∶ 𝑀(𝑃 ) = 0), the update 𝑃𝑗+1 = 𝑃𝑗 + 𝛥𝑃𝑗 might
e farther from a solvent than 𝑃𝑗 . They propose a line search, a multiple
f the Newton step, 𝑃𝑗+1 = 𝑃𝑗 + 𝑡𝛥𝑃𝑗 where 𝑡 is an appropriate scalar.
bviously, if 𝑡 = 1, the baseline Newton algorithm is recovered. They

elect the multiple of the Newton step by finding a 𝑡 that minimizes the
erit function

= arg min
𝑥∈[0,2]

‖𝑀(𝑃 + 𝑥𝛥𝑃 )‖2𝐹 (26)

igham and Kim (2001) show that this particular choice of merit
unction (including the Frobenius norm) is convenient as

𝑔(𝑥) ≡ ‖𝑀(𝑃 + 𝑥𝛥𝑃 )‖2𝐹 = 𝛾𝑥4 − 𝛽𝑥3 + (𝛼 + 𝛽) 𝑥2 − 2𝛼𝑥 + 𝛼 (27)
′(𝑥) = 2𝛼 (𝑥 − 1) + 𝛽

(

2𝑥 − 3𝑥2
)

+ 4𝛾𝑥3 (28)

here 𝛼 = ‖𝑀(𝑃 )‖2𝐹 , 𝛽 = 𝑡𝑟𝑎𝑐𝑒
(

𝑀(𝑃 )∗𝐴 (𝛥𝑃 )2 +
(

𝐴 (𝛥𝑃 )2
)∗ 𝑀(𝑃 )

)

nd 𝛾 = ‖

‖

‖

𝐴 (𝛥𝑃 )2‖‖
‖𝐹

. As 𝑔(𝑥) is a quartic polynomial it has at most
wo minima and, as 𝑔′(0) < 0 and 𝑔′(2) ≥ 0, has a zero in the
nterval (0, 2] corresponding to either a minimum or an inflection point.
mplementing 𝑡 from (26) is straightforward as either there is a single
eal zero of 𝑔′(𝑥) which lies in the (0, 2] interval and is the global
inimum of 𝑔(𝑥) or 𝑔′(𝑥) has three real zeros, of which at most two

orrespond to minima of 𝑔(𝑥). Hence, finding the zeros of 𝑔′(𝑥) and
omparing the associated values of 𝑔(𝑥) with the value of 𝑔(2) enables
from (26) to be readily found.

This gives the Newton procedure with exact line searches as

Exact Line Searches

• Given 𝐴, 𝐵, 𝐶, an initial 𝑃0, and a convergence criterion 𝜖
• While criterion(𝑃𝑗 ) > 𝜖

(1) Solve for 𝛥𝑃𝑗 in

𝐴𝛥𝑃𝑗𝑃𝑗 +
(

𝐴𝑃𝑗 + 𝐵
)

𝛥𝑃𝑗 = −𝑀(𝑃𝑗 ) (29)

(2) Solve for 𝑡𝑗 in

𝑡𝑗 = argmin
𝑥∈[0,2]

‖

‖

‖

𝑀(𝑃𝑗 + 𝑥𝛥𝑃𝑗 )
‖

‖

‖

2

𝐹
(30)

(3) Set 𝑃𝑗+1 = 𝑃𝑗 + 𝑡𝑗𝛥𝑃𝑗

(4) Advance 𝑗 = 𝑗 + 1

• Return 𝑃𝑗

This method requires solving (21) as in the baseline Newton method
nd additionally calculating the line-search step. The additional costs
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are ‘‘negligible’’ at 5𝑛3 flops and Higham and Kim (2001) show that
the line-search step does not interfere with the quadratic convergence
of the baseline Newton method. Hence, at a small additional cost,
non-local missteps can be avoided while maintaining the local, fast
convergence of the baseline Newton method.

3.6. Newton-based method with occasional exact line searches

Algorithm 3.1 of Long et al. (2008) notes that the line searches
in Higham and Kim’s (2001) method above are needed only when the
linear approximation in (20) that ignores the second order term in (19)
is problematic, i.e. when the current 𝑃 is far from a solvent. Hence, they
uggest implementing line searches only when the current iteration is
ar from a solvent so as to avoid the additional computational burden
f these searches when the quadratic convergence rate of the Newton
lgorithm sets in. This gives the Newton procedure with occasional
xact line searches as

Occasional Exact Line Searches

• Given 𝐴, 𝐵, 𝐶, an initial 𝑃0, and two convergence criteria
𝜖 and 𝜖0

• While criterion(𝑃𝑗 ) > 𝜖

(1) Solve for 𝛥𝑃𝑗 in

𝐴𝛥𝑃𝑗𝑃𝑗 +
(

𝐴𝑃𝑗 + 𝐵
)

𝛥𝑃𝑗 = −𝑀(𝑃𝑗 ) (31)

(2) if criterion(𝑃𝑗 + 𝛥𝑃𝑗 ) > 𝜖0

(a) Solve for 𝑡𝑗 in

𝑡𝑗 = argmin
𝑥∈[0,2]

‖

‖

‖

𝑀(𝑃𝑗 + 𝑥𝛥𝑃𝑗 )
‖

‖

‖

2

𝐹
(32)

(b) Set 𝑃𝑗+1 = 𝑃𝑗 + 𝑡𝑗𝛥𝑃𝑗

(3) else

(a) Set 𝑃𝑗+1 = 𝑃𝑗 + 𝛥𝑃𝑗

(4) Advance 𝑗 = 𝑗 + 1

• Return 𝑃𝑗

This method is identical to the line-search method above, except
that the line searches are implemented only on a need-be basis. This
further reduces the small additional cost of line searches, maintaining
the avoidance of non-local missteps of the line-search method and the
local, fast convergence of the baseline Newton method.

3.7. Newton-based method with occasional exact line searches and Šaman-
skii technique

Long et al. (2008, Algorithm 3.2) combines the cubic convergence
of the Šamanskii technique above with the line-search approach of
Higham and Kim (2001) to avoid non-local missteps of using the
Newton algorithm when the current iteration on 𝑃 is far from a solvent.
This Newton procedure with occasional exact line searches and the
5

Šamanskii technique is
Occasional Exact Line Searches and Šamanskii Technique

• Given 𝐴, 𝐵, 𝐶, an initial 𝑃0, 𝑚 and two convergence
criteria 𝜖 and 𝜖0

• While criterion(𝑃𝑗 ) > 𝜖

(1) Solve for 𝛥𝑃𝑗 in

𝐴𝛥𝑃𝑗𝑃𝑗 +
(

𝐴𝑃𝑗 + 𝐵
)

𝛥𝑃𝑗 = −𝑀(𝑃𝑗 ) (33)

(2) if criterion(𝑃𝑗 + 𝛥𝑃𝑗 ) > 𝜖0

(a) Solve for 𝑡𝑗 in

𝑡𝑗 = argmin
𝑥∈[0,2]

‖

‖

‖

𝑀(𝑃𝑗 + 𝑥𝛥𝑃𝑗 )
‖

‖

‖

2

𝐹
(34)

(b) Set 𝑃𝑗+1 = 𝑃𝑗 + 𝑡𝑗𝛥𝑃𝑗

(3) else

(a) Set 𝑖 = 1 and 𝑃𝑗,1 = 𝑃𝑗 + 𝛥𝑃𝑗

(i) While 𝑖 < 𝑚

(A) Solve for 𝛥𝑃𝑗,𝑖 in

𝐴𝛥𝑃𝑗,𝑖𝑃𝑗 +
(

𝐴𝑃𝑗 + 𝐵
)

𝛥𝑃𝑗,𝑖

= −𝑀(𝑃𝑗,𝑖) (35)

(B) Set 𝑃𝑗,𝑖+1 = 𝑃𝑗,𝑖 + 𝛥𝑃𝑗,𝑖

(C) Advance 𝑖 = 𝑖 + 1

(ii) Set 𝑃𝑗+1 = 𝑃𝑗,𝑚

(4) Advance 𝑗 = 𝑗 + 1

• Return 𝑃𝑗

When 𝑚 = 1, the Newton method with occasional line searches
s recovered. Long et al. (2008) show that an 𝑚 = 2 – that is, one
ntermittent modified step – delivers a cubic convergence rate in 𝑗 at
n economical increase in computation cost over the baseline method.

. Theoretical and practical considerations

.1. Initial value

All Newton methods need an initial value, 𝑃0. In contrast to the
calar quadratic equation whose ‘‘basins of attraction’’ for initial values
re known – see Section 3.1 – there is minimal guidance for the
hoice of an initial value for the matrix quadratic equation. Indeed this
onstitutes one of the remaining open problems noted by Higham and
im (2001).

As our goal is to obtain the minimal solvent 𝑃 – the solvent with
he smallest in absolute value eigenvalues – we choose the initial value
0 = 0. In the absence of any other guidance, this choice satisfies
he requirement of having all eigenvalues inside the unit circle. In our
xperiments, we check whether the solvent produced by the methods
f the previous section with the initial value is the minimal solvent.

In an iterative analysis, say using an MCMC Bayesian estimation
rocedure (An and Schorfheide, 2007) or a parameter robustness ex-
rcise, the solvent 𝑃 from the previous parameterization might be used
o initialize the new Newton procedure to solve for the solvent with
he current parameter draw. This can be formalized as follows. Given

solvent from a previous parameter draw, 𝑃 such that 𝑀(𝑃 ) = 0,
update with information about the change in the matrix quadratic at
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the current parameter draw using an analogous expansion to the matrix
quadratic 𝑀̃ = 𝑀 + 𝛥𝑀 as in (13)

𝑀̃(𝑃 ) ≡ (𝑀 + 𝛥𝑀)(𝑃 + 𝛥𝑃 ) (36)

= 𝐴̃ 𝑃 2 + 𝐵̃ 𝑃 + 𝐶̃ (37)

= (𝐴 + 𝛥𝐴) (𝑃 + 𝛥𝑃 )2 + (𝐵 + 𝛥𝐵) (𝑃 + 𝛥𝑃 ) + 𝐶 + 𝛥𝐶 (38)

where 𝑃 is a solvent of 𝑀 , 𝑀(𝑃 ) = 𝐴𝑃 2+𝐵𝑃 +𝐶 = 0, and 𝛥𝐴, 𝛥𝐵, and
𝛥𝐶 are perturbations in the parameters of the matrix quadratic (i.e., the
changes in the coefficient matrices resulting from the change in the
parameter vector in an MCMC procedure). Developing this further

𝑀̃(𝑃 ) = (𝐴 + 𝛥𝐴) (𝑃 2 + 𝛥𝑃𝑃 + 𝑃𝛥𝑃 + 𝛥𝑃 2)

+ (𝐵 + 𝛥𝐵) (𝑃 + 𝛥𝑃 ) + 𝐶 + 𝛥𝐶 (39)
= 𝑀(𝑃 ) + 𝛥𝐴𝑃 2 + 𝛥𝐵 𝑃 + 𝛥𝐶 + (𝐴 + 𝛥𝐴) (𝛥𝑃𝑃 + 𝑃𝛥𝑃 + 𝛥𝑃 2)

+ (𝐵 + 𝛥𝐵)𝛥𝑃 (40)

= 𝛥𝑀(𝑃 ) + (𝐴 + 𝛥𝐴) (𝛥𝑃𝑃 + 𝑃𝛥𝑃 + 𝛥𝑃 2) + (𝐵 + 𝛥𝐵)𝛥𝑃 (41)

= 𝛥𝑀(𝑃 ) + 𝐴̃ 𝛥𝑃𝑃 + (𝐴̃𝑃 + 𝐵̃)𝛥𝑃 + 𝐴̃ 𝛥𝑃 2 (42)

= 𝛥𝑀(𝑃 ) +𝒟𝑃 (𝛥𝑃 ) + 𝐴̃ 𝛥𝑃 2 (43)

here the third line follows as 𝑀(𝑃 ) = 0 was assumed. 𝒟𝑃 (𝛥𝑃 ) is the
réchet derivative of 𝑀̃ at 𝑃 in the direction 𝛥𝑃 .

Analogously to Newton’s method in the previous section, we ignore
he second order term 𝛥𝑃 2 in (43) and calculate 𝛥𝑃 to solve

̃ (𝑃 ) = 𝛥𝑀(𝑃 ) +𝒟𝑃 (𝛥𝑃 ) = 0 (44)

r

̃ 𝛥𝑃𝑃 + (𝐴̃𝑃 + 𝐵̃)𝛥𝑃 = −𝛥𝑀(𝑃 ) (45)

or 𝛥𝑃 given a 𝑃 such that 𝑀(𝑃 ) = 0. This would be identical with
21), apart from the notation to indicate a change in the coefficient
atrices of the matrix quadratic 𝐴̃ instead of 𝐴, etc., the left-hand

ide would read −𝑀̃(𝑃 ) instead of −𝛥𝑀(𝑃 ). But as 𝑀(𝑃 ) = 0 and
𝑀̃(𝑃 ) = 𝑀(𝑃 )+𝛥𝑀(𝑃 ), the two are identical. Thus, if a solvent 𝑃 from

nearby problem 𝑀(𝑃 ) is available, 𝑀(𝑃 ) = 0, then the chosen Newton
rocedure from the previous section can be initialized with 𝑃0 = 𝑃 .

.2. Solvability

All of the methods in the previous section involve solving a gener-
lized Sylvester equation of the form

𝑋 𝑃𝑗 +
(

𝐴𝑃𝑗 + 𝐵
)

𝑋 +𝑀(𝑃𝑗 ) = 0 (46)

The necessary and sufficient conditions for the solvability of such
Sylvester equations are given by Theorem 1 of Chu (1987) which
requires the two matrix pencils formed by the leading and trailing
matrix coefficients of a generalized Sylvester equation to be regular and
have disjoint spectra. Adapted here in the following

Proposition 1. There exists a unique solution, 𝑋 ∈ R𝑚×𝑛, for the Sylvester
quation

𝑋𝐵 + 𝐶𝑋𝐷 + 𝐸 = 0

here 𝐴,𝐶 ∈ R𝑚×𝑚 and 𝐷,𝐵 ∈ R𝑛×𝑛, if and only if

(1) 𝑃𝐴𝐶 (𝑧) ≡ 𝐴𝑧 + 𝐶 and 𝑃𝐷𝐵(𝑧) ≡ 𝐷𝑧 − 𝐵 are regular matrix pencils,
and

(2) 𝜌(𝑃𝐴𝐶 ) ∩ 𝜌(𝑃𝐷𝐵) = ∅

here 𝑃𝐴𝐶 (𝑧) = 𝐴𝑧 + 𝐶 (equivalently for 𝑃𝐷𝐵(𝑧)) is called regular
if there exists a 𝑧 ∈ C such that det (𝐴𝑧 + 𝐶) ≠ 0 and the spec-
trum of the regular pencil 𝑃𝐴𝐶 (𝑧) is the finite set defined via 𝜌(𝑃𝐴𝐶 ) =
{

𝑧 ∈ C ∶ det 𝑃 (𝑧) = 0
}

, extended to include infinite eigenvalues, the
6

𝐴𝐶
multiplicity of which is given by 𝑚 less the rank of 𝐴 (equivalently 𝑛 less the
rank of 𝐷).

Proof. See Chu (1987). Notice the rearrangement and redefinition of
terms. □

Hence, the existence of a unique solution 𝑋 for 𝐴𝑋 𝑃𝑗 +
(

𝐴𝑃𝑗 + 𝐵
)

𝑋 +𝑀(𝑃𝑗 ) = 0 requires

(1) the existence of a 𝑧 ∈ C such that det
(

𝐴𝑧 +
(

𝐴𝑃𝑗 + 𝐵
))

≠ 0
(2) the existence of a 𝑧 ∈ C such that det

(

𝐼𝑧 − 𝑃𝑗
)

≠ 0
(3)

{

𝑧 ∈ C ∶ det
(

𝐴𝑧 +
(

𝐴𝑃𝑗 + 𝐵
))

= 0
}

∩
{

𝑧 ∈ C ∶ det
(

𝐼𝑧 − 𝑃𝑗
)

= 0
}

= ∅

From Lemma 4.3 and Proposition 4.4 of Lan and Meyer-Gohde
(2014), these conditions are fulfilled at 𝑃𝑗 = 𝑃 if 𝑃 is the unique,
stable solvent of 𝑀(𝑃 ), which is equivalent to the nonsingularity of
the Fréchet derivative of 𝑀 at 𝑃 , 𝒟𝑃 , in Lemma 3.1 of Higham and
Kim (2001) at a minimal solvent. For our initial value 𝑃0 = 0, a unique
solution for 𝑋 of 𝐵𝑋 +𝑀(𝑃0) = 0 requires 𝐵 to be of full rank.

Thus like Klein (2000) noted for the QZ approach, solving a
Sylvester equation is ‘‘always good enough when there is a unique solu-
tion to the system’’, which is the usual case in the literature — although
here it is important to note that this only holds with certainty at the
unique, stable solvent should it exist. If there are multiple solutions with
respect to some annulus (the unit circle being the standard assumption,
see Sims (2001), Lan and Meyer-Gohde (2014), and Al-Sadoon (2018)
for methods that construct solutions with eigenvalues outside the
unit circle), then the fulfillment of the necessary assumptions for the
solvability of the Newton increment 𝑃𝑗 at the particular solvent cannot
be guaranteed as the spectra of the (say minimum) solvent 𝑃 and
the remainder of the latent roots may coincide. In such a case, a
Newton algorithm is unlikely to be able to converge to the solvent
even in its vicinity — that is, the Fréchet derivative of 𝑀 at 𝑃 in the
direction 𝛥𝑃 , 𝒟𝑃 (𝛥𝑃 ), is singular. This discontinuity is consistent with
the critiques of Al-Sadoon (2023), who provides a detailed analysis of
the solution space beyond the unique, stable (with respect to some
annulus) assumption we tacitly made in positing the solution forms
(2) and (4). Hence, the solution methods here are subject to the same
critiques in this regard as more familiar QZ based methods and add no
specific insights in the case of indeterminacy.

4.3. Convergence and accuracy

Higham and Kim (2001) note that for a 𝑃𝑗 sufficiently close to 𝑃 ,
standard convergence results for Newton’s method apply and, if 𝑃 is
the unique, stable solvent of 𝑀(𝑃 ), the iteration converges and does so
at a quadratic rate. Convergence of a sequence of 𝑃𝑗 is determined by
a stopping criterion. Long et al. (2008) use the residual ‖‖

‖

𝑀(𝑃𝑗 )
‖

‖

‖𝐹
< 𝜖,

where ‖ ‖𝐹 indicates the Frobenius norm and 𝜖 is a small number,
say, machine precision (using Matlab 2022a and double precision, 𝜖 =
2−52 = 2.2204𝑒−16). Higham and Kim (2001) use the relative residual
‖

‖

‖

𝑀(𝑃𝑗 )
‖

‖

‖𝐹
∕
(

‖𝐴‖𝐹
‖

‖

‖

𝑃 2
𝑗
‖

‖

‖𝐹
+ ‖𝐵‖𝐹

‖

‖

‖

𝑃𝑗
‖

‖

‖𝐹
+ ‖𝐶‖𝐹

)

< 𝑛𝑦𝜖.
To assess the accuracy of a computed solution 𝑃 numerically, we

apply the practical forward error bounds of Meyer-Gohde (2023),
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Forward Error Bound 2

(47)

here 𝑅𝑃 = 𝐴𝑃 2 + 𝐵𝑃 + 𝐶 is the residual of the matrix quadratic and
𝑃 = 𝐼𝑛𝑦 ⊗

(

𝐴𝑃 + 𝐵
)

+𝑃 ′⊗𝐴. Stewart’s (1971) separation function, see
lso Kågström (1994), Kågström and Poromaa (1996), and Chen and Lv
2018), is

ep
[(

𝐴,𝐴𝑃 + 𝐵
)

,
(

𝐼,−𝑃
)]

= min ‖

‖𝐴𝑋𝑃 +
(

𝐴𝑃 + 𝐵
)

𝑋‖

‖ (48)

‖𝑋‖𝐹=1 ‖ ‖𝐹



Economic Modelling 133 (2024) 106670A. Meyer-Gohde and J. Saecker

t

t
m
‘
o
2

a
e

= min
‖vec(𝑋)‖2=1

‖

‖

𝐻𝑃 vec (𝑋)‖
‖2 (49)
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where 𝜆
(

𝐴,𝐴𝑃 + 𝐵
)

is the spectrum or set of (generalized) eigen-
values of the pencil

(

𝐴,𝐴𝑃 + 𝐵
)

(and, accordingly, 𝜆
(

𝑃
)

the set of
eigenvalues of 𝑃 ) and the last line holds with equality for 𝐴 = 𝐼
and 𝑃 and 𝑃 + 𝐵 regular – hence, the separation between the two
pencils – the smallest singular value of 𝐻𝑃 - is generically smaller
than the minimal separation between their spectra. Analogously to the
generalized Sylvester and algebraic Riccati equations, the separation
function provides the natural extension of the conditioning number
from standard linear equations to these structured problems, and the
a posteriori condition number for the matrix quadratic is given by
sep−1 [(𝐴,𝐴𝑃 + 𝐵

)

,
(

𝐼,−𝑃
)]

= ‖

‖

‖

𝐻−1
𝑃

‖

‖

‖2
= 𝜎min

(

𝐻𝑃
)−1, which – from

above – can be arbitrarily larger than the inverse of the minimal dis-
tance between the spectra of the pencils

(

𝐴,𝐴𝑃 + 𝐵
)

,
(

𝐼,−𝑃
)

. Thus a
measure based on this separation provides an analogy to other familiar
methods as the inverse of the separation relates an upper bound to the
forward error directly to the residual, like the condition number for a
standard linear system. A tighter bound takes into account the structure
more carefully and considers the linear operator 𝐻𝑃 and the residual
𝑅𝑃 jointly — as the linear system 𝐻−1

𝑃
vec

(

𝑅𝑃
)

must be solved this
bound is computationally more intensive, especially for larger models,
as 𝐻𝑃 increases in the square of the dimension of the underlying
problem (𝑛2𝑦 × 𝑛2𝑦). This gives us two measures of the relative error
of a numerically computed solution to an exact solution, the upper
bound is easier to compute and directly analogous to familiar measures
for linear equations and the lower bound is tighter, and hence more
informative, but prohibitively expensive to calculate for larger models.
We favor this measure over the den Haan and Marcet (1994) statistic
as the latter is known to frequently not be sensitive enough to discern
among nonlinear methods, see Aruoba et al. (2006) and also Juillard
and Villemot (2011).8

5. Applications

We conduct a number of experiments to assess the performance of
the algorithms presented above. When choosing the models to run the
experiments we take two considerations into account. On the one hand
we would like to assess the methods in a model that is policy-relevant
and on the other hand we would like to protect against the danger
that our conclusions are model specific. To this end we first compare
the algorithms on the Smets and Wouters (2007) model, an estimated,
medium-scale New Keynesian model that has found considerable ap-
plication in policy analysis. We then turn to the Macroeconomic Model
Data Base (MMB), a model comparison initiative at the Institute for
Monetary and Financial Stability (IMFS),9 that allows us to examine our
algorithms across a wide selection of different models. The benchmark
for our algorithms is Dynare’s QZ-based method.10 and we compare
the convergence of our different methods to the stable solvent,11 the
accuracy of the solvents, and the associated computation times relative
to Dynare.

8 See the appendix for the den Haan and Marcet (1994) statistics for
he Smets and Wouters (2007) we examine in the next section.

9 See http://www.macromodelbase.com.
10 See Villemot (2011) Additionally, note that we follow Dynare and reduce

he dimensionality of the problem by grouping variables and structuring the
atrix quadratic according to the classification of ‘‘static’’, ‘‘purely forward’’,

‘purely backward looking’’, and ‘‘mixed’’ variables. The details are in the
nline appendix and are of independent interest as they supplement (Villemot,
011) by providing a detailed block-matrix derivation of the procedure.
11 We use dlyap from Matlab to solve the Sylvester equations. We
lso explored gensylv from Dynare, ACM Algorithm 705 from Gardiner
t al. (1992a,b), and Hopkins (2002), ZTGSYL from LAPACK from Kågström
7

5.1. Model of Smets and Wouters (2007)

We begin with the model of Smets and Wouters (2007) upon which
we place specific attention, particularly on the monetary policy rule in
the second set of experiments. In their pivotal work, Smets and Wouters
(2007) analyze and estimate a DSGE model based on macroeconomic
data from the US economy, providing a compact medium scale model
that is the benchmark for structural policy analyses. They build a
New Keynesian model featuring sticky prices and wages, inflation
indexation, consumption habit formation as well as production frictions
concerning investment, capital and fixed costs. The model includes the
following log-linearized monetary policy rule,

𝑟𝑡 = 𝜌𝑟𝑡−1+(1−𝜌)(𝑟𝜋𝜋𝑡+𝑟𝑌 (𝑦𝑡−𝑦𝑝𝑡 ))+𝑟𝛥𝑦((𝑦𝑡−𝑦𝑝𝑡 )−(𝑦𝑡−1−𝑦𝑝𝑡−1))+𝜀𝑟𝑡 , (51)

which prescribes that the policy authority sets the interest rate 𝑟𝑡
reacting to inflation 𝜋𝑡, the current output gap (𝑦𝑡 − 𝑦𝑝𝑡 ) and the change
in the output gap, and where the parameters 𝑟𝜋 , 𝑟𝑌 and 𝑟𝛥𝑦 describe the
strength of each of these reactions. Additionally, 𝜌 controls the degree
of interest rate smoothing and 𝜀𝑟𝑡 is the monetary policy shock following
an AR(1)-process with iid normally distributed error. In the paper, the
authors employ seven macroeconomic time series from the US economy
to estimate the model parameters using Bayesian estimation. They show
that the model matches the US macroeconomic data very closely and
that out-of-sample forecasting performance is as good as the one of VAR
and BVAR models.

We assess the Newton algorithms first as solution refinement meth-
ods by initializing them with the output from Dynare’s QZ algorithm
and then with an uninformed initialization of the stable solvent (the
zero matrix). We begin by examining the potential computational
savings of the different Newton-based methods relative to standard
QZ-based methods when exploring the parameter space of a model,
that of the monetary policy rule in Smets and Wouters (2007), where
the solvent from the previous parameterization is used as the initial
value for the solvent in the new, and likely nearby, parameterization. In
particular, we successively narrow the spacing of the parameterization
to make the notion of ‘‘nearby’’ concrete. We then turn to the perfor-
mance at the posterior mode of Smets and Wouters (2007) and finally as
refinements to QZ at a numerically problematic parameterization inside
the prior from Meyer-Gohde (2023).

We begin by using the Newton-based algorithms to solve the model
of Smets and Wouters (2007) iteratively for different parameterizations
of the Taylor rule. The goal here is to explore whether solutions from
previous, nearby parameterizations can be used to efficiently initialize
the Newton methods similarly to the experiment above with the QZ
solution as the initial guess. For the parameters determining the Taylor
rule reaction to inflation and the long run reaction to the output gap
we iterate through a grid of 10 × 10 parameter values varying the
size of the intervals considered. We span a grid over the intervals of
𝑟𝜋 ∈ [1.5, 1.5 (1 + 10−𝑥)] and 𝑟𝑌 ∈ [0.125, 0.125 (1 + 10−𝑥)], where
𝑥 ∈ [−1, 8] (Smets and Wouters (2007) calibrate them to 𝑟𝜋 = 2.0443
and 𝑟𝑌 = 0.0882). The algorithm iterates through the two-dimensional
grid, updating the initialization to the solution of the previous iteration.
A decrease in the spacing between the 100 grid points thus increases
the precision of the starting guess.

Table 1 shows that all algorithms are at the median more precise
than Dynare, as measured by both upper bounds on the forward error,
and roughly by an order of magnitude. A decrease in the spacing
between the grid points decreases run time per grid point for all of the
algorithms relative to Dynare’s QZ method — which does not benefit
from having a nearby solution to initialize its algorithm. The Baseline

(1994) and Kågström and Poromaa (1996), SB04QD from Slicot from Ben-
ner et al. (1999), and gsylv from MEPACK from Köhler (2021, 2022) to
solve the generalized Sylvester equations and include these in our software
implementation.

http://www.macromodelbase.com
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Table 1
Results: Smets-Wouters model.

Method Grid end Run time Forward error 1 Forward error 2

(𝑥 for (1 + 10−𝑥)) Median Min Max Median Min Max Median Min Max

Dynare (QZ) −1, 6 1 1 1 1 1 1 1 1 1
Baseline Newton Method −1 0.9 0.76 1.2 0.16 0.011 1.2 0.059 0.021 0.18

6 0.23 0.21 0.96 0.17 0.028 1.1 0.11 0.044 0.21
Modified Newton Method −1 2 1.6 5.8 0.13 0.025 0.8 0.059 0.021 0.17

6 0.23 0.21 2.4 0.15 0.015 0.82 0.1 0.04 0.21
With Šamanskii Technique −1 1.1 0.75 1.4 0.13 0.011 0.88 0.055 0.015 0.13

6 0.36 0.33 1 0.15 0.024 1.2 0.094 0.028 0.18
With Line Searches −1 1 0.87 1.8 0.11 0.01 0.95 0.06 0.02 0.15

6 0.25 0.23 1 0.19 0.021 1.2 0.11 0.037 0.21
With Occ. Line Searches −1 1 0.85 2.1 0.16 0.008 1.2 0.062 0.022 0.15

6 0.24 0.22 1.3 0.16 0.028 1 0.11 0.048 0.22
With Occ. LS & ŠT −1 1.2 0.98 2 0.13 0.0076 0.87 0.057 0.022 0.14

6 0.37 0.34 1.4 0.16 0.024 1 0.097 0.04 0.19

∙ For Dynare, refer to Adjemian et al. (2011).
∙ Run time per grid point and forward errors relative to Dynare.
∙ Forward error 1 and 2 are the upper bounds for the true forward error, see (47).
Table 2
Results: Model of Smets and Wouters (2007).

Method Run time Max Abs. Diff. Forward errors Iterations

Bound 1 Bound 2

Dynare (QZ) 1 0 5.5e−14 2.4e−11 1
Baseline Newton Method 1.2 110 9.3e−14 2e−09 10
Modified Newton Method 37 1.5e−12 2.3e−15 4.7e−12 650
With Šamanskii Technique 1.2 110 1.2e−13 5.5e−10 7
With Line Searches 1.9 7.9e−13 6.3e−15 3.6e−12 18
With Occ. Line Searches 2.1 7.8e−13 7.8e−15 3.3e−12 19
With Occ. LS & ŠT 2.1 7.8e−13 7.7e−15 3.8e−12 18

∙ For Dynare, refer to Adjemian et al. (2011).
∙ Run Time relative to Dynare (Dynare run time: 0.0021 s).
∙ Max Abs. Diff. measures the largest absolute difference in the computed 𝑃 of each method from the 𝑃 produced by Dynare.
∙ Forward error 1 and 2 are the upper bounds for the true forward error, see (47).
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ewton method displays superior run-time performance at even the
idest spacing (𝑥 = −1 for the end point (1 + 10−𝑥) times the original
alue) and all algorithms are faster than QZ by nearly an order of
agnitude at the narrower spacing (𝑥 = 6). In the wider spacing, the
odified Newton algorithm is, as before, the slowest and least accurate

f all algorithms. This disadvantage vanishes with a narrowing of the
pacing, for which speed and accuracy become very similar for all
lgorithms.

Fig. 1 summarizes the experiment graphically. Fig. 1(c) confirms
decrease in run time per grid point with a narrower grid for the
ewton-based algorithms and an irrelevance of the grid spacing for
Z. As the grid becomes narrower, the iterative Newton procedures

ncreasingly benefit from starting from the solution of the previous
teration as it becomes closer to the unknown solution of the current
teration. The QZ algorithm does not operate iteratively and, hence,
emonstrates no such benefit, solving for each grid point anew. This
elationship is most notable for the modified algorithm which possesses
nly linear convergence, thus benefiting mostly from a good starting
uess. According to Figs. 1(a), 1(b), overall, all algorithms are more
recise than Dynare. Thus, in summary, for iterative experiments like
he one we have performed here or for the refinement of an inaccurate
olution from an alternative algorithm, the iterative nature of Newton-
ased algorithms can be particularly advantageous, providing more
ccurate solutions at considerable computational savings.

We now turn to the performance at specific parameterizations and
egin with the posterior mode parameterization of Smets and Wouters
2007). Here we would like to assess the promise of the different
ewton methods as alternatives to the QZ method and initialize the

ormer at the zero matrix and Table 2 presents the results. Both the
8

aseline Newton algorithm and the method with the Šamanskii Tech-
ique failed to converge to the same solvent as Dynare. That is, they
onverged to solvents with some eigenvalues outside the unit circle —
s pointed out by Higham and Kim (2001) and elaborated on above,
here is no known mapping of initializations to solvents to guarantee
onvergence to a particular solvent and our initialization with the zero
atrix (obviously a guess with all eigenvalues inside the unit circle)
oes not guarantee that the final solvent will have the desired stability
roperties. The forward errors, however, confirm that they did indeed
onverge to a solvent (note that the numerator in the upper bound
or the forward error is the norm of the residual, so a small forward
rror confirms that the delivered solvent is not only near to a solvent
ut also solves the matrix quadratic equation with a small residual,
ee Meyer-Gohde (2023)). The remaining methods did converge to
he same stable solvent as Dynare, however with significantly larger
omputational costs (as measured in relative run time) compared with
ynare. This is certainly not unexpected for the Modified Newton
ethod, which uses static coefficients in each iteration and thus only
isplays linear convergence. The line search methods performed more
avorably, requiring about an order of magnitude more computing
ime, but providing roughly an order of magnitude more accuracy (as
easured by forward errors).

We now return to the promise of Newton methods as solution
efinement techniques be examining their potential at an economically
elevant numerical instability of the QZ-based solution of Dynare for
he model of Smets and Wouters (2007) as examined by Meyer-Gohde
2023). Here we initialize the different Newton methods at the QZ
olution and the results are in Table 3. The second column now displays
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Fig. 1. Forward Errors and Computation Time per Grid Point for different parameterizations of the model by Smets and Wouters (2007). Figs. 1(a), 1(b) plot the upper forward
error bounds 1 and 2 against the grid size, log10 scale on both axes. Fig. 1(c) plots the computation per grid point against the number of grid points, log10 scale on both axes.
Table 3
Results: Model of Smets and Wouters (2007), Numerically problematic parameterization.

Method Run time Variance 𝜋𝑡 Forward errors Iterations

Bound 1 Bound 2

Dynare (QZ) 1 0.28 1e−11 4.6 1
Baseline Newton Method 15 0.32 1.3e−14 0.00033 3
Modified Newton Method 4.2 0.42 1.2e−14 0.00042 3
With Šamanskii Technique 4.8 0.31 1.2e−14 0.00089 5
With Line Searches 7.8 0.26 1.3e−14 0.00033 3
With Occ. Line Searches 7 0.26 1.3e−14 0.00033 3
With Occ. LS & ŠT 3.1 0.26 1.3e−14 0.00033 3

∙ For Dynare, refer to Adjemian et al. (2011).
∙ Run Time relative to Dynare (Dynare run time: 0.0022 s).
∙ The Newton methods were initialized at the QZ solution.
∙ Forward error 1 and 2 are the upper bounds for the true forward error, see (47).
the variance of inflation as predicted by the solution.12 At this parame-
terization, the QZ-based solution predicts an inflation variance of 0.28.
However, even the lower of the two upper bounds on the forward error
is multiple orders of magnitude above machine precision, indicating a
potential numerical instability. Initializing the various Newton methods
at the solution produced by Dynare, we find that all of the methods
refine the solution, running 3 to 4 iterations and reducing the forward

12 Smets and Wouters (2007) report a variance of inflation of 0.62 for the
whole sample and 0.55 and 0.25 for two subsamples.
9

error bounds by 3 to 4 orders of magnitude. All of the methods are
considerably faster than the baseline method and predict a variance of
inflation of about 1.5 times greater than Dynare.

5.2. MMB suite comparison

Our focus now turns away from a specific model and we try to draw
general, non model specific conclusions. For this task we adapt the
Macroeconomic Model Data Base (MMB), a model comparison initiative
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Fig. 2. Histogram over the number of state variables for the 99 MMB models. Fig. 2
plots the number of model state variables over the amount of MMB models. Currently
the total amount of models considered is 99.

at the Institute for Monetary and Financial Stability (IMFS)13 tradi-
tionally used to compare the predicted outcomes of different policies
across a broad set of macroeconomic models. Version 3.1 contains 151
different models, ranging from small scale, pedagogical models to large
scale, estimated models of the US, EU, and multi-country economies.14

While certainly invaluable for exploring the possible outcomes of pol-
icy interventions, we see this database additionally as a useful tool
for assessing the potential of different solution methods in a more
model-robust context than is currently done in the DSGE literature.
Accordingly, we apply the methods of this paper to the set of models
appropriate for reproduction,15 the varying sizes of which – measured
by the number of state variables or ‘‘purely backward looking’’ and
‘‘mixed’’ variables in Dynare nomenclature – are summarized in Fig. 2.

We now examine the models of the MMB and assess the various
Newton-based methods relative to the QZ method. As above, we begin
by demonstrating the potential of the different algorithms as solution
refinements, initializing at the QZ solution, and then present the more
mixed results of the methods as replacements for QZ by initializing at
the zero matrix. Each of the models is taken as is — we maintain the
parameterization recorded in the reproduction database of the MMB
which is either the original calibration or the estimate(d posterior
mode) of the original study. We solve each of the applicable models
in the MMB 100 times using the different Newton methods and the
QZ method of Dynare for comparison, taking the results as the average
within the middle three quintiles to reduce the effects of outliers in
measuring the computation time.16

Table 4 summarizes the results initiating at the solution provided
by QZ.17 The first column of results counts the number of models for

13 See http://www.macromodelbase.com.
14 The model of Smets and Wouters (2007) examined in detail in the

previous section is among these models.
15 Currently, this is 99 models, ranging from small scale DSGE models to

models from policy institutions containing hundreds of variables. Some of
the models in the database are deterministic and/or use nonlinear or non-
rational (e.g., adaptive) expectations and, hence, are not appropriate for our
comparison here.

16 Due to parallel uncontrollable demands on working memory run times
can differ between runs so that our approach ensures accurate measurement.

17 See the appendix for the den Haan and Marcet (1994) statistics for
the (Smets and Wouters, 2007) contained in this experiment. In contrast to the
results here using the forward errors of Meyer-Gohde (2023), the den Haan and
Marcet (1994) statistic is unable to distinguish between the different method’s
solutions.
10
which the method in question converged to the unique stable solution,
highlighting that all algorithms operate in the vicinity of the unique
stable solution provided by QZ for all models. With this precise QZ
solution as a starting guess, all algorithms need only one iteration to
satisfy the convergence criterion and none of the algorithms diverge to
a different solvent. All algorithms perform this additional iteration at
a fraction of the computational cost of the original solution provided
by Dynare. Roughly one order of magnitude of additional accuracy is
provided by all algorithms as measured by the two forward error upper
bounds. Again, the performance of line search and Šamanskii methods
in terms of run time and accuracy are disappointing for the set of DSGE
models in the MMB in the context of the results of Higham and Kim
(2001) and Long et al. (2008), as they do not perform systematically
better than the Baseline Newton algorithm along these dimensions. In
sum, this experiment provides further strong evidence that Newton-
based methods can be used at minimal additional cost to refine the
solutions provided by QZ.

Fig. 3 provides an overview of the entire distribution of forward
errors, the upper row relative to those from Dynare’s QZ method and
the lower in absolute terms, using the different Newton-based methods
presented here when initialized at Dynare’s QZ solution. Forward errors
left of the vertical line are thus smaller than Dynare for both figures
in the upper row. For both the first, Fig. 3(a), and second, Fig. 3(b),
upper bounds on the forward error, we see an obvious shift to the left
on a log scale of about one order of magnitude for all the Newton
methods and, from the lower row, we see that this entails tightening
the distributions as well as shifting them closer to machine precision - a
lower convergence criterion would allow additional Newton steps and
bring yet more solutions below machine precision. The various Newton
methods demonstrate no considerable differences when initializing
with Dynare’s QZ solution, underscoring that it is the Newton step that
provides the additional accuracy.

Table 5 summarizes the results when initiating at the zero matrix.
The first column of results counts the number of models for which
the method in question converged to the unique stable solution, high-
lighting a well-known (Higham and Kim, 2001) drawback of Newton
methods, namely the unpredictability of which solution the algorithm
will converge to. The convergence to the unique stable solvent ranges
from 43 models for the Newton method with Šamanskii Technique to
67 models for all of the line-search methods. For the remaining models,
the algorithms generally converged to a solvent as the forward errors
are roughly the same magnitude as those of Dynare’s QZ (this can be
seen by examining the maximal relative forward errors, which for all
algorithms but the Modified and Occasional Line searches are at worst
about one order of magnitude higher than Dynare’s QZ), however, just
not to the stable one. Hence, even initializing the algorithms at the zero
matrix (arguably the appropriate uninformed prior for a stable solution)
manages at best to recover the unique stable solution for two-thirds of
the models.

Overall, the Newton methods are on the one hand slower than
Dynare (QZ), but on the other more accurate than Dynare. While
the minimal run times for all algorithms except the Modified Newton
algorithm are one order of magnitude less than Dynare, maximum run
times are up to two orders of magnitude higher than Dynare, with the
median run time being around two times as high as Dynare for the five
algorithms. In line with the findings from above, the Modified Newton
algorithm is the slowest and least accurate. For all 99 models, run time
for this algorithm ranges between seven to 330 times as slow as Dynare.
Since this algorithm only converges linearly, 686 iterations are needed
until convergence to a solution, compared to a maximum of 9 for all
other methods.

All three line search methods perform relatively similar in terms of
convergence to the stable solution, run times and iterations needed. In
all of these dimensions they perform slightly worse than the Baseline al-
gorithm. The solutions of all algorithms except the Modified algorithm

are at least one order of magnitude more precise than the solution of

http://www.macromodelbase.com


Economic Modelling 133 (2024) 106670A. Meyer-Gohde and J. Saecker
Table 4
Results relative to Dynare (QZ): 99 MMB models (starting guess: solution Dynare (QZ)).

Method Convergence Run time Forward error 1 Forward error 2 Iterations

Median Min Max Median Min Max Median Min Max

Dynare (QZ) 99 1 1 1 1 1 1 1 1 1 1
Baseline Newton Method 99 0.34 0.032 29 0.099 3.5e−15 2.9 0.1 2.5e−15 1.5 1
Modified Newton Method 99 0.34 0.031 25 0.099 3.5e−15 2.9 0.1 2.5e−15 1.5 1
With Šamanskii Technique 99 0.49 0.055 70 0.087 1.3e−29 3.2 0.082 9.6e−30 1.1 1
With Line Searches 99 0.34 0.033 30 0.099 0.00012 3.1 0.093 7.8e−06 1.5 1
With Occ. Line Searches 99 0.33 0.032 63 0.096 3.5e−15 3.1 0.093 2.5e−15 1.5 1
With Occ. LS & ŠT 99 0.54 0.058 71 0.094 1.3e−29 3.1 0.082 9.6e−30 1.1 1

∙ For Dynare, refer to Adjemian et al. (2011).
∙ Run Time and foward errors relative to Dynare.
∙ Forward error 1 and 2 are the upper bounds for the true forward error, see (47).
Fig. 3. Distribution of forward error bounds relative to Dynare for the Macroeconomic Model Data Base (MMB). Figs. 3(a), 3(b) plot the distribution of model solutions against
the upper bounds of the forward error 1 and 2 for all algorithms, log10 scale on the 𝑥 axis, 99 MMB models (starting guess: solution Dynare(QZ)).
Dynare in terms of the median of the forward error bounds. The Occa-
sional Line Search Method with Šamanskii Technique algorithm is most
accurate being at the median two orders of magnitude more precise
than Dynare. With this algorithm improving on global convergence by
combining the strengths of line searches and the Šamanskii Technique,
it is surprising that this is not visible compared to the other two line
search algorithms. Hence, the performance of line search and Šamanskii
methods in terms of run time and accuracy are disappointing for the set
of DSGE models in the MMB in the context of the results of Higham and
Kim (2001) and Long et al. (2008), as the Baseline Newton algorithm
11
surprisingly appears to perform equally well and arguably better along
these dimensions. The inclusion of line searches and its mitigation of
excessively large Newton steps, however, succeeds in improving the
convergence of Newton methods to the stable solvent when the zero
matrix is used as the initialization.

Fig. 4 compares the accuracy and computation time of all different
Newton methods with Dynare for the models in the MMB that converge
to the unique stable solvent. The figures confirm that all algorithms
except the Modified Newton Method are generally slower but more
accurate than Dynare’s QZ algorithm, with their clouds of points (each
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Table 5
Results: 99 MMB models (starting guess: zero-matrix).

Method Convergence Run time Forward error 1 Forward error 2 Iterations

Median Min Max Median Min Max Median Min Max

Dynare (QZ) 99 1 1 1 1 1 1 1 1 1 1
Baseline Newton Method 53 1.7 0.16 6.9 0.076 0.0025 2.3 0.1 0.00082 1.2 8
Modified Newton Method 51 62 7.2 329.85 0.85 0.008 1.2e+07 0.65 0.035 1.3e+06 686
With Šamanskii Technique 43 1.9 0.19 10.41 0.13 0.0016 1.6 0.1 0.0042 1.1 5
With Line Searches 67 2.2 0.64 340.54 0.11 0.00025 5.3 0.086 3.2e−05 1.8 9
With Occ. Line Searches 67 2.3 0.68 354.94 0.096 0.00025 2 0.094 3.2e−05 0.99 9
With Occ. LS & ŠT 67 2.5 0.68 382.05 0.09 0.00025 2 0.082 3.2e−05 1.4 9

∙ For Dynare, refer to Adjemian et al. (2011).
∙ Run time and forward errors relative to Dynare, number of models converging to the stable solution and median of number of iterations in absolute terms.
∙ Forward error 1 and 2 are the upper bounds for the true forward error, see (47).
Fig. 4. Forward Errors and Computation Time for the Macroeconomic Model Data Base (MMB). Figs. 4(a), 4(b) plot the computation times against the upper bounds of the forward
error 1 and 2 for all methods, log10 scale on both axes.
corresponding to a model within the database) being in the upper left
quadrant (corresponding to higher run times, but lower forward errors).
Figs. 4(c) and 4(d) focus on the Baseline and occasional line search
method including a regression line. A negative relationship between
relative speed and accuracy is present (and holds for all methods except
the Modified Newton method for which the relationship seems to be
positive, see the additional figures in the online appendix). This points
to a logical tradeoff: increasing the number of Newton steps (by, say,
lowering the convergence threshold or altering the criterion) increases
12
the accuracy of the solution at the price of increasing the necessary
computation cost.

Fig. 5 compares the different Newton methods with Dynare for the
models in the MMB that converge to the unique stable solvent but now
with a focus on the size of the model, which is taken as the number of
state variables — ‘‘purely backward looking’’ and ‘‘mixed’’ variables in
Dynare nomenclature, see the appendix for more on the declination of
variables. Fig. 5(c) displays no trend in the relative computation time
and the size of the model, implying that the methods here face increases
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Fig. 5. Forward Errors, Computation Time and Number of Variables for the Macroeconomic Model Data Base (MMB). Figs. 5(a), 5(b) plot the upper bounds of the forward error
1 and 2 against model size as measured by the number of state variable for all methods, log10 scale on both axes.
in the computational demands proportional to those of Dynare. There
is one important exception: the largest model studied — for this model
with 2450 endogenous state variables, all of the Newton methods
except the Modified algorithm are faster than Dynare and converge
to the same solution. The Figs. 5(a) and 5(b) again confirm that all
algorithms except the Modified Newton Method are generally more
accurate than Dynare’s QZ algorithm, with their clouds of points (each
corresponding to a model within the database) being below the 𝑥-axis.
Fig. 5(d) focuses in on the Baseline method including a regression line
and finds a negative relationship between model size and accuracy
(reexamining Figs. 5(a) and 5(b), this relationship can be seen for all
Newton algorithms), indicating that as the model becomes larger, the
accuracy advantage of Newton methods increases.

Fig. 6 provides an overview of the entire distribution of forward
errors, the upper row relative to those from Dynare’s QZ method and
the lower in absolute terms, using the different Newton-based methods
presented here. Forward errors left of the vertical line are thus smaller
than Dynare for both figures in the upper row. For both the first,
Fig. 6(a), and second, Fig. 6(b), upper bounds on the forward error, we
see an obvious shift to the left on a log scale of slightly more than one
order of magnitude for all the Newton methods apart from the Modified
algorithm and, from the lower row, we see that this entails tightening
the distributions as well as shifting them closer to machine precision
— a lower convergence criterion would allow additional Newton steps
13
and bring yet more solutions below machine precision. In particular
we see in Fig. 6(a) that the baseline and occasional line search with
Šamanskii methods drive the distribution of forward errors against
machine precision, highlighting the advantage in terms of accuracy of
our methods.

6. Conclusion

We have presented and applied Newton-based methods from the
recent applied mathematics literature for solving the matrix quadratic
equation underlying the solution of linear DSGE models as an alterna-
tive to the current standard of a generalized Schur or QZ decomposi-
tion (Moler and Stewart, 1973; Golub and van Loan, 2013). Applying
the methods to the suite of models in the Macroeconomic Model
Data Base (MMB), we find that although Newton-based methods might
appear to be a competitive alternative, offering up to several orders
of magnitude smaller forward errors at computational costs of the
same order of magnitude, they are not guaranteed to converge to the
unique stable solution that is generally required in the DSGE literature.
While line-search methods improved the frequency of convergence to
this solution from about 50% of the models to about 66%, this still
poses a prohibitive hurdle for considering Newton-based methods as
a replacement for the current generalized Schur or QZ decomposition
standard. Indeed, Higham and Kim (2001) note that determining to
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Fig. 6. Distribution of forward error bounds relative to Dynare for the Macroeconomic Model Data Base (MMB). Figs. 6(a), 6(b) plot the distribution of model solutions against
the upper bounds of the forward error 1 and 2 for all algorithms, log10 scale on the 𝑥 axis, 99 MMB models (starting guess: zero matrix).
which solvent the method will converge a priori (as can be done via
basins of convergence for scalar quadratic equations) remains an open
problem for the mathematics literature.

That being said, our Newton-based methods perform quite suc-
cessfully in iterative environments or to refine existing solutions —
in line with this importance of the initialization for the convergence
speed and properties. In filling in an increasingly dense grid of param-
eterizations for the Taylor rule in the model of Smets and Wouters
(2007), Newton-based methods can initialize with the solution from
the previous parameterization and significantly outperform the current
generalized Schur or QZ method both in terms of computational costs
and forward error. Taking the solution from QZ as the initialization,
all of the Newton methods provide roughly an order of magnitude
improvement in the accuracy of the solution at a fraction of the original
computational cost. This initialization and iteration makes applying our
collection of Newton methods to improve the accuracy of solutions
to linear DSGE models a fruitful avenue of application, as is done
in Meyer-Gohde (2023) where QZ based methods from the literature
are shown to generate inaccuracies of economic consequence in several
macro-finance models.

Iterative Newton-based methods like we have presented here could
analogously reduce the computational burden associated with solving
the model for iterative estimation procedures and might be adapted to
more quickly and/or accurately perform likelihood calculations or solve
heterogenous agent models. We leave this, however, to future research.
14
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