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ONLINE APPENDIX

6.1. Detailed Dynare Topology - Underlying Equations

Here we follow Villemot (2011) and develop in detail the matrices involved using the typology of

variables from Dynare. In contrast to Villemot (2011), however, we develop the matrices explicitly, detailing

the submatrices and their dimensions. While this first subsection contains nothing new, this alternate

presentation might be of independent interest, hopefully increasing the approachability of the dimension

reductions associated with the typology developed for Dynare. Additionally, it lays down the underlying

typology needed to bring the matrix quadratic and elements of the Newton algorithms from the main text

in line with Dynare. The first-order approximation of (1) at the steady state, where we only derive the

homogenous - that is, in yt - component necessary for the solution of the matrix quadratic equation (5), is

fyt+1yt+1 + fyt yt + fyt+1yt−1 = 0

The vector yt is subdivided into ys
t , “static” variables with only nonzero derivatives at t, y−−

t , “purely

backward looking” variables with only nonzero derivatives at t and t−1, ym
t , “mixed” variables with nonzero

derivatives at t+1, t, and t−1, and y++
t , “purely forward looking” variables with only nonzero derivatives

at t+1 and t. The lengths of the subvectors in yt satisfy the following equalities

nd = n−−+nm +n++, n+ = nm +n++, n− = n−−+nm, n = ns +nd = ns +n−−+nm +n++

where nd is the number of dynamic variables, the sum of number of purely backward-looking, n−−, mixed

nm, and purely forward-looking variables, n++. The number of forward-looking variables, n+, is the sum of

the number of mixed, nm, and purely forward-looking variables, n++, and the number of backward-looking

variables, n−, is the sum of the number of purely backward-looking, n−− and mixed variables nm. Hence,

the number of endogenous variables is the sum of the number of static, ns, and dynamic variables, nd , or

the sum of the number of static, ns, purely backward-looking, n−−, mixed nm, and purely forward-looking

variables, n++. Arranging the matrices fyt+1 , fyt , and fyt−1 accordingly gives



ns n−− nm n++

ns 0 0

n−− 0 0

nm 0 0

n++ 0 0

fy+
n×n+





1

ns ys
t+1

n−− y−−
t+1

nm ym
t+1

n++ y++
t+1

+



ns n−− nm n++

ns

n−−

nm

n++

fy0

n×n





1

ns ys
t

n−− y−−
t

nm ym
t

n++ y++
t



+



ns n−− nm n++

ns 0 0

n−− 0 0

nm 0 0

n++ 0 0

fy−
n×n−





1

ns ys
t−1

n−− y−−
t−1

nm ym
t−1

n++ y++
t−1

= 0
n×1
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Subdividing the matrix into the columns associated with static variables and the remaining variables, also

referred to as “dynamic” variables yd
t - having nonzero at t+1 and/or t−1 yields

fy0 =



ns n−− nm n++

ns

n−−

nm

n++

S
n×ns

S−
n×nd



Performing a QR decomposition on S, S
n×ns

= Q
n×n

R
n×ns

, where R=



ns

ns Ă0s

n−− 0

nm 0

n++ 0

 and premultiplying the system

of equations with the inverse of the unitary Q, Q∗, gives

Q∗fyt+1yt+1 +Q∗fyt yt +Q∗fyt+1yt+1 = 0



ns n−− nm n++

ns 0 0

n−− 0 0

nm 0 0

n++ 0 0

A+
n×n+





1

ns ys
t+1

n−− y−−
t+1

nm ym
t+1

n++ y++
t+1

+



ns n−− nm n++

ns

n−−

nm

n++

A0
n×n





1

ns ys
t

n−− y−−
t

nm ym
t

n++ y++
t



+



ns n−− nm n++

ns 0 0

n−− 0 0

nm 0 0

n++ 0 0

A−
n×n−





1

ns ys
t−1

n−− y−−
t−1

nm ym
t−1

n++ y++
t−1

= 0
n×1

where A+ =Q∗fy+ , A0 =Q∗fy0 =
[
Q∗S
n×ns

Q∗S−
n×nd

]
=



ns n−− nm n++

ns Ă0s

n−− 0

nm 0

n++ 0

Q∗S−
n×nd

, and A− =Q∗fy− . Subdivid-

ing the system of equations in accordance with the QR decomposition yields



ns n−− nm n++

ns 0 0

n−− 0 0

nm 0 0

n++ 0 0

Ă+
ns×n+

Ã+
nd×n+





1

ns ys
t+1

n−− y−−
t+1

nm ym
t+1

n++ y++
t+1

 +



ns n−− nm n++

ns Ă0s

n−− 0

nm 0

n++ 0

Ă0d

ns×nd

Ã0

nd×nd





1

ns ys
t

n−− y−−
t

nm ym
t

n++ y++
t
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+



ns n−− nm n++

ns 0 0

n−− 0 0

nm 0 0

n++ 0 0

Ă−
ns×n−

Ã−
nd×n−





1

ns ys
t−1

n−− y−−
t−1

nm ym
t−1

n++ y++
t−1

= 0
n×1

The matrix Ã0 is

Ã0

nd×nd
yd

t
nd×1

=
[

Ã0−−
nd×n−−

Ã0m

nd×nm
Ã0++

nd×n++

]


y−−
t

n−−×1

ym
t

nm×1

y++
t

n++×1


The vectors for forward and backward-looking variables can be assembled depending on how the mixed

variables are assigned according to either the first or second equality in the following



1=
[

Ã0−−
nd×n−−

Ã0m

nd×nm

]
︸ ︷︷ ︸

Ã0−
nd×n−


y−−

t
n−−×1

ym
t

nm×1


︸ ︷︷ ︸

y−
t

n−×1

+
[

0
nd×nm

Ã0++
nd×n++

]
︸ ︷︷ ︸

Ã0+
nd×n+


ym

t
nm×1

y++
t

n++×1


︸ ︷︷ ︸

y+
t

n+×1

2=
[

Ã0−−
nd×n−−

0
nd×nm

]
︸ ︷︷ ︸

Ã0−
nd×n−


y−−

t
n−−×1

ym
t

nm×1


︸ ︷︷ ︸

y−
t

n−×1

+
[

Ã0m

nd×nm
Ã0++

nd×n++

]
︸ ︷︷ ︸

Ã0+
nd×n+


ym

t
nm×1

y++
t

n++×1


︸ ︷︷ ︸

y+
t

n+×1

The mixed variables can then be selected out of the vectors of forward and backward-looking variables via

ym
t = ym

t

[
0

nm×n−− I
nm×nm

]
︸ ︷︷ ︸

I−
nm×n−

 y−−
t

n−−×1

ym
t

nm×1


︸ ︷︷ ︸

y−
t

n−×1

=
[

I
nm×nm

0
nm×n++

]
︸ ︷︷ ︸

I+
nm×n+

 ym
t

nm×1

y++
t

n++×1


︸ ︷︷ ︸

y+
t

n+×1

I−
nm×n− y−

t
n−×1

= I+
nm×n+ y+

t
n+×1

These are the “selection” matrices of Villemot (2011).

6.2. Detailed Dynare Topology - Matrix Quadratic

We now continue with the topology from Dynare and apply it to the underlying matrix quadratic. The

transition matrix, P, from (4) that solves the matrix equation (13) can be subdivided in accordance to
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Dynare’s typology as

P=



ns n−− nm n++

ns Ps,s Ps,−− Ps,m Ps,++

n−− P−−,s P−−,−− P−−,m P−−,++

nm Pm,s Pm,−− Pm,m Pm,++

n++ P++,s P++,−− P++,m P++,++

=
[ ns n−− nm n++

n P•,s P•,−− P•,m P•,++
]
=



n

ns Ps,•

n−− P−−,•

nm Pm,•

n++ P++,•



The matrix quadratic can be expressed as

M( P
n×n

)= A
n×n

P2 + B
n×n

P+ C
n×n

= (
AP+B

)︸ ︷︷ ︸
≡G

P+C

For a solvent P of the matrix quadratic, taking the structure of C from the Dynare typology above into

account yields

M(P)= 0=GP+C

=G
[ ns n−− nm n++

n P•,s P•,−− P•,m P•,++
]
+



ns n−− nm n++

ns 0 0

n−− 0 0

nm 0 0

n++ 0 0

Ă−
ns×n−

Ã−
nd×n−



From corollary 4.5 of Lan and Meyer-Gohde (2014), G has full rank if P is the unique solvent of M(P)

stable with respect to the closed unit circle, hence the columns of P associated with nonzero columns

in C, the static and forward-looking variables are zero � P•,s = 0
n×ns

, P•,++ = 0
n×n++, whence P is P =

[ ns n−− nm n++

n 0 P•,−− P•,m 0
]

and M(P) =
[

0
n×ns

M(P)−−
n×n−− M(P)m

n×nm
0

n×n++

]
. Consequentially, the first

ns rows of the matrix quadratic are

Ă+
ns×n+


n−− nm

nm Pm,−− Pm,m

n++ P++,−− P++,m

 
n−− nm

n−− P−−,−− P−−,m

nm Pm,−− Pm,m

+ Ă0d

ns×nd



n−− nm

n−− P−−,−− P−−,m

nm Pm,−− Pm,m

n++ P++,−− P++,m



+ Ă−
ns×n−+ Ă0s

ns×ns

[ n−− nm

ns Ps,−− Ps,m

]
= 0

ns×n−
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Given



n

n−− P−−,•

nm Pm,•

n++ P++,•

,
[ n−− nm

ns Ps,−− Ps,m

]
solves

[ n−− nm

ns Ps,−− Ps,m

]
=−

[
Ă0s

ns×ns

]−1

 Ă+
ns×n+


n−− nm

nm Pm,−− Pm,m

n++ P++,−− P++,m

 
n−− nm

n−− P−−,−− P−−,m

nm Pm,−− Pm,m



+ Ă0d

ns×nd



n−− nm

n−− P−−,−− P−−,m

nm Pm,−− Pm,m

n++ P++,−− P++,m

+ Ă−
ns×n−



and the first ns rows of P are Ps,•
ns×n

=
[ ns n−− nm n++

ns 0 Ps,−− Ps,m 0
]
.

The last nd columns and rows of P solve the reduced matrix quadratic equation



n−− nm n++

n−− 0

nm 0

n++ 0

Ã+
nd×n+




n−− nm n++

n−− P−−,−− P−−,m P−−,++

nm Pm,−− Pm,m Pm,++

n++ P++,−− P++,m P++,++


︸ ︷︷ ︸

P̃
nd×nd

· P̃
nd×nd

+ Ã0

nd×nd
P̃

nd×nd

+



n−− nm n++

n−− 0

nm 0

n++ 0

Ã−
nd×n−



=M̃(P̃)
nd×nd

=
[ n−− nm n++

nd M̃(P̃)−− M̃(P̃)m 0
]
= 0

nd×nd

6.3. Detailed Dynare Topology - Newton Step

The Newton-based methods in the main text all require solving a Sylvester equation for the iterative

Newton step, dP. This can be broken down using the typology from above as follows:

A ·dP ·P+ (AP+B)dP+M(P)= 0
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As was shown above, M(P)
n×n

=
[ ns n−− nm n++

n 0 M(P)•,−− M(P)•,m 0
]

and P =

[ ns n−− nm n++

n 0 P•,−− P•,m 0
]
, hence it follows that

dP=
[ ns n−− nm n++

n 0 dP•,−− dP•,m 0
]

To see this, develop the expression A ·dP ·P

dPP=
[ ns n−− nm n++

n 0 dPP•,−− dPP•,m 0
]

AdPP=
[ ns n−− nm n++

n 0 AdPP•,−− AdPP•,m 0
]

The first and last block columns give

[ ns n++

n 0 0
]
+ (AP+B)

[ ns n++

n dP•,s dP•,++
]
+

[ ns n++

n 0 0
]
=

[ ns n++

n 0 0
]

and AP+B=G is full rank (see above), dP•,s and dP•,++ are zero matrices.

As the first block columns of A and dP are zero and the first block column of B =



ns

ns Ă0s

n−− 0

nm 0

n−− 0

, dPs,• is

given by dPs,• =
[ ns n−− nm n++

ns 0 dPs,−− dPs,m 0
]
, where

[ n−− nm

ns dPs,−− dPs,m
]
=−[

Ă0s]−1

ns×ns


[ n−− nm

ns Ms,−−(P) Ms,m(P)
]
+ Ă0d

ns×nd



n−− nm

n−− dP−−,−− dP−−,m

nm dPm,−− dPm,m

n++ dP++,−− dP++,m



+ Ă+
nd×n+




n−− nm

nm dPm,−− dPm,m

n++ dP++,−− dP++,m

 
n−− nm

n−− P−−,−− P−−,m

nm Pm,−− Pm,m



+


n−− nm

nm Pm,−− Pm,m

n++ P++,−− P++,m

 
n−− nm

n−− dP−−,−− dP−−,m

nm dPm,−− dPm,m








46 SOLVING LINEAR DSGE MODELS WITH NEWTON METHODS

given a solution for



n−− nm

n−− dP−−,−− dP−−,m

nm dPm,−− dPm,m

n++ dP++,−− dP++,m


Hence the remaining equations are (where zero columns of P, dP, M(P) have been eliminated where

appropriate)

Ã+
nd×n+


n−− nm

nm dPm,−− dPm,m

n++ dP++,−− dP++,m

 
n−− nm

n−− P−−,−− P−−,m

nm Pm,−− Pm,m



+

 Ã+
nd×n+


n−− nm n++

nm Pm,−− Pm,m 0

n++ P++,−− P++,m 0

+ Ã0

nd×nd





n−− nm

n−− dP−−,−− dP−−,m

nm dPm,−− dPm,m

n++ dP++,−− dP++,m



+
[ n−− nm

nd M̃(P̃)−− M̃(P̃)m
]

=
[n−− nm

nd 0 0
]

Defining Ã0

nd×nd
=

[ n−− nm n++

nd Ã0−− Ã0m Ã0++
]
, the foregoing is

 Ã+
nd×n+


n−−

nm Pm,−−

n++ P++,−−

+ Ã0−−
nd×n−−


︸ ︷︷ ︸

≡ α
nd×n−−

[ n−− nm

n−− dP−−,−− dP−−,m

]

+


nm n++

nd Ã+
nd×n+

 Pm,m

P++,m

+ Ã0m

nd×nm
Ã0++

nd×n++


︸ ︷︷ ︸

≡ β

nd×n+


n−− nm

nm dPm,−− dPm,m

n++ dP++,−− dP++,m



+ Ã+
nd×n+︸ ︷︷ ︸
≡ γ

nd×n+


n−− nm

nm dPm,−− dPm,m

n++ dP++,−− dP++,m

 
n−− nm

n−− P−−,−− P−−,m

nm Pm,−− Pm,m


︸ ︷︷ ︸

≡ δ
n−×n−
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+
[ n−− nm

nd M̃(P̃)−− M̃(P̃)m
]

︸ ︷︷ ︸
≡ −θ

nd×n−

=
[n−− nm

nd 0 0
]

written more compactly as

θ
nd×n−

= α
nd×n−−

[ n−− nm

n−− dP−−,−− dP−−,m

]
+ β

nd×n+


n−− nm

nm dPm,−− dPm,m

n++ dP++,−− dP++,m



+ γ
nd×n+


n−− nm

nm dPm,−− dPm,m

n++ dP++,−− dP++,m

 δ
n−×n−

Performing a QR decomposition α
nd×n−−

= U
nd×nd


n−−

n−− T

n+ 0

, Ũ=U∗ =


nd

n−− Ũ1

n+ Ũ2

 and premultiplying with Ũ

gives two sets of equations. First

Ũ2
n+×nd

β
nd×n+


n−− nm

nm dPm,−− dPm,m

n++ dP++,−− dP++,m

+ Ũ2
n+×nd

γ
nd×n+


n−− nm

nm dPm,−− dPm,m

n++ dP++,−− dP++,m

 δ
n−×n− = Ũ2

n+×nd
θ

nd×n−

A generalized Sylvester equation in


n−− nm

nm dPm,−− dPm,m

n++ dP++,−− dP++,m

. Given its solution, the remaining elements

of dP are given by

[ n−− nm

n−− dP−−,−− dP−−,m

]
= T−1

n−−×n−− Ũ1
n−−×nd

 θ
nd×n−

− γ
nd×n+


n−− nm

nm dPm,−− dPm,m

n++ dP++,−− dP++,m

 δ
n−×n−

− β
nd×n+


n−− nm

nm dPm,−− dPm,m

n++ dP++,−− dP++,m




6.4. Detailed Dynare Topology - Line Search

The line search methods in the text require finding zeros of the polynomial

g′(x)= 2α (x−1)+β(
2x−3x2)+4γx3 (A1)

where α= ∥M(P)∥2
F , β= trace

(
M(P)∗A (∆P)2 + (

A (∆P)2
)∗ M(P)

)
and γ= ∥∥A (∆P)2

∥∥
F .
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Using the typology from Dynare and the results above

α= ||M(P)||2F = tr
(
M(P)∗M(P)

)

= tr





n

ns 0

n−− M(P)∗−−

nm M(P)∗m

n++ 0


[ ns n−− nm n++

n 0 M(P)−− M(P)m 0
]


= tr

(
M(P)∗−−M(P)−−

)
+ tr

(
M(P)∗mM(P)m

)

M( P
n×n

)= A
n×n

P2 + B
n×n

P+ C
n×n

=



ns n−− nm n++

ns 0 0

n−− 0 0

nm 0 0

n++ 0 0

Ă+
ns×n+

Ã+
nd×n+


[ ns n−− nm n++

n 0 PP•,−− PP•,m 0
]

+



ns n−− nm n++

ns Ă0s

n−− 0

nm 0

n++ 0

Ă0d

ns×nd

Ã0

nd×nd


[ ns n−− nm n++

n 0 P•,−− P•,m 0
]

+



ns n−− nm n++

ns 0 0

n−− 0 0

nm 0 0

n++ 0 0

Ă−
ns×n−

Ã−
nd×n−



=



ns n− n++

n 0



0
ns×ns

0
ns×n−− Ă+

ns×n+

0
n−−×ns

0
n−−×n−−

Ã+
nd×n+0

nm×ns
0

nm×n−−

0
n++×ns

0
n++×n−−


P

n×n

[
P•,−−
n×n−−

P•,m
n×nm

]
0
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+



ns n− n++

n 0



Ă0s
ns×ns

Ă0d
ns×nd

0
n−−×ns

Ã0

nd×nd0
nm×ns

0
n++×ns


[
P•,−−
n×n−−

P•,m
n×nm

]
0


+


ns n− n++

n 0

 Ă−
ns×n−

Ã−
nd×n−

 0





0
ns×ns

0
ns×n−− Ă+

ns×n+

0
n−−×ns

0
n−−×n−−

Ã+
nd×n+0

nm×ns
0

nm×n−−

0
n++×ns

0
n++×n−−


P

n×n

[
P•,−−
n×n−−

P•,m
n×nm

]
=



Ă+
ns×n+

Ã+
nd×n+

Pm/++,•
n+×n

P•,−−/m
n×n−

where

P•,−−/m
n×n−

=
[ n−− nm

n P•,−− P•,m

]
and P•,m/++

n×n+
=

[ nm n++

n P•,m P•,++
]

M( P
n×n

)=



ns n− n++

n 0





Ă+
ns×n+

Ã+
nd×n+

Pm/++,•
n+×n

+



Ă0s
ns×ns

Ă0d

ns×nd

0
n−−×ns

Ã0

nd×nd0
nm×ns

0
n++×ns




P•,−−/m

n×n−
+

 Ă−
ns×n−

Ã−
nd×n−

 0



=
[ns n− n++

n 0 X 0
]

X
n×n− =


n−

ns X1

nd X2

=


n−

ns
(

Ă+
ns×n+Pm/++,•

n+×n
+

[
Ă0s

ns×ns
Ă0d

ns×nd

])
P•,−−/m

n×n−
+ Ă−

ns×n−

nd Ã+
nd×n+

Pm/++,•
n+×n

P•,−−/m
n×n−

+
[

0
nd×ns

Ã0

nd×nd

]
P•,−−/m

n×n−
+ Ã−

nd×n−



=


n−

ns
(

Ă+
ns×n+Pm/++,•

n+×n
+

[
Ă0s

ns×ns
Ă0d

ns×nd

])
P•,−−/m

n×n−
+ Ă−

ns×n−

nd Ã+
nd×n+

Pm/++,•
n+×n

P•,−−/m
n×n−

+ Ã0

nd×nd
Pd,−−/m

nd×n−
+ Ã−

nd×n−



=


n−

ns Ă0s
ns×ns

Ps,−−/m
ns×n−

+
(

Ă+
ns×n+Pm/++,d

n+×nd
+ Ă0d

ns×nd

)
Pd,−−/m

nd×n−
+ Ă−

ns×n−

nd Ã+
nd×n+

Pm/++,•
n+×n

P•,−−/m
n×n−

+ Ã0

nd×nd
Pd,−−/m

nd×n−
+ Ã−

nd×n−


tr

(
M(P)∗M(P)

)
= tr(X∗X)= tr(X∗

1X1)+ tr(X∗
2X2) by construction, X1

ns×n−
= 0

ns×n−
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= tr(X∗
2X2)= tr

(
M̃(P̃)∗M̃(P̃)

)
γ= ∣∣∣∣AdP2∣∣∣∣2

F = tr
((

AdP2)∗AdP2
)

AdP2 =
[ ns n− n++

n 0 A
n×n

d P
n×n

dP•,−−/m
n×n−

0
]

=


ns n− n++

n 0

 Ă+
ns×n+

Ã+
nd×n+
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Ã+
nd×n+

]
δP

n+×n−

)

tr
(
AdP2 ·M(P)∗

)= tr




ns n− n++

n 0

 Y1
ns×n−

Y2
nd×n−

 0

 ·



n

ns 0

n−
[

0
n−×ns

X∗
2

n−×nd

]
n++ 0





= tr


 Y1

ns×n−

Y2
nd×n−

[
0

n−×ns
X∗

2
n−×nd

]
= tr

(
Y2

nd×n−
X∗

2
n−×nd

)
6.5. Additional Figures
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(A) Forward Error 1, Baseline Relative to Dynare (B) Forward Error 2, Baseline Relative to Dynare

(C) Forward Error 1, Modified Relative to Dynare (D) Forward Error 2, Modified Relative to Dynare

(E) Forward Error 1, Šamanskii Relative to

Dynare

(F) Forward Error 2, Šamanskii Relative to

Dynare

FIGURE 7. Forward Errors and Computation Time for the Macroeconomic Model

Data Base (MMB)
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(A) Forward Error 1, Line Searches Relative to

Dynare

(B) Forward Error 2, Line Searches Relative to

Dynare

(C) Forward Error 1, Occ. Line Searches Relative

to Dynare

(D) Forward Error 2, Occ. Line Searches to

Dynare

(E) Forward Error 1, Occ. LS & Šamanskii Rela-

tive to Dynare

(F) Forward Error 2, Occ. LS & Šamanskii Rela-

tive to Dynare

FIGURE 8. Forward Errors and Computation Time for the Macroeconomic Model

Data Base (MMB), Continued
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6.6. den Haan and Marcet (1994) Tests

Following Aruoba, Fernández-Villaverde, and Rubio-Ramírez (2006), Meyer-Gohde (2023) presents the

den Haan and Marcet (1994) error in simulation statistic explicitly in a canonical multivariate DSGE

setting. For the model (3)

0= AE t [yt+1]+Byt +Cyt−1 +Dεt (A2)

define the residuals

ut+1 = A yt+1 +Byt +Cyt−1 +Dεt (A3)

Clearly E t [ut+1]= 0 and likewise E t [ut+1 ⊗ zt]= 0 for any nz set of t measurable instruments. Given the

solution of the model in the form of (4)

yt = P yt−1 +Q εt (A4)

the residuals can be expressed as

ut+1 = AQ̂εt+1 +
(
AP̂2 +BP̂ +C

)
ŷt−1 +

(
AP̂Q̂+BQ̂+D

)
εt (A5)

= AQ̂εt+1 +
(
AP̂Q̂+BQ̂+D

)
εt +

(
AP̂2 +BP̂ +C

)(
Q̂εt−1 + P̂Q̂εt−2 + . . . (A6)

We calculate the sample analogs to E t [ut+1]= 0 and likewise E t [ut+1 ⊗ zt]= 0 by generating a number N of

simulations of length T +B for each of the different methods considered here. We fix the random number

seed across methods so that there is no sampling variation across methods. Dynare’s QZ and the different

Newton models here provide different solutions in the form of P and Q. Accordingly, we label the different

linear solutions y j
t with j corresponding to method j associated with P j and Q j given by

y j
t = P j y j

t−1 +Q j εt (A7)

Starting at y j
0 = 0 for all j and for a given sequence of {εt}T+B

t=1 , gives the final simulation {y j
t }T+B

t=B+1, with B

being burn-in that we set at 500 periods. The simulated counterpart of E t [ut+1 ⊗ zt]= 0 is18

M j = 1
T

T∑
t=1

(
A y j

t+1 +By j
t +Cy j

t−1 +Dεt

)
⊗ z j

t (A8)

and an estimate Ω j of the variance of
(
A y j

t+1 +By j
t +Cy j

t−1 +Dεt

)
⊗ z j

t , den Haan and Marcet (1994) give

the test statistic

J j = T M′
jΩ

−1
j M j (A9)

that is asymptotically χ2 distributed with potentially nynz degrees of freedom. Examining (A5) the

statistic for zt = 1 will be distributed χ2 with rank(AQ̂) degrees of freedom, as not all equations are

linearly independent in their expectation components (or contain expectations at all, e.g., market clearing

constraints, identities, etc.) and are linear combinations of the underlying shocks in ε.19

18The measure E t [ut+1]= 0 is of course the simple special case when zt = 1.
19Similar conditions can be discerned for different instruments zt.
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T Residuals Instrument

<5% >95% <5% >95%

500 3.8 5.3 0 86.9

1000 3.9 4.6 0.1 57.4

2000 5.1 4.4 0.8 31.9

5000 4.5 4.6 1.8 14.1

10,000 5.9 5.5 3.6 10.5

100,000 5 5.7 4.2 6.3

TABLE 6. den Haan and Marcet (1994) Tests: Smets-Wouters Model

• T is the length of the simulations, the columns report the percentage of the 1000 simulations that

fall outside the 90% range of the χ squared distribution.

• Residuals and instrument refer to the tests run with the residuals directly and instrumented

against seven time t endogenous variables.

• Dynare’s QZ and all Newton methods, initialized at the QZ solutions, deliver identical values for

the test statistic.

Table 6 contains the percentages of the N = 1000 simulations of different lengths T that we calculated

that are in the upper and lower 5% of the reference χ2 distribution. For accurate solutions, these both should

be close to 5% and indeed we see that for the residuals roughly independent of the simulation length and

when using the instruments - output, the nominal interest rate, capital, consumption, investment, inflation,

and the nominal wage, all at time t - likewise for longer simulations.20 The results for the simulation

lengths of T = 100,000 are particularly interesting, as den Haan and Marcet (1994) consider T = 20,000 an

enormous sample and hence the resulting examination of a model’s simulation a very stringent test. This is

perhaps not surprising as the numerical error for the methods starting at the QZ solution of the posterior

parameterization of Smets and Wouters (2007) is very well behaved numerically - the errors using our

favored forward errors in the main text were very small, and it is unlikely that any remaining numerical

error will be able to shine through the blinding light of sampling variation.

Crucially, all of the different Newton and the QZ method produce the same percentage of simulations

above and below the 95% and 5% thresholds. That is the den Haan and Marcet (1994) statistic is unable

to discern between the different methods. This is perhaps not surprising as previous studies have noted

the test’s low power in settings where even different nonlinear methods are being compared, see Aruoba,

Fernández-Villaverde, and Rubio-Ramírez (2006) and also Juillard and Villemot (2011), so numerical

inaccuracies in different linear methods are unlikely to be easily detected by this method.

Figure 9 depicts the results graphically. Clearly the null that the approximated solutions’ residuals are

mean zero is difficult to reject for long or many simulations. For the instrumented statistic however, we

see that the instruments perform poorly for shorter simulations, as the errors in simulation likely become

20To calculate Ω j in this case, we followed Aruoba, Fernández-Villaverde, and Rubio-Ramírez (2006) and

used the Newey and West (1987) estimator with the rule of thumb lag truncation in, e.g., Stock and Watson

(2020).
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(A) Residuals, T=1000 and N=100,000 (B) Residuals, T=100,000 and N=1000

(C) Instrument, Varying T

FIGURE 9. den Haan and Marcet (1994) Tests: Smets-Wouters Model

T is the length of the simulations, N the number of different simulations. Residuals and

instrument refer to the tests run with the residuals directly and instrumented against

seven time t endogenous variables. Dynare’s QZ and all Newton methods, initialized at

the QZ solutions, deliver identical values for the test statistic.

serially correlated with the instruments via the approximation errors. Again this is also interesting - here

the den Haan and Marcet (1994) statistic improves in T, again highlighting that another statistic is needed

to discriminate between different numerical solutions to linear DSGE models - and our favored method is

the forward error analysis of Meyer-Gohde (2023) in the main text.
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