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We investigate the applicability of the well-known multilevel Monte Carlo (MLMC) method to 
the class of density-driven flow problems, in particular the problem of salinisation of coastal 
aquifers. As a test case, we solve the uncertain Henry saltwater intrusion problem. Unknown 
porosity, permeability and recharge parameters are modelled by using random fields. The classical 
deterministic Henry problem is non-linear and time-dependent, and can easily take several 
hours of computing time. Uncertain settings require the solution of multiple realisations of 
the deterministic problem, and the total computational cost increases drastically. Instead of 
computing of hundreds random realisations, typically the mean value and the variance are 
computed. The standard methods such as the Monte Carlo or surrogate-based methods are a
good choice, but they compute all stochastic realisations on the same, often, very fine mesh. They 
also do not balance the stochastic and discretisation errors. These facts motivated us to apply 
the MLMC method. We demonstrate that by solving the Henry problem on multi-level spatial 
and temporal meshes, the MLMC method reduces the overall computational and storage costs. To 
reduce the computing cost further, parallelization is performed in both physical and stochastic 
spaces. To solve each deterministic scenario, we run the parallel multigrid solver ug4 in a black-
box fashion.

1. Introduction

We investigate the applicability of the well-known multilevel Monte Carlo (MLMC) method to density-driven flow problems, 
in particular the problem of salinisation of coastal aquifers. As a numerical test case, we consider the well-known Henry problem 
in a stochastic setting. The novelty here is that parameters such as porosity, permeability and recharge are not deterministic but 
stochastic (uncertain). The reason for the presence of uncertainties is the lack of knowledge, inaccurate measurements, and the 
inability to measure parameters at each spatial or temporal location. Although the deterministic Henry problem is well-known, the 
difficulties here are that it is not clear how input uncertainties propagate through the non-linear, time-dependent problem. The 
solution to be found is then the mean value and the variance of the salt mass fraction, both are functions of space and time. An 
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Nomenclature

RV random variable
QoI 𝑔 quantity of interest 𝑔
(q)MC (quasi-) Monte Carlo
MLMC Multilevel Monte Carlo
𝐿 number of mesh levels
 computational spatial domain
0,1,… ,𝐿 hierarchy of spatial meshes
0,1,… ,𝐿 hierarchy of temporal meshes
𝑠𝓁 , 𝑆 complexity on level 𝓁, total complexity
ℎ𝓁 (or ℎ), 𝑛𝓁 spatial step size and number of spatial degrees 

of freedom on level 𝓁
𝜏𝓁 (or 𝜏), 𝑟𝓁 time step size and number of time steps on 

level 𝓁
𝑚𝓁 number of samples (scenarios) on level 𝓁
𝜔, 𝝃(𝜔) random event and random vector

𝔼 [⋅],𝕍 [⋅] expectation and variance w.r.t. RV 𝝃
𝔼𝑡 [⋅] expectation w.r.t. the time 𝑡
𝛩 multidimensional domain of integration in para-

metric space
𝜙(𝐱,𝜔) porosity random field
𝐊(𝐱,𝜔) permeability random field
𝜌(𝐱,𝜔) density random field
𝐪(𝑡,𝐱,𝜔) volumetric velocity
𝐃 tensor field 𝐃 =𝐃(𝐪): molecular diffusion and dis-

persion of salt
𝜅̄(𝐱) expectation of 𝜅(𝐱, 𝜔)
𝑑 physical (spatial) dimension
𝑑 total dimension, 𝑑 = 𝑑 + 1
𝑐 = 𝑐(𝑡,𝐱,𝜔) mass fraction of salt (solution of the problem)

accurate estimate of the output uncertainties can facilitate a better understanding of the problem, better decisions, and improved 
control and design of the experiment. From an implementation point of view, we test how easy it is to couple multigrid and multilevel 
Monte Carlo solvers.

Salinisation of coastal aquifers. The intrusion of salt water occurs when the sea level rises and the salt water moves onto the land 
[71]. This usually happens during storms, floods, droughts or when saltwater intrudes into freshwater aquifers and raises the water 
table. As groundwater is an essential resource for food and irrigation, its salinisation can be disastrous. Many hectares of farmland 
could be lost because it becomes too wet or too salty to grow crops. Therefore, accurate modelling of different saline flow scenarios 
is essential [1,71] to help farmers and researchers develop strategies to improve soil quality and reduce the impact of saltwater 
intrusion.

Modeling. The saltwater flow is density driven and described by a system of time-dependent nonlinear partial differential equations 
(PDEs). It is characterised by convection dominance and can exhibit very complicated behaviour [81]. Uncertain parameters can 
have a strong influence on the flow and transport of salt. Random fields are used to model these parameters.

There are a number of studies where authors have modelled uncertainties in reservoirs (see [12,79]). The link between stochastic 
methods and hydrogeological applications was made in [8], where the authors analysed a collaboration between academics and 
water suppliers in Germany and made recommendations for optimisation and risk assessment. The basics of stochastic hydrogeology 
and an overview of stochastic tools and uncertainty management are described in [68].

The review [77] deals with hydrogeological applications of recent advances in uncertainty quantification, probabilistic risk 
assessment and decision making under uncertainty. The author reviews probabilistic risk assessment methods in hydrogeology under 
parametric, geological and model uncertainties. Density-driven vertical transport of saltwater through the freshwater lens on the 
island of Baltrum (Germany) is modelled in [62].

In [41], the authors examined the implications of transgression for a range of seawater intrusion scenarios based on simplified 
coastal freshwater aquifer settings. They stated that vertical intrusion during transgressions could involve density-driven convective 
processes, causing substantially greater amounts of seawater to enter the aquifer and create more extensive intrusion than horizontal 
seawater intrusion in the absence of transgression.

History and preliminary results. This work is an extension and continuation of our preliminary works [44,43]. The original Henry 
saltwater intrusion problem was introduced by H.R. Henry in the 1960s (see [36]) and became a benchmark for numerical solvers 
for groundwater flow (see [81,73,72,20]. In [66], the authors use the generalised polynomial chaos expansion approximation to 
investigate how incomplete knowledge of system properties affects the assessment of global quantities. In particular, they estimated 
the propagation of input uncertainties into a few dimensionless scalar parameters.

Hydrogeological formations typically have complex and heterogeneous structures. These formations may consist of several layers 
of porous media with different porosity and permeability coefficients (cf. [64,70]). Measurements of the layer positions and their 
thicknesses are only possible with a certain degree of error, and average parameters are typically assumed for the materials within 
the layers. These layers are therefore excellent candidates for random field modelling. Furthermore, due to the non-linearities in the 
problem, computing with the averaged parameters does not necessarily lead to the mathematical expectation of the solution that can 
be obtained by averaging over all scenarios.

Methods. Many techniques can be used to quantify uncertainties. One classical method is Monte Carlo (MC) sampling. Although 
it is dimension independent, it converges very slowly, with a convergence rate of ( 1√

𝑁
). This method may not be affordable for 

time-consuming simulations. However, even modern techniques such as surrogate models and stochastic collocation require a few 
2

hundred to a few thousand time-consuming simulations and assume a certain smoothness of the quantity of interest (QoI).
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Another class of methods is the class of perturbation methods [19]. The idea is to decompose the QoI with respect to (w.r.t.) 
random parameters in a Taylor series. The higher order terms can be neglected for small perturbations, simplifying the analysis and 
numerical tests. These methods assume that the random perturbations are small. For larger perturbations, these methods usually do 
not work.

Other methods to compute the desired statistics of the QoI are direct integration methods, such as the quasi-MC (QMC) [11], 
collocation methods and surrogate-based (generalized polynomial chaos approximation [83,46,45,76,51] and stochastic Galerkin 
[3,30,23]) methods. Direct methods compute statistics directly by sampling uncertain input coefficients and solving the corresponding 
PDEs, whereas the surrogate-based method computes a cheap functional (polynomial, exponential, or trigonometrical) approximation 
of the QoI. Examples of the surrogate-based methods are radial basis functions [49,9,50,31], sparse polynomials [14,7,21], and 
polynomial chaos expansion [54,17,82]. Surrogate methods are using some well-known functions such as the multivariate Legendre, 
Hermite, Chebyshev or Laguerre functions [58,83]. Advantages of surrogate methods are: Once the model is constructed, it is easy 
to sample, and all the samples are almost free (much cheaper than sampling the original stochastic PDE). The non-trivial part of 
surrogate models is to define which polynomial order is needed and how accurately all coefficients should be computed. Another 
difficulty is that not every function can be well approximated by a polynomial.

Sparse grid methods to integrate high-dimensional integrals are considered in [74,10,32,40,56,27,57,17,61]. An idea to generate 
goal-oriented adaptive spatial grids and use them in the multilevel MC (MLMC) framework was presented in [22,6].

The quantification of uncertainties in stochastic PDEs could be a significant challenge due to a) the large possible number of 
involved random variables and b) the high cost of each deterministic solution of the governed PDE. The MC quadrature and its 
variance-reduced variants have a dimension-independent error convergence rate (𝑁− 1

2 ), and the QMC has the worst-case rate 
(log𝑀 (𝑁)𝑁−1), where 𝑁 is the number of samples, and 𝑀 indicates the dimension of the stochastic space [52]. The MC method 
is not affected by the dimension of the integration domain, such as collocations on sparse or full grid methods [2,55]. A numerical 
comparison of other QMC sequences is presented in [63].

This work has the following structure. Section 2 describes the Henry problem and numerical methods to solve it. The well-known 
MLMC method is reviewed in Section 3. Next, Section 4 details the numerical results, which include the numerical analysis of the 
Henry problem, the computation of different statistics, the performance of the MLMC method, and the practical performance of the 
parallel ug4 solver for the Henry problem [36,73] with uncertain coefficients. Finally, we conclude this work with a discussion in 
section 5.

Our contribution and main results: We coupled the MLMC method with the multigrid method to estimate the propagation of 
uncertainties in the Henry problem. We used random fields to model unknown porosity, permeability and recharge. In our model, 
porosity and permeability are spatially dependent, random, multi-scale and have two layers. The recharge is time dependent and 
uncertain. We did not simply our equations with the Boussinesq approximation, i.e., we considered a more general case. We used 
MLMC to compute the mean and variance of the mass fraction. In addition, several other quantities of interest were computed, such 
as the total freshwater integral, the salt integral, the mass fraction computed at a point and integrated over a small subdomain. We 
investigated which of these QoIs were more appropriate to be computed by the MLMC method. To further speed up the computational 
process, we run all the MLMC random simulations and each individual simulation in parallel. This work is not only of theoretical 
interest, but also of practical interest; our modelling and solution allow us to answer the following questions:

1. How long can a particular drinking water well be used (i.e. when will the mass fraction of salt exceed a critical threshold)?
2. Which part of the aquifer has particularly high uncertainty?
3. What is the probability that the salt concentration at a given location and time will exceed a threshold value?
4. What is the mean scenario (and its variations)?
5. What are the extreme scenarios for the concentration of the salt?
6. How do the uncertainties change with time?

To the best of our knowledge, we are not aware of any other studies where Henry’s problem [36,73] has been solved in parallel 
using MLMC methods with uncertain porosity, permeability and recharge parameters.

2. Henry problem with uncertain parameters

2.1. Problem setting

In coastal aquifers, saline seawater intruding into the formation from one side (the sea side) displaces pure water from the other 
side due to water recharge from land sources and precipitation. Because of its higher density, seawater tends to infiltrate along the 
bottom of the aquifer. This process can reach a steady state, but may be time-dependent due to the periodicity of the recharge or 
the control of the pumping rate from the wells. Accurate simulation of salinisation is essential for predicting the availability of water 
resources. However, the accuracy of such predictions strongly depends on the hydrogeological parameters of the formation and the 
geometry of the computational domain, denoted by .

The aquifer  ⊂ ℝ𝑑 , 𝑑 ∈ {2, 3}, can be modelled as an immobile porous matrix filled with liquid phase — a solution of salt in 
water. Due to the inhomogeneous density distribution, gravity induces the motion of the liquid phase. This motion transports the 
3

salt, which would otherwise be subject to molecular diffusion.
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Fig. 1. (left) Computational domain  ∶= [0, 2] × [−1, 0]; (right) the mass fraction 𝑐 ∈ [0, 1] and the streamlines of the velocity field 𝐪 for the undisturbed Henry 
problem at 𝑡 = 6016 s. The dark red colour corresponds to 𝑐 = 1 and the blue colour to 𝑐 = 0. (For interpretation of the colours in the figure(s), the reader is referred 
to the web version of this article.)

A simple but very illustrative model of coastal aquifers is the so-called Henry problem, first considered in [36]. In this two-
dimensional setting, the aquifer is represented by a rectangular domain  = [0, 2] × [−1, 0] [m2] completely saturated with the liquid 
phase (Fig. 1). The salty seawater intrudes from the right and the pure water recharges from the left. The top and bottom are assumed 
to be impermeable. Analogous settings with partially saturated domains are considered in [75].

The mass conservation laws for the whole liquid phase and the salt give the following equations

𝜕𝑡(𝜙𝜌) + ∇ ⋅ (𝜌𝐪) = 0, (1)

𝜕𝑡(𝜙𝜌𝑐) + ∇ ⋅ (𝜌𝑐𝐪− 𝜌𝐃∇𝑐) = 0, (2)

where 𝜙 ∶ →ℝ denotes the porosity, 𝐊 ∶ →ℝ𝑑×𝑑 represents the permeability of the porous matrix, 𝑐(𝑡, 𝐱) ∶ [0, +∞) × → [0, 1]
is the mass fraction of the salt (or of the brine) in the solution, 𝜌 = 𝜌(𝑐) indicates the density of the liquid phase, and 𝐃(𝑡, 𝐱, 𝐪) ∶
[0, +∞) ××ℝ𝑑 →ℝ𝑑×𝑑 denotes the molecular diffusion and mechanical dispersion tensor. For the velocity 𝐪(𝑡, 𝐱) ∶ [0, +∞) × →
ℝ𝑑 , we assume Darcy’s law:

𝐪 = −𝐊
𝜇
(∇𝑝− 𝜌𝐠), (3)

where 𝑝 = 𝑝(𝑡, 𝐱) ∶ [0, +∞) ×  → ℝ is the hydrostatic pressure, 𝜇 = 𝜇(𝑐) denotes the viscosity of the liquid phase, and 𝐠 =
(0, … , 0, −9.8)𝑇 ∈ ℝ𝑑 represents the gravity vector. Inserting (3) into (1)–(2) results in a system of two time-dependent PDEs in 
the unknowns 𝑐 and 𝑝. This system should be closed with boundary conditions for 𝑐 and 𝑝 and an initial condition for 𝑐.

Following the classical setting in [81], for this variant of the Henry problem (see also [72,73]), we set

𝜌(𝑐) = 𝜌0 + (𝜌1 − 𝜌0)𝑐, 𝜇 = const (4)

and

𝐃 = 𝜙𝐷𝐈, with a scalar 𝐷 ∈ℝ, and 𝐈 ∈ℝ𝑑×𝑑 the identity matrix. (5)

Furthermore, we assume the isotropic permeability

𝐊 =𝐾𝐈, 𝐾 ∈ℝ.

This setting is consistent with the problem setting in [81]. However, we do not assume the Boussinesq approximation and keep the 
density variable for all terms.

For the initial conditions, we set

𝑐|𝑡=0 = 0. (6)

The boundary conditions are presented in Fig. 1 (left). On the right side of the domain, we impose Dirichlet conditions for 𝑐 and 
𝑝 variables that represent the adjacent seawater aquifer:

𝑐|𝑥=2 = 1, 𝑝|𝑥=2 = −𝜌1𝑔𝑦. (7)

On the left side, we prescribe the inflow of fresh water:

𝑐|𝑥=0 = 0, 𝜌𝐪 ⋅ 𝐞𝑥||𝑥=0 = 𝑞in, (8)

where 𝐞𝑥 = (1, 0)⊤, and 𝑞in is a constant. For the classical formulation of the Henry problem, this value was set to 𝑞in = 6.6 ⋅ 10−2 kg∕s
4

in [81] or 𝑞in = 3.3 ⋅ 10−2 kg∕s in [73,72]. The Neumann zero boundary conditions are imposed on the upper and lower sides of .
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Table 1

Parameters of the considered density-driven flow problem.

Parameter Values and Units Description

𝜙̂ ∶= 𝔼 [𝜙] 0.35 [-] mean value of porosity
𝐷 18.8571 ⋅ 10−6 [m2 ⋅ s−1] diffusion coefficient in the medium
𝐾̂ 1.020408 ⋅ 10−9 [m2] reference value of permeability
𝜌0 1000 [kg ⋅m−3] density of pure water
𝜌1 1024.99 [kg ⋅m−3] density of brine
𝜇 10−3 [kg ⋅m−1 ⋅ s−1] viscosity
𝜅𝐾𝐶 2.088415 ⋅ 10−8 [m2] scaling in the Kozeny-Carman

Fig. 2. Positions of 15 pre-selected points with small subdomains around them. The size of the subdomain around point (𝑥𝑖 , 𝑦𝑖) is [𝑥𝑖 −0.1, 𝑥𝑖 +0.1] ×[𝑦𝑖 −0.1, 𝑦𝑖 +0.1].

An example of 𝑐(𝑡, 𝐱) and the flow for the parameters from Table 1 (i.e. 𝜙 = 𝜙̂ and 𝐾 = 𝐾̂) is shown in Fig. 1 (right). The dark red 
colour corresponds to 𝑐 = 1 (salt water) and the dark blue colour corresponds to 𝑐 = 0 (pure water). Due to its higher density, the 
saltwater intrudes into the aquifer at the bottom right. It is pushed back by the lighter pure water coming from the left. This process 
creates a vortex in the flow at the bottom right of the domain. The salt water enters at the lower part of the right boundary and 
diverts upwards and to the right, back to the sea, forming a salt triangle. This flow does not transport the salt to the left part of the 
domain. The salt moves further to the left by diffusion and dispersion and is washed out by the recharge. In the classical formulation, 
this salt triangle initially grows with time but reaches a steady state (see [81,73,72]). However, the initial non-stationary phase can 
take considerable time. Investigation of this phase is particularly important to understand the behaviour of the system when the 
intensity of recharge varies, as may occur, for example, due to climate change. We consider integrals over the whole domain , 
which describes the total amount of pure water and the total amount of salt (as in equations (35)–(36)). We also compute local 
integrals over 15 small rectangular subdomains Δ1, … , Δ15, Δ𝑖 ∶= [𝑥𝑖 − 0.1, 𝑥𝑖 + 0.1] × [𝑦𝑖 − 0.1, 𝑦𝑖 + 0.1] around preselected points 
defined below. The list of selected points follows:

{𝐱𝑖 ∶= (𝑥𝑖, 𝑦𝑖)𝑖=1,…,15} = {(0.90,−0.95), (1.15,−0.95), (1.40,−0.95), (1.65,−0.95), (1.90,−0.95), (9)

(0.90,−0.75), (1.15,−0.75), (1.40,−0.75), (1.65,−0.75), (1.90,−0.75),

(0.90,−0.50), (1.15,−0.50), (1.40,−0.50), (1.65,−0.50), (1.90,−0.50)}

(see Fig. 2). The reason we consider 15 points (and 15 small subdomains) is that not all points are “interesting”, i.e., not all points 
have significant variation in 𝑐. MLMC reduces the variance, but if the initial variance is smaller according to the prescribed tolerance, 
there is no point in using MLMC.

The knowledge of 𝑐 at these spatial points may help track salinity changes over time in groundwater wells and understand which 
areas in the aquifer are most vulnerable.

2.2. Modeling porosity, permeability, and recharge

The primary sources of uncertainty are the hydrogeological properties of the porous medium — porosity (𝜙) and permeability 
(𝐊) fields of the solid phase — and the freshwater recharge flux 𝑞𝑥 through the left boundary. The QoIs are related to the mass 
fraction 𝑐, a function of 𝜙, 𝐊, and the recharge. We model the uncertain 𝜙 using a random field and assume 𝐊 to be isotropic and 
dependent on 𝜙:
5

𝐊 =𝐾𝐈, 𝐾 =𝐾(𝜙) ∈ℝ. (10)
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The distribution of 𝜙(𝐱, 𝝃), 𝐱 ∈, is determined by a set of stochastic parameters 𝝃 = (𝜉1, … , 𝜉𝑀 ). Each component 𝜉𝑖 is a random 
variable depending on a random event 𝜔. For concision, we skip 𝜔 and write 𝝃 ∶= 𝝃(𝜔).

The dependence in (10) is specific for every material. We refer to [59,60,18] for a detailed discussion. In the proposed model, we 
use a Kozeny–Carman-like dependence

𝐾(𝜙) = 𝜅𝐾𝐶 ⋅
𝜙3

1 − 𝜙2 , (11)

where 𝜅𝐾𝐶 is a constant scaling factor. The inflow flux is kept constant across the left boundary but depends on the stochastic 
variable 𝑞in. We also assume that the inflow flux is independent of 𝜙 and 𝐊.

Remark 1. Equation (5) is a simplification typically adopted when the Henry problem is used as a benchmark, see [81,72,73]. It is 
then assumed that 𝐷 is not only the molecular diffusion coefficient but also includes some dispersivity. In a more accurate model, the 
dispersion tensor should depend on the Darcy velocity 𝐪, for example using the Bear-Scheidegger law (see [69,5]). However, we note 
that the parameters of mechanical dispersion depend on the configuration of the porous matrix (e.g. grain size) and therefore cannot 
be considered independent of porosity and permeability in stochastic modelling. The influence of dispersion on the propagation of 
uncertainties is therefore a non-trivial issue even from a modelling point of view. However, it should be addressed in the future.

2.3. Numerical methods for the deterministic problem

The system (1)–(2) is numerically solved in the domain  × [0, 𝑇 ], where × denotes the Cartesian product.  is covered with a 
grid ℎ of quadrilaterals with mesh size ℎ. Equations (1)–(2) are discretized on ℎ using a vertex-centered finite-volume scheme as 
presented in [24–26]. The number of degrees of freedom associated with ℎ is denoted by 𝑛. There are two degrees of freedom per 
grid vertex in ℎ: one for the mass fraction 𝑐 and another for the pressure 𝑝. Note that ℎ =(𝑛−1∕𝑑 ), 𝑑 = 2. We use the implicit Euler 
method with a time step 𝜏 for time discretization. The number of the computed time steps is 𝑟 = 𝑇 ∕𝜏 . Solution of the discretized 
system yields the approximation 𝑐ℎ,𝜏 for 𝑐 on this grid.

We use partial upwind for the convective terms (cf. [24]). Therefore, the discretization error is of the second order w.r.t. the 
spatial mesh size ℎ. However, Equation (2) is essentially convection dominated. For the grids in the numerical experiments, the 
observed reduction of the discretization error after grid refinement corresponds to the first order. Furthermore, the Euler method 
provides the first-order discretization error w.r.t. 𝜏 . Thus, we assume the first-order dependence of the discretization error w.r.t. ℎ
and 𝜏 , i.e., as 𝑑 = 2,

‖𝑐 − 𝑐ℎ,𝜏‖2 =(ℎ+ 𝜏) =(𝑛−1∕2 + 𝑟−1), (12)

which is consistent with our numerical experiments.
The implicit time-stepping scheme provides unconditional stability but requires the solution of an extensive nonlinear algebraic 

system of the discretized equations with 𝑛 unknowns in every time step. The Newton method is used to solve this system. Linear 
systems inside the Newton iteration are solved using the BiCGStab method (cf. [4]) preconditioned with the geometric multigrid 
method (V-cycle, cf. [33]). In the multigrid cycle, the ILU𝛽 -smoothers [34] and Gaussian elimination are used as the coarse grid 
solver.

To construct the spatial grid hierarchy 0, 1, … , 𝐿, we start with a coarse grid 0 consisting of 512 grid elements (quadri-
laterals) and 𝑛0 = 1122 degrees of freedom. (𝑛𝓁 denotes the number of degrees of freedom in 𝓁 .) Grid 𝓁 of freedom is regularly 
refined twice to obtain grid 𝓁+1. We treat this as one spatial refinement step. After every spatial grid refinement step, the number 
of grid elements is multiplied by 16, i.e., 𝑛𝓁 ≈ 𝑛0 ⋅ 16𝓁 , see Table 2). We also construct the temporal grid hierarchy 0, 1, … , 𝐿. The 
time step on each temporal grid is denoted by 𝜏𝓁 with 𝜏𝓁+1 =

1
4 𝜏𝓁 . The number of time steps on the 𝓁th grid (level) is 𝑟𝓁+1 = 4𝑟𝓁 , so 

that 𝑟𝓁 = 𝑟04𝓁 , where 𝑟0 is the number of time steps in 0. On the 𝓁th level, the MLMC uses the grid 𝓁 × 𝓁 . According to (12), for 
the numerical solution 𝑐𝓁 = 𝑐ℎ,𝜏 on 𝓁 × 𝓁 , we have:

‖𝑐 − 𝑐𝓁‖2 =(4−𝓁). (13)

Up to four grid levels 𝓁 were used in the numerical experiments.
In the context of this work, it is critical to estimate the numerical complexity of the deterministic solver with respect to the grid 

level 𝓁. The most time consuming part of the simulation is the solution of the discretised nonlinear system. It is usually difficult to 
predict the number of Newton iterations in each time step. But in our numerical experiments, two Newton iterations were sufficient 
to achieve the required accuracy independently on the grid level. Accordingly, the linear solver was called at most twice per time 
step. Furthermore, the convergence rate of the geometric multigrid method does not depend on the mesh size (cf. [34]). Thus the 
computational complexity of a time step is (𝑛𝓁), where 𝑛𝓁 is the number of degrees of freedom at grid level 𝓁. Therefore, the total 
numerical cost of computing a scenario at grid level 𝓁 for 𝑟𝓁 time steps is
6

𝑠𝓁 =(𝑛𝓁𝑟𝓁), 𝑠𝓁 ∝ 𝑠𝓁−1 ⋅ 42 ⋅ 41 = 43 ⋅ 𝑠𝓁−1. (14)
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3. Multilevel Monte Carlo

To reduce the total computing cost, we apply the MLMC method, which is a natural idea because the deterministic solver uses a 
multigrid method (see Section 2.3). The MLMC method efficiently combines samples from various levels. A more in-depth description 
of these techniques is found in [15,16,28,29,35,78,48].

We let 𝝃(𝜔) and 𝑔(𝝃) = 𝑔(𝝃(𝜔)) represent a vector of random variables and the QoI, respectively, where 𝜔 is a random event. 
In this work, 𝑔 is an integral over some of Δ𝑖 ’s or  with the integrand depending on 𝑐, s. Section 4. The MLMC method aims to 
approximate the expected value 𝔼 [𝑔] with an optimal computational cost. It constructs a telescoping sum, defined over a sequence 
of spatial and temporal meshes, 𝓁 = 0, … , 𝐿, as described next, to achieve this goal. The QoI 𝑔, numerically evaluated on level 
𝓁, is denoted by 𝑔ℎ𝓁 ,𝜏𝓁 ,𝓁 or, for simplicity, by just 𝑔𝓁 , where ℎ𝓁 and 𝜏𝓁 are the discretization steps in space and time on level 𝓁. 
Furthermore, we assume that 𝔼 

[
𝑔ℎ,𝜏

]
→ 𝔼 [𝑔] as ℎ → 0 and 𝜏 → 0.

Remark 2. Since the problem described in Subsection 2.1 is non-stationary, the quantities related to its solution 𝑐 below depend on 
time, too. Examples of time-dependent quantities are 𝑔, 𝑔𝓁 , 𝔼 

[
𝑔𝓁

]
, 𝕍

[
𝑔𝓁

]
. To keep our notation simple, we do not explicitly specify 

the time argument for them. We shall only indicate it where it is essential.

Let 𝑠0 be the computing cost to evaluate one realization of 𝑔0 (the most expensive one from all computed realizations on 0th 
mesh). Similarly, 𝑠𝓁 denotes the computing cost of evaluating 𝑔𝓁 −𝑔𝓁−1. For simplicity, we assume that 𝑠𝓁 for 𝑔𝓁 −𝑔𝓁−1 is almost the 
same as 𝑠𝓁 for 𝑔𝓁 . The number of iterations is variable; thus, the cost of computing a sample of 𝑔𝓁 − 𝑔𝓁−1 may fluctuate for various 
realizations.

The MLMC method calculates 𝔼 
[
𝑔𝐿

]
≈ 𝔼 [𝑔] using the following telescopic sum:

𝔼
[
𝑔𝐿

]
= 𝔼

[
𝑔0
]
+

𝐿∑
𝓁=1

𝔼
[
𝑔𝓁 − 𝑔𝓁−1

]
(15)

≈𝑚−1
0

𝑚0∑
𝑖=1

𝑔
(0,𝑖)
0 +

𝐿∑
𝓁=1

(
𝑚−1
𝓁

𝑚𝓁∑
𝑖=1

(𝑔(𝓁,𝑖)𝓁 − 𝑔
(𝓁,𝑖)
𝓁−1 )

)
. (16)

In the above equation, level 𝓁 in the superscript (𝓁, 𝑖) indicates that independent samples are used at each correction level. As 𝓁
increases, the variance of 𝑔𝓁 − 𝑔𝓁−1 decreases. Thus, the total computational cost can be reduced by taking fewer samples on finer 
meshes.

In our numerical experiments 𝑛𝓁 = 16𝑛𝓁−1 = … = 16𝓁𝑛0 = 4𝑑𝓁𝑛0, 𝑑 = 2, and 𝑟𝓁 = 4𝑟𝓁−1 = … = 4𝓁𝑟0. In the case of uniform, 
equidistant mesh, we could also write similar formulas for step sizes: ℎ𝓁 = ℎ𝓁−1 ⋅ 4−1 = ℎ𝓁−2 ⋅ 4−2 =… = ℎ0 ⋅ 4−𝓁 and 𝜏𝓁 = 𝜏0 ⋅ 4−𝓁 .

We assume that the average cost of generating one sample of 𝑔𝓁 (the cost of one deterministic simulation for one random 
realization) is

𝑠𝓁 =(𝑛𝓁𝑟𝓁) =(16𝓁𝑛0 ⋅ 4𝓁𝑟0) =(42𝓁𝑛0 ⋅ 4𝓁𝑟0) =(4(2+1)𝓁𝛾𝑛0𝑟0) =(4𝑑𝓁𝛾𝑛0𝑟0), (17)

where 𝑑 = 𝑑 + 1 = 3 and 𝛾 = 1.

Definition 3. Let 𝑌𝓁 ∶=𝑚−1
𝓁

∑𝑚𝓁
𝑖=1(𝑔

(𝓁,𝑖)
𝓁 − 𝑔

(𝓁,𝑖)
𝓁−1 ), where 𝑔−1 ≡ 0, so that

𝔼
[
𝑌𝓁

]
∶=

{
𝔼
[
𝑔0
]
, 𝓁 = 0

𝔼
[
𝑔𝓁 − 𝑔𝓁−1

]
, 𝓁 > 0

. (18)

Denote by 𝑌 ∶=
∑𝐿

𝓁=0 𝑌𝓁 the multilevel estimator of 𝔼 [𝑔] based on 𝐿 + 1 levels and 𝑚𝓁 independent samples on level 𝓁, where 
𝓁 = 0, … , 𝐿.

Furthermore, we denote 𝑉0 = 𝕍
[
𝑔0
]

and for 𝓁 ≥ 1, let 𝑉𝓁 be the variance of 𝑔𝓁 − 𝑔𝓁−1: 𝑉𝓁 ∶= 𝕍
[
𝑔𝓁 − 𝑔𝓁−1

]
.

The standard theory states the following facts for the mean and for the variance:

𝔼 [𝑌 ] = 𝔼
[
𝑔𝐿

]
, 𝕍 [𝑌 ] =

∑𝐿

𝓁=0𝑚
−1
𝓁 𝑉𝓁 . (19)

The cost of the multilevel estimator 𝑌 is

𝑆 ∶=
∑𝐿

𝓁=0𝑚𝓁𝑠𝓁 . (20)

In the following, we repeat the well-known [29] results on the computation of the sequence 𝑚0, … , 𝑚𝐿. For a fixed variance 
𝕍 [𝑌 ] =∶ 𝜀2∕2, the cost 𝑆 is minimized by choosing as 𝑚𝓁 the solution of the optimization problem
7

min𝑚0 ,…,𝑚𝐿
𝐹 (𝑚0,… ,𝑚𝐿), (21)
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where 𝐹 (𝑚0, … , 𝑚𝐿) ∶=
∑𝐿

𝓁=0

(
𝑚𝓁𝑠𝓁 + 𝜇2 𝑉𝓁

𝑚𝓁

)
, 𝜇2 is a Lagrange multiplier. Thus, at the desired set of 𝑚𝓁 , the derivatives of 𝐹 w.r.t. 

𝑚𝓁 are equal to zero:

𝜕𝐹 (𝑚0,… ,𝑚𝐿)
𝜕𝑚𝓁

∶= 𝑠𝓁 − 𝜇2 𝑉𝓁

𝑚2
𝓁

= 0. (22)

Solving the system (22), we obtain

𝑚2
𝓁 = 𝜇2 𝑉𝓁

𝑠𝓁
, i.e. 𝑚𝓁 = 𝜇

√
𝑉𝓁

𝑠𝓁
. (23)

Taking into account that the variation 𝕍 [𝑌 ] is fixed and substituting (23) into (19), i.e. 
∑𝐿

𝓁=0 𝑉𝓁∕𝑚𝓁 = 𝜀2∕2, we obtain an equation 
for 𝜇:

𝐿∑
𝓁=0

𝑉𝓁

𝜇

√
𝑉𝓁
𝑠𝓁

= 1
2𝜀

2.

From this equation, we get 𝜇 = 2𝜀−2
∑𝐿

𝓁=0
√

𝑉𝓁𝑠𝓁 , and therefore

𝑚𝓁 = 2𝜀−2 ⋅

√
𝑉𝓁

𝑠𝓁
⋅

𝐿∑
𝑖=0

√
𝑉𝑖𝑠𝑖. (24)

For this set of 𝑚𝓁 , the total computational cost of 𝑌 is

𝑆 = 2𝜀−2
(

𝐿∑
𝓁=0

√
𝑉𝓁𝑠𝓁

)2

. (25)

For further analysis of this sum, see [29], p.4.
The mean squared error (MSE) is used to measure the quality of the multilevel estimator:

MSE ∶= 𝔼
[
(𝑌 − 𝔼 [𝑔])2

]
= 𝕍 [𝑌 ] + (𝔼 [𝑌 ] − 𝔼 [𝑔])2 , (26)

where 𝑌 is what we computed via MLMC, and 𝔼 [𝑔] what actually should be computed. To achieve

MSE ≤ 𝜀2

for some prescribed tolerance 𝜀, we ensure that

(𝔼 [𝑌 ] − 𝔼 [𝑔])2 = (𝔼
[
𝑔𝐿 − 𝑔

]
)2 ≤ 1

2𝜀
2 (27)

and

𝕍 [𝑌 ] ≤ 1
2𝜀

2. (28)

The bias error (27) corresponds to the discretization error (13) discussed in Subsection 2.3. Later, in the numerical Section we will 
see that 𝔼 [𝑌 ] − 𝔼 [𝑔] =𝑂(4−𝛼𝐿) with 𝛼 ≈ 1. The bias error can be made smaller than 𝜀2∕2 by choosing a sufficiently large 𝐿. Then, 
for this 𝐿, we can compute optimal 𝑚0, … , 𝑚𝐿 by formula in (24) to provide (28).

Combining this idea with a sequence of levels of the simulation grids in which the cost increases exponentially with 𝓁 while the 
weak error 𝔼 

[
𝑔𝐿 − 𝑔

]
and multilevel correction variance 𝑉𝓁 decrease exponentially leads to the following theorem (cf. Theorem 1, 

p. 6 in [29]):

Theorem 4. Consider a fixed 𝑡 = 𝑡∗. Suppose positive constants 𝛼, 𝛽, 𝛾 > 0 exist such that 𝛼 ≥ 1
2min(𝛽, 𝛾𝑑), and

|𝔼 [
𝑔𝓁 − 𝑔

] | ≤ 𝑐14−𝛼𝓁 (29a)

𝑉𝓁 ≤ 𝑐24−𝛽𝓁 (29b)

𝑠𝓁 ≤ 𝑐34𝑑𝛾𝓁 . (29c)

Then, for any accuracy 𝜀 < 𝑒−1, a constant 𝑐4 > 0 and a sequence of realizations {𝑚𝓁}𝐿𝓁=0 exist, such that MSE < 𝜀2, where MSE is defined 
in (26), and the computational cost is

𝑆 =
⎧⎪⎨𝑐4𝜀

−2, 𝛽 > 𝑑𝛾

𝑐4𝜀
−2 (log(𝜀))2, 𝛽 = 𝑑𝛾(

𝑑𝛾−𝛽
) (30)
8

⎪⎩𝑐4𝜀− 2+
𝛼 , 𝛽 < 𝑑𝛾.
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This theorem (see also [39,38,13,15,28]) indicates that, even in the worst-case scenario, the MLMC algorithm has a lower com-

putational cost than that of the traditional (single-level) MC method, which scales as (𝜀−2−𝑑𝛾∕𝛼).
Remark 5. In Theorem 4, the factors 𝑐1, 𝑐2, 𝑐3, 𝑐4 as well as the exponents 𝛼, 𝛽 and 𝛾 may generally depend on the time point 𝑡∗. This 
makes 𝐿 and 𝑚𝓁 time-dependent, too. In this work, we assume that there exist upper bounds 𝑐𝑖 for the factors: 𝑐𝑖 ≤ 𝑐𝑖, 𝑖 = 1, … , 4, as 
well as the bounds for the exponents: 𝛼 ≥ 𝛼̂, 𝛽 ≥ 𝛽, 𝛾 ≤ 𝛾̂ over the whole time interval [0, 𝑇 ] (later, we will see that this assumption 
is confirmed by our numerical tests). Then the corresponding 𝐿 and 𝑚𝓁 computed from (27) and (24) are constant in time, too. For 
simplicity, in what follows, we omit the hats and refer to these bounds.

Remark 6. In (27) and (28), 𝜀 is supposed to have the units of QoI 𝑔 and to have the corresponding meaning. For example, if 𝑔 is 
the mass of the salt in a subdomain, measured in kg, then 𝜀 bounds the error of this mass. This raises the question of appropriate 
scaling of 𝜀.

Let 𝐸0 ∶= |𝔼𝑡

[
𝔼
[
𝑔0
]] |, where 𝔼𝑡 [⋅] is expectation w.r.t. time. In this work, it makes sense to consider the error relatively to 𝑔. 

For this, in (27) and (28), we replace 𝜀 by 𝜀 ⋅𝐸0. Equivalently, we can divide (rescale) 𝔼 
[
𝑔𝐿 − 𝑔

]
by 𝐸0 and 𝑉𝑖 by 𝐸2

0 . Therefore, we 
get: |𝔼 [

𝑔𝐿 − 𝑔
] |

𝐸0
≤ 𝑐14−𝛼𝐿. (31)

Now, to satisfy (27), we want |𝔼 
[
𝑔𝐿 − 𝑔

] | ≤ 1√
2
𝜀 ⋅𝐸0. From this inequality, we can estimate 𝐿:

𝑐14−𝛼𝐿 =
𝜀 ⋅𝐸0√

2

𝐿 = − 1
𝛼
log4

𝜀 ⋅𝐸0√
2𝑐1

. (32)

Equations (24) and (25) attain the form

𝑚𝓁 = 2𝜀−2

𝐸0
2 ⋅

√
𝑉𝓁

𝑠𝓁
⋅

𝐿∑
𝑖=0

√
𝑉𝑖𝑠𝑖, 𝑆 = 2𝜀−2

𝐸2
0

(
𝐿∑

𝓁=0

√
𝑉𝓁𝑠𝓁

)2

. (33)

Note that although 𝐸0 is an inaccurate approximation of 𝔼 [𝑔], it is sufficient to be used in (32)–(33) for scaling purposes. In contrast 
to 𝔼 

[
𝑔𝓁

]
with 𝓁 > 0, 𝐸0 can be better estimated by the MLMC method as a large number of samples are computed on the grid level 

0.

Using preliminary numerical tests (see Fig. 10), we can estimate the convergence rates 𝛼 for the mean (the so-called weak 
convergence) and 𝛽 for the variance (the so-called strong convergence), as well as the constants 𝑐1 and 𝑐2. In addition, 𝛼 is strongly 
connected to the order of the discretization error (see Section 2.3), which equals 1. Note that precise estimates of parameters 𝛼 and 
𝛽 are crucial to distribute the computational effort optimally.

4. Numerical experiments

In this section, we perform numerical tests with the MLMC method described above. One of our aims is to compare the theoretical 
predictions with the obtained numerical results. We present two types of numerical experiments. The first type (denoted by A1 - A3) 
demonstrates the solution in the whole domain, in a point, and salt and fresh water integral values:

𝑄𝑆 (𝑡,𝜔) ∶= ∫
𝐱∈

𝑐(𝑡,𝐱,𝜔)𝜌(𝑡,𝐱,𝜔)𝑑𝐱, (34)

𝑄𝐹𝑊 (𝑡,𝜔) ∶= ∫
𝐱∈

𝐼(𝑐(𝑡,𝐱,𝜔) ≤ 0.012178)𝑑𝐱, (35)

where 𝐼(⋅) is the indicator function identifying a subdomain {𝐱 ∶ 𝑐(𝑡, 𝐱, 𝜔) ≤ 0.012178}. For these integrals, we observe numerically 
𝛼 ≈ 2 (see (29)) that agrees with the theoretical value. The idea of these tests is to collect more information about the problem.

Remark 7. Our motivation for the threshold 0.012178 (in (35)) is technical: it was used in our simulations of coastal aquifers at the 
North Sea [71], where 1𝑚3 of saltwater contains 35 kg of salt (corresponding to 𝑐 = 1 in the model) and has a density of 1035 𝑘𝑔

𝑚3 . 
Then the maximum recommended salinity of drinking water 412𝑚𝑔

𝑙
corresponds to the scaled mass fraction 𝑐 = 0.012178. The choice 

of this value is not essential.

In the second type (denoted by B1-B4), as a QoI, we consider an integral over a small sub-regions around a point (see the list of 
9

points in (9)):
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𝑄𝑖(𝑡,𝜔) ∶= ∫
𝐱∈Δ𝑖

𝑐(𝑡,𝐱,𝜔)𝜌(𝑡,𝐱,𝜔)𝑑𝐱, Δ𝑖 = [𝑥𝑖 − 0.1, 𝑥𝑖 + 0.1] × [𝑦𝑖 − 0.1, 𝑦𝑖 + 0.1], 𝑖 = 1,… ,15. (36)

The value of 𝑄𝑖 is the mass of the salt in a subdomain Δ𝑖. The size of each Δ𝑖 is small (0.22 = 0.04), compared to . We choose the 
point with index 9 (see Fig. 2) and the corresponding domain Δ9 as an example. The numerical scheme provides only the first order 
of the accuracy to compute 𝑄𝑖(𝑡, 𝜔), i.e., the convergence rate 𝛼 (weak convergence) should be ≈ 1 in (29a).

Uncertain porosity and recharge: Often unknown porosity is modelled by a random field. This random field is approximated by 
a truncated Karhunen-Loéve expansion (KLE). KLE requires knowledge of the covariance matrix, which is typically assumed to be 
from the very large Matérn class of functions. The KLE components are computed by solving an auxiliary eigenvalue problem and 
assuming a random distribution for the random variables. This approach is difficult and requires a separate article to describe it. We 
have implemented a simple alternative. We used 𝐿2 orthogonal functions (sin() and cos()), which mimic the orthogonal functions 
used in KLE. The uniform random variables used are also very common, usually one of three options is chosen: uniform, Gaussian or 
log-normal.

Additionally, we assume the presence of two horizontal layers: 𝑦 ∈ (−0.8, 0] (the upper layer) and 𝑦 ∈ [−1, −0.8] (the lower layer). 
The porosity inside each layer is uncertain and is modeled as in (37):

𝜙(𝐱,𝝃) = 0.35 ⋅𝐶0(𝜉1) ⋅𝐶1(𝑥, 𝑦, 𝜉1, 𝜉2) ⋅𝐶2(𝑥, 𝑦, 𝜉1, 𝜉2), (37)

where 𝐶0(𝜉1) =
{

1.2 ⋅ (1 + 0.2𝜉1) if 𝑦 < −0.8
1 if 𝑦 ≥ −0.8, (38)

𝐶1(𝑥, 𝑦, 𝜉1, 𝜉2) = 1 + 0.15(𝜉2 cos(𝜋𝑥∕2) − 𝜉2 sin(2𝜋𝑦) + 𝜉1 cos(2𝜋𝑥)), (39)

𝐶2(𝑥, 𝑦, 𝜉1, 𝜉2) = 1 + 0.2(𝜉1 sin(64𝜋𝑥) + 𝜉2 sin(32𝜋𝑦)). (40)

Random fields generated in this way provide: a) periodicity of high and low porosity areas in the aquifer; b) multi-scale behaviour; 
c) spatial dependence. This approach has been agreed with the developers of the UG4 software, who have many years of experience 
in solving very realistic problems at an industrial level. The recharge flux is also uncertain and is equal to

𝑞i𝑛(𝑡, 𝜉3) = −6.6 ⋅ 10−2(1 + 0.5 ⋅ 𝜉3)(1 + sin 𝜋𝑡

40 ). (41)

Here 𝜉1, 𝜉2, and 𝜉3 are sampled independently and uniformly in [−1, 1].
Note that there are many ways to model recharge, and we chose to model it by a function of 𝑡 with one random variable 𝜉3. Of 

course, one can use more random variables to model the recharge, but we are limited by the available computational resources (i.e., 
by the number of independent random variables which we can use). Therefore, we decided to use only one RV. Taking into account 
a periodic nature of precipitations, we decided to model it by a periodic function, for example, by sin(⋅).

In the settings of the classical Henry problem, the flux 𝑞𝐢𝐧 is simply prescribed. It models the flux of the water coming from 
the “land” (due to rivers, precipitation etc.) to the coast. This means in the real situation, on the one hand, 𝑞𝐢𝐧 should depend on 
the hydrogeological parameters of the medium further on the left, behind the left boundary. And for these parameters, the same 
stochastic modeling should be applied. Furthermore, this flux should depend on the flow inside the domain, i.e. on the porosity and 
the permeability in the problem setting, and not only near the left boundary. These arguments reflect the general difficulties with 
imposing realistic in- and outflow boundary conditions but their discussion is beyond the scope of our paper. This is a modeling issue 
that must be considered aside of the numerical methods.

Note that the porosity (37) and therefore the permeability (11) are highly oscillating functions of the geometric coordinates 
(𝑥, 𝑦). Input interfaces of some codes assume precalculation of these values and storing them in e.g. vertex- or cell-centered rasters. 
During assembling of the discretized algebraic systems, these quantities are interpolated at the integration points of the finite-volume 
or finite-element schemes. For multilevel approaches, these points depend on the grids in the hierarchy, and the resolution of the 
rasters as well as the type of the interpolation can influence the properties of the methods. In contrast to that, our implementation 
does not involve precalculation of the porosity and the permeability fields, so that the values (37) and (11) are directly evaluated at 
the integration points during the assembling phase. The same holds for the recharge (41) as a function of time.

Fig. 3 depicts a random realization of the porosity random field 𝜙(𝝃) for some 𝝃 (left) and the corresponding solution 𝑐(𝑡, 𝐱, 𝝃) =
𝑐(𝑡, 𝜙(𝝃)) at 𝑡 = 𝑇 (right). Additionally, four isolines {𝐱 ∶ |𝑐(𝑇 , 𝜙(𝝃)) −𝑐(𝑇 )| = 0.1 ⋅ 𝑖}, 𝑖 = 1, 2, 3, 4, are presented on the right, 𝑇 = 6016
[𝑠]. The isolines demonstrate the absolute value of the difference between the computed realization 𝑐(𝑡, 𝜙(𝝃)) and the expected value 
𝑐(𝑡).

Software and parallelization: The computations presented in this work were performed using the ug4 simulation software toolbox 
[37,65,80]. This software has been applied for subsurface flow simulations of real-world aquifers (cf. [71]). The toolbox was paral-
lelized using MPI, and the presented results were obtained on the Shaheen II cluster provided by the King Abdullah University of 
Science and Technology. Every sample was computed on 32 cores of a separate cluster node. Each simulation (scenario) was local-
ized to one node to reduce the communication time between nodes. All scenarios were concurrently computed on different nodes. A 
10

similar approach was used in [45,46]. Simulation times for one realization on different grid levels 𝓁 are presented in Table 2.
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Fig. 3. (left and center) A realisation of porosity 𝜙(𝝃∗) ∈ [0.18, 0.59] and permeability 𝐾 ∈ [1.77𝑒 −10, 4.35𝑒 −9]. (right) Corresponding mass fraction 𝑐(𝑇 , 𝐱, 𝜙(𝝃∗)) ∈
[0, 0.35] with isolines {𝐱 ∶ |𝑐(𝑇 , 𝜙(𝝃∗)) − 𝑐(𝑇 )| = 0.1 ⋅ 𝑖}, 𝑖 = 1, 2, 3, 𝑡 = 𝑇 = 6016 s.

Fig. 4. (left) Mean value 𝑐 ∈ [0,1] and (right) variance Var [𝑐] ∈ [0.0,0.04] of the mass fraction, with contour lines {𝐱 ∶ Var [𝑐] = 0.01 ⋅ 𝑖}, 𝑖 = 1..3, 𝑡 = 𝑇 = 6016 s.

Fig. 5. (left) Mean values 𝔼
[
𝑐(𝑡, 𝑥9, 𝑦9)

]
and (right) variances Var [𝑐](𝑡, 𝑥9, 𝑦9) of the mass fraction computed on levels 0,1,2,3 vs. time 𝑡.

4.1. Computation via QMC

The following calculations are performed using the QMC method with 600 samples (Halton sequence). These numerical tests are 
not directly relevant to the MLMC method, but are used to better understand the uncertainties in different QoIs.

Test A1. The mean and variance of the mass fraction are provided in Fig. 4 on the left and right, respectively. The expectation takes 
values from [0, 1]. The value 0 corresponds to the blue colour and the value 1 to the dark red. The variance range is [0, 0.04]. The areas 
with high variance (dark red) indicate regions with high variability/uncertainty. Such regions may need additional attention from 
specialists (e.g., placement of sensors). The right image displays four contour lines {𝐱 ∶ Var [𝑐](𝑡, 𝐱) = 0.01 ⋅ 𝑖}, 𝑖 = 1..4, 𝑡 = 𝑇 = 6016.

We observed that the variability (uncertainty) of the mass fraction can vary from one grid point to another. At some points (dark 
blue regions) the solution does not change. At other points (white-yellow regions) the variability is low (light red regions) or high 
(dark red regions). In regions of high uncertainty, it is useful to refine the mesh and apply the MLMC method.

Test A2. As a further numerical test, we want to know the range in which the mean and variance of the QoI 𝑔𝓁 change. In Fig. 5 we 
visualise the mean 𝔼 

[
𝑐(𝑡, 𝑥9, 𝑦9)

]
(on the left) and the variance Var [𝑐](𝑡, 𝑥9, 𝑦9) (on the right) at the point (𝑥9, 𝑦9), computed on mesh 
11

levels 𝓁 = 0, … , 3. So, we see that the mean changes in the range ≈ [0, 30] and the variance in ≈ [0, 80]. Small oscillations (blue line) 
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Fig. 6. Six hundred realisations of the integral values 𝑄𝐹𝑊 (𝑡) (left) and 𝑄𝑆 (𝑡) (right). The 𝑥-axis represents the time 𝑡 = 1𝜏, … , 48𝜏 ; dotted curves denote five 
quantiles: 0.025, 0.25, 0.50, 0.75 and 0.975 from bottom to top.

Fig. 7. (left) The mean value 𝔼
[
𝑔𝓁 − 𝑔𝓁−1

]
and (right) the variance value 𝕍

[
𝑔𝓁 − 𝑔𝓁−1

]
as a function of time for 𝑡 ∈ [𝜏,48𝜏], 𝓁 = 1,2,3.

in the values 𝔼 
[
𝑔0
]

and 𝕍
[
𝑔0
]

are due to the oscillations in the recharge, sin() function in (41). This experiment gives us an idea of 
how to choose 𝜀2 for the MSE error.

Test A3. 600 realisations of 𝑄𝐹𝑊 (𝑡) (left) and 𝑄𝑆 (𝑡) (right) are shown in Fig. 6. Time is along the 𝑥 axis, 𝑡 ∈ [𝜏, 48𝜏]. In addition, 
five quantiles are represented by dotted curves from bottom to top and are 0.025, 0.25, 0.50, 0.75 and 0.975 respectively. These 
plots can be used to identify worst case scenarios for freshwater reserves.

4.2. Numerical tests for the MLMC method

The following numerical experiments are required to demonstrate the work and efficiency of the MLMC method.

Test B1. The next QoI is the integral value as in (36). This integral can be estimates from above

|𝑄9(𝑡,𝜔)| ≤ ∫
𝐱∈Δ9

|𝑐(𝑡,𝐱,𝜔)| ⋅ |𝜌(𝑡,𝐱,𝜔)|𝑑𝐱 ≤ 0.22 ⋅ 1000 ⋅ 1 = 40, (42)

where the density |𝜌(𝑡, 𝐱, 𝜔)| ≤ 1000, |𝑐(𝑡, 𝐱, 𝜔)| ≤ 1, and volume of Δ9 is 0.22. Fig. 7 (left) shows the mean value 𝔼 
[
𝑔𝓁 − 𝑔𝓁−1

]
as a 

function of time for 𝑡 ∈ [𝜏, 48𝜏]. Fig. 7 (right) shows the variance value 𝕍
[
𝑔𝓁 − 𝑔𝓁−1

]
as a function of time for 𝑡 ∈ [𝜏, 48𝜏]. In both 
12

figures, as we move to finer and finer meshes, we can see that the amplitude decreases, i.e. the accuracy increases.
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Fig. 8. 100 realisations of 𝑔1 − 𝑔0 (left), 𝑔2 − 𝑔1 (center), 𝑔3 − 𝑔2 (right) vs. time 𝑡. Here QoI 𝑔𝓁 is the integral value 𝑄𝑠(𝑡) as in (42) computed over Δ9 for 𝑡 ∈ [𝜏, 48𝜏].

Table 2

Number of degrees of freedom 𝑛𝓁 , number of time steps 𝑟𝓁 , step size in time 𝜏𝓁 , average, minimal, and 
maximal computing times on each level 𝓁.

Level 𝓁 𝑛𝓁 , ( 𝑛𝓁

𝑛𝓁−1
) 𝑟𝓁 , ( 𝑟𝓁

𝑟𝓁−1
) 𝜏𝓁 = 6016∕𝑟𝓁 Computing times (𝑠𝓁), ( 𝑠𝓁

𝑠𝓁−1
)

average min. max.

0 153 94 64 0.6 0.5 0.7
1 2145 (14) 376 (4) 16 7.1 (14) 6.9 8.7
2 33153 (15.5) 1504 (4) 4 252.9 (36) 246.2 266.2
3 525825 (15.9) 6016 (4) 1 11109.8 (44) 9858.4 15506.9

Fig. 9. (left) Decay of 𝔼
[
𝑔𝓁 − 𝑔𝓁−1

]
and 𝑉𝓁 in log-scale computed for levels 0,1,2,3 (horizontal axis). The QoI is a subdomain integral 𝑄9 at 𝑡 = 10𝜏 .

Fig. 8 shows 100 realisations of 𝑔1 −𝑔0 (left), 𝑔2 −𝑔1 (center), 𝑔3 −𝑔2 (right). Here QoI 𝑔𝓁 is the integral value as in (42) computed 
over a subdomain Δ9 for 𝑡 ∈ [𝜏, 48𝜏]. The amplitude of 𝑔1 − 𝑔0 (on the left) achieves ≈ 19, of 𝑔2 − 𝑔1 (in the middle) achieves ≈ 5.5, 
and the amplitude of 𝑔3 − 𝑔2 (on the right) achieves 1.2 (i.e. we observe decay by factor ≈ 4).

Table 2 contains average computing times, which are necessary to estimate the number of samples 𝑚𝓁 at each level 𝓁. The 
fifth column contains the average computing time, and the sixth and seventh columns contain the shortest and longest computing 
times. The computing time for each simulation varies depending on the number of iterations, which depends on the porosity and 
permeability. We observed that, after ≈ 6016 s, the solution is almost unchanging; thus, we perform the experiment only for 𝑡 ∈ [0, 𝑇 ], 
where 𝑇 = 6016. For example, if the number of time steps is 𝑟𝓁 = 94 (Level 0 in Table 2), then the time step 𝜏 = 𝑇

𝑟𝓁
= 6016

94 = 64 s.

Test B2. The QoI 𝑔𝓁 is the integral 𝑄9 at 𝑡 = 10𝜏 (see (36)). In Fig. 9 we compare the decay of 𝔼 
[
𝑔𝓁

]
and 𝔼 

[
𝑔𝓁 − 𝑔𝓁−1

]
(left) and of 

𝕍
[
𝑔𝓁

]
and 𝕍

[
𝑔𝓁 − 𝑔𝓁−1

]
(right). We can see that the decay of 𝑔𝓁 − 𝑔𝓁−1 is much faster.

Test B3. The QoI is a subdomain integral 𝑄9 of 𝑐 over the subdomain Δ9 - a domain around the point (𝑥, 𝑦)9 = (1.65, −0.75) (see 
Fig. 1 and (9)). The slopes in Fig. 10 can be used to estimate the rates of weak (shown on the left) and strong (shown on the right) 
convergences (defined in (29a)-(29b)). Both graphs are in logarithmic scale. The points on the horizontal axis correspond to the QoI [ ]
13

calculated at levels 0, 1, 2 and 3. We fit the graph of log4(𝔼 𝑔𝓁 − 𝑔𝓁−1 ) with a linear function −𝛼 ⋅ 𝓁 + 𝜁1. The coefficients obtained 
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Fig. 10. (left) Weak (𝛼 = 0.9, 𝜁1 = 3.2) and (right) strong (𝛽 = 1.7, 𝜁2 = 4.8) convergences in log-scale computed for levels 0,1,2,3 (horizontal axis). The QoI is a 
subdomain integral 𝑄9 at 𝑡 = 10𝜏 .

Table 3

Comparison of MC and MLMC and the number of samples on each level vs 𝜀.

𝜀 0.1 0.05 0.01 0.007
𝜀2 0.01 0.0025 0.0001 0.000049
MC cost, 𝑆𝑀𝐶 2.0 ⋅ 103 2.8 ⋅ 105 3.1 ⋅ 108 6.3 ⋅ 108
MLMC cost, 𝑆 6.4 ⋅ 101 1.3 ⋅ 103 8.9 ⋅ 104 1.8 ⋅ 105
required 𝐿 2 3 4 4
{𝑚0,𝑚1,𝑚2,𝑚3} {44,5,0,0} {404,49,3,0} {16672,1990,120,4} {34024,4062,245,7}

are 𝛼 ≈ 0.9 and 𝜁1 = 3.25. Furthermore, after fitting the graph of log4(𝕍
[
𝑔𝓁 − 𝑔𝓁−1

]
) by a linear function −𝛽 ⋅ 𝓁 + 𝜁2, we obtained 

coefficients 𝛽 ≈ 1.7 and 𝜁2 = 4.8 (see Theorem 4).

Remark 8. Other QoIs have other parameter values. For example, for the freshwater integral 𝑄𝐹𝑊 the coefficients are: 𝛼 = 1.82, 
𝜁1 = 1.95, 𝛽 = 2.5, 𝜁2 = −0.67. For the salt integral 𝑄𝑆 parameters are: 𝛼 = 1.92, 𝜁1 = 5.9, 𝛽 = 2.5, 𝜁2 = 8.0.

Test B4. Using (25) we can compute the total cost of MLMC 𝑆 = 2 ⋅𝜀−2
(∑𝐿

𝓁=0
√

𝑉𝓁𝑠𝓁

)2
, which we compared with the estimated cost 

of the standard MC method 𝑆MC = 2 ⋅ 𝜀−2𝑠𝐿 ⋅ 𝕍
[
𝑔0
]
. It is common in MLMC papers to perform such comparison. The results of this 

comparison are visible in Table 3 and in Fig. 11. We can see that MLMC outperforms MC by a factor of ≈ 30 −3000 depending on the 
MSE accuracy 𝜀2. We can also see the estimated number of required levels 𝐿 and the numbers of samples {𝑚0, 𝑚1, 𝑚2, 𝑚3} for each 
accuracy 𝜀2. These results are also visualized in Fig. 11. Additionally, to the MLMC and MC curves, we added two other graphics. 

The first one (violet dotted line, labelled “theory”) corresponds to the curve 𝜀−(2+
𝑑⋅𝛾−𝛽

𝛼
) (see (30) from Theorem 4 for 𝛽 < 𝑑𝛾 , with 

𝛽 ≈ 1.7, 𝑑 = 3, 𝛾 = 1, 𝛼 = 0.9). The second (yellow line) corresponds to 𝜀−2, and we labelled it “optimal”. Thus, the MLMC slope 
is 2 + 𝑑⋅𝛾−𝛽

𝛼
= 2 + 3⋅1−1.7

0.9 = 3.44, and the MC slope 𝜀−2−3⋅1∕0.9) = (𝜀−5.3). Here 𝛾 = 1 and 𝑑 = 3 (spatial dimension 2 plus temporal 
dimension 1), and the required condition 0.9 ≥ 1

2min(1.7, 3) is satisfied.

5. Conclusion

We investigated the applicability and efficiency of the MLMC approach to the Henry-like problem with uncertain porosity, 
permeability and recharge. These uncertain parameters were modelled by random fields with three independent random variables. 
Permeability is a function of porosity. Both functions are time-dependent, have multi-scale behaviour and are defined for two layers. 
The numerical solution for each random realisation was obtained using the well-known ug4 parallel multigrid solver. The number of 
random samples required at each level was estimated by calculating the decay of the variances and the computational cost for each 
level. These estimates depend on the minimisation function defined in (21).

The MLMC method was used to compute the expected value and variance of several QoIs, such as the solution at a few preselected 
points (𝑡, 𝐱), the solution integrated over a small subdomain, and the time evolution of the freshwater integral. We have found that 
some QoIs require only 2-3 mesh levels and samples from finer meshes would not significantly improve the result. Other QoIs require 
more grid levels. Note that a different type of porosity in (37) may lead to a different conclusion.

The numerical results confirm that the computational cost of the MLMC method is lower than that of the MC method. Therefore, 
14

sampling at different mesh levels is useful and helps to reduce the overall computational cost.
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Fig. 11. Comparison of MC and MLMC for different values of 𝜀 (𝑥-axes).

Constraints. 1. It may happen that the QoIs calculated at different mesh levels are very similar. In this case the default (Q)MC 
is sufficient. 2. The time dependence is challenging: the optimal number of MLMC samples depends on the QoI. For example, this 
number may be large for the solution computed at one point (𝑡, 𝐱) and small for the solution computed at another time. 3. Each new 
QoI requires new estimates of all parameters 𝛼, 𝛽, 𝛾 , and the resulting MLMC graphs may be very different.

Future work. 1. It would be beneficial to consider a more complicated/multiscale/realistic porosity and permeability with more 
random variables. 2. A more advanced version of MLMC may give better estimates of the number of levels 𝐿 and the number of 
samples on each level 𝑚𝓁 . 3. Known experimental and measured data of porosity, permeability, velocity or mass fraction could be 
used to identify unknown parameters and minimise uncertainties [42,47,53,67].
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[26] P. Frolkovič, P. Knabner, Consistent velocity approximations in finite element or volume discretizations of density driven flow, in: A.A. Aldama, et al. (Eds.), 

Computational Methods in Water Resources XI, Southhampten, Computational Mechanics Publication, 1996, pp. 93–100.
[27] T. Gerstner, M. Griebel, Numerical integration using sparse grids, Numer. Algorithms 18 (1998) 209–232.
[28] M.B. Giles, Multilevel Monte Carlo path simulation, Oper. Res. 56 (2008) 607–617.
[29] M.B. Giles, Multilevel Monte Carlo methods, Acta Numer. 24 (2015) 259–328.
[30] L. Giraldi, A. Litvinenko, D. Liu, H.G. Matthies, A. Nouy, To be or not to be intrusive? The solution of parametric and stochastic equations—the “plain vanilla” 

Galerkin case, SIAM J. Sci. Comput. 36 (2014) A2720–A2744.
[31] A.A. Giunta, M.S. Eldred, J.P. Castro, Uncertainty quantification using response surface approximation, in: 9th ASCE Specialty Conference on Probabilistic

Mechanics and Structural Reliability, Albuquerque, New Mexico, USA, 2004.
[32] M. Griebel, Sparse grids and related approximation schemes for higher dimensional problems, in: Foundations of Computational Mathematics, Santander 2005, 

in: London Math. Soc. Lecture Note Ser., vol. 331, Cambridge Univ. Press, Cambridge, 2006, pp. 106–161.
[33] W. Hackbusch, Multi-Grid Methods and Applications, Springer, Berlin, 1985.
[34] W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations, Springer, New-York, 1994.
[35] A.-L. Haji-Ali, F. Nobile, E. von Schwerin, R. Tempone, Optimization of mesh hierarchies in multilevel Monte Carlo samplers, Stoch. Partial Differ. Equ., Anal. 

Computat. 4 (2016) 76–112.
[36] H.R. Henry, Effects of dispersion on salt encroachment in coastal aquifers, in ‘seawater in coastal aquifers’, U. S. Geol. Surv. Water-Supply Pap. 1613 (1964) 

C70–C80.
[37] I. Heppner, M. Lampe, A. Nägel, S. Reiter, M. Rupp, A. Vogel, G. Wittum, Software framework ug4: parallel multigrid on the hermit supercomputer, in: W.E. 

Nagel, D.H. Kröner, M.M. Resch (Eds.), High Performance Computing in Science and Engineering 2012, Springer Berlin Heidelberg, 2013, pp. 435–449.
[38] H. Hoel, E. Von Schwerin, A. Szepessy, R. Tempone, Adaptive multilevel Monte Carlo simulation, in: Numerical Analysis of Multiscale Computations, Springer, 

2012, pp. 217–234.
[39] H. Hoel, E. von Schwerin, A. Szepessy, R. Tempone, Monte Carlo Methods Appl. 20 (2014) 1–41.
[40] A. Klimke, Sparse grid interpolation toolbox, www .ians .uni -stuttgart .de /spinterp/, 2008.
[41] T. Laattoe, A. Werner, C. Simmons, Seawater Intrusion Under Current Sea-Level Rise: Processes Accompanying Coastline Transgression, Springer Netherlands, 

Dordrecht, 2013, pp. 295–313.
[42] A. Litvinenko, R. Kriemann, M.G. Genton, Y. Sun, D.E. Keyes, Hlibcov: parallel hierarchical matrix approximation of large covariance matrices and likelihoods 

with applications in parameter identification, MethodsX 7 (2020) 100600.
[43] A. Litvinenko, D. Logashenko, R. Tempone, E. Vasilyeva, G. Wittum, Multilevel and multigrid methods for solving Henry problem with uncertain coefficients, in: 

M. Papadrakakis, V. Papadopoulos, G. Stefanou (Eds.), UNCECOMP 2023 5th ECCOMAS Thematic Conference on Uncertainty Quantification in Computational 
Sciences and Engineering, Athens, Greece, 2023, pp. 311–330.

[44] A. Litvinenko, D. Logashenko, R. Tempone, E. Vasilyeva, G. Wittum, Uncertainty quantification in coastal aquifers using the multilevel Monte Carlo method, 
PAMM 23 (2023) e202300005.

[45] A. Litvinenko, D. Logashenko, R. Tempone, G. Wittum, D. Keyes, Solution of the 3d density-driven groundwater flow problem with uncertain porosity and 
permeability, GEM Int. J. Geomath. 11 (2020) 10.

[46] A. Litvinenko, D. Logashenko, R. Tempone, G. Wittum, D. Keyes, Propagation of uncertainties in density-driven flow, in: H.-J. Bungartz, J. Garcke, D. Pflüger 
(Eds.), Sparse Grids and Applications, Munich 2018, Springer International Publishing, Cham, 2021, pp. 101–126.

[47] A. Litvinenko, Y. Sun, M.G. Genton, D.E. Keyes, Likelihood approximation with hierarchical matrices for large spatial datasets, Comput. Stat. Data Anal. 137 
(2019) 115–132.

[48] A. Litvinenko, A.C. Yucel, H. Bagci, J. Oppelstrup, E. Michielssen, R. Tempone, Computation of electromagnetic fields scattered from objects with uncertain 
16

shapes using multilevel Monte Carlo method, IEEE J. Multiscale Multiphys. Computat. Techn. 4 (2019) 37–50.

http://refhub.elsevier.com/S0021-9991(24)00103-7/bib0A69CDDB2C6296E91E5095E69DC84C4Es1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib1E05B45C5CBE09D842E4BA4EA518FA19s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib1E05B45C5CBE09D842E4BA4EA518FA19s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib6C335A18E4E93EDE373B8A4260875AEFs1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib6C335A18E4E93EDE373B8A4260875AEFs1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib9805784F44B3AAA9016E61E6ECE37B73s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib9805784F44B3AAA9016E61E6ECE37B73s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bibEFB1DD5F5293D356408AD835D4BB4058s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bibEFB1DD5F5293D356408AD835D4BB4058s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib1D7750250360542B9D07988F26C63595s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib97897F1575D710308247E8762B4EB27Fs1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bibE626583AB9D50656613F91675E2E49C2s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bibE626583AB9D50656613F91675E2E49C2s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib221AFB1E8A6F6E41C371A24FC5A85980s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib221AFB1E8A6F6E41C371A24FC5A85980s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib06668266603A920F897339B8DB7EDE90s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib06668266603A920F897339B8DB7EDE90s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bibD4C91AA6EFE82F09717ED00473C3D4C1s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bibD4C91AA6EFE82F09717ED00473C3D4C1s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib1666F88C135E65B4E47AF16269C2ADF1s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bibDE5710551EF78C8B2525FF7964299FB9s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib0CECC8D5A2F187A61405274EA8AF6B33s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib0CECC8D5A2F187A61405274EA8AF6B33s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib98F8793FBF6623037BB3B50022BCE580s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib1258E29D022F9E74F21E6556EAEF3943s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib904DD983C1BCB06CCEC01878A1072FBBs1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib904DD983C1BCB06CCEC01878A1072FBBs1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bibA9056F5ED69FD7138831F88AA6353654s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib994332014C355CF3C110047103DD0352s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib994332014C355CF3C110047103DD0352s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bibA53F5A340B1E31DA1292E4C17DD9103Fs1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bibA53F5A340B1E31DA1292E4C17DD9103Fs1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib81500757198AAD00699C33C2CE212DDBs1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib81500757198AAD00699C33C2CE212DDBs1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib668D4E3C6B34C65BE59BF2202C46777As1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib668D4E3C6B34C65BE59BF2202C46777As1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bibA999580D3E54EDE2DF35EDCE6A4995F6s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib1A6A977D5B9AF515EF6D90F5159D774As1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib3441F03906542C64F19240D4A2FB88F4s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib3013C497E88A8472CE6988B0F446A2EFs1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib3013C497E88A8472CE6988B0F446A2EFs1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bibE2B828FC22A4315E3E6868A3954B99FCs1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bibE2B828FC22A4315E3E6868A3954B99FCs1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib4C76C7E3303A17422D3F0E2416A9C55As1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib4C76C7E3303A17422D3F0E2416A9C55As1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bibE268621DAF1B8866C766CC61F4B8B333s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib07E50A81ECFC53DB6C228B588C09658Fs1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bibAE5C83B7B82C7ECF9450D5C5E38BC475s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bibAE5C83B7B82C7ECF9450D5C5E38BC475s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib40F1B3742B78A130FC09911A35B23D0Bs1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib40F1B3742B78A130FC09911A35B23D0Bs1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bibEBF0EBAC3615C8B7E4B5BC6267525ED4s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bibEBF0EBAC3615C8B7E4B5BC6267525ED4s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib8F8E445839E8D5F167249C2C12B421FFs1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib8F8E445839E8D5F167249C2C12B421FFs1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bibF99F0BF8C696FAD75F3A43E3B4AA7CA4s1
http://www.ians.uni-stuttgart.de/spinterp/
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib92672CE6DC5E1FEC7509ACF16A9891FAs1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib92672CE6DC5E1FEC7509ACF16A9891FAs1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib47ED5B4263C839B79976919BF0910D92s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib47ED5B4263C839B79976919BF0910D92s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib8D6355E28F84501E284B02BF09982716s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib8D6355E28F84501E284B02BF09982716s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib8D6355E28F84501E284B02BF09982716s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bibD4732D6824D58CC771E4E70A0FA4D005s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bibD4732D6824D58CC771E4E70A0FA4D005s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib7580E9883011536A41FDE70FEC73EEC5s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib7580E9883011536A41FDE70FEC73EEC5s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib02EBE2F50F2AB62286ADFF9CEEB92DF1s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib02EBE2F50F2AB62286ADFF9CEEB92DF1s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bibFD5F576CF7CEA171A9ADF8A70A4A939Bs1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bibFD5F576CF7CEA171A9ADF8A70A4A939Bs1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib7A4E2B8495D961335D8F7A405B5AA825s1
http://refhub.elsevier.com/S0021-9991(24)00103-7/bib7A4E2B8495D961335D8F7A405B5AA825s1


Journal of Computational Physics 503 (2024) 112854D. Logashenko, A. Litvinenko, R. Tempone et al.

[49] D. Liu, S. Görtz, Efficient quantification of aerodynamic uncertainty due to random geometry perturbations, in: A. Dillmann, et al. (Eds.), New Results in 
Numerical and Experimental Fluid Mechanics IX, Springer International Publishing, 2014, pp. 65–73.

[50] G.J.A. Loeven, J.A.S. Witteveen, H. Bijl, A probabilistic radial basis function approach for uncertainty quantification, in: Proceedings of the NATO RTO-MP-AVT-
147 Computational Uncertainty in Military Vehicle Design Symposium, 2007.

[51] N. Lüthen, S. Marelli, B. Sudret, Sparse polynomial chaos expansions: literature survey and benchmark, SIAM/ASA J. Uncertain. Quantificat. 9 (2021) 593–649.
[52] H. Matthies, Uncertainty quantification with stochastic finite elements, in: E. Stein, R. de Borst, T.R.J. Hughes (Eds.), Encyclopedia of Computational Mechanics, 

John Wiley & Sons, Chichester, 2007.
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[67] B. Rosić, A. Kučerová, J. Sýkora, O. Pajonk, A. Litvinenko, H. Matthies, Parameter identification in a probabilistic setting, in: Engineering Structures: Modelling 

and Computations (Special Issue IASS-IACM 2012), Eng. Struct. 50 (2013) 179–196.
[68] Y. Rubin, Applied Stochastic Hydrogeology, Oxford University Press, 2003.
[69] A.E. Scheidegger, General theory of dispersion in porous media, J. Geophys. Res. (1896–1977) 66 (1961) 3273–3278.
[70] A. Schneider, K.-P. Kröhn, A. Püschel, Developing a modelling tool for density-driven flow in complex hydrogeological structures, Comput. Vis. Sci. 15 (2012) 

163–168.
[71] A. Schneider, H. Zhao, J. Wolf, D. Logashenko, S. Reiter, M. Howahr, M. Eley, M. Gelleszun, H. Wiederhold, Modeling saltwater intrusion scenarios for a coastal 

aquifer at the German North Sea, E3S Web Conf. 54 (2018) 00031.
[72] M.J. Simpson, T. Clement, Theoretical analysis of the worthiness of Henry and Elder problems as benchmarks of density-dependent groundwater flow models, 

Adv. Water Resour. 26 (2003) 17–31.
[73] M.J. Simpson, T.P. Clement, Improving the worthiness of the Henry problem as a benchmark for density-dependent groundwater flow models, Water Resour. 

Res. 40 (2004) W01504.
[74] S.A. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions, Sov. Math. Dokl. 4 (1963) 240–243.
[75] L. Stoeckl, M. Walther, L.K. Morgan, Physical and numerical modelling of post-pumping seawater intrusion, Geofluids 2019 (2019).
[76] B. Sudret, Global sensitivity analysis using polynomial chaos expansions, Reliab. Eng. Syst. Saf. 93 (2008) 964–979.
[77] D. Tartakovsky, Assessment and management of risk in subsurface hydrology: a review and perspective, in: 35th Year Anniversary Issue, Adv. Water Resour. 51 

(2013) 247–260.
[78] A. Teckentrup, R. Scheichl, M. Giles, E. Ullmann, Further analysis of multilevel Monte Carlo methods for elliptic pdes with random coefficients, Numer. Math. 

125 (2013) 569–600.
[79] H. Vereecken, A. Schnepf, J. Hopmans, M. Javaux, D. Or, T. Roose, J. Vanderborght, M. Young, W. Amelung, M. Aitkenhead, S. Allison, S. Assouline, P. Baveye, 

M. Berli, N. Brüggemann, P. Finke, M. Flury, T. Gaiser, G. Govers, T. Ghezzehei, P. Hallett, H. Hendricks Franssen, J. Heppell, R. Horn, J. Huisman, D. Jacques, 
F. Jonard, S. Kollet, F. Lafolie, K. Lamorski, D. Leitner, A. McBratney, B. Minasny, C. Montzka, W. Nowak, Y. Pachepsky, J. Padarian, N. Romano, K. Roth, Y. 
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