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Zusammenfassung

Die Untersuchung der Grundlegenden Kräfte, welche die Zusammensetzung und Ent-
wicklung unseres Universums bestimmen, ist grundlegender Bestandteil von vielen
experimentellen und theoretischen Studien. Die Kraft, welche in dieser Arbeit studiert
wird, ist die starke Wechselwirkung oder auch Quantenchromodynamik (QCD) ge-
nannt. Die QCD beschreibt die Interaktionen zwischen Quarks und Gluonen, welche
Bestandteile des Standard Models der Teilchenphysik sind, das die elementarsten Bau-
steine und deren Wechselwirkung zusammenfasst. Studien zu dem Zustand der QCD
Marterie bei extrem hohen Temperaturen und Dichten, ähnlich wie sie vermutlich
am Anfang des Universums existiert haben, sind experimentell sehr aufwendig. Die
einzige Möglichkeit, um Materie bei diesen extremen Bedingungen zu erzeugen, ist
Schwerionen mit beinahe Lichtgeschwindigkeit aufeinander zu schießen. Eine grund-
legende Frage bezüglich den Zuständen der stark wechselwirkenden Materie bezieht
sich auf die Phasen. Ähnlich wie bei Wasser, welches in drei verschiedenen Phasen
auftritt (fest, flüssig und gasförmig), je nachdem welche Temperatur und Druck
vorherrschen, wird vermutet, dass bei der QCD ebenfalls unterschiedliche Phasen
existieren. Grundlage dieser Phasen ist die energieabhängige Kopplungskonstante der
zugrundeliegenden Theorie, welche bei kleinen Energieüberträgen sehr groß und bei
großen Energieüberträgen sehr klein ist. Hohe Kopplungswerte führen zum Einschluss
(Confinement) der Quarks und Gluonen zu Hadronen, zu denen beispielsweise Proto-
nen und Neutronen gehören aus denen unsere Welt aufgebaut ist. Umgekehrt wird die
Kopplungskonstante bei sehr hohen Temperaturen klein, wodurch sich Quarks und
Gluonen frei bewegen können. Dieser Zustand wird auch Quark Gluon Plasma (QGP)
genannt. Der Verlauf einer Schwerionenkollision beginnt mit den beschleunigten
Atomkernen. Nachdem diese miteinander kollidieren, erzeugen sie, je nach Energie,
vermutlich das QGP. Nach einer gewissen Zeit kühlt die Materie wieder ab und es
entstehen wieder Hadronen. Diese interagieren weiter miteinander, bis sie schließlich
so weit voneinander entfernt sind, dass keine Wechselwirkungen mehr geschehen und
sie in den Detektoren gemessen werden können. Bei vergleichsweise niedrigeren Ener-
gien wird kein QGP erzeugt und die Kollision der Schwerionen wird ausschließlich
durch Interaktionen der Hadronen beschrieben. Die Schwerionenkollisionen werden
bei unterschiedlichen Energien durchgeführt, wodurch die erzeugte Materie sich in
Temperatur und baryonischer Dichte unterscheidet und wodurch das Phasen-Diagram
der QCD Materie untersucht werden kann. Beispiele solcher Experimente sind der
Large Hadron Collider (LHC) am Cern, dem Relativistic Heavy-Ion Collider (RHIC)
am Brookhaven National Laboratory (BNL) oder dem HADES Experiment bei der
Gesellschaft für Schwerionenforschung (GSI). Bei den höchsten Kollisionsenergien
am LHC, hat die erzeugte Marterie nahezu keine baryonische Dichte und gleichzeitig
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eine extrem hohe Temperatur, sodass angenommen wird, dass das QGP dort erzeugt
wird. Je niedriger die Energie mit der die Schwerionen kollidiert werden, desto höher
ist die baryonische Dichte in der Kollision, da mehr der ursprünglichen Protonen
und Neutronen im zentralen Kollisionsbereich gestoppt werden. Eine der grundle-
genden Fragen bezieht sich auf die Eigenschaft des Phasenübergangs zwischen der
hadronischen Phase und dem QGP. Von Gittereichrechnungen ist bekannt, dass der
Übergang bei verschwindender baryonischer Dichte von kontinuierlicher Natur ist.
Eine Vorhersage von effektiven Rechnungen besagt, dass der Übergang bei höheren
Dichten ein Phasenübergang erster Ordnung ist. Diese Erkenntnis setzt die Existenz
eines kritischen Punktes in dem Übergang zwischen diesen beiden Bereichen voraus.
Die experimentelle Suche nach der Natur des Phasenübergangs ist Bestandteil vieler
Untersuchungen, beispielsweise durch das Beam Energy Scan (BES) Programm am
BNL oder auch in Zukunft bei der Facility for Antiproton and Ion Research (FAIR)
bei der GSI.

Für die Beschreibung solcher Kollisionen von theoretischer Seite werden dynami-
sche Modelle genutzt. Da die zugrundeliegende Theorie nur in bestimmten Grenzfällen
mit Gittereichtheorien exakt gelöst werden kann, müssen effektive Theorien der QCD
Materie herangezogen werden. Die dynamische Beschreibung der Kollision in der
hadronischen Phase wird üblicherweise mithilfe sogenannter Transport Modelle vor-
genommen. Das in der Kollision entstehende Nichtgleichgewichtssystem wird dann
mithilfe von kinetischer Theorie charakterisiert. Die Dynamik der extrem heißen und
dichten Phase wird oft mithilfe hydrodynamischer Modelle beschrieben. Durch den
Vergleich der Modelrechnungen mit bestimmten experimentellen Observablen lässt
sich viel über die zugrundeliegenden Interaktionen und Eigenschaften der Marterie
lernen. Ein Beispiel einer solchen Observable sind Fluktuationen erhaltener Ladun-
gen. Erhaltene Ladungen, zu denen unter anderem die baryonische oder elektrische
Ladung gehört, resultieren aus der Invarianz der zugrundeliegenden Theorie unter
Eichtransformationen der U(1) Symmetriegruppe. Fluktuationen beschreiben die
Änderung einer bestimmten Observablen, wenn mehrere Messungen durchgeführt
werden. Dies kann zum Beispiel die Anzahl an Teilchen aus mehreren Ereignissen
oder aber die zeitliche Änderung sein. Beispielsweise sind in der Nähe eines kriti-
schen Punktes die Fluktuationen der baryonischen Ladung von Kollision zu Kollision
stark verändert, wodurch man sich erhofft, einen solchen durch Fluktuationen der
Netto-Proton Zahl zu messen. Des Weiteren lassen sich aber auch andere Eigenschaf-
ten der Marterie durch die Untersuchung von Fluktuationen erhaltener Ladungen
untersuchen. So kann zum Beispiel aus Fluktuationen der Ladungsströme über die
Zeit die Eigenschaft der Marterie untersucht werden, wie gut eine erhaltene Ladung
durch das Medium transportiert werden kann. Diese werden üblicherweise durch
sogennante Diffusionskoeffizienten charakterisiert.

Ziel dieser Arbeit ist es, durch die Untersuchung von Fluktuationen erhaltener
Ladungen die Eigenschaften hadronischer Marterie zu untersuchen. Hierzu wird
ein Transport Modell (SMASH) als Grundlage dieser Studien herangezogen. Im
ersten Teil dieser Arbeit werden Transportkoeffizienten untersucht, speziell die Diffu-
sionskoeffizienten erhaltener Ladungen und neben den diagonalen Termen wie zum
Beispiel dem baryonische Diffusionskoeffizient κBB dessen Kreuztermen, beispiels-
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weise der baryonisch-seltsamen Diffusionskoeffizient κBS . Zusammenfassend lassen
sich diese durch die Diffusionskoeffizienten Matrix κqq′ beschreiben. Zusätzlich wird
ein weiterer Transportkoeffizient untersucht, die Scherviskosität η, welche sich aus
Fluktuationen des Energie-Impuls Tensors bestimmen lässt. Allgemein gesprochen
charakterisieren Transportkoeffizienten die Entwicklung der Marterie aus Nichtgleich-
gewichtszuständen zurück ins Gleichgewicht. Die Scherviskosität spielt eine wichtige
Rolle, um die Anisotropie der entstandenen Teilchen im Impulsraum, auch Flow
genannt, zu beschreiben. Durch den Vergleich mit hydrodynamischen Rechnungen
wurde gefunden, dass die Scherviskosität des erzeugten Mediums einen der geringsten
Werte überhaupt besitzt und sich das Medium fast wie eine perfekte Flüssigkeit
verhält.

Gegenstand des ersten Teils dieser Arbeit ist es, das hadronische Medium und
die Interaktionen der einzelnen Teilchen einzuführen. Durch die systematische Er-
weiterung der Interaktionen und der Freiheitsgraden und die daraus resultierenden
Transportkoeffizienten lassen sich deren Einfluss auf κqq′ und η genau bestimmen. Zu
Beginn wird allerdings erst die Methodik verifiziert, um die Transportkoeffizienten aus
dem Transport Modell zu bestimmen. Durch einen Vergleich mit Rechnungen in der
Chapman-Enskog (CE) Annäherung wird gezeigt, dass die numerische Integration der
Korrelationsfunktionen perfekt mit den CE Rechnungen übereinstimmt. Im nächsten
Schritt wird der Einfluss von 3↔ 1 Mehrteilchenreaktionen auf die Transportkoeffizi-
enten in einem vereinfachten System bestimmt. Solche Mehrteilchenreaktionen werden
in einem heißen und dichten hadronischen Medium in der Nähe des Phasenübergangs
wichtig, allerdings auch kompliziert in einem Modell wie SMASH zu behandeln. Es
wird gezeigt, dass die Scherviskosität in einem Gas aus π, ρ und ω Mesonen mit
Mehrteilchenreaktionen bei hohen Temperaturen geringer ist als durch binäre Reak-
tionsketten. Der elektrische Diffusionskoeffizient des Mediums ist nicht verändert. Im
nächsten Schritt wird das volle Hadrongas, welches in SMASH zur Verfügung steht,
untersucht. Es werden der Einfluss von winkelabhängigen Wirkungsquerschnitten
und zusätzlichen elastischen Wirkungsquerschnitten, beschrieben durch das Additive
Quark Model (AQM), untersucht. Sowohl die Scherviskosität als auch die Diffusion-
koeffizienten sind stark durch die AQM Wikungssquerschnitte beeinflusst, indem
deren Werte verringert sind. Die winkelabhängigen Wirkungsquerschnitte, welche für
mesonische und baryonische Prozesse angenommen werden, haben keinen Einfluss auf
κqq′ , während η erhöht wird. Als nächstes wird die Abhängigkeit der Transportkoeffi-
zienten von der Anzahl an Freiheitsgraden bestimmt. Hierzu werden drei verschiedene
Systeme ausgesucht, welche in ihrer Komplexität zunehmen. In einer vorherigen
Studie zu dem elektrischen Diffusionskoeffizienten wurde eine Skalierung von κQq′

mit der Anzahl an Freiheitsgraden gefunden. Dieser wird allerdings nicht für die
volle Diffusionskoeffizienten Matrix verifiziert. Trotzdem ist eine starke Abhängigkeit
gegeben. Die Scherviskosität hingegen ist weniger stark beeinflusst, vor allem bei den
Gasen, welche durch die Erzeugung von Resonanzen interagieren. Im letzten Schritt
werden die Transportkoeffizienten bei nicht verschwindender baryonisch-chemischen
Potenzial µB untersucht. Die gefundene Abhängigkeit von κqq′ von µB ist vergleichbar
mit derjenigen aus CE Rechnungen. Die genauen Werte allerdings sind unterschied-
lich. Im Vergleich zu vorherigen Rechnungen ist die Scherviskosität nicht von µB
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abhängig. Modifikationen von η/s stammen ausschließlich von eine Änderung der
Entropiedichte s. Abschließend lässt sich zusammenfassen, dass η stark von einzelnen
Wirkungsquerschnitten und der Modelierung einzelner Interaktionen bestimmt ist.
Die Diffusionskoeffizienten Matrix hingegen ist sowohl durch die Ladungsdichte als
auch durch den totalen Wirkungsquerschnitt der Konstituenten des Hadron Gases
bestimmt. Der Vergleich mit Rechnungen der Transportkoeffizienten aus anderen
Modellen zeigt, das die in SMASH implementierten Interaktionen sowie die Anzahl
an Freiheitsgraden vergleichbar und realistisch sind.

Als nächstes werden Fluktuationen erhaltener Ladungen in Form von Kumu-
lanten von Teilchenzahlen untersucht. Wie bereits beschrieben, ist dies wichtig zur
Untersuchung von Phasenübergängen. Speziell soll der Einfluss der hadronischen
Phase einer Schwerionenkollision auf die Kumulanten bestimmt werden. Hierzu wird
wieder SMASH verwendet, dessen Interaktionen und Gleichgewichtseigenschaften in
Form von Transportkoeffizienten im ersten Teil bestimmt wurden. Zunächst wird der
Einfluss von globaler Ladungserhaltung auf die Kumulanten erhaltener Ladungen in
einer Box mit periodischen Randbedingungen berechnet. Hierzu wird das System
in kleinere Volumen unterteilt und die Fluktuationen werden in Abhängigkeit der
Größe dieser Volumina angegeben. Dazu wird zu Beginn ein Vergleich mit einer
vorherigen Rechnung in einem einfachen System, welches aus π und ρ Mesonen
besteht, durchgeführt. Vor allem wird gezeigt, wie der Einfluss der vierten Kumulante
der Netto-Ladung durch Fluktuationen der totalen Ladungszahl beeinflusst ist. Im
nächsten Schritt wird ein vereinfachtes baryonisches System und vor allem baryoni-
sche Vernichtungsprozesse untersucht. Ähnlich wie bei der elektrischen Ladung wird
bewiesen, dass solche Prozesse eine Fluktuation der totalen Ladung induzieren, und
dabei primär die vierte Kumulante beeinflussen. Bei endlichem µB existieren nicht
genug solcher Prozesse, sodass der µB-abhängige Übergang zwischen der Poisson
und Binomial Verteilung beobachtet werden kann. Bei den beiden Systemen wird
eine gute Übereinstimmung zwischen den Ergebnissen aus SMASH und analytischen
Rechnungen gefunden. Zusätzlich verändern Einschränkungen des Impulsraumes
die Kumulanten, indem Korrelationen durch die exakte Ladungserhaltung reduziert
werden. Als nächstes wird das Verhältnis zwischen den Fluktuationen der gesamten
baryonischen Ladung des Systems und der Netto-Proton Zahl bestimmt. Dieses
ist besonders wichtig, da die letztere in experimentellen Messungen stellvertretend
für die Fluktuationen der erhaltenen gesamten baryonischen Ladung genommen
wird. Ähnlich wie bei Einschränkungen des Impulsraumes, folgen die Netto-Proton
Fluktuationen nicht den analytischen Erwartungen von exakter Ladungserhaltung,
sondern sind in größeren Volumen erhöht. Eine Binomiale Abbildung ist aufgrund
von dynamischen Korrelationen nicht in der Lage, die baryonischen Kumulanten
aus den Proton Fluktuationen zu bestimmen. Schließlich wird noch gezeigt, dass
die Korrelationen der Netto-Proton bei verschwindendem µB vergleichbar mit Mes-
sungen von ALICE sind. Eine abschließende Studie zur Bestimmung des Einflusses
von Formation von Deuteron zeigt, dass die Netto-Proton Fluktuationen nicht durch
diese beeinflusst sind.

Im nächsten Schritt wird die Entwicklung kritischer Fluktuationen im hadroni-
schen Medium untersucht. Hierzu wird zunächst ein System mit kritischen Gleich-
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gewichtsfluktuationen präpariert, welche aus der Kopplung des Hadron Resonanz
Gases (HRG) mit dem drei dimensionalen (3d) Ising Modell bestimmt werden. Die
Wahrscheinlichkeitsverteilung der Teilchenzahlen, welche benötigt werden, um die
Entwicklung in SMASH zu untersuchen, wird aus dem Prinzip der maximalen Entro-
pie bestimmt. Hierzu wird im ersten Schritt gezeigt, dass diese Verteilungen, bzw.
die generierten Anzahlen an Teilchen und Antiteilchen, die gewünschten kritischen
Fluktuationen wiedergeben. Als nächstes soll die Entwicklung dieser Verteilungen
in einer expandierenden Kugel untersucht werden, dessen Anfangszustand zunächst
im Impuls und Koordinatenraum beschrieben wird. Die Impulsverteilung und das
Volumen der Sphäre wird an experimentelle Messungen angepasst. Als Anfangsbe-
dingungen werden die Temperatur T und die chemischen Potenziale µB, µQ und µS
von einer Bestimmung des chemischen Endzustandes im Gleichgewicht von Schwerio-
nenkollisionen als Funktion der Strahlenenergie

√
s benutzt. Die Entwicklung des

Systems wird dementsprechend entlang
√
s initiiert. Die Berechnungen der thermody-

namischen Eigenschaften und der Anzahl der Kollisionen zeigen, wie sich das System
im Phasenraum verhält. Während der Expansion sinken die Temperaturen und das
baryon chemische Potenzial steigt. Eine Analyse der Anzahl spezifischer Kollisions-
kanäle zeigt, dass vor allem Resonanz Zerfälle und Erzeugungen die Dynamik des
hadronischen Mediums bestimmen. Die Berechnung der Netto-Proton Kumulanten
als Funktion der Zeit zeigt, dass die Fluktuationen stark durch das hadronische
Medium beeinflusst sind. Die kritischen Fluktuationen ändern sich besonders stark
in den ersten Zeitschritten der Evolution. Diese Entwicklung kann hauptsächlich
den Resonanz Zerfällen und Erzeugungen zugeordnet werden. Die Betrachtung der
Fluktuationen im Endzustand der Expansion liefert Informationen darüber, inwieweit
die kritischen Fluktuationen die Entwicklung überleben. Es wird gezeigt, dass ein
Großteil der Korrelationen durch Isospin Randomisierungsprozesse verringert wird.
Betrachtet man beispielsweise die Netto-Nukleon Anzahl zeigt sich, dass die kritischen
Fluktuationen besser erhalten sind. Schließlich wird im letzten Abschnitt noch die
Abhängigkeit der Kumulanten vom Rapiditätsfenster betrachtet, bei der eine nicht
monotone Abhängigkeit sichtbar ist.

Im letzten Teil werden Kollisionen der Isobare Ru and Zr bei
√
sNN = 200 GeV

studiert. Bei diesen Energien kann die gesamte Schwerionenkollision nicht durch
Transport Modelle beschrieben werden. Die QGP Phase wird durch eine hydrodyna-
mische Rechnung beschrieben. Zunächst werden allerdings die Anfangsbedingungen
mittels SMASH untersucht. Hier wird vor allem der Fokus auf die nukleare Struktur
der Isobare gelegt. Es wird gezeigt, dass die Deformationsparameter β einen starken
Einfluss auf die geometrische Struktur des Anfangszustandes haben. Die Triaxialität
γ hingegen hat keinen sichtbaren Einfluss. Des Weiteren wird der Einfluss von Korre-
lationen zwischen Nukleon-Nukleon Paaren auf Fluktuationen der Exzentrizitäten
studiert. Es wird allerdings kein Einfluss festgestellt. Im nächsten Schritt werden
die bereits untersuchten Anfangsbedingungen mit dem hydrodynamischen Modell
vHLLE entwickelt. Der Wechsel zwischen der hydrodynamischen Beschreibung und
der kinetischen, geschieht mittels der Cooper-Frye Formel. Des Weiteren werden die
Hadronen auf der Hyperfläche mit dem kanonischen Ensemble generiert, wodurch die
erhaltenen Ladungen B,Q und S nicht nur im Ereignis Mittel, sondern exakt erhalten
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sind. Zusätzlich wird der sogenannte “Neutron Skin” Effekt betrachtet, welcher die
elektrische Ladungsverteilung der Anfangszustände ändert, indem mehr Protonen im
Inneren der Kerne vorhanden sind. Nachdem die Hadronen auf den Hyperflächen
generiert sind, wird die späte Phase der Kollision durch SMASH bis zum kinetischen
Ausfrieren der Teilchen simuliert. Hier werden dann Bulk Observablen und Fluktua-
tionen berechnet, um den Einfluss des kanonischen Ensembles und Neutron Skins
zu bestimmen. Zunächst wird gezeigt, dass der Neutron Skin die mittlere Anzahl
geladener Teilchen in peripheren Kollisionen beeinflusst. Da hier die Neutronen reiche
Bereiche der Kerne sich treffen, werden dementsprechend weniger geladene Teilchen
produziert. Allerdings ist kein Einfluss auf die Fluktuationen zu erkennen. Durch
das kanonische Ensemble allerdings werden die Fluktuationen verändert. Wird die
skalierte Varianz als Funktion des Rapiditätsfensters ∆η betrachtet, sieht man, dass
die Fluktuationen in großen ∆η unterdrückt ist, da die Ladungen im vollen Phasen-
raum konstant ist. Die hadronische Phase ändert die Fluktuationen der Netto-Pion,
Netto-Kaon und Netto-Protonen, indem Annihilationsprozesse die Varianz ändern.
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1
Introduction

One of the goals in the very broad field of physics is to grasp the complex, most
fundamental interactions of our universe. Our understanding so far is collected in the
standard model of particle physics, which contains all the elementary particles with
their respective interactions. This thesis mainly focuses on one of the fundamental
forces, the strong interaction, and in this chapter some of the phenomenological
aspects of it will be discussed and experimental ways to study the strong interaction
will be described. In the first part of this chapter, a historical introduction will be
given which is mainly inspired by [8].

1.1 A brief historical introduction to quantum chromo-
dynamics

The starting point for the development of the theory of quantum chromodynamics
(QCD) was given by Gell-Mann and Zweig in 1963. With their proposal of the
fundamental strongly interacting particles called quarks, the starting point of the
theory was laid. Their goal was to understand the underlying concept of the so-called
particle zoo, a collection of measured particles whose underlying concept could not
be understood. In order to describe the variety of founded particles, Gell-Mann
and Zweig proposed the existence of three quarks which are elementary Fermions,
particles with half-odd-integer spin, which were then called up, down and strange
quarks. Two different kinds of hadrons, particles made of quarks, bound by the
strong interaction, could be formed with these three quarks. The first kind are
mesons, formed by a quark and anti-quark pair, which have spin 0 or 1 and generally
fall into the class of Bosons (particles with integer value spin). The second type
are baryons, formed by three quarks, and are Fermions as well. It was additionally
proposed that the electric charge Q of the quarks has to be +2/3 for the up and
strange quark and −1/3 for the down quark, in order to explain the electric charge
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states of the observed hadronic spectrum. Later, the existence of three more quarks
was discovered. The top quark has an electric charge of +2/3 and the charm and
bottom quark have Q = −1/3. The six quarks define the so-called flavor of QCD.
In addition to the fractional electric charge that the quarks carry, it was proposed
that they have an additional charge, named color, to fix the symmetry of the wave
function of the hadrons. The idea was then to assign three colors to the quarks
which are invariant under a global SU(3) symmetry. As a result, the hadronic states
must be formed by quarks such that their wave function is invariant under the SU(3)
symmetry group. Possible solutions are hadrons formed by a quark anti-quark pair
(mesons) and hadrons formed by three quarks or anti-quarks (baryons). At this point,
it was not clear what the exact underlying theoretical description of the interaction
between the quarks looked like, mainly because single quarks were not measured.
The clue that QCD is an asymptotic free theory came from two experimental results
which will be briefly discussed in the following.

In one of the experiments, proton-proton collisions were performed at an energy
of
√
s & 10 GeV [8]. During the collision of the two protons many pions, a meson

with quark content up and down, are produced. The momenta of the pions, however,
when compared to the initial momenta of the protons, aligned mainly along the
collision axis. This means that the momentum transfer of the initial quarks into the
transverse plane is very small and therefore the quarks have to be weakly bound in
the proton. Otherwise, the measured transverse momentum distribution of the pion
spectra would be much larger. The second experiment that additionally tested this
hypothesis was scatterings of electrons on a hydrogen target measuring deep inelastic
scattering at the Standford Linear Accelerator Center (SLAC) [9]. Similar to the
results of proton-proton collisions, it was thought that the angular distribution of the
scattered electrons have a similar momentum distribution collinear to the collision
axis. The reason is that the quarks in the proton are loosely bound in addition to a
low scattering rate. However, the opposite behavior was found, that a large scattering
rate of deep inelastic processes with a large number of produced hadrons appears.
This meant that the electrons interacted electromagnetically with a particle inside
the proton. To explain this phenomenon, Bjorken and Feynman built the so-called
parton model, which describes the proton as a collection of weakly bound electrically
charged partons. If an electron hits the proton, it interacts electromagnetically with
one of the partons and kicks it out of the proton. Even though the other quarks
don’t obtain a large momentum transfer, the hit quark scatters softly with the other
partons, producing other hadronic species. This hadronic jet is again collinear to the
collision axis, due to the weak coupling.

With the realization that QCD should be an asymptotically free theory and that
non-Abelian gauge theories incorporate asymptotic freedom, it was natural to take
QCD as a non-Abelian gauge theory with the gauge group SU(3). This result was
found by Gross, Wilczek and Politzer in 1973 [10, 11], which was awarded the Nobel
Prize in 2005. The resulting Lagrangian of QCD can be written as

L =
∑
f

ψ̄f (iγµDµ −m)ψ − 1

4
Fµνa F aµν , (1.1)

2



Fµνa = ∂µAνa − ∂νAµa + fabcAµbA
ν
c . (1.2)

It describes the vector bosons that mediate the force, the gluons, coupled to the
fermions, the quarks. The first part Eq. 1.1 describes the dynamics of the fermions
using the Dirac equation. The sum runs over all flavors and the coupling of the
quarks to the gauge sector originates from the covariant derivative Dµ. The dynamics
of the gauge bosons is described by the second term of Eq. 1.1 with the field strength
tensor Fµνa . The invariance of the Lagrangian under the SU(3) gauge symmetry
physically means, that the interaction does not change under rotation in color space.
Because of asymptotic freedom, it then became evident why no free quark state was
measured, since it is a colored object and only color-neutral ones are gauge invariant
objects of QCD.

So far, asymptotic freedom has been mentioned a couple of times even though
the concept has not been explained in detail yet. If a theory is asymptotically free,
it means that the coupling strength α between its constituents is energy dependent
such that α becomes small if the energy becomes large. This is in contrast to the
theory of quantum electrodynamics (QED), in which the coupling strength shows
the opposite energy dependence. The analytic expression of the coupling at leading
order as a function of the energy scale Q is

αs(Q) =
2π

b0log(Q/ΛQCD)
, (1.3)

where b0 = 11− 2
3nf with nf the number of flavors and ΛQCD is the energy scale at

which αs becomes strong with decreasing Q. It can be measured experimentally and
it is approximately ΛQCD ≈ 200 MeV [8].

The asymptotic freedom of QCD also leads to the previously described observation
that no single particle that carries a color charge was ever measured. This effect is also
known as color confinement. If one tries to separate the quarks in a quark anti-quark
bound state, the energy in the color flux tube between the quarks will at some point
be large enough to create new quark anti-quark pairs from the vacuum. As a result,
one is left with two color-neutral bound states. It is also because of the increasing
coupling strength at small energy scales that the usual techniques of perturbation
theory do not work. In the region of αs � 1, higher order QCD processes get more
important and it is not clear how to deal with this issue. Wilson suggested a solution
on a discrete space and time [12] and is the only first principle method for QCD in the
strong coupling regime, also known as lattice QCD calculations. As the methodology
includes a Wick rotation to imaginary time, no dynamical effects can be computed
within this formulation. The computation of thermodynamical quantities such as the
equation of state or susceptibilities, on the other hand, can be performed. Lattice
methods only work around zero baryon chemical potential due to the infamous sign
problem [13], however there exist methods for extending lattice calculations towards
larger baryon chemical potentials, see e.g. [14]. In the weakly coupled regime of
QCD, perturbative methods (pQCD) work again. There exist other effective model
calculations in the strongly coupled regime, but a more detailed description will be
given later in the next section.
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The final paragraph in this section is about the definition of a conserved charge.
A conserved charge originates from an underlying local symmetry transformation of
the theory. According to Noether’s theorem, a conserved quantity exists for each
continuous symmetry that leaves the theory invariant. In the case of the electric
charge, if the solution of the theory is invariant under a rotation of the phase α(x),
that is additionally dependent on space and time, also known as the U(1) gauge-
group, the net electric charge number, defined as the number of charges minus the
number of anti-charge states, is a conserved quantity of that theory. Mathematically,
the U(1) transformation can be written as

ψ → ψ′ = eiα(x)ψ . (1.4)

The charges of interest in this thesis are the baryonic charge defined as B = 1
3(nq−nq̄),

the electric charge Q which is simply the sum of the electric charges of the constituent
quarks. And finally, the strange charge S = −(ns−ns̄), which are conserved quantities
in the strong interaction. The following sections will discuss some of their properties
and the question, of why fluctuations are interesting observables.

1.2 The QCD phase diagram

In the previous section where the theory of QCD was introduced, it was explained,
that one of the fundamental properties of QCD is asymptotic freedom and the
confinement of color. Further, it was illustrated that at a large energy scale Q, the
coupling strength of the strong interaction decreases, starting around the value of
ΛQCD. So one can naturally expect that there exist two phases of QCD matter, one
in the color-confined phase, where quarks and gluons only appear in a color singlet
bound state at small values of the energy scale. The second phase would be the color
deconfined phase, in which quarks and gluons move relatively freely at large energy
scales. This phase is also known as the quark-gluon plasma (QGP).

The following will discuss the current state of knowledge about the different
phases of QCD matter. It is therefore instructive to describe the different regions
of the phase diagram in a sketch including the different experiments that are able
to detect them. Fig. 1.1 shows a sketch of the QCD-phase diagram as a function of
temperature T and baryon chemical potential µB. The baryon chemical potential
can be approximately seen as the net baryon density nB. It is known from lattice
QCD calculations, that the order of the phase transition along the temperature axis
at zero baryon chemical potential is of a cross-over type [15]. The temperature of
the transition region is calculated as Tc,0 ≈ 155 MeV [16]. The order parameter of
the transition is the chiral condensate that is defined as

〈ψ̄ψ〉q =
T

V

∂lnZ

∂mq
, q = u, d, s . (1.5)

The transition temperature is calculated by finding the inflection point of the chiral
condensate as a function of the temperature and is often referred to as the pseudo-
critical temperature Tc. A cross-over type of phase transition means, that no
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Figure 1.1: Sketch of the QCD phase diagram and experiments available.

discontinuities in thermodynamic quantities exist when going from one phase to
another. The “breaking” of the hadrons into quarks and gluons is continuous. Below
the cross-over transition, hadrons are the relevant degrees of freedom. A simple
model for describing the thermodynamic properties of the hadron gas is the so-called
hadron resonance gas model (HRG). This particular model will be introduced later
in this thesis. A description of nuclear matter including attractive and repulsive
interactions can be done with the van der Waals equation of state which includes a
first-order phase transition including a critical point at the liquid-gas phase transition
[17]. At large temperatures and equivalently at large µB, the state of QCD matter is
in the QGP phase.

It is also known from effective field theoretical calculations that a first-order
phase transition exists at high baryon chemical potential µB [18]. As a consequence,
there has to exist a critical point between those two regions, but the exact location is
not known at this point. Recent computations within the functional renormalization
group (fRG) [19, 20, 21] or Dyson Schwinger framework [22, 23], which are effective
calculations of QCD suggests that the location of the critical point is located at rather
µB/T & 4. Other effective models of QCD are based on the holographic argument
[24] or chiral effective field theories [25]. At very large baryon chemical potential, a
hypothetical color superconducting phase has been proposed [26] in which quarks
form Cooper pairs resulting in an effective color screening.

The experimental method that will be the most important one for this work
are heavy-ion collisions (HIC). By accelerating heavy nuclei close to the speed of
light, the QCD medium created in the collision is extremely hot and dense and
it yields the only possibility to study such conditions on Earth. For comparison,
the approximate pseudocritical temperature, converted from MeV to Kelvin yields
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T = 160 MeV ≈ 1.9 · 1012 K, whereas the temperature in the core of our sun is
T = 1.57 · 107 K1.

Another promising observation to probe the QCD phase diagram that became
more relevant in the last years is the observation of neutron star mergers with
gravitational waves in combination with gamma-ray burst measurements, see e.g.
[28]. During the merging process of two neutron stars, the created matter has similar
thermodynamic properties to the ones created in a heavy-ion collision, yielding
new opportunities to study the phase transitions of QCD [29]. With additional
measurements of neutron star masses [30] or tidal deformability [31], the QCD
equation of state can be constrained [6].

Striking evidence that the deconfined phase of QGP has been reached in experi-
ments does not exist yet. It is found, that the formed medium rather behaves as a
strongly-coupled medium [32]. On the other hand, experimental measurements such
as jet quenching observables [33] or the general applicability of hydrodynamics with
very small shear viscosity (see e.g. [34, 35]) support the hypothesis that the QGP
stage has been reached. A measurement that confirms the crossover-type transition
between the hadron gas and the QGP at the LHC or RHIC has also not been made
yet. A systematic study aiming to scan the phase diagram of QCD at various different
collisional energies is performed in the RHIC BES program and the current status
will be briefly discussed in the next section.

1.3 Heavy-ion collisions

Accelerator experiments have a long-standing history. By accelerating particles and
colliding them with a target, the nuclear substructures can be resolved. The facility
that can reach the highest beam energies is the Large Hadron Collider (LHC) at CERN
[36], reaching a collisional energy for PbPb collisions at a center-of-mass energy per
nucleon pair of

√
sNN = 5.02 TeV and even

√
s = 13.6 TeV for pp collisions. Along

the beam pipe, there exist many different experiments such as ALICE, ATLAS, LHCb
and CMS. The one of them that is the most relevant to the topic of this thesis is the
ALICE experiment with a focus on the study of the formation of the QGP. Continuing
with the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Lab
(BNL) reaching

√
sNN = 200 GeV for AuAu collisions, their experimental facilities

are STAR, PHENIX, PHOBOS and BRAHMS. Within the beam energy scan (BES)
program at STAR the energy range goes down to

√
sNN = 7.7 GeV [37]. Another

experimental facility at CERN is the Super Proton Synchrotron (SPS) and, in
addition to STAR, another experiment dedicated to the search of the critical point at
NA61 SHINE experiment in the energy range of

√
sNN = 5.1−27.4 GeV. Continuing

with collider experiments at the lower end of the beam energies important in this
study is the HADES experiment at the Gesellschaft für Schwerionenforschung (GSI),
a fixed target experiment operating at

√
sNN ≤ 4.5 GeV. An extension at the GSI

facility with FAIR (CBM) is currently built [38]. Other facilities are e.g. NICA [39] or

1The current record for the highest achieved temperature made it to the Guinness World Records
[27] with T ∼ 5 · 1012 K.
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J-PARC [40]. The several, previously introduced experimental facilities that perform
collider experiments at various different beam energies yield the opportunities to
reach different phases of QCD matter. In the so-called intermediate energy regime in√
sNN = 7.7− 64 GeV larger values of the baryon chemical potential are reached due

to the baryon-stopping mechanism and more baryons are placed around mid-rapidity.
At
√
sNN ∼ 3 GeV which is achieved e.g. at the HADES experiment, the medium has

approximately µB ∼ 900 MeV and it is unclear whether the QGP phase is reached in
these experiments.

Many different experimental observables exist, dedicated to studying the proper-
ties of QCD matter at high energies and large densitites, see e.g. [41] for a review.
Listing all of these would go beyond the scope of this work. One of them, dedicated
to the search of the critical end point however will be discussed in the next section.

Experimental search for the critical point with cumulants of conserved
charges

The thermodynamic properties of any medium close to a critical point drastically
change and their behavior is dependent on the type of phase transition. At the
critical point at the end of the first-order phase transition, the net baryon density
fluctuations diverge due to the strong increase in the correlation length of the medium
[42]. It was suggested by several authors that a sensitive probe to a possible critical
point of QCD are cumulants of conserved charges [43, 44, 45] and the quest, both
experimentally and theoretically is still ongoing [46].

Cumulants are useful objects from probability theory for quantifying properties
of a distribution function. The first cumulant is the mean and the second cumulant
the variance, quantifying the width of the distribution is. Higher order cumulants are
sensitive to e.g. asymmetries or the shape of the tails of the distribution. Cumulants
are powerful tools because, on the one hand side, they can be obtained from an
experiment. Given that e.g. particle numbers are measured on an event-by-event
basis, the n-th order cumulant κn can be calculated from the particle distribution
in the statistical sense. On the other hand, cumulants of conserved charges can
also be calculated by taking higher order derivates of the partition function Z with
respect to the corresponding chemical potential µq. This direct comparison yields a
promising way of comparing theory with experiments.

During the RHIC BES I phase, experiments at different beam energies have
been conducted and one of the many observables are net proton number cumulants
[47]. Cumulants of the net proton number are thought to serve as a proxy of the
fluctuations of the conserved net baryon number [45], since unfortunately, it is
not possible to measure all created baryons in the collision. Due to the different
thermodynamic properties that are reached in heavy-ion collisions, performed at
different beam energies, any observable presented as a function of

√
sNN , their

dependency across the phase diagram can be studied. Fig. 1.2 shows measurements
of the proton kurtosis κσ2 = κ4/κ2 as a function of the beam energy

√
sNN . The

fluctuations are measured within a small rapidity window in midrapidity and only
the most central collisions were taken into account. If a critical point at µB > 0
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Figure 1.2: Ratio of net proton fourth to second cumulant as a function of the beam
energy measured by the STAR experiment. Figure is taken from [47].

exists, a non-monotonic behavior of κσ2 is expected to appear in the net proton
fluctuation, compared to the baseline model which yields unity along the beam energy
axis. Starting at

√
sNN = 200 GeV, the proton kurtosis is close to unity. When the

beam energy is decreased, a trend of κσ2 < 1 is observed. This behavior can be
associated with the effects of global charge conservation in the heavy-ion collision and
the behavior is approximately reproduced with transport calculations (yellow band).
Around an energy of

√
sNN = 5− 20 GeV, the data seems to show a non-monotonic

behavior, however, the errors of the experimental measurements are too large such
that no clear statement can be made. At the lowest collision energy measure by
HADES [48] at

√
sNN = 2.4 GeV and STAR at

√
sNN = 3 GeV the value of the

fluctuations is below unity which, again, is associated to global charge conservation.
A calculation within the UrQMD model at

√
sNN = 3 GeV appears to match with

the experimental measurements [49]. It is the hope, that with the improved statistics
of the RHIC BES II phase, the errors of the fluctuations can be reduced.

Another observable that is thought to be sensitive to a possible critical point is
the intermittency analysis [50]. In the scaling region of the critical point, correlation
functions Fq(M) in momentum space form self-similar patterns which can be observed
from scaled factorial cumulants in momentum bins M . Close to the critical point, the
self-similar property leads the following scaling behavior of the correlation function
Fq(M) ∼ (MD)φq for large enough M [50, 51]. Where φq is the intermittency index.
So far, no sign of the proposed scaling behavior of Fq(M) has been observed in a
systematic study at the NA49 and NA61/SHINE collaboration at CERN SPS [52].

There exist many issues when it comes to the comparison of experimental results
with the theoretical models and an overview can be found in [53]. In this work, the
goal is to address the effects of the hadronic stage of the heavy-ion collision. It has
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been shown that the produced correlations in the hadronic phase are substantial
[54]. The question of how the hadronic stage modifies fluctuations in a system with
global charge conservation will be studied. In addition, the fate of critical equilibrium
fluctuations in an expanding hadronic system with pure hadronic interactions will be
investigated.

1.4 Theoretical description of heavy-ion collisions

The full description of the dynamics of a heavy-ion collision cannot be directly
performed from the Lagrangian of QCD. Instead one has to rely on dynamical models
to describe the collision and open input parameters have to be taken from theoretical
calculations or experimental measurements. In addition, depending on the beam
energy, different regions of the QCD phase diagram are probed and therefore different
physical aspects have to be considered. At the top LHC energies, where the QGP
phase is reached, different stages govern the evolution of the ultra-relativistic heavy-
ion collision that have to be modeled using different tools, which will be explained in
this section. Their application towards lower beam energies will be described as well.

1.4.1 Initial conditions

It was found that the behavior of the QGP phase of an ultra-relativistic heavy-ion
collision can be explained using a hydrodynamical description in which a prerequisite
is the appearance of local equilibrium [55]. The very first stage of such a collision
however starts in a system far from equilibrium. It is therefore necessary to understand
the dynamics of the medium, starting with the nuclei at rest, towards the stage at
which the system can be described by hydrodynamics. Depending on the energy
scale, different models exist to describe the first part of the collision. The starting
point is usually the density distribution of the nuclei at rest and usually, here, the
Woods-Saxon distribution is used for large nuclei.

At the highest beam energy at the LHC or at RHIC, the Color Glass Condensate
(CGC) provides an effective description of QCD. CGC-based models use the saturation
scale in which the accelerated nuclei are fully dominated by gluonic radiation and the
evolution directly after the first collision is modeled using the Yang-Mills equation
for classical fields [56]. Models that incorporate these ideas are e.g. IP-Glasma or
KLN approaches [57, 58, 59]. Other effective models of QCD are based on kinetic
theory in which the non-equilibrium dynamics are described using the Boltzmann
equation [60, 61, 62]. A more simplistic model which is purely based on geometric
arguments is the Glauber model. Here, the nucleons are distributed according to the
Woods-Saxon distribution, and the initial energy density profile is obtained from the
first collisions of the nucleons when they overlap [63].

With decreasing collision energy, models based on the picture of gluon saturations
break down and other effective models of QCD must be referred to. Here, a wide
class of transport approaches can be used which evolve the medium until sufficient
thermalization is expected. Examples of such approaches are SMASH [5], UrQMD
[64], EPOS [65] or AMPT [66]. The switching criterion from transport to fluid
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dynamics is performed on hypersurfaces of constant proper time. Another option is
a dynamical approach, in which a certain local energy density has to be reached [67].
In the case of SMASH or UrQMD the initial processes are described by an external
model called PYTHIA [68, 69].

Recently, large developments have been made studying the effects of the nuclear
structure of the nuclei on final state observables in heavy-ion collisions, see e.g.
[70, 71, 72]. It is known that the nuclei used to perform the collider experiments are
not perfectly spherical or have uniform (electric) charge distributions. Deviations of
the surface of the nucleus from a sphere are referred to as nuclear deformations. Such
deformations can be experimentally determined by measuring hyperfine splitting of
the atomic levels. In the modeling of heavy-ion collisions, the geometric interpretation
of these deformations is used, even though the experimentally measured values are
strictly speaking not the same [71]. The effects of various different deformation
parameters are studied later in this thesis, in the context of the isobar experiments
conducted at RHIC [49]. Another effect known from nuclear structure that has
gained more attention in recent years is the so-called neutron skin effect, which leads
to differences between the proton and neutron distribution inside the nucleus. It can
be measured in different ways, for a review of two different measurement techniques
the reader is referred to [73]. Again, this effect will be further studied later in this
work and the effects of fluctuations of conserved charge numbers will be investigated
with an improved description of the model introduced in [5].

1.4.2 Hydrodynamical Models

One of the big successes in the field of heavy-ion collision was the discovery that
the formed medium behaves as an almost perfect liquid with a very small shear
viscosity over entropy density η/s [55]. This result was obtained with relativistic
hydrodynamic models that incorporate viscous corrections. The theory of hydro-
dynamics is essentially described by the local conservation of the energy-momentum
tensor Tµν and the conservation of conserved currents Jµi . The equations can then
be written in the following form

∂µT
µν = 0 , (1.6)

∂µJ
µ
i = ∂µ(niu

µ) = 0 . (1.7)

Here, ni is the charge density and uµ the velocity of the fluid. The conserved
charge currents are e.g. the baryonic, strange or electric charge B,Q, S. The energy-
momentum tensor, depending on the order of expansion, incorporates an ideal part
and, when first-order corrections are used, a viscous part. A more detailed description
will be given later in this thesis. The applicability of hydrodynamics is given if
the size of the system is much larger compared to the size of the interaction scale.
An often-used quantity is the Knudsen number Kn = λmfp/L, defined as the ratio
of the mean free path λmfp over the size of the considered system L. The regime
of applicability is Kn � 1. In addition to the microscopic scale of the system, it
is necessary for the medium to be in local equilibrium. Besides the theoretical
basis of the hydrodynamic theory, it has been found that even though the theory is
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derived assuming local equilibrium it can describe systems out of equilibrium and
their solution converge towards so-called attractor solutions, see [74] for a review. It
is thus interesting that hydrodynamic behavior was found in pp or pPb collisions
[75, 76].

The system of equations Eq. 1.6-1.7 cannot be solved directly because it is not
closed. What is missing is usually referred to as an equation of state (EoS), which
relates the energy density with the pressure and charge density ε = ε(P, ni). The
EoS plays an essential role because it can be taken from first principle lattice QCD
calculations [77]. At finite baryon densities, one has to rely on effective models e.g.
chiral effective field theory [78].

Fluid dynamical models have successfully described bulk observables such as
multiplicities, momentum distributions, or flow [79]. Another important aspect is the
natural incorporation of phase transitions via the EoS and therefore, such phenomena
can be captured. Fluctuations on the other hand cannot be obtained because thermal
fluctuations are not included in the description of the fluid in local equilibrium. When
it comes to the search for the critical point, it is the fluctuations of thermal modes
that grow rapidly close to the critical region, and in addition, the correlation length
diverges, breaking the assumption that Kn � 1. To investigate these phenomena
a theory called fluctuating hydrodynamics has to be derived which in the case of
critical phenomena is still ongoing research, see e.g. [80].

Another set of parameters besides the EoS which governs the evolution of the
fluid are transport coefficients. The most prominent one is the shear viscosity η,
describing the reaction of the fluid to shear stresses and it is important to describe
flow in heavy-ion collisions. Its value is found to be the smallest in comparison to
other liquids [55]. A more detailed introduction to transport coefficients will be given
in the following section. Current hydrodynamical models that are widely used in the
community are MUSIC [81], CLVisc [82] and vHLLE [83]. The latter one will also
be used in this work.

Hydrodynamical models are not capable of providing quantities that can be
measured in experiments such as particle yields. It is therefore necessary to switch
the perspectives from hydrodynamical fields to discrete sets of particles. The standard
procedure is provided by the Cooper-Frye formula [84], where the distribution function
is assumed to be in local equilibrium and small viscous corrections are taken into
account. Usually, it is used in the grand-canonical ensemble (GCE), where the
particle number fluctuates around its mean value determined by the temperature of
the fluid. This procedure leads to the fact that conserved charges are only conserved
on average and it is known, that some observables can only be described if the charges
are globally conserved on the hypersurfaces. This leads to another motivation for the
work in this thesis to extend the hybrid model described in [5] such that observables
related to global charge conservation can be studied.

1.4.3 Transport Approaches

Hadronic transport models for heavy-ion collisions, generally speaking, describe the
QCD medium in the confined regime using kinetic theory. They provide an effective
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solution to the relativistic Boltzmann equation which reads

kµ∂µfi,k(x) +miF
α∂αfi,k(x) = Ci,jcoll[fi,k] . (1.8)

Here, the individual quantities are:

• Single-particle distribution function fi,k(x) = d6Ni
d3xd3k

of particle species i.

• Mass of the particle mi.

• Externel force Fα.

• Collision term Ci,jcoll[fi,k] between particle species i and j, depending on fi,k.

The single particle distribution function describes the phase space density and is the
main objective that is propagated by transport models. The propagation of f itself in
space is performed by the left-hand side of Eq. 1.8. The first term describes the linear
propagation of f according to its momenta and the second term describes changes of
f under external forces such as, e.g. nuclear potential or magnetic fields. Collisions
between the constituents are modeled via the collision integral on the right-hand
side, which describes the loss and gain of the individual distribution functions. The
Boltzmann equation is a coupled 6+1 dimensional integro-differential equation which,
in practice is very hard to solve for a multi-component gas that includes many
hadronic species. Transport approaches provide an effective solution of Eq. 1.8 such
that the equations are not solved directly, but effectively describe the dynamics of
point-like particles on a Monte-Carlo basis. In Section 2, a study is described in
which the effective solution of a transport code is directly compared to a semi-analytic
solution of the Boltzmann equation. Contrary to hydrodynamics, kinetic theory is
able to evolve systems from out-of-equilibrium states, back to equilibrium.

Heavy-ion collisions at
√
sNN . 10 GeV can be approximately described using

purely a hadronic transport approach. The other use case of such models is the
evolution of the particle spectra in the late stages of an ultra-relativistic heavy-
ion collision in a so-called afterburner calculation. Here, the hadronic medium is
dilute and the fluid dynamical picture breaks down. The hadron gas in afterburner
calculations is evolved until the appearance of the kinetic freeze-out condition. At
this stage, no hadronic interactions appear anymore and hadrons are described by
free-streaming and resonance decays.

In the baryon dense regime, e.g. at HADES energies of
√
sNN . 3 GeV, the

nuclear potential has to be included. There are two types of transport codes employing
different formulations. The first one is the Boltzmann-Uehling-Uhlenbeck (BUU)
approach, in which the density is computed from the test particles method. The
other widely used method is the Quantum Molecular Dynamics (QMD) approach,
where the density is computed from Gaussian wave packages. The model that is
going to be used in this work is SMASH [85] which uses the BUU ansatz. Examples
of other transport models are GiBUU [86], UrQMD [87], (P)HSD [88, 89], JAM [90],
BAMPS [62], AMPT [91]. A large study comparing the results of different transport
models has been conducted in [92]. There also exists transport models that aim to
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describe the partonic stage of the heavy-ion collision like BAMPS [62] or AMPT
which is developed as multi-stage transport.

Like hydrodynamic models, transport approaches are not parameter-free but
rely on the input of experimental and theoretical calculations. One of the relevant
quantities are the cross-sections between the constituents of the model. The cross-
section σ is the probability, that a certain outcome appears of a scattering. In a
quantum field theory, the scattering amplitude can be calculated from the scattering
matrix S, from which the transition amplitude is obtained from the square matrix
element |M|2. Importantly, the cross-section can also be measured in experiments.

The model which is used to obtain the most parts of the results in this work is
called SMASH (Simulating Many Accelerated Strongly-interacting Hadrons) and
it is developed as an open-source code [93, 94, 93]. SMASH has been successfully
conducted in studies for various different applications in heavy-ion collisions [95,
96, 97, 98, 99, 100]. An extension of the model to describe the hot and dense
stage of the heavy-ion collision using hydrodynamics has been performed in [5].
Further studies in which SMASH has been used as an afterburner can be found in
[101, 102]. More relevant for the purpose of this thesis, SMASH has been successfully
used to extract equilibrium properties like transport coefficients of the hadronic
phase [103, 104, 105, 106, 107]. Transport coefficients play an important role in
understanding the properties of a medium. The ones that are of interest in this work
will be introduced in the next section.

1.4.4 Transport Coefficients

Transport coefficients are very interesting quantities describing the behavior of a
medium from an out-of-equilibrium state back to equilibrium. If one goes beyond
ideal hydrodynamics, the system is expanded in terms of gradients of the charge
currents or in the case of viscous hydrodynamics, expanded in terms of gradients
of the hydrodynamical fields. The response of these gradients is determined by the
corresponding transport coefficient. In this thesis, the two transport coefficients of
interest are the diffusion coefficients of conserved charges κqq′ with q, q′ ∈ {B,Q, S}
and the shear viscosity η.

If a first-order correction of the charge currents is taken into account, the response
of the medium to local deviations of the charge chemical potential µq is determined
by the diffusion coefficient of the respective charge κq. The response of the charge
current Jµq in a system of one conserved is determined from Fick’s law

Jµq = −κq∇µ
(µq
T

)
. (1.9)

In the case of the baryonic charge, at top RHIC or LHC energies where the medium
in the central region of the collision has almost zero net baryon density [108], the
effects of charge diffusion processes are small [109]. However, when decreasing the
beam energy, the baryon deposition during the collision becomes important and the
description of charge diffusion processes as well. In a multi-component system, the
diffusion coefficient of one charge κq is extended by the diffusion coefficient matrix
κqq′ , effectively coupling the charge currents with each other. The goal of this thesis
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is to determine the full diffusion coefficient matrix from the hadronic transport
model that incorporates not only the diagonal components (κBB, κQQ, κSS) but
also the cross terms (κBQ, κBS , κQS). A first calculation of the hadronic κqq′ within
the Chapman-Enskog (CE) approximation has been performed in [110]. In [111],
these coefficients have been introduced in a hydrodynamic model and the effects of
the full diffusion coefficient matrix are studied. It has been found that regions of
non-zero strangeness density appear due to the coupling of the conserved charge
currents. A similar calculation within the CE approximation and the relaxation time
approximation (RTA) for the transition region between the hadronic and the partonic
sector of QCD was performed in [112]. The electric charged diffusion coefficient,
which is directly related to the electric conductivity κQQ/T = σel, has different
applications in heavy-ion collisions. One of which is the evolution of the generated
magnetic fields, that is determined by the strength of the electrical conductivity [113]
and can be calculated within the framework of magneto-hydrodynamics [114, 115]. It
is also possible to relate the emission of dileptons to σel, which yields an interesting
opportunity for comparison with measurements [116, 117]. Previous calculations of
the diffusion coefficients (conductivities) have been performed in SMASH [105, 107].
Other calculations in the hadronic sector can be done using chiral perturbation
theory [118] or kinetic theory [119].

The other transport coefficient that will be computed is the shear viscosity,
describing the reaction of medium to shear forces. Viscous corrections appear
when the first-order corrections of the gradients of the hydrodynamical field uµ are
considered and another transport coefficient that appears in the same expansion
is the bulk viscosity ζ. The shear viscosity gained much attention when the QGP
phase was first studied using relativistic hydrodynamics. With ideal fluid dynamics,
the strength of the flow anisotropy could not be described, whereas other bulk
observables matched with the calculations [120]. With the extension towards viscous
hydrodynamics, it was then possible to describe the observation of anisotropic flow
with the usage of a very small shear viscosity over entropy density [121, 122, 123, 55].
The specific value of η/s is one of the smallest shear viscosity of any material known
so far [124]. It is also close to the lowest bound of η/s & 1/4π conjectured from the
AdS/CFT correspondence [125], which is also referred to as the KSS bound. There
are multiple studies calculating the value of the shear viscosity in the hadronic regime
of QCD using transport models [126, 127, 128, 129, 130, 131], chiral perturbation
theory [132] or other methods like HRG with excluded volume effects [133]. In
[103], the effect of lifetimes of resonances on the shear viscosity was investigated
in SMASH. This result shows that the treatment of microscopic interactions plays
an important role when calculating the shear viscosity. There is a large effort to
use Bayesian analysis techniques to extract the shear viscosity over entropy density
from experimental data [134, 135, 136, 137, 138, 139]. The value of η/s from the
dynamical models has been found to be close to the KSS bound and other methods to
extract the shear viscosity from dynamical models show a similar picture [140, 141].
When comparing the specific value of η/s between SMASH and UrQMD (see Fig. 13
in [103]), it was found that the value of the transport coefficient of SMASH is much
larger compared to the one from UrQMD.
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It was already pointed out that the values of the transport coefficients are
sensitive to the microscopic interactions of the model. So if the description of the
microscopic interactions within the model improves, it is natural to expect that its
transport coefficients change. For future studies, it is therefore helpful to establish a
good understanding of the behavior of κqq′ and η, when it comes to modifications of
microscopic interactions. As an example, in [142], a new feature has been implemented
in SMASH to account for multi-particle reactions which enhances the applicability
of the model in very dense systems. Another goal of this work is to compute the
diffusion coefficients of the baryonic and strange sector from SMASH and compare
them to other calculations. It is also hoped that the calculation of the transport
coefficients becomes feasible from first principle calculations. Contrary to the shear
viscosity η, the electric conductivity σel as well as the diffusion coefficient D have
been calculated from first principle lattice QCD calculations [143, 116, 117]. These
comparisons yield a very good opportunity to gauge the interactions and degrees of
freedom of the model correctly.

1.5 Outline of this work

The outline of this thesis is as follows. First, in Chapter 2, the model is shortly intro-
duced which is used to calculate most results presented in this thesis. In the following,
in chapter 3, the diffusion coefficient matrix κqq′ of the three conserved charges B, Q
and S is calculated as well as the shear viscosity η. These transport coefficients can
be computed from correlation functions of equilibrium fluctuations of the conserved
charge currents of the spatial component i, 〈J iq(t)J iq′(0)〉 using the Green-Kubo
approach. Similarly, the shear viscosity η is calculated from correlation functions of
the off-diagonal components of the energy-momentum tensor 〈T ij(t)T ij(0)〉. This
chapter aims to investigate the behavior of the transport coefficients by gradually
increasing the complexity of the collision kernel and the number of degrees of freedom.
By doing so, the properties of the hadronic medium can be investigated and an
understanding of its behavior for future studies can be established.

In Chapter 4, properties of the interacting medium are investigated by studying
fluctuations in the form of cumulants κn = 〈(δNq)

n〉c of particle species. The
study of cumulants of conserved charges is strongly related to the search of the
QCD phase diagram as already discussed in the introduction. In the first part
of chapter 4, specifically in Section 4.3, the influence of hadronic interactions on
cumulants under global charge conservation is studied in an infinite matter simulation.
The behavior of 〈(δNq)

n〉c is then investigated as a function of subvolume sizes. By
doing so, the influence of the hadronic interactions on these fluctuations can be
studied and a baseline can be established for measurements in heavy-ion collisions. In
Section 4.4, the influence of the hadronic medium on critical equilibrium fluctuations
is investigated. The starting point is the particle distribution function obtained from
the principle of maximum entropy which generates cumulants of the three-dimensional
(3d) Ising model coupled to the HRG. These distributions are then evolved in the
transport model in an expanding system with the initial phase-space distribution
fitted to measurements in heavy-ion collisions. Within this dynamical system, the
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time dependency 〈(δNq(t))
n〉c can be studied, as well as the final state fluctuations.

Finally, in the first part of Chapter 5, the influence of nuclear deformations on the
initial state of hydrodynamical simulations, at a collisional energy of

√
sNN = 200 GeV

is studied. After the subsequent hydrodynamic evolution, the switching between the
hydrodynamical and the dilute stage of the heavy-ion collision is improved such that
the B, Q and S charges are conserved globally on the hydrodynamical hypersurfaces,
according to the canonical ensemble. These particle spectra are then fed into SMASH
and differences in final state observables are studied. In addition, the effect of the
neutron skin on final state observables is investigated.
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2
Hadronic transport approach

In this section, the transport model is introduced. A more detailed description,
especially when it comes to the interactions between the hadrons, will be given at the
corresponding places in the text. The explanation and derivations in this chapter on
the basics of the model are mainly taken from the original publication [85]. SMASH
is a hadronic transport approach built to describe non-equilibrium dynamics of the
confined phase of QCD, in which the interactions between the hadrons are dominated
by resonance formation and decays, or the effects of nuclear potentials. Besides the
regions of collider energies in which the heavy-ion collision can be purely described by
transport models, another application of such models is to evolve the hadronic late
stages of an ultra-relativistic heavy-ion collision. The key ingredients for a transport
approach are the hadronic degrees of freedom and the interactions between them. So
the goal of this section is to develop a basic understanding of these aspects.

Degrees of freedom

Starting with the degrees of freedom, the hadrons that are incorporated into SMASH
are the most abundant baryons and mesons that are classified with a 3 to 4-star rating
from the particle data group (PDG) [144]. The PDG collects experimental data
about particles and their properties and assigns a rating depending on the uncertainty
of the experimental measurement. The highest rating are 4 stars, meaning the state
is confirmed with a very high probability. The information that is used for this
model are the masses, decay width and parity information of the particle species.
Note that each hadron is represented by a point-like particle. The stable hadrons
have fixed masses according to the PDG values and the masses of the corresponding
isospin partners are taken to be the same, assuming isospin symmetry. The mass
distribution of unstable hadrons is represented by relativistic Breit-Wigner spectral
functions with mass-dependent decay widths. Further details of this procedure will
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follow later in this thesis.
Starting with the mesonic degrees of freedom, SMASH includes the pseudo scalar

states like π, η and η′, plus strange mesons such as K. Vector states like ρ, ω and φ
or the strange K? meson and pseudoscalar mesons like σ, f0, a0 are included as well.
The baryonic degrees of freedom include the stable N , Λ, Σ, Ξ and Ω but also some
of their respective excited states like ∆, N?, ∆?.

So far, only hadronic states consistent with u, d and s quarks are incorporated.
An extension to the heavier charm or bottom quarks has yet not been done. A full
list of the hadrons can be seen in the file particles.txt in [93].

Interactions

Cross sections

The interactions between the constituents of SMASH are modeled using the respective
cross-sections and are fundamental quantities of transport approaches. Since they can
also be measured in experiments, they serve as an important input for these models.
At the considered energies where the interactions are dominated by the formation of
resonance states, one can raise the question, which portion of the total cross-section
originates from a single state. SMASH uses a so-called bottom-up approach in which
each resonance contributes to the total cross-section with its partial cross-section,
such that the total cross-section σtot matches with experimental measurements. In
the bottom-up approach, σtot can be expressed as

σtot(
√
s) =

∑
R

σ2→1
R (

√
s) +

∑
P1,P2

σ2↔2
P1P2

(
√
s) + σstring(

√
s) . (2.1)

Here, σstring(
√
s) is the cross section for a string interaction, which will be explained

in Chapter 5. The bottom-up approach has the benefit that the total cross-section is
based on the knowledge of the number of resonances and their properties. On the
other hand, one faces the difficulty that the total cross-section overshoots experimental
data, when new states are included in the model. In the top-down approach, the total
cross-section is fixed and the partial ones are computed according to the number of
resonance states. Fig. 2.1 shows an exemplary cross-section of a proton pion reaction.
One can see that the total and elastic measured cross-section is well reproduced by
SMASH. Since there exist many more such plots for all possible reactions between the
constituents, the interested reader is referred to [146], where a collection of results
calculated with SMASH is publicly available.

In addition, it is worth mentioning in the context of this thesis, that at each
interaction, SMASH perfectly conserves the baryonic, strange and electric charge.

Detailed Balance

Detailed balance is a property of dynamical systems which means, that one cannot
distinguish if the time runs in a forward or backward direction. It therefore has to
be fulfilled for a physical system that is invariant under time reversal transformation,
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Figure 2.1: Total cross section of the reaction pπ− as a function of the collision
energy

√
s. The figure is taken from [145].

which is the case for QCD. The probability of a reaction from an initial phase space
Γi to the final phase space distribution Γf therefore has to follow

p(Γi,Γf ) = p(Γf ,Γi) . (2.2)

Detailed balance preserves the principle of ergodicity, that each thermal equilibrium
state of the system can be reached. Using this principle, one can directly relate
cross-sections that are known in one direction, e.g. σab→cd, to the backward reaction
σcd→ab. In SMASH, this principle is fulfilled by calculating the cross-sections of a
reverse process reaction directly from the matrix element of the forward direction
|M→| = |M←|. Results that detailed balance is indeed fulfilled in a box with periodic
boundary conditions can be found in [147].

Solving the Boltzmann Equation

It was written in the introduction that transport models provide an effective solution
of the Boltzmann equation by describing the dynamics of point-like particles on a
Monte-Carlo basis. In this section, a study is used to show that this is indeed true.
As it is impossible at this point to solve the Boltzmann equation with all the degrees
of freedom and cross sections from SMASH, a comparison to a simplified case, in
which a solution to the Boltzmann equation is known has to be made. In [148], a
calculation has been performed for massless particles initialized in a sphere with an
expanding metric where a solution can be computed semi-analytically. The system
contains only one particle species interacting via a constant elastic cross-section.
Fig. 2.2 shows the evolution of the distribution function f as a function of the
momenta of the particles. One can see that the result of the SMASH simulation
matches perfectly with the analytic expectation. Even though this comparison is
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Figure 2.2: Distribution function normalized to the initial equilibrium distribution
of SMASH (symbols) in comparison to analytic expectation (line) as a function of
the scaled momentum ka/T0 for different times. The figure is taken from [148].

only performed for a simple test case and the result cannot be directly transferred
to the full dynamical simulation, it shows that the SMASH code reproduces exact
results of the Boltzmann equation in the regime of the presented study.

The topic of studying fluctuations in the context of kinetic theory and especially
in the context of the Boltzmann equation is, in principle, not straightforward. It is
not possible to study fluctuations of a particle number on an event-by-event basis
because the solution of the Boltzmann equation, the distribution function fi,k, is only
of probabilistic nature. However, within the realization of the solution in transport
models, the full phase space information of each particle becomes accessible at each
point in time. Therefore, such models yield the possibility to study fluctuations
even though it is not possible from the underlying equation. However, it becomes
problematic when nuclear potentials are taken into account, which will be discussed
in the next section. SMASH follows the BUU approach meaning that the test particle
method is applied in order to smoothen the nuclear density. These introduced test
particles reduce the fluctuations and only bulk observables can be calculated. This
limits the applicability to calculate e.g. event-by-event fluctuations with nuclear
potentials.

Propagation of particles and incorporation of potentials

The propagation of the hadrons, if no interaction occurs, are on straight lines according
to their momenta. In the beginning, when SMASH was introduced first, the model
was based on a fixed timestep ∆t. Particles were then propagated without any
interaction until the next ∆t. At the respective end of a timestep, interactions were
searched between all particles and performed. This treatment has the disadvantage,
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that results might be affected by the actual value of ∆t. Since then, SMASH has
been adapted to a more flexible way (similar to [87]). The main difference is that
each particle is only propagated until the next interaction takes place. When such
an interaction happens, SMASH searches for new ones and evolves the hadrons until
the beginning of the next earliest process.

An important aspect of heavy-ion collisions, especially at low energies, is the
incorporation of nuclear potentials which act as forces on the trajectories of the
hadrons via the BUU approach. In SMASH, the repulsive and attractive interactions
are modeled by the mean-field Skyrme potential

U(ρ, ρI3) = a(ρ/ρ0) + b(ρ/ρ0)τ ± 2Spot(ρI3/ρ0) , (2.3)

where ρ is the baryon density, ρI3 is the isospin 3 density (I3/I) and ρ0 = 0.168 1/fm3,
the nuclear ground state density. The density in Eq. 2.3 has to be evaluated in the
Eckart rest frame density of the medium. The other parameters a, b, τ, Spot determine
the shape of the nuclear equation of state (EoS). The resulting force acting on the
trajectories of the hadrons can then be written as

~F =
∂Usk
∂ρB

[
−(~∇ρb + ∂t~jB) + ~̇x× (~∇×~jB)

]
+
∂Usk
∂ρI3

[
−(~∇ρI3 + ∂t~jI3) + ~̇x× (~∇×~jI3)

]
(2.4)

In this work, no nuclear mean field potentials have been used and all results are
obtained using the so-called ”cascade” mode in which the hadrons are propagated
only on straight lines.
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3
Equilibrium properties of a hadronic medium

In this chapter, transport coefficients will be calculated from SMASH and the results
are based on [3]. Their behavior is determined from the microscopical interactions of
the constituents of the medium and the goal is therefore to subsequently establish
the collision kernel of the interacting hadronic medium of SMASH and calculate the
transport coefficients depending on these processes. The derivation of the presented
formulas are taken from [85]. So far, the following hadronic transport coefficients
were calculated from SMASH:

• Shear viscosity η [103].

• Electric cross conductivities σQQ, σQB, σQS [105, 107].

• Bulk viscosity ζ [106].

• Jet quenching coefficient [104].

As it will be shown later in this chapter, the electric conductivity σqq′ is related to
the diffusion coefficients by a factor of temperature σqq′ = κqq′/T . It seems that
besides the extension of κqq′ to the baryonic and strange sector (κBB, κSS , κBS), a
repetition of the previous calculations are performed. However, the reasons for these
specific calculations are two-fold. First, since the time of the previous publications of
the results of η and σij , new interactions have been implemented into SMASH, so the
results are outdated. In addition, a detailed study of the dependency on the collision
kernel helps for a better understanding of the behavior if, again, new interactions
are implemented. Second, in the case of the diffusion coefficient matrix, one of the
main results of [107] was that the coefficients scale with the degrees of freedom of
the system. Therefore it is of great interest to investigate if this behavior holds in
the baryonic and strange sector. As an example, one of the newly implemented
interactions is the so-called stochastic collision criterion [142] with which it is possible
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to study the effects of multi-particle reactions on transport coefficients in the hadronic
regime of QCD in SMASH.

Before the methodology, the model and the results are presented, some derivations
of the underlying theory of transport coefficients are shown in the next sections.

3.1 The Green-Kubo formalism

Similar to the previously conducted studies to extract transport coefficients from
microscopic models, this study makes use of the Green-Kubo approach. The simplest
derivation of the Green-Kubo relation is using the example of Brownian motion in
the Langevin equation. The following derivation of the fluctuation-dissipation, which
is an equally important theorem, originates from the paper by Kubo [149]1. The
fluctuation-dissipation theorem is a tool that is used in many different applications
in physics. It provides a relation between the correlations of equilibrium fluctuations
to response quantities of the medium. A fundamental prerequisite is that the system
is in detailed balance. One way of deriving the main equation is using the classical
example of Brownian motion which describes e.g. the movement of a heavy particle
in a surrounding medium in equilibrium. Usually, the Langevin equation is used as a
phenomenological approach to this problem

mu̇(t) = −γu(t) +R(t) . (3.1)

Here m is the mass of the molecule, γ is a friction constant and R describes a random
force that acts on the movement of the velocity u(t) of the particle, by collisions with
its surroundings. There are several constraints one can make on the properties of
the random force R. The first one is that the process R(t) is normal distributed and
uncorrelated in time such that 〈R(t)R(t′)〉 = 2πGRδ(t− t′) where GR is a constant
and the second assumption is, that the force averages to zero over time 〈R(t)〉 = 0.
The solution of the Langevin equation is then

u(t) = u(0)e−γt/m +
1

m

∫ t

0
dt′e−γ/m(t−t′)R(t′) . (3.2)

In an equilibrium state, the averaged squared velocity is related to the temperature
of the medium. Therefore, the squared velocity is

〈u(t1)u(t2)〉 = u(0)2e−
γ
m

(t1+t2) +
1

m2

∫ t1

0
due−

γ
m

(t1+u)

∫ t2

0
dse−

γ
m

(t2+s)〈R(u)R(s)〉 .

(3.3)
Setting the times to be equal and using 〈u(t)2〉 = T/m in the limit of t→∞, one
can integrate one part of the solution in addition to the fact that only differences in
the time are of interest

lim
t→∞
〈u(t)2〉 =

T

m
=

1

2mγ

∫ ∞
−∞

dse−
γ
m
s〈R(0)R(s)〉 . (3.4)

1This example was also used in [150].
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Under the assumption, that the timescale of the perturbation is much smaller in
comparison to the timescale that the friction has on the medium, one can assume
γ/m� 1 and finally one obtains

γ =
1

2T

∫ ∞
−∞

ds〈R(0)R(s)〉 . (3.5)

The derived equation shows the main concept behind the Green-Kubo relation. The
integration over the correlation function of the random force over time yields the
friction coefficient γ, that governs the evolution of the particle. This concept will be
used to determine the diffusion coefficient matrix κqq′ and the shear viscosity from
equilibrium fluctuations of the charge currents Jq and the energy-momentum tensor
T ij . Before continuing with the results, the basic properties of the two transport
coefficients will be explained.

3.2 Diffusion coefficients

As already introduced, a U(1) conserved charge necessarily generates a charge current
Jq, since the medium has to transport the charges, if some imbalances appear. This
phenomenon directly leads to the property of the charge transport and its strength
is characterized by the corresponding transport coefficient.

In this section, the diffusion coefficients κqq′ are introduced. They describe the
ability of the medium to evolve an inhomogeneous charge distribution towards a
homogenous state in a medium. In an external field, the current corresponding to
the U(1) conserved charge q can be written as

jiq(X) = σqE
′,i
q (X) . (3.6)

Where jiq is the i-th component of the charge current and q ∈ {B,Q, S} . σq =
κq
T

is the conductivity and κq the corresponding diffusion coefficient and the four-vector
X = (t, ~x). The electric field responsible for the generation of the force acting on the
charge can be expanded in

E′,iq = EiδqQ − T∇i(µq/T ) . (3.7)

Here, the first term on the right-hand side corresponds to an external field only in the
case of the electric charge and the second term describes density imbalances in the
medium, generated by deviations of the charge chemical potential. In the following,
only the effects of the second term, the thermodynamic force will be investigated.
The resulting expression is also known as Fick’s law. In a microscopic theory, the
fluctuations are described by δjiq(X) of the charge q which alter the current with

jiq(X) = −κq
T
T∇i(µq/T ) + δjiq(X) . (3.8)

Since Ohm’s law Eq. 3.6 has to be true when the system is averaged over many
events, the fluctuations have to obey

〈δjiq(X)〉 = 0 . (3.9)
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The 2-point correlation function of the fluctuations however is not zero because of
the fluctuations-dissipation theorem [151], it reads

〈δjiq(X)δjjq(X
′)〉 = 2T

κq
T
δijδ(4)(X −X ′) = 2κqδ

ijδ(4)(X −X ′) . (3.10)

where the transport coefficient appears in the 2-point correlation function of the
fluctuation. The type of noise in Eq. 3.10 is also called white noise because it is
uncorrelated, meaning that the correlation only exists when the spatial and temporal
conditions of the delta function match. The 2-point function of the charge current
can be written similarly. Introducing the space-average current Jq(t) = 1

V

∫
d3x jq(X)

first, and because of Eq. 3.9 one gets

〈J iq(t)J jq (t′)〉 =
2κq
V
δijδ(t− t′) . (3.11)

Finally, after integrating the equation above, the Green-Kubo relation for the diffusion
coefficient κq is obtained for the white noise case

κq =
V

3

∫ ∞
0

dt〈Jq(t) · Jq(0)〉 . (3.12)

Here, the factor 3 originates from the δij and the factor 2 cancels from setting t > t′

and t′ = 0. This expression already yields the Green-Kubo relation for the diffusion
coefficient κq.

In the hadronic medium, there exist cases where a hadron carries more than
one conserved charge. Due to the specific quark content, e.g. the Sigma baryon
Σ+ carries the valence quarks (u, u, s) and therefore has a baryonic, electric and
strangeness charge simultaneously. In the presence of a medium with a non-zero
local charge chemical potential µQ the associated charge current JµQ automatically
generates a strangeness and a baryon current as well. It is therefore straightforward
to extend Eq. 3.8 to incorporate the described effect and write the diffusion coefficient
matrix as [110] J iBJ iQ

J iS

 = −

κBB κBQ κBS

κQB κQQ κQS

κSB κSQ κSS

∇i(µB/T )
∇i(µQ/T )
∇i(µS/T )

 . (3.13)

So far, the Green-Kubo relation has been motivated by employing the fluctuation-
dissipation theorem in the case of white noise. However, it will be shown, that the
charge currents Jq are not completely uncorrelated over time (see Fig. 3.1). Also,
it is known that Fick’s law is inconsistent with causality since an instantaneous
thermodynamic force creates an instantaneous charge current. This problem can
be fixed using the so-called colored noise which preserves causality of Fick’s law by
introducing a memory kernel for the corresponding conserved charge(s) Gijqq′(X−X

′).
The charge current for the multiple conserved charges is modified to

jiq(X) = −
∫
d4X ′Gijqq′(X −X

′)(T∇j(µq′/T ))(X ′) + δjiq(X) , (3.14)
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where δjiq describes the colored fluctuations. Here, one can see that the thermody-
namic force generated from the chemical potential of q′ also generates a current of
charge q. The fluctuation-dissipation theorem is equivalently modified to [152]

〈δjiq(X)δjjq′(X
′)〉 = TGijqq′(X −X

′) (3.15)

Up to now, the shape of Gijqq′ is not fixed however, it could in principle be calculated
from first principle calculations. By employing the relaxation time approxima-
tion (RTA) which describes small perturbations of the distribution function by an
exponential decay in time, one can write the memory kernel Gqq′ as

Gijqq′(X −X
′) =

κqq′

τqq′
δijδ(3)(~x− ~x′) exp

{
−(t− t′)

τqq′

}
. (3.16)

Here, the relaxation time of the conserved charge τq has been introduced and the
diffusion coefficient has now multiple conserved charges. According to the fluctuation-
dissipation theorem, the 2-point function of the averaged charge currents is

〈J iq(t)J
j
q′(t
′)〉 =

κqq′

τqq′
δijexp

{
−(t− t′)

τqq′

}
. (3.17)

Integrating the 2-point correlation function in order to obtain the diffusion coefficients
then yields the Green-Kubo relation for the diffusion coefficient matrix

κqq′

T
=

V

3T

∫
dt〈Jiq(t) · J

j
q′(0)〉 =

τqq′V 〈Jq(0) · Jq′(0)〉
T

. (3.18)

The motivation for the derivation above is that the introduction of the colored
noise makes Ohm’s law consistent with causality and second-order hydrodynamics.
Additionally, the time τq can be interpreted as a relaxation time of the conserved
charge q. It can be further shown that Eq. 3.14 is equivalent to the stochastic
diffusion equation [152, 153] for only one charge q

τq
∂J iq
∂t

+ J iq = −κq
T
T∇µ(µq/T ) + ξiq , (3.19)

with ξq being white noise. For example, in [154] the stochastic diffusion equation for
the net baryon density was studied including the full diffusion coefficient matrix to
investigate the competition between expansion and diffusion in a heavy-ion collision.

The relation between the diffusion coefficient, the conductivity and the often
used diffusion coefficient Dq are additional thermal relations [111]

Jµq = Dq∇µnq(T, (µq/T )) = Dq

(
∂nq
∂T
∇µT +

∂nq
∂(µq/T )

∇µ(µq/T )

)
. (3.20)

In an isotropic medium with constant temperature, the term ∇µT = 0 and one can
therefore relate κq and Dq via

κq =
∂nq

∂(µq/T )
Dq . (3.21)
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3.3 Shear viscosity

The other transport coefficient of interest is shear viscosity η. It is not directly
related to fluctuations of conserved charges, but to the fluctuations of off-diagonal
spatial terms of the energy-momentum tensor. The derivation using the theory of
second-order hydrodynamic fluctuations is similar to the derivation presented for the
diffusion coefficients. The shear viscosity is a property of a fluid that determines its
macroscopic property, in terms of its reaction to shear forces. For example, honey
behaves differently in comparison to water, when placed on an inclined surface, due
to different values of the shear viscosity.

As a starting point, one can write the energy-momentum tensor in terms of the
four-velocity uµ

Tµν(t, x) = εuµuν − p∆µν + Pµuν + P νuµ + πµν . (3.22)

The energy density is defined as ε = uαuβT
αβ, p = −1

3∆αβT
αβ, Pµ = ∆µαuβT

αβ

and πµν = (∆µα∆νβ − 1
3∆µν∆αβ)Tαβ. The projection operator orthogonal to uµ is

defined as ∆αβ = gµν − uµuν and gµν is the metric.
Similar to the previously defined diffusion current J iq, the corresponding thermo-

dynamic property that responds to shear forces is the shear stress-tensor πµν and
the thermodynamic force is

∂〈αuβ〉 = ∆αβγδ∂
γuδ , (3.23)

where ∆αβγδ = 1
2(∆µα∆νβ+∆µβ∆να)− 1

3(∆µν∆αβ). The resulting dissipative current
generated by the thermodynamic force Eq. 3.23

πµν =

∫
d4X ′Gπ(X −X ′)µναβ(∂〈αuβ〉|X′) + δπµν . (3.24)

Here, the memory kernel of the shear-stress tensor has been introduced and δπµν are
fluctuations of πµν . According to the fluctuation-dissipation theorem, the 2-point
function is

〈δπµν(X)δπαβ(X ′)〉 = TGπ(X −X ′)µναβ . (3.25)

Again, one can assume a specific shape of the memory kernel in the RTA that follows
an exponential decay with the relaxation time, similar to Eq. 3.16. Replacing the
fluctuations with the averaged shear-stress tensor yields then yields

〈πµν(t)παβ(t′)〉 = 4Tη exp

{
−(t− t′)

τη

}
∆µναβ . (3.26)

Similar to the previous section, the goal is now to integrate Eq. 3.26 to obtain the
Green-Kubo relation for the shear viscosity. After setting the indices appropriately
and fixing additional factors, the resulting relation reads in the local rest-frame
uµ = (1, 0, 0, 0)

η =
V

T

∫ ∞
0
〈πij(0)πij(t)〉dt , (3.27)
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Here, the off-diagonal components of the shear-stress tensor are employed with
fixed indices i and j. When results of Eq. 3.26 will be presented the off-diagonal
components of the energy-momentum instead of the shear-stress tensor will be used,
since the two are equivalent in the local rest frame of an isotropic medium.

3.4 The Chapman-Enskog expansion

In the previous section, the Green-Kubo relations have been derived using the
fluctuation-dissipation theorem. This is particularly useful for a model from which
the equilibrium currents Jq(t) or T ij(t) are known because one can directly compute
the correlation function and integrate it to obtain the transport coefficient. There
also exists the possibility to compute transport coefficients from an approximate
solution of the Boltzmann equation, which is known as the Chapman-Enskog (CE)
approximation. For a microscopic model such as SMASH, which effectively solves
the Boltzmann equation (see Section 2), this yields a good opportunity to compare
the results between the Green-Kubo formalism from SMASH and the CE calculation,
which will be shown later in this chapter. It is therefore instructive to roughly explain
the derivation of the diffusion coefficient in the CE approximation. The calculation of
the CE results has been performed by the author of [111] and this section is mainly
inspired by [132, 111, 150].

The starting point for the computation of the transport coefficients in the CE
approximation is to expand the collision term of the Boltzmann equation in a
series of non-equilibrium corrections δf and identify the transport coefficients as
the respective prefactors. This method yields an elegant way to compute e.g. the
diffusion coefficients or viscosities. There are certain limits of the microscopic system
that have to be fulfilled, in order for the approximation to be valid. Similarly to the
introduction, the Knudsen number is defined as the ratio of the microscopic length
scale (or the range of interaction) or the mean free path to the total size of the system
L, Kn = lmicro/L. If the Knudsen number is small Kn� 1, the microscopic collisions
are important and the Boltzmann equation is valid to describe the evolution of the
distribution function. In order for the CE approximation to be valid, the following
relation has to be fulfilled

L� λmfp � lmicro . (3.28)

If the above separation of scales is fulfilled, the solution of the Boltzmann-equation
only depends on the local hydrodynamic fields T, µ, uµ, resulting in a local equilibrium
distribution function

fk(x) = fk[T (x), µ(x), uµ(x)] . (3.29)

fk can then be expressed as a series in terms of an expansion parameter ε, which is
a measure of the relative strength of gradients in the system

fk = f
(0)
k + εf

(1)
k + ε2f

(2)
k + ... . (3.30)

The expansion parameter ε can also be identified as the Knudsen number ε ∼ Kn.

The diffusion coefficients can be extracted already from the inclusion of f
(1)
k and
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orders of O(Kn2) will be dropped under the premise that Kn� 1. The Boltzmann
equation that includes corrections in O(Kn) of some particle species i is then

kµi ∂µf
(0)
k,i =

Nspecies∑
j=0

Cij [fj,k(x)] . (3.31)

Here, Cij [fj,k] is the collision term between the considered particle species i and j.
The solution to the zeroth order is the well-known Juettner distribution.

f
(0)
k (x) =

g

(2π)3

(
exp

(
kµuµ(x)− µ(x)

T (x)

)
± δ
)−1

. (3.32)

With δ = 0,+1,−1 for the Boltzmann, Fermi, and Bose distribution respectively and
g the degeneracy factor. The collision term on the right-hand side of Eq. 3.32 is

Cij [fj,k(x)] =

Nspecies∑
j=1

Nspecies∑
a=1

Nspecies∑
b=1

∫
dkj

(2π)3k0
j

∫
dpa

(2π)3p0
a

∫
dpb

(2π)3p0
b

δ(4)(ki + kj − pa − pb)

× L[f(x)](ki, kj , pa, pb)sσij→ab(s,Ω) . (3.33)

Here, the sums run over all possible particle species that can scatter with the
incoming particle species i and j. The cross-section of the interaction σij→ab(s,Ω) is
generally energy-dependent and might have a dependency on the scattering angle
Ω. The collision term describes the amplitude of the scattering process ij → ab.
The functional L[f(x)] is linear in the perturbation f (1) and its exact form is not
important here but can be found in [111].

The transport coefficients arise when the left-hand side of Eq. 3.31 is further
studied. One can see that only the equilibrium distribution function f (0) appears
on the left-hand side, whereas the perturbed distribution function is in the collision
term on the right-hand side. The source term on the left-hand side can be calculated
by decomposing the derivative in terms of derivatives of the hydrodynamical fields,
together with the conservation laws of energy and momentum. It has a lengthy
expression and one then has to identify the corresponding thermodynamic force and
its transport coefficient

kµ∂µf
(0) = −S(x, ki) . (3.34)

For more details on the exact expressions for the shear and bulk viscosity, the
interested reader is referred to e.g. [111, 132]. In this work, only a comparison
between the diffusion coefficient matrix calculated from the CE approximation and
the Green-Kubo formalism from SMASH is performed. Therefore, the calculation of
shear viscosity within the CE formalism is not described here. A derivation including
exact comparisons has already been performed in [150].

When only the corresponding source term for the diffusion coefficients is taken
into account, one is left with

−
∑

q∈{B,Q,S}

f
(0)
i,k ∆µ

αk
α∇µ

µq
T

(
Ei,knq
ε+ P0

− qi
)

=

Nspecies∑
j=1

Cij [fj,k] (3.35)
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Here, Ei,k =
√
m2
i + k2 is the energy of a particle with mass mi, ε and P0 the

thermodynamic energy density and pressure of the system and nq the charge density
of the specific type of charge q. To obtain the diffusion coefficient matrix κqq′ , one
has to approximate the perturbed distribution function f (1) in terms of a power
series in the energy

f
(1)
i,k =

∑
q∈{B,Q,S}

f
(0)
i,k ∆µ

αk
α∇µ

µq
T

M∑
m=0

λ(i)
m,qE

m
i,k . (3.36)

The final expression of the κqq′-matrix can then be derived by comparing the diffusion
currents jµq from Eq. 3.13 and the one generated by the distribution function f (1)

Eq. 3.36. The diffusion coefficient matrix is then expressed in terms of the expansion

coefficients λ
(i)
m,q

κqq′ =
1

3

Nspecies∑
i=1

qi

M∑
m=0

λ(i)
m,q

∫
dki

(2π)3k0
i

Emi,k(m
2
i − E2

i,k)f
(0)
i,k . (3.37)

These expansion coefficients have to be evaluated numerically by solving sets of linear
equations of particle species and their interactions for each conserved charge q. This
calculation was performed by the author of [111] and calculations that are not in
the original publication are from private communication. It becomes evident that
the comparison between the CE version of κqq′ and the GK results are very good in
order to verify the correctness of both results.

Diffusion coefficient in the RTA

It is useful for the interpretation of the results of the diffusion coefficient matrix
to derive the analytic result of κqq′ within the RTA. The final expression of κqq′ is
rather simple and one can identify important quantities that govern the behavior of
the diffusion coefficients. The derivation of the following equations is, again, taken
from [111].

The starting point for calculations in the RTA is the approximation of the collision
kernel of the Boltzmann equation

kµi ∂µfi,k =

Nspecies∑
j

C(1)
ij [fj,k] = −

Ei,k
τ
f

(1)
i,k . (3.38)

Here, C is the linearized collision term and τ is the relaxation time of the specific
process, which in this case is the mean free time on a global scale. In this approxima-
tion, one can analytically calculate the transport coefficients and the relaxation time
τ serves as an input. It would in principle be possible to extract the relaxation time
τ from SMASH and compare the RTA to the Green-Kubo method. After some steps
of derivation, the diffusion coefficient matrix in the RTA has the following form

κqq′ =
τ

3

Nspecies∑
i=1

qiq
′
i

∫
d4K ′

1

Ei,k
(E2

i,k −m2
i )f

(0)
i,k − τ

Tnqnq′

ε+ P0
. (3.39)
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In the equation above, there exist two counteracting terms. Both terms are pro-
portional to the relaxation time of the system. If the scattering rate of the system
increases, the relaxation time will decrease, since they are inversely proportional to
τ ∼ 1/Γscat. As a result, the charges of the medium can, in a shorter period of time,
be distributed throughout the medium and therefore the diffusion coefficient decreases
as well. The first term on the left-hand side is proportional to the total charge density
ntot due to the symmetry of the qq′ factor. The second term is proportional to the
net charge density and it becomes important when the net charge density is in the
same order of magnitude as ntot. The second term becomes important in a medium
with a finite chemical potential µq.

3.5 Methodology

Infinite matter calculations

Before the details are explained on how the Green-Kubo relations are applied to
extract the transport coefficients, the setup will presented. For computing transport
coefficients from SMASH, a box of length L with periodic boundary conditions is
used, which simulates an infinite matter system. This is realized such that if a
particle crosses a wall of the box, it will be placed on the other side of the box
without any loss of energy. The initial phase-space distribution is obtained from the

Boltzmann distribution f
(0)
k , see Eq. 3.32. The density ni of particle species i given

temperature T and chemical potential µi is then calculated by integrating f
(0)
k over

the three momenta which yields

ni(T, µi) =
eµi/T

2π2
m2T K2(mi/T ) . (3.40)

The mean number of particles is obtained from Ni = niL
3 and the sets of particles

are computed from sampling a Poisson distribution according to the grand-canonical
ensemble (GCE). The probability distribution of the particles in momentum space
and in spherical coordinates with angles θ and φ are

w(k) ∼ exp

(
−
Ei,k
T

)
k2dksinθdθdφ , (3.41)

When a finite set of particles is sampled from the equation above, the resulting
total momentum ~ktot =

∑
i
~ki will have a finite value, due to fluctuations. This

effectively leads the system to move in one direction even though this should not be
the case. In order for ktot = 0, the momenta of each individual particles is shifted by
ki → ki − ~ktot/Nparticles.

During the simulation, it is necessary to compute the temperature of the hadron
gas in order to see, if thermal equilibrium has been reached. The temperature is
calculated from the mean energy density of a particle species at a given point in time.
Assuming that the momenta follow the Boltzmann distribution, the mean energy
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density of a particle species i in the local rest frame can be computed from

〈e〉i = uµT
µνuν =

∫
d3k

k0
(kµuµ)2f

(0)
i,k =

eµi/T giT
4

2π2

m

T

(
3K2

(m
T

)
+
m

T
K1

(m
T

))
.

(3.42)
By inverting the equation above, one can directly obtain the temperature from
the inverse function, because Eq. 3.42 is a monotonically increasing function in
temperature. Technically, the inverse is computed by numerically interpolating the
temperature as a function of the energy density. Using this trick, one can then use the
energy density of a given species from SMASH and directly calculate the temperature.
The total temperature of the medium is computed by averaging the individual ones
of the lightest stable hadrons that have electric, baryonic and strangeness quantum
numbers, which are the pion nucleon and kaon

T =
TπNπ + TNNN + TKNK

Nπ +NN +NK
. (3.43)

Here, NX is the number of particles of species X at each timestep with their respective
temperature TX . The obtained value of T should in principle be a proxy of the
temperature of the medium in thermal equilibrium since T is an intensive quantity.
An extension towards unstable particles is more complicated because one has to
incorporate the spectral function A(m) in Eq. 3.42.

In the next step, the methodology to compute κqq′ and η from the infinite matter
simulation is explained.

The Green-Kubo method

In this section, the methodology to calculate the transport coefficients from the
Green-Kubo relations and to compute thermodynamic properties like the entropy
density from a microscopic transport approach is introduced. The Green-Kubo
relations for the shear viscosity η and the diffusion coefficient matrix κqq′ are

η =
V

T

∫ ∞
0
〈T ij(0)T ij(t)〉dt , (3.44)

κqq′

T
=
V

3

∫ ∞
0
〈Jq(0) · Jq′(t)〉dt . (3.45)

Here, V is the volume and T is the temperature of the system. The correlation
functions are calculated using the off-diagonal components of the energy-momentum
tensor T ij and the charge currents Jq. In equilibrium and in the local rest frame of the
medium, the off-diagonal components of the energy-momentum tensor are equivalent
to the viscous shear-stress tensor πij for an isotropic medium. The correlation
functions are calculated using the following equation

〈I(0)I(t)〉 =

〈
lim

tmax→∞

1

tmax

∫ tmax

0
I(t+ t′)I(t′)dt′

〉
(3.46)

=

〈
1

Ntmax

Ntmax∑
j=1

I(j∆t)I(j∆t+ i∆t)dt′

〉
. (3.47)

32



Here, ∆t is the timestep, tmax the end-time, Ntmax = tmax/∆t the maximum amount
of timesteps in the simulation and i∆t = t. I(t) stands representative for one of
the equilibrium currents T ij or Jq. In addition, 〈...〉 denotes the average over many
events. The error of 〈I(0)I(t)〉 is computed using the standard deviation σ/

√
Nevents.

The time evolution of the equilibrium currents is governed by the implemented
interactions of the transport model. As the transport code evolves each single particle
distribution function, the distribution function f is calculated with

fk(x) =
N∑
i=1

δ(3)(x− xi)δ(3)(k − ki) , (3.48)

where the sum runs over all particles in the system. Using the above expression, the
spatially averaged energy-momentum tensor can be written as

T ij =
1

V

∫
d3x

∫
d3k

k0
kikjfk(x) =

1

V

N∑
l=1

kilk
j
l

k0
l

. (3.49)

and simultaneously, the charge current is

J iq =
1

V

∫
d3x

∫
d3k

k0
qkifk(x) =

1

V

N∑
l=1

ql
kil
k0
l

. (3.50)

As the full phase space information of each particle is available, the equilibrium
currents, Eq. 3.49 and 3.50 are evaluated at each timestep of the simulation.

Since the shear viscosity is usually normalized to another thermodynamic quantity
like the entropy density, they also have to be computed from the simulation. In this
work, the definition of the Gibbs-free energy is used. Starting from the infinitesimal
change of entropy dS, one can write

TdS = dU + pdV −
∑
k

µldNl . (3.51)

Here, the sum runs over the conserved charges {B,Q, S} in the medium. As the
volume is fixed during the simulation and dw = dU + pdV , the entropy density s can
be calculated as

s =
w −

∑
k µknk
T

, (3.52)

where w = ε+ P the enthalpy. Since the computational frame of the simulation is
equivalent to the local rest frame, the individual quantities from Eq. 3.52 can be
calculated as

ε = 〈T 00〉 (3.53)

P =
1

3

3∑
i=1

〈T ii〉 . (3.54)
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The computation of Eq. 3.44 and 3.45 where previously performed by fitting the
correlation function Eq. 3.47, assuming that it follows an exponential decay

〈I(t)I(0)〉 = 〈I(0)I(0)〉 exp

(
− t
τ

)
. (3.55)

Here, 〈I(t)I(0)〉 is the value of the correlation function at the initial time and τ
is the relaxation time of the system. The above expression can then be fitted to
the actual correlation function to obtain the relaxation time of the medium. The
exponential ansatz was motivated in the previous section when it was shown that
the memory kernel in the RTA had an exponential shape. This also shows that τ
which appears in Eq. 3.55 can be interpreted as the associated time corresponding to
the relaxation of I(t). By plugging Eq. 3.55 into Eq. 3.44, one can easily get the
expression of the transport coefficient. For example, the shear viscosity is

η =
V

T

∫ ∞
0
〈T ij(0)T ij(t)〉dt =

V τ〈T ij(0)T ij(t)〉
T

. (3.56)

However, the ansatz that the correlation function has an exponential shape has its
limitations and there exist cases in which the above description is not valid. By
directly integrating Eq. 3.46, one is not limited to any assumptions of the shape of
the correlation function and can additionally capture any information in their tails
that might not be included by the fitting procedure.

In the following section, the procedure will be explained to obtain the transport
coefficients by directly integrating Eq. 3.47 numerically and the result will be com-
pared to a CE calculation of the same system. Cases, in which the assumption breaks
down are for example, the bulk viscosity, where the correlation function follows a
multi-exponential function (see e.g. Fig. 5 in [106]). It was also shown in the case of
a very dense system, that the correlation function slightly varies from an exponential
(see e.g. Fig. 12 in [103]).

The integration of correlation function is performed using the trapezoidal rule
which is sufficient with a timestep size of dt = 0.05 fm, since the end times of
the simulations are usually in the order of ∼ 103 fm. The error of the transport
coefficients is calculated by integrating the correlation function both within the
lower/upper error. Since the correlation functions suffer from large noise in their
tails it is important to evaluate the convergence of the numerical integration, which
will be checked at the beginning of the next section. For all following calculations,
the timestep is chosen to be dt = 0.05 fm.

Fig. 3.1 shows the fluctuations of the conserved charge current jxBQS and the

off-diagonal components of the energy-momentum tensor T ij . Comparing Fig. 3.1
to the discussion in the previous section (Section 3.2 and Section 3.3), one can see
that the fluctuations are not white noise fluctuations. There exist correlations in the
noise over time which results in some timescale that a small perturbation needs, in
order to relax. Over time, the equilibrium currents fluctuate around zero.

The goal is now to apply the above-described methodology in a simple test case
and compare it to CE calculations.
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Figure 3.1: Example of the fluctuations of the x-component of the conserved charge
current jBQS (left) and the off-diagonal components of the energy momentum tensor
T ij (right) as a function of the temperature. The system is a multi-component
hadron gas that will be introduced in Section 3.6.7 interacting via a constant elastic
cross section at a temperature of T = 150 MeV in a box of V = (30 fm)3.

3.6 Results from the hadron gas with interactions

The structure of the following sections is as follows. Since the goal is to sequentially
study the influence of the collision kernel and the number of degrees of freedom on
the transport coefficients, the details of the interactions will be explained as well.
So first, the interactions will be introduced and then, the impact on the transport
coefficients will be studied. In the first step, a simple system of pions interacting with
a constant isotropic cross-section is investigated, to test the numerical integration of
the correlation function and compare it to CE calculations.

3.6.1 Introducing the collision term

An effective solution of the Boltzmann equation can be found by evolving the single-
particle distribution function on a Monte-Carlo basis. To do so, a criterion is needed
for the collision between two particles and one of the possible criteria is the geometric
collision criterion, that has been used in many different transport approaches (see
e.g. [86, 87]). It defines that a collision takes place if the relative transverse distance
between two particles d⊥ is smaller than the following quantity

d⊥ <

√
σtot(
√
s)

π
, (3.57)

where σtot(
√
s) is the total energy-dependent cross section of the reaction. The

geometric collision criterion uses the geometric interpretation of the cross-section,
in which σtot acts as the total surface area of the disc. The distance between the
particles is evaluated from

d2
⊥ = (ra − rb)

2 − ((ra − rb) · (ka − kb))
2

(ka − kb)2
. (3.58)
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In the equation above, r and k are the spatial and momentum three vectors of particle
a and b in the center-of-mass frame of the collision. A covariant formulation of the
collision criterion by Hirano et al. is used [155]. One problem with the geometric
collision criterion is that it is not possible to describe interactions with more than 2
incoming particles. A solution to this will be presented later in this chapter.

In the following section, the transport coefficients are calculated for a single
species gas with three electric charges (π±,0), interacting via a constant isotropic
cross-section of σ = 30 mb.

3.6.2 Simple test case

We are now ready to test the methodology for a hadron gas consisting of three
pions interacting via a constant isotropic cross-section of σtot = 30 mb. This specific
comparison between the Green-Kubo result from SMASH and CE calculations has
been done before, see e.g. [156] and it is known that both calculations should return
the same result. However, what has been newly introduced in this work is the direct
numerical integration of the correlation function. It is therefore the goal of this
section to gauge the calculations and study its limitations.

As a starting point, it can also be helpful to verify the computation with the
value of the correlation function at time t = 0. At the initial time, the value is
fully determined by thermal fluctuations and e.g. for the electric charge current,
〈Jq(0)Jq(0)〉 can be evaluated semi-analytically by calculating moments of the equi-

librium Boltzmann-distribution f
(0)
k . Starting with one component of the charge

current, one can write the correlation between the two charges q and q′ as

〈Jxq (0)Jxq′(0)〉 =

〈Nspecies∑
m=1

qm
kxm
k0
m

Nspecies∑
n=1

q′n
kxn
k0
n

〉
=

〈Nspecies∑
n=1

√
qnq′n

kxn
k0
n

2〉
(3.59)

=

Nspecies∑
n=1

qnq
′
ngn

6π2V

∫ ∞
0

dk
k4

En,k
f

(0)
n,k . (3.60)

In the last step, a sum over the number of particle species was introduced with
the respective degeneracy gn. Even though the computation is not relevant in this
section, for the sake of completeness the equation for the correlation function of the
energy-momentum tensor at the initial time is calculated from

〈T ij(0)T ij(0)〉 =

Nspecies∑
a=0

ga
30π2V

∫ ∞
0

dk
k6

Ea,k
f

(0)
a,k . (3.61)

Fig. 3.2 shows the comparison of the correlation function at time t = 0 obtained
from SMASH and the results of Eq. 3.60. One can see that the comparison matches
perfectly between the simulation and the derived formula. With the confidence
that at least the initial value of the correlation function is computed correctly, the
next step is to integrate the correlation function in order to obtain the transport
coefficient.
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Figure 3.2: Comparison of the value of the correlation function at time t = 0 as a
function of the temperature between SMASH and semi-analytical calculation.

The time-dependent correlation function and the dependency of the electric
charge diffusion coefficient on the upper time of the integration are shown in Fig. 3.3.
The quantity on the right-hand side is defined as

κQQ(t)

T 2
=

V

3T

∫ t

0
〈Jq(0)Jq(t

′)〉dt′ . (3.62)

The upper and lower error of Eq. 3.62 is calculated by integrating the respective
upper/lower error of the correlation function. Fig. 3.3 shows an important result
because of two things. First, the integration of the correlation function converges
within the time scale of the simulations and second, the values of the integration
converge perfectly towards the CE calculation. In addition, this simple test case can
be used to define a criterion when to stop the integration of the Green-Kubo relation
because, for obvious reasons, it is not possible to integrate until infinity. At some
point, only the error increases, whereas the mean value stays relatively constant.
It is found that a good result within the errors is achieved when the integration is
performed until a relative error of 5% is reached. The same criterion is applied for the
rest of the results presented in this chapter for the shear viscosity η and the diffusion
coefficient matrix κqq′ . The final temperature dependence of κQQ is presented in
Fig. 3.4, obtained from the procedure explained above. A perfect agreement between
the methodology from this work and CE calculations is found, ensuring that the
numerical integration works perfectly and can be used for further studies.

In the next step, the goal is to study more complex systems going beyond two-body
interactions. However, before the results are presented, the treatment in SMASH of
unstable particles is shown.
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Figure 3.3: Left: Correlation function of the electric charge current as a function
of time for different temperatures. Right: Dependency of the diffusion coefficient
of the electric charge as a function of the upper limit of integration for multiple
temperatures. The dashed lines show the value of the CE calculation for each
individual temperature.
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Figure 3.4: Electric charge diffusion coefficient as a function of temperature. Com-
parison of the results from SMASH (red points) to CE calculations (blue line).

3.6.3 Extension of the collision term towards multi-particle inter-
actions

In this section, the details of the implementation of unstable particles in SMASH
are presented. This includes resonance formation processes 2→ 1 as well as decays
1→ 2. In addition, the treatment of multi-particle reactions is shown.

38



2→ 1 processes

To treat 2 ↔ 1 processes, the notion of an unstable particle has to be known and
its behavior has to be treated in the calculation. The starting point is the spectral
function of unstable particles, which describes the probability distribution around
its pole mass M0. In vacuum, they can be represented by relativistic Breit-Wigner
distributions

A(m) =
2N
π

m2Γ(m)

(m2 −M2
0 )2 +m2Γ(m)2

. (3.63)

Here, m is the off-shell mass of the resonance and N a constant such that the spectral
function is normalized to unity

∫∞
0 A(m)dm = 1. Γ(m) is the mass-dependent decay

width and is defined as
Γ(m) =

∑
R

ΓR(m) , (3.64)

where the sum runs over all possible resonance states and ΓR(m) is the decay width
of an individual decay process. The decay width can in principle be treated as a
constant however, it is more physical to treat it as mass-dependent. Below a certain
threshold mmin, defined by the lightest resonance, the spectral function has to vanish
as there exist no decay channels. The treatment in SMASH of mass-dependent decay
width of the individual decay channel of a resonance R decaying into particle a and
b follows the description of Manley et al. [157]

ΓR→ab = Γ0
R→ab

ρab(m)

ρab(M0)
. (3.65)

In the equation above the function ρab(m) is defined as

Figure 3.5: Mass dependent decay width of the N?(1440)+ resonance. The total
decay width is shown as the full black line whereas the partial channels are depicted
as colored lines. The figure is taken from [85].

ρab(m) =

∫
dmadmbAa(ma)Ab(mb)

|kf |
m

B2
L(|~pf |R)F2

ab(m) , (3.66)
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where the integration is performed over the off-shell masses of the decay products.
In the case of a decay into a stable hadron, the spectral function simply becomes
A(m) = δ(m −M0) and the integral collapses. If one of the decay products is a
resonance itself, the integration has to be performed and the form factor F becomes
important. They are defined as

Fab =
λ4 + 1/4(s0 −M2

0 )2

λ4 + (m2 − 1/2(s0 +M2
0 ))2

, (3.67)

where λ is a cut-off parameter that is implemented for different decay products
(for further details see [85]). |kf | is the absolute final state momentum in the
center-of-mass frame which can be written as

k2
f =

(m2 − (ma +mb)
2)(m2 − (ma −mb)

2)

4m2
. (3.68)

In Eq. 3.66, BL(p) are the so-called Blatt-Weisskopf functions [158] which depend
on the angular momentum of the decay products a and b. The first Blatt-Weisskopf
functions are

B0(p) = 1 , (3.69)

B1(p) =
p√

1 + p2
, (3.70)

B2(p) =
p2√

9 + 3p2 + p4
. (3.71)

An example of Γ(m) is shown in Fig. 3.5 of the unstable baryon N?(1440)+ with
all its decay channels. One can see that the decay width vanishes at some minimal
mass mmin where no decay channels exist.

It is worth noting that the presented expressions describe the vacuum properties
of the resonance, whereas it is known that at non-zero temperature, the spectral
function changes, however, in-medium modifications are not implemented in SMASH.
A study of an effective modification due to the hadronic scatterings can be found in
[159].

Finally, the resonance formation cross-section is calculated using [86]

σab→R(s) =
2JR + 1

(2Ja + 1)(2Jb + 1)
Sab

2π2

k2
i

Γab→R(s)AR(
√
s) . (3.72)

With J the spin of the particle, Sab a symmetry factor, which is 2 if a and b are the
same and 1 if not and ki the center of mass momentum (see Eq. 3.68).

In the expression above, the in-width Γab→R(m) is the width of the inverse
reaction of R → ab and it is generally not the same as in the case of the forward
reaction R → ab, except if the particles in the initial state are the same. If the
incoming particles are not the same, the in-width is computed from

Γab→R(m) = Γ0
R→ab

|~pab|BL(|~pab|R)Fab(m)

mρab(M0)
. (3.73)

In the next step, the details of performing the decay of an unstable particle will
be explained.
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1→ 2 processes

In the previous section, the description of resonance formation processes was explained.
For the modeling of the decay within the simulation the lifetime of the resonance
which is simply τ = Γ(m)−1 is needed. Then, the probability of decay within a
timestep in the limit of ∆t→ 0 is

Pdecay(t) = exp(−Γ(m)t) . (3.74)

In the case where there exist multiple possible decay channels, one of them is randomly
chosen from the probability

pi =
Γi(m)

Γ(m)
. (3.75)

Finally, the treatment of multi-particle reactions will be presented next, before
the dependency of the transport coefficients of these processes will be studied.

Multi-particle reactions in transport approaches

In order to treat multi-particle reactions directly, it is necessary to use a different
collision criterion that is easily generalized to interactions with more than two
incoming particles, the stochastic collision criterion [160, 161, 62]. It was recently
introduced in SMASH [142] to study multi-particle reactions in a hadronic medium.

For the stochastic collision criterion, a collision probability is defined for each
possible reaction within a phase space cell ∆3x∆3k within a given timestep ∆t. This
probability can be directly introduced for a n→ m reaction as

Pn→m =
∆Nn→m

reactions∏n
j=1 ∆Nj

. (3.76)

Here, ∆Nj is the number of particles within the cell and ∆Nn→m
reactions the number

of reactions for the timestep within the cell. With the scattering rate given by the
collision term of the Boltzmann equation, the probability for 2- and 3-body reactions
can be expressed in terms of the cross-section or decay width of the reverse process.
More details of this derivation and the numerical treatment are found in [142].

The probability of an arbitrary 2-to-m scattering is given by

P2→m =
∆t

∆3x
vrelσ2→m(

√
s) (3.77)

with the timestep size ∆t, the cell volume ∆3x, the cross-section of the process and
the relative velocity

vrel =
λ1/2(s;m2

1,m
2
2)

2E1E2
, (3.78)

which uses the abbreviation λ(s;m2
1,m

2
2) = (s−m2

1 −m2
2)2 − 4m2

1m
2
2.

The probability for a 3-to-1 reaction is given by

P3→1 =

(
g1′

g1g2g3

)
S!

∆t

(∆3x)2

π

4E1E2E3

Γ1→3(
√
s)

Φ3(s)
A(
√
s) , (3.79)
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in terms of the decay width of the reverse process Γ1→3(
√
s), the spectral function

of the formed resonance A(
√
s), the 3-body phase space Φ3(s), the spin degenercy

factor gj = 2sj + 1 (sj being the spin of the state) and S the number of identical
incoming particles. With this, the inverse reactions to mesonic Dalitz decays i.e.
3-to-1 reactions are accounted for in SMASH in order to obtain detailed balance.
The 3-body phase space is then sampled isotropically for the outgoing particles.

The 3-to-1 reactions in SMASH are πππ → ω, πππ → φ and ππη → η′. Other
multi-particle reactions realized in SMASH are the light nuclei generation with 3-to-2
interactions and the back-reaction of NN̄ annihilations via 5-to-2 reactions. Results
with them are discussed in [142] and [101] respectively. However, since their influence
is not studied in this work the details are not included here.

3.6.4 Quantitative influence of multi-particle scatterings

In this section, the influence of multi-particle scatterings is studied in the hadronic
regime. Multi-particle reactions become important in a very dense medium and
processes with more than two interaction partners become more probable.

The calculation of the transport coefficients is performed in a hadron gas with
only three constituents consistent of π, ρ and ω (plus their corresponding charge
and anti-particle states). The reaction of interest is the mesonic 3 ↔ 1 reaction
ω ↔ 3π which, using only binary reactions is modeled via ω ↔ πρ↔ 3π. Here, the ρ
meson acts as an intermediate step to reach the 3π final state. The probability P3↔1

is given by Eq. 3.79. To be able to draw a fair comparison between the two cases
(3 ↔ 1 vs. binary reaction chain), the process ρ ↔ ππ is added to the case with
multi-particle reactions. In order to reduce systematic uncertainties, both simulations
are performed using the stochastic collision criterion. The probability of the P2↔1

process is given by Eq. 3.77.
One of the findings of the newly implemented hadronic multi-particle reactions is,

that the time of chemical and thermal equilibration is reduced [142]. It is therefore
reasonable to assume that the transport coefficients are affected as well, due to their
proportionality to the relaxation time of the medium. The question is still, which
type of relaxation times are affected? In this section, the shear viscosity, as well as
the electric charge diffusion coefficient κQQ is of interest.

Fig. 3.6 shows the correlation function at t = 0 of SMASH compared to Eq. 3.60
and 3.61. In both cases, the integration over momenta has to be extended with
an integration over the spectral function, since both the ρ and ω are unstable
particles. Here, the functional form of Eq. 3.66 is taken. The comparison between
the semi-analytical calculation and the results from SMASH are consistent with each
other which ensures that the computation of the correlation function was performed
correctly. In addition, it shows that the variance of the energy-momentum tensor Tµν

and the charge current J iQ of the two systems have the same values. Any difference
that appears in the final value of the transport coefficients therefore has to originate
from the relaxation time of the medium.

Fig. 3.7 shows the shear viscosity η and the electric charge diffusion coefficient
κQQ for the comparison between with and without multi-particle reactions. Starting
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Figure 3.6: Comparison of the value of the correlation function at time t = 0 of the
electric charge current jQ and off-diagonal components of the energy momentum
tensor T ij as a function of the temperature between SMASH (symbols) and semi-
analytical calculation (lines). The simulation using multi-particle reactions (open
symbol) and using only the binary reaction chain (full symbols) are presented.

with the shear viscosity, the value of η has a strong temperature dependence and it
grows with increasing temperature. Starting around T ∼ 150 MeV, the influence of
the multi-particle reaction becomes dominant and it effectively decreases the shear
viscosity. The reason for the growing difference is that at lower temperatures, the
energy is not sufficiently large to form a ρ or ω mesons, since both have masses
mρ/ω ∼ 780 MeV. Around T ∼ 150 MeV, the possible reaction channels open up
and the multi-particle reactions become important. Even though η is obtained by
integrating the correlation function, it is helpful to look at Eq. 3.56 for a better
understanding of the different components relevant for the transport coefficient. Since
V and T are fixed in the simulation η ∼ 〈T ij(0)T ij(0)〉τ and since 〈T ij(0)T ij(0)〉 is
equivalent for the two cases, the relaxation time relevant for η of the two systems
has to be τη3↔1 < τη3↔2↔1. This is in accordance with previous findings in which the
equilibration time has been found to be reduced with direct 3 ↔ 1 reactions. For
the shear viscosity, the relevant quantity is the timescale of equilibration of T ij from
small perturbations. With multi-particle reactions, there exists the direct process
ω ↔ 3π which is effectively faster in terms of relaxing T ij from out of equilibrium,
compared to ω ↔ πρ↔ 3π.

In contrast, the electric charge diffusion coefficient κQQ or electric conductivity
shows no influence on multi-particle processes. Since the value of the correlation
function at time t = 0 is equivalent for the two cases, the relaxation time for
the diffusion coefficient is the same as well τ

κQQ
3↔1 ∼ τ

κQQ
3↔2↔1. It is worth noting

that the type of relaxation time is different between η and κQQ, as they describe
different processes. For the electric charge diffusion coefficient, it is relevant how
fast perturbations in the electric current jQ can equilibrate. As the electric charge is
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Figure 3.7: Shear viscosity (left) and electric charge diffusion coefficient (right) as
a function of the temperature. Results obtained with multi-particle reactions (red
circles) as well as with the binary reaction chain (blue squares) are presented.

conserved in the process ω → 3π, other interactions in between don’t matter since
the charges are propagated nevertheless.

A similar result has been found when comparing the electrical conductivity and
the shear viscosity of an interacting hadron gas consistent of π and ρ mesons (Fig. 9
in [105] and Fig. 6 in [103]). After the resonance is formed, it propagates and
eventually decays with a certain probability. When comparing the results from
SMASH to CE calculations for the same gas but with a parametrized elastic cross
section σ2↔2(

√
s) = σππ→ρ→ππ(

√
s), a large difference on the level of η was found,

but not in σel. When the lifetime of the ρ-meson in SMASH was artificially set to
(approximately) zero, the shear viscosity matches perfectly with the CE calculation
whereas the electric conductivity is not largely affected. A similar phenomenon can
be found in the case with 3↔ 1 reactions versus 3↔ 2↔ 1. The shear viscosity is
largely affected by the intermediate reaction chain, which hinders relaxation of shear
stress whereas κQQ mostly depends on the total cross section and charge density
which is equivalent in the two cases.

Unfortunately, the calculation using multi-particle reactions cannot easily be
extended towards the full SMASH hadron gas. First, the usage consumes much more
computational time and the simulation of full SMASH hadron gas would simply take
too long. In addition, there are only a limited amount of reactions implemented, so
the changes caused by these few processes on the transport coefficients are assumed
to be negligible. However, this test case shows that multi-particle reactions become
important at temperatures around T & 130 MeV for the shear viscosity.

In the next step, the goal is to establish new interactions that have been imple-
mented since the publication of the previous results of transport coefficients and then
systematically study their influence on the full diffusion coefficient matrix and the
shear viscosity.
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3.6.5 Further extensions of the collision kernel

It was shown that the results from SMASH using the Green-Kubo method and CE
calculations match perfectly in a simple hadronic system. The main benefit of the
Green-Kubo approach is that one can relatively easily introduce new interactions in
the microscopic model and extract the transport coefficients.

The goal of this section is to do a more thorough analysis of the dependency of
the transport coefficient η and κij on the collision kernel within the full SMASH
hadron gas. Besides the interactions that have been used so far, (in-)elastic 2→ 2
reactions, as well as anisotropic cross-sections and the additive quark model will be
introduced.

Elastic 2→ 2

Elastic binary collisions are collisions in which the incoming particles are equal to
the outgoing particles. When viewed from the experimental side however it is not
possible to distinguish between a reaction where the incoming particles only ”bounce”
from each other or where a reaction of the type ab→ R→ ab took place. Therefore,
the elastic cross sections in the case of meson-baryon or meson-meson collisions are
calculated from the previously explained resonance formation plus their respective
decay. In the case of nucleon-nucleon scatterings, parametrizations from [162] are
used. If the energy of the reaction is below the threshold for the formation of the
resonance, parametrization of the 2→ 2 reactions is taken.

Inelastic 2→ 2

In the case of inelastic binary collisions where the final state particles differ from
the initial state, there are two cases that have to be treated differently. First, the
case where there is one resonance in the final state ab → cR. Here, one has to
integrate the cross-section over the spectral function of the respective resonance. The
energy-dependent cross-section is then computed as

σab→cR(s) =
(2JR + 1)(2Jc + 1)

s|~pi|
∑
I

(CIabC
I
cR)2 |M|2ab↔cR(s, I)

16π

×
∫ √s−mc

0
dmAR(m)|~pf |(

√
s,m,mc) . (3.80)

The sum over I runs over isospin states and CIab are Clebsch-Gordon coefficients
of the isospin states of particle a and b. The matrix elements |M| are obtained by
fitting parametrized expressions to model calculations. In the case of NN → N∆, a
fit to the One-Boson Exchange model is performed [163]. For other processes, an
isospin-dependent expression of |M| is used.

For the second case, where two resonances are in the final state of the binary
interaction ab → R1R2, Eq. 3.80 has to be extended by an additional integration
over the spectral function of the second resonance R2 and the integral has to be
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exchanged with∫ √s−mmin2

mmin1

dm1A1(m1)

∫ √s−mmin1

mmin2

dm2A2(m2)|~pf |(
√
s,m1,m2) . (3.81)

Generally, the following processes are included, which differ in the final state
particle content

• Single resonance excitation,

• Double resonance excitation,

• (Double) Resonance absorption (inverse of single and double resonance excita-
tion),

• Strangeness exchange K̄N → πΥ(Λ,Σ,Ξ),

• Inelastic charge exchange,

• Nucleon-nucleon to double mesonic interaction NN̄ → h1π.

Angular distributions

It is known that the cross-sections of some scattering processes depend on the angle
Ω of the outgoing particles. For the previous results, only isotropic cross-sections
have been used which are independent of the scattering angle. In this section, the
extension of the cross-section towards σ(

√
s)→ σ(

√
s,Ω) in SMASH is explained.

The incorporation of angular distributions on the final state of elastic and inelastic
binary interactions of the form

dσ/dt ∝ e−bt (3.82)

is used [164]. Here, the baseline is the measurement of the angular distribution in
elastic pp interactions. Starting with elastic NN processes, in which the distribution
is measured, it is argued in [164] that the final state in NN → N∆ scatterings has a
similar shape as the elastic NN interaction, which is why the same distribution is
applied for a scattering with a ∆ in the final state. Due to the lack of experimental
data on the measurements of the angular distributions, additionally, the same
distributions for all baryonic and mesonic elastic scatterings are included in the
calculation. This is the main extension with respect to the previous computations.
Fig. 3.8 shows the angular distribution dσ/dt as a function of the Mandelstam
variable t. The red curve shows the contribution of the elastic NN scattering and
one can see that it matches well with experimental data. The distribution of heavier
resonance states is not symmetric anymore due to restrictions in the phase space
distributions. As there are no measurements of the angular distributions of inelastic
scatterings, SMASH cannot be tuned to data but overall the results are comparable
to the measurements. The energy dependence of the parameter b in Eq. 3.82 is
computed from the parametrization in [164].
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Figure 3.8: Angular distribution of inelastic pp scatterings. The figure is taken from
[165] and the data points are from [166].

AQM cross sections

The next extension of interactions in SMASH are cross-sections calculated using the
additive quark model (AQM). These are parametrizations for cross-sections between
hadrons that are not known experimentally and they can be written as

σAQMx = 40

(
2

3

)nmeson

(1− 0.4xs1)(1− 0.4xs2) , (3.83)

where nmeson is the number of mesons and xs1,2 is the fraction of strange over non-
strange quarks of the two incoming hadrons. The cross-section of unknown processes
is then scaled according to

σAQM
process

σAQM
ref−process

σAQM
ref−process . (3.84)

Here, σAQM
ref−process is a reference process where the actual cross section is experimentally

well defined. The inclusion of AQM cross-sections will enhance the number of
interactions as there are more cross-sections between hadrons.

The extension with the AQM cross-sections is the second extension of the collision
kernel whose effects will be studied in the following section.

3.6.6 Influence from angular distributions and AQM cross-sections

In this section, the influence of the previously explained extensions of the collision
kernel in SMASH on the shear viscosity and the diffusion coefficient matrix will be
systematically studied. Since the full SMASH hadron gas is used, the full diffusion
coefficient matrix κqq′ can be presented. In the following, the results from the SMASH
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version used in this work (SMASH-2.2) in which the above-described interactions are
included will be compared to the previously obtained results of the shear viscosity
from [103], which was calculated using the version SMASH-1.6. Here, no AQM
cross-sections were included and the angular distributions were only applied for
NN → NN and NN → NN? reactions.

0.08 0.10 0.12 0.14 0.16 0.18

T [GeV]

100/s

SMASH 2.2, default
without AQM
SMASH 1.6
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with isotropic collisions

Figure 3.9: Shear viscosity over entropy density versus temperature. The results of
the SMASH-2.2 version (blue) are compared to the results of SMASH-1.6 (green). On
the left, the influence of additional elastic cross-sections via the AQM description is
presented (red triangles). On the right, the influence of isotropic angular distributions
(yellow triangles) is shown.

Starting with the shear viscosity, it is found that both angular distributions, as
well as the AQM cross-sections, have a strong impact on the dimensionless quantity
shear viscosity over entropy density η/s, as is depicted in Fig. 3.9. The impact
of additional elastic cross-sections drastically reduces η. Whereas the temperature
dependence of the SMASH-1.6 results shows a plateau from T ∼ 110 MeV on, the
shear viscosity of version SMASH-2.2 further decreases. When the hadron gas is
evolved without the AQM cross-sections, the plateau behavior and the result of
SMASH-1.6 are approximately recovered. η/s is a little bit larger in comparison to the
results of SMASH-1.6 at larger temperatures and smaller at the lowest temperature
point.

The description of the AQM cross-section provides an estimation of elastic
cross-sections for interactions between particles that are not known. Especially at
higher temperatures where the energy of the system is sufficiently large to produce
more exotic particle species, the interactions via AQM cross-sections become more
important. The additional elastic cross-sections reduce the relaxation time of the
energy-momentum tensor and as a result, the shear viscosity decreases.

The influence of anisotropic scatterings is shown on the right-hand side of Fig. 3.9.
In comparison to the SMASH-2.2 version, treating all interactions isotropically further
reduces η at larger temperatures, even though this effect is not as dominant as the
inclusion of the AQM cross-section. The decrease of η originates from the reduction
of the phase space of the outgoing particles of an interaction. If a small perturbation
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in T ij occurs, the relaxation of this perturbation is faster if the full phase space
is open. If anisotropic angular distributions are incorporated the relaxation time
increases and the viscosity increases as well.

Interestingly, at the lowest temperature point T ∼ 70 MeV a difference in η/s is
observed. In this temperature region, the system is dominated by pions, and the
relevant quantity is their respective cross-section. As these were not modified within
the changes from version SMASH-1.6 to SMASH-2.2 it is important to understand
where this difference comes from. Fig. 3.10 shows the correlation function of the
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Figure 3.10: Left: Averaged correlation function of the energy-momentum tensor at
a temperature of T = 80 MeV for SMASH-2.2 (blue) and SMASH-2.2 without AQM
cross-sections (red). Right: Dependence of η/s on the upper limit of integration.
The green band shows the results of SMASH-1.6.

energy-momentum tensor of the two following systems. The default SMASH-2.2
result and the result of the medium without the AQM cross-sections. The shape
of the correlation function differs clearly between the two presented cases. Starting
from t ∼ 80 fm the two curves split and the one without AQM cross-sections is above
the one from default SMASH-2.2. It is also worth noting that the two functions do
not follow a clear exponential decay at least until t ∼ 300 MeV. As a result, the
methodology of integrating the correlation function yields a better result, since it
captures the information in the correlation function at these late times. Similar to
Eq. 3.62, the dependency on the upper value of the integration is presented on the
right-hand side of Fig. 3.10

η(t)

s
=

V

Ts

∫ t

0
〈T ij(0)T ij(t′)〉dt′ . (3.85)

First of all, a convergence of the integral is found and the final value of η/s clearly
differs between the two cases. The system that is simulated without the AQM cross-
sections saturates at η/s ∼ 3 whereas the SMASH-1.6 case is η/s ∼ 3.8. Within the
approximated error of the SMASH-1.6 computation, the difference is still significant.
Another contributing factor could be the difference in the methodology used to extract
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the shear viscosity. The SMASH-1.6 results were obtained using the fitting method
which might not capture the full structure encoded in 〈T ij(0)T ij(t)〉. However, it is
not clear at this point where the difference to the SMASH-1.6 result comes from and
is left for future studies.
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Figure 3.11: Full diffusion coefficient matrix of conserved charges as a function
of temperature. The result of the full SMASH collision kernel (blue), the impact
of additional elastic cross-sections via the AQM description (red squares) and the
influence of isotropic collisions (open green squares) is shown.

Fig. 3.11 shows the full diffusion coefficient matrix of conserved charges from
SMASH, which additionally shows the influence of angular distributions and AQM
cross-sections. For all diffusion coefficients, except κQQ, a monotonically increasing
behavior as a function of temperature is found. This is a result of an increase in the
charge density as more charge carriers become available to the system. In the case of
κBB, the lightest charge carrier is the nucleon, for κSS the kaon and in the case of
κBS it is the Λ baryon, which carries both baryon and strangeness charge. However,
with increasing hadron density the scattering rate increases as well which suppresses
the diffusion coefficients.

The additional cross-sections from the AQM model have a strong impact on
all diffusion coefficients. At low temperatures where the hadron gas is mostly
dominated by the lightest mesons, the inclusion of the AQM cross-section plays no
large role. With increasing temperature, however, where the baryonic degrees of
freedom start to dominate, the additional elastic cross-section significantly decreases
the diffusion coefficients. This originates from the fact that the diffusion coefficients
are proportional to the scattering rate and the cross-section ∼ 1/Γscat ∼ 1/(ntotσtot).
Therefore with additional cross-sections the coefficients κqq′ decrease.

Interestingly and in contrast to the shear viscosity η, non-isotropic distributions
have no visible influence on the diffusion coefficient. A possible explanation is that
the strength of the anisotropy is simply not large enough.
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3.6.7 Dependency on degrees of freedom

In the previous section, a detailed investigation of the collision kernel dependency on
η and κqq′ was performed. In this section, the dependency on the number of degrees
of freedom will be determined. To do this, the transport coefficients of three different
systems are computed and their values are compared with each other. In Tab. A.1 in
App. A.2, the detailed hadronic degrees of freedom and their properties are described
as well as their notation in the presented figures.
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Figure 3.12: Shear viscosity versus temperature. Results of the full SMASH hadron
gas (blue), πKNΛΣ + Res. gas (red) and the elastically interacting πKNΛΣ (green).
For more details, the reader is referred to App. A.2.

Fig. 3.12 shows the dependency of the shear viscosity on the number of degrees of
freedom in the system. Here, one can already see a clear difference between system
πKNΛΣ (const.) where the shear viscosity is much smaller for T > 100 MeV in
comparison to the other two systems. Around T ∼ 100 MeV, the value of η of the
three systems approximately converge. The shear viscosity of the SMASH-2.2 hadron
gas and the subset πKNΛΣ + Res. have similar values and a similar shape, even
though η of the latter is a bit smaller. The small difference in shear viscosity between
the systems can be understood as follows. As more heavy baryonic resonances are
present in the SMASH-2.2 hadron gas in comparison to the πKNΛΣ + Res gas,
their lifetimes become important effectively increasing η, as it was shown in [103]. In
the temperature region T < 100 MeV where the medium is dominated by mesonic
interactions, the purely elastically interacting hadron gas with σelastic = 30 mb seems
to be a good approximation of the full SMASH hadron gas.

The influence of varying degrees of freedom on the diffusion coefficient matrix
κij is presented in Fig. 3.13. Similar to the shear viscosity, it is found that the κij
strongly differs between πKNΛΣ (const.) and the other two more complex hadron
gases. The difference however between πKNΛΣ (+Res.) and the SMASH-2.2 gas
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Figure 3.13: Diffusion coefficient matrix as a function of temperature. Results of
the full SMASH hadron gas (blue), πKNΛΣ + Res. gas (red) and the elastically
interacting πKNΛΣ (green). The dotted lines show results from [111]. For more
details, see App. A.2.

needs closer inspection. Similar to the elastic pion gas, the comparison between the
CE calculation of the πKNΛΣ (const.) gas and the Green-Kubo results are shown.
Within the errors, excellent agreement between the two calculations is found, again
verifying the methodology of this work.

As the πKNΛΣ + Res gas is similar in its degrees of freedom with respect to the
one used in [111], a comparison between the two is interesting since the impact of
resonance formation processes becomes visible. Whereas the comparison between the
CE and the Green-Kubo calculation is consistent between κBB and κQQ, the other
κSS and the cross-diffusion coefficients differ strongly. The results from SMASH of
κQB,QS,SS overshoot the CE results, hinting that either the relaxation time or the
charge density is larger in SMASH. For −κBS , the opposite behavior is observed,
meaning the relaxation time or the density in the CE calculation is over-predicted.

In [107], where the electric charged sector of the diffusion coefficient matrix was
presented, the dependency on the degrees of freedom was much clearer. A clear
hierarchy was observed where the diffusion coefficients decreased with increasing
numbers of degrees of freedom. Here, the more baryons and mesons are in the medium
the larger the cross-sections are in SMASH, the scattering rate increases and the
diffusion coefficients decrease as they are proportional to ∼ 1/Γscat.. This behavior
is reproduced in the present calculations for the electrically charged sector and the
strange diffusion coefficient. However, in the case of κBB and −κBS the opposite
behavior is observed, that the diffusion coefficients increase with more degrees of
freedom. Here, the statement that more hadrons lead to larger cross-sections is also
true, but κqq′ also depends on the total charge density ntot (see the interpretation
in the RTA of Eq. 3.39). For the two coefficients in the baryonic sector, the charge
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density counteracts the reduction of the relaxation time and as a result, the diffusion
coefficient increases.

Unfortunately, the statement made in [107] cannot directly be made for the full
diffusion coefficient matrix since the dependencies are seemingly more complex in
the baryonic sector.

3.6.8 Finite value of chemical potential

In the last section, the dependency of the transport coefficients on the value of
the baryon chemical potential µB is investigated. This is of course of interest as
heavy-ion collisions not only probe regions of µB = 0 at the highest collision energies
but also regions of finite µB > 0 at smaller collisional energy. For example, at fixed
target experiments at Ekin = 1.58AGeV at HADES, a value of µB ∼ 900 MeV is
reached [100]. In a heavy-ion collision, it is thought that the global strange chemical
potential is zero throughout the collision as there are no strange particles in the
colliding nuclei. Even though on the local scale this is not always true [111]. In
addition, the isospin 3 chemical potential can also be approximated as µI3 = 0.

To mimic these conditions, the medium is not only initialized with a finite µB
but also such that the effective strange and isospin 3 chemical potentials are zero.
The effective chemical potential is the resulting, e.g. strangeness imbalance in the
case of a non-zero µB. It is calculated via

µeff.
q =

T

2
log

∑Nq
species

i=1 ni(T, µk)∑N q̄
species

i=1 ni(T, µk)

. (3.86)

Here, nk(T, µk) is the density of particle k (see Eq. 3.40). The upper sum runs over
all particles given charge q and the lower sum over all particles given the opposite
charge q̄. The values of µB,Q,S are then obtained by solving the following three
equations

µeff.
B (T, µB,Q,S) = µB , (3.87)

µeff.
S (T, µB,Q,S) = 0 , (3.88)

µeff.
I3 (T, µB,Q,S) = 0 . (3.89)

Fig. 3.14 shows the dependence of the shear viscosity, the entropy density and
enthalpy on the baryon chemical potential. In order to eliminate the effects of
the chemical potential on the ratio η/s, often the ratio to the enthalpy ηT/w is
presented. The shear viscosity η alone shows no influence on increasing µB contrary
to the results of version SMASH-1.6. Here, again the AQM cross-sections are the
relevant factor as they increase the scattering rate in the baryon-dense regions where
previously cross-sections between exotic baryons were missing. As a result of the
shear viscosity not affected by µB, all changes on the level of the ratio η/s or ηw/T
originate from the thermodynamic potentials. As for µB = 0, the value of η/s differs
largely between the versions SMASH-1.6 and 2.2. Again starting at T & 110 MeV
the transport coefficient decreases by approximately a factor of 2 for µB = 0 and
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Figure 3.14: Shear viscosity η (upper left), entropy density (circles) and enthalpy
(triangles) (upper right) and shear viscosity over entropy density (circles) or entropy
density over enthalpy (triangles) (bottom) versus temperature. Results of µB = 0
(blue) µB = 300 MeV (red) and µB = 600 MeV (green) are presented.

µB = 300 MeV. The largest difference, however, is the shear viscosity at a baryon
chemical potential of µB = 600 MeV. Due to the increased entropy density and
enthalpy of the system, both η/s and ηT/w are drastically reduced, also in contrast
to SMASH-1.6. There, a counteracting effect is observed that both η and s increased
and as a result the ratio η/s stays constant. The influence of the charge chemical
potentials on the entropy density via

∑
x={B,Q,S} µxnx on the ratio η/s is contained

in the triangles. At T ∼ 140 MeV the ratio η/s is reduced by an additional factor.
Now coming to the baryon chemical potential dependence of the full diffusion

matrix, which is depicted in Fig. 3.15. In contrast to shear viscosity η, a strong
dependency of the whole κqq′ matrix on µB is found and additionally, the results
from SMASH are compared to the CE from [111]. Note that a simplified version
of the hadron gas is used there. First of all, the general shape and the orders of
magnitude coincide between the two calculations which is a sign that they describe
similar systems and are robust in terms of their general behavior. When it comes to
the exact values of κqq′ , it is found that the details of both calculations play a large
role. As the degrees of freedom and the description of interactions like resonance
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Figure 3.15: Diffusion coefficient matrix as a function of temperature. Results of GK
(symbols) and CE (dashed line) are shown for µB = 0 (blue) µB = 300 MeV (red)
and µB = 600 MeV.

formation etc. are very different, it is also expected that the curves don’t coincide
with each other exactly. This comparison shows that the diffusion coefficients are a
good quantity when it comes to comparisons with first principle calculations, but
it is also difficult as it depends on counteracting quantities like the relaxation time
and (total and net) charge densities. No clear trend of κqq′ when going from 0 to
µB = 300 MeV is found. The diffusion coefficients of the baryonic sector κBB, κQB
and −κBS increase, which can also be seen in the CE calculations. The strangeness
and electric charge coefficients in contrast show a decreasing behavior. It is found
that for the highest value of µB = 600 MeV, the diffusion coefficients seem to behave
approximately as κij ∼ T 2 and as a result, the ratio κij/T

2 flattens as a function of
temperature. A similar trend can be observed in the CE calculations. A possible
explanation is the second term of the diffusion coefficients in the RTA Eq. 3.39, which
is proportional to the total charge density and at a non-zero chemical potential, this
term becomes important and decreases the diffusion coefficient.

This study now opens the possibility for more precise modeling of heavy-ion
collisions, especially at low collisional energies using a hydrodynamical description.
In the last step, the previously obtained transport coefficients will be compared to
other calculations.

3.6.9 Comparison to other calculations

In this section, the previously obtained results of the shear viscosity will be discussed
in the context of other calculations of η/s.

Fig. 3.16 compares various calculations of η/s in the cross-over region of QCD at
zero µB . First, the difference between the two SMASH versions was already discussed
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Figure 3.16: Comparison of the shear viscosity over entropy density of SMASH (blue)
with various different calculations. Extraction from a blast-wave model (yellow line)
[141], Bayesian analysis [138], Yang-Mills (grey line) [167], B3D (blue circles) [168],
pQCD (orange circles) [169] and the KSS bound (black dashed line) [125]. Chiral
perturbation theory (orange dashed) [132] and RTA using UrQMD cross sections
(green dashed-dotted) [170].

in a previous section. The present result compares better with other computations
since the value of η/s is smaller and does not show the plateau behavior at large
temperatures. However, its value is still larger compared to the extraction from
Bayesian analysis [138] or from a pure Yang-Mills calculation [167]. This is not
surprising as different interactions start to matter in these temperature regions,
which are not captured by the calculations presented here. It is expected that with
the incorporation of multi-particle reactions the shear viscosity further decreases as
was already shown in a quantitative way. In addition, hard QCD processes from
the string model cannot be used in the infinite matter simulations as they break
detailed balance. Their inclusion would further decrease η as the phase space opens
up in these 2 → n reactions. Chiral perturbation theory is an effective theory of
low-energy QCD. Its applicability is in the temperature region where the dynamics
are mainly dominated by pions. The resulting shear viscosity is in the same order of
magnitude but generally larger than the SMASH results due to larger cross-sections
in the region where resonances become important. Interestingly, the value of η/s
from the Blast-wave model [141] reaches the lowest value in the hadronic regime.

A comparison between the diffusion coefficient matrix of conserved charges and
the result of various other approaches is presented in Fig. 3.17. The results in the
electric charged sector between this work and the calculation performed in [107]
coincide with each other and the CE in the hadronic regime from [111] was already
discussed in previous sections. The comparison to the CE calculation using the

56



0.10 0.15 0.20 0.25
0.00

0.02

0.04

0.06

0.08

0.10

BB
/T

2
CE HRG
holography
CE DQPM
SMASH 2.2
Rose

0.10 0.15 0.20 0.25 0.30 0.35
0.00

0.02

0.04

0.06

0.08

0.10

QQ
/T

2

EFT
non-conf. holography
BAMPS GK
lQCD A
lQCD B
lQCD C

0.10 0.15 0.20 0.25
0.00

0.05

0.10

0.15

0.20

0.25

0.30

SS
/T

2

0.10 0.15 0.20 0.25

T [GeV]
0.000

0.001

0.002

0.003

0.004

0.005

QB
/T

2

0.10 0.15 0.20 0.25

T [GeV]
0.000

0.005

0.010

0.015

0.020

0.025

0.030

QS
/T

2

0.10 0.15 0.20 0.25

T [GeV]
0.00

0.01

0.02

0.03

0.04

0.05

0.06

BS
/T

2

Figure 3.17: Diffusion coefficient matrix as a function of temperature at vanishing
baryon chemical potential from different calculations. The results of SMASH (blue)
and previous calculation from SMASH (grey circles) are shown [107]. The partonic
cascade calculation BAMPS is shown as green triangles [171]. CE calculation in the
hadronic phase [110, 111] (red line). CE computation in the partonic phase (DQPM)
(green dashed line) [112]. Chiral effective field theory (grey dotted line) [132]. Lattice
QCD in Nf = 2 (lQCD A: yellow triangle) [172], lattice QCD in Nf = 2 + 1 (lQCD
B: blue squares) [173], quenched lattice (lQCD C: orange cross) [174]. Conformal
holographic (green line) [175] and non-conformal holographic calculation (dashed
dotted orange line) [176].

DQPM cross sections [112] yields a great opportunity to compare the full κqq′ matrix
to results from the partonic sector. Close to the pseudo-critical temperature Tc
the electric charge diffusion coefficient is consistent with lattice QCD calculations,
holographic models, or the CE DQPM calculation. With decreasing temperature
and below Tc the transport coefficient rapidly increases whereas the value of κQQ/T

2

from lQCD, holographic, or DQPM approximately goes to zero. The electric charge
cross terms κQB/T

2 and κQS/T
2 from SMASH and HRG CE are larger than the CE

calculation using the DQPM model. A possible explanation could be the different
chemical compositions that have been pointed to be important in [107]. A similar
discrepancy, yet not as strong can also be found for the diagonal baryonic and strange
diffusion coefficient, whereas κBS/T

2 matches very well.

3.6.10 Summary

In this chapter, the interacting hadronic medium was established by studying the
transport coefficients η and κqq′ . By subsequently increasing the complexity of the
hadron gas in terms of the number of degrees of freedom and their interactions, a
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good understanding of the behavior of the transport coefficients could be established.
The influence of multi-particle reactions, additional cross-sections, the number of
degrees of freedom and the baryon chemical potential were computed. Using a
new technique to extract the transport coefficients by integrating the corresponding
correlation functions enables one to capture more information in their tails. It has
been shown that multi-particle reactions reduce the shear viscosity in a simplified
hadron gas at T & 130 MeV whereas the electric charge diffusion coefficient shows
no modification. Continuing with the full SMASH hadron gas, it has been found
that the AQM cross-sections strongly decrease both η and κqq′ . Additionally, the
inclusion of angular distributions enhances the shear viscosity but no influence on
κij is found. On the other hand, varying the number of degrees of freedom leaves
the shear viscosity relatively unaffected until the cross-over region T ≈ 150 MeV,
in contrast to the diffusion coefficient matrix. Here it is found that the scaling
behavior that has been observed for the electric charge sector does not hold in the
baryonic sector and both the density and the cross sections become the relevant
factors. Contrary to previous findings, there is no dependency of η on µB leaving
the dependency of the ratio η/s and ηT/w fully on the thermodynamic properties
of the medium. Finally, the κqq′/T

2 matrix has a strong µB dependence with the
tendency of evolving a plateau behavior at µB ≈ 600 MeV. The comparison of the
shear viscosity and diffusion coefficient matrix at vanishing baryon chemical potential
with other calculations shows that the here-established hadronic medium and its
interactions are consistent with other models.

After the hadron gas has been established using the fluctuation-dissipation the-
orem of the conserved charge currents Jq(t) the next chapter is dedicated to studying
fluctuations of the conserved charges at equal times by calculating correlations in
the form of cumulants of particle numbers.
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4
Fluctuations of conserved charges from the

hadron gas

So far the interacting hadronic medium of SMASH has been introduced and its
equilibrium properties investigated by studying the diffusion coefficients of conserved
charges and the shear viscosity. In this chapter, equal time correlations of particle
numbers, namely cumulants are the main target of interest and the influence of
hadronic interactions will be studied within two projects. The first project is a study
regarding the influence of hadronic interactions on cumulants of conserved charges in
a system with global charge conservation, which is based on [1]. The second project
investigates the evolution of critical equilibrium fluctuations in SMASH and is based
on [4]. In the first part of this chapter, some basic definitions of fluctuations are
introduced, as well as the hadron-resonance gas (HRG) model. Then, the results are
presented in the following sections.

4.1 The definition of fluctuations

The starting point for defining fluctuations or cumulants is the probability distribution
P (X) of some random variable X. It describes the probability of the outcome of the
variable X when an experiment is performed multiple times. For example, in the case
of a dice with 6 sides the probability distribution for one side Xi is P (Xi) = 1/6. A
more formal definition of fluctuations can be given in terms of cumulants. Cumulants
describe properties of the probability distribution function P (X) and e.g. the first
two cumulants are the mean and the variance. The third and fourth cumulants are
called skewness and kurtosis and describe whether the distribution is asymmetric
or the behavior of the tails. A useful starting point is the definition of the moment-
generating function M(t), which is the expectation value of etx given P (x). For a
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continuous random variable X, one can write

M(t) = E[etx] =

∫ ∞
−∞

etxP (x)dx . (4.1)

The cumulant-generating function K(t) is related to the moment-generating function
simply by taking the natural logarithm

K(t) = lnM(t) (4.2)

It is also useful to note that the cumulant-generating function can be written in
terms of an infinite sum of the cumulants κn of P

K(t) =

∞∑
n=1

κn
tn

n!
. (4.3)

Once the cumulant-generating function is known, the n-th cumulant can be calculated
by taking the n-th derivative at t = 0 of K(t)

κn =
dnK(t)

dtn

∣∣∣∣
t=0

. (4.4)

The main reason why the cumulants are beneficial is their cumulative properties.
From Eq. 4.2 one can see that for two independent random variables X1 and X2 one
obtains

KX1+X2(t) = log E
[
et(X1+X2)

]
= log E

[
etX1etX2

]
= KX1(t) +KX2(t) . (4.5)

This is generally not the case for the moments of P . Another quantity that is related
to the moments and cumulants are the central moments and they are defined as the
expectation value around the mean µ of P

µn = E[(X − E[X])n] =

∫ ∞
−∞

(x− µ)nP (x)dx . (4.6)

With the expectation value µ = E[X]. Later in this work, the expectation operator
will be written as E[X] = 〈X〉1. It is also useful to relate the central moments to
the cumulants via

κ1 = µ , (4.7)

κ2 = µ2 , (4.8)

κ3 = µ3 , (4.9)

κ4 = µ4 − 3µ2
2 , (4.10)

κn(n > 3) = µn −
n−2∑
m=2

(
n− 1

m− 1

)
κmµn−m . (4.11)

1In the following sections often the notation 〈(δN)n〉 with δN = N − 〈N〉 is used instead of µn.
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So far, the cumulants have been derived from a probability distribution that is
assumed to be known. However, the reverse is also possible, where an experiment has
been conducted and the outcome of the experiment {X1, ..., XN} is measured. The
question then might be what are the properties of the probability distribution, that
generated the outcome of the experiment? In reverse, one can measure the central
moments of the sample {X1, ..., XN} to obtain knowledge about the underlying
distribution P (X)

µn =
1

N

N∑
i=1

(Xi − 〈X〉)n , with 〈X〉 =
1

N

N∑
i=1

Xi . (4.12)

The cumulants can then be calculated from Eq. 4.7-4.11. Especially the higher-order
cumulants take large statistics in the sense that they need large amounts of events,
in order to be determined with a high precision. The errors of the cumulants are
calculated from the formulas derived in [177].

Figure 4.1: Effect of the skewness and kurtosis on an exemplary distribution. The
figure is taken from [178].

A visual representation of the effects of a non-zero skewness S and kurtosis κ
in comparison to a Gaussian distribution is presented in Fig. 4.1. The Gaussian
distribution has a variance σ and S = κ = 0, meaning it can be seen as a baseline
distribution when skewness and kurtosis are used. The influence of a non-zero
skewness is shown on the left-hand side of Fig. 4.1. One can see that for an increasing
value of S, the asymmetry of the distribution increases and it gets tilted towards
one side. For S < 0 the distribution would be tilted towards the other side. The
kurtosis describes the ”sharpness” of the distribution which means that it either
appears more flattened or more peaked compared to the Gaussian.

After the fluctuations in terms of cumulants have been introduced, the relation
to theory describing the thermodynamics of conserved charges will be explained in
the following. A thermal system with some given temperature T in a volume V can
be described by its partition function Z and the thermodynamic pressure P is then
related to Z via

P

T 4
=

1

V T 3
lnZ(T, V, µB, µQ, µS) . (4.13)
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Where µB,Q,S are the chemical potentials of the baryon, electric and strange charge
respectively. The dynamics of the system is described within the partition function
Z and can be e.g. calculated from first principle lattice QCD [179]. From here, one
can define the susceptibility of a conserved charge χqn as the n-th derivative of the
adimensional pressure P/T 4 with respect to the chemical potential of charge q over
the temperature µ̂q ≡ µq/T

χqn ≡
1

V T 3

∂nlnZ
∂µ̂nq

. (4.14)

One can show that the susceptibilities are related to the cumulants of the particle
number associated with the charge q via κnq = V T 3χnq , which is presented in Ap-
pendix A.3. As a result, and similar to the expression above, one can write

κqn =
1

V T 3

∂nlnZ(T, V, µq)

∂(µq/T )n
. (4.15)

When comparing the expression of Eq. 4.4 to the equation above, one can clearly see
that the logarithm of the partition function acts as the cumulant generating function
of the physical system described by the partition function Z. This enables one to
compare experimental measurements of cumulants of some particle distribution in
the statistical sense via Eq. 4.12, to the cumulants of a physical theory via Eq. 4.15.
In order to cancel possible dependencies of the volume and the temperature, usually
ratios of cumulants are presented. The standard ones are the skewness and kurtosis

Sq =
κq3

(κq2)3/2
, κq =

κq4
(κq2)2

. (4.16)

Finally, the widely used observables that will be mostly used in this work are

σ/M =
κq2
κq1
, Sqσq =

κq3
κq2
, κqσ

2
q =

κq4
κq2
. (4.17)

4.2 The hadron resonance gas model

A simple model that has been successfully used to describe statistical observables in
heavy-ion collisions is the (ideal) hadron resonance gas (HRG) model. It describes each
hadron as an independent, non-interacting particle. In accordance with the previously
described derivation of fluctuations in thermodynamic systems, the partition function
of the HRG can be written in the following way

P

T 4
=

V

T 3
lnZ(T, V, µB, µQ, µS)

=
1

π2

∑
i∈X

gi

(mi

T

)2
K2

(mi

T

)
cosh

(
µBBi + µQQi + µSSi

T

)
(4.18)

One can also start from the previously defined Juettner distribution Eq. 3.32 which
describes the density of some state in a phase space cell. The density of this state
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is an invariant scalar and one can derive it in the local rest frame of the fluid
uµ = (1, 0, 0, 0)

ni = Nµ
i uµ = uµ

∫
d3k

k0
pµf

(0)
i,k =

eµi/T

(2π)3

∫
d3k

1

eEi,k/T ∓ 1
. (4.19)

By omitting the ∓ sign, the Boltzmann statistic is approximated and the integral
simply becomes

ni(T, µi) =
eµi/T

2π2
m2T K2(mi/T ) . (4.20)

with K2 being the modified Bessel function of the second kind.
The fluctuations κn of the particle number distribution originating from the

thermal heat bath can also be calculated by taking higher order derivatives of ni/T
with respect to (µi/T ) at a constant temperature and given a fixed volume V

κn,i = V T 3 ∂
n−1(ni/T

3)

∂(µi/T )n−1

∣∣∣∣
T

. (4.21)

When plugging Eq. 4.20 into Eq. 4.21, the cumulants of all order are equivalent

κn,i = κ1,i ∀n > 1 . (4.22)

The only probability distribution that satisfies Eq. 4.22 is the Poisson distribution
defined as

Pµ(N) =
µN

N !
e−µ (4.23)

with µ being the mean of the distribution.
Eq. 4.21 defines the cumulants in the grand canonical ensemble (GCE) where the

particles are freely generated by a heat bath T . In contrast, the situation where the
total number of particles is fixed is the canonical ensemble (CE).

Until now, the cumulants of only one particle species i were considered. The
interesting quantity in the context of QCD are the conserved charge numbers. Within
the HRG model, the fluctuations are easily obtained since the model itself describes a
non-interacting and independent system of particles. In addition, because the sum of
two independent Poisson distributed quantities is equal to a Poisson distribution, the
total charge distribution is therefore also of Poisson nature. The difference between
two independent Poisson distributed quantities is called Skellam distribution and it
is defined as

P (k, µ1, µ2) = e−(µ1+µ2)

(
µ1

µ2

)k/2
Ik(2
√
µ1µ2) . (4.24)

Here, Ik is the modified Bessel function of the first kind. The cumulants of the net
and total particle numbers are

κnet
i,n = κi,n + (−1)nκī,n (4.25)

κtot
i,n = κi,n + κī,n . (4.26)

Where ī is the respective anti-particle of i.

63



Besides fluctuations, it is also possible to calculate thermodynamic properties
such as the energy density or the pressure from the HRG model and compare them
to results from lattice QCD. The HRG EoS is computed in the grand-canonical
ensemble from the following equations

nq=B,Q,S =
T 3

2π2

∑
h

ghqX,hexp
(µh
T

)(mh

T

)
K2

(mh

T

)
, (4.27)

e =
T 4

2π2

∑
h

ghexp
(µh
T

)(mh

T

)(
3K2

(mh

T

)
+
(mh

T

)
K1

(mh

T

))
, (4.28)

p = T
∑
h

nh . (4.29)

Here, the sum runs over all hadrons in the system and µh =
∑

i=B,Q,S µiQi,h. The
pressure is computed by summing over all hadron densities (Eq. 4.27 without qX,h).
Fig. 4.2 shows a comparison of the QCD EoS from first-principle lattice QCD
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Figure 4.2: Comparison of the energy density (purple), the pressure (green) and the
entropy density (blue) between the SMASH HRG EoS to Lattice QCD calculation
from the HotQCD collaboration [180]. The figure is taken from [181].

calculations to the SMASH hadron gas EoS. One can see that the lattice results are
well reproduced below T . 170 MeV. This is expected as the ideal HRG is known to
known to be consistent with the lattice EoS roughly below the cross-over transition
Tc,0 = 155 MeV. In these temperature regimes, hadrons are the degrees of freedom.
In [7], a calculation has been performed comparing the charged susceptibilities from
the HRG to lattice QCD calculations. The calculation in the HRG model uses
different particle lists, one of which is the current one of SMASH. It shows, how
adding more confirmed states changes the susceptibilities. An overall agreement
between the SMASH particle list and lattice calculations below Tc is found.
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Because the Poisson distribution is found to be the basis and it approximately
reproduces thermodynamic quantities from QCD it is also assumed that the Poisson
distribution is the baseline of measurements of fluctuations in HIC.

4.3 Impact of conservation effects on cumulants

Motivation for the study of hadronic interactions on exact charge conser-
vation

The first study in this section is about the effects of global charge conservation and
the influence of hadronic interactions on cumulants of the net baryon number. The
results are based on [1, 2]. The motivation for this study is the finding that in a
heavy-ion collision, the created medium emits the particles not according to the
grand-canonical ensemble, but according to the canonical ensemble since the initial
number of charges are fixed by the colliding nuclei. The fluctuations from the created
medium are then suppressed in the limit of the full phase space. To circumvent this
problem in the experimental measurement, the fluctuations are measured in a small
rapidity window |y| < 0.5. The hope is that by decreasing the rapidity window, the
medium can exchange its charges with its surroundings and the fluctuations converge
to the grand-canonical picture [182]. However, if the rapidity window is smaller than
the size of the correlation length ycorr of the medium, the measurement does not
capture the relevant physics which is also known as the ”Poissonian limit”.

The relevant question for this study is how the hadronic phase of the heavy-ion
collision changes the fluctuations within a system with global charge conservation.
There exist previous studies that have investigated the effects of global charge
conservation on fluctuations of conserved charges which will be briefly summarized.
In [183], analytic expressions of cumulants up to sixth order were derived as a
function of the size of the subvolumes. In [184], a direct relation between the
grand-canonical susceptibilities of any theory and the fluctuations of a conserved
charge in subvolumes of that theory has been derived. However, in these calculations
([183, 184]), no dynamical effects are accessible. Within [185], a baseline calculation
of fluctuations including conservation laws as a function of beam energy has been
provided employing the hadronic transport approach UrQMD. Recently, a model
including critical dynamics has been used to study the scaled variance [186]. Here,
the study performed in [187] will be the starting point, in which the effect of global
net charge conservation was studied in a simplified interacting hadronic gas. The
goal will be to reproduce the results of [187] and extend this calculation towards
the baryonic sector. With the knowledge of the previously defined model, various
different effects like baryon-annihilation processes or deuteron formation can be
studied. Another important aspect is the relation between the net baryon and the net
proton number. The primary motivation is the study of fluctuations of a conserved
charge, hence the net baryon number. However, not all produced baryons can be
measured in the experiment, which is why the net proton number is used as a proxy
of the net baryon fluctuation. In this study, this particular relation can be directly
verified as the transport approach gives access to the full phase space information.
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This study is performed within an infinite matter simulation, which was already
introduced in Chapter 3. In this way, the effect of the hadronic interaction can be
isolated and other dynamical effects do not contribute. By performing the calculation
at different chemical potentials and temperatures, their dependency on the influence
of exact charge conservation can be studied as well.

4.3.1 Study of charge conservation effects in SMASH

The goal of this section is to extract fluctuations from a system that conserves the
charges {B,Q, S} globally. To do this, a box with periodic boundary conditions is
used, similar to Chapter 3. The fluctuations are studied depending on subvolumes of
size x = (V/V0) within that system. It is worth noting that the subvolume in this
calculation is taken in coordinate space whereas measurements of fluctuations are
taken in momentum space. It has been argued in previous studies, see e.g. [184],
that correlations between coordinate and momentum space exist, especially at the
highest beam energies. This is due to the Bjorken-type expansion of the fluid which
correlates the longitudinal momenta of the particles with the coordinate of the beam
direction. One can also interpret the size of the subvolume as the number of accepted
particles over the total amount of measured particles

x =
V

V0
=
〈Nacc〉
〈Nfull〉

. (4.30)

A key premise for the study itself is that the hadronic density in the system is
distributed isotropically. If this is not the case, the result of the fluctuations would
depend on the definition of the subvolume. Fig. 4.3 shows the normalized density
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Figure 4.3: Normalized density of the SMASH hadron gas system in the xy-plane.
The mean value of the density is 〈ρ〉 = 0.253 1/fm3.

ρ/〈ρ〉. The density ρ is computed by averaging each cell in the system over many
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events and 〈ρ〉 is the spatial averaged value of ρ. The system contains the full list
of hadrons provided by SMASH. This result shows that the density is distributed
homogeneously inside the box and fluctuations appear on the order of ∼ 1% which
are distributed equally as well.

Figure 4.4: Sketch of the definition of subvolumes of the box.

The goal of this section is to determine the fluctuations of conserved charges as a
function of the size of the subvolume. The starting point is the net charge density
of the system nq(x, y, z). By integrating over parts of the system the x-dependent
charge density is computed via

Q(x̃) =

∫ Lbox

0

∫ Lbox

0

∫ x̃=z/Lbox

0
nq(x, y, z)dxdydz . (4.31)

The cumulants are than calculated from 〈(δQ(x̃))n〉. Fig. 4.4 shows a sketch of the
subvolumes of the box. The condition if a particle is in a subvolume is determined
from one coordinate (here the z-coordinate is used) with

zi < x · LBox , (4.32)

where zi is the coordinate of the i-th particle, x = (V/V0) and LBox is the length
of the box. However, as it has been shown that the density of the medium is
homogeneously distributed and therefore, the definition of the subvolume is not
relevant. The system is simulated many times with the same initial condition over
many events and the fluctuations of the net and total particle number distributions

N
net/tot
Q = NQ+ ∓NQ− in the subvolumes are calculated and presented as a function

of the probability x.

4.3.2 Expectations

Before the results from the SMASH simulations are presented, it is useful to think
about the expectation of the results of such a system. In an ideal system with N
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randomly distributed particles of one particle species, the probability of finding n
particles is given by the Binomial distribution

B(n|N, x) =

(
N

n

)
xn(1− x)N−n . (4.33)

The cumulant-generating function of Eq. 4.33 is

K(t) = N log(1− x+ xet) . (4.34)

The desired ratios of the cumulants can be calculated from Eq. 4.4 and are

ω =
κ2

κ1
=
Nx(1− x)

Nx
= 1− x , (4.35)

Sσ =
κ3

κ2
=
Nx(1− x)(1− 2x)

Nx(1− x)
= 1− 2x , (4.36)

κσ2 =
κ4

κ2
=
Nx(1− x)(1− 6x+ 6x2)

Nx(1− x)
= 1− 6x+ 6x2 . (4.37)

Fig. 4.5 shows the result of Eq. 4.35 - 4.37. Since the number of particles or trials N is
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Figure 4.5: Ratios of binomial cumulants as a function of probability x.

constant, this result shows the expectation of the effect of global charge conservation.
The quantity of interest is the fluctuations of the net and total particle number

of some conserved charge q, one can extend the Binomial model with a second charge
and in the following, the derivations from [188] are followed. The starting point is
the probability distribution P , describing the number of measured charges n±

P (n+, n−;x) =
∞∑

N+,N−=0

P(N+, N−)B(N+, n+|x)B(N−, n−|x) . (4.38)

Here, B is the Binomial distribution of the respective charge and

P(N+, N−) = P (N tot)δ(N+ −N− −Nnet) . (4.39)
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In the definition of P(N+, N−), the delta enforces the conservation of the net charge
number Nnet and P (N tot) describes the probability distribution of the total charge
number, which is not a conserved quantity. Further, it has been assumed that the
probability x is the same for each positive and negative charged particle. From
Eq. 4.39, the cumulants of the net charge q distribution are

κ1[q] = x(〈N+〉 − 〈N−〉) , (4.40)

κ2[q] = ξ2(〈N+〉+ 〈N−〉) , (4.41)

κ3[q] = ξ3(〈N+〉 − 〈N−〉) , (4.42)

κ4[q] = ξ4(〈N+〉+ 〈N−〉) + 3ξ2
2κ2[N tot] . (4.43)

In the equations above, ξn are polynomials of x defined as

ξ1 = x , ξ2 = x(1− x) , ξ3 = ξ2(1− 2x) , ξ4 = ξ2(1− 6ξ2) . (4.44)

Again, computing the ratios, one finds

ω[q] =
Nch

Nnet
(1− x) , (4.45)

Sσ[q] =
Nnet

Nch
(1− 2x) , (4.46)

κσ2[q] = 1 + 3x(1− x)(ω[Nch]− 2) , (4.47)

where Nch = 〈N+〉+ 〈N−〉. When comparing Eq. 4.45 - 4.47 with Eq. 4.35 - 4.37, it
is found that, besides the prefactors related to the charges, that the fourth cumulant
κσ2 is modified by fluctuations of the total charge number.

4.3.3 Simple interacting system

As a start, the influence of exact charge conservation is studied in a simplified
interacting hadronic system. A box containing π and ρ mesons that interact via an
energy dependent cross section σππ→ρ(

√
s). The system is initialized with a fixed

number of pions and the electric charge number is the conserved quantity. Since
only positive and negative charged particles are present in the initial state, the only
interaction, by design is

π±π∓ ↔ ρ0 . (4.48)

Fig. 4.6 shows the influence of electric charge conservation on the scaled variance
and kurtosis. The system is initialized with, in total Ninit = 200π+ + 200π− and
zero ρ mesons in the initial state. The presented cumulants are calculated after
simulating the system until it is in chemical and thermal equilibrium. Since the
net charge number is exactly zero, only the scaled variance and the kurtosis are
considered in this study. Starting with the results in full phase space, a difference
between the cumulants obtained in the smaller volume is found. The cumulants
obtained in the larger volume compare well between the binomial expectation and
the numerical results from SMASH. For the smaller volume, the scaled variance is
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Figure 4.6: Scaled variance (top row) and kurtosis (bottom row) as a function of x.
Full-phase space cumulants are presented on the left and on the right side with an
imposed cut in pT . The system is simulated in two different volumes V = (10 fm)3

(blue) and V = (20 fm)3 (red). The grey lines show the binomial expectation Eq. 4.35
and Eq. 4.37. Green data points show the results from [187].

slightly decreased at small values of x and the kurtosis increases around x = 1/2,
deviating from the binomial baseline.

When imposing a cut in momentum space the scaled variance and the kurtosis
go to the same value in x→ 0. For larger subvolumes, both ω and κσ2 increase in
comparison to the binomial baseline. As the net charge number is no longer globally
conserved within the subset of particles with this specific pT cut, their cumulants
don’t follow the analytic expectations. However, there are still exist correlations,
since the dependency on x is not erased.

The comparison between the results from this SMASH version and [187], in which
the same system was studied reveals a difference in the scaled variance but not the
kurtosis. The explanation of this difference of ω is of a technical nature. After the
system reaches the final state, when the fluctuations are calculated, the question is
how to deal with unstable particles. In nature, the detectors only observe the stable
hadrons, therefore, unstable hadrons are usually forced to decay into the stable decay
products. In [187] this is done whereas in the presented calculation the unstable
mesons are left in the final state. Using “forced” decays, the mean of 〈N tot〉 increases
to the initial state value. This results in an effective decrease of the scaled variance.
Since the two decay products are placed at the same position in space, the second net
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charge cumulant is left unaffected. The fourth cumulant however should be affected
since κtot

2 vanishes when decays are performed. So, it is not clear why this result
matches with [187] and the latter is not close to the binomial baseline.

In the next step, the goal is to understand the behavior of the individual cumulants
and their deviations from the binomial baseline. Fig. 4.7 shows the individual
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Figure 4.7: Net and total cumulants as a function of x normalized to the volume
of the system. Results of V = (10 fm)3 and V = (20 fm)3 are shown in blue and
red respectively. The upper left and upper right plots show the first and second
cumulant of the total charge number. In the lower left and right, the second and
fourth cumulant of the net charge number are presented. The dashed lines show the
results of the analytic expectations after dynamical evolution and the dotted line the
initial cumulants Eq. 4.40 - 4.43.

normalized cumulants of interacting π and ρ meson system. From the total charge
density (upper left in Fig. 4.7), one can directly observe the main difference between
the two systems. Since both boxes are initialized with the same number of positive
and negative charged pions, the initial charge numbers are the same in the two
systems. After the dynamical evolution, however, the difference between initial and
final state numbers is different. The reason is that in the smaller box, more ρ0

states are created, effectively decreasing the total charge number. As a result, the
fluctuations κ2[Nch] in full phase space increase. Note that, in the initial state, the
total charge number is a conserved quantity and follows the same parabola shape
as κ2[q]. The net charge is strongly affected as well. Together with the fluctuations
of the total charge number, the results from SMASH and the analytic formulas
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Eq. 4.40 - 4.43 are in good agreement with each other. In the larger volume, the
creation of the ρ0 meson does not happen as frequently, the cumulants are close to
the initial cumulants. In the dense medium, however, the fluctuations of the total
charge number increase, which affects the fourth cumulant around x = 1/2.

Still, κnet
2 slightly deviates from the analytic expectation which is already observed

in the scaled variance in Fig. 4.6. One reason might be that some minimal distance
between the mesons is enforced by the geometric collision criterion. This would
deviate the cumulants from the ideal picture [189].

4.3.4 Effect of baryon annihilation

In this section, the influence of a baryon baryon annihilation process on the cumulants
up to fourth order is investigated. For this purpose, a hadron gas with the following
species is simulated

π , ρ , N , ∆ , (+h1(1170)) (4.49)

Besides the resonance formation processes (ππ ↔ ρ and πN ↔ ∆) the h1(1170)
mesons yield the option to add the baryon annihilation process NN ↔ 5π (on
average) via the following reaction chain, that was originally proposed in [190]

NN̄ ↔ h1(1170)ρ h1(1170)↔ ρπ ρ↔ ππ . (4.50)

For all these reactions detailed balance is present.
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Figure 4.8: Scaled variance (left column) skewness (middle column) and kurtosis
(right column) of the net baryon number as a function of x of a hadronic system with
(closed symbols) and without (open symbols) a nucleon-nucleon annihilation process.
The upper row shows the cumulants in full phase space whereas the results in the
lower row contain a cut in momentum space. The ratios of cumulants are shown for
µB = 0 (blue) and µB = 250 MeV (red).

Fig. 4.8 shows the ratios of cumulants for the system presented in Eq. 4.49. By
including the h1(1170) meson, or leaving it out of the system, the influence of a
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NN̄ -annihilation process can be studied. The main difference of such a process in the
system studied here is, that the total charge number is no longer a conserved quantity.
As a result, the fluctuations of the total charge influence the fourth cumulant via
Eq. 4.43. First, on the level of the second cumulant without a cut on pT , no difference
due to the baryon annihilation process is observed as well as no dependency on the
baryon chemical potential. The skewness on the other hand is affected. Here, the
difference comes purely from the ratio Nnet/Ntot, which is driven by the baryon
chemical potential. With increasing µB, the ratio becomes Nnet/Ntot ≈ 1 whereas
at µB = 0 it becomes Nnet/Ntot ≈ 0. Finally, the kurtosis strongly depends on the
baryon annihilation process. Similar to the process π±π∓ ↔ ρ0, the NN̄ ↔ 5π
reduces the total baryon number and the fluctuations κ2[Nch] become important
around x = 1/2 for the case µB = 0. In both limits, x → 0 and x → 1, κσ2 →
1. When increasing the baryon chemical potential, there are simply not enough
anti-nucleons in the system and as a result, the fluctuations follow the Poissonian
(Binomial) baseline.

4.3.5 Result of the full SMASH hadron gas

Net baryon and net proton fluctuations

In this section, the full SMASH hadron gas is employed to extract the influence of
global charge conservation on the fluctuations. For all presented results, in the final
state of the simulation, the decay of resonances into stable particles is performed.
Besides the exactly conserved net baryon number event-by-event, which has been
shown to follow the analytical results of charge conservation, the net proton number
is of interest here, since its fluctuations are used in the experiments as a proxy of the
net baryon number.

In Fig. 4.9, the cumulants of the net baryon and net proton numbers are presented.
Starting with the net baryon number, the results of all three ratios ω, Sσ and κσ2

follow the expected analytic curves. The net baryon scaled variance follows (1− x)
and the skewness shows the dependency on the ratio of Nnet/Ntot. κσ

2 shows the
transitions from the Poisson to the Binomial baseline when going from µB = 250 MeV
to µB = 0. Similar to the previous section, this originates from a baryon-baryon
annihilation process, increasing the fluctuation of the total charge number. At a
finite value of baryon chemical potential, there are not as many anti-baryons in the
system and the kurtosis goes to κσ2(x = 1/2) = −1/2. Similarly, when introducing a
cut in momentum space, the fluctuations increase since the net baryon number is no
longer conserved in the full volume. However, there still exist correlations from the
charge conservation and as a result, the net proton cumulants are not independent
of the size of the subvolume.

A similar phenomenon is seen for the ratios of the net proton number cumulants.
As they are only a subset of the full set of baryons, the net proton number does not
follow the analytic expectation as well. Similar to the net baryon cumulants, where
a momentum cut is included, correlations from the net baryon number conservation
are propagated to the net proton number and increase their fluctuations. Besides the
skewness, the net proton scaled variance does not show a strong µB dependence. At
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Figure 4.9: Scaled variance, skewness and kurtosis of the net baryon (full circles)
and net proton (open circles) cumulants as a function of x. The results are presented
for µB = 0 (blue points) and µB = 250 MeV (red points). The upper row shows the
full whereas the lower row the restricted momentum space results.

large values of x the value of ω at zero baryon chemical potential is slightly larger due
to a larger Nch number. It is hard to make a clear statement for the net proton number
kurtosis due to the large errors but the hierarchy κσ(µB = 0) < κσ(µB = 250 MeV),
which originates from the transition Binomial to Poisson baseline (similar to Fig. 4.6),
is approximated present as well.

Comparison to ALICE data

To measure the grand canonical ensemble value of the fluctuations of the created
QCD medium in a heavy-ion collision, only the fluctuations in a small window in
rapidity are measured. However, the question of the extent to which this corresponds
to the GCE value arises. In the limit x→ 0 all relevant correlations vanish and what
is left is the Poisson baseline. In this section, the presented results are compared
with an experimental measurement. It is worth noting that the systems are vastly
different, so a comparison seems odd at first glance. The goal is to see how the
correlations between the protons and anti-protons from this model match with the
experimentally measured ones.

It is argued in [184], that especially at the highest beam energy, there exists
a strong correlation between the subvolumes in coordinate space and in rapid-
ity intervals measured in momentum space, due to the collective behavior in the
longitudinal direction of the beam. This picture breaks down at low collisional
energies where Bjorken picture is no longer valid. To relate the size of the sub-
volume x = (V/V0) to the rapidity interval ∆y. Similar to Eq. 4.30 the relation

x ≈ Nch(∆y)/Nch(∞) ≈ erf
(

∆y

2
√

2σy

)
is used [53]. The width of the rapidity distri-
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bution has been measured as σy = 3.86 at
√
sNN = 2.76 TeV [191].
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Figure 4.10: Scaled variance as a function of the rapidity interval ∆y. The results of
the net proton (red) and net baryon (blue) cumulants are shown in full phase space
(straight line) and includes a pT cut (dashed line). The ALICE data points are taken
from [192].

Fig. 4.10 shows the result of the scaled variance obtained from the SMASH box
simulation at µB = 0 and the ALICE measurement [192]. For comparison, the value
of x is added on top of Fig. 4.10 for a better comparison. With the relation of x with
∆y, it becomes clear that the fluctuations are measured within a small subvolume
x in the experiment. To accommodate the experimental configuration, the cut in
pT has been adapted to 0.6 < pT < 1.5 GeV. With decreasing rapidity interval
∆y, the scaled variance goes to the Poisson limit of 1. With x → 0, all relevant
correlations vanish and one is only left with Poisson fluctuations. With increasing
rapidity interval, ω decreases which is interpreted as a sign of charge conservation in
full phase space. One can see that when going from the net baryon to the net proton
fluctuations and when introducing a cut in momentum space, the strength of the
correlation decreases. Since the net protons including a pT cut denote the smallest
subset of the presented baryons, the strength of the correlations is the smallest. The
results of the equilibrium calculation match surprisingly well, which shows that the
correlations due to global charge conservation are well described by SMASH.

Relation between net proton and net baryon cumulants

The goal of this section is to understand the relation between the net proton and net
baryon cumulants. Since the net proton number represents a subset of the net baryon
number, and in chemical equilibrium the averages are constant, it is interesting to
see if there exists some relation between those two quantities.

In [193, 194] the idea to calculate the net baryon fluctuations from a binomial
unfolding procedure was introduced and is based on the assumption that in the late
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stages of a heavy-ion collision, above a certain beam energy (
√
s & 10 GeV), isospin

fluctuations randomize the isospin numbers and the net baryon fluctuations can be
obtained from the net proton fluctuations. Starting from the following probability
distribution

P(Np, Np̄;NB, NB̄) = F(NB, NB̄)Br(Np;NB)Br̄(Np̄;NB̄) . (4.51)

Here, Br(Np;NB) are Binomial distributions with probability r = 〈Np〉/〈NB〉 and
the same for the anti-protons Np̄. F is a function that contains information about
the distribution of (anti-) baryons and their correlations.

The formulas for mapping the net proton number fluctuations onto the net
baryons are derived without any assumption of F and they read

〈Nnet
B 〉 = 〈ξ−1

1 Np − ξ̄−1
1 Np̄〉 , (4.52)

〈N tot
B 〉 = 〈ξ−1

1 Np + ξ̄−1
1 Np̄〉 , (4.53)

〈(δNnet
B )2 = 〈(ξ−1

1 δNp − ξ̄−1
1 δNp̄)

2〉 − 〈ξ2ξ
−3
1 δNp + ξ̄2ξ̄

−3
1 δNp̄〉 . (4.54)

The exact expression of the higher-order cumulants is not used in this work and
therefore neglected and the polynomials ξn are the same as in Eq. 4.3.2. One problem
that arises is, that the Binomial unfolding procedure effectively increases the error
of the cumulants by a factor r−n ≈ 2n [195], for r = 〈Np〉/〈NB〉 = 1/2. This fact
prohibits the present calculation from investigating cumulants of order n > 2, as
the errors are simply too large. One of the premises to be able to use the unfolding
procedure is that the isospin density is small enough, meaning that there exist enough
thermal pions to mediate the randomization of the isospin fluctuations. It has been
checked that this is indeed the case in the considered simulations.

The first step of the calculation is to determine the exact values of r = 〈Np〉/〈NB〉
and r̄ from the simulation. In order to have an estimated error of the calculation
the probabilities are modified by ±3% which are presented as bands of the mapped
cumulants.

Before showing the results from the Binomial unfolding procedure (Eq. 4.52-4.54)
of the actual proton cumulants from SMASH mapped onto the baryon fluctuations,
an additional calculation is presented to cross-check the presented methodology. A
fictional proton number set is determined by a Binomial acceptance procedure with
the given probability r, r̄

{Np, Np̄} = {Br(Np;NB), Br̄(Np̄;NB̄)} . (4.55)

From this set of protons, the same unfolding will be calculated to cross-check the
implementation.

Fig. 4.11 shows the result of the Binomial mapping procedure. Starting with the
mapped scaled variance of the artificial set of protons Eq. 4.55 onto the baryons, a
perfect agreement is found. This results verifies the computation of Eq. 4.52-4.54. In
addition, this means that the correlations from the global net baryon conservation
survive the Binomial (re-)mapping procedure. However, when mapping the actual
proton set from the dynamical simulation, a difference to the net baryon scaled
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Figure 4.11: Scaled variance as a function of x of the net baryon number (black
line), the mapped proton number fluctuations (blue) and artificial proton number
fluctuations (red). Results on the left show the cumulants for µB = 0 and on the
right for µB = 250 MeV. In the upper row, the results in full phase space are shown
and in the lower the results with a pT cut.

variance is found. For all four presented cases, the mapped fluctuations are smaller
than the actual ones and therefore the baryon conservation line is not matched.
Correlations that hinder the unfolding procedure are a result of the dynamical
evolution of the medium and the interactions between the hadrons since they are
not contained in the artificial proton number set. With increasing baryon chemical
potential the unfolding procedure underestimates the net baryon scaled variance at
large values of the subvolume even more.

The dependency of the success of the Binomial unfolding on the complexity of
the hadronic medium is shown in Fig. 4.12, where the ratio of the baryon scaled
variance to the mapped scaled variance of the proton fluctuations is presented. The
results are shown for the full SMASH hadron gas and for the two simplified hadronic
systems shown in Fig. 4.8. Interestingly, the mapping δP → δB in the system in
which the nucleon-nucleon annihilation process is enabled via the h1 meson (green
symbols), is equally successful as in the system without the annihilation process
(red symbols). This shows that such annihilation processes are not the origin of the
correlations that hinder the unfolding.
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Figure 4.12: Ratio of the scaled variance of the actual net baryon fluctuations
to the net proton mapped onto the net baryon scaled variance as a function of
x = (V/V0). The ratio is shown for baryon chemical potential µB = 0 (left column)
and µB = 250 MeV (right column) for full phase space (upper row) and including a
pT cut (lower row). The results of three different systems with gradually increasing
complexity are shown.

4.3.6 Influence of deuteron formation

In this section, the influence of deuteron cluster formation on conservation effects
is calculated. For this, two different sets of particles and interactions are employed,
where the only difference is the effective deuteron formation process (see Eq. 4.56).
Deuteron cluster formation is an important process when studying fluctuations since
they are produced in the late stages of a heavy-ion collision. An analysis of the
influence of deuteron cluster formation on the net proton number fluctuations can
be found e.g. in [196].

In this work, the goal is to determine how deuteron formation can modify the
conservation effects of the proton and baryon number cumulants. By comparing
systems with and without a deuteron cluster formation process the impact on the
proton number cumulant can be studied as a function of the size of the subvolume.
With a geometric collision criterion, the limitation is that only binary scatterings can
be performed. The reaction in which a deuteron is created is a 3↔ 2 reaction namely
πnp ↔ dπ and Nnp ↔ Nd. To be able to perform these interactions a fictional
particle d′ is introduced [197, 102]. Note that the deuteron in this microscopic
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description is treated as a point particle. The individual reactions that model the
3↔ 2 interaction πnp↔ dπ and Nnp↔ Nd are

pn↔ d′ πd′ ↔ πd Nd′ ↔ Nd . (4.56)

The impact of deuteron clusters on conservation curves of the proton and baryon
cumulants is now studied. To do this, the cumulants are calculated for a system with
and without deuterons in a box of V = (15 fm)3. For the calculation of cumulants of
deuterons, only the actual deuterons are counted and not the fictional d′ resonance.
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Figure 4.13: Scaled variance (left colum), skewness (center) and kurtosis (right colum)
as a function of x of baryons (blue) protons (red) and deuterons (green). The results
are presented for µB = 0 (upper row) and finite µB = 250 MeV (lower row). Closed
symbols show the result of a system that includes deuterons and open symbols one
that has no deuterons.

Fig. 4.13 shows the cumulants as a function of the subvolume size. For both
systems, with and without deuteron formation, the baryon number cumulants follow
the expected analytic conservation curves, which were observed before. Interestingly,
in the case where deuterons are produced, the cumulants show no large dependence
on the size of the subvolume, meaning they are rarely affected by baryon number
conservation and are produced thermally. In addition, the proton number cumulants
of the two systems coincide with each other. This means that the proton cumulants
are not affected by the deuteron cluster formation and deuterons are rarely affected
by conservation effects, since their yields are small and therefore they follow the
thermal expectation.

4.3.7 Summary

In this work, the effects of global conservation on fluctuations of conserved charges
have been investigated and several hadronic systems have been evaluated in infinite
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matter calculations, in order to study the influence of individual dynamic interactions.
Resonance formations/decays have no large effect on the higher moments for electric
charge cumulants, as long as the density of particles is small enough. The kinematic
cuts have always the expected effects on the cumulants by reducing the correlations.
For the net baryon number, which is of great interest in the context of identifying
the critical endpoint in heavy-ion measurements, it has been shown that baryon
annihilation plays a bigger role at zero chemical potential and mainly affects the
kurtosis. Interestingly, the proposed binomial mapping from net protons to net
baryons suggested from isospin randomization cannot fully reconstruct the proper
net baryon number cumulants in large sizes of the subvolume and consistently
underestimates their fluctuations. While for an artificial set of protons, the mapping
works as expected, it does not for the actual SMASH protons containing correlations
from the dynamical evolution. For x < 0.2 the mapping can be applied within an
approximate error of 5%. Last, the influence of cluster formation has been studied
and the proton cumulants are largely unaffected. The deuterons themselves follow a
thermal expectation unaffected by conservation laws.

This is of relevance for the comparison of experimental results for fluctuation
observables with theory calculations based on a grand canonical ensemble. In the
next step, the goal is to study the evolution of critical equilibrium fluctuations in
the same system.

4.4 Fate of critical fluctuations in an interacting had-
ronic medium

Motivation for the study of the influence of hadronic interactions on the
evolution of critical fluctuations

The second project is about the evolution of critical equilibrium fluctuations in a
hadronic medium and the results are based on [4].

There exist many problems when it comes to modeling on how to compare
results from theoretical calculations to measurements. The theoretical description of
fluctuations within the dynamical multi-stage evolution of the HIC is complicated
and multiple questions must be addressed. First, the question arises of how the
critical fluctuations form near the CP. This problem is typically tackled within
a fluid dynamical framework in which the critical mode is treated as a field (see
e.g. [198, 199, 200, 201, 202, 203]). The second question is then how such critical
fluctuations survive the subsequent evolution in the dilute regime of the HIC towards
the chemical and kinetic freeze-out. This work contributes to the second question.
To this end, it is assumed that critical fluctuations have built up at the moment
where microscopic transport validly describes the hadronic phase. This occurs
typically in the late stage of the collision and is, for noncritical dynamics, described
by the Cooper-Frye particlization. Equilibrium fluctuations of the critical mode
according to the three-dimensional (3d) Ising model are assumed and coupled to a
HRG background. Then, the distribution functions of particle species are generated
using the principle of maximum entropy and evolved in a hadronic transport model.
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Besides the question on the relation between the fluctuations of the net baryon and
the net proton number which are measured in the experiment, one can then tackle
the question of how formations and decays of resonances alter the proton number
fluctuations.

Regarding the question of particlization, what is known is the cumulants that
originate from the coupling of the HRG model to the critical mode however, the
resulting distribution function of an affected particle species is not known. Instead,
it is the cumulants up to some finite order of these distributions and reconstructing
a probability distribution from a finite set of moments or cumulants is a classical
ill-posed problem in mathematics. In the appendix of [204], a probability distribution
was obtained by assuming the shape of the probability distribution of the sigma field
P (σ). However, the resulting distribution P (N) only approximately generated the
correct input cumulants. To circumvent this problem, an extension of the Cooper-
Frye formula to include corrections of the critical field to a particle distribution
function was performed up to second order in [205]. In [206], the same authors made
the general argument that the principle of maximum entropy is suitable for freezing
out critical fluctuations. In this work, the goal is to follow the idea of [206] and
convert fluctuations from a thermodynamic model that includes critical equilibrium
fluctuations to particle spectra using the principle of maximum entropy. By doing
so, probability distribution functions of a specific particle species are obtained that
can be put into a model for the dilute stage of a heavy-ion collision to evolve those
particle spectra. Then, the second-mentioned problem can be addressed and the
impact of the stochastic nature of the hadronic phase on the fluctuations can be
investigated.

4.4.1 Mapping of the 3d-Ising model to QCD

Since the HRG model is a model without any criticality, the baseline model needs to
be extended in order to incorporate critical behavior. By using the universality class
argument [207], that in the vicinity of the critical point, the scaling behavior of the
order parameter of QCD, the chiral condensate, is the same as the order parameter
of the 3d Ising model, the magnetization. One can then relate the fluctuations of the
order parameter of QCD with the one from the 3d Ising model.

The Ising model originates from condensed matter physics in order to explain
ferromagnetism. The relevant degrees of freedom are the discrete spin states that take
either (+1,−1). The order parameter of the Ising model is the magnetization, defined
as the sum of all spin states. When the phases of the spin states are studied depending
on the temperature and an external magnetic field, one finds that the magnetization
exhibits a phase transition. Fig. 4.14 shows a sketch of the behavior of the probability
distribution of the order parameter of the Ising model along the temperature axes.
At T < Tc, a coexistence region is located, meaning that the probability distribution
has a double peak structure, whereas a cross-over type phase transition is located
at T > Tc, where the distribution is single peaked. At the critical point, where
the transition between the two phases occurs, the probability distribution shows
a plateau which is also where the fluctuations of the order parameter increase. In
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Figure 4.14: Sketch of the phase diagram of the Ising model.

an infinite medium the correlation length ξ diverges and the system becomes scale
invariant. The model employed in this work to describe the critical fluctuations is
the same that has been used in [208] and the description of the model is therefore
taken from there.

In order to obtain fluctuations of the magnetization, the equation of state is
needed. Before doing so, one first introduces the reduced temperature r and reduced
external magnetic field h as

r = (T − Tc)/Tc , (4.57)

h = H/H0 . (4.58)

The equation of state is obtained from a parametric equation of state [209], which
preserves the invariance of the scaling of r, h and M [210]. It is additionally useful
to introduce auxiliary quantities R and θ and write

M = M0R
βθ , (4.59)

r = R(1− θ2) , (4.60)

h = H/H0 = Rβδh̃(θ) . (4.61)

With h̃(θ) = cθ(1 + aθ + bθ4). The universal scaling behavior is built into the EoS
with the critical exponents β = 0.3250, δ = 4.8169 and the coefficients in h̃(θ) are
a = −0.76145, b = 0.00773 and c = 1.

The fluctuations of the magnetization can be calculated from the EoS by taking
higher order derivatives of M with respect to the auxiliary field h

〈(δσ)n〉c =

(
T

V H0

)n−1 ∂n−1M

∂hn−1

∣∣∣∣
r

. (4.62)

The mapping between the 3d Ising model and QCD is then performed by relating
the reduced Ising temperature and external magnetic field with the temperature and
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the baryon chemical potential in the QCD phase diagram. An additional rotation of
r by an angle α1 is introduced and h is rotated by α2. One can write the mapping
in a general form as

T − Tc
∆Tc

= rρ sinα1 + h cosα2 , (4.63)

µB − µB,c
∆µB,c

= −rρ cosα1 − h sinα2 . (4.64)

There are now multiple open parameters that have to be fixed. First, the angles
of the h and r axes in the T and µB plane. And second, the size of the scaling
region ∆Tc, ∆µB,c and ρ. For the sake of simplicity and for a better comparison,
the values of [208] have been adapted. The scaling size is chosen to be ρ = 1,
∆Tc = 0.02 GeV and ∆µB,c = 0.42 GeV. One can additionally eliminate two of the
open parameters, assuming the critical point lies on the chiral phase transition line.
The chiral phase transition defines the region where the cross-over is located in the
T -µB-plane and it can be calculated at zero baryon chemical potential from lattice
QCD. By Taylor expanding into the chemical potential, the chiral phase transition
line can be evaluated using the value of the pseudocritical temperature Tc,0. The
µB dependence of the pseudocritical temperature can be written in terms of the
following expansion as [16, 211, 212]

Tc(µB) = Tc,0

[
1− κc

(
µB

Tc(µB)

)2

+ ...

]
. (4.65)

Here, κc = 0.007...0.059 is the curvature of the chiral condensate [16]. By assuming
the critical point is located on the cross-over line and assuming that the r-axis is
tangential to the chiral phase transition line, one can eliminate the parameter Tc and
α1 by choosing µB,c appropriately. The value of the pseudocritical temperature is
then computed by solving Eq. 4.65 up to leading order for a given critical temperature.

The h-axis is chosen to be parallel to the temperature axes. There exist studies
investigating the effects of varying the open parameters of the angles and sizes of
the critical region, see e.g. [213]. The location of the critical point is chosen to be
µB,c = 390 MeV which puts the critical temperature to Tc ≈ 149 MeV.

A sketch of the location and orientation of the axes after mapping the Ising
EoS to the QCD phase diagram is shown in Fig. 4.15. Additionally, the rotation
of the reduced temperature axis r̃ is included. In order to obtain the values of
the auxiliary parameters R and θ that are used for the parametrization of the 3d
Ising EoS, the equations 4.59-4.61 are solved for a given value of the temperature
and baryon chemical potential. With these values, the cumulants 〈(δσ)n〉c up to
fourth order are obtained from the analytic expressions presented in App. A.5. It is
known from effective calculations of QCD that the location of the critical point is
located at rather µB/T & 4 (e.g. fRG calculations [19, 20, 21] or Dyson Schwinger
computations [22, 23]). For the sake of a better comparison with [208] and since
this work doesn’t aim for a direct comparison to experimental measurements the
described parameters are not modified.
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Figure 4.15: Sketch of the QCD-phase diagram and its critical point used in this
work.

In order to couple the distribution function of the HRG model to the critical
mode, the ansatz employed in [44, 45] is used, where the equilibrium distribution
function is extended by an additional contribution δf critical

i

fi,k = f0
i,k + δf critical

i . (4.66)

The coupling to the critical mode of a particle species i originates from the dynamically
generated masses via δmi = giδσ. One can therefore write

δf critical
i = −δσgi

T

f0
i,k

γi,k
. (4.67)

Here, γi,k = Ei,k/mi and gi denotes the strength of the coupling and will be used as
an open parameter.

From here, one can derive the cumulants of the individual particle and anti-
particle numbers including the contribution from the critical fluctuations [208]. The
mean of a given species is not affected by the coupling to the σ−field. Starting with
the second order cumulants of the net particle number, which can be written as

κnet
2,i = 〈(δNi)

2〉+ 〈(δNī)
2〉 − 2〈δNiδNī〉 , (4.68)

where ī is representative for the anti-particle of i. The three terms on the right-hand
side of the equation above are calculated as

〈(δNi)
2〉 = κHRG

2,i + 〈(V δσ)2〉I2
i , (4.69)

〈δNiδNj〉 = 〈(V δσ)2〉IiIj . (4.70)

Here, Ii is defined as the momentum integration of Eq. 4.67 with

Ii =
gidi
T

∫
d3k

(2π)3

f0
i,k

γi,k
. (4.71)
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As a result, the final expression of the second cumulant is

κnet
2,i = κHRG

2,i + κHRG
2,̄i + 〈(V δσ)2〉(Ii − Iī)2 . (4.72)

In Eq. 4.69, the cumulative property has been used and in Eq. 4.70, it is assumed
that there exists no correlation between hadrons in the ideal HRG model. The third
cumulant is modified in the following way

κnet
3,i = 〈(δNi)

3〉 − 〈(δNī)
3〉 − 3〈(δNi)

2δNī〉+ 3〈δNi(δNī)
2〉 , (4.73)

which results in

κnet
3,i = κHRG

3,i − κHRG
3,̄i − 〈(V δσ)3〉(Ii − Iī)3 . (4.74)

Similarly, the fourth cumulant is

κnet
4,i = κHRG

4,i + κHRG
4,̄i + 〈(V δσ)4〉c(Ii − Iī)4 . (4.75)

In order to generate discrete samples of particles and anti-particles of a specific
kind, it is necessary to have not only the expression of the net but also of the total
particle number cumulants. It is mathematically not possible to generate samples of
protons and anti-protons where the net proton fluctuations follow those of the derived
critical model and the total proton fluctuations the Poisson baseline. The reason
is that if the sum of two independent Poisson distributed variables is of Poissonian
nature, the two random variables are Poisson distributed as well (this is also known
as Raikov’s theorem [214]). Since the individual (anti-)proton numbers are affected
via Eq. 4.68, the total proton number has to be affected by the critical field as well.

It is therefore necessary to also derive the expressions for the modification of the
total particle number cumulants in response to the critical field which is in accordance
with the derivation of the net particle cumulants. In compact form, the modification
of the net and total particle number cumulant of a particle p and its anti-particle p̄
for n > 2 can be written as

κnet
n,i = κHRG

n,i + (−1)nκHRG
n,̄i + (−1)n〈(V δσ)n〉c(Ii − Iī)n (4.76)

κtot
n,i = κHRG

n,i + κHRG
n,̄i + (−1)n〈(V δσ)n〉c(Ii + Iī)

n . (4.77)

Fig. 4.16 shows the effect of the inclusion of the critical point on the net proton
number cumulants. The upper and center rows are calculated from Eq. 4.76. The
upper row shows only the HRG part, whereas the center row shows the term on
the right-hand side of Eq. 4.76, the contribution of the critical field. The freeze-out
curve shows the equilibrium values at different beam energies by Alba et al [215]
(details will be explained later in this chapter). The lowest value in

√
s probes the

baryon dense regime of the QCD phase diagram whereas large
√
s collisions probe

ranges of low µB . One can see that in this case, where the critical point is located at
µB = 390 MeV, the influence of the critical regions decreases when increasing the
collision energy and between

√
s ∼ 11− 25 GeV the influence is the strongest.

After the cumulants including the critical mode have been described, in the step,
the goal is to determine the probability distribution of the net and total particle
numbers that generate these fluctuations.
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Figure 4.16: Second (left column), third (center column) and fourth (right column)
net proton cumulants. The upper row depicts the HRG cumulants as a function of T
and µB. The center row shows the critical contribution of the net proton cumulants
δf critical
p based on the mapping the 3D Ising model in the T -µB-plane of QCD. The

coupling is chosen to be gc = 4. In both the upper and center rows, the freeze-out
curve by Alba et al. [215] is added as a green line. The bottom row shows the
net proton cumulants along the freeze-out curve as a function of

√
s. The HRG

cumulants plus the HRG cumulants are shown as a blue line and the HRG cumulants
including the critical contribution are shown as red lines.

4.4.2 Maximum entropy method for freezing out critical fluctu-
ations

The reconstruction of the probability distribution of a particle species coupled to
the critical mode requires the full infinite set of cumulants (or moments). Since this
set is not accessible, the reconstruction is a mathematically ill-posed problem. By
imposing an additional criterion, however, the solution can be approximated. In
this work, the criterion that the information entropy of the distribution function is
maximized is employed. It is thought that distributions that are realized in nature do
have a maximum information entropy [216]. It was also realized by Jaynes, that there
exists a fundamental mathematical equivalence between the principle of maximum
information entropy and statistical mechanics [217].

The Shannon information entropy (which is also equivalent to the entropy of the
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canonical ensemble up to a factor of kB) of a discrete probability distribution P (x)
is given by

S = −
∑
x∈Ω

P (x) lnP (x) , (4.78)

where Ω is the support of P (x). By enforcing S to be maximized using Lagrange-
multiplier λ, one can derive the expression of Pλ(x) in the following way. Starting
with the Lagrangian

H = −
∑
x∈Ω

P (x) lnP (x)−
∑
k

λk

[∑
x∈Ω

fk(x)P (x)− Fk

]
−µ

(∑
x∈Ω

P (x)− 1

)
, (4.79)

where fk(x) and Fk are functions representing the k number of constraints which
are used to maximize S. To reconstruct the critical distributions for the number of
(net/total) particles x, the quantities of interest are the moments of P (x) so fk(x)
and Fk can be identified as

fk(x) = xk , Fk = µk . (4.80)

The constraints to maximize Eq. 4.79 are

δH

δP (x)

!
= 0 = −

∑
k

λkx
k − 1− lnP (x)− µ . (4.81)

And one obtains

P (x) = exp

{
−(1 + µ)−

∑
k

λkx
k

}
. (4.82)

It is useful to define the partition function in the following way

Zλ̃ =
∑
x∈Ω

exp

{
−
∑
k

λkx
k

}
. (4.83)

Here, λ̃ = (λ1, .., λk) and one can then rewrite

(1 + µ) = lnZλ̃ . (4.84)

Together with Zλ̃, the normalized maximum entropy (ME) probability distribution
can be written as

P (x) = Z−1

λ̃
exp

{
−
∑
k

λkx
k

}
. (4.85)

To obtain the parameters λ, one would in an optimal case find an analytic relation
between them and the coupled HRG + 3d Ising model. A similar work has been
performed in [218], where distributions with viscous corrections were obtained from
the ME principle. This however is not in the scope of this thesis and is left for future
work.
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The input conditions for the probability distribution function is the k-th moment

µk = −
∂logZλ̃
∂λk

= Z−1

λ̃
µ̃k . (4.86)

With the input of in total n moments from the critical model (in this work, it is
fixed to n = 4), one obtains n equations that have to be solved for λ̃. The conversion
from cumulants to non-central moments can be done in the following, straightforward
way

µ1 = κ1 , (4.87)

µ2 = κ2 + κ2
1 , (4.88)

µ3 = κ3 + 3κ2κ1 + κ3
1 , (4.89)

µ4 = κ4 + 4κ3κ1 + 3κ2
2 + 6κ2κ

2
1 + κ4

1 . (4.90)

These four equations are solved using a Newton method together with the Jacobian
which reads

Jn,m =
µ̃mµ̃n

Z(λ̃)2
− µ̃m+n

Z(λ̃)
. (4.91)

The obtained distribution function is not necessarily the exact physical distribu-
tion of the particle number distribution. However, it is the one with the maximum
amount of uncertainty given that only the first four cumulants from the 3d Ising
model are currently available with the parametrizations in [208], the maximum
entropy distribution is the ”least biased” estimate of the critical particle number
distribution that one can make with the given information.

It is also worth mentioning that the particle number distribution from the HRG
model follows a Poisson distribution which itself is a distribution of maximum entropy.
Therefore, in the limit gc → 0 of the coupling to the critical mode, the baseline
distribution is restored. On the other hand, with the current technique, it is not
possible to go to infinite values of the coupling strength with this approach. At
some point, numerical difficulties arise to obtain reasonable values of the Lagrange
multiplier in the sense that the probability distribution is well-behaved on the
support Ω. In Fig. 4.17, this behavior can be seen where the ME distribution is
shown, depending on the coupling strength to the critical mode gc. Starting at gc = 6
a minima appears in the tails of the total proton distribution around small values of
N tot. The reason is that with the fourth cumulant growing rapidly as the coupling
strength increases, the root solver only finds negative values of the fourth Lagrange
multiplier λ4 < 0. As a result, P (x) starts to grow again in x→ max(Ω). It has been
tested that increasing the upper value of the bound Ω does not solve this problem.
An inclusion of the constraint λ4 > 0 to the root solver has been tried, but did not
work either. Another reason could be that the given information is not sufficient
anymore to control the tails of the distribution. Adding more cumulants as input
could resolve this issue, however, this is not in the scope of this thesis. In the other
limit, gc → 0 one can see that the ME distribution converges towards the Poisson
and Skellam distribution as it was already explained. This example confirms that
the numerical implementation works as expected.
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Figure 4.17: Net (left) and total (right) proton distribution as a function of the
number of the net/total particle number. The ME distributions are presented for
different values of coupling strength to the critical mode. The thermodynamic
quantities are taken at the value of

√
s = 19 GeV. The dashed line shows the

respective HRG baseline distribution.

There also exist other possibilities to reconstruct probability distributions given
a finite set of moments. They have failed for different reasons, but it is still worth
mentioning those tries here, even though the physical motivation for using the
maximum entropy principle is much more grounded. One alternative that has been
tried is using the cumulant-generating function Eq. 4.2. One can see that the
probability distribution serves as an input at the moment-generating function Eq. 4.1,
since it is calculated from the expectation value of ext. By inverting the expression
using an inverse Fourier transformation, one can express the probability distribution
in terms of the cumulant-generating function K with

P (x) =
1

2π

∫ π

−π
e−ixte−K(t)dt . (4.92)

Within this approach, however, the difficulty lies in evaluating the finite sum in
the exponential e−K(t). As the higher-order cumulants close to the critical point
grow very rapidly, the exponential of this series does even more. As a result, it
gets numerically very demanding to evaluate the integral above. In addition, the
convergence of the series is not known so the problem falls back to the issue that only
the first four cumulants are known from the model. Other approaches that are worth
mentioning are expanding P (x) in terms of orthogonal polynomials or using fixed
expressions of distribution e.g. the Pearson distribution family. Unfortunately, none
of those were able to achieve accuracies such as the maximum entropy distributions.

4.4.3 Modeling the initial state of the medium

This section describes the modeling of the initial state of the simulation in both
momentum and coordinate space. With the goal to initialize the transport model
with critical equilibrium fluctuations to study their evolution, one needs the initial
phase space information of the particles which, in this work, is called the initial state.
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The temperature and chemical potentials of the initial state are obtained from the
chemical freeze-out curve [215], that maps the beam energy

√
sNN of a heavy-ion

collision to equilibrium values of temperature T and chemical potentials µQ,B,S .
This specific estimate is based on the analysis of net-electric charge and net-proton
number fluctuations of experimental measurements. The parameterization used here
originates from [208] and reads

µfo
X(
√
s) =

dX
(eX
√
s+ fX)gX

, (4.93)

T fo(
√
s) = t0 + t1µ

fo
B + t2(µfo

B)2 + t4(µfo
B)4 + t6(µfo

B)6 . (4.94)

The individual parameters for the freeze-out values of the baryon, electric and
strangeness chemical potential are displayed in Tab. 4.1. The parameters in Eq. 4.94

X dX/GeV eX/GeV−1 fX gX

B 1.161 0.392 -0.481 0.910

Q -0.386 2.822 12.319 1.070

S 0.848 1.138 1.297 0.995

Table 4.1: Values of parameter in Eq. 4.93 for the chemical potential of conserved
charges.

are t0 = 0.146 GeV, t1 = 0.079 GeV, t2 = −0.366 GeV, t4 = 0.251 GeV, t6 =
−0.107 GeV.

Furthermore, the hadrons are sampled uniformly within a sphere of radius R
and the momentum space of the particles is obtained from the modified Boltzmann
distribution

f
(0)
i,k = e(−u·ki)/T . (4.95)

Here, u is a velocity field that has been introduced to reproduce experimentally
measured momentum distributions [219, 220].

~u(r) = ~eru0r/R . (4.96)

In the equation above, ~er is the radial unit vector on the sphere of radius R and u0

is a parameter that is obtained from experimental measurements. Fig. 4.18 shows
the mean expanding velocity, equivalent to u0, defined in Eq. 4.96. The beam energy
region of interest is between

√
s = 7− 50 GeV. So for simplicity, the value of u0 is

taken as u0 = 0.5 for all values of
√
s. The radius is fitted to the multiplicities with

R = 9 fm.
Fig. 4.19 shows the pT spectra of pions and protons measured by STAR at beam

energies between
√
s = 7.7− 27 GeV in midrapidity [220]. The comparison to the

results from SMASH shows that the single-particle distribution function Eq. 4.95
is well described by the chosen parameter set between

√
s = 11− 27 GeV, whereas

at 7.7 GeV the results don’t exactly match. The anti-proton spectra are slightly
underestimated. So far, only a spherical symmetric expansion is considered. In
principle, the model could be improved towards a Blastwave description with a
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Figure 4.18: Expansion parameter β as a function of
√
s. Figure is taken from [220].

longitudinal expansion, see e.g. [219]. However, this is left for future work and the
longitudinal dynamics are considered at this stage.

In the case of a coupling of the particle distribution to the critical mode, first,
samples of Nnet/tot have to be generated from the ME distributions by sampling their
cumulative distribution function. Since the transport model evolves the single-particle
distribution function, one needs to generate samples of the particle and anti-particle
numbers respectively. As not all pairs of net and total particle numbers are valid in
the sense that they correspond to a positive integer-valued number of (anti)particles,
one still has to find valid pairs in {Nnet/tot}. This is achieved by simply searching
for valid partners within {NNet} and {NTot} and removing them from the samples.

Fig. 4.20 shows the net and total proton number cumulants up to the fourth
order along the freeze-out line. The results of the ME samples were computed from
the proton and anti-proton samples for a coupling of gp = 2 and gp = 4 to the critical
mode. This result shows that the methodology successfully reproduces simultaneously
the net and total proton cumulants up to the fourth order at a given value of

√
s.

It is worth mentioning that the generated critical distribution functions originate
from an averaged sigma field over the whole volume 〈σ(x)〉, which is not necessarily
correct since possible spatial dependencies are ignored. A more detailed description
however is left for future work.

In the next step, these distributions in each point in
√
s are evolved in the

hadronic transport approach to see, how they get affected. To examine the influence
of the evolution on the cumulants, different values of the coupling strength are used,
where two cases are considered. The first case is where only protons and neutrons are
coupled to the critical field. For the second case, more hadronic species are coupled
and the following phenomenological approach to determine the coupling strength is
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Figure 4.19: pT spectra of protons (blue) and pions (red) at various different meas-
urements of

√
s. The lines show the result from SMASH (the full line shows particles

and the dashed line shows anti-particles) and the symbols the measurement by the
BES collaboration. Experimental data points are taken from [220]

used [208]

gR =
gc
Nq

m

mR
(Nq − |SR|) . (4.97)

Here, Nq is the number of valence quarks of the hadron, gc and m the coupling and
mass of the respective stable hadron and |SR| the absolute strangeness number. To
summarize, three different coupling scenarios will be studied in the following sections:

• Couple only nucleons to the critical field using gc = 2.

• Couple only nucleons to the critical field using gc = 4.

• Couple particle species listed in App. A.6 with a baryonic and mesonic coupling
of gc = 2 (denoted as gc = 2+).

With these three cases, the influence of the coupling strength can be studied. As
the methodology of determining the critical probability distribution faces numerical
issues when going to large values of the coupling strength g, this model is restricted
to the relatively small value of the coupling in the gc = 2+ case.
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Figure 4.20: Net (upper row) and total (lower row) proton number cumulants as a
function of

√
s up to fourth order (from left to right). The analytic HRG baseline

(grey dashed), as well as the calculation including the critical mode with a coupling
of gp = 2, 4 (full blue and red), are presented. In addition, the results from the
generated particle samples are presented as red circles and the reconstructed net
proton numbers from the ME distributions are shown for

√
s = 15 GeV plus the

Skellam distribution in the inlet.

Finally, no modifications in momentum space are included even though it is
expected that the critical mode affects them as well.

4.4.4 Thermodynamic evolution and collision chemistry of the me-
dium

In the first step, the goal is to study the thermodynamic properties of the expanding
sphere by determining the temperature and baryon chemical potential after the
evolution of the medium. The thermodynamic evolution of the medium in terms of
temperature and baryon chemical potential is shown in Fig. 4.21. For each point
along the freeze-out curve a thermal model fit is performed on the final state of
the evolution to obtain the equilibration values of the temperature, the chemical
potentials as well as the volume. Here, the multiplicities of the following stable
particles: N, π,K,Σ,Λ, plus their respective anti-particles are used. Together with
Eq. 4.20 one then minimizes the following function to obtain the thermodynamic
quantities plus the volume of the system

χ(T, V, µB,Q,S) =
1

Nspecies

Nspecies∑
i

(NSMASH
i − V ni(T, µB,Q,S))2 . (4.98)

One such a fit is shown in Fig. 4.22 for the
√
s = 11 GeV. One can see that

for the presented particles, the fit well reproduces the number of particles with the
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Figure 4.21: Evolution of the temperature and baryon chemical potential of the
expanding medium. The initial state values are shown as blue and the final state
values as red points.

exception of the anti-protons. It is not clear at this point where this difference comes
from.

The final state is obtained by evolving the system until no interactions are
occurring anymore and all resonances that are still present in the simulation are
decayed into the ground states. It is found that the kinetic freeze-out is reached at
approximately t = 100 fm, note that this is not a realistic average time for freeze-out
in a realistic scenario, but the final time after the last interaction in our simplified
spherical geometry occurs.

As the hadron gas including its resonances is initialized according to the temper-
ature and chemical potentials from the freeze-out curve, the final thermodynamic
values are expected to change as the chemical composition of hadron gas changes.
The temperature of the system is found to be decreasing and the baryon chemical
potential increases for the systems initialized at large

√
s energies, due to the decay

of heavy resonances.
In the next step, the collision chemistry of the expanding hadronic system is

investigated. By doing so, one can directly observe which types of interaction are the
most important ones during the evolution. Fig. 4.23 shows the number of specific
collision channels as a function of time. In this example, an energy of

√
s = 15 GeV

has been chosen. It has been checked that similar results are obtained at other beam
energies. From Fig. 4.23, one can see that during the whole evolution, the resonance
decays, followed by resonance formations are the most dominant types of interaction.
Inelastic 2→ 2 scatterings are on the order of ∼ 1% and finally, the string formation
processes play only a subdominant role during the expansion.

In [221], it has been derived how resonance decays affect particle number cumu-
lants. The decay chain of unstable resonances into stable particles yields a source
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Figure 4.23: Number of resonance decays (red), resonance formations (blue), inelastic
2 → 2 (green) and string formation (yellow) normalized to the total amount of
collisions as a function of time.

of fluctuations effectively increasing the cumulants. In the system studied here, an
additional source of fluctuations exists as resonances can be newly formed resulting
in a non-trivial interplay between formation and decay processes. In addition to the
generation of resonances, they can also be created in inelastic 2→ 2 collisions such
as NN → NN?, even though these reactions are of sub-leading order, they do have
an effect on the net proton number since they, first, reduce the net proton number at
the time of the collision and second, randomize the isospin in the time of the decay
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of the resonance, which additionally modifies the net proton cumulants.

4.4.5 Time evolution

In this section, the evolution of the individual cumulants as a function of time will
be discussed. By doing so, one can distinguish the impact of different phases of the
evolution on the fluctuations. Fig. 4.24 shows the evolution of the net proton and
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Figure 4.24: Time evolution of the net proton (blue) and net delta (red) cumulants
as a function of time. The second (left column), third (center column) and fourth
cumulant (right column) are shown for two energies

√
s = 15 GeV (upper row) and√

s = 19 GeV (lower row). The results are presented for initializing the system with
the cases gp = 2 (dashed-dotted line), gp = 4 (straight line) as well as the case where
more hadron species are coupled to the critical field gp = 2+ (dashed line) and finally
the HRG model (dotted line). A momentum cut of 0.3 < p < 2.0 GeV is included.

net delta cumulants as a function of time. Here, the two energies where the strength
of the critical point is the strongest have been used. Note, that for

√
s = 15 GeV, the

system is initialized with κCP4 � κHRG
4 , whereas for

√
s = 19 GeV κCP4 � κHRG

4 . In
addition, a cut on the absolute momentum of 0.3 < p < 2 GeV is included in order
to roughly mimic the experimental situation. Since the delta is the lightest baryonic
resonance, its fluctuations and the interplay between the delta and proton cumulants
are therefore shown as well.

First, the net proton fluctuations initialized with the HRG model show a strong
increasing behavior over time for all presented cumulants. From a starting value
of κ2(0) ≈ 25, the the variance nearly doubles to around κ2(40 fm) ≈ 50. This
is a result of an increasing (anti-)proton number, due to the decay of resonances
during the evolution. The ∆-baryon cumulants of all presented orders show the
opposite behavior and go to zero over time, as they decay into stable particles and
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therefore the fluctuations vanish. A large difference between the cases where only
nucleons are coupled to the critical mode (gp = 2) or where a larger set of hadrons
is coupled (gp = 2+) is not observed. Even though increased net delta correlations
exist in the initial state, they vanish within the first ≈ 5 fm. The difference between
the net proton cumulants in the final state of the gp = 2 and the gp = 2+ case is
approximately ≈ 2%. Going to the initialization with a stronger coupling to the
critical mode gp = 4, a strong modification of κn within the first 5 fm towards the
HRG case is found within the first ≈ 5 fm. After the first couple of fm, the fluctuations
start rising again and the correlations from the critical field are propagated to the
final state in both

√
s = 15 GeV and

√
s = 19 GeV. The evolution of the third

cumulant κ3(t) is similar to κ2(t). From the initial value at t = 0, κ3 strongly
increases. In the case of negative initial value at

√
s = 15 GeV, the signal from the

critical point gets completely washed out and the sign of κ3 changes. Contrary to√
s = 15 GeV, it is observed that at

√
s = 19 GeV, correlations from the critical

field survive the hadronic evolution. Similarly to
√
s = 15 GeV though, κ3(t) starts

from κcritical3 (0)� κHRG
3 (0) but ends with correlations κcritical3 � κHRG3 . Similarly

to the second and third cumulant, the fourth order cumulant is strongly affected
within the first couple of fm. Here, the strong correlations in the initial state are
reduced towards the HRG baseline. In the final state for

√
s = 15 GeV, the value of

κ4 evolves towards the HRG evolution and in the final state, no difference within the
errors can be observed. In the case

√
s = 19 GeV where κ4(0)� 0, correlations from

the critical point survive the hadronic evolution and are present in the final state. In
addition, it is observed that e.g. κ3(t) at

√
s = 19 GeV in the case gp = 4 the net

delta correlations increases before going down to zero. In this case, the ∆-baryons
are not coupled to the critical mode meaning that correlations from the net protons
are passed between the different particle species in the transport model.

In the next step, the origin of the modifications of the net proton correlations
at the beginning of the expansion is discussed. By switching specific interaction
channels on and off, one can study the dependency of the evolution of the fluctuations
on the collision kernel of the transport simulation. Fig. 4.25 shows the impact of
specific interaction channels on the evolution of the net proton number cumulants. It
is observed that the resonance formation and decays are not only the most occurring
interactions during the evolution (see Fig. 4.23), but also the ones that have the
largest effect on the evolution of net proton cumulants as a function of time.

When switching only to (in)elastic 2↔ 2 interactions κ2(t) only slightly decrease
when initialized with a coupling to the critical field. In contrast, when initialized
using the HRG model the cumulants slightly increase. Now, in the case in which
2 ↔ 2 interactions are switched off and only 2 ↔ 1 interactions are considered, a
much stronger effect on the cumulants in contrast to performing only 2↔ 2 reactions
can be seen. Here, a similar evolution as in the case of the full collision kernel is found.
This shows that the resonance formation/decay processes have the strongest influence
on the net proton correlations and the decays are responsible for the increase over
time. In the case of gp = 4, κ2(t) decreases until a minimum is reached around
t ≈ 3 fm. Then, the variance grows again until it saturates. The reason for the
non-monotonic behavior, when initialized with a coupling to the critical field is, that
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Figure 4.25: Time evolution of the second net proton cumulants as a function of time.
The system is initialized using the HRG (blue lines) and with a coupling of gp = 4
(red lines). The results of different simulations using the full collision kernel (straight
line), employing only 2 ↔ 1 interactions (dotted line) and (in)elastic scatterings
(dashed line) are shown.

within the first stage of the expansion, resonances are created from interactions with
a (anti-) proton in the initial state. As a result, the net proton fluctuations decrease
in the first timesteps. After the initial resonance formations however the formed
unstable particles decay and increase correlations between protons and anti-protons
which is responsible for the increase of the variance. This effect is also observed for
the HRG initialization. It has been checked that the discussed results for the second
cumulants also hold for the κ3 and κ4.

4.4.6 Isospin fluctuations

In this section, the goal is to quantify the effect of the dynamical expansion of the
hadronic medium on the final state cumulants. It has been shown that the largest
sources of fluctuations are resonance formations and decays, which feed into the
proton spectra. During the expansion of the medium and especially in the final
state, there are of course no unstable particles left, but on top of the pure resonance
decay processes, there are many scatterings and resonance regeneration processes
that affect the cumulants in a different way. It is therefore useful for our purpose to
define the following quantity

κ̃n =
κdynamical
n

κdecays
n

. (4.99)

Here, κdynamical
n are the final state cumulants after the dynamical expansion of the

hadronic medium. On the other hand, one can also directly perform the decays
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without evolving the medium dynamically and measure the cumulants which are
denoted as κdecays

n . The latter case is similar to calculations performed e.g. in
[222, 223, 208]. Pure decays alter the cumulants of the net proton cumulant with
feed-down processes. As an example, the mean net proton number is modified in the
following way

κ1 = 〈Np〉 − 〈Np̄〉+
∑
R

〈NR〉(〈np〉R − 〈np̄〉R) . (4.100)

Here, 〈np〉R =
∑

r b
R
r n

R
i,r is the average number of protons originating from all decay

channels with branching ratios bRr . Within the transport code the above equation for
the mean plus the ones for the higher order cumulants are performed on a Monte
Carlo basis, where additional fluctuations arise due to the mass-dependent decay
width Γ(m) of each resonance and their sampled masses from the thermal spectral
function A(m).
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Figure 4.26: κ̃n as a function of
√
s including a cut in momentum space for net

proton (red) and net nucleon (blue) fluctuations. The results are shown for the hrg
initialization (triangles) and with a coupling of gp = 4 to the critical field (circles).

Fig. 4.26 shows the results of Eq. 4.99 as a function of the
√
s. In the case of

initialization with the HRG model, a difference from unity in the second net proton
cumulant κ̃2, where a suppression of the dynamically evolved cumulant of ≈ 2% is
observed. A large portion of this suppression originates from isospin randomization
processes since κ̃ of nucleons is not strongly affected. For example, the process
pπ0 ↔ ∆+ ↔ nπ+ modifies the proton number, whereas the nucleon number is not
affected. Within the errors, no difference from unity can be observed in the ratios κ̃3

and κ̃4.
If the system is initialized with a coupling of nucleons to the critical mode, larger

modifications of κ̃ are observed. Similar to the HRG initialization, on the level of
the second cumulants, a suppression of κ̃2 of the final state cumulants after the
dynamical evolution with respect to performing only the decays is seen. However, in
this case, the suppression is on the order 20% at

√
s = 19 GeV. As already described

in the HRG case, the suppression originates from isospin randomization processes as
the net nucleon fluctuations are less affected.

For the third and fourth cumulant, a strong modification in κ̃n is observed. The
expansion of the medium at

√
s = 15 GeV evolves the third net proton cumulant
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from a value κ3 � 0 towards κ3 � 0 (see e.g. Fig. 4.24), whereas the evolution using
only decays preserve the negative skewness from the initial state. As a result, the
ratio κ̃3 changes its sign around the region where the signature of the critical point
is the strongest.

It is found that the dynamical evolution modifies the net proton κ4 in a similar way
compared to the third cumulant. In the scaling region of the critical point, the strong
correlations get washed out by the hadronic interactions whereas performing only
decays preserve these correlations. Additionally, one can see that at

√
s = 15 GeV

and
√
s = 19 GeV, where the initial values are either κinitial

4 � 0 or κinitial
4 � 0, the

cumulants in the final state are differently strong affected. The dynamical evolution
washes out a strong positive initial κ4 towards the HRG baseline, whereas performing
the resonance decays preserves these initial correlations. The sign change in κ̃4

originates from the fact that initial κinitial
4 � 0 evolve towards positive κ4 above√

s = 19 GeV. Again, this change can be attributed to the isospin randomization
processes as described above.

4.4.7 Final state observables

In this section, the goal is to present ratios of the final state cumulants after the
full dynamical evolution of the hadronic medium. The results are presented with
the same cuts in momentum space as before. Since this work is not in the stage
of making any comparisons to experimental measurements, no experimental data
points are included yet.

Fig. 4.27 shows the scaled variance, skewness and kurtosis of the final state after
the dynamical evolution. Starting with the HRG initialization, one can see that
both the net proton and net nucleon fluctuations are on top of the analytic initial
state line. This means that the previously discussed effects of resonance regeneration
processes and isospin randomization equally affect κ2,3,4. As a result, the ratios are
in line with the HRG expectation.

In the case of gp = 2, the net proton cumulants of the final state are found to
contain very little correlation from the critical point. σ/M shows a slight enhancement
near the scaling region of the CP. Higher order cumulants however show no signs of
the initial correlations. Due to fewer isospin fluctuations, the nucleon fluctuation
contains more correlations in the final state in σ/M and Sσ.

If the system is initialized with a stronger coupling of gp = 4 it is observed that
for all presented ratios of net proton cumulants, correlations from the critical point
point survive the evolution of the hadronic medium, even though these correlations
are much weaker than the ones from the initial state.

The ratio κσ2 shows a non-monotonic behavior similar to the initial state in
comparison to the baseline curve. At

√
s = 15 GeV, where κσ2

initial � 1, the final
state value is ≈ 1, whereas at

√
s = 19 GeV where κσ2

initial � 1 the final state value is
≈ 0. Similarly to gp = 2, the net nucleon fluctuations show much larger correlations
in the final state in comparison to the net proton cumulants. Even though the final
state values are smaller in comparison to the initial state, the shape is very similar
to what was put into. As a result and similar to the previous conclusions, isospin
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Figure 4.27: Ratios of final state proton (upper row) and nucleon (lower row)
cumulants as a function of

√
s. The scaled variance (left column) and skewness

(center) kurtosis (right column) are shown. The results from SMASH are shown as
points for the HRG initialization (blue) and coupling nucleons to the critical field
with gp = 2 (red) and gp = 4 (green) whereas the analytic results from the initial
state are shown as dashed lines.

randomization processes are found to have a strong impact on the evolution of the
cumulants.

4.4.8 Rapidity dependence

In this section, the dependency of the fluctuations as a function of the rapidity
window ∆y = y2 − y1 with y = 1

2 log((E + pz)/(E − pz)) is investigated. This is
important for comparison with experimental measurements where the cumulants are
measured in momentum space and not the full phase space can be observed [219, 224].
It is worth noting that the dynamics of the system considered here are not the same
as in heavy-ion collisions, since no distinct direction exists in the expanding sphere.
However, for a comparison and in order to define the cuts in momentum space, the
definition of rapidity and pT is employed in this setup. The starting point is the
integrated net proton density nnet(y, pT ) over a given rapidity and pT interval. The
total net proton numbers are obtained from the following integration

Nnet(∆y) =

∫ ∆y/2

−∆y/2
dy

∫ 2

0.3
dpT n

net(y, pT ) . (4.101)

From here, the cumulants 〈(δNnet(∆y))n〉 are calculated in each rapidity interval
and are shown as a function of ∆y.
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Figure 4.28: Net proton scaled variance (left), skewness (center) and kurtosis (right)
as a function of the rapidity window ∆y for

√
s = 15 GeV (upper row) and for√

s = 19 GeV (lower row). The results of the initial (green) and final state (red) are
shown for the case of gp = 4 and the HRG (blue).

Fig. 4.28 shows the initial and final state ratios of cumulants as a function of the
rapidity interval ∆y. For the HRG results, no rapidity dependence is observed for
both the initial and final state cumulants. This is expected as the system is initialized
according to the grand canonical ensemble and therefore no correlations appear along
the momentum directions. It is expected that the effects of global charge conservation
have a strong influence on the rapidity dependence [183, 1]. When initialized with
a coupling to the critical field, a difference between the initial and final state is
observed. The scaled variance shows an increasing behavior with larger rapidity
windows until it reaches a plateau. The difference between the initial and final state
fluctuations is only in magnitude, whereas the shape is similar. The skewness starts
at Sσ > 1 with a positive slope at small rapidity windows, before decreasing. After
the dynamical evolution, the strong correlations of the critical point vanish, however,
the shape of the rapidity dependence is similar at the initial and final state. The
maximum appears to grow towards a larger rapidity window. Similar to what has
been shown in Fig. 4.27, the net proton skewness in the full rapidity window is above
and below 1 for

√
s = 15 GeV and

√
s = 19 GeV, even though Sσ � 1 in the initial

state. The kurtosis shows a similar behavior in the final state of the evolution as the
skewness. The kurtosis is above unity for small rapidity windows ∆y < 0.5 before
decreasing to κσ2 < 1 at large rapidity windows. At

√
s = 15 GeV and compared to

the initial state correlations the behavior of the final state kurtosis is opposite to the
initial state. Similar to the skewness, the kurtosis, when initialized with κσ2 � 1,
evolves towards κσ2 < 1. From Fig. 4.28 one can directly observe the importance of

102



the applied momentum cuts. Within this model, the strong correlations from the
critical point appear at large acceptances whereas, when one only looks at small
rapidity windows the fluctuations yield different results.

To understand the non-monotonic behavior of the rapidity dependence, one can
also compare the results from the numerical simulation to semi-analytic ones. By
splitting the momentum integral into transverse and longitudinal direction∫

d3k →
∫
kT

√
k2
T +m2coshy dkT dy dφ , (4.102)

where kT =
√
k2
x + k2

y the transverse momentum and the rapidity y = 1
2 log

(
E+pz
E−pz

)
.

When splitting Eq. 4.19 and Eq. 4.71 in Eq. 4.76, the individual contributions can
be investigated by solving the respective integrals numerically.
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Figure 4.29: Net proton κ4 as a function of the rapidity window ∆y for two different
energies

√
s = 15 GeV (blue) and

√
s = 19 GeV (red). The HRG (dashed) and the

critical contribution (dotted) are shown as well as the total (full) result.

Fig. 4.29 shows the critical and baseline contribution to the rapidity dependence
of the fourth cumulant. Starting with the HRG, κ4(∆y) increases with ∆y starting
at 0 until it saturates at some point. Contrary, the fourth cumulant of the critical
contribution is zero until ∆y ≈ 0.2 when it starts growing towards its values in
full phase space which is either strongly positive for

√
s = 15 GeV or negative for√

s = 19 GeV. As a result, the total fourth cumulant is dominated by the Poisson
cumulants in small rapidity windows and the fourth cumulant at 19 GeV is non-
monotonic in ∆y. For the sake of simplicity the equilibrium distribution function f0

i,k

without radial or longitudinal modifications has been used for these results. However,
it does show the difficulties when comes to measuring since detectors always have
some cuts in rapidity which hinders measuring the full phase space cumulants. A
more detailed investigation of this can be found in [224].
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Summary

In this section, the influence of hadronic interactions on the evolution of critical
fluctuations in a transport model has been studied. It has been shown in the first
part, that the maximum entropy distribution successfully reproduces the first four
cumulants from the HRG coupled to the 3d Ising model. In addition, the initial state
in coordinate and momentum space was presented and the pT -spectra compared to
experimental results. Further, the expanding medium’s thermodynamic evolution
and collision types were investigated. In the next step, the time dependence of
the cumulants was computed and it was found that resonance formation and decay
processes have the strongest influence on the fluctuations. Then, the impact of isospin
randomization processes and the final state net proton and net nucleon cumulants as
a function of

√
s were quantified. It has been shown that in the case of a coupling

gp = 4, correlations from the critical point survive the hadronic evolution and are
present in the final state of the evolution and the rapidity dependence of the final
state fluctuations are modified as well.

This study shows that, even without propagation of the critical field, the possibility
exists that correlations associated with the critical field do survive the interacting
hadronic medium in the case of a coupling of gp = 4.
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5
Modeling of heavy-ion collisions with global

charge conservation

In this section, the goal is to study charge correlations within a hybrid approach of
heavy-ion collisions. In the first part, a study of the effects of nuclear deformations
on the initial state of hydrodynamical calculations is presented. In the second step,
these initial states will be used for a hydrodynamic calculation and the effects of
sampling the hypersurface using global charge conservation on final state event-by-
event fluctuations will be investigated. The system of the colliding nuclei that will
be used has been measured at the RHIC collider at BNL with the goal of studying
the so-called chiral magnetic effect (CME), which will be explained in this section.
Even though it is not the aim of this study to investigate the CME itself, it is still
instructive to start with an introduction of what the goal of the experiment was.

In the year 2018, the RHIC experiment performed a measurement to detect the
chiral magnetic effect [49]. The following will briefly discuss the underlying theory
and the idea of the CME. The CME was proposed in [225, 226] and was already
successfully measured in [227]. The observation of the CME from ultra-relativistic
heavy-ion collisions is still pending. The goal of the CME is to measure unique
vacuum properties of QCD, where domains of non-vanishing net axial charge are
expected to be produced. The axial charge describes the difference between left
and right-handed fields. It is a conserved quantity under the U(Nf )r × U(Nf )l
transformation of a classical theory e.g. the Dirac Lagrangian. A quantization of
such a theory however introduces an axial charge imbalance [228]. The resulting
axial charge current jµ5 is no longer a conserved quantity and the anomaly originates
from multiple effects. First, the masses of fields introduce a breaking of the chiral
symmetry and second, an anomaly occurs that originates from the Abelian field
strength tensor. At high temperatures, where the quark masses can be neglected,
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the anomaly can be approximated by

∂µj
µ
5 = − g2

16π2
F aµνF̃

a,µν , (5.1)

where F aµν is the gluon field strength, F̃ a,µν its dual and g the coupling strength.
There are several contributing factors to the right-hand side of Eq. 5.1 that can
appear at such high temperatures that are reached in heavy-ion collisions. The
initial pre-equilibrium stage can be described by the Color Glass-Condensate, which
employs the saturation scale and describes the initial dynamics of the collision
purely with gluonic fields, governed by the classical Yang-Mills equation. This
early gluon-dominated regime gives rise to a non-zero axial charge [229]. Another
source producing imbalances are fluctuations of the chromo-electric and chromo-
magnetic fields [230, 231]. Additionally, so-called sphaleron transitions which appear
in the topological structures of the QCD vacuum induce axial charge imbalances
[232, 233, 234] and these transitions have an increased rate at large temperatures.

The second mechanism that is important for measuring the axial charge imbalance
is the strong magnetic field produced in a heavy-ion collision. In the case of peripheral
collisions, where the number of spectators is large, very strong magnetic fields are
thought to appear. The origin of these fields is the electric charges carried originally
by the protons that have a velocity close to the speed of light. The resulting magnetic
field strength is in the order of eB ∼ m2

π ∼ 3 · 1018 Gauss. In comparison, magnetars
are assumed to produce magnetic fields of the order of ∼ 1014 − 1015 Gauss. In
peripheral collisions, the spectators are separated from each other and have exactly
opposite directions, therefore the resulting magnetic field has a distinct direction
in the transverse plane. If an axial charge imbalance occurs during the time the
magnetic fields are very strong, a separation of electric charge appears along the
direction of ~B, which is then called the CME. The origin of the effect of charge
separation is the following: Consider a medium consisting of massless up and down
quarks with equal amounts of left- and right-handed quark numbers as a starting
point. In the massless limit, the chirality of a particle is proportional to the helicity
which is defined as the projection of the momentum of the particle onto its spin. A
left-handed particle has negative helicity with the spin and momenta pointing in
opposite directions and a right-handed particle has the opposite property. In an
external magnetic field, the spins will align along the field and if the total axial charge
is zero, no charge separation appears because the amount of up and down quarks
are equal. If however, an axial charge imbalance occurs during the lifetime of the
medium this imbalance translates into an unequal amount of left and right-handed
particles propagating along and in opposite directions to the magnetic field effectively
separating the electric charge. The effective axial charge current j5 can be written as

j5 =
Nce

2π2
µ5B . (5.2)

Here, µ5 is the axial charge chemical potential associated with the axial charge Q5.
To measure the CME in heavy-ion collisions the problematic issue is that one

cannot directly control the external magnetic field in order to vary the charge
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separation process, since the energy of the colliding nuclei is fixed. In addition,
other processes might exist that generate a similar charge current that could be
misinterpreted as the CME. The idea was then to conduct two experiments with
nuclei with the same number of nucleons, in order to fix the background signal but
with an unequal amount of protons to increase the magnetic field in one of the
systems. Nuclei that have these properties are isobars and the ones that have been
chosen are 96

40Zr and 96
44Ru and the energy of the collider is

√
sNN = 200 GeV. Since

the number of protons in Ru is larger it is expected that the signal of any observable
O, that is thought to be sensitive to the CME should yield O(Ru)/O(Zr) > 1. This
however was not the case in the first measurement by STAR [49], where the ratio of
all measurements lie below unity, see Fig. 26 in [49]. This result raises the question
of whether one of the premises is correct for the two isobars. As it turned out, even
though the two isobars have the same amount of nucleons, their nuclear shape is
different which might lead to differences in the background of the CME observation.
One of the experimental measurements, besides the CME signals for the charge
separation, that can be used to estimate whether the background of the two isobaric
collisions is the same, are flow observables that describe the distribution of the
particle spectra in the transverse plane with the azimuthal angle φ. In the Fourier
expansion, one can write

dN

dφ
=

1

2π

[
1 +

∞∑
n=1

2vncos(n(φ− ψRP ))

]
, (5.3)

where vn are the flow coefficients and ψRP is the reaction plane of the collision. The
ratio of v2 as a function of the centrality of Ru/Zr measured by STAR already shows
a non-trivial shape (see Fig. 4 in [49]) and the understanding of this result motivates
the first section of this work.

This observable provides a good starting point to determine the influence of
the nuclear shape on the background signal in the measurements of the isobaric
system. However, the full modeling of a HIC at these energies is very demanding
in terms of computational costs. It is also known that at the considered energy a
large portion of the final state flow originates from the initial spatial geometry of
the created QCD medium [235]. This might not be a precise determination of the
final state flow, however, since only ratios of observables will be presented and the
goal is to determine the influence of the nuclear structure, only the initial geometry
will be studied in the first step. Besides the study of the initial geometry of the
collision, the second part of this chapter aims to investigate the effects of global
charge conservation on final state fluctuations of particle numbers. As has been
already introduced, within the standard description of HIC, the QGP stage can be
modeled using hydrodynamical tools whereas the dilute stage is described using
transport models. Switching between the two descriptions of the hydrodynamical
fields and the single-particle distribution function is performed using the Cooper-Frye
formula [84]. The goal of this study is to extend the hybrid model introduced in
[5], such that the hydrodynamical hypersurface can be sampled with exact charge
conservation within the particle spectra via the description of the canonical ensemble.
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5.1 Initial state to hydrodynamical simulations

In this section, the influences of the nuclear structure on the initial state of HIC
are studied. The initial state is calculated within the framework of [5], in which the
first collisions of the nuclei are described by SMASH. This model will be shortly
introduced. In the next step, the observables that determine the geometry of the
collision are presented and finally, the results are shown.

5.1.1 Extension of the collision term towards high-energy collisions

In a recent work [5], an infrastructure for a hybrid approach was built to fully describe
the HIC in the energy range from

√
sNN = 4.3 GeV to

√
sNN = 200 GeV. In the

first part of this work, only the first stage of the hybrid approach is used with the
goal of analyzing the initial condition for hydrodynamical modeling.

So far, the described collision term of SMASH is able to model the interactions
with resonance formations/decays and (in)elastic processes. In the energy regime of√
sNN = 200 GeV however, these interactions are not relevant and the interactions

within SMASH have to be extended.
In the energy regime of collisions between hadrons at

√
s & 5 GeV the Lund

model is employed [236]. The idea of this model is that the hadrons at the time of
collision break up into their constituents and the interaction between the partons are
then the ones that dominate the evolution in accordance to asymptotic freedom of
QCD. When two quarks interact, a color flux is formed between them, and when the
two are separated, the energy of the color flux increases. At large distances, one can
approximately write the potential between two quarks as U(r) ∼ κr with κ being a
constant and r the distance between the two quarks. At some point in the evolution,
when the two quarks have separated far enough, the energy deposited in the color
flux (or string) is large enough, such that it breaks and two new partons are created
forming new color singlet states. The color flux between the original quarks and the
newly created ones still exists and the string breaking continues with new hadrons
being formed until the energy of the color flux is not sufficiently large enough. In
SMASH, there exists a distinction between the so-called ”soft” and ”hard” string
interaction. The soft string routine is explained in detail in [99]. For hard string
processes SMASH employs PYTHIA8 [237, 238] to perform the hard scatterings.
The difference between the two regions of string interactions originates from the
applicability of perturbative QCD (pQCD) cross-sections. The transition region in
the cross-sections between two hadrons a and b between the region of resonance
formation and where the dynamics of the Lund string model becomes important
starts at energies of ma +mb + 0.9 GeV. At the energy considered in this study, only
hard QCD processes appear which are performed by PYTHIA.

5.1.2 The shape of the nucleus

So far, SMASH has been only employed in the box modus simulating infinite matter
and in an expanding sphere mode. The initialization for heavy-ion collisions collision
differs so far, as the shape of the colliding nuclei has to be modeled first. The most
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common way to describe the density distribution of a large nucleus is by using the
Woods-Saxon distribution

ρ(r, θ, φ) =
ρ0

exp
{
r−r(r0,θ,φ)

d

}
+ 1

. (5.4)

Here, ρ0 is the ground state density, d the diffusiveness and r(r0, θ, φ) a function
that describes the surface of the nucleus. A common ansatz is to expand the surface
in terms of spherical harmonics

r(r0, θ, φ) = r0

{
1 + β2

[
cos(γ)Y 0

2 (θ, φ) +
√

2sin(γ)Re(Y 2
2 (θ, φ))

]
+ β3Y

0
3 (θ, φ)

}
,

(5.5)
where r0, β2,3, as well as γ, are parameters taken from experiments or theoretical
calculations to describe the size and the shape of the nucleus. Y n

m(φ, θ) are the
spherical harmonics.

On an event-by-event basis, the positions of the nucleons are sampled from Eq. 5.4
and both nuclei are rotated randomly around all axes. The nuclei are then placed
according to the impact parameter b along the x direction such that the outer shell
of the spheres including the Lorentz contraction (R+ d)/γ touch each other at t = 0.
The beam direction is set as the z axis. In order to systematically study the influence
of the nuclear shape of the colliding nuclei on the initial state of hydrodynamic
calculations, different Woods-Saxon parameters from Tab. 5.1 are used. The values

name r0 [fm] d [fm] β2 β3 γ [◦]

Case 1 96Ru (full) 5.09 0.46 0.16 0 30
Case 2 5.09 0.46 0.16 0 0
Case 3 5.09 0.46 0.16 0.20 0
Case 4 5.09 0.46 0.06 0.20 0
Case 5 5.09 0.52 0.06 0.20 0

Case 6 96Zr (full) 5.02 0.52 0.06 0.20 0

Table 5.1: Woods-Saxon parameter used in this work.

of Tab. 5.1 are built such that the influence of the individual deformation parameters
can be observed when comparing the different cases with each other. E.g. when
comparing the results of case 1 to the results of case 2, the only difference is the
value of the triaxiality γ. Therefore, differences that γ induce are directly observable.
The “full” configurations that are thought to represent the nuclear shapes of Ru and
Zr respectively are case 1 and case 6. The influence of the individual deformation
parameter can be seen in Fig. 5.1. Here, the surface r(r0, θ, φ) Eq. 5.5 is shown
for r0 = 1 fm for extrem cases of βn. The inclusion of a β2 forms the nucleus in
an ellipsoid shape, β3 creates a pear-like shape whereas a non-zero β4 creates an
ellipsoid shape with an additional disc around its center. The triaxiality γ is the only
deformation parameter that breaks the symmetry with respect to rotations around
the angle φ. The resulting nucleus has a so-called prolate shape. The interesting
aspect of the presented deformation parameter will be to study their effects on the
initial geometry of the collision.
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2 0 3 0 4 0

Figure 5.1: Influence of non-zero βn deformation parameter on the surface of the
nuclei. For the three cases values of βn = 0.4 have been used.

In addition to the six different cases from Tab. 5.1, the influence on the initial
state when modeling the nuclei in a more physical way is investigated. It is known
from experimental measurements that there exist nucleon-nucleon (NN) short-range
correlations (SRC) in momentum space, see e.g. [239] which also translate into short-
range correlations in coordinate space [240]. These correlations are not captured by
purely sampling Eq. 5.4 as by chance, a NN pair is sampled very close in coordinate
space. As a result, the radial two-body density ρ(2)(r12), which describes the density
of states between two nucleons 1 and 2 has a non-zero value at small distances r12.
To properly capture the NN SRC effects in this work, the configurations generated
by Alvioli et al. [241] are used. They are based on modeling the wavefunction of the
nucleus using realistic correlations between the nucleons

ψ(~x1, ~x2, ..., ~xN ) =

A∏
i<j

f̂i,jφ(~x1, ~x2, ..., ~xn) . (5.6)

Here, ψ is the wave function of the nucleus and f̂i,j is a correlation operator acting
on the uncorrelated wave function φ. In this work, the correlations originating
from spin- and isospin dependencies are incorporated [242]. The computation is
performed using a method proposed by Alvioli et al. [241], to generate nuclear
configurations that properly describe the wavefunction of the nucleus Eq. 5.6 including
the non-trivial effects correlations. Fig. 5.2 shows the one and two body densities
of ≈ 104 configurations of Ruthenium nuclei with the Woods-Saxon parameter case
1 (see Tab. 5.1). Whereas the one-body density yields the same results as the two
descriptions, one can see a clear difference between them on the level of ρ(2)(r12). At
small distances between the nucleon pairs, the configurations including NN SRC yield
a better description in contrast to purely sampling Eq. 5.4. The calculations with
short-range correlations rely on externally provided configurations for the nucleons,
otherwise, the propagations and collisions are described in the same way in SMASH.

In most theoretical studies for heavy-ion collisions, it is assumed, that protons
and neutrons are distributed equally within the nucleus. However, in 1978 it was
found in the case of 208Pb that the average radius of the neutron distribution is
larger compared to the one of protons [243]. The difference in the average radii of the
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Figure 5.2: One (left) and two (right) body density of nuclear configurations of
Ruthenium (case 1). The blue squares correspond to the results obtained from
configurations by Alvioli et al and the green circles to configurations obtained from
sampling Eq. (5.4).

nucleons is called the neutron skin effect and it is defined as the difference between
the root mean square radius of neutrons to protons

∆rnp =
√
〈r2
n〉 −

√
〈r2
p〉 . (5.7)

Measurements of the average radii of neutrons are difficult, however, a summary of
charge radii of many different nuclei of two different measurement techniques has
been published in [73, 244]. The determination of the neutron radii is still dominated
by errors since the probing mechanism is based on the strong interaction and not the
electromagnetic. However, recent studies exist to determine the value of the neutron
skin from measurements of heavy-ion collisions [72].

The neutron skin effect is an effect of nuclear matter in which the neutrons are
populated at larger radii in neutron-rich heavy-nuclei [245]. It originates from the
symmetry energy in the nuclear equation of state (EoS) which describes the effect
of differences of proton and neutron numbers on the EoS and its precise value is
not known. Due to the imbalance, the effective pressure on the neutrons is larger
in comparison to the protons and as a result, the neutrons are pushed towards the
outer shell of the nucleus. The determination of the value of the symmetry energy is
subject to many other fields e.g. astrophysical observations of neutron stars [246].

In the context of heavy-ion collisions, a short review of the existing literature
will be given in the following. In [247], the influence of the neutron skin on the
direct-photon and charged hadron production was investigated. [248] studied, how
the neutron skin affects centrality classifications in heavy-ion collisions. In [249],
an improved Glauber Monte Carlo study was presented including a more precise
description of the nuclei through distinct density distributions for protons and
neutrons. In [156] the influence of the neutron skin effect was studied within the
context of the isobar collision system. Specifically, it was found that the generated
magnetic field is larger in peripheral Zr Zr collisions in comparison to Ru. Finally, in
[72], a Bayesian analysis study was performed in order to extract ∆rnp of Pb.
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In this work the Zr nucleus is modified with the same argument as in [156]. The
measured neutron skin thickness of Zr is [245, 250]

∆rnp|Zr = 0.12± 0.03 fm . (5.8)

To study the maximum effect a value of ∆rZr
np = 0.15 fm is used. The method to

compute the different Woods-Saxon parameters is presented in App. A.7. The final
radius and the diffusiveness of the protons and neutrons of Zr are shown in Tab. 5.2.
There exist two different types of neutron skin when it comes to modeling. First, the
thickness-like neutron skin in which Rn > Rp, dn ∼ dp and the second the halo-like
neutron skin with Rn ∼ Rp and dn > dp. In this work, the latter type has been
chosen, in accordance with [156]. The resulting changes of the neutron skin in

Nucleon r0 [fm] d [fm]

proton 5.075 0.428
neutron 5.075 0.526

Table 5.2: Proton and neutron Woods-Saxon parameters of Zirconium to include the
neutron skin effect.
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Figure 5.3: One body density ratio of protons to neutrons as a function of the radius.
The results are presented for Zr with (red) and without (blue) the neutron skin.
Results from the sampled distribution are shown as circles and analytic expectation
as dashed line.

Zirconium are shown in Fig. 5.3. On the level of the one-body density, the two
systems have the same distribution, whereas the ratio of proton to neutron density
shows a significant difference. In the case of no neutron skin, the ratio is constant as
expected. With neutron skin, the ratio drops at large radii where the neutron density
is larger. One can see that the analytic expectation coincides with the sampled
nuclei.

The neutron skin effect has no influence on the geometric shape of the initial
condition which is studied in the first part of this chapter. Its effect will be investigated
in the second part when the full heavy-ion collisions are modeled.
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5.1.3 Modeling of the initial conditions to hydrodynamical calcula-
tions

After the nuclei are initialized, they are then propagated and the collisions are
performed until the hadrons cross a hypersurface of constant iso-τ . Since most
hydrodynamical codes run in Milne coordinates, there must be a transition between
the Cartesian and the Milne one. The definition of τ is

τ =
√
t2 − z2 . (5.9)

Here, t and z are the time and z components respectively. The value of the iso-τ0

hypersurface is determined from

τ0 = max

0.5 fm,
RP +RT√(√
sNN

2mN

)2
− 1

 , (5.10)

where RP,T are the values of the radii of the projectile and target nuclei respectively
and mN = 938 MeV the mass of a nucleon. Eq. 5.10 describes the time at which the
two nuclei completely overlap with each other and it is at this time when the energy
density is thought to be the largest. At the considered energy of

√
sNN = 200 GeV,

the minimal time of τ0 is already reached. Fig. 5.4 shows the participants of one

Figure 5.4: Iso-τ initial conditions hypersurface for various different collisional
energies. The figure is taken from [181].

event for different beam energies. With increasing
√
s, the time that the nuclei take

to overlap gets shorter, until it converges towards t = 0.5 fm at z = 0.
After the methodology to determine the initial conditions for hydrodynamic

calculations has been established, the goal is now to run simulations using the Woods-
Saxon parameter from Tab. 5.1, plus the nuclear configurations which incorporate
the NN SRC and study the properties of the created medium. In the next section,
the details of how the geometric properties are obtained are presented.
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5.1.4 Observables

The starting point of the calculations is the energy density profile of the collision
in the transverse plane. The energy density profile is calculated by summing over
all participants on the iso-τ hypersurface with their coordinates xi and energy p0

i

respectively

e(x, τ) =

Npart∑
i=0

p0
iK(x− xi,pi) . (5.11)

A participant is, by definition a particle that has collided at least once or is not part
of the original set of nucleons. This definition however is not strict and a different
one can easily be defined as well. K(x − xi,pi) is the Lorentz invariant smearing
kernel [251]

K(∆xi = x− xi,pi) =
γi

(2πσ2)3/2
exp

{
−∆xi + γ2

i (∆xi · βi)2

2σ2

}
. (5.12)

Where γi is the gamma-factor of each particle and βi = vi/c the velocity. In this work,
the width of the Gaussian is set to σ = 1 fm and it is the only free parameter of the
model. This also yields a benefit in comparison to the previously defined smearing
kernel used in [5], in which the energy density was smeared in the longitudinal
direction Rη and transverse direction R⊥ separately. Since only observables in
midrapidity are of interest, a rapidity cut of |y| < 0.5 is incorporated.

The initial state is quantified based on the energy density profile in the transverse
plane e(x, τ). Starting from the total energy of the collision, which can be calculated
by integrating e(x, τ)

E = τ0

∫
d2x e(x, τ0) . (5.13)

The entropy density s(x, τ) is obtained by using the ideal gas equation of state
s(x, τ) ∼ e(x, τ)3/4 and the total entropy is calculated similarly to the energy density
as

S = τ0

∫
d2x s(x, τ0) . (5.14)

In addition to the energy and entropy density, the geometric properties of the
created medium are of interest. For example the final state flow vn can be related to
the eccentricity εn [235] which defines variations from a perfect sphere

v2 ∼ α2 ε2 +O(W 2) (5.15)

v3 ∼ α3 ε3 +O(W 2) . (5.16)

Here, W is the generating function for the eccentricity harmonics and α2,3 are
constants. The geometric properties of the medium are calculated in the following
way. First, the average radius and its moments are calculated via

〈rn〉 =
1

S

∫
d2x|x|ns(x, τ0) . (5.17)

114



For the eccentricity harmonics that are used to estimate the final state flow, one first
needs to calculate the following vector

En =
1

S〈rn〉

∫
d2x|x|neinφs(x, τ0) , (5.18)

with φ = atan2(y, x). Finally the eccentricity εn and orientation ψn are calculated as

εn = |En| , (5.19)

ψn =
1

n
atan2 [Im(En), Im(En)] +

π

n
. (5.20)

Together with the defined observables, the collisions can be performed and the
results of the defined observables computed. For each case, O(106) events have been
simulated and the above quantities computed on an event-by-event basis.

5.1.5 Results

Quantification of the medium

The first part of the results section is dedicated to describing the created system that
is analyzed. The initial collisions of the participating nucleons at

√
sNN = 200 GeV

are performed by PYTHIA which, after performing the hard processes, creates
particles from the string fragmentation mechanism described above. The newly
created particles are propagated in SMASH. Since these new hadrons are formed
on a constant proper time themselves, at the time of the iso-τ hypersurface of the
simulation, some of them are technically not formed yet but will of course add to
the total energy density of the system. Technically, this is done by creating the new
hadrons directly after the initial collision, but assigning no cross-section to them
such that they cannot collide with other particles [99] until their formation time is
reached.

Fig. 5.5 shows the energy density profile of one exemplary event of a RuRu
collision. The individual narrow lines can be attributed to hadrons with a large pT .
As a result of the Lorentz contraction of the smearing kernel K (Eq. 5.12), the energy
density of such a high pT particle then appears as a straight line in the computational
frame, which coincides with the center of mass frame of the medium.

Ratios of eccentricity

In this section, the results of Eq. 5.13-5.20 are going to be discussed. In addition to
the 7 different Woods-Saxon cases, simulations were the nuclear configurations that
incorporate NN SRC of the two full nuclei descriptions of Ru and Zr (case 1 + 6),
are performed as well. Since the total entropy of the system is directly related to the
number of produced (charged) particles S ∼ Nch, the quantities are presented as a
function of S to mimic experimental measurements as a function of Nch [49]. The
total entropy is calculated by integrating the entropy density profile in the transverse
plane. Its exact value is not important and could be rescaled to match with Nch. The
interesting quantity that is also measured in the experiment are differences between
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Figure 5.5: Energy density profile in the transverse plane of one event of a RuRu
collision at

√
s = 200 GeV with an impact parameter of b = 4.4 fm.

observables in RuRu and ZrZr collisions. Therefore, only ratios of Ru (case 1-5) / Zr
(case 6) are shown and the impact of the Woods-Saxon parameter can then be seen
from differences in the Ru nucleus.
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Figure 5.6: Ratio of ε2 (left), ε3 (center) and ε4 (right) as a function of the total
entropy S. In the upper row, the ratio is taken of the results of cases 1-5 with respect
to case 6 (see Tab. 5.1). In the lower row, the ratio is taken between the nuclear
configurations without and with NN SRC of case 1 (red) and case 6 (blue).

Fig. 5.6 shows the five described ratios of the eccentricities εn as a function of S.
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The ratio case 1 to case 6 is the baseline calculation since the actual Woods-Saxon
parameters are used. Comparing the ratio case 1 to case 2, the difference of a
non-zero triaxiality γ can be seen, however, it is found that γ has no influence on
the eccentricities ε2,3,4. Going to the ratio of case 3, which in comparison to case 2
has a different β3 parameter, it is found that at more central collisions, ε2 and ε3 are
strongly affected. Including β3, increases the eccentricity ε2 and ε3 of the initial state
of the Ruthenium collisions. The influence of a varying β2 parameter is contained
in the comparison between ratios 4 and 3. Here, mainly the second eccentricity is
modified. If one goes to larger entropy bins, a larger β2 parameter increases ε2,
meaning that the collision area appears to be less spherical. Both ε3 and ε4 are only
slightly affected. Finally, the diffusiveness has a strong influence on the eccentricities
of all orders that are presented here. With the matching of the diffusiveness of Ru
to the one of Zr, it is found that the main driver of the non-monotonic behavior of
the ratios of εn is originating from the difference in d since the ratios are close to 1.
Differences from unity of case 5 / case 6 is an effect, originating only from a different
radius.

The impact of NN SRC can be seen in the lower row of Fig. 5.6. Throughout
the shown eccentricities of order n = 2, 3, 4, the inclusion of NN SRC reduces the
eccentricity by about ≈ 1%. As a result of the improved description of the nuclei on
the level of ρ(2)(r12), the initial state of the hydrodynamical description appears to
be more spherical in comparison to simply sampling the Woods-Saxon distribution.
However, as the ratios of case 1 and case 6 are on the same order of magnitude, the
ratio, where NN SRC are included in both Ru and Zr, the results in the upper row
are unaffected.

A different observable where the NN SRC could possibly play a role is higher-order
fluctuations of the eccentricity harmonics. In [252], the influence of NN SRC was
studied in a Glauber model. Within the approach that is used here fluctuations of
εn can also be obtained. Due to the modeling of the hard scatterings by PYTHIA
however, it describes a more dynamic medium in comparison to the classical Glauber
model used in [252]. In order to have a better comparison to [252], the fluctuations
are calculated as a function of Nch, which is a proxy of Npart that can be obtained
from a Glauber model. Nch describes the number of charged particles at the proper
time τ0 in midrapidity. The quantity of interest which is the standard deviation is
computed by taking the square root of the variance√

εn{2} =
√
〈(δεn)2〉 . (5.21)

Fig. 5.7 shows the fluctuations of the eccentricity harmonics Eq. 5.21. The main
result is that the NN SRC does not have an effect on the normalized standard
deviation. In comparison, the results of [252] found that one specific type of NN
SRC changes the fluctuations of the εn, called central correlations. However, when
the full correlations are included, the fluctuations return to the no correlation case.
In the present calculation, the NN SRC incorporates the full correlation operator
which is why again no differences are observed. Here, the dynamical evolution has
no difference as well.
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Figure 5.7: Normalized fluctuation of the second, third and fourth eccentricity
harmonics as a function of Nch. The results are shown for Ru case 1 (blue) and Zr
case 6 (red) collisions. Results with NN SRC are shown as dashed lines and without
NN SRC in full lines.
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Figure 5.8: Ratio of number of paricipants Npart (left), probability distribution P (S)
(center), total energy E and inverse radius 1/R (right). In the upper row ratios of
case 1-5 with respect to case 6 are presented, whereas the lower row shows ratios of
results obtained without to the ones obtained with NN SRC of case 1 (red) and case
6 (blue).

In this section the observables are switched to the number of participants Npart,
probability density of S, the total energy of the system E and the inverse mean
squared radius 1/R shown in Fig. 5.8. First, it is observed that the NN SRC has no
impact on any of the quantities shown. A possible explanation is that the observables
presented in Fig. 5.8 are only sensitive to modifications of the one-body rather than
the two-body density. In contrast to εn which probes the spatial structure of the
collision, the quantities Npart, P (S) and E or 1/R are bulk quantities that wash
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difference on the level of ρ(2) out. For all four observables, the main driver for
differences is the diffusiveness of the nuclei. The deformation parameters β2,3 and γ
play only in the strength of the ratio, not its shape.

5.2 Effects of exact global charge conservation on ob-
servables

In this section, the previously obtained initial condition will be taken and fed into a
hydrodynamical simulation and consequentially into the transport approach to study
fluctuations of the final state particle spectra. Before the final results are presented,
the model is described in detail.

5.2.1 Hydrodynamical modeling

The goal is now to take the previously investigated initial conditions and run hy-
drodynamical simulations with these initial conditions. After the hydrodynamical
description of the QCD medium breaks down, the transition to the dilute stage has
to be modeled. This will be described in the next section.

The initial condition of the hydrodynamic simulation of the hot and dense stage
of the heavy-ion collision is obtained by averaging multiple SMASH events. In this
work, N = 103 events have been used. Within each event, the impact parameter
was sampled according to a specific centrality class. The classes were obtained from
a MC Glauber calculation. The information about the nuclear structure gets lost
during the process of averaging the events for the bulk observables of interest. It is,
however, not the incentive to study the effects of nuclear deformation on final state
event-by-event fluctuations yet, but to first quantify the influence of the canonical
sampler. The study of the effects of the nuclear structure is left for future studies.

In this work, the framework of vHLLE [83] is used. The following derivations
originate from their work. The hydrodynamic equations in covariant form are

∂νT
µν = 0 , (5.22)

∂µJ
µ
B,Q,S = ∂µ(nB,Q,Su

µ + V µ
B,Q,S) = 0 . (5.23)

Where nq is the density of conserved charge q and V µ
q the charge diffusion currents

which are defined similar to Eq. 1.9 as

V µ
q = κqq′∇µ

(
µ′q
T

)
. (5.24)

It would be in principle desirable to include the diffusive dynamics that originate
from the diffusion coefficient matrix κqq′ , in accordance with the results of Chapter
3. However, at this stage, the diffusion coefficients are set to zero and the conserved
charge currents q ∈ {B,Q, S}, Eq. 5.23 are propagated throughout the simulation.

The energy momentum tensor Tµν can be decomposed into an ideal and viscous
part

Tµν = εuµuν − (p+ Π)∆µν + πµν . (5.25)
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Here, ε is the energy density and p is the equilibrium pressure in the local rest
frame. ∆µν = gµν − uµuν . πµν represents the shear stress tensor and Π the bulk
pressure. These equations are then solved on a discrete grid in Milne coordinates.
vHLLE solves the relativistic hydrodynamical equations in the second-order Israel-
Stewart framework in the 14-moment approximation. The resulting equations for
the relaxation of the viscous corrections are [253, 5]

DΠ =
−ζθ −Π

τΠ
− δΠΠ

τΠ
Πθ +

λΠπ

τΠ
πµνσµν , (5.26)

Dπ〈µν〉 =
2ησµν − πµν

τπ
− δππ

τπ
πµνθ +

φ7

τπ
π〈µα π

ν〉α − τππ
τπ
π〈µα σ

ν〉α +
λπΠ

τπ
Πσµν . (5.27)

In the equations above, θ is an expansion scalar, τπ and τΠ are relaxation times for
the shear and bulk corrections respectively and σµν the shear stress tensor. λΠπ,
λπΠ, δππ, τππ and φ7 are higher order couplings which expressions can be found in
[253]. For further details, the interested reader is referred to [83].

The systems of equations Eq. 5.22 and Eq. 5.23 have to be closed using the EoS,
which relates the energy density and pressure with thermodynamic quantities such
as temperature, chemical potential and charge densities. This yields a strong benefit
of hydrodynamical calculations as the microscopic interactions do not have to be
modeled but are exchanged with the bulk properties of the medium. For the hot and
dense stage of the heavy-ion collision, the EoS of a chiral model is used [78]. In this
effective QCD EoS model, hadrons and quarks are included. At zero baryon chemical
potential, the cross-over phase transition is reproduced which is expected from first
principle lattice QCD calculations [15]. For low temperatures, the chiral EoS is
fitted to the HRG EoS. At some point of the evolution, when the energy density
per hydrodynamic cell is below a certain value εcrit, the hypersurface is constructed
using the CORNELIUS routine [254]. This hypersurface is often called freezeout
hypersurface even though it is not equivalent to the chemical or kinetic freezeout in
a heavy-ion collision. After this particular freezeout hypersurface associated with
a constant energy density is found, the thermodynamic quantities are recalculated
using the hadronic EoS of the transport model that is used for the dilute stage of
the heavy-ion collision. For this case, the HRG EoS of the SMASH particle list is
used. For further details, see Section 4.2.

5.2.2 Switching between hydrodynamical and kinetic description

The transition between the hydrodynamical and the kinetic regime of the heavy-ion
collision is performed using the Cooper-Frye formula [84]

dNi

d3k
=

gi
(2π)3

∫
kµdΣµf

0
i,k(1 + δfi,k) . (5.28)

Here, dΣµ is the normal vector of the freezeout hypersurface element which includes
the thermodynamic quantities such as temperatures and chemical potentials. The
non-equilibrium correction originating from the shear stress tensor is modeled via

δfi = (1∓ f0
i,k)

pµpνπµν

2T 2(ε+ P )
. (5.29)
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The goal of this section is to perform the sampling of the hydrodynamical
hypersurface using the canonical ensemble (CE), in which the charges are exactly
conserved on the total hypersurface. This is done within the fist-sampler [195] (see
Appendix B in [195]). To do so, the fist-sampler has been modified to use the
numerical output of VHLLE. The sampling procedure will now be briefly explained.

When sampling an element on the hypersurface dΣµ, one has to take into account
that the total number of conserved charges within the hydrodynamical simulation
is fixed and therefore the hypersurface cannot be sampled according to the grand-
canonical ensemble, where the particles freely exchange energy with the heat bath.
Since the total charge is fixed the joint multiplicity has to follow the probability
distribution [255]

PCE
(
{ Nj}sj=1

)
=

s∏
j=1

PHRG(Nj ;Tj , Vj , µj)

× δ(QtotX −
s∑
j=1

QX,j) . (5.30)

Here, the Dirac delta ensures that the total baryonic electric and strangeness of
the hypersurface is conserved. The first step is to calculate the yields of the HRG
model of the full hypersurface, then the yields of each individual hydro cell, plus
their respective momenta can be generated which is in accordance to [256]. The
algorithm to generate the sets of multiplicities that satisfy Eq. 5.30 goes as follows

• Calculate the GCE expectation value of the multiplicities of each hadron
by integrating over the full hypersurface Ni =

∫
dΣµ(x)uµni(x). This also

determines the total B,Q, S that is conserved.

• Sampling the particle numbers for one event according to the Poisson statistics
(GCE) and using a rejection sampling procedure by [256], to enforce global
charge conservation in each event.

• After the multiplicities per event are fixed by the previous step, each hy-
persurface element is sampled from a multinomial distribution with weights
according to the particle number per cell Ni(x) and the density ni(x). Finally,
the momenta of the hadron are sampled according to the Cooper-frye formula
Eq. 5.28

After the set of particles is obtained from the hypersurface using the fist-sampler,
they are fed into SMASH to simulate the dilute stage of the heavy-ion collision. Here
again, two distinct types of calculations are investigated. The first is to directly
perform only the decays of all unstable particles including free-streaming and second,
run the full dynamics of SMASH. The goal is to compare sampling the hypersurface
according to the GCE and according to the CE ensemble. In addition to the effects
of global charge conservation on the hydrodynamical hypersurfaces, results with the
presented modified charge distribution within the Zr according to the neutron skin
will be shown.
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5.2.3 Results

The previous section determined the event geometry by analyzing the eccentricities
and other initial state observables. It is also instructive to analyze not only the energy
density profiles of the initial condition but also the distribution of the conserved
charges. Fig. 5.9 shows the averaged initial conditions for the hydrodynamical
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Figure 5.9: Initial energy density (upper left) baryon number (upper right) electric
charge (lower left) and strangeness density (lower right) in the transverse plane at
z = 0. The system is ZrZr at

√
s = 200 GeV.

simulations obtained from SMASH for 103 events in the 0− 10% most central events.
For the baryonic, electric and strange charge, the fluctuations are of small order,
however, the net baryon density shows a non-zero distribution in the transverse plane.
This is known to be wrong since at these energies, the deposition of baryonic charge
in midrapidity should be much closer to zero [108]. The reason for the non-zero value
originates from the initial hard scatterings performed by PYTHIA and a possible
solution could be to change the angular distribution of these initial hard processes.

The calculations used for the following results depend on external parameters
which are listed in Tab. 5.3. Since it is not the purpose of this work to precisely

Parameter Value

Smearing σ 1 fm
η/s 0.08
ζ/s 0
eswitch 0.5 GeV/fm3

Table 5.3: Parameters used for the hydrodynamical calculations.
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match e.g. the multiplicities of this model to experimental measurements, but rather
to determine the effects of the neutron skin plus global charge conservation on the
hydrodynamical hypersurfaces, the values of Tab. 5.3 were not tuned to fit any
experimental data.
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Figure 5.10: Top: Mean number of produced charge particles in midrapidity as a
function of the centrality class. An additional cut of pT > 0.2 GeV has been applied.
The results are presented for Ruthenium (blue) Zirconium without neutron skin
(closed red circle) and Zirconium with neutron skin (open red circle). Bottom: Ratio
of Ruthenium over Zirconium with (green) and without (orange) neutron skin.

The mean number of produced charged particles as a function of the centrality
class is shown in Fig. 5.10. With increasing centrality the mean number of produced
charged particles decreases which is expected as the created medium gets smaller in
its size. When comparing the results of Ru to the Zr with and without neutron skin,
a difference between the two systems is visible in the largest centrality classes. When
the neutron skin is included and in the largest centrality classes, the neutron-rich
regions of the nuclei collide and the produced medium has a lower net electric charge
number. As a result, the mean number of charged particles in the final state decreases
and the ratio Ru/Zr increases. One can see the effect of the neutron skin already on
the level of bulk observables. The next step is to investigate fluctuations of conserved
charges and the effects of the canonical ensemble at the sampling stage and the
neutron skin.

Fig. 5.11 shows the scaled variance of the net proton number obtained from the
centrality class 0-10% of RuRu collisions. The differences between sampling the
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Figure 5.11: Net proton scaled variance as a function of the rapidity window ∆η.
The results are shown for the full evolution (blue line) or only performing decays
(red line). The hadrons were sampled using the GCE (left) and the CE (right).

CE and the GCE can be seen between the left and the right plot and in addition,
the effects of the hadronic rescattering stage are shown. The latter has a strong
effect on the net proton scaled variance. In the case when the decays of resonances
into stable hadrons are performed, ω is in alignment with the expectation from the
grand-canonical ensemble which is unity. However, when the SMASH transport
model’s full dynamics are applied, the fluctuations increase. This effect has already
been studied in [257], where the influence of baryon annihilation processes was studied
on the scaled variance at LHC energies. It was found that previously thought global
baryon conservation cannot explain the experimental measurements if the effects of
baryon annihilation processes are taken into account. It is rather a mixture of global
plus local conservation effects that are important. Here, a similar effect is found
but since this observable is not measured yet, there is no data to compare to. The
dynamical evolution and the (nucleon) annihilation process via the h1 meson pushes
the variance up. When the hypersurfaces are sampled with the CE, generally the
fluctuations decrease with increasing rapidity window. This is the same effect that
has been studied in Sec. 4.3. However, when the dynamical evolution is switched on,
the baryon annihilation processes increase ω. In the next step, the same observable
is studied in the ZrZr collisions and the effects of the neutron skin are studied.

Fig. 5.12 again shows the scaled variance as a function of the rapidity window of
the lightest hadrons that contain the three conserved charges. The hypersurface was
sampled only using the CE. For the hadronic rescattering phase, the full dynamical
evolution of SMASH was employed. Contrary to the previous result however, where
only the result of RuRu collisions was shown, here, the result of RuRu, ZrZr
without and ZrZr collisions including the neutron skin are presented. This analysis
aims to determine, whether the different charge distributions in the three nuclear
configurations including the CE have an observable effect on the final state event-by-
event fluctuations. For all three species, the fluctuations are suppressed when the
rapidity window is increased, which has already been discussed. Unfortunately, no

124



0 1 2 3

0.7

0.8

0.9

1.0
=

ne
t

2
/

to
t

1
Proton

GCE expectation
Ru
Zr with neutron skin
Zr without neutron skin

0 1 2 3

0.7

0.8

0.9

1.0

Pion

0 1 2 3

0.7

0.8

0.9

1.0

0 10%

Kaon

0 1 2 3

0.7

0.8

0.9

1.0

=
ne

t
2

/
to

t
1

0 1 2 3

0.7

0.8

0.9

1.0

0 1 2 3

0.7

0.8

0.9

1.0

70 80%

Figure 5.12: Scaled variance as a function of the rapidity window ∆η of the net
proton (left column) net Pion (middle column) and net Kaon number (right column).
The results are shown for Ru (blue) Zr with (green) and Zr without (red) neutron
skin. The upper row shows the results for the most central collisions and the lower
row the results for the most peripheral centrality class.

differences with respect to the different charge configurations are observed. When
it comes to the differences between the two centrality classes, slight enhancement
due to an increased baryon annihilation process rate pushes the fluctuations at
small rapidity windows up. The total magnitude however is relatively unaffected.
The pion fluctuations show a much stronger dependency on the rapidity window in
comparison to the net proton. There are several factors that decrease the scaled
variance. Similar to the baryonic charge, the electric charge is affected by annihilation
processes. However, many more resonance decays exist such as ρ0 → π+π− that
further decrease ω. Electric charge annihilation processes like the reverse reaction,
simply don’t end up being preserved until the kinetic freeze-out. But similarly, as
in the case of the proton fluctuations, the different electric charge distributions in
the initial state do not have any effect on the final state fluctuations. For the kaon
scaled variance, the same picture as for the pion fluctuations is visible. However,
the dominant reaction is the decay φ → K+K−, and no difference between the
configurations is observed.

5.2.4 Summary

In this chapter, the influence of modeling heavy-ion collisions with the exact global
conservation of conserved charges was studied. The modeling of the heavy-ion
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collision at the considered
√
sNN = 200 GeV starts with the initial stage and is

described using SMASH. A detailed calculation has been conducted to investigate the
influence of the nuclear structure of Ru and Zr on the geometric shape of the created
medium after the very first collisions. It has been found that the eccentricities ε2,3,4

are mainly driven by the deformation parameters β and that the triaxiality γ has no
influence. In addition, the diffusiveness has a strong influence as well. Incorporating
realistic NN SRC into the nuclei have no influence on the level of the mean and the
variance of the eccentricities. In the second step of this study, the initial conditions
were fed into hydrodynamical simulations to evolve the QGP stage of the collision.
The switching to the dilute stage of the HIC was performed using the Cooper-Frye
formula and the conserved charges {B,Q, S} are forced to be exactly conserved
on the hypersurfaces of the hydrodynamic evolution. In addition, a calculation to
study the influence of the neutron skin in Zr in the initial state of the HIC has
been performed. The neutron skin modifies the mean number of charged particles
produced at large centrality classes of ZrZr collisions. Fluctuations of the net proton,
net pion and net kaon number are affected by sampling using the CE. Modifications
due to the neutron skin are not observed. The hadronic rescattering phase strongly
affects the scaled variance as a function of the rapidity window.
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6
Conclusion and Outlook

In this work, the overall goal was to study fluctuations of conserved charges in order to
better understand the created QCD medium in heavy-ion collisions. For this purpose,
the hadronic transport approach SMASH has been used to describe the hadronic
interactions. The results obtained in this work are manifold and tackle different
topics. In Chapter 3, the diffusion coefficient matrix κqq′ and the shear viscosity η are
studied. Transport coefficients are important quantities that determine the evolution
of the medium in a heavy-ion collision. It is shown, how a precise description of the
collision kernel affects these quantities. In Chapter 4 and Chapter 5, cumulants of
particle numbers were studied. These observables are important when it comes to
the study of the QCD phase diagram using heavy-ion collisions. In Chapter 3, the
interacting hadronic medium of the transport model SMASH has been established
simultaneously with studying the influence on the shear viscosity and the diffusion
coefficient matrix of conserved charges. The transport coefficients are obtained from
numerical integration of the corresponding correlation function of the charge currents
Jq and the energy-momentum tensor T ij . It has been presented, that this method is
consistent with the results obtained in the CE approximation in a simple, elastically
interacting hadron gas.

In the following calculations, it has been shown qualitatively that multi-particle
reactions decrease the shear viscosity at T & 130 MeV. In contrast, the electric
charge diffusion coefficient κQQ/T

2 is not affected by the treatment. This result
nicely shows that the shear viscosity predicted by the transport model from previous
works overestimates the value of η around the cross-over temperature of T ≈ 130 MeV
since multi-particle reactions become important in these temperature regimes. In the
next step, the influence of angular-dependent cross-sections and additional elastic
cross-sections via the description of the AQM model was studied. Both, η and κqq′ ,
strongly depend on the AQM cross-sections. Whereas the shear viscosity is affected
by the anisotropic cross-sections between baryonic and mesonic interactions, the
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diffusion coefficients are unaffected. On the other hand, the dependency of the
number of degrees of freedom on κqq′ is stronger in comparison to the shear viscosity.
For the newly computed baryonic and strange diffusion coefficients κBB,BS,SS , the
previously observed scaling behavior, as in the electrically charged sector, with the
degrees of freedom is not found. Comparisons between CE calculations and the
results from SMASH in finite baryon chemical potential are quantitatively consistent
with each other. Finally, the comparison between the results of this work with other
calculations can be summarized as follows. The newly implemented interactions
in SMASH result in a more consistent comparison of η/s. Around the cross-over
temperature, SMASH overpredicts η/s. Here, a reason could be the missing multi-
particle reactions, which have been shown to reduce the value of η. In the case of
the diffusion coefficient matrix κqq′ , the important aspects are the charge densities
and the total cross-sections between the constituents of the hadron gas. For the
electric charge diffusion coefficient (which is equal to the electric conductivity) the
specific values are consistent with the values from lattice QCD calculations in the
temperature region of the cross-over phase transition. At low temperatures, however,
the results from partonic models diverge from the hadronic ones. These results nicely
show that the hadronic interactions and the number of degrees of freedom in SMASH
are consistent with other (effective) models of QCD and SMASH can be used to
study fluctuations in the hadronic phase of QCD.

In Chapter 4, properties of the hadronic medium are accessed via cumulants of
conserved charges. This quantity is important for the ongoing search for the critical
point of QCD. In the first part of this chapter, the influence of hadronic interactions
on cumulants of conserved charges κqn is studied in a system, in which the total charge
is fixed. The system is a box with periodic boundary conditions and the cumulants
are computed within subvolumes in coordinate space. In accordance with other
findings, it is shown that in a simplified hadron gas, consisting only of electric charges,
the fluctuation of the total charge number is important for the fourth cumulant.
With this knowledge, previous results could be reproduced. In the next step, the
influence of baryon annihilation processes on the cumulants was studied. Similar to
the more simplified, electrically charged case, a baryon annihilation process induces
fluctuations of the total charge number that modifies the kurtosis. In the case of
the full SMASH hadron gas, the net proton fluctuations, contrary to the net baryon
fluctuations, are not exactly conserved and their correlations due to global charge
conservations are reduced. Further, the binomial unfolding procedure to determine
the net baryon fluctuations from the net proton ones underestimates the correlations.
In addition, a comparison between measurements from ALICE and this calculation
shows that the net proton fluctuations are comparable, even though the systems
are very different. Finally, it has been shown that the formation of deuterons has
no effect on the net proton cumulants since they are rare and their fluctuations are
consistent with the Poissonian baseline. This study can be seen as a background
study of the effects of the hadronic stage on the measurements of cumulants in a
heavy-ion collision, in which the total number of charges is conserved as well.

In the second part of Chapter 4, the influence of the hadronic stage on critical
equilibrium cumulants is computed. The hadronic system is initialized with critical
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equilibrium fluctuations originating from a coupling of the 3d Ising model to the
HRG. The critical particle number distributions are obtained from the principle of
maximum entropy and it has been shown that the generated numbers of particles and
antiparticles return the correct cumulants up to the fourth order. The evolution of
these distributions is studied in a simplified geometry in SMASH. The non-equilibrium
expansion is initialized with a momentum space and volume fitted to measured pT
spectra at various different beam energies. During the hadronic evolution, the critical
fluctuations are strongly affected by resonance formation and decay processes and the
effects of the stochastic resonance regeneration processes are presented. In addition,
it has been shown that a large part of the initial critical net proton fluctuations
vanish, due to isospin randomization processes. At the kinetic freeze-out of this
simplified expanding geometry, strong correlations from the critical point survive the
evolution and are present in the final state of the expansion, in the case of a coupling
of gp = 4 whereas, at gp = 2, all critical correlations vanish. In the final step, the
rapidity dependence of the final state cumulants was studied and a non-monotonic
behavior was found. This is important for experimental measurements since only a
limited phase space can be covered.

In Chapter 5, isobar collisions at a beam energy of
√
sNN = 200 GeV are studied.

The dynamical description of the HIC at these considered energies consists of various
stages, in which different models have to be used in order to describe the full colli-
sion. The initial stage, in which the very first collisions of the nuclei are described,
models the highly non-equilibrium system to the time at which a hydrodynamic
description can be applied. This stage of the HIC can be modeled using SMASH and
by studying the geometric properties, one can estimate final state flow observables.
In the first part of the chapter, the dependency of eccentricity harmonics εn on the
nuclear structure of the ZrZr and RuRu collisions is calculated. It is found that the
eccentricity is strongly influenced by the βn parameters whereas the triaxiality γ has
no impact. Employing a more detailed description using NN SRC does not modify
any of the considered observations. In the next step, these previously analyzed states
were fed into a hydrodynamic model, to evolve the hot and dense stage of the HIC.
When switching between the hydrodynamical and the kinetic description for the
dilute stage of the HIC, an improved algorithm has been used in order to sample the
hypersurface using the CE. To obtain the final state of the HIC at kinetic freeze-out,
the hadronic medium was evolved by SMASH. The sampling of the CE instead of
the GCE provides a more realistic picture and influences fluctuations of particle
numbers, due to the exact conservation of the conserved charges. It is found that the
scaled variance of the net proton, net pion, and net kaon fluctuations are suppressed.
Additionally, hadronic interactions such as e.g. baryon annihilation processes modify
the fluctuations. The neutron skin has no influence on the cumulants of conserved
charges, but a modification of the number of charged particles is found.

Outlook
In this work, aspects of fluctuations of conserved charges and their application with
respect to heavy-ion collisions have been discussed. Now that the full hadronic
diffusion coefficient matrix of conserved charges of SMASH has been calculated, the
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inclusion of these transport coefficients into the hybrid model developed in [5] could
give rise to interesting observations. A similar calculation has been performed in
[111], where it was found that regions of non-zero strangeness density develop, due
to the coupling of the charge currents Jq. A study of this effect, using realistic initial
conditions from SMASH, could give new insights, and more realistic simulations can
be established. Especially in the baryon-dense regime, the proper description of the
diffusive effects is desirable.

In addition, it is known that in these baryon-dense regimes, the influence of nuclear
potentials becomes important (see e.g. [258]). It would be therefore interesting to
study the dependencies of the various aspects investigated in this work on the nuclear
EoS. Starting with the transport coefficients, an inclusion of nuclear potentials at
large values of µB could give large insights into the dynamics of HIC at, e.g. HADES
beam energies. A calculation of both η and κqq′ with mean-field nuclear potentials
at large µB is important for the understanding of HIC.

Regarding the study of fluctuations of conserved charges using cumulants of
particle numbers on an event-by-event basis, there are multiple aspects of the
presented calculations that can be improved. The reconstruction of the particle
number distribution coupled to the critical mode is based on the principle of maximum
entropy. However, it was shown that at large values of the coupling gc, the distribution
becomes non-physical. For further studies, it would be important to better control
this issue, and incorporating cumulants of order larger than 4 could be necessary. In
addition, it would be interesting to study more realistic heavy-ion collision scenarios
and incorporate the described procedure in a Cooper-Frye sampler for hydrodynamic
calculations. It is also worth noting, that the transport model used to evolve the
hadronic medium does not propagate the n-particle correlations but only the single-
particle distribution function. It would therefore be important to incorporate the
effects of a critical point on the level of mean-field potentials in the transport model
similar to [259]. On the other hand, a first-order phase transition can also be
incorporated in a hydrodynamic description of a heavy-ion collision via the EoS
and the effects can be studied. Using such a model, one can study the effects of a
first-order phase transition on various different observables.

In the final chapter, there are various different aspects that can be further invest-
igated. Most importantly, the influence of sampling the CE on the hydrodynamical
hypersurfaces has, so far, only been investigated on cumulants of particle numbers.
An extension for observables related to the CME, e.g. balance functions would be
desirable in order to be able to estimate the background signal in a better way. In
addition, by using an event-by-event basis for the simulations, one could calculate
the exact influence of the nuclear structure.
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N. Kübler, Nikita, smash-transport/smash: Smash-2.0 (Dec. 2020). doi:

10.5281/zenodo.4336358.
URL https://doi.org/10.5281/zenodo.4336358

138

http://arxiv.org/abs/1312.4160
http://dx.doi.org/10.1016/j.cpc.2014.07.010
http://dx.doi.org/10.1103/PhysRevD.10.186
http://arxiv.org/abs/1606.06642
http://dx.doi.org/10.1103/PhysRevC.94.054905
http://arxiv.org/abs/1106.1344
http://dx.doi.org/10.1016/j.physrep.2011.12.001
http://dx.doi.org/10.1016/j.physrep.2011.12.001
http://arxiv.org/abs/nucl-th/9803035
http://dx.doi.org/10.1016/S0146-6410(98)00058-1
http://dx.doi.org/10.1016/S0146-6410(98)00058-1
http://dx.doi.org/10.1016/S0370-1573(98)00028-3
http://dx.doi.org/10.1016/S0370-1573(98)00028-3
http://arxiv.org/abs/0808.0022
http://dx.doi.org/10.1103/PhysRevC.78.034919
http://arxiv.org/abs/nucl-th/9904059
http://dx.doi.org/10.1103/PhysRevC.61.024901
http://arxiv.org/abs/nucl-th/0411110
http://dx.doi.org/10.1103/PhysRevC.72.064901
http://arxiv.org/abs/1904.00131
http://dx.doi.org/10.1016/j.ppnp.2019.02.009
https://smash-transport.github.io
https://doi.org/10.5281/zenodo.4336358
http://dx.doi.org/10.5281/zenodo.4336358
http://dx.doi.org/10.5281/zenodo.4336358
https://doi.org/10.5281/zenodo.4336358


[95] J. Staudenmaier, J. Weil, V. Steinberg, S. Endres, H. Petersen, Dilepton
production and resonance properties within a new hadronic transport approach
in the context of the GSI-HADES experimental data, Phys. Rev. C 98 (5)
(2018) 054908. arXiv:1711.10297, doi:10.1103/PhysRevC.98.054908.
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A
Appendix

A.1 Units

In this work, the system of natural units is used, in which the following constants
are set to 1

~ = c = ε0 = kB = 1 . (A.1)

As a result, the energy given in units of eV and the length scale are in the following
relation to each other

1fm · 1GeV ≈ 1

0.197
(A.2)

The Minkowski metric is chosen to be with the mostly minus convention

gµν = diag(1,−1,−1,−1) . (A.3)

A.2 Degrees of freedom for transport coefficient compu-
tation

Here the detailed properties of the particles used are presented. Starting with system
1, it contains only the most abundant stable particles and their interactions with each
other are purely of isotropic and elastic nature with a cross section of σel = 30 mb.
Within the legends, it is denoted as πKNΛΣ (const.). System 2 consists of the stable
hadrons of system 1 as well as the first lightest mesonic and baryonic resonances and
it is denoted as πKNΛΣ (+Res.). Finally system 3 is the full SMASH hadron gas
with all implemented hadrons.
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Particle Mass [GeV/c2] Degenercy Width [GeV] In system

π 0.138 3 0 1,2,3

K 0.494 4 0 1,2,3

η 0.548 2 0.548 2,3

ρ 0.776 6 0.149 2,3

σ 0.800 1 0.400 2,3

K?(892) 0.892 8 0.050 2,3

N 0.938 8 0 1,2,3

Λ 1.116 2 0 1,2,3

Σ 1.189 12 0 1,2,3

∆ 1.232 32 0.117 2,3

Σ(1385) 1.385 24 0.036 2,3

N(1440) 1.440 8 0.350 2,3

N(1520) 1.520 8 0.110 2,3

N(1535) 1.535 8 0.150 2,3

N(1650) 1.650 8 0.125 2,3

See [94] 3

Table A.1: Hadronic degrees of freedom used for the calculation of the transport
coefficients. The degeneracy is the product of spin, charged and anti-particle states.

A.3 From the susceptibilities to the cumulants

This section aims to derive the expression Eq. 4.15 that relates the cumulants κqn
with derivatives of the grand-canonical partition function Z with respect to the
chemical potential. As a starting point, it is useful to recall the definition of the
susceptibilities defined as the derivative of the adimensional pressure P/T 4 (Eq. 4.15)
with respect to the chemical potential of charge q over the temperature µ̂q ≡ µq/T

χqn =
1

V T 3

∂nlnZ
∂µ̂nq

. (A.4)

In order to determine the cumulants of conserved charge q, the probability ωqN of the
appearance of exactly N particles of charge q is needed to construct the cumulant
generating functional. It is therefore instructive to express the grand-canonical
partition function in terms of the sum over all canonical partition function ZN

Z(T, V, µ̂q) =
∑
N

eµ̂qNZN (T, V, µ̂q) . (A.5)

The canonical partition function contains the information about the system having
exactly N particles. The probability of the grand canonical system of having exactly
N particles is therefore simply

ωqN ≡
eµ̂qNZN (T, V, µ̂)

Z(T, V, µ̂)
. (A.6)
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From these probabilities, one can construct the cumulant generating function K(t)
as the natural logarithm of the expectation value with weight etN (see Eq. 4.1-4.3)

Kq(t) = ln
∑
N

ωqNe
tN , (A.7)

= ln
∑
N

e(µ̂q+t)N ZN (T, V )

Z(T, V, µ̂q)
, (A.8)

= lnZ(T, V, µ̂q + t)− lnZ(T, V, µ̂q) . (A.9)

The cumulants are then computed by taking derivatives with respect to t at t = 0

κqn =
∂nKq(t)

∂tn

∣∣∣∣
t=0

, (A.10)

=
∂nlnZ(T, V, µ̂q + t)

∂tn

∣∣∣∣
t=0

, (A.11)

=
∂nlnZ(T, V, µ̂q)

∂µ̂nq
, (A.12)

= V T 3χqn . (A.13)

This result shows the direct relation between the cumulants of conserved charge κqn
and the corresponding thermal susceptibility χqn.

A.4 Toy model for the impact of charge annihilation on
conserved charge fluctuations

In order to explain the influence of the fluctuation of the total charge number, a
simplistic monte carlo toy model is introduced. The idea is based on the diffusion
master equation and describes the medium on a discrete 1d grid and a sketch of it is
shown in Fig. A.1. A similar model has been studied in [260] with the goal to study
the diffusion of non-Gaussian fluctuations along the rapidity line. Here the rapidity is
exchanged by simply an x coordinate and in addition a periodic boundary condition
is introduced. There exist three types of particle species with charges {0,+,−} in the
system. On a discrete timestep basis each particle can move either into a neighboring
cell or stay with an equal probability of γ = 1/3. If a particle moves beyond the
grid it is instantly placed on the other side. In addition, a reaction that annihilates
two opposite charges and creates a neutral charged state is introduced. Within each
timestep and in each cell such a reaction takes place between one of such a pair with
a probability ψ1. It then moves freely within the grid and it decays with a probability
Pdecay = exp(−t · ψ2). For all calculations 10 bins with a bin width of 0.1 are used.

The fluctuations of the system is studied within the following setup. In the initial
state 25 positive and negative charged particles are distributed homogeneously in
the grid. Then the medium is evolved in time with the the following three sets of
probabilities ψ1 and ψ2 (see Tab. A.2) that dictate the produced amount of charge 0
zero states.
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Figure A.1: System described by the monte carlo toy model.

ψ1 ψ2

Set 1 0.5 0.9
Set 2 0.1 0.95
Set 3 0.01 0.95

Table A.2: Sets of parameters ψ1 and ψ2 used.

To study the cumulants of the system, it has to be in an equilibrium state and
detailed balance has to be present.
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Figure A.2: Time evolution of the total charge number (left) and the number of
forward and back reactions (right).

Fig. A.2 shows the evolution of the total amount of charges and the number of
reactions as a function of the timestep and for the three different sets of probabilities.
One can see that for each set of { ψ1, ψ2} different equilibration values of Ntot are
reached meaning that a certain amount of charges are annihilated. For the results of
set 3 only a very small fraction of the particles are in the charge 0 state whereas for
set 1 a larger portion of particles have interacted and their charges annihilated. On
the right hand side of Fig. A.2 one can see that the system is in detailed balance
since for all three sets of probabilities the number of forward and backward reactions
are the same after the equilibration process. In the first 2 timesteps the creation

157



process X+X− → Y 0 dominates since there are only stable particles in the initial
state. Then the decay processes start to grow and detailed balance is restored.

From the charge density n(x) the net charge as a function of x is calculated as

Q =

∫ x

0
n(x)dx . (A.14)

Similar to the previous studies, the cumulants 〈(δQ)n〉 are then calculate from Q.
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Figure A.3: Scaled variance (left) and kurtosis (right) as a function of x. The results
of three different sets of probabilities are shown.

Since the net charge number of the system is a conserved quantity it is expected
that the cumulants follow a similar trend as the results presented in Section 4.3.
Fig. A.3 shows the scaled variance and the kurtosis of the toy model presented above.
Starting with the results of Set 3, both ω and κσ2 follow the Binomial baseline.
This means that the implementation of the model itself is correct and can be used
for further studies. Going on from to the results of set 2 and set 3 where a larger
fraction of the total charge is annihilated and the total charge fluctuation increases,
the cumulants start to deviate from the Binomial baseline. For the scaled variance
and at small values of x the fluctuations decrease and for the kurtosis the transition
from the Binomial to the Poisson baseline is observed. So a dependency on the
interaction between the constituents is found.

On top, a deviation from the cumulants including charge fluctuations is found on
the level of the scaled variance.
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A.5 Parametrization of the Ising model cumulants

The following parametrization of the higher order cumulants were derived in [208].
They read

〈(δσ)2〉 =
T

V

M0

cH0
Rβ−βδ

× (1 + (2β − 1)θ2)

(1 + (3a+ 2βδ − 1)θ2 + (a(2βδ − 3) + 5b)θ4 + b(2βδ − 5)θ6)
(A.15)

〈(δσ)3〉 =− 2
T 2

V 2

M0

(cH0)2
Rβ−2βδ

× θ(A0 +A1θ
2 +A2θ

4 +A3θ
6 +A4θ

8)

(1 + (3a+ 2βδ − 1)θ2 + (a(2βδ − 3) + 6b)θ4 + b(2βδ − 5)θ6)3
(A.16)

〈(δσ)4〉c =2
T 3

V 3

M0

(cH0)3
Rβ−3βδ

× (B0 +B1θ
2 +B2θ

4 +B3θ
6 +B4θ

8 +B5θ
10 +B6θ

12 +B7θ
14 +B8θ

16)

(1 + (3a+ 2βδ − 1)θ2 + (a(2βδ − 3) + 6b)θ4 + b(2βδ − 5)θ6)5

(A.17)

(A.18)

The parameter An in 〈(δσ)3〉 are functions on scaling parameter of the critical region
and they read

A0 =3a+ 3β(δ − 1) (A.19)

A1 =a(β(7δ − 3)− 9) + 2β(δ − 1)(βδ + β − 2) + 10b (A.20)

A2 =a(2β(β(δ(δ + 4)− 3)− 6δ) + 9) + β(2β − 1)(δ − 1)(2βδ − 1)

+ b(11βδ + 5β − 30) (A.21)

A3 =a((2β − 1)(β(δ − 1)− 1)(2βδ − 3)) + 2b(β2(δ(δ + 8)− 5)

− 10β(δ + 1) + 15) (A.22)

A4 =b((2β − 1)(β(δ − 1)− 2)(2βδ − 5)) (A.23)

(A.24)
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The functions Bn in 〈(δσ)4〉4 are defined as

B0 =− 1(3a+ 3β(δ − 1)) (A.25)

B1 =45a2 + 3a(2β(11δ − 7) + 5) + 12β2(δ − 1)(3δ − 1)− 30b (A.26)

B2 =15a2(11βδ − 3(β + 5)) + 6a(2β(17βδ2 − 3(6β + 7)δ + 3β + 17)− 5)

+ 255ab+ 2β(δ − 1)(2β(β(δ(11δ − 4)− 1)− 18δ + 6) + 5)

+ 30b(7β(δ − 1) + 5) (A.27)

B3 =30a2(2βδ − 3)(β(4δ − 2)− 5) + a(4β(82δ + β(38βδ3 − 3δ2(6β + 41)

+ 6δ(19− 3β) + 6β − 9)− 78) + 30) + 15ab(54βδ − 14β − 85)

+ 4β(δ − 1)(2βδ − 1)(β(2β(δ(δ + 2)− 1)− 7δ + 3) + 2)

+ 12b(2β(δ(2β(8δ − 7)− 29) + 35)− 25) + 450b2 (A.28)

B4 =6a2(β(161δ + 2β(δ(6− 53δ) + β(δ(δ(9δ + 11)− 15) + 3) + 9)− 33)− 75)

+ a(4β(β(4δβ2(δ(2δ(δ + 5)− 15) + 4)− 4β(16δ3 − 15δ + 3)

+ δ(97δ − 74)− 9)− 41δ + 45)− 15) + 6ab(2β(β(δ(67δ + 2)− 15)

− 263δ + 55) + 425) + β(2β − 1)(δ − 1)(1− 2βδ)2(β(4δ − 2)− 1)

+ 4b(2β3(3δ(9δ2 + 3δ − 11) + 5) + 6β2(δ(34− 41δ) + 5) + 5β(39δ − 59) + 75)

+ 15b2(β(59δ + 5)− 150) (A.29)

B5 =a2(2βδ − 3)(2β(4β2(δ(δ(δ + 9)− 12) + 3)− 6β(δ(7δ + 6)− 6) + 77δ − 6)− 75)

+ a((2β − 1)(2βδ − 3)(2βδ − 1)(2β(β(4δ2 − 6δ + 2)− 5δ + 4)− 1))

+ 2ab(2β(2β2(δ(δ(35δ + 87)− 93) + 15)− 9β(δ(61δ + 26)− 25) + 8(142δ − 15))− 1275)

+ 2b(4β(85 + 2β(2β2δ4 + 6βδ3(3β − 4) + δ2(52− 3β(8β + 7)) + 6δ(β(β + 7)− 7)

− 5(β + 3))− 39δ)− 75) + 12b2(β(53βδ2 + 10δ(4β − 29)− 25(β + 2)) + 375)
(A.30)

B6 =a2((2β − 1)(β(δ − 1)− 1)(β(4δ − 2)− 5)(3− 2βδ)2) + ab(4β(β(4δβ2(δ(2δ(δ + 13)− 33) + 8)

− 4β(δ(2δ(16δ + 51)− 105) + 15) + δ(499δ + 434)− 315)− 5(143δ + 9)) + 1275)

+ 2b((2β − 1)(2βδ − 5)(2βδ − 1)(β(β(4δ2 − 6δ + 2)− 9δ + 7)− 3))

+ 2b2(β(β2(2δ(δ(43δ + 177)− 165) + 50)− 24β(δ(37δ + 45)− 25) + 2545δ + 775)− 2250)
(A.31)

B7 =ab(2βδ − 5)((2β − 1)(2βδ − 3)(2β(β(4δ2 − 6δ + 2)− 13δ + 10) + 17))

+ b2(2βδ − 5)(4β(2β2(δ(δ(δ + 17)− 21) + 5)− 5β(δ(7δ + 22)− 15) + 119δ + 80)− 450)
(A.32)

B8 =b2((2β − 1)(β(δ − 1)− 2)(5− 2βδ)2(β(4δ − 2)− 9)) (A.33)

A.6 Particles coupled to the critical mode

The list of particles that are coupled to the critical field is shown in Tab. A.3.
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Particle Mass [GeV/c2] Degeneracy

π 0.138 3

ρ 0.776 6

K 0.494 4

K?(892) 0.892 8

N 0.938 8

∆ 1.232 32

Λ 1.116 2

Σ 1.189 12

Table A.3: Hadronic degrees of freedom used in the presented calculations. The
degeneracy is the product of spin, charged and anti-particle states.

A.7 Obtaining the diffusiveness and radii for the neut-
ron skin effect

The starting point for obtaining the different Woods-Saxon parameters for protons
and neutrons, such that the difference between the proton and neutron mean-square
radii ∆rnp has some specific value, is the expression of the mean square charge
distribution which is the one that is measured by experiments

〈r2
ch〉 =

3R2
0

5

(
1 +

7π2d2

3R2
0

)
. (A.34)

The mean radius of the proton distribution then is obtained by the following unfolding
procedure

〈r2
ch〉 = 〈r2

p〉+R2
p . (A.35)

With Rp = 0.875 fm the radius of the proton. After 〈r2
p〉 has been calculated, the

value of the Woods-Saxon proton radius and diffusiveness can be determined via

Rp = R0 +
5R0〈r2

p〉
7π2d2 + 15R2

0

, (A.36)

d2
p = d2 −

5〈r2
p〉(d2 + 3R2

0/π
2)

7π2d2 + 15R2
0

. (A.37)

The resulting neutron Woods-Saxon parameter can be computed by simply exchanging
〈r2
p〉 with (∆rnp + 〈r2

p〉)2 in Eq. A.37. Here, the assumption is, as already explained,
that the type of neutron skin is a neutron-halo-like type (Rp ∼ Rn).
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