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Abstract 28 

 29 

The snake pipefish, Entelurus aequoreus (Linnaeus, 1758), is a slender, up to 60 cm long, 30 
northern Atlantic fish that dwells in open seagrass habitats and has recently expanded its 31 
distribution range. The snake pipefish is part of the family Syngnathidae (seahorses and 32 

pipefish) that has undergone several characteristic morphological changes, such as loss of 33 
pelvic fins and elongated snout. Here, we present a highly contiguous, near chromosome-scale 34 

genome of the snake pipefish assembled as part of a university master’s course. The final 35 
assembly has a length of 1.6 Gbp in 7,391 scaffolds, a scaffold and contig N50 of 62.3 Mbp 36 
and 45.0 Mbp and L50 of 12 and 14, respectively. The largest 28 scaffolds (>21 Mbp) span 37 
89.7% of the assembly length. A BUSCO completeness score of 94.1% and a mapping rate 38 
above 98% suggest a high assembly completeness. Repetitive elements cover 74.93% of the 39 
genome, one of the highest proportions so far identified in vertebrate genomes. Demographic 40 
modeling using the PSMC framework indicates a peak in effective population size (50 – 100 41 

kya) during the last interglacial period and suggests that the species might largely benefit 42 
from warmer water conditions, as seen today. Our updated snake pipefish assembly forms an 43 
important foundation for further analysis of the morphological and molecular changes unique 44 

to the family Syngnathidae. 45 
 46 

 47 

 48 

Keywords 49 

long reads, proximity-ligation scaffolding, genome annotation, demographic history, 50 
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 52 

Introduction 53 

The snake pipefish Entelurus aequoreus (Linnaeus 1758) is a member of the family 54 

Syngnathidae, which currently includes over 300 species of seahorses and pipefishes [1]. The 55 
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species shares typical features with other pipefishes such as a unique, elongated body plan and 56 

fused jaws [2]. However, unlike most pipefish, which are found in benthic habitats, the snake 57 

pipefish inhabits  more open and deeper seagrass environments and occurs even in pelagic 58 

waters [2]. They are ambush predators on small crustaceans and other invertebrates, thereby 59 

indirectly contributing to the overall biodiversity and stability of these fragile habitats [3]. 60 

Adult snake pipefish are poor swimmers with small fins and rely on their elongated, thin 61 

bodies for crypsis in eelgrass habitats [4–6]. 62 

The snake pipefish historically ranged from the waters of Azores northwards to the 63 

waters of Norway and Iceland, and eastward to the Baltic [7]. However, since 2003, the 64 

species has expanded its distribution [8] into the arctic waters of Spitsbergen [9], the Barents 65 

Sea, and the Greenland Sea [10]. Simultaneously, population sizes seem to increase within its 66 

former range, as indicated by substantially increased catch rates [11, 12]. Several factors have 67 

been proposed to cause this expansion and population growth, including rising sea 68 

temperatures, an increased potential for long-distance dispersal of juveniles via ocean currents 69 

[4, 7] and an increased reproductive success facilitated by the dispersal of invasive seaweeds 70 

[6, 8–10, 13]. The latter explanation has been confirmed in local field experiments in the 71 

northern Wadden Sea, suggesting a mutual co-occurrence of the invasive Japanese seaweed 72 

(Sargassum muticum) and the snake pipefish [5]. Studies based on mtDNA marker regions 73 

did not discern any population structure thus far and suggest a previous population expansion 74 

in the Pleistocene ca. 50–100 kya [6]. Yet, a comprehensive analysis of demographic events is 75 

better studied from genomic data, requiring a high-quality reference genome of ideally the 76 

same species or at least a closely related one.  77 

Previously, genomes of Syngnathidae have been used to study the evolution of highly 78 

specialized morphologies and life-history traits unique to pipefishes and seahorses [14–16]. 79 

The transition to male pregnancy was associated with major genomic restructuring events and 80 

parallel modifications of the adaptive immune system. There is a remarkable variability in 81 
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genome sizes within the family, with estimates ranging from 350 Mbp to 1.8 Gbp [14]. The 82 

major shifts in body shape are assumed to be related to gene-family loss and expansion events 83 

and higher rates of protein and nucleotide evolution [16]. Genomic data using a direct 84 

sequencing approach of ultra-conserved elements (UCEs) improved the understanding of the 85 

phylogeny of pipefishes [15] and identified a likely radiation of the group in the waters of the 86 

modern Indo-Pacific Ocean. Nevertheless, high-quality genomes of Syngnathidae are only 87 

available for a few species, and according to the NCBI genome database, only 7% of the 88 

known species diversity has genome sequences available.  89 

A draft genome of the snake pipefish was previously assembled using a combination 90 

of paired-end and mate-pair sequencing techniques, yielding an assembly with low continuity 91 

(N50 3.5 kbp, BUSCO C: 21%) and a large difference between the estimated and assembled 92 

genome sizes (1.8 Gbp vs. 557 Mbp) [14]. To obtain a higher quality, near chromosome-scale 93 

genome assembly for the snake pipefish for future population genomic, conservation, and 94 

evolutionary studies of fish, we used long-read sequencing technologies. This allows us to 95 

gain insight into the genetic properties of the species and to perform demographic analysis 96 

based on the PSMC framework [17]. The data generation and analyses presented here were 97 

conducted during a six-week master course in 2021 at the Goethe University, Frankfurt am 98 

Main, Germany. The concept of high-quality genome sequencing in a course setting has so far 99 

yielded three reference-quality genomes of fish and has proven to be a successful approach to 100 

introduce the technology to a new generation of scientists [18–21]. 101 

 102 

 103 

Results and Discussion 104 

Genome sequencing and assembly 105 
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 PacBio’s continuous long reads (CLR) technology generated 401 Gbp of long-read 106 

data in ~60 million reads with an N50 of 7.9 kb (Table 1). Illumina sequencing yielded 38 107 

Gbp of standard short-read data in ~257 million reads with a mean length of 148 bp after 108 

filtering. Sequencing of the Omni-C library generated 54.7 Gbp of raw short-read data.    109 

The snake pipefish’s genome was assembled de novo to a total size of 1.7 Gbp. It 110 

consisted of 2,204 scaffolds, with a scaffold N50 of 62 Mbp and an L50 of 11 (Table 1, Fig. 111 

1A). The finalized assembly has 1.0 N’s per 100 kbp and a GC content of 38.84%. A BUSCO 112 

completeness assessment resulted in 94.1% complete core genes, given the 113 

actinopterygii_obd10 set, indicating high completeness of the assembly. Both long- and short-114 

read data mapped onto the assembly with high mapping rates of 98.6% and 99.5%, 115 

respectively. HI-C mapping resulted in 28 larger scaffolds (Fig. 1B), indicating the near-116 

chromosome level of the de novo assembly as past karyotype estimations of other pipefish 117 

and seahorses predicted 22 and 22-24 chromosomes, respectively [22–24]. The rest of the 118 

genome comprises only smaller scaffolds and contigs, which may result from the high 119 

amounts of repetitive regions described in the following section. Our Blobtools analysis of 120 

both long- and short-read data (Fig. 1C+D) found no apparent signs of contamination, 121 

although background noise of unknown origin was detected and removed in both datasets.  122 

Variant calling resulted in ~301 million sites (including monomorphic sites), of which 123 

~1.3 million were found to be biallelic. Genome-wide heterozygosity was determined to be 124 

0.387%, which is in line with other fish species [25, 26]. The GenomeScope results based on 125 

short reads suggested a haploid genome size of 1.15 Gbp and an expected genome-wide 126 

heterozygosity of 1%, around 362 Mbp shorter and 0.57% more heterozygous when compared 127 

to the final assembly. This, again, might be explained by the high repeat content in the 128 

genome.  129 

Annotation 130 
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In total, 0.9 Gbp, or 74.93%, of the entire assembly, were identified as repetitive 131 

during our de novo repeat-modeling and repeat-masking (Fig. 2). This high repeat content 132 

contrasts that of other fish genomes [27], but is similar, although at a smaller scale, to the 133 

closest relative Nerophis ophidion (65.7%) [14] and other genomes of syngnathid fish like 134 

e.g., seadragons [28]. The first draft assembly of the snake pipefish had a repeat content of 135 

57.2% [14] and our improved long-read assembly identified 17.7% additional repeats that 136 

were missing from the previous assembly [14]. So far, among vertebrates, only the lungfish 137 

Neoceratodus forsteri [29] has more transposable elements (TEs) than the snake pipefish. 138 

The annotation of the genome featuring de novo and homology-based identification 139 

approaches resulted in 33,202 genes with an average length of 13,828 bp. Each gene had on 140 

average 7.32 exons and 6.25 introns with average lengths of 188 bp and 2,240 bp, 141 

respectively. In total, we identified 243,038 exons and 207,467 introns within our annotation. 142 

The total number of genes is ~30% larger compared to other annotated genomes in the order 143 

of Syngnathiformes like, e.g., 23,458 for the tiger tail seahorse (Hippocampus comes) [16] or 144 

24,927 for the greater pipefish (Syngnathus acus) [30] made by the NCBI Eukaryotic Genome 145 

Annotation pipeline. Given that these two genomes are also considerably smaller, 492 Mbp 146 

and 324 Mbp, respectively, it can be assumed that the large-scale genome increase in this 147 

species also included many coding sequences. A high content of repetitive regions as well as a 148 

lack of transcriptomic data might also have increased the number of false positive gene-calls; 149 

however, a BUSCO completeness analysis of the predicted proteins resulted in 82.6% 150 

complete sequences, of which only 6.8% were duplicated. 5.3% of the coding sequences 151 

appeared fragmented, and 12.1% were missing from the actinopterygii_obd10 OrthoDB set. 152 

A functional annotation resulted in hits for 89% of the predicted proteins.  153 

Demographic inference 154 
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The demographic inference analysis of the snake pipefish genome using the PSMC 155 

framework [17] traced population changes over the past 1 million years. Given the chosen 156 

substitution rate and generation time, there was a steady increase in the effective population 157 

size (Ne), starting at 15 thousand individuals 1 Mya, which peaked at an Ne of 250 thousand 158 

individuals at 100 kya. Thereafter, Ne decreased until reaching 30 thousand individuals at 10 159 

kya and stagnated until the end of the model. The previously suggested population expansion 160 

during the Pleistocene (50 – 100 kya) was therefore confirmed with this model but was 161 

followed by another population decline that wasn’t resolved by Braga Goncalves et al. [6]. 162 

This result may point to a different conclusion as drawn by the authors, because the snake 163 

pipefish might have resided in a comparable small population size during the Holocene and 164 

only recently expanded its distribution, resulting in a large population with a high degree of 165 

homogenization as observed by Braga Goncalves and colleagues [6]. Given that the presented 166 

peak in population size parallels with the last interglacial period between the Penultimate 167 

Glacial Period (135 – 192 kya [31]) and the last glacial period (present – 20 kya [32]), we 168 

assume that the snake pipefish largely benefitted from the warmer water conditions during the 169 

interglacial period as seen in the present range expansion.  170 

Material & Methods 171 

Sampling, DNA extraction, and sequencing 172 

A single individual of Entelurus aequoreus (Linnaeus 1758) was caught by trawling during an 173 

annual monitoring expedition to the Dogger Bank in the North Sea in July 2021 (trawl start 174 

coordinates 54.993633, 2.940833; end coordinates 55.0077, 2.929867) with the permission of 175 

the Maritime Policy Unit of the UK Foreign and Commonwealth Office. The study was 176 

conducted in compliance with the ‘Nagoya Protocol on Access to Genetic Resources and the 177 
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Fair and Equitable Sharing of Benefits Arising from Their Utilization’. The sample was 178 

initially frozen at -20 °C and later stored at -80 °C. 179 

High molecular weight genomic DNA was extracted from muscle tissue, following the 180 

protocol by Mayjonade et al. [33] with the addition of Proteinase K. We evaluated the 181 

quantity and quality of the DNA with the Genomic DNA ScreenTape on the Agilent 2200 182 

TapeStation system (Agilent Technologies), as well as with the Qubit® dsDNA BR Assay 183 

Kit.  184 

For long-read sequencing, a PacBio SMRT Bell continuous long read (CLR) library was 185 

prepared using the SMRTbell Express Prep kit v3.0 kit (Pacific Biosciences – PacBio, Menlo 186 

Park, CA, USA) and sequenced on the PacBio Sequel IIe platform. A proximity-ligation 187 

library was compiled with muscle tissue following the Dovetail™ Omni-C protocol (Dovetail 188 

Genomics, Santa Cruz, California, USA). In addition, a standard whole-genome 150 base pair 189 

(bp) paired-end Illumina library was prepared using the NEBNext Ultra II library preparation 190 

kit (New England Biolabs Inc., Ipswich, USA). Finally, the proximity ligation and the paired-191 

end library were shipped to Novogene (UK) for sequencing on the Illumina NovaSeq 6000 192 

platform. 193 

Pre-processing & Genome size estimation 194 

The PacBio subreads were converted from BAM into FASTQ format using the PacBio 195 

Secondary Analysis Tool BAM2fastx v.1.3.0 (https://github.com/PacificBiosciences/ 196 

pbbioconda). Quality control, trimming, and filtering of the Illumina reads were performed 197 

using fastp v0.23.1 [34] with the settings “-g -3 -l 40 -y -Y 30 -q 15 -u 40 -c -p -j -h -R -w N”. 198 

To estimate the genome size of the snake pipefish, we performed k-mer profiling using the 199 

standard short-read Illumina data. We first ran Jellyfish v2.3.0 [35] to generate a histogram of 200 

k-mers with a length of 21 bp. Subsequently, we used this data to obtain a genome profile 201 
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using GenomeScope v2.0 [36]. We further tested alternative k-mer lengths between 17- and 202 

25-mers which resulted in no meaningful differences of the estimated genome size except for 203 

the 17-mer, which resulted in a smaller genome size estimation of ~500 Mbp. 204 

 205 

Genome Assembly & polishing 206 

We assembled the genome from the PacBio long-read data using WTDBG v.2.5 [37]. The 207 

resulting assembly was first polished using the PacBio data with Flye v.2.9 [38], using 208 

Minimap v.2.17 [39] for mapping, followed by two rounds of short-read polishing by 209 

mapping reads onto the assembly with BWA-MEM v.0.7.17 [40] and error correction with 210 

Pilon v1.23 [41].  211 

Assembly QC & Scaffolding 212 

The polished assembly contigs were anchored into chromosome-scale scaffolds utilizing the 213 

generated proximity-ligation Omni-C data. First, the data were mapped and filtered to the 214 

assembly following the Arima Hi-C mapping pipeline used by the Vertebrate Genome Project 215 

(https://github.com/VGP/vgpassembly/blob/master/pipeline/salsa/arima_mapping_pipeline.sh216 

). In brief, reads were mapped using BWA-MEM v.0.7.17 [40], mapped reads were filtered 217 

with samtools v.1.14 [42], and duplicated reads were removed with “MarkDuplicates” in 218 

Picard v.2.26.10 (Broad Institute, 2019). The filtered mapped reads were then used for 219 

proximity-ligation scaffolding in YaHs v.1.1 [43]. Gaps in the scaffolded assembly were 220 

closed with TGS-GapCloser v.1.1.1 [44] using a subset (25%) of the PacBio subreads due to 221 

computational constraints. To further improve the assembly's contiguity, scaffolding and gap-222 

closing were performed a second time using a different subset of PacBio reads for gap-223 

closing. The PacBio read subsets were generated with seqtk v.1.3 224 

(https://github.com/lh3/seqtk) using the random number generator seeds 11 and 18. Gene set 225 
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completeness was analyzed with BUSCO v.5.4.7 [45] using the Actinopterygii set of core 226 

genes (actinopterygii_odb10). Assembly continuity was evaluated using QUAST v5.0.2 [46], 227 

and mapping rates were assessed by Qualimap v2.2.1 [47]. BlobToolsKit v.4.0.6 [48] was 228 

used to perform contamination screening. 229 

Repeat landscape analysis & genome annotation 230 

The TE annotation was done in three steps. First, we used RepeatMasker v4.1.5 [49] to 231 

annotate, and hard-mask known Actinopterygii repeats from RepBase, which comprises a 232 

database of eukaryotic repetitive DNA element sequences [50]. Secondly, a de novo library of 233 

transposable elements was created from the hard-masked genome assembly using 234 

RepeatModeler v2.0.4 [51] which includes  RECON v1.08 [52], RepeatScout v1.0.6 [53], and 235 

LTRharvest/LTR_retriever [54, 55]. Finally, predicted repeats were annotated with a second 236 

run of RepeatMasker on the hard-masked assembly obtained in the first run. The results from 237 

both RepeatMasker runs were then combined. A summary of transposable elements and the 238 

relative abundance of repeat classes in the genome are shown in Table 2 and Fig. 2.  239 

The genome was annotated using the BRAKER3 pipeline [56–61], combining a de novo gene 240 

calling and a homology-based gene annotation. For protein references, we combined the 241 

vertebrate-specific protein collection from OrthoDB and the protein collection of the greater 242 

pipefish (Syngnathus acus) genome [30] made by the NCBI (see: GCF_901709675.1, last 243 

accessed 12th Oct. 2023). To further filter genes based on the support of introns by extrinsic 244 

homology evidence, we used TSEBRA [62] with an “intron_support=0.1”. The resulting set 245 

of proteins was tested for completeness using BUSCO v.5.4.7 [45] in “protein mode” and run 246 

against the Actinopterygii-specific set of core genes. Functional annotation was done using 247 

InterProScan v5 [63].  248 

Variant calling & demographic inference 249 
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The preprocessed short reads were mapped to the final assembly using BWA-MEM v. 0.7.17 250 

[40]  followed by removal of duplicate reads with "MarkDuplicates" in Picard v.2.26.10 251 

(Broad Institute, 2019) and evaluation of mapping quality using Qualimap v2.2.1 [47] . Indels 252 

in the BAM files were first identified and then realigned with "RealignerTargetCreator" and 253 

"IndelRealigner" as part of the Genome Analysis Toolkit (GATK) v3.8-1 254 

(https://gatk.broadinstitute.org/). Subsequently, samtools v.1.14 [42]  was used to check and 255 

remove unmapped, secondary, QC failed, duplicated, and supplementary reads keeping only 256 

reads mapped in proper pairs in non-repetitive regions of the 28 chromosome-scale scaffolds. 257 

Sambamba v 1.0.0 [64]  was used to estimate site depth statistics. Minimum and maximum 258 

thresholds for the global site depth were set to d ± (5 × MAD), where d is the global site depth 259 

distribution median and MAD is the median absolute deviation. Variant calling was 260 

performed using the bcftools v1.17 [65] commands "mpileup" and "call" [-m]. Variants were 261 

then filtered with bcftools "filter" [-e "DP< d – (5 × MAD) || DP> d + (5 × MAD) || 262 

QUAL<30"] removing sites with low quality and out of range depth. Finally, bcftools was 263 

used to estimate the genome-wide heterozygosity as the proportion of heterozygous sites 264 

using the "stats" command. 265 

Long-term changes in effective population size (Ne) over time were estimated with the 266 

Pairwise Sequentially Markovian Coalescent (PSMC) model [17] based on the diploid 267 

consensus genome sequences generated by bcftools v1.17 [65] with the script “vcfutils.pl” 268 

from the processed BAM files, as described above. Sites with read-depth up to a third of the 269 

average depth or above twice each sample’s median depth and with a consensus base quality 270 

< 30 were removed. PSMC was executed using 25 iterations with a maximum 2N0-scaled 271 

coalescent time of 15, an initial θ/ρ ratio of 5, and 64 atomic time intervals (4 + 25 × 2 + 4 + 272 

6) to infer the scaled mutation rate, the recombination rate, and the free population size 273 

parameters, respectively. We performed 100 bootstrap replicates by randomly sampling with 274 
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replacement of 1 Mb blocks from the consensus sequence for all individuals. A mutation rate 275 

(µ) of 1.7 x 10-9 per site per generation [66] and a generation length of 2.5 years [67] were 276 

employed for plotting. 277 
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 463 

 464 

 465 

Figures 466 

 467 

Figure 1 Assembly characteristics and quality assessments of the de novo Entelurus aequoreus genome. A The 468 
snail plot summarizes different assembly properties. Scaffold statistics are depicted in the innermost circle and 469 
the colors red to orange represent the longest scaffold N50 and N90, respectively. GC composition is shown in 470 
the outer blue circle. BUSCO completeness statistics are depicted in the small green circle. B Omni-C contact 471 
density map indicating 28 larger scaffolds and the near-chromosome level of the assembly. C-D The BlobPlot 472 
analysis compares GC content (x-axis), assembly coverage (y-axis) and taxonomic BLAST assignments of 473 
contigs (color) for both the Omni-C short reads (C) and PacBio long reads (D). 474 

 475 
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 476 

 477 

Figure 2 Repeat landscape of the de novo Entelurus aequoreus genome. Colors represent repetitive element 478 
types, gray areas indicate unclassified types of repetitive regions.  479 

 480 

 481 

 482 

 483 
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 484 

Figure 3 Demographic history of the snake pipefish estimated using the PSMC framework. Using a generation 485 
time of 2.5 years [67] and a substitution rate of 1.7x10-8 per site per generation [66] a model was created 486 
covering the last 10 kya to 1 Mya. The x-axis represents time in number of years ago and the y-axis shows the 487 
effective population (Ne) size in tens of thousands of individuals. The model indicates a peak in Ne of 250 488 
thousand individuals during the Pleistocene at around 100 thousand years ago. 489 
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Tables 503 

Table 1 Summary statistics of the snake pipefish reference genome. The table includes information for A the 504 
raw read sequencing, and B the scaffold- and  contig-level de novo assembly and C the BUSCO completeness 505 
statistics.  506 

(A)                                           Raw read statistics 

No. short reads 264,111,731  

Mapped short reads (%) 99.53  

Mean short read coverage (x) 23  

No. long reads 130,590,372  

Mapped long reads (%) 98.61  

Mean long read coverage (x) 205.2  

(B) Assembly statistics (scaffold/contig)  

No. scaffolds/contigs 7,387 7,473  

No. scaffolds/contigs (>50 
kbp) 

466 526  

 scaffold/contig L50 12 14  

scaffold/contig N50 (bp) 62,341,166 45,010,074  

Total length (bp) 1,662,053,046 1,662,035,846  

GC (%) 38.87 38.87  

No. of N's per 100 kb 1.03 0.0  

 heterozygosity (%) 0.387   

Total interspersed repeats 
(bp) 

1,237,929,559 (74.93 %)   

(C) BUSCO completeness  

Clade: Actinopterygii C:94.1%[S:92.6%, D:1.5%]  

 F:2.0%, M:3.9%  
 n:3640  

 507 
BUSCO: Benchmarking Universal Single Copy Orthologs (65); C, complete;  508 

S, single copy; D, duplicated; F, fragmented; M, missing. 509 
 510 
 511 
 512 
 513 
 514 
 515 
 516 
 517 
 518 
 519 
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 520 
Table 2 Repeat content of the genome assembly. Class, class of the repetitive regions. Count, number of 521 
occuences of the repetitive region. bpMasked, number of base pairs masked; %Masked, percentage of base pairs 522 
masked. LINE, Long Interspersed Nuclear Elements (include retroposons); LTR, Long Terminal Repeat 523 
elements (including retroposons); SINE, Short Interspersed Nuclear Elements; RC, Rolling Circle. 524 
 525 

Class Count bpMasked %masked 

ARTEFACT 4 84 0.00% 

DNA 2765297 372407739 22.40% 

LINE 850222 167337419 10.06% 

LTR 177214 55439687 3.33% 

PLE 1 0 0.00% 

RC 32348 3385084 0.20% 

SINE 435464 32709572 1.95% 

Unknown 3628328 534216084 32.14% 

Low complexity 127733 3095322 0.19% 

Satellite 21221 7145469 0.43% 

Simple repeat 1437090 61077339 3.67% 

rRNA 4394 534599 0.03% 

scRNA 5 504 0.00% 

snRNA 695 46845 0.00% 

tRNA 6029 533812 0.03% 

Total 9486045 1237929559 74.93% 

 526 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2023. ; https://doi.org/10.1101/2023.12.12.571260doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.12.571260
http://creativecommons.org/licenses/by-nc/4.0/

