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Abstract: Activation of the tumor-associated stroma to support tumor growth is a common feature
observed in different cancer entities. This principle is exemplified by cancer-associated fibroblasts
(CAFs), which are educated by the tumor to shape its development across all stages. CAFs can
alter the extracellular matrix (ECM) and secrete a variety of different molecules. In that manner
they have the capability to affect activation, survival, proliferation, and migration of other stromal
cells and cancer cell themselves. Alteration of the ECM, desmoplasia, is a common feature of breast
cancer, indicating a prominent role for CAFs in shaping tumor development in the mammary gland.
In this review, we summarize the multiple roles CAFs play in mammary carcinoma. We discuss
experimental and clinical strategies to interfere with CAFs function in breast cancer. Moreover, we
highlight the issues arising from CAFs heterogeneity and the need for further research to identify
CAFs subpopulation(s) that can be targeted to improve breast cancer therapy.

Keywords: cancer-associated fibroblasts; mammary carcinoma; cancer; tumor microenvironment;
extracellular matrix; metastasis

1. Introduction

Breast cancer is the most common cancer in women and a leading cause of cancer
related mortality worldwide [1]. Incidence is rising mostly due to improved diagnostics
but also due to an increase of life-style-related risk factors such as alcohol consumption,
obesity and type 2 diabetes [2]. Mammary carcinoma is categorized into different sub-
types depending on estrogen/progesterone receptor expression, human epidermal growth
factor receptor 2 (HER2) expression and proliferation measured by Ki67 expression, specifi-
cally into luminal A (ER/PR+, HER2−, Ki67low), luminal B (ER/PR+, HER2−, Ki67high; or
ER/PR+, HER2+), HER2 overexpressing (ER/PR−, HER2+), and triple negative (TNBC)
(ER/PR−, HER2−) breast cancer [3,4]. Breast cancer subtype informs treatment choice,
with standard therapy consisting of surgery, (neo-)adjuvant chemotherapy, endocrine or
anti-HER2 therapy. With these targeted therapeutic options, local early breast cancer is
now considered curable, with the notion that TNBC has the worst prognosis due to limited
targeted treatment options [5,6]. Unfortunately, up to 30% of breast cancer patients experi-
ence recurrence after primary therapy, mostly in the form of metastasized, advanced breast
cancer, which is accompanied by resistance to chemotherapy [7]. Advanced breast cancer
is currently regarded as incurable, therefore novel approaches for long-term management
are required [8].

High hopes have been invested in strategies targeting the tumor microenvironment
(TME), such as immunotherapy. Unfortunately, in patients with metastatic breast cancer,
anti-PD-1 therapy has shown little efficacy. This might be owing to the weak immuno-
genicity driven by the lower mutational load and abundance of tumor-infiltrating lym-
phocytes [9]. Approaches to combine PD-1 blockade with conventional treatments such
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as chemotherapy have shown promising results even as first-line treatment in aggressive
cancer types such as TNBC by prolonging survival [10]. Nevertheless, response rates
were considerably lower compared to other entities [11]. Moreover, therapy resistance in
response to immune checkpoint blockade is now established [12]. Thus, new targets in
the TME, particularly when considering overcoming therapy resistance, are warranted to
improve long-term management of breast cancer.

Along these lines, fibroblasts are a major component of the TME that has been con-
nected to modulating tumor growth and therapy resistance [13–15]. In general, fibroblasts
are ubiquitous cells found in every organ. Fibroblasts are, at least at resting stage, spindle-
shaped cells that are functionally involved in shaping the stroma, by producing major
building blocks of the ECM and modulating their arrangement and density. In addition,
their reciprocal communications with neighboring cells enable them to participate in main-
taining tissue integrity [16]. Therefore, they determine important structural properties of
organs, including elasticity, rigidity and tensile strength. Quiescent or resting fibroblasts
found under homeostatic conditions are readily activated once homeostasis is disturbed.
For instance, upon wounding they differentiate into wound-associated myofibroblasts
under the impact of factors such as transforming growth factor beta (TGF-β), which is the
most prevalent fibrogenic growth factor [17,18]. Myofibroblasts are actively proliferating
cells that express smooth muscle cell markers (e.g., alpha smooth muscle actin (α-SMA)),
enabling them to actively contract wound edges, enhance ECM component synthesis and
remodeling to support healing [16]. Pathological hyper-activation of this process, i.e.,
chronic wound healing, may result in tissue fibrosis [19]. Excessive fibrosis results in distor-
tion of tissue architecture and may finally lead to loss of organ function [20]. Importantly,
fibrotic alterations have been connected to cancer emergence, particularly in breast cancer.
Mammographical measurements revealed that tumor tissue and tumor-adjacent stroma
are 5 to 20 times more rigid than the normal mammary gland [21,22]. Moreover, fibrotic
breast disease has been connected to a predisposition towards breast cancer [23]. Given
these findings, it is not surprising that activated, myofibroblast-like CAF are found in
breast tumors where they continuously contribute to desmoplasia, providing a basis for the
phrase that a tumor is ‘a wound that does not heal’ [19,24–26]. While it has now been clearly
established that CAFs significantly modulate tumor development [27–31], the phenotypic
and functional heterogeneity of these cells were less appreciated. Resident fibroblasts
themselves are derived from multiple sources, which contribute to their heterogeneity that
is further enhanced during tumorigenesis, when a large variety of cells can differentiate
into functional fibroblasts [19,32,33]. Therefore, CAFs constitute a diverse cell population
with different phenotypes and functions. Targeting one of these phenotypes may be more
beneficial for anti-cancer therapy than another, depending on tumor entity, stage and ex-
perimental model system [19,32–34]. On the following pages, we aim at shedding light on
the heterogeneity of CAFs in breast cancer and pointing out current strategies to interfere
with their tumor-promoting properties.

2. CAF Sources

Local and distant communications with stromal compartments are essential for cancer
cells to nest their developmental niche. One of these stromal cellular compartments is
CAFs. Through a reciprocal crosstalk between cancer cells and CAFs, various mechanical
and morphological transitions occur affecting tumor progression [35]. The majority of
CAFs in breast cancer stroma are derived from resident fibroblasts, which get activated
to a myofibroblast-like phenotype. The crosstalk between breast cancer cells and resident
fibroblasts promotes induction of a CAF phenotype via Notch signaling [36]. In MCF-7 and
Met-1 xenograft models, normal fibroblasts are differentiated to CAFs via endogenous TGF-
β and stromal cell-derived factor-1 (SDF-1) in an autocrine manner [37,38]. However, other
non-fibroblastic lineages have been described as significant CAF sources. For example, bone
marrow-derived mesenchymal stem cells, which are pluripotent stem cells that are involved
in tissue remodeling, chronic inflammation, immune response, and cancer progression [39],
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have been shown to be an important source of CAFs in breast cancer [40]. In addition,
fibrocytes, which are circulating bone marrow-derived mesenchymal progenitor cells, have
also been suggested as another source of CAFs [41]. Another important source of CAF-like
cells is cancer cells undergoing epithelial-to-mesenchymal transition (EMT) giving them
a fibroblastic phenotype [42,43]. Adipocytes also contribute to the CAF pool in breast
cancer via cancer cell-derived WNT3a [44,45]. Interestingly, standard cancer therapies
have been considered to be one functional source of CAFs, as they can activate resident
fibroblasts to a CAF phenotype, leading to treatment resistance [46]. In general, the origin
of CAFs has been addressed in the past few decades in different types of cancer. However,
it remains inconclusive, being dependent on entity and the model system used. Therefore,
detailed investigation, including, e.g., lineage-tracing, will be required to resolve the
issue of whether any particular subset is decisively involved in breast cancer promotion
or suppression.

3. CAFs Heterogeneity

Along breast cancer progression, cancer cells consecutively alter stroma to create a sup-
portive microenvironment. This is in accord with the notion that over 80% of the fibroblasts
found in breast tumors display an activated phenotype [47]. Nevertheless, this activation
holds a high degree of heterogeneity, which might be owed to their developmental origin
and/or functional polarization in the local niche. This always raises the question of when
and how fibroblasts become CAFs. The term CAFs implicates that they might acquire this
phenotype in established tumors. However, such microenvironmental heterogeneity was
found to start already at pre-malignancy and continue throughout cancer progression [48].
In fact, some studies consider it to be a type of progressive developmental education that
CAFs acquire across different stages of tumor progression. We recently found that CAFs
undergo transcriptomic alteration during tumorigenesis in the transgenic mouse mammary
tumor virus–polyoma virus middle T oncoprotein (MMTV-PyMT) model, changing their
phenotype from tumor restrictive to tumor promoting [34]. Other studies show that there
is a spatial impact on CAFs development, as they get exposed to different tumor-derived
mediators, influencing their phenotype. For example, three subtypes of CAFs have been
described in the MMTV-PyMT model, which could be spatially segregated and were sug-
gested to be derived from different cellular sources [30]. Another study showed that CAFs
situated around the edge of the tumor are phenotypically different from those surrounded
by vessels [49].

To add a layer of complexity to CAF heterogeneity, a tumor-suppressing CAF pheno-
type has been described in some studies, which challenges their dogmatic tumor-promoting
phenotype. Different studies indicated that cancer cells control the tumor-suppressing
capabilities of CAFs. Under certain circumstances, CAFs express TGF-β inhibitors, such
as asporin, which is influenced by the tumor genetic subtype. High levels of asporin
correlated with good prognosis of luminal ER+/PR+/HER2− tumors, while aggressive
tumor subtypes, such as HER2+ and TNBC, expressed low levels of asporin [50]. CD146−
CAFs are another subset that suppresses cancer cell proliferation via downregulating ER
expression in luminal tumor subtypes [51]. In addition, we identified a transcriptomic
signature of a tumor-suppressing CAF phenotype that occurs early during tumor devel-
opment and correlates positively with breast cancer patient survival [34]. The factors that
delineate the tumor-suppressive phenotype of CAFs remain to be identified. Identifying
such factors might be helpful to control tumor progression. Across accumulating studies,
CAFs heterogeneity is reflected either phenotypically by separation into different subtypes,
or functionally depending on their secretome or interaction with neighboring cells. These
features are summarized below.

3.1. Phenotypical Heterogeneity (CAF Subtypes)

Phenotypical heterogeneity of CAFs is manifested by different biological markers.
Divergent markers that define CAFs in breast cancer are often shared by other stromal com-
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partments or normal counterparts but with a different expression level. For example, mark-
ers such as platelet-derived growth factor receptor alpha/beta (PDGFRα/β), CD90/THY1,
podoplanin (PDPN), α-SMA, fibroblast-specific protein 1 (FSP-1), fibroblast-activating
protein (FAP), fibronectin 1 (FN-1), vimentin (VIM), CD29, CD10 or G protein-coupled
receptor 77 (GPR77) are expressed by breast cancer CAFs, although not exclusively. These
markers might be segregatedly expressed or co-expressed by different CAF populations.
Additionally, differences in CAF marker expression have been observed across different
tissues; for example, 10.9% α-SMA+ fibroblasts co-expressed FSP-1 in breast cancer; how-
ever, this co-expression was more pronounced (43.5%) in the case of pancreatic cancer [52].
Different subtypes of breast cancer CAFs have been identified in the literature. The earliest
CAF subtypes were described by Brechbuhl et al. in human samples, based on CD146
expression. Particularly two subtypes of CAFs in human breast cancer were identified,
both with distinct functions. CD146− CAFs suppressed ER expression, while CD146+ CAF
promoted tamoxifen sensitivity to the luminal breast cancer cells. They identified a gene
signature by bulk RNA-seq, directly influenced by co-culturing fibroblast cell lines with
MCF-7 cells (ER+), that reliably predicted recurrence-free survival in patients treated with
tamoxifen [51]. Costa et al. identified four CAF subtypes in human breast cancer based
on the expression level of α-SMA, and FAP (CAF-S1-S4). Such subtypes were identified
by fluorescent-activated cell sorting and were found to be present variously in different
subtypes of human breast and high-grade serous ovarian cancers. A significant association
between these CAF subsets and breast cancer subtypes was found. For instance, both
CAF-S1 and CAF-S4 subsets were preferentially enriched in tumors, while the CAF-S3
subset was significantly accumulated in juxta-tumor areas and CAF-S2 were equally dis-
tributed between the two compartments. The CAF-S1 subset was associated with an
immune-suppressive environment via secretion of CXCLl12 and enhancing T cell differenti-
ation to regulatory T cells (Tregs), while CAF-S4 subset was lacking such a phenotype [53].
Moreover, two other CAF subtypes were recently identified in human breast cancer pa-
tients using single-cell transcriptomic analysis; FSP-1+ CAFs (sCAFs), and PDPN+ CAFs
(pCAFs). The ratio between the two subtypes correlates with BRCA mutations in TNBC
and clinical outcome [54]. sCAFs were shown to have inflammatory phenotype, while
pCAFs had wound healing features. Improved clinical outcome was found to associate
with high ratios of sCAF/pCAF. CAFs heterogeneity signifies the notion of a dynamic
TME to be capable of keeping track or being shaped by how the tumor evolves. In mice,
genetic analyses via microarray and different sequencing approaches helped revealing
more complexity and heterogeneity of CAFs. Cremasco et al. identified two CAF subtypes
in 4T1 and 4T07 subcutaneous models of breast cancer by microarray; FAP+PDPN+ CAFs
and FAP+PDPN− cancer-associated pericytes (CAPs). Both subtypes were spatially and
functionally different. For instance, PDPN+ CAFs were abundant in dense ECM and
were associated with immunosuppression, whereas PDPN- CAPs were mainly localized
around vasculature and had no immunosuppressive function [49], somewhat contradicting
the human CAF data obtained by Friedman et al. [54]. Another three subtypes of CAFs
were identified by single cell transcriptomic analysis of MMTV-PyMT-derived CAFs and
validated in patient data sets via bioinformatical comparison by Bartoschek et al. The
three subtypes were vascular CAFs (vCAFs) that particularly expressed Nidogen2, matrix-
related CAFs (mCAFs) that were Pdgfrα+, and developmental CAFs (dCAFs) that were
Pdgfrβ− and Scrapie Responsive Gene 1 (Scrg1)+. α-SMA and FAP did not segregate
these subtypes, as shown by Costa et al. [53]. mCAF and vCAF were associated with
metastasis; however, only mCAF correlated negatively with a prognostic signature [30].
Along the same lines, we identified two CAF subtypes in MMTV-PyMT mice by bulk RNA
sequencing: early-stage CAFs and late-stage CAFs. Late-stage CAFs had an inflammatory
phenotype characterized by activated nuclear factor kappa B (NF-κB) signaling and an
enrichment of vCAF markers, whereas early-stage CAFs showed higher levels of nuclear
exclusion of NF-κB. Interestingly, the transcriptomic signature of the early-stage CAFs
correlated with early stage in human breast tumors and improved survival of breast cancer
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patients [34]. All these studies indicated that divergent CAF subtypes identified across
different animal models or human breast cancer samples, sometimes come with an assum-
ingly different outcome. However, more complex description of subtypes using more and
new molecular markers might dissolve these discrepancies and help to identify the link
between these subtypes. Identification of CAF subtype-specific markers may open avenues
to target such subtypes individually by tailored compounds, but needs to be connected to
functional analysis.

3.2. Functional Heterogeneity

As mentioned earlier, CAF heterogeneity might correlate with their function in differ-
ent types of malignancy. To understand this heterogeneity, the key features distinguishing
resident fibroblasts from CAFs must be first considered. As such, ECM remodeling, im-
mune and vascular regulation, metabolic adaptation reshape the stroma as a function of
the CAF secretome or mutual crosstalk with different cells. In this regard, CAFs are a signif-
icant source not only of ECM components, but also of cytokines, chemokines, extracellular
vesicles, and metabolites that influence tumor development.

3.2.1. ECM Remodeling

ECM is the non-cellular stromal component of which the architecture impacts many
cellular functions. It is composed of glycosaminoglycans and structural as well as ma-
tricellular proteins that coordinate cell communication, adhesion and movement [19].
Solid tumors, particularly those derived from glandular epithelium such as breast cancer,
are associated with desmoplasia, which is a pronounced stiffened stroma that comprises
a substantial proportion of the tumor mass, and fosters aggressive behavior of cancer
cells [55]. Perpetual remodeling of the ECM is a hallmark of CAFs, usually rendering the
ECM more stiff by excessive deposition of type I and III collagens (Col-I, III) and degra-
dation of type IV collagen (Col IV) [13,19]. Excessive deposition of ECM and secretion
of matrix metalloproteinase (MMP) enzymes create a self-sustaining feed-forward loop
of CAF activation and ECM remodeling to generate a more stiffened ECM, resulting in
biomechanical and biochemical changes that affect tumor growth and invasion [56,57].
For example, Col-I, secreted mainly by CAFs, enables disseminated breast cancer cells
to migrate towards blood vessels to intravasate into the blood stream [58]. Additionally,
constitutive collagen cross-linking is another feature of ECM remodeling stimulated by
CAFs via the cross-linking enzyme lysyl oxidase (LOX) [59,60]. LOX is expressed during
early stages of breast carcinogenesis by CAFs, whereas in later stages it is also induced in
hypoxic cancer cells, promoting invasiveness [61]. The resulting stiff ECM promotes cell
invasion via integrin clustering, focal adhesion kinase (FAK) phosphorylation and Rho
GTPase activation [62]. Human breast cancer cells can migrate faster on stiffer stroma, and
their persistent migration can be directed following a stiffness gradient, through a process
termed “durotaxis”. Human breast cancer displays a stiffness gradient as shown by atomic
force microscopy. As such, the tumor is generally stiffer than surrounding tissue with the
invasive front being the stiffest [63]. This is coherent with CAFs mostly localizing periph-
erally, surrounding tumor nests [64,65]. Moreover, mechanical stress induced by a stiff
ECM activates YAP/TAZ signaling in cancer cells perturbing their actin cytoskeleton and
promoting their aggressiveness [66]. Histopathological analysis of MMTV-PyMT tumors
shows nuclear accumulation of YAP in invasive carcinoma compared to hyperplasia and
normal mammary tissues [67]. Furthermore, stiffened ECM contributes significantly to
increase interstitial fluid pressure, which constitutes a barrier for therapeutic delivery of
drugs inside the tumor [68].

3.2.2. Immune Regulation

The tumor-associated immune system is a critical regulator of tumor growth [69], and
not only shaped by the tumor cells themselves, but also by CAFs. Immune regulation by
CAFs is either direct via secretion of different molecules (cytokines or chemokines), or
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indirect via ECM remodeling that controls intratumoral infiltration. Divergent CAF pheno-
types have a significant share of regulating the immune landscape in cancer, sustaining an
immune-suppressive tumor-promoting status [70–72]. Among these phenotypes are FAP+
PDPN+ CAFs, which are immunosuppressive and regulate cytotoxic T cell localization and
motility via a nitric oxide (NO)-dependent mechanism [49]. Costa et al. also found that
FAPhigh CAFs are correlated with Treg-mediated immunosuppression and a poor outcome
of breast cancer patients [53]. Apart from FAP+ cells, PDGFRα+ CAFs were found to
support differentiation of tumor-associated macrophages (TAMs) towards an immunosup-
pressive M2 phenotype via the secreted glycoprotein chitinase-3-like-1, which is involved
in fibrosis and chronic inflammation [73]. In another study, FSP-1+ CAFs recruited TAMs to
tumors via CXCL14 induced nitric oxide synthase 1 (NOS1) [74]. Interestingly, CAFs were
found to indirectly influence the immune response via deposition of ECM and remodeling
the matrix on which immune cells localize or migrate. For instance, TAM infiltration was
improved by the extensive deposition of Col-I and hyaluronic acid by α-SMA+ CAFs [63].
Better defining the role of specific CAF subtypes in orchestrating the immune interactions
may be crucial for improving current immunotherapies [75].

3.2.3. Vascular Regulation

Angiogenesis and lymphangiogenesis, the formation of new blood and lymph vessels
respectively, are essential for cancer cells to prevail. Angiogenesis is critical for tumor
progression to survive the limited nutrients, while both angiogenesis and lymphangio-
genesis are invasive processes to help cells colonize distant sites. In early stages of breast
cancer MDA-MB-231 and MDA-MB-435 xenograft models, CAFs have been shown to
orchestrate neovascularization in strict dependence on NF-κB activation [76]. Late stage
MMTV-PyMT tumors however displayed a massive accumulation of CAFs with vascu-
lar and pro-metastatic functions compared to early stage, which was independent of
NF-κB signaling [34]. CAF-derived CXCL12 recruited endothelial progenitor cells in a
co-implantation xenograft model with MCF-7 cells and fibroblasts [77]. Hypoxic CAFs
were found to promote endothelial sprouting in breast cancer through pronounced vascular
endothelial growth factor (VEGF) signaling [78]. CAFs enhanced lymphangiogenesis in
the MMTV-PyMT model by promoting hyaluronic acid-expression [79]. In 4T1 xenograft
model, CAF depletion decreased expression of pro-angiogenic factors, such as VEGF,
PDGFR and granulocyte-macrophage colony-stimulating factor (GM-CSF), and resulted in
suppression of angiogenesis and lymphangiogenesis [80]. These studies suggest the potent
role CAFs play in promoting breast cancer angiogenesis and lymphangiogenesis.

3.2.4. Metabolic Adaptations

Cells in the TME are often under metabolic stress due to hypoxia and nutrient depri-
vation. Cancer cells produce energy to overcome nutrient deprivation via different survival
pathways, including the “Reverse Warburg” pathway and autophagy. The Warburg effect
is the adaptation of tumor cells to a low-oxygen situation, involving conversion of glucose
into lactate rather than pyruvate [81,82]. Later, a different model was proposed describing
metabolic coupling of cancer cells with CAFs to support their massive and uncontrolled
proliferation and nutrients demand, which is called the “Reverse Warburg”. In this model,
cancer cells induce oxidative stress in CAFs, which in turn undergo a metabolic switch to
glycolysis providing energy-rich lactate and pyruvate to metabolically support adjacent
cancer cells [83]. Loss of caveolin-1 (CAV-1) is a characteristic feature of breast cancer CAFs,
resulting in increased aerobic glycolysis and gain of a myofibroblastic phenotype [84–86].
Supporting this notion, a metabolic switch towards glycolysis in breast cancer CAFs was
observed upon downregulation of a subunit of the isocitrate dehydrogenase 3 complex
(IDH3a), which helped maintain a CAF phenotype [87]. Along these lines, the direct
contact of breast cancer cells with CAFs transferred G protein-coupled estrogen receptor 1
(GPER) to the cytoplasm. Cytoplasmic GPER induced aerobic glycolysis in CAFs via cyclic
adenosine monophosphate (cAMP)-dependent protein kinase A/cAMP-response element
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binding protein (PKA/CREB) signaling [88]. Conversely, depletion of FAK in breast cancer
CAFs was associated with enhanced glycolysis in cancer cells via activation of PKA [89].
Autophagy is another survival pathway, which is induced by hypoxia-inducible factor 1-α
(HIF1-α) to sustain cellular functions via degradation of cytoplasmic constituents, recycling
of ATP, and the maintenance of cellular biosynthesis [90,91]. HIF-1 stabilization in CAFs
leads to mitophagy and, in turn, shifting towards aerobic glycolysis [84]. The autophagic
properties of breast cancer CAFs are involved in enhancing stemness and metastatic poten-
tial of breast cancer via Wnt/β-catenin or via Toll-like receptor 4 [92–94]. CAFs metabolic
coupling with cancer cells remains to be heterogeneous, and unraveling its key parameters
could pave a new avenue for breast cancer treatment.

3.2.5. Tumor Stemness and Chemoresistance

Cancer stem cells (CSCs), are a particularly tumorigenic and chemoresistant popula-
tion in tumors [95]. CAFs have been implicated in promoting chemoresistance and cancer
stemness in multiple tumor types [96–98], including breast cancer [99,100]. For example,
breast cancer CAFs can modulate tamoxifen resistance in breast cancers via activation of
the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated
protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways and phos-
phorylation of ERα at serine 118 [101,102]. α-SMA+VIM+ CAFs also induced breast cancer
stemness via periostin-dependent Wnt signaling [100]. Another very interesting study
by Su et al. found that CD10+ GPR77+ CAFs subpopulation is responsible for breast
cancer stemness and chemoresistance via sustained secretion of NF-κB-dependent IL-6 and
IL-8 [103]. IL-7-expressing CAFs were identified as another subpopulation that sustains
breast cancer stemness via CXCL12 secretion [104]. Co-culturing CAFs with breast cancer
cells induced stemness via CCL2-mediated Notch signaling pathway [105]. Excessive
release of high-mobility group box 1 (HMGB1) by autophagic CAFs was found to enhance
stemness of luminal breast cancer cells and resistance to doxorubicin [106,107]. In multiple
types of cancer, including breast cancer, cytotoxic stressors, such as chemotherapy or ra-
diotherapy, enrich cancer cells with CSC features that contribute treatment resistance and
tumor relapse [108,109]. Such stressors also perpetuate metabolic and phenotypic transfor-
mation of resident fibroblasts into a CAF phenotype that promotes CSC features [46]. For
example, CD44+CD24− CSCs were enriched in breast cancer after neoadjuvant chemother-
apy. Additionally, chemotherapy-altered α-SMA+ CD90+ CAFs secrete pro-stemness
chemokines, such as CXCL1, CXCL2, CXCL5, and CXCL6 [110]. Moreover, taxmoxifen acti-
vates G-protein-coupled receptors on breast cancer CAFs, promoting their proliferation via
the GPER/EGFR/ERK axis [111,112]. Another study showed that MCF7 breast cancer cells
co-cultured with fibroblasts show induced resistance to tamoxifen and fulvestrant [113].

Together, these studies indicate that CAFs might be an integral part of cancer stemness
and therapy resistance promotion, which should be considered for therapy decision making.

3.2.6. Motility and Invasiveness

One key feature of breast cancer malignancy is metastasis towards secondary organs.
Accumulating clinical and experimental data support the hypothesis that CAFs regulate
cell motility and metastastatic spread via EMT [114]. EMT is an epigenetic programming
of cancer cells that gives them a more motile mesenchymal phenotype, increasing their
invasive potential [19,115]. This enables cancer cells to intravasate blood vessels and
circulate within the blood stream. Circulating cancer cells are effectively resistant to
anoikis [116]. Survival within the bloodstream is ensured through traveling covered
with fibrin-fibronectin clots (emboli) and/or platelets [117]. Once circulating cancer cell
extravasate, their colonizing potential and survival is dependent on the ECM and the
microenvironment of the distal site [118,119]. CAFs induce EMT in breast cancer cells via
TGF-β1 signaling [120]. CAF-derived CXCL12 was also found to enhance migration and
invasion capacity of breast cancer cells [121]. Senescent mammary fibroblasts were found
to increase motility of co-cultured mammary epithelial cells via Rac exchange factor, Tiam1,
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and the integrin-binding phosphoglycoprotein osteopontin [122]. Additionally, collective
metastasis was induced when CAFs remodeled the ECM into tracks enriched with Col-I,
promoting protrusion of cancer cells [123]. In the same framework, CAFs were found to
dictate metastasis direction of breast cancer cells. For instance, TNBC normally tends to
metastasize viscerally. However, TNBC cells have shown pronounced skeletal metastasis
when grown with CAF-derived CXCL12 and insulin-like growth factor (IGF) [124,125].
Apart from the secretory features of CAFs in inducing EMT, CAFs were found to induce
heterophilic physical interactions with cancer cells inducing cooperative invasion. For
instance, heterotypic physical interactions between cancer cells and CAFs induce β-catenin
recruitment, α-catenin/vinculin interaction, and actin remodeling. This allows CAFs
to exert an intercellular physical force on cancer cells and promote cooperative tumor
invasion [126]. Interestingly, not only CAFs contribute to EMT induction in breast cancer.
It has been found that normal fibroblasts at the interface areas have a greater capacity in
modulating breast cancer cells compared to CAFs [127].

3.2.7. Genetic and Epigenetic Alterations

The genomic landscape of CAFs is debated in the literature. Several studies have
described CAFs as genetically stable cells compared to cancer cells, making them an
attractive target for therapeutics [128–130]. For example, breast cancer CAFs displayed
copy number variation (CNV) and p53 mutation in only one tumor out of twenty-five
samples [131]. In another study, comprehensive molecular characterization of breast
cancer CAFs showed no genetic alterations, despite the difference in gene expression
between CAFs and normal fibroblasts [32,132]. On the contrary, other studies have shown
genetic alterations in CAFs including CNVs and loss of heterozygosity (LOH). For example,
17 CNVs were detected in CAFs of MDA-MB-231 and MDA-MB-435s xenograft models,
including amplifications and deletions by oligonucleotide microarray analysis [133]. LOH
was identified in the mammary stroma of micro-dissected tissues of 11 human breast
samples, several of which were exclusively stromal incidents [134]. LOH or complete
loss of p53 is another particular example of CAFs genomic modification, especially that
LOH of p53 in CAFs contributes to resistance to radiotherapy and chemotherapy [135].
LOH of p53 was also identified in micro-dissected fibroblastic stromal cells of breast
cancer, and associated with regional lymph-node metastases in sporadic breast cancer [136].
Concerning the issue of genetic alterations in CAFs, the EMT potential of cancer cells,
developing towards a CAF-like phenotype should be considered [42,43]. Addition of these
cells to the CAF pool will certainly result in the observation of CNVs, LOH and mutations
within the CAF population.

Epigenetic modifications activating resident fibroblasts to a myofibroblastic phenotype
are reversible during acute inflammation. However, such modifications are putatively
irreversible in cancer stroma [19]. That explains why CAFs show a persistent phenotype
in vitro even without cancerous stimulation [77]. Multiple types of epigenetic modifi-
cations were observed in breast cancer CAFs, including DNA methylation and histone
acetylation. Such modifications lead to a dynamic shift in CAF phenotype sustaining a
feed-forward loop of CAF activation [37]. Albrengues et al. demonstrated that aberrant
histone acetyltransferases and DNA methyltransferases induced by the proinflammatory
cytokine leukemia inhibitory factor (LIF) sustained CAF phenotypes of multiple cancer
types including breast cancer [137]. DNA methylation in breast cancer stroma correlated
significantly with HER2 expression in 143 human breast tumors, suggesting that it might
attribute to specific biological features of HER-2-positive tumors [138]. Distinct methylation
profiles were also observed in epithelial and myoepithelial cells and stromal fibroblasts
from normal breast tissue and breast carcinomas, implying the role they play in changing
the TME along tumor development to promote invasion [139].

Regulation of the epigenetic machinery observed in CAFs is, among others, controlled
by micro RNAs (miRNAs). miRNAs are small non-coding RNAs that can be reciprocally
delivered between cells in the TME, and can directly silence the expression of tumor
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suppressor genes and induce genomic instability via modulating enzymes that affects
DNA methylation and histone modifications [140–142]. For example, miR-221/222 directly
suppressed ER expression, which was significantly associated with reduced recurrence-
free and overall survival of breast cancer [143]. A different study showed that reduced
expression of CAF-derived miR-26b from ER+ breast tumors was associated with enhanced
cancer cell migration [144]. Along the same lines, miRNA-200 family members were also
downregulated in breast cancer CAFs. miRNA-200 family members and their targets
impacted expression of α-SMA, FN-1, contributed to ECM remodeling and inhibited tumor
initiation and invasion [145]. In addition, downregulation of miRNA-205 contributed to
acquisition of a CAF phenotype via YAP1 expression [146]. Moreover, downregulation of
miRNA-320 was essential for fibroblasts to acquire a tumor promoting phenotype via loss of
phosphatase and tensin homolog (PTEN) [147]. On the other hand, miRNA-9 upregulation
was shown to activate resident fibroblasts into CAFs [148]. These studies provide a strong
body of evidence that epigenetic regulation is a major principle affecting the interaction of
CAFs and cancer cells. However, further studies are required to elucidate if the genetic
integrity of CAF-like cells that are not derived from cancer cells is altered.

4. CAFs and Prognosis

The gene signature of the tumor stroma can be regarded as a prognostic tool in
many types of cancer. One of the first studies that addressed the prognostic relevance of
stroma in breast cancer patients was conducted by Finak et al. In this study, the authors
presented a stromal gene signature that predicted poor outcome in multiple subtypes
of breast cancer [149]. Along the same line, features of desmoplastic stroma can also
offer a prognostic tool. For example, aggressive HER2+ and TNBC lesions have stiffer
stroma associated with high expression of linearized collagens, compared to less aggressive
luminal A and B subtypes [63]. Additionally, linearized and stiffened collagen bundles
were found to be predictive of poor breast cancer patient prognosis [150]. However, these
studies were not specific to CAFs, since these features may have been influenced by other
cells in the tumor stroma as well [151]. Given that CAF density correlates positively with
most desmoplastic cancer types, other studies identified specific CAF-derived prognostic
signatures. One of these studies demonstrated that higher levels of procollagen-lysine,
2-oxoglutarate 5-dioxygenase family members, which are LOX required for production of
structural components of the ECM, were detected in breast cancer, compared to normal
mammary tissue [152]. Other studies have shown that downregulation of the tumor
suppressive fibroblast-derived SLIT or their roundabout homologue 1 receptor activates
proliferative WNT signaling and was associated with poor prognosis [153,154]. On the
other hand, downregulation of PDGFRα was associated with poor prognosis of breast
cancer patients [40]. In fact, a PDGFRαlow PDGFRβhigh CAF subset was identified as a
marker for ductal carcinoma in situ (DCIS) [36].

The prognostic relevance of CAFs includes chemoresistance prediction, which can
aid in clinical decision-making regarding proposed treatment protocols. This owes, on
the one hand, to the positive correlation of CAFs with desmoplasia. For example, high
density of α-SMA+ CAFs is correlated with resistance to neoadjuvant chemotherapy in
breast cancer [103]. Additionally, presence of CD146+ CAFs predicts tamoxifen sensitivity
in ER+ breast cancer patients [51]. In addition, a fibroblast-related gene signature of
50 differentially expressed genes predicts resistance to neoadjuvant chemotherapy in breast
cancer [155]. Moreover, detection of circulating CAFs in liquid biopsy samples confers a
dynamic prognostic tool during cancer progression. This tool demonstrates that circulating
FAP and α-SMA expressing CAFs were present in 88% of breast cancer patients with
metastases, 23% of patients with localized disease and 0% of healthy donors [156,157].
On the other hand, as mentioned earlier, chemotherapy modulates CAF signaling to
sustain cancer stemness and in turn chemoresistance. Signaling pathways activated in
CAFs upon chemotherapy could be targeted to serve as a supplemental diagnostic tool
to select patients for anti-CAF/CSC therapies. For instance, levels of phosphorylated
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signal transducer and activator of transcription 1 (pSTAT-1) in CAFs, which induces pro-
stemness chemokines following chemotherapy, may help clinicians to decide to implement
CAF-directed therapies [39,110].

5. Targeting of CAFs for Cancer Therapy

Rapid development of drug resistance, genetic diversity, and spatial distribution of
cancer cells might be problematic for developing targeted therapeutics in desmoplastic
tumors. By contrast, CAFs can provide an attractive target for breast cancer therapeutics,
both at the primary and secondary site. As discussed above, CAFs are genetically more
stable and less likely to acquire drug resistance compared to cancer cells. Moreover,
spatial distribution of CAFs within the desmoplastic stroma is another advantage. For
instance, CAFs are mostly localized peripherally to cancer cell nests surrounding them,
or in proximity to blood vessels, making them more accessible for therapeutic systemic
diffusion [30,68].

Over the past decade, different studies targeted the tumor-promoting functions of
CAFs directly via CAF depletion or reprogramming towards a normal fibroblast phenotype,
or indirectly via targeting CAF interactions with other neighboring cells [158] (Figure 1).
Some of these studies have been translated into clinical trials. However, sole CAF-targeting
therapeutics did not achieve much success in clinical trials, probably due to the heterogene-
ity of CAFs outlined above and the lack of specific markers. CAFs rather emerged as an
important complement to multiple immune therapies.
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Figure 1. Schematic representation of therapeutic targeting strategies of breast cancer CAFs. Four general approaches that
target CAFs for cancer therapy include CAF depletion, re-education, blocking and using CAFs as a delivery tool. Depleting
α-SMA via docetaxel conjugated nanoparticles (DTX), eliminating FAP via DNA vaccine, or neutralizing antibodies targeting
IL-6 and IL-8 were used to deplete CAFs. CAF re-education is approached to acquire a dedifferentiated phenotype through
downregulating MCT-4 via N-acetyl-cysteine (NAC) administration, restoring the expression of Cav-1 via chloroquine (CQ)
treatment, or overexpressing tumor suppressor Let-7b miRNA. CAF functions were blocked by inhibiting extracellular
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matrix (ECM) proteins, such as Col-I and LOX, or CAF-derived signals such as HGF. Expression of Collagen Type I (Col-I)
can be inhibited via Losartan treatment, while LOX expression can be inhibited via, ethyl 3,4-dihydroxybenzoate (EDHB)
or β-aminopropionitrile (BAPN). HGF expression can be inhibited via Tivantinib treatment. CAFs were used to target a
cytotoxic payload toward tumor, such as conjugating antimitotic drug, monomethyl auristatin E (MMAE), to anti-LRRC15
antibody to target its delivery to CAF-rich tumors.

5.1. Depleting CAFs

Given the profound impacts of CAFs on the tumor progression, depleting CAFs
in the tumor stroma provided a viable option towards attenuating their impact. For
example, depleting α-SMA+ CAFs, using docetaxel-conjugated nanoparticles, reduced
lung metastases in 4T1 and MDA-MB-231 models [159]. Along the same lines, novel
immunotherapies have been used to deplete FAP+ CAFs in different breast cancer models.
A DNA vaccine targeting FAP attenuated expression of proangiogenic factors such as
VEGF, PDGFR and GM-CSF and suppressed angiogenesis and lymphangiogenesis in a 4T1
breast cancer model [80]. CD10+ GPR77+ CAFs were also depleted in a patient-derived
xenograft model via neutralizing antibodies targeting IL-6 and IL-8 that were abundantly
expressed by these cells. CD10+ GPR77+ CAFs depletion efficiently delayed tumor onset
and restored chemosensitivity to docetaxel [103].

5.2. Reeducating CAFs

Targeting CAF activation to revert them into a deactivated status emerged as another
interesting strategy of CAF targeting. For instance, CAFs express lower levels of the tumor
suppressor miRNA Let-7b compared to their normal fibroblast counterparts. This was also
connected to CAF differentiation, since re-expression of Let-7b in human breast cancer CAFs
reduced their cancer promoting capabilities [97,158,160]. CAF reprogramming was also
tested clinically and showed efficacy. For example, Cav-1 expression was restored in breast
cancer CAFs upon treatment with chloroquine, which is an antioxidant and autophagy
inhibitor [84]. Based on this study, a clinical trial was launched termed Preventing Invasive
Breast Neoplasia. At this trial, a reduction in proliferation DCIS lesions and enhanced im-
mune cell migration into mammary ducts was observed upon chloroquine administration
prior to surgical excision [161]. N-acetyl-cysteine (NAC) is another antioxidant that has
been used clinically to reprogram breast cancer stroma via downregulating the expression
of the gycolytic marker monocarboxylate transporter 4 (MCT4). A pilot clinical study by
Monti et al. demonstrated that NAC administration decreased cancer cell proliferation
rates in women with stages 0 and I breast cancer [162]. Whether these effects were strictly
due to targeting CAFs remain unclear.

5.3. Blocking CAF Functions

Another therapeutic strategy to target CAFs is via inhibiting CAF-derived signals
that influence cancer development. For example, CAFs were shown to secrete high levels
of hepatocyte growth factor (HGF), which activates its cognate receptor, c-Met kinase,
on cancer cells, promoting tumor development [156]. Targeting HGF by the c-Met in-
hibitor Tivantinib demonstrated early signs of anti-tumor activity when combined with
Gemcitabine in a phase 1 trial of multiple solid tumor patients including breast cancer
patients [160]. This trial was warranted for phase 2 and 3, but only in locally advanced or
metastatic non-small cell lung cancer [163,164]. Col-I in CAFs was also inhibited by the
anti-fibrotic agent Losartan, leading to delayed tumor progression of multiple cancer mod-
els, including MMTV-PyMT breast cancer model [165]. LOX also emerged as a potential
target for inhibiting CAF-derived signals. The LOX inhibitor ethyl 3,4-dihydroxybenzoate
(EDHB) was found to decrease tumor fibrosis and metastasis in a MDA-MB-231 xenograft
model [166]. The LOX inhibitor β-aminopropionitrile (BAPN) was used to block LOX
expression in the MMTV-PyMT model, leading to decreased ECM stiffening and delaying
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tumor progression [60]. Nevertheless, these attempts to block CAF functions might not be
specific, because of the redundancy in the cells expressing the targeted molecules [167,168].

5.4. CAFs as a Drug Delivery Tool

Using CAFs as a means for drug delivery comprises an appealing strategy to evade
CAFs heterogeneity. This strategy was applied by Purcell et al. who identified Leucine-
rich-repeat-containing 15 (LRRC15) as a new surface marker for CAFs in multiple solid
tumors including breast, head and neck, lung, pancreatic cancer. They conjugated the
antimitotic drug, monomethyl auristatin E, to anti-LRRC15 humanized IgG1 antibody
to target its delivery to CAFs via a protease cleavable valine–citrulline. Reduced tumor
growth was observed upon using this therapeutic strategy in xenograft models of breast
cancer, NSCLC-adenocarcinoma, osteocarcinoma and glioblastoma. However, breast
cancer xenografts displayed tumor regrowth after treatment [169], indicating potential
development of treatment resistance.

6. Conclusions

It has become increasingly clear that CAFs play an important role in cancer cell in-
tegrity and tumor dynamics not only in the mammary gland, but also in other tumor
entities [13,15,156,158]. As discussed above, the prognostic and therapeutic significance of
CAFs in cancer therapy has become apparent. Importantly, targeting CAFs may help to
overcome major issues remaining in long-term breast cancer management, namely distant
metastasis and treatment resistance. However, a major caveat is the heterogeneity these
cells display during tumor development over time, in different breast cancer subtypes and
in individual tumors simultaneously in different microenvironmental niches. The goal
must hereby be to selectively target CAFs with tumor-promoting characteristics, while
leaving those with anti-tumor properties unaffected. Characterizing CAF heterogeneity is
therefore a critical first step, which has been approached by recent studies using systems
biology approaches in single cells. This could be delineated first through CAFs lineage
tracing which is crucial to deconvolute the factors driving phenotypical and functional
heterogeneity. The next critical steps will be manipulating the drivers of CAF heterogene-
ity to be able to avoid (trans)-differentiation of other cells to CAFs once tumor niches
have been emptied of pro-tumor CAF subsets, and identifying specific and hopefully
non-redundant functions associated with distinct phenotypes. This could be done using
models that closely mimic human breast cancer such as patient-derived xenografts, e.g.,
in humanized mice, or in tumor organoids interacting with patient-derived fibroblasts.
Such models should avoid the pitfalls of 2D culture, and consider the impact of ECM and
CAFs spatial location on tumor development [170]. This could be achieved by different
approaches, including engineering ECM protein-based scaffolds using 3D bioprinting to
mimic the spatial conditions of the TME [171,172]. Such printed scaffolds may constitute a
gradient hydrogel that allow investigating the influence of ECM stiffness in directing cell
invasion [173]. Using microfluidic platforms on 3D models, adds another layer of precise
control to the experimental setup, and provides a better understanding of tumor-stroma
interactions [174]. These approaches may then inform decisions which CAFs subset(s) to
target in which way, yielding another arrow in the quiver of anti-tumor therapy.
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