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A Detailed analysis of the problem

This section is supposed to explain the rationale of the bias described in the paper more

thoroughly. It consists of two parts. In the first, we discuss the GMM estimation approach under

the assumption that the estimated model is correctly specified. In this case, the estimator is of

course consistent. In the second part, we discuss various situations of misspecified models. In the

context of linear asset pricing models for the cross-section of expected returns, misspecification

means that there is cross-sectional variation in expected returns that cannot be explained by

exposures to the proposed factors, i.e. that the cross-sectional R2 is below 1 even in population.

A.1 Correctly specified models

Assume that there are n test assets with excess returns Re
i,t (i = 1, . . . , n; t = 1, . . . , T ) and k

candidate pricing factors Fj,t (j = 1, . . . , k). An unconditional linear factor model implies that

the expected excess returns of all assets are proportional to the assets’ factor exposures:

E[Re
i ] =

k∑
j=1

Cov(Re
i , Fj)λ

∗
j =

k∑
j=1

(
E[Re

iFj]λ
∗
j − E[Re

i ]E[Fj]λ
∗
j

)
⇔ 0 = E

[
Re

i −
k∑

j=1

Re
i (Fj − E[Fj])λ

∗
j

]
.

(A.1)

Here λ∗
j denotes the true market price of Fj-risk, scaled by the variance of Fj (i.e. λ

∗
j =

MPRj

V ar[Fj ]
),

and is the parameter to be estimated.

The expected values of the factors, E[F ] = (E[F1], . . . , E[Fk])
′, are typically unknown to

the econometrician. Of course, ET [F ] = 1
T

∑T
t=1(F1,t, . . . , Fk,t)

′ is an unbiased estimator, but

with non-zero variance. To set the uncertainty regarding the estimate of the factor means in

relation to the uncertainty about λ∗ = (λ∗
1, . . . , λ

∗
k)

′, the vector E[F ] is often replaced by a

further parameter vector µ = (µ1, . . . , µk)
′, which is estimated jointly with λ∗. Replacing E[F ]
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by µ and λ∗ by λ, Equation (A.1) can be transformed as follows:

0 = E

[
Re

i −
k∑

j=1

Re
i (Fj − µj)λj

]

⇔ E[Re
i ] =

k∑
j=1

(E[Re
iFj]λj − E[Re

i ]µjλj)

⇔ E[Re
i ] = E[Re

i ]
k∑

j=1

(
E[Fj]− µj

)
λj +

k∑
j=1

Cov(Re
i , Fj)λj

For the ease of exposition, consider the case of a model featuring a single factor (i.e., k = 1):

E[Re
i ] = E[Re

i ]
(
E[F ]− µ

)
λ︸ ︷︷ ︸

“constant term”

+ Cov(Re
i , F )λ︸ ︷︷ ︸

“covariance term”

(A.2)

When estimated jointly with GMM, the parameters λ and µ cannot be identified separately

using the pricing errors, i.e., the sample equivalent of Equation (A.2), as the only moment

condition. Equation (A.2) can be solved in several ways. If the model is correctly specified, the

vector (Cov(Re
i , F ))i is non-zero and proportional to the vector of expected returns (E[Re

i ])i,

i.e. the true cross-sectional R2 is equal to 1. In this case, the true parameter λ∗ is simply given

by λ∗ =
E[Re

i ]

Cov(Re
i ,F )

for any i = 1, . . . , n. Substituting Cov(Re
i , F ) =

E[Re
i ]

λ∗ in Equation (A.2) and

solving for µ gives

µ = E[F ] +
1

λ∗ − 1

λ
. (A.3)

Equation (A.3) shows that there is more than one solution. Importantly, Equation (A.3) does

not depend on i, so considering more test assets does not solve the problem.

There are two important special cases of the general set of solutions described by Equation

(A.3). First, one can set µ = E[F ] to eliminate the “constant term” in Equation (A.2). With

this choice, λ is equal to λ∗, the true market price of risk divided by the factor variance. We
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refer to this solution as the desired solution in the paper.1

Second, consider cases where λ lies in a close neighborhood of zero, which implies that µ

is very large in absolute terms. In the limit λ → 0, the “covariance term” in Equation (A.2)

vanishes and the “constant term” goes to one.2 We refer to such cases as trivial solutions

in the paper. They are trivial in the sense that the true statistical relation between factor

exposures and expected returns is irrelevant, because the covariance term in Equation (A.2)

can be made arbitrarily small. As opposed to the desired solution, a trivial solution yields

parameter estimates that are far away from the true parameters.

In order to restore identification, it is a standard procedure to add a second set of moment

conditions of the form 0 = E [Fj − µj] for j = 1, . . . , k, which identify the factor means.

In applications, the GMM point estimates are given by (λ̂, µ̂)′ = argminf(λ, µ), where

f(λ, µ) = g′T (λ, µ) W gT (λ, µ). (A.4)

Here, W denotes the GMM weighting matrix and gT is the (n+k)×1-vector of sample moment

conditions, given by

gT (λ, µ) = ET

 Re
i −

∑k
j=1R

e
i (Fj − µj)λj, i = 1, . . . , n

Fj − µj, j = 1, . . . , k

 . (A.5)

We denote the second set of moment conditions as penalty terms in this appendix, since they

penalize deviations of µ̂ from the factor means.

The additional moment conditions influence the set of minima of the GMM objective

function (A.4). Asymptotically, only the desired solution, i.e. λ̂ = λ∗ and µ̂ = E[F ], will set

all moment conditions to zero. It is, thus, the global minimum. A trivial solution, i.e. bringing

1This choice of µ is equivalent to using the moment condition 0 = E
[
Re

i −Re
i (F − F̄ )λ

]
, where F̄ denotes

the time series average of the factor. This alternative GMM estimator is also used in the literature, see, e.g.,
the detailed discussion in Ferson (2019), p. 180, p. 220, or pp. 224ff.

2To see the latter, reformulate Equation (A.3) as 1 = λ
λ∗ + (E[F ]− µ)λ. The first term vanishes as λ goes

to zero, so the second must go to one.
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the covariance term in Equation (A.2) close to zero by letting λ go to zero is now costly, since

µ̂ will be far away from E[F ]. All other “intermediate” solutions will also be penalized, since

ET [F − µ] = 1
λ
− 1

λ∗ is asymptotically nonzero unless λ = λ∗.

A.2 Misspecified models

We have shown above that, in case the model is correctly specified, the GMM estimator that

minimizes the objective function (A.4) will asymptotically yield the true parameters, i.e., the

desired solution. Obviously, this finding is just a special case of the general result of Hansen

(1982). However, in applications, asset pricing models are always misspecified (see Kan and

Zhang, 1999; Fama and French, 2015). As a consequence, the minimum of the GMM objective

function then depends on the choice of the weighting matrix W . This is because the covariances

of factors and returns do not perfectly line up with the average returns, i.e., at least one

pricing error is larger than 0. In this situation, there is no parameter vector (λ, µ)′, for which

gT (λ, µ) = 0 and the weighting matrix determines the relative priority the estimator assigns to

the moment conditions.

In the following, we show that certain standard choices of W lead to estimators suggesting

that factors with poor pricing abilities appear important for pricing assets and so, heavily

misspecified models appear close to correctly specified.

For the ease of exposition, we study weighting matrices of the form

Wx =

 In 0

0 10x Ik

 = diag(1, . . . , 1, 10x, . . . , 10x) (A.6)

in this section. With W = Wx, the GMM objective function is given by

fx(λ, µ) = SSE(λ, µ) + 10x · SSP (µ),

where SSE denotes the sum of squared pricing errors, i.e. the sum of the first n squared entries
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of gT , and SSP denotes the sum of squared penalty terms. We have added the subscript x

to the GMM objective function f to emphasize that the parameter x impacts the objective

function, and, thus, potentially also the values that minimize it.

In the remainder of the section, we discuss the solutions of the optimization problem

minfx(λ, µ) for a given x, making different assumptions about the candidate pricing factors. To

characterize factor j, we consider the following decomposition of the vector of sample covariances

of the test asset returns with factor j:

(CovT (R
e
i , Fj))i = (CovER

ij )i + (Cov⊥ij)i, (A.7)

where (CovER
ij )i is a multiple of (ET [R

e
i ])i and (Cov⊥ij)i is orthogonal to (CovER

ij )i in sample,

i.e.,
∑

iCovER
ij Cov⊥ij = 0 for all j.

A.2.1 Single factors

We discuss the case of single factor models first. The interaction of multiple factors is analyzed

in Section A.2.2. In case of a single factor, the model is misspecified if Cov⊥ is (asymptotically)

different from zero. In this situation, our goal still is to estimate the parameter λ∗ which solves

E[Re
i ] = CovERλ∗. The sample equivalent of the ith moment condition (A.2) now reads as

gT,i(λ, µ) = ET [R
e
i ]−

(
ET [R

e
i ]
(
ET [F ]− µ

)
λ︸ ︷︷ ︸

constant term

+ CovER
i λ︸ ︷︷ ︸

priced covariance term

+ Cov⊥i λ︸ ︷︷ ︸
unpriced covariance term

)
(A.8)

Case 1: Perfectly unpriced factors

We denote a factor for which CovER = 0 a perfectly unpriced factor. In this case, the vector

of average test asset returns is orthogonal to the vector of factor exposures, which implies a

true cross-sectional R2 of zero for the model featuring the perfectly unpriced factor as the only

factor. In the following, we focus on the case where Cov⊥ ̸= 0. This implies Cov(Re
i , F )i ̸= 0,

and we therefore label the factor as strong. If, instead, Cov(Re
i , F )i is equal to zero, we call
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the factor perfectly weak. Details for the special cases of strong, priced factors and of perfectly

weak factors are discussed below.3

We are looking for the parameters (λ, µ)′ that minimize the GMM objective function fx in

Equation (A.4). To facilitate the understanding of the general solution, it is instructive to look

at the minimization problem under one of the constraints µ = ET [F ] and µ = ET [F ]− 1
λ
first.

In accordance with the previous subsection, we label these two constrained optima as desired

constrained optimum and trivial constrained optimum. As will become clear below, the solutions

of the two constrained minimization problems represent corner solutions of the unconstrained

minimization problem, as x goes to infinity and to minus infinity, respectively.

Desired constrained optimum: Under the constraint µ = ET [F ], we end up in the

desired solution, which, in this case, implies that the sum of squared pricing errors is equal

to the sum of squared returns. This means that the estimated cross-sectional R2 is equal to

zero, in line with the true R2. This follows because the constraint µ = ET [F ] implies a zero

penalty term, but a nonzero pricing error. The GMM objective function fx is equal to SSE

and minimizing SSE also minimizes fx for all x. The first n sample moment conditions are

gT,i(λ, µ) = ET [R
e
i ]− CovT (R

e
i , F )λ = ET [R

e
i ]− Cov⊥λ.

The GMM objective function thus reads as

fx(λ,ET [F ])) = SSE(λ,ET [F ]) =
n∑

i=1

(ET [R
e
i ])

2 + λ2(Cov⊥)′Cov⊥.

The minimum is obviously given by λ = 0, i.e.

fx(0, ET [F ]) = SSE(0, ET [F ]) =
n∑

i=1

(ET [R
e
i ])

2.

Importantly, this solution does not depend on the log weight x on the penalty term.

3There is no consistent nomenclature in the literature. For instance, factors that are labeled “perfectly weak”
in our paper are called “useless” by Kan and Zhang (1999) and others.
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Trivial constrained optimum: Under the constraint µ = ET [F ] − 1
λ
, the trivial con-

strained optimization returns a trivial solution with spuriously high R2 and tiny pricing errors.

This follows from the constant term in Equation (A.8) being equal to one, such that the pricing

errors are equal to the covariance term. The GMM objective function is given by

fx((ET [F ]− µ)−1, µ) = (ET [F ]− µ)−2(Cov⊥)′Cov⊥ + 10x(ET [F ]− µ)2

and obviously depends on x. The first term, i.e., the sum of squared pricing errors, has a

supremum at µ = ET [F ] and converges to zero as µ goes to minus or plus infinity. The second

term, i.e. the sum of squared penalty terms, shows the opposite behavior, it is minimized at

µ = ET [F ].

When x is very low, minimizing fx essentially boils down to minimizing the sum of squared

pricing errors SSE. Considering Equation (A.8), this is done by bringing the covariance terms

to zero and the constant term to one. As a consequence, similar to the desired constrained

minimum discussed above, λ ends up being close to zero. The difference, however, is that the

estimated cross-sectional R2 is close to 1 here, since the pricing errors are close to zero, while

the estimated R2 is equal to 0 in the desired constrained case.

For large positive values of x, the penalty term requires µ to be close to ET [F ], which

implies high pricing errors. In fact, fx((ET [F ]−µ)−1, µ) becomes arbitrarily large if x is chosen

large enough. In particular, for x large enough, the minimum of fx((ET [F ]−µ)−1, µ) with respect

to µ exceeds the desired constrained minimum f(0, ET [F ]), which is finite. The minimum under

the constraint µ = ET [F ]− 1
λ
thus cannot be the global minimum when x is sufficiently high.

Global optimum: We have considered the minima of the GMM objective function under

the constraints µ = ET [F ], corresponding to an estimated R2 of 0 (which is equal to the true

R2), and µ = ET [F ] − 1
λ
, corresponding to an estimated R2 of close to 1 as λ goes to zero.

These two cases coincide with the corner solutions of the unconstrained minimization in the

cases where x goes to plus or minus infinity.
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For large positive x, this results from the fact that the penalty term requires µ to be close

to ET [F ], and this is, by definition, the condition for the desired constrained optimization.

On the other hand, if x is chosen negative enough, we have seen that the value of the

GMM objective function in the trivial constrained optimization can be brought arbitrarily close

to zero. We thus conclude that the trivial constrained optimum represents the corner solution

of the global optimization problem as x goes to minus infinity.

For intermediate values of x, the unconstrained minimum will typically be between these

two cases. As we see in the simulation study in Section B.1 of this appendix and in the paper,

the parameter estimates go from the R2 = 1 case for low values of x to the R2 = 0 case for

high values of x and the point estimates (λ̂, µ̂) go from (0,±∞) to (λ∗, ET [F ]). Importantly,

for seemingly natural choices of x, such as x = 0, we typically find estimates that are far away

from the desired solution.

Case 2: Strong priced factors

We next consider a single strong factor which has some explanatory power for the cross-section of

test asset returns, i.e., CovER ̸= 0, but we assume that the model is not fully correctly specified,

i.e., Cov⊥ ̸= 0. This is the case we typically have to deal with in empirical applications. It turns

out that the rationale in this case is very similar to the case of perfectly unpriced factors.

We are interested in the parameter λ∗ that solves ET [R
e
i ] = λ∗CovER. Moment condi-

tion (A.8) is then given as

gT,i(λ, µ) = ET [R
e
i ]−

(
ET [R

e
i ]
(
ET [F ]− µ

)
λ+ λCovER + λCov⊥

)
= ET [R

e
i ]−

(
ET [R

e
i ]
(
ET [F ]− µ

)
λ+

λ

λ∗ET [R
e
i ] + λCov⊥

)
.

(A.9)

We consider the same constrained optima as in the previous subsection.

Desired constrained optimum: Under the constraint µ = ET [F ], the sum of squared
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pricing errors SSE and thus fx has a minimum in λ = λ∗, and we have

fx(λ
∗, ET [F ]) = (λ∗)2 (Cov⊥)′Cov⊥. (A.10)

These parameters correspond to the desired solution and yield an estimated cross-sectional R2

which is equal to the true R2, i.e., 1− (Cov⊥)′Cov⊥/((CovER)′CovER + (Cov⊥)′Cov⊥).

Trivial constrained optimum: Setting the constant term in Equation (A.8) to one by

constraining λ = (ET [F ]− µ)−1 gives

fx((ET [F ]− µ)−1, µ) = (ET [F ]−µ)−2
(
(CovER)′CovER + (Cov⊥)′Cov⊥

)
+ 10x(ET [F ]− µ)2

(A.11)

Taking the first order condition of Equation (A.11) with respect to µ gives

µopt = ET [F ]± 4

√
(CovER)′CovER + (Cov⊥)′Cov⊥

10x
. (A.12)

Substituting this solution back into fx gives the minimum value

fx((ET [F ]− µopt)−1, µopt) = 2

√
10x

(
(CovER)′CovER + (Cov⊥)′Cov⊥

)
(A.13)

Global optimum: From Equations (A.10), (A.12) and (A.13) we can again conclude that

the two constrained optima represent the corner solution of the unconstrained optimization

problem for large positive or negative x.

For large positive x, Equation (A.12) shows that the estimate of µ is close to ET [F ] also

under the constraint λ = (ET [F ]−µ)−1. However, from Equation (A.13), we see that the value

fx((ET [F ]− µopt)−1, µopt) exceeds fx(λ
∗, ET [F ]) if x is large enough, so the trivial constrained

optimum cannot be the global optimum. Instead, the corner solution, when x goes to plus

infinity, is again given by the desired constrained optimum, exactly as in the case of a perfectly
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unpriced factor.

For large negative x, on the other hand, fx((ET [F ]−µopt)−1, µopt) can get arbitrarily close

to zero so that, again, the trivial constrained optimum represents the corner solution for the

unconstrained minimization problem when x goes to minus infinity.

For finite but low enough weights, fx((ET [F ]−µopt)−1, µopt) is smaller than fx(λ
∗, ET [F ]),

which implies that the parameter estimates systematically move away from the true parameters

as x gets smaller and smaller. We will analyze the relation between the true cross-sectional R2,

the weight x, and the parameter estimates more thoroughly in our simulation study in Section B

of this appendix.

Case 3: (Perfectly) weak factors

Finally, we call a factor perfectly weak if CovER = 0 and Cov⊥ = 0, i.e., if the time-series

covariance CovT (R
e
i , F ) is equal to zero for all test assets i = 1, . . . , n. Perfectly weak factors

are necessarily perfectly unpriced. The results from Section A.2.1 largely carry over to this case,

except for the desired constrained optimization problem.

Desired constrained optimum: Under the constraint µ = ET [F ], the moment condi-

tion (A.8) becomes

gT,i(λ, µ) = E[Re
i ]− 0 · λ,

which implies that λ cannot be identified, independent of the choice of x.

Trivial constraint optimum: Setting the constant term to one by constraining λ =

(ET [F ] − µ)−1 automatically eliminates all pricing errors. The GMM objective function then

comprises only the sum of squared penalty terms:

fx((ET [F ]− µ)−1, µ) = 10x(ET [F ]− µ)2. (A.14)

Independent of x, it has an infimum at µ = ET [F ], which is, however, not a minimum,
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since the initial constraint λ = (ET [F ] − µ)−1 is not defined at that point. Nevertheless, the

GMM objective function can be brought arbitrarily close to zero by choosing µ arbitrarily close

to ET [F ]. Hence, in applications, the GMM estimator always ends up in a trivial solution if a

factor is perfectly weak. In terms of estimates, this means that µ̂ ≈ ET [F ], λ̂ is extremely large

in absolute terms and the estimated cross-sectional R2 is close to 1.

A perfectly weak factor is of course a theoretical knife-edge case. In applications, however,

factors are often weak, in the sense that the sample covariances of all test asset returns with the

candidate factor are very close to zero. In this case, the rationale outlined above can still serve

as an intuition. If the covariance term in Equation (A.2) is close to zero, even highly positive

or negative values for λ do not make the covariance term particularly costly when minimizing

SSE. We will analyze the relation between weakness of a factor and estimation results more

thoroughly in our controlled environment in Section B of this appendix.

A.2.2 Multiple factors

With two or more factors, there is one “constant term” and one “covariance term” (see Equa-

tion (A.2)) per factor. To reduce the pricing errors to zero, it is enough to set the constant term

of one factor to one, i.e., choose parameters that correspond to a trivial solution for only one

factor. As discussed above, it is relatively cheaper to do so in terms of penalty terms when a

factor is relatively weaker. As a consequence, in empirical applications like the ones presented

in Section 3 in the paper, weaker factors have the potential to “drive out” stronger factors,

when the GMM weighting matrix is chosen inappropriately.

To exemplify this rationale, we consider the extreme case of two factors F1 and F2, where

F2 is perfectly weak. Equation (A.8) then reads

gT,i(λ, µ) = ET [R
e
i ]−

(
ET [R

e
i ]
(
ET [F1]− µ1

)
λ1 + CovT (R

e
i , F1)λ1 + ET [R

e
i ]
(
ET [F2]− µ2

)
λ2

)
.(A.15)

One solution of this equation is given by (λ1, λ2, µ1, µ2)
′ = (0, (ET [F2] − µ2)

−1, ET [F1], µ2)
′.
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In this case, the sum of squared penalty terms is equal to (ET [F2] − µ2)
2 and can be made

arbitrarily small if µ2 is set close to ET [F2]. The pricing errors also vanish for these parameters,

so they must minimize the GMM objective function globally.

Hence, when estimating a linear model with multiple factors, one perfectly weak factor is

enough to produce an estimated cross-sectional R2 of one and zero pricing errors, independent

of the weighting matrix. Importantly, the estimated parameters are far away from the true

parameters in a particularly misleading fashion. The market price of risk λ1 of the strong

and (imperfectly) priced factor is estimated at zero and, thus, appears irrelevant. Moreover,

the market price of risk λ2 of the perfectly weak factor is seemingly large, either positive or

negative.

As we will see in our controlled environment in Section B.3, factors which are rather weak

(i.e., for which the time series covariances with the test asset returns are non-zero, but small)

lead to similar results when combined with strong factors. Importantly, just as stated above,

λ1 is estimated to be equal to zero in these cases, falsely implying that the first factor was

unpriced, even if it is actually (imperfectly) priced. Moreover, since the factor mean of the

weaker factor is typically close to the factor mean in sample, λ2 is estimated to be large and

significant.

We discuss the situation of two factors with different strengths and different explanatory

powers for the cross-section of test asset returns thoroughly in the next section.

B Appendix to the simulation exercise

This section provides details about the data-generating process we use to simulate data in our

controlled environment (Section B.1). In the other subsections, we provide additional informa-

tion about types of factors we have left out in the paper. Section B.2 considers strong and priced

factors, Section B.3 analyses the impact of factor strength, Section B.4 studies how the bias

varies with changing sample sizes, and Section B.5 takes a closer look at multifactor models.
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B.1 Data-generating process for simulation exercise

The factors F1, . . . , Fk are drawn independently from an i.i.d. normal distribution with means

and standard deviations which are all set to 1 percent per quarter. The data generating process

for excess returns is given as

Re
i,t = E[Re

i,t] +
k∑

j=1

βi,j(Fj,t − E[Fj,t]) + σi εi,t, (B.1)

where the ε’s are independent from one another and from the factors and are also i.i.d. normally

distributed with means of 0 and standard deviations of 1 percent. In particular, the standard

deviation of the factors, σf , is equal to the standard deviation of the error terms, σε, which will

facilitate the interpretation of the coefficients βi,j and σi as explained in detail below. They are

chosen such that the volatility of excess returns, σr =
√

β2
i,jσ

2
f + σ2

i σ
2
ε , is 0.06 for all assets.

Unless stated otherwise, we simulate 25 return time series with 600 observations each.

The sample size corresponds to a standard monthly post-war sample, but we also analyze the

impact of the sample size in Section B.4. The factor time series as well as the ε’s are sampled

from an i.i.d. normal distribution and orthogonalized subsequently, to make sure that they are

perfectly orthogonal even in our small sample.

The cross-sectional variation in expected returns E[Re
i,t] is modeled as follows. We draw

a true factor exposure bi,j of the return of asset i to factor j from a normal distribution with

mean and standard deviation of 1 percent. Importantly, the true exposures are assumed to be

constant over time, i.e., they are only drawn once before we simulate the factor and return

time series. The vectors of true factor exposures (bi,j)i=1,...,n for different factors j are supposed

to be orthogonal. In our simulation study, we draw vectors of factor exposures, orthogonalize

them, and scale them subsequently, such that they all have a mean and standard deviation of

1 percent in sample. To allow for model misspecification and varying degrees of explanatory
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power of the factor exposures in our simulation framework, we set

E[Re
i,t] =

k∑
j=1

(rjbi,j +
√

1− r2j ei,j), (B.2)

where the coefficients rj are chosen between 0 and 1 and the ei,j’s have exactly the same

properties as the bi,j’s, but are orthogonal to them and have a cross-sectional mean of zero.

To exemplify the intuition, assume that there is only one factor, such that the expected

excess return of asset i is given as rbi+
√
1− r2ei. Then, the cross-sectional correlation between

the vector of factor exposures and the vector of expected returns is r. In other words, the true

cross-sectional R2 is equal to r2. With multiple factors, the factor model’s cross-sectional R2 is

given by 1
k

∑k
j=1 r

2
j , i.e. factor j contributes r2j/k to the overall cross-sectional R2. Our design

allows us to analyze perfectly priced factors (by setting r = 1), perfectly unpriced factors (by

setting r = 0), and everything in between.

We also want to distinguish between weak and strong factors. To this end, we set

βi,j =
σr

σf

· sj ·
bi,j

max(|b·,j|)
, (B.3)

σi =
σr

σf

√√√√1−
k∑

j=1

(
sj ·

bi,j
max(|b·,j|)

)2

, (B.4)

so that the time series correlation between factors and returns is controlled by the choice

variables sj ∈ [0, 1]. Again, the intuition is best understood in the case of a single factor. Equa-

tions (B.3) and (B.4) then reduce to βi =
σr

σf
·s·bi/max(|b|) and σi =

σr

σf
·
√

1− (s · bi/max(|b|))2,

respectively. The time series R2 of the factor model for return i is given by

(βiσf )
2

(βiσf )2 + (σiσε)2
=

β2
i

β2
i + σ2

i

= s2
bi

max(|b|)
, (B.5)

where we make use of the fact that σf = σε. Normalizing the βi and σi by max(|b|) ensures

that s can easily be interpreted as the time series R2 of the asset with the highest absolute

14



factor exposure. Assets with lower factor exposures have lower time series R2 accordingly.4 The

scaling factor σr

σf
ensures that the volatility of excess returns is equal to 0.06 for all assets, as

explained above. This implies an annual return volatility of 20.78% for all test assets.

To sum up, the true cross-sectional R2 is always equal to 1
k

∑k
j=1 r

2
j , the true µj is always

equal to 0.01 by assumption, and, from plugging (B.3) into (B.2), we obtain the true λj as

λj =


rj max(|b·,j |)

sjσrσf
if sj > 0,

not identified if sj = 0.

In the following, we analyze the behavior of the GMM estimator using data from the time

series and cross-sectional model introduced above. We always hold all parameters fixed, with

the exception of s, r and the GMM weighting matrix W .

B.2 The impact of true cross-sectional explanatory power

To understand the impact of the true cross-sectional R2 on the estimated statistics, we simulate

data under the assumptions that the factor is strong and the cross-sectional R2 is equal to 0.5,

i.e. r =
√
0.5 and s = 1, which implies a true λ of 33.90.

Figure B.1 shows the estimation results. They suggest that the case of (imperfectly)

priced factors is very similar to the case of perfectly unpriced factors discussed in the paper.

For sufficiently high weights on the penalty term, the estimated R2 and RMSE, as well as the

point estimates of λ and µ are close to the true values. Low values of x, on the other hand, lead

to inflated R2’s and biased parameter estimates. The figure again shows that even seemingly

moderate choices of the weighting matrix, such as the identity matrix, can result in such a

pattern.

4Note that an asset with a zero factor exposure necessarily has a time series R2 of zero, so we decide to
couple the individual asset’s times series R2 to its factor exposure in general. In settings with multiple factors,
the values s1, . . . , sk have to be chosen such that the term under the root in Equation (B.4) is positive for all

i. The most conservative way of doing so is to assume that
∑k

j=1 sj ≤ 1.
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Figure B.1:
A single strong factor with a cross-sectional R2 of 0.5
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We apply a GMM estimation with the moment conditions in Equation (2) and the weighting matrix in Equa-

tion (5) in the paper. The figure shows estimated R2 and RMSE and the point estimates of λ and µ, together

with 95% confidence bounds as functions of x, the log weight on the moment condition that identifies the factor

mean. Returns are simulated according to Equations (B.1)-(B.4) with r =
√
0.5 and s = 1.

Figure B.2 shows the results for all possible choices of r (including the cases r2 = 0 and

r2 = 0.5 from above). It depicts heatmaps of the estimated R2 and the point estimate of µ as

functions of x (on the horizontal axis) and the true R2 (on the vertical axis). It is apparent

that the estimated R2 is far too high for low weights x when the true R2 is small. However,

we also observe that the parameter µ (and, thus, also λ which is close to (ET [F ]− µ)−1 in this

region) is seriously biased even for high values of the true R2 if x is low. This shows that, unless

a factor is perfectly priced, there is potential for biased parameter estimates, if the weight on

the factor mean is chosen inappropriately.
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Figure B.2:
A single strong factor with a cross-sectional R2 of 0.5

We apply a GMM estimation with the moment conditions in Equation (2) and the weighting matrix in Equa-

tion (5) in the paper. The figure shows estimated R2 and the point estimates of µ as functions of x, the log weight

on the moment condition that identifies the factor mean, and the true R2. Returns are simulated according to

Equations (B.1)-(B.4) with s = 1.

B.3 The impact of factor strength

Next, we analyze the impact of the strength of a factor on the estimated R2, RMSE, λ, and

µ, by varying the coefficient s in Equations (B.3) and (B.4), while keeping r fixed at
√
0.5. As

a starting point, Figure B.3 shows the estimated quantities as functions of x for a very low

s of
√
0.025.5 With such a low value of s, most of the time series variation in the test asset

returns come from the unsystematic part and the factor is only weakly correlated with them.

Figure B.1 can serve as a benchmark, since the true cross-sectional R2 is the same in both

figures and only the time series R2, i.e., the strength of the factor, is reduced dramatically in

Figure B.3 compared to Figure B.1.

Qualitatively, we observe a pattern that is very similar to Figure B.1. Quantitatively,

one difference is that the true λ is equal to 214 with these parameters. More interestingly, the

range in which the estimated R2 drops from 1 to 0 has moved to higher values of x, relative to

Figure B.1. Thus, when fixing a particular weighting matrix, for example the identity matrix,

biased parameter estimates and inflated R2’s are the more likely the weaker the factor being

5Analyzing the case s = 0 is not feasible, because the estimation algorithm does not converge to a finite λ.
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Figure B.3:
A single weak factor with a cross-sectional R2 of 0.5
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We apply a GMM estimation with the moment conditions in Equation (2) and the weighting matrix in Equa-

tion (5) in the paper. The figure shows estimated R2 and RMSE and the point estimates of λ and µ, together

with 95% confidence bounds as functions of x, the log weight on the moment condition that identifies the factor

mean. Returns are simulated according to Equations (B.1)-(B.4) with r =
√
0.5 and s =

√
0.025.

tested. As discussed in Section A.2 of this appendix, if a factor is very weak, the covariance

terms in Equation (A.2) are close to zero, so even a very high λ does not lead to high pricing

errors under the constraint λ = (ET [F ]− µ)−1.

The heatmaps in Figure B.4 show the estimated R2 and µ as functions of the log weight

x on the penalty and of s2, the strength of the factor. The true cross-sectional R2 of the factor

is again set to 0.5. In line with the discussion above, we observe that for very weak factors (s

close to zero), the estimated R2 is close to 1 even for x = 1. Apart from such extreme choices of

s, the pattern in estimated R2’s and also the parameter estimates as functions of x are rather

stable across levels of s. This shows that the strength of a factor has only a minor impact on

the bias we describe, relative to the true explanatory power of a factor.
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Figure B.4:
A single strong factor with a cross-sectional R2 of 0.5

We apply a GMM estimation with the moment conditions in Equation (2) and the weighting matrix in Equa-

tion (5) in the paper. The figure shows estimated R2 and the point estimates of µ as functions of x, the log weight

on the moment condition that identifies the factor mean, and the true R2. Returns are simulated according to

Equations (B.1)-(B.4) with s = 1.

B.4 The impact of sample size and number of test assets

None of our arguments involve the sample size. Indeed, shrinking the pricing error at the cost

of a higher penalty is not more costly when the sample size is particularly small or large.

To corroborate this intuition, we simulate data with different sample sizes between 100 and

1.000.000 and repeat the estimation. We find that the parameter estimates and pricing statistics

are exactly equal across sample sizes. This stability is due to the fact that we orthogonalize

and standardize all time series in order to set all sample moments equal to their population

counterparts even in small samples.

We also analyze if and how the number of test assets has an impact on the estimated

parameters and the model performance statistics. We simulate factors and returns with s = 1

and r = 0, corresponding to a strong and perfectly unpriced factor, as in Section A.2.1, but

the following intuition carries over to cases of weaker and priced factors. We fix x = 0, which

means that we use the identity matrix for weighting the moment conditions, and we simulate

between 5 and 200 test asset return time series. Figure B.5 shows estimated cross-sectional
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R2’s, root mean squared pricing errors, and the point estimates of λ and µ, together with the

95% confidence intervals, as functions of the number of test assets.

Figure B.5:
The impact of the number of test assets
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We apply a GMM estimation with the moment conditions in Equation(2) in the paper and the identity weighting

matrix (x = 0). The figure shows estimated R2 and RMSE and the point estimates of λ and µ, together with 95%

confidence bounds as functions of the number of test assets. Returns are simulated according to Equations (B.1)-

(B.4) with r = 0 and s = 1.

Interestingly, we find that the bias in parameter estimates is more severe if the number

of test assets is large. With only five test assets, the estimated R2 coincides with the true

R2 of zero, and the estimates of λ and µ are equal to the true values of 0 and 0.01. With

an increasing number of test assets the estimated R2 goes to 1 and the estimated µ goes to

pronounced negative values.

Intuitively, when increasing the number of test assets, we also increase the number of

moment conditions. However, the number of moment conditions that identify the factor mean

stays unaltered and, thus, they become less relevant relative to the pricing errors. In that sense,
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increasing the number of test assets indirectly increases the weight on the pricing errors or, in

other words, decreases the relative weight on the penalty terms.

We conclude that the bias in parameter estimates does not depend on the sample size,

but the number of test assets matters. Ceteris paribus, the bias is more severe if the number of

test assets is large. This is in contrast to, e.g. Lewellen et al. (2010), who suggest increasing the

number of test assets as an easy way to address the challenges laid out in their paper. However,

for the particular problem discussed in our paper, it makes the situation worse.

B.5 Models with two factors

In this subsection, we discuss cases with two factors which differ in terms of both cross-sectional

and time series explanatory power. We start with one strong and priced factor (setting r1 = 1

and s1 =
√
0.9) and one rather weak and perfectly unpriced factor (setting r2 = 0 and s2 =

√
0.01). This resembles the setup studied in Appendix A.2.2. The true cross-sectional R2 is

equal to 0.5 = 1
2
(r21 + r22). Figure B.6 shows the usual statistics.

As before, the estimated R2 and RMSE go to the true values as x increases. For log

weights x above a certain threshold, in this case x = 2.6, deviations of µ̂ from the sample

means of the factors are so costly in terms of the penalty terms that the minimum of the GMM

objective function is equal to the true parameters. For values of x below that threshold, it is

cheaper to reduce the pricing errors at the cost of a penalty. This can be achieved by setting λ

close to (ET [F ]−µ)−1 for one of the factors, i.e., bringing the constant term in Equation (A.8)

close to one. As discussed in Section A.2.2, the pricing error for the strong and imperfectly

priced factor is equal to λCov⊥ and can only be reduced by setting λ close to zero since Cov⊥

is large. A small λ, however, results in a high penalty. For the weaker factor, Cov⊥ is already

close to zero, so that there is no need to choose a small λ. We find exactly this pattern in the

estimated λ2 in Figure B.6. For weights below the critical value, λ2 estimates are positive and

seem significant and µ2 estimates are close to ET [F2]− 1
λ2
. The pattern in (λ̂2, µ̂2)

′ as a function

of x is qualitatively similar to the case of a single strong and perfectly unpriced factor, shown
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Figure B.6:
One strong and priced and one weak and unpriced factor
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We apply a GMM estimation with the moment conditions in Equation (2) and the weighting matrix in Equa-

tion (5). The figure shows estimated R2 and RMSE and the point estimates of λ1, λ2, µ1, and µ2, together with

95% confidence bounds as functions of x, the log weight on the moment condition that identifies the factor mean.

Returns are simulated according to Equations (B.1)-(B.2) with r1 = 1, r2 = 0, s1 =
√
0.9, and s2 =

√
0.01.

in Figure 1 in the paper. The difference is that the critical log weight x is larger in Figure B.6,

since the weaker unpriced factor F2 here is much weaker than the unpriced factor in Figure 1

in the paper.

22



For low values of x, the parameters (λ̂2, µ̂2)
′ correspond to a trivial solution, applied to the

weaker factor, which brings the pricing errors close to zero. The strong and (imperfectly) priced

factor F1 hampers the good pricing performance of the model. To shut down its impact on the

pricing errors, λ1 is estimated close to zero for low values of x. As a consequence, the weaker

unpriced factor F2 appears priced while the strong and unpriced factor appears irrelevant.

In numbers, when weighting the moment conditions with the identity matrix, the market

price of risk λ1 of the strong and priced factor F1 is estimated at −2.03 (true value is 50) with a

t-statistic of −0.32. The market price of risk λ2 of the weaker and perfectly unpriced factor F2

is estimated at 88.69 (true value is 0) with a t-statistic of 6.51. The estimated cross-sectional

R2 is equal to 97.96% (true value is 50%) and the estimated root mean squared pricing error

is 0.22% (true value is 1%).

To complete the analysis, we finally turn to the case of two equally strong factors, in the

sense that

(Cov(Re, F1))
′Cov(Re, F1) = (Cov(Re, F2))

′Cov(Re, F2) ̸= 0,

where factor F1 is priced and factor F2 is perfectly unpriced. In terms of the parameters in

Equations (B.1) to (B.4), we set s1 = s2 =
√
0.5, r1 = 1, and r2 = 0, again implying a true

cross-sectional R2 of 0.5 for the two-factor model. Figure B.7 shows estimated R2 and RMSE,

together with the point estimates and 95% confidence intervals of the parameters.

We again find a critical value of x (now at 1.9), which separates the desired estimates (for

x above that value) from biased estimates (for x below that value). Compared to Figure B.6,

the critical value is now slightly smaller, since the two factors are much stronger (compare the

analysis in Section B.3).

Interestingly, in terms of the point estimates of the parameters, the two factors “share

the work” for low log weights x. Since the two factors are equally strong, it is equally costly in

terms of the penalty term to let the µ estimates deviate from the sample means of the factors
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Figure B.7:
One strong and priced and one strong and perfectly unpriced factor
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We apply a GMM estimation with the moment conditions in Equation (2) and the weighting matrix in Equa-

tion (5) in the paper. The figure shows estimated R2 and RMSE and the point estimates of λ1, λ2, µ1, and µ2,

together with 95% confidence bounds as functions of x, the log weight on the moment condition that identifies

the factor mean. Returns are simulated according to Equations (B.1)-(B.4) with r1 = 1, r2 = 0, s1 =
√
0.5, and

s2 =
√
0.5.

to decrease the pricing errors. Compared to the analysis of Figure B.6, showing that weaker

factors drive out stronger factors, we thus cannot conclude that unpriced factors drive out

priced factors if they are comparable in terms of strength. Still, parameter estimates are biased
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and R2’s are inflated when the weight on the penalty term is too low.

C Detailed review of papers using the GMM design dis-

cussed in our paper

In this part of the appendix, we list a few empirical asset pricing papers that rely on GMM with

moment conditions as discussed in our paper.6 Some papers report estimates from a Fama and

MacBeth (1973) regression in addition to the results of the GMM estimation, but do not discuss

differences from the GMM estimates. We also briefly highlight further extensions of the GMM

procedures if there are any. Importantly, none of these extensions is reportedly addressing the

issue discussed in our paper.

Maio and Santa-Clara (2012): The moment conditions in this paper are exactly the ones

discussed here:  E[Re
t+1 −Re

t+1(ft+1 − µf )
′λ]

E[ft+1 − µf ]

 = 0. (C.1)

In their benchmark specification, the authors apply a one-stage GMM with an identity ma-

trix for the weights. In robustness checks, they extend the procedure, e.g., by running a two-

stage GMM, adding further test assets, or implementing bootstrap procedures to robustify

the p-values for the estimated parameters. They also run two-pass time-series/cross-sectional

regressions, but do not interpret the results of these regressions.

Maio (2013a,b): The benchmark empirical estimation relies on a one-stage GMM using the

exact design studied here, with identity matrix for weighting. Again, the author runs the GMM

estimation on various sets of test assets, and he also includes a detailed analysis of the indi-

vidual pricing errors of each test portfolio, as well as a bootstrap analysis for the risk premia

estimates. In Table 15 of the online appendix, the paper also reports results from two-pass

6We skip the paper of Yogo (2006) because it is discussed at length in Sections 3.2 and 3.3 of the paper and
in Section D of this appendix.
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time-series/cross-sectional regression.

Lioui and Maio (2014): The main empirical estimation relies on a GMM design similar to

Maio and Santa-Clara (2012) with identity weighting matrix. The analysis also provides a two-

stage GMM estimator, using the inverse of the covariance matrix estimated with the parameters

of the first stage for weighting. The authors also provide a weighted least squares coefficient of

determination R2
WLS, which assigns less weight to noisier pricing errors. The authors analyze the

factor loadings (betas) in more detail to understand the economic intuition behind their results.

In Table 7 of the online appendix, they report results from two-pass time-series/cross-sectional

regressions.

Tedongap (2015): This author roughly also follows the procedure of Yogo (2006). The lin-

earized model features consumption growth, expected consumption growth and consumption

volatility as factors. It is estimated via one-stage GMM with two sets of moment conditions: one

targeting the pricing errors (similar to the moment condition discussed here, but including an

intercept), the other one targeting time series moments of consumption growth. The weighting

matrix is block-diagonal.

Darrat et al. (2011): These authors closely follow the procedure of Yogo (2006) (see Sec-

tion 3.3 of the paper and Section D of this appendix), but include an instrument zt (as it is

also done by Yogo (2006) in an extension of the GMM procedure). The moment conditions are

 E[Re
t+1 −Re

t+1(ft+1 − µf )
′λ]

E[ft+1 − µf ]

⊗ zt = 0. (C.2)

The weighting matrix in the first stage is given by

W =

 νIN 0

0 Σ−1
ff

⊗ zt (C.3)

The instruments include a constant and the lagged values of world consumption growth, the

US wealth-consumption ratio, and the US term spread.
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Chen and Lu (2017): The moment conditions are again the ones discussed in our paper (with

and without instruments). The authors apply a two-stage GMM estimator, where the weighting

matrix in the first stage is chosen following Yogo (2006):

W =

 kIN 0

0 Σ−1
ff

 (C.4)

where Σff = ET [(f − µf )(f − µf )
′] and µf = ET [f ]. For robustness, the authors also run

Fama-MacBeth regressions.

Da et al. (2016): The paper analyzes models with log-linear pricing kernels as well as standard

linear factor models. For these linear factor models, they apply the familiar moment conditions

E

 Rx
t −Rx

t (ft − µf )
′λ

ft − µf

 = 0. (C.5)

They run a two-stage GMM estimation, where the initial values for the parameters are taken

from OLS regressions. The weighting matrix in the first stage is a block-diagonal matrix as

suggested by Cochrane (2005) and based on these OLS estimates.

Grammig et al. (2009): The moment conditions for the linearized model in this paper are

similar to the ones discussed here, but include an intercept: E[Re
t+1 − αιN −Re

t+1(ft+1 − µf )
′λ]

E[ft+1 − µf ]

 = 0. (C.6)

The authors apply a one-stage GMM estimator with an identity weighting matrix.
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D The durable consumption model: details

D.1 Estimation algorithm

In this appendix we provide details on the analysis of the durable consumption model discussed

in Section 3.3 of the paper. The moment conditions are given in Equation (A.5), and the

parameters to be estimated are the three market prices of risk (scaled by the factor variance)

λ = (λ1, λ2, λ3)
′ as well as the factor means µ = (µ1, µ2, µ3)

′.

Our analysis proceeds in two steps. We first present an exact replication of Yogo’s results

together with some modifications of the numerical procedure that already have a pronounced

effect on the GMM weighting matrix (Sections D.2 and D.3). Then we perform an analysis

similar to the one in Sections 2.3, 2.4, and 3 of the paper, i.e., we explicitly manipulate the

GMM weighting matrix, to study the impact of this variation on the estimation results.

We start by replicating the results presented in Table 3 in Yogo (2006). The original

code is written in Gauss and available on Motohiro Yogo’s website.7 Our replication code is a

line-by-line translation to Matlab.

In the following, we describe the exact GMM algorithm used by Yogo (2006) to estimate

the six parameters λ and µ.

1. Initial parameter values. The initial value for µ is set to the sample average of F

and the initial value for λ is the solution of the system of linear equations ET [R
e] =

[(Re)′(F−µ)/T ] λ. Here, T denotes the sample size, F denotes the T×3 matrix containing

the time series of the factors, and Re denotes a T×24 matrix that contains the time series

of excess returns of portfolios 2 to 25. In particular, the small growth portfolio is dropped

when the initial value for λ is calculated.

2. Covariance matrix of moment conditions. The initial values calculated in Step 1 are

plugged into the moment condition function (Equation (A.5)). This allows the estimation

7See https://sites.google.com/site/motohiroyogo/.
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of the covariance matrix Ω̂1 of the moment conditions. For this purpose, a parametric

estimator along the lines of Den Haan and Levin (2000) is used.

3. GMM: first stage. The moment conditions are weighted by a sparse weighting matrix

of the form

W (1) =

det(Ω̂
(1)
1,...,25)

− 1
25 I25 0

0 (Ω̂
(1)
26,...,28)

−1



where Ω̂
(1)
i,...,j denotes the submatrix


Ω̂

(1)
i,i . . . Ω̂

(1)
i,j

...
...

Ω̂
(1)
j,i . . . Ω̂

(1)
j,j

 of Ω̂(1) and I25 denotes the 25-

dimensional identity matrix. The initial values for the optimizer are the same as in Step

1. The point estimates are constrained in the following way:

λ3 < 1

λ1 + λ2 + λ3 > 0.
(D.1)

In the theoretical model presented in Yogo (2006), these inequalities mean that the implied

relative risk aversion and the implied elasticity of intertemporal substitution parameters

are constrained to be positive.

4. Cross-sectional R2 and pricing errors. These are calculated based on the estimates

from Step 3.

5. Covariance matrix of moment conditions. The parameter estimates from Step 3 are

plugged into the moment condition function (A.5) to obtain a second estimate Ω̂(2) of the

covariance matrix of the moment conditions.

6. GMM: second stage. (Ω̂(2))−1 is used to weight the moment conditions. The point

estimates from Step 3 are used as initial values for the optimization routine.
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Table 3 in Yogo (2006) shows the estimates of λ and the J-statistic from the second stage (Step

6) and the mean absolute pricing error and the R2 from the first stage (Step 4). The estimates

of µF are not reported.

Steps 2 and 5 involve the estimation of covariance matrices of autocorrelated time series.

Yogo (2006) uses a parametric estimation approach of the spectral density matrix as described

by Den Haan and Levin (2000). An alternative is to use a non-parametric estimator in the

spirit of Newey and West (1987).8 In our application, the first 25 moment conditions (the

pricing errors) and the factor mean of the market portfolio return are barely affected by the

choice of the covariance estimator. On the other hand, the parametric estimates for the variance

of nondurable (durable) consumption growth are 1.8 (14.4) times higher than the estimates that

we obtain using the nonparametric estimation procedure.

Tables D.1 and D.2 show the results from the estimation as reported in Table 3 in Yogo

(2006), together with the results from eight variations of the estimation procedure. The first one

is our one-to-one replication of Yogo (2006) (labeled “Replica”). Then, we keep the small growth

portfolio when calculating the initial covariance matrix for the first stage in Step 1 (“25 portf”).

For the next two replications, we use the nonparametric instead of the parametric covariance

matrix estimator, once without and once with including the small growth portfolio in Step 1

(“nonpara” and “25 portf & nonpara”, respectively). These four variations of the estimation

are performed with and without imposing the constraints on the parameters in Steps 3 and 6.

D.2 GMM: First stage

We are going to discuss the results from the first stage of the GMM (Table D.1) first. Numbers

in italics are not reported in the paper but only in the text file est dur available in the

supplementary material provided on Motohiro Yogo’s website.

A comparison of the first two columns shows that we perfectly replicate the results re-

8We rely on the function longvar from the GMM package of Kostas Kyriakoulis. The full package can be
downloaded at https://personalpages.manchester.ac.uk/staff/Alastair.Hall/GMMGUI.html.
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ported in the paper when we use the original setup. The picture changes drastically, however,

when we consider the variations discussed above. The most important statistics from the first

stage are the cross-sectional R2 and the mean absolute pricing error. Both statistics reveal

that the superior pricing performance of the durable consumption model is already severely

weakened when we use all 25 portfolios for the estimation of the covariance matrix in the first

stage.

The point estimates for µ and λ are reported for informational purposes only, as the

estimates in Table 3 of Yogo (2006) are obtained from the second stage of the GMM. However,

we can see from our replication that the point estimates from the first stage are not robust

either. Most importantly, although λ2 remains statistically significant throughout the cases, it

switches sign, which challenges the economic interpretation of the estimated coefficient. The

estimated µ can easily change from above to below ET [F ] or vice versa upon a slight change

in the weighting matrix, depending on the sign of the root. The associated λ estimate will

then switch sign. Comparing the unconstrained and the constrained estimation, one can also

see that the constraints are always binding once they are imposed. The unconstrained estimate

of λ1 + λ2 + λ3 is always negative, which implies a negative risk aversion coefficient in the

theoretical model.

To understand why our small changes to the estimation procedure affect the results so

heavily, it is instructive to look at the effect of the algorithm design on the initial GMM

weighting matrix. The small growth portfolio is the one with the largest pricing error in a

simple regression-based asset pricing test. Dropping this portfolio in Step 1 leads to less volatile

pricing errors for the remaining 24 portfolios, and, in turn, to a lower determinant of Ω̂
(1)
1,...,25.

As a consequence, when we reintroduce the small growth portfolio in Step 1, the weight on the

first 25 moment conditions decreases from 299.69 to 222.81. Thus, our adjusted estimation puts

a lot less emphasis on having low pricing errors at the benefit of better matching the factor

means.

As mentioned at the end of Section D.1, the use of the parametric covariance estimator
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mainly affects the weight on the 27th moment condition that identifies the durable consumption

growth factor mean. While omitting the small growth portfolio in Step 1 only affects the

weighting matrix in the first stage of the GMM, the choice of the covariance estimator affects

the weighting matrix in both GMM stages. It allows the algorithm to estimate the durable

consumption growth factor mean very imprecisely in order to decrease the pricing errors.

D.3 GMM: Second stage

Next, we analyze the robustness of the results from the second stage of the GMM estimation

(Table D.2). Point estimates, J-statistic and p-value reported in Yogo (2006), Table 3, are based

on these second stage estimates.

First of all we find that the three-factor model is rejected by the J-test in most cases. In

particular after replacing the parametric covariance estimator by the nonparametric one, the

specification test rejects the model relative to all conventional significance levels. Comparing

the unconstrained and the constrained estimation, the estimate of λ3 is always greater than 1,

which implies a negative intertemporal elasticity of substitution in the equilibrium model.

Comparing the point estimates from the second stage to those from the first stage, we

see that these estimates are relatively close to each other in the original Yogo (2006) paper.

However, adjusting the design of the GMM estimator, we find pronounced differences across

all our replications. One possible conclusion could be that, after our modifications, two-stage

GMM is no longer enough and we need additional stages to have more reliable estimates. We

perform multi-stage GMM estimations (results not reported here for brevity) and find that

the algorithm does not converge towards an efficient point estimate. Instead, in all the cases

considered, the multi-stage GMM oscillates between two different point estimates.9 We conclude

that the fact that the point estimates in Yogo (2006) seem to converge after two stages of GMM

is an artefact and slight changes in the estimation procedure destroys this property.

9This pattern is described, for instance, in Cochrane (2005), p. 226.
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Finally, it is also interesting to look at the estimated factor means. The sample averages of

the factors are 0.513, 0.915, and 1.880. The estimated mean growth rate of durable consumption

in our replication of Yogo (2006) is only 0.278 which is very low compared to the sample average

of 0.915. However, as the pricing performance diminishes with our adjustments to the procedure,

the estimate of the mean growth rate of durable consumption comes closer to its sample average.

At the same time, the model is rejected by the J-test.
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