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Abstract 

Objective 

To investigate whether regional white matter hyperintensities (WMHs) relate to alpha 

oscillations (AO) in a large population-based sample of elderly individuals. 

Methods 

We associated voxel-wise WMHs from high-resolution 3-Tesla MRI with neuronal alpha 

oscillations (AO) from resting-state multichannel EEG at sensor (N=907) and source space 

(N=855) in older participants of the LIFE-Adult study (60–80 years). In EEG, we computed 

relative alpha power (AP), individual alpha peak frequency (IAPF), as well as long-range 

temporal correlations (LRTC) that represent dynamic properties of the signal. We implemented 

whole-brain voxel-wise regression models to identify regions where parameters of AO were 

linked to probability of WMH occurrence. We further used mediation analyses to examine 

whether WMH volume mediated the relationship between age and AO. 

Results 

Higher prevalence of WMHs in the superior and posterior corona radiata was related to 

elevated relative AP, with strongest correlations in the bilateral occipital cortex, even after 

controlling for potential confounding factors. The age-related increase of relative AP in the 

right temporal brain region was shown to be mediated by total WMH volume. 

Conclusion 

A high relative AP corresponding to increased regional WMHs was not associated with age 

per se, in fact, this relationship was mediated by WMHs. We argue that the WMH-associated 

increase of AP reflects a generalized and likely compensatory spread of AO leading to a larger 

number of synchronously recruited neurons. Our findings thus suggest that longitudinal EEG 

recordings might be sensitive to detect functional changes due to WMHs. 
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Introduction 1 

White matter lesions (WML) are highly prevalent in the elderly and are of paramount 2 

clinical relevance since they are known to accompany cognitive decline and dementia1–3. WML 3 

are considered to reflect mainly small vessel disease4, which typically affects periventricular 4 

regions and deep white matter sparing U-fibers1. Little is known, however, whether and how 5 

WML impact functional measures of brain activity. Due to their location, white matter 6 

hyperintensities (WMHs) may cause disconnection of neuronal populations5. Theoretically, 7 

such damage of cortico-cortical and cortico-subcortical pathways is expected to alter 8 

synchronized activity of neurons measured with M/EEG6,7, thus, WML-associated alterations 9 

of EEG rhythms seem straightforward. One of the most prominent EEG rhythms are alpha 10 

oscillations (AO), which have been shown to originate from thalamo-cortical and cortico-11 

cortical interactions8,9. Importantly, measures of AO have been related to many aspects of 12 

sensory and cognitive function10,11.  13 

Although EEG and MRI are recorded daily in a large number of neurological and 14 

psychiatric patients all over the world, interestingly, so far only a few studies have investigated 15 

the relationship between AO and WML12–14. Furthermore, to our knowledge, no direct link 16 

between voxel-wise whole-brain WMHs and AO has been investigated. Thus, crucial questions 17 

remain unresolved, for example whether changes in AO relate to aging per se or rather they 18 

represent the impact of age-related neuropathology, for instance, WML.  19 

In this study, using a large population-based sample of elderly individuals, we 20 

hypothesized that WMHs affect AO in a topographically specific manner. We further 21 

postulated that this effect might be independent of age.  22 
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Methods 23 

Participants 24 

Participants were drawn from the population-based Leipzig Research Center for 25 

Civilization Diseases LIFE-Adult study15. All participants provided written informed consent, 26 

and the study was approved by the ethics committee of the medical faculty at the University of 27 

Leipzig, Germany. The study was performed in agreement with the Declaration of Helsinki. A 28 

subset of participants underwent a 3-Tesla MRI head scan and resting state (rs)EEG recordings 29 

on two separate assessment days. We selected participants above 60 years of age and without 30 

additional brain pathology or history of stroke, multiple sclerosis, epilepsy, Parkinson’s 31 

disease, intracranial hemorrhage, or brain tumors. We further excluded individuals whose 32 

rsEEG recordings were not temporally close to the MRI acquisition time and participants for 33 

whom alpha peak could not be identified. This resulted in a final sample of 907 participants 34 

(M=69.49 ± 4.63, 380 female) for the rsEEG sensor space analysis. After excluding individuals 35 

with failed T1-weighted segmentation and head-modeling, the final sample for the rsEEG 36 

source analysis was 855 (M=68.89 ± 4.66, 360 female). For a detailed overview of the 37 

selection process, see Figure 1. 38 

MRI Acquisition and Processing 39 

All MRI scans were performed at 3 Tesla on a MAGNETOM Verio scanner (Siemens, 40 

Erlangen, Germany). The body coil was used for radiofrequency (RF) transmission and a 32- 41 

channel head coil was used for signal reception. T1-weighted MPRAGE and FLAIR images 42 

were acquired as part of a standardized protocol: MPRAGE (flip angle (FA) = 9°, relaxation 43 

time (TR) = 2300 ms, inversion time (TI) = 900 ms, echo time (TE) = 2.98 ms, 1-mm isotropic 44 

resolution, acquisition time (AT) = 5.10 min); FLAIR (TR = 5000 ms, TI = 1800 ms, TE = 395 45 

ms, 1x0.49x0.49-mm resolution, AT = 7.02 min). 46 
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The automated assessment of WMHs was computed in a previous study16. All images 47 

were checked by a study physician for incidental findings. A computer-based WMHs 48 

segmentation algorithm was then used to automatically determine WMH volume on T1-49 

weighted MPRAGE and FLAIR images17 and inspected visually for segmentation errors. 50 

Binary WMH maps of all participants were nonlinearly co-registered to a standardized MNI 51 

template (1-mm isometric) with ANTS18. In standard space, binary subject-wise WMH maps 52 

were grand-averaged to create a population WMH frequency map19. As previously 53 

implemented16, to segregate the periventricular (pv)WMH and deep (d)WMH, a default 54 

distance of 10 mm to the ventricular surface was used20. Every voxel of WMH located within 55 

this border was classified as pvWMH; voxels outside the border were classified as dWMH. 56 

Regional WMH volume was calculated separately for the deep and periventricular WM. We 57 

added a constant value 1 to every participant’s regional dWMH volume because there were 58 

participants without lesions in the deep WM16. We then calculated the ratio of dWMH and 59 

pvWMH (dWMH/pvWMH) as localized WMH volume. 60 

EEG Acquisition and Preprocessing 61 

RsEEG activity was recorded in an electrically and acoustically shielded room using an 62 

EEG cap with 34 passive Ag/AgCl electrodes (EasyCap, Brain Products GmbH, Germany). 31 63 

scalp electrodes were placed according to the extended international 10–20 system, as shown 64 

in Figure 2. The signal was amplified using a QuickAmp amplifier (Brain Products GmbH, 65 

Germany). Two electrodes recorded vertical and horizontal eye movements while one bipolar 66 

electrode was used for electrocardiography. The rsEEG activity was referenced against 67 

common average and sampled at 1000 Hz with a low-pass filter of 280 Hz. Impedances were 68 

kept below 10 kΩ. RsEEG data were preprocessed using EEGLAB toolbox (version 14.1.1b) 69 

and scripts were custom written in Matlab 9.3 (Mathworks, Natick, MA, USA). We filtered 70 

data between 1 and 45 Hz and applied a notch filter at 50 Hz. We then down-sampled the data 71 
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to 500 Hz and ran a semi-automatic pipeline for artifact rejection: different noise threshold 72 

levels to mark bad time segments were used for the signal filtered in higher frequency (15–45 73 

Hz) and lower frequency (1–15 Hz) ranges. The noise threshold for higher frequencies was set 74 

to 40 µV since noise at this range (i.e., induced by muscle activity) is typically lower in 75 

amplitude. The noise threshold for the lower frequency range was set to + 3SD over the mean 76 

amplitude of a filtered signal between 1 and 15 Hz. To control for the accuracy of automatically 77 

marked bad segments, we compared them to the noisy segments marked by another research 78 

group21. Whenever these segments did not overlap by more than 10 s or they exceeded 60 s of 79 

total bad-segment duration, we inspected those datasets visually (~10% of cases) to confirm 80 

whether they indeed were contaminated by noise. We further visually assessed power spectral 81 

densities (PSD) for data quality and used it to identify broken channels. Next, using 82 

independent component analysis (Infomax)22, activity associated with the confounding 83 

sources—namely eye-movements, eye-blinks, muscle activity, and residual heart-related 84 

artifacts—was removed. 85 

EEG Sensor Space Analysis 86 

Parameters of Alpha Oscillations 87 

For rsEEG analysis, we used the first 10 min of a recording in order to avoid the 88 

potential effect of participants’ drowsiness. We individually adjusted the alpha band frequency 89 

range by locating a major peak between 7 and 13 Hz on Welch’s PSD with 4-s Hanning 90 

windows. Thus, we determined individual alpha peak frequency (IAPF) in every channel and 91 

defined a bandwidth not exceeding 3 Hz around the peak. We then calculated relative alpha 92 

power (AP) for the individually adjusted alpha frequency range dividing it by the broadband 93 

power calculated in the 3–45-Hz frequency range. LRTC were calculated using detrended 94 

fluctuation analysis on the amplitude envelope (calculated with Hilbert transform) of alpha 95 

band oscillations in time windows ranging from 3 to 50 seconds (while respecting the 96 
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boundaries where the bad segments had been cut) based on the previously published 97 

procedure23. Here, the scaling exponent (v) is a measure of the LRTC in the signal. An exponent 98 

of 0.5 reflects uncorrelated signals (i.e., resembling white noise), while an exponent between 99 

0.5<v<1 shows persistent autocorrelation and thus the presence of LRTC23. The presence of 100 

LRTC indicates that past neuronal events are likely to affect neuronal activity in the future even 101 

when these events are separated by tens of seconds. The illustration of parameters of AO are 102 

shown in Figure 2. To reduce data dimensionality of rsEEG sensor space data used for the 103 

whole-brain voxel-wise inference analyses, we further grouped EEG channels into six coarser 104 

brain regions (frontal, central, temporal, parietal, and occipital), as shown in Figure 3A. 105 

EEG Source Space Analysis 106 

To reconstruct sources of the rsEEG signal, we calculated leadfield matrices based on 107 

individual brain anatomies and standard electrode positions. The T1-weighted MPRAGE 108 

images were segmented using the Freesurfer v.5.3.0 software24. We constructed a 3-shell 109 

boundary element model (BEM) which was subsequently used to compute the leadfield matrix 110 

using OpenMEEG25. Approximately 2,000 cortical dipolar sources were modeled for each 111 

individual. Source reconstruction was performed using exact low resolution brain 112 

electromagnetic tomography (eLORETA)26 with a regularization parameter of 0.05. We 113 

filtered the signal within the individually adjusted alpha frequency band range as well as in 114 

broadband range (3–45 Hz), squared it, and summed up across all three dipole directions. 115 

Relative AP was then calculated in each voxel through the division of AP by the broadband 116 

power. The cortex surface mantle was divided into 68 regions of interest (ROIs) based on the 117 

Desikan-Killiany atlas27. These were further combined into five coarser ROIs (frontal, parietal, 118 

temporal, occipital, and cingulate) for the right and left hemispheres following a standard 119 

parcellation atlas, as shown in Figure 3B. Relative AP values were averaged across each ROI. 120 
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Statistical Analyses 121 

Correlation of Age with WMH Volume and Alpha Oscillations 122 

Pearson correlations were calculated to examine the relationship between i) age and 123 

total and regional WMH volume (dWMH/pvWMH) and ii) the parameters of AO in six regions 124 

at sensor space. Differences between correlations were assessed with Fisher’s r-to-z 125 

transformation implemented in R version 3.5.2 (http://www.R-project.org/). To correct for 126 

multiple comparisons, p-values were then adjusted using the False Discovery Rate (FDR)28. 127 

Topographical Relevance Analyses of WMHs for Alpha Oscillations at Sensor Space 128 

To identify regions in which WMHs robustly correlated with AO, we performed whole-129 

brain voxel-wise regressions. More precisely, we applied general linear models (GLMs) in 130 

which individual values of IAPF, relative AP, and LRTC were used as predictors for the 131 

topographical occurrence of WMHs, adjusting for effects of age, sex, and intracranial volume 132 

(ICV) as covariates of no interest. 3D voxel-wise binary lesion maps were analyzed using 133 

FSL’s randomize29. For each statistical analysis, positive and negative contrasts were 134 

computed. Significance of results was based on threshold-free cluster enhancement (TFCE, 135 

N=10,000 permutations) with family-wise error (FWE) corrected p-values of p<0.05. We 136 

further reported statistical results for the more conservative FWE threshold of p<0.005. 137 

Topographical Relevance Analyses of WMHs for Alpha Power at Source Space  138 

To assess the association between relative AP and whole-brain WMHs, we 139 

implemented GLMs separately for 10 ROIs with relative AP as covariate of interest, and age, 140 

sex, and ICV as covariates of no interest. Because we found a positive correlation between the 141 

voxel-wise occurrence of WMHs and relative AP at the sensor space, we only computed a 142 

positive contrast. All statistical analyses were further corrected for multiple comparisons using 143 
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TFCE based permutation testing (N=10,000) at FWE level of p<0.05, as well as with a 144 

conservative threshold of p<0.005. 145 

Sensitivity Analyses 146 

Control for Confounding factors. Given that different cardiovascular risk factors 147 

including body mass index (BMI), systolic blood pressure (SBP), smoking, and diabetes are 148 

associated1,16,30 WMH3,17,31, we further considered these factors as potential confounders (as 149 

covariates of no interest) for the voxel-wise associations between parameters of AP and 150 

probability of WMH occurrence in the overall sample (N=907). To assess a degree of 151 

collinearity between the regressors used in GLMs, we additionally computed variance inflation 152 

factor (vif) in R. All predictors had a vif score below 2, therefore, we concluded that models 153 

showed acceptably low multicollinearity. 154 

Medication. We implemented the voxel-wise inference analyses between parameters of 155 

AO and WMHs excluding participants taking medications affecting the central nervous system 156 

(opioids, hypnotics and sedatives, anti-parkinsonian drugs, anxiolytics, anti-psychotics, anti-157 

epileptic drugs). The resulting sample included 801 individuals (M=68.96 ± 4.58, 323 female). 158 

Control Analyses. To assess the robustness of our results, we further applied voxel-wise 159 

inference analyses between the probability of WMH occurrence and absolute AP in the left and 160 

right occipital region at EEG source space, using age, sex, and ICV as covariates of no interest. 161 

Absolute EEG power in both regions was log transformed to normalize the distribution of the 162 

data for statistical analyses. 163 

Mediation Analyses 164 

We performed mediation analyses using mediation package31 in R to examine whether 165 

total or localized WMH (dWMH/pvWMH) volume mediates the relationship between age as 166 
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an independent and AO at sensor space as a dependent variable. We computed 99% confidence 167 

intervals (CI) using bootstrapping (5,000) for all inferences. Indirect effects, and the sum of 168 

the indirect effects were considered significant if the CI did not contain zero. Here, direct and 169 

mediation effects are called average direct effect (ADE) and average causal mediation effect 170 

(ACME, also referred to as indirect effect), respectively. Statistically, total effect is the sum of 171 

ACME and ADE. The ACME shows whether age was associated with parameters of AO 172 

through a mediator. 173 

Data availability 174 

Supplementary data can be found in the open science framework (OSF; https://osf.io/mdwc6/) 175 

Anonymized data will be made available upon request through the application procedure 176 

carried out by the LIFE-Study administration (https://life.uni-177 

leipzig.de/de/erwachsenen_kohorten/life_adult.html).  178 
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Results 179 

Sample Characteristics 180 

Details about the demographic, anthropometric, cardiovascular measures, as well as 181 

WMH volume, and AO can be found in Table 1. 182 

Topography and Characteristics of Alpha Oscillations 183 

The relative AP at sensor space showed a maximum over the occipital channels, with a 184 

mean value of 0.66 ± 0.17. Similarly, the relative AP at source space showed a maximum over 185 

the bilateral occipital cortex, including cuneus and lateral occipital regions with a mean value 186 

of 0.59 ± 0.18. The grand-average IAPF was 9.40 ± 0.49 Hz, showing larger values at occipital 187 

regions. The average scaling exponent (v) was 0.72 ± 0.017. Similarly, topographies of the 188 

scaling exponent had higher values at occipital and parietal areas as well as frontal regions. 189 

Correlations 190 

Association of Age with WMH Volume and Alpha Oscillations 191 

We found a correlation between age and total WMH volume (r=0.374, p<0.001), but 192 

not with the dWMH/pvWMH (p>0.05). Regarding parameters of AO, we found that higher 193 

age was associated with decreased IAPF in all EEG ROIs (r from -0.13 to -0.17, pFDR<0.05), 194 

while no correlations between age and relative AP or LRTC were found (all pFDR>0.05). 195 

Topographical Association Between WMHs and Alpha Oscillations at Sensor Space 196 

The voxel-wise inference analyses revealed that higher relative AP in the frontal region 197 

was correlated with higher WMH probabilities in the right body of corpus callosum ([16, -26, 198 

32], T=3.76, k=653). Higher relative AP in the central region was associated with higher 199 

WMH probabilities in the right anterior thalamic radiation extending to the posterior corona 200 

radiata ([22, -49, 37], T = 4.44, k=2,744), while higher relative AP in the right temporal region 201 
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was linked to higher WMHs in the right superior longitudinal fasciculus ([22, -49, 37], T=4.52, 202 

k=6,893) extending to the left inferior fronto-occipital fasciculus ([-21, -53, 32], T=4.00, 203 

k=4,210). Furthermore, higher relative AP in the parietal region was associated with higher 204 

WMHs in the right superior corona radiata ([18, -19, 37], T=4.05, k=4,474). Similarly, for 205 

relative AP in the occipital region, we observed a higher prevalence of WMHs in the bilateral 206 

superior corona radiata through the body of the corpus callosum to the anterior corona radiata, 207 

including the right anterior thalamic radiation ([18, -19, 37], T=4.39, k=9,450). Accordingly, 208 

higher voxel-wise WMH probabilities were associated with higher relative AP independent of 209 

age, sex, and brain size, as shown in Figure 4A and 4B. Note that using a more stringent FWE 210 

rate of p < 0.005, correlation between probability of WMH occurrence and relative AP was 211 

only evident for the occipital region ([18, -19, 37], T=4.39, k=904). Finally, no associations 212 

between voxel-wise WMHs and IAPF or LRTC were observed (p>0.05). 213 

Topographical Association Between WMHs and Alpha Oscillations at Source Space 214 

We found that higher relative AP in all EEG regions except for the left frontal region 215 

was associated with higher probability of WMH occurrence (Table 2). With the stricter FWE-216 

level of p<0.005, the association between the occurrence of WMHs and relative AP was 217 

evident for left ([18, -19, 37], T=4.29, k=192) and right occipital regions ([18, -19, 37], 218 

T=4.45, k=845). 219 

Sensitivity Analyses 220 

Control for Confounding Factors. Voxel-wise inference analyses after controlling for 221 

age, sex, ICV, BMI, SBP, diabetes, and smoking status yielded a similar relationship between 222 

higher WMH probability and elevated relative AP in the following regions: central ([22, -49, 223 

37], T=4.46, k=5417), right temporal ([22, -49, 37], T=4.52, k=5,417), left temporal ([22, -224 

49, 37], T=4.59, k=4772), parietal ([18, -19, 37], T=3.68, k=231), and occipital ([18, -19, 225 
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37], T=4.08, k=4,018) EEG regions across the overall sample. Note that with TFCE, FWE-226 

corrected, p<0.005, we did not find any clusters. Lastly, no WMH clusters were related to 227 

IAPF or LRTC (p>0.05). 228 

Medication. Voxel-wise inference analyses excluding individuals taking central 229 

nervous system medication still indicated the association between higher prevalence of WMHs 230 

and increased relative AP at sensor space in the following regions: frontal ([17, 9, 31], T=4.42, 231 

k=6,880), central ([20, -30, 35], T= 4.46, k=9,063), right temporal ([20, -48, 35], T=4.57, 232 

k=12,098), left temporal ([22, -49, 37], T=4.61, k=9,408), parietal ([14, -8, 31], T=4.61, 233 

k=9,054), and occipital ([18, -19, 37], T=4.44, k=12,885) EEG regions. Importantly, with 234 

TFCE, FWE-corrected, p<0.005, we identified WMHs clusters (k>2,000) for occipital, left 235 

temporal, right temporal, and a small cluster (k>200) for parietal and central EEG regions. 236 

Additional voxel-wise inference analyses revealed that higher WMHs resulted in decreased 237 

IAPF in right temporal ([17, -27, 33], T=4.00, k=138) and left temporal regions ([17, -27, 238 

33], T=4.12, k=503). Lastly, no WMHs clusters were related to LRTC (p>0.05). 239 

Control Analyses. Voxel-wise inference analyses with absolute AP similarly indicated 240 

that higher probability of WMH occurrence was associated with elevated absolute AP in right 241 

([-23, 0, 36], T=3.98, k=5,633) and left occipital regions ([-23, 0, 36], T=4.05, k=5,358). 242 

Mediation Analyses 243 

We examined whether a total or localized (dWMH/pvWMH) WMH volume could 244 

mediate the relationship between age and relative AP, IAPF, and LRTC in all ROIs. 245 

Investigating the relationship between age and relative AP, we observed a significant indirect 246 

effect (i.e., ACME) of total WMH volume, while ADE and total effect were not significant for 247 

most of the regions (99% |CI| > 0, Table 3). Only in the right temporal region at sensor space 248 

did the total effect of age on relative AP appear to be significant (p<0.05), indicating specific 249 
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pathways between age and relative AP through total WMH volume. Further, we confirmed the 250 

indirect effects of total WMH volume for relative AP at EEG source space for left parietal 251 

(β=0.0012, CI = [0.00006-0.002]), left (β=0.0014, CI = [0.00013-0.002]) and right occipital 252 

(β=0.0014, CI = [0.00015-0.0028]) regions. Finally, our results further revealed that neither 253 

total nor localized WMH volume mediated the association of age with IAPF and LRTC at 254 

sensor space (all p>0.05).   255 
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Discussion 256 

The main goal of this study was to investigate whether regional WMHs affect 257 

parameters of alpha oscillations independently from age. We pursued this aim using a large 258 

sample of healthy older individuals from a population-based study15. We showed distinct 259 

regional relationships between relative AP and WMHs: our topographical analysis suggested 260 

that higher occurrence of WMHs in superior, posterior to anterior corona radiata through the 261 

body of corpus callosum was related to higher relative AP, with strongest correlations in the 262 

bilateral occipital cortex. Adjusting for potential confounding factors including age and 263 

cardiovascular risk factors did not change these results. 264 

Alpha rhythm is the most salient rsEEG oscillatory phenomenon that originates from 265 

thalamo-cortical and cortico-cortical interactions8,9. Alterations in AO have previously been 266 

linked to changes in different anatomical and metabolic features including properties of WM 267 

(e.g., fractional anisotropy measured by diffusion tensor imaging)7, amount of cerebrospinal 268 

fluid32, and cerebral glucose metabolism33. Regarding WMHs, for instance, a previous EEG-269 

MRI study showed that higher relative AP in parietal regions was associated with higher scores 270 

of the prevalence of WMLs in 79 individuals with mild cognitive impairment14, consistent with 271 

our findings in this population-based sample. Previous studies with computational models have 272 

given further support for the notion that resonance properties of feedforward, cortico-thalamo-273 

cortical, and intra-cortical circuits largely influence AO6. In the present study, we similarly 274 

observed that regional WMHs, detected mostly in superior corona radiata, containing thalamo-275 

cortical fibers, affect inter-individual differences in relative AP. Since damage to fibers of the 276 

superior corona radiata—connecting the basal ganglia and thalamus to the superior frontal 277 

gyrus—is known to be associated with cognitive dysfunction34, it is likely that such an elevated 278 

AP may be triggered to recruit compensatory neuronal resources to maintain cognitive 279 

functioning. But, how could lesions in the WM possibly affect EEG signal which mainly 280 
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reflects neural synchrony within gray matter? While in principle a hyperintensity in T2-281 

weighted MR sequences is a quite unspecific marker of various pathologies, postmortem 282 

histopathological studies of elderly subjects with WML have mostly reported demyelination, 283 

axonal loss, and other consequences of ischemic small vessel disease4,35. Myelin contributes to 284 

the speed of impulse conduction through axons, and the synchrony of impulses between distant 285 

cortical regions36,37. Reductions of conduction velocity due to demyelination and loss of 286 

(communicating) axons are assumed to be responsible for cognitive dysfunctions which are 287 

known to be based on delicately orchestrated propagations of neuronal signals. 288 

Electrophysiologically, interactions and synchrony between neuronal populations are reflected 289 

in rhythmic M/EEG signals, of which AO are the most prominent ones8,9. AP is a quantitative 290 

marker of the degree of synchrony in the neuronal activity of the corresponding neuronal 291 

populations38. While for a long-time AO were regarded as idle rhythms of non-active brain 292 

areas, a plenitude of studies has convincingly demonstrated that AO play an important role in 293 

many cognitive functions10,11. For instance, in motor and sensory domains it has been shown 294 

that amplitude decreases of AO in focal areas (i.e., reflecting cortical activation) is in turn 295 

associated with the inhibition of neighboring cortical areas. This phenomenon is thought to 296 

result from a reciprocal relationship between thalamo-cortical and reticular nucleus cells on 297 

which the generation of AO is based39. Such topographically specific relationships are likely 298 

to be disturbed by alterations in conduction velocity and axonal loss in the thalamo-cortical 299 

circuitry. A consequence is a less precise and more generalized (i.e., compensatory) spread of 300 

AO across the cortex leading to a larger number of synchronously recruited neurons and 301 

correspondingly to larger AP. This in turn might explain a positive association between AP and 302 

WMH. 303 

In our study, we did not find strong evidence for age-related attenuations of relative AP, 304 

in line with other recent studies40,41. This could be due to the narrow age range of our 305 
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participants, as well as the individually adjusted alpha frequency range based on the IAPF. In 306 

fact, preserved peak power at IAPF has recently been reported in an older sample41, suggesting 307 

that any observed age-dependent power changes might be due to shifts in the frequency range 308 

at which alpha peak occurs. Noteworthy, mediation analysis in the current study indicated that 309 

the influence of higher age to elevated relative AP (in the right temporal region) was mediated 310 

by the higher total WMH volume. 311 

In the literature, other commonly reported age-dependent changes in spectral 312 

parameters of EEG include slowing of the alpha peak42. We replicated the slowing of the IAPF 313 

with increasing age despite the narrow age range. Alpha peak slowing has previously been 314 

suggested to be linked to a less efficient coordination of neuronal activity in this frequency 315 

range43. We further explored the relationship between age and LRTC in the amplitude envelope 316 

of AO that represents scale-free modulation of resting state oscillations. LRTC have previously 317 

been linked to the presence of a critical state in neural networks, which is characterized by the 318 

balance of excitation and inhibition44. Regarding the association between age and LRTC, 319 

previous studies have shown that the observed age-related changes might be dependent on age 320 

range—it increases from childhood to early adulthood, after which it stabilizes45,46. In 321 

accordance with these previous findings, in our sample of elderly subjects we observed no 322 

pronounced age-related LRTC attenuations, which is consistent with relatively stable dynamic 323 

properties of neuronal oscillations at higher age. 324 

While a strength of this study is in the large population-based sample, one of the 325 

limitations is in investigating only cortical oscillations. An interesting direction for future 326 

research would be to study generators of oscillations in deep brain structures (e.g., thalamus) 327 

and how they propagate through WM pathways, especially when these pathways are affected. 328 

Research using other advanced techniques such as quantitative MRI or specific assessment of 329 

tissue properties with ultra-high field MRI combined with intracranial EEG recording could 330 
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further provide valuable insights into the nature of the relationship between WM properties and 331 

AO. Lastly, we performed a relatively coarse parcellation of the brain at EEG source space 332 

analysis due to the relatively small number of electrodes (n=31). A denser spatial sampling of 333 

the EEG (not available in the present cohort) would allow investigation of this relationship 334 

with better spatial precision. 335 

In conclusion, using sensitive high-resolution neuroimaging techniques, we showed 336 

that elevated relative AP is related to higher probability of WMHs, supporting the idea that 337 

damage to WM may lead to compensatory enhancement of rhythmic activity in the alpha 338 

frequency range. Importantly, our study provides evidence that the prevalence of regional 339 

WMHs, characterized by higher relative AP, was not associated with age per se, in fact, the 340 

latter seems to be mediated by total WMH volume. Our findings thus suggest that longitudinal 341 

EEG recordings might be sensitive for the detection of alterations in neuronal activities due to 342 

progressive structural changes in WM. 343 
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Table 1 – Sample Characteristics 

 

Abbreviations.: AP = Alpha Power; BMI = body mass index; DBP = diastolic blood pressure; 

dWMH/pvWMH = the ratio of deep/periventricular white matter hyperintensities; SD = 

standard deviation; ICV = intracranial volume; IAPF = individual alpha peak frequency; SBP 

= systolic blood pressure; WMH = white matter hyperintensity 

 

 
  

 Mean or n Min.  Max. SD 
Age (in years) 69.49 60.15 80.03 4.63 
Female / Male 380 / 527    

BMI (kg/m2) 27.59 18.68 42.26 3.97 

SBP (mmHg)  133.71 92.00 200.5 16.31 
DBP (in mmHg)  74.54 43.5 120 9.06 
Never / former / active smokers 517 / 319 / 71    
Diabetes (yes / no / unknown) 748 /143 / 16    
WMH volume (mm3)  3935 127 78509 6676.76 
dWMH/pvWMH (%) 0.44 0.01 3.64 0.40 
ICV (mm3) 1729811 1297219 2466529 147492.5 
Mean Relative AP (%) 0.55 0.21  0.88 0.15 
Mean IAPF (Hz) 9.4 7.34 12.01 0.86 
Mean Scaling Exponent (v) 0.73 0.53 1.14 0.093 
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Table 2 – Positive correlation between the probability of white matter hyperintensity 
(WMH) occurrence and relative alpha power at EEG source space. 
Peak voxel MNI coordinates (x, y, z) and cluster size (k) for the association between white matter 
hyperintensity probability and relative alpha power for five regions of interest for each 
hemisphere at source space across 855 elderly participants (TFCE, p < 0.05, FWE-corrected).  
 

 

EEG Region  MRI Region x y z k  T-value 

Left Frontal  Right Posterior Corona Radiata / 
Right Anterior Thalamic Radiation 

21 -46 36 219 4.38 

Right Cingulate Right Anterior Thalamic Radiation / 
Right Anterior Thalamic Radiation 

22 -49 37 2310 4.33 

Left Superior Corona Radiata -22 6 31 655 4.29 

  Right Superior Corona Radiata 29 -46 26 359 3.65 

Left Cingulate Right Anterior Thalamic Radiation /  
Superior Longitudinal Fasciculus 

22 -49 37 3280 4.44 

Left Superior Corona Radiata -22 6 31 597 4.33 

Right Temporal Right Anterior Thalamic Radiation 20 -50 36 4669 4.57 

Left Anterior Corona Radiata -18 18 27 2044 4.14 
Right Inferior Fronto-occipital Fasciculus 34 -49 0 129 3.68 

Left Temporal Right Anterior Thalamic Radiation 20 -50 36 602 4.63 

Body of Corpus Callosum 16 -5 36 279 3.63 

Right Posterior Corona Radiata 19 -30 35 132 4.13 

Right Parietal Right Anterior Thalamic Radiation 20 -50 36 3983 4.72 

Left Superior Corona Radiata -19 11 28 824 3.98 

Left Superior Longitudinal Fasciculus -24 -12 40 210 4.12 

Left Parietal Right Superior Corona Radiata/Left 
Corticospinal Tract 

19 -25 36 634 3.91 

Right Anterior Thalamic Radiation 20 -50 36 618 4.75 

Right Occipital Right Superior Corona Radiata 18 -19 37 8339 4.45 

Left Superior Corona Radiata -19 9 29 1070 4.41 

Left Posterior Corona Radiata/Anterior 
Thalamic Radiation 

-24 -27 31 100 3.94 

Left Occipital Right Superior Corona Radiata 18 -19 37 7304 4.29 
Left Superior Corona Radiata -19 9 29 450 4.19 

Right Inferior Fronto-occipital Fasciculus 34 -37 -4 175 3.94 

Left Superior Corona Radiata -20 -6 32 133 3.66 
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Table 3 – Mediation effect of total WMH volume on the association between age and relative alpha power at EEG sensor space. Significant 

pathways are marked in bold. 

 

Abbreviations.: rel AP = Relative Alpha Power; CI = Confidence Interval; WMH = White matter hyperintensity 

 

EEG Region frontal central right temporal left temporal parietal occipital 

  β 
p or 

99.5% CI β 
p or 99.5% 

CI β 
p or 

99.5% CI β 
p or 

99.5% CI β 
p or 

99.5% CI β 
p or 

99.5% CI 
Total effect c  
(Age on rel. AP) 0.0004 0.742 0.0006 0.58 0.002 0.03 0.002 0.0620 0.0017 0.166 0.0006 0.584 
Mediation effect a*b 
(Age on rel. AP via 
total WMH) 0.0009 

[-0.0003, 
0.0021] 0.001 

[-0.00008, 
0.0022] 0.0013 

[0.0003, 
0.02] 0.0011 

[0.00002, 
0.002] 0.0015 

[0.0002, 
0.0028] 0.0014 

[0.00012, 
0.0029] 

Direct effect c’  
(Age on rel. AP) -0.0005 0.721  -0.0004 0.73 0.0008 0.44 0.0009 0.3944 0.0002 0.894 -0.0008 0.557 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2020. ; https://doi.org/10.1101/2020.09.04.283200doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.04.283200
http://creativecommons.org/licenses/by-nc/4.0/


Kumral and Cesnaite 

 

26 

 
Figure Legends 

Figure 1 – Flow chart visualizing the selection process of the MRI and EEG sample. 
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Figure 2 – Illustration of the regions of interest (ROIs) identified for EEG.  

Schematic topography for resting state EEG in A) sensor space and B) source space. ROIs that 

form the frontal region are in purple, central region and cingulate region (source) in orange, 

temporal region in yellow, parietal region in green, and occipital region in blue. 
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Figure 3 – Illustration of parameters of alpha oscillations.  

A) Resting state EEG time series data (blue) consists of various frequency bands that can 

be defined by their power and peak frequency. B) The temporal dynamics of a signal filtered 

in alpha frequency range (8–12 Hz) is assessed by the properties of its amplitude envelope (red) 

using long-range temporal correlations (LRTC). Scaling exponent (ν) quantifies the presence 

of LRTC. 
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Figure 4 – Association between regional white matter hyperintensities (WMHs) and 

relative alpha power at EEG sensor space.  

A) Voxel-wise correlation between probability of WMH occurrence and relative alpha power 

in the EEG frontal region (purple), central region (orange), right temporal region (yellow), 

parietal region (green), and occipital region (blue). The significant clusters based on whole-

brain voxel-wise inference analyses (TFCE, FWE-corrected, p < 0.05). B) Scatter plots show 

the positive association between relative alpha power. The resulting statistical images (P-map) 

were further thresholded at 0.05 and binarized. Abbreviations.: A = anterior; L = left; R = right; 

P = posterior 
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