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Abstract: Holography has provided valuable insights into the time evolution of strongly

coupled gauge theories in a fixed spacetime. However, this framework is insufficient if

this spacetime is dynamical. We present a scheme to evolve a four-dimensional, strongly

interacting gauge theory coupled to four-dimensional dynamical gravity in the semiclassical

regime. As in previous work, we use holography to evolve the quantum gauge theory

stress tensor, whereas the four-dimensional metric evolves according to Einstein’s equations

coupled to the expectation value of the stress tensor. The novelty of our approach is that

both the boundary and the bulk spacetimes are constructed dynamically, one time step

at a time. We focus on Friedmann-Lemâıtre-Robertson-Walker geometries and evolve far-

from-equilibrium initial states that lead to asymptotically expanding, flat or collapsing

Universes.
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1 Introduction

Holography relates the quantum-mechanical time evolution of a strongly coupled, four-

dimensional gauge theory to that of classical gravity in a five-dimensional asymptotically

anti de Sitter (AAdS) spacetime. The power of this correspondence is that it allows for

the use of classical gravity in five dimensions to tackle otherwise intractable problems on

the gauge theory side.

The spacetime where the gauge theory is formulated is identified with the boundary of

AAdS. We will refer to its four-dimensional metric as the “boundary metric”, and to the

five-dimensional metric in AAdS as the “bulk metric”. In many applications of holography

the boundary metric is taken to be non-dynamical. For example, this metric is flat in the

holographic description of the quark-gluon plasma [1, 2] or in applications to condensed

matter systems [3–5]. Applications with a curved metric include gauge dynamics in black

hole backgrounds [6] or in de Sitter (dS) space [7–14]. In all these cases the boundary

metric influences, but is unaffected by, the gauge theory dynamics. In other words, the

backreaction of the gauge degrees of freedom on the metric is not included.

Despite its successes, this framework is insufficient if the boundary metric is dynamical.

This limits potential applications of holography to cosmological defects, phase transitions

in the early Universe, neutron star mergers, inflation, pre- or re-heating, cosmological

instabilities, etc. In these applications one is interested in the semiclassical-gravity regime.

This means that the gauge theory is quantum mechanical but the metric obeys the classical

Einstein equations sourced by the expectation value of the gauge theory stress tensor:

Rµν −
1

2
Rgµν + Λ gµν = 8πG 〈Tµν〉 . (1.1)

All quantities in this equation, including Newton’s constant G and a possible cosmological

constant Λ, refer to the four-dimensional boundary theory. Hereafter we will refer to the
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BoundaryHorizon

3

are given in terms of �2(t), a(t) and their deriva-
tives by expressions of the form

�n

⇣
M, a, ȧ, . . . , a(n), �2, �̇2, . . . , �

(n�2)
2

⌘
, (5a)

 n

⇣
M, a, ȧ, . . . , a(n)

⌘
. (5b)

There is a similar expression for the fall-off of
the five-dimensional bulk metric with one unde-
termined coefficient a4(t). The GTST depends
on the undetermined coefficients and on the scale
factor via expressions of the form [6]

E (a4, �2, a, ȧ, ä) , P (a4, �2, a, ȧ, ä) . (6)

gµ⌫(t0) , Tµ⌫(t0) (7)

We are now ready to discuss the implications
of the corner conditions, namely the fact that the
initial data in the bulk and at the boundary can-
not be specified independently. From the bulk
viewpoint, the function �(r, t0) and the coeffi-
cient a4(t0) at an initial time t0 are free data.
Moreover, if this data and a(t0) are known, then
integration of the constraints coming from the
Einstein-scalar equations in the bulk determines
the rest of the five-dimensional fields on the ini-
tial time slice. Knowledge of �(r, t0) determines
the scale factor and all its derivatives at t0. This
follows from (5) together with the fall-off coeffi-
cients of other fields that we have not displayed.

derivatives of order n � 2 of the scale fac-
tor at t0 in terms of M, a(t0) and ȧ(t0). Note
that this follows form the coefficients  n(t0) of
the logarithmic terms. In the absence of these
terms, the constraints imposed by the �n(t0) co-
efficients could be interpreted as constraints on
the derivatives of �2(t) at t0, leaving the scale
factor unconstrained.

However, the requirement that the boundary
metric obeys the Friedman equations (2) and the
continuity equation (3) with the stress tensor (??)
constraints the bulk initial data. The reason is
that these equations, together with the knowl-
edge of the �n(t) coefficients, determine all the
derivatives of the scale factor at any given time
t in terms of a(t), a4(t) and �2(t), and this then
fixes all the logarithmic terms in (4). To see how
these constraints arise, consider

For dynamical gravity there are a few technical
challenges.

We first show a sample evolution starting with
flat space initial conditions with a4 = �100 with
several different values of ⇤. These lead to a late

time de Sitter state, a big crunch and an asymp-
totically Minkowski solution (Fig. 2). We also
show the temperatures, where it can be seen that
the temperature extracted from the horizons lag
behind by the temperature extracted from the en-
ergy density by a time of about 1/4T . This shift
in time is a feature of our particular (Eddington-
Finkelstein) time slicing in the bulk.

Secondly, we take the ⇤ = 0 solution (labelled
IC 1) and change the initial conditions to IC 2 and
IC 3 respectively by shifting �̃0(z) by a constant
of +2 and -2.5. These values were maximised to
obtain a regular bulk solution as indicated by a
stable evolution with small constraint violation.
Indeed these two initial conditions initially show
far-from-equilibrium dynamics, with large pres-
sure anisotropies (see Fig. 4 middle). The zoom
of the late time dynamics shows that within a
time of approximately 1/T the solutions are well
described by viscous hydrodynamics, with an im-
portant contribution from the bulk viscosity.

DISCUSSION
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Figure 1. Penrose diagram of our evolution scheme. The diagonal blue lines are four-dimensional

null slices in the bulk. Each point on the vertical black line is a three-dimensional spatial slice of

the boundary spacetime.

gauge theory stress tensor simply as “the stress tensor”. Since this is O(N2) in the large-N

limit, we assume that G is O(N−2) in order to have a finite back-reaction. In the following

we work with N -independent quantities defined via the rescalings

Tµν →
(
2π2/N2

)
Tµν , G→

(
N2/2π2

)
G . (1.2)

The key point in the semiclassical regime is to determine the quantum-mechanical

evolution of the stress tensor, which must be done self-consistently in the presence of the

dynamical metric gµν . We use holography to determine this evolution (see Fig. 1). The

initial state at time t0 is defined by the five-dimensional fields on a bulk null slice, together

with the four-dimensional metric on a boundary spatial slice. These two sets of initial data

must satisfy non-trivial “corner” consistency conditions that we will analyse below (see

[15–18] for related discussions). For the moment, it suffices to say that the leading term

in the near-boundary fall-off of the bulk metric must coincide with the boundary metric,

whereas the subleading term in this fall-off determines the expectation value of the stress

tensor. To evolve to a time t1 = t0 + ∆t, we first use equation (1.1) to determine the new

boundary metric at t1. Because AAdS is not globally hyperbolic, this new metric provides

necessary boundary conditions that allow us to evolve the five-dimensional bulk equations

to determine the new bulk fields at t1. The subleading term of the five-dimensional metric

near the boundary then determines the stress tensor at t1.

The semiclassical regime has been previously extensively considered in the holographic

context. An incomplete list of references includes [19–36]. The main novelty of our approach

with respect to previous work is that both the boundary and the bulk spacetimes are

constructed dynamically, one time step at a time. Further differences include the fact that

we do not introduce an ultraviolet cut-off in the gauge theory or branes in the bulk [19–
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26, 30, 36] but work directly with dynamical gravity at the boundary; we do not assume a

perfect-fluid form for the stress tensor [32] or consider a derivative expansion [37] but allow

for arbitrarily-far-from-equilibrium dynamics; and we do not make use of predetermined

bulk solutions [27, 29, 31] or restrict ourselves to constant-curvature boundary metrics [35].

For simplicity, in this paper we will focus on homogenous and isotropic gauge-theory

states, namely on Friedmann-Lemâıtre-Robertson-Walker geometries. However, we expect

that our approach can be extended to more general cases. Our full code is publicly available

at http://wilkevanderschee.nl/public-codes.

2 Model, scheme and evolution

2.1 Model

We use the same model as in Ref. [14], to which we refer the reader for additional details.

The four-dimensional gauge theory is a large-N , strongly coupled, non-conformal theory

with a mass scale M . We will measure all the dimensionful gauge-theory quantities in units

of M . The five-dimensional bulk theory consists of gravity coupled to a scalar field φ, with

action

S =
2

8πG5

∫

M
d5x
√−g

(
1

4
R− 1

2
(∂φ)2 − V (φ)

)
+

1

8πG5

∫

∂M
d4x
√−γK + Sct . (2.1)

Here G5 is the five-dimensional Newton’s constant, R is the Ricci scalar associated to the

five-dimensional bulk metric g onM, γµν is the metric induced on a four-dimensional slice

near the boundary ∂M, and

K = γµνKµν = γµν∇µnν (2.2)

is the trace of the extrinsic curvature Kµν associated to this slice. The second term on the

right-hand side of (2.1) is the familiar Gibbons–Hawking term. The third term in (2.1) will

be described shortly. The potential V (φ) encodes the properties of the dual gauge theory.

As in [14], we choose

V (φ) = −4

3
W (φ)2 +

1

2
W ′ (φ)2 , (2.3)

where the superpotential is given by

LW (φ) = −3

2
− φ2

2
+

φ4

4φ2M
. (2.4)

L is a length scale. The dimensionless constant φM is a free parameter that controls

the degree of non-conformality of the model, for example the maximum value of the bulk

viscosity. For concreteness, in this paper we will choose

φM = 2 . (2.5)

Both V (φ) and W (φ) have a maximum at φ = 0 and a minimum at φ = φM . Each of

these extrema yields an AdS solution of the equations of motion with constant φ and radius

– 3 –
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L2 = −3/V (φ). In the gauge theory each of these solutions is dual to a fixed point of the

renormalisation group with a number of degrees of freedom N2 proportional to L3/G5. In

top-down models this relation is known precisely. For example, in the case in which the

gauge theory is N = 4 SYM with N colours we would have

L3

8πG5
=
N2

4π2
. (2.6)

In our bottom-up model we will take this as a definition of the number of degrees of freedom

in the gauge theory, N , at each fixed point.

2.2 Scheme

Near the AdS boundary the metric can be written in the so-called Fefferman–Graham (FG)

gauge

ds2 = L2 dρ2

4ρ2
+ γµν(ρ, x)dxµdxν . (2.7)

The boundary is located at ρ = 0 and is parametrised by the coordinates xµ with µ = 0, . . . , 3.

Near the boundary the metric and the scalar behave as

γµν(z, x) ∼ gµν(x)

ρ
, φ ∼Mρ1/2 , (2.8)

where gµν(x) is the boundary metric and M is the gauge theory intrinsic scale. Substituting

this in the first term of the action (2.1) we see that it suffers from large-volume divergences.

These divergences can be regularised and renormalised by a procedure called holographic

renormalisation (see e.g. [38–40]), which makes the action finite and the variational principle

well-defined. This procedure is implemented by including in (2.1) the counterterm action

Sct =
L

8πG5

∫

∂M
d4x
√−γ

[(
−1

8
R− 3

2
− 1

2
φ2
)

+
1

2
(log ρ)A+ (2.9)

+L2
(
αA+ βφ4 + ε φ2R+ ξ1R

2 + ξ2∇2R+ ξ3∇µ∇νRµν
)]
,

where α, β, ε, ξi are real constants and the factors of L are necessary for dimensional reasons.

This action is integrated on a timelike, constant-ρ hypersurface near the boundary with

induced metric γµν . In this and in subsequent equations all metric-dependent terms such

as the Ricci scalar R, the covariant derivative ∇, etc. are those associated to γ. The

second term of (2.1) is also understood to be evaluated on this slice, the first term of (2.1)

is understood to be evaluated by integrating down to this slice, and the limit ρ → 0 is

understood to be taken at the end of the calculation.

In (2.9), A(γµν , φ) is the so-called conformal anomaly, which in our case is given by

A = Ag +Aφ , (2.10)

where

Ag =
1

16
(RµνRµν −

1

3
R2) (2.11)
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is the holographic gravitational conformal anomaly and

Aφ = −φ
2

12
R (2.12)

is the conformal anomaly due to matter. In these and in subsequent equations all the terms

are functionals of the metric γµν and of the scalar field φ induced on the ρ-hypersurface.

However, making use of the near-boundary behaviour (2.8) we see that the product with

the determinant of the induced metric yields a finite contribution in the limit in which the

cut-off is removed, since

lim
ρ→0

√−γA (γµν , φ) = lim
ρ→0

[
ρ−4
√−g

][
ρ4A (gµν ,M)

]
=
√−gA (gµν ,M) . (2.13)

For this reason we will often think of the anomaly, as well as of other curvature invariants,

as functionals of M and the boundary metric gµν .

The fact that
√−γA yields a finite result has two consequences. First, it means that

the logarithmic term in (2.9) cancels a purely logarithmic divergence from the bulk action.

The requirement that this cancellation takes place fixes uniquely the form of the anomaly,

including the values of all the numerical coefficients in (2.11) and (2.12). The presence of

this logarithmic term on the gravity side breaks diffeomorphism invariance and is dual to

the presence of the conformal anomaly in the dual gauge theory.

The second consequence is that the anomaly itself, without the log, can be added

to the counterterm action with an arbitrary coefficient, which we named α in (2.9). It is

important to note that not just the anomaly but any local, finite term that is invariant under

the symmetries of the theory can be added to the counterterm action with an arbitrary

coefficient. The freedom to add these terms with arbitrary coefficients is part of the general

freedom in the choice of renormalisation scheme. These terms can be constructed out of

non-negative powers of the scalar field and of curvature invariants of the induced metric

γµν in such a way that their overall mass dimension is four.1 The second line of (2.9) is the

most general linear combination of terms of this type, except for the Kretschmann scalar

RµντψR
µντψ. We have not included the latter because, in four dimensions, the integral

1

8π2

∫ √−γ
(
R2 − 4RµνR

µν +RµντψR
µντψ

)
= χ , (2.14)

with χ the Euler character, is a topological invariant. A pedagogical discussion of the

independent curvature invariants in arbitrary dimension can be found in http://kias.

dyndns.org/crg/invariants.html.

The coefficients α and β play special roles. In the first case, this is because α can be

shifted by a scale transformation, which is implemented via the following rescaling of the

coordinates

xµ → λxµ , ρ→ λ2ρ , (2.15)

where λ is a positive real number. It is easy to see that the effect of this transformation

is to shift the counterterm action by a term of the form (log λ)A, which in turn can be

1Derivatives of the scalar field should also be included in situations with non-constant M .

– 5 –
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absorbed through the redefinition α→ α+ log λ. The freedom to rescale ρ, or equivalently

to shift α, is thus the freedom to choose a renormalisation scale. We may therefore think

of α as related to the renormalization group scale or subtraction point µ through

α ∼ logµ . (2.16)

In the second case the reason is that the counterterm associated to β is the only one that

does not vanish for a flat boundary metric. In particular, the value

β =
1

4φ2M
=

1

16
(2.17)

is special because in this case the βφ4 term combines with the second and the third sum-

mands in the first term of (2.9) to give precisely the superpotential (2.4). This means that,

if the theory (2.1) is the bosonic truncation of a supersymmetric theory with superpoten-

tial W , then this choice of β leads to a supersymmetric renormalisation scheme and, as a

consequence, the full boundary stress tensor vanishes identically if the boundary metric is

flat. We will come back to these points below.

The finite counterterms give contributions to the gauge theory stress tensor, which

therefore we can write as

Tµν = T (0)
µν + α

(
T (g)
µν + T (φ)

µν

)
+ β T (β)

µν + ε T (ε)
µν + ξi T

(i)
µν , (2.18)

where T
(0)
µν denotes the stress tensor in the scheme α = β = ε = ξi = 0. This means that,

in the absence of dynamical gravity at the boundary, the boundary stress tensor is ambigu-

ous to the extent that the coefficients of the finite counterterms are arbitrary. However,

in the presence of dynamical boundary gravity, these coefficients simply renormalize the

gravitational couplings and the ambiguity is replaced by the physical specification of the

renormalized couplings [41]. To see this, imagine first setting all coefficients to zero except

for β and consider the contribution to the full stress tensor of T
(β)
µν , which takes the form

T (β)
µν =

L3

8πG5
M4 gµν =

N2

4π2
M4 gµν , (2.19)

where we have made use of (2.6). Moving this term to the left-hand side of (1.1) we can

write Einstein’s equations in the form

1

8πG

(
Rµν −

1

2
Rgµν

)
+

Λren

8πG
gµν = T (0)

µν , (2.20)

with
Λren

8πG
=

Λ

8πG
− βM4

4π2
. (2.21)

Note that in this equation the N2-factor coming from (2.19) has cancelled out with the

N2-factor coming from (1.2) in such a way that (2.21) is N -independent. We see that

the effect of the β-counterterm is simply to renormalize the bare cosmological constant2 Λ

2More precisely, the combination Λ/8πG.
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in Einstein’s equations. In other words, Λ and β are not separately meaningful, only the

combination Λren is. It is therefore convenient to choose β as in (2.17), since in this case

flat space is a solution of (1.1) with Λ = 0.

Consider now adding the contribution of the α-term. Also, assume for the moment

that the boundary metric is of FRWL type, which will be our focus below. On this subclass

of boundary states the stress tensor associated to Ag vanishes, namely T
(g)
µν = 0, and the

stress tensor of Aφ combines with that of the ε-counterterm to give

L3

8πG5

[
α
(
T gµν + T φµν

)
+ ε T (1)

µν

]
= −N

2

4π2
M2

6
(α+ 2ε)

(
Rµν −

1

2
Rgµν

)
, (2.22)

where we have made use of (2.6). Moving this term to the left-hand side of (1.1) we get

1

8πGren

(
Rµν −

1

2
Rgµν

)
+

Λren

8πGren
gµν = T (0)

µν , (2.23)

with
1

8πGren
=

1

8πG
+
N2

4π2
M2

6
(α+ 2ε) . (2.24)

As in (2.21), the N2-factors cancel out in (2.24). We see that the effect of the α- and

ε-terms is simply to renormalize the bare, four-dimensional Newton’s constant G. In other

words, G, α and ε are not separately meaningful, only the combination Gren is. Since

the coefficient α is associated to renormalization group transformations through (2.16),

Eq. (2.24) can be seen as the renormalization group equation for the running of Newton’s

constant. For convenience we will work in the scheme α = ε = 0.

Consider now what happens if the boundary metric is not FRWL or if we consider the

rest of the finite counterterms with coefficients ζi. These terms are of order higher than two

in derivatives. If we were considering the most general semiclassical gravitational theory, as

we would do in the full effective theory, then these contributions would simply renormalize

the bare values of the coefficients of higher-curvature terms that were omitted in (1.1). As

above, the only meaningful quantities would be the renormalized couplings measured at

the physical energy scale of interest µ. The dynamical regime that we wish to study is that

of classical gravity coupled to quantum matter. This means that µ � Mp, with Mp the

Planck mass, since otherwise we need to include quantum gravity effects. This is the regime

of interest, for example, if we want to understand how the QCD transition took place as

the Universe expanded and cooled. In this regime we expect that the renormalized higher-

derivative couplings will be suppressed by factors of µ/Mp. Therefore it is a consistent

approximation to work with a truncated effective theory in which we set these couplings

to zero. Since only renormalized couplings matter we may therefore declare that, in this

approximation, all the ξi vanish and the left-hand side of (1.1) contains only two-derivative

terms.

2.3 Evolution

Having fixed the renormalization scheme, we can now discuss the dynamics. For simplicity,

we focus on homogeneous and isotropic states in the four-dimensional theory, namely on
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Friedmann-Lemâıtre-Robertson-Walker cosmologies. As a consequence, the boundary met-

ric is completely determined by a scale factor a(t), and the only non-zero components of

the stress tensor are the energy density E(t) and the pressure P(t). Under these conditions,

(1.1) reduces to the Friedmann equation

(
ȧ

a

)2

≡ H2 =
1

3
Λ +

8πG

3
E (2.25)

and the continuity equation

Ė = −3H (E + P) , (2.26)

with H = ȧ/a the Hubble rate.

Below we will extract the stress tensor from the near-boundary fall-off of the five-

dimensional fields. For illustration, consider the bulk scalar field. In an appropriate null

holographic coordinate r with the boundary at r →∞ we have [14]

φ =
M

r
+
φ2(t)

r3
+

1

r

∑

n≥3

φn(t)

rn
+

1

r

∑

n≥2

ψn(t) log r

rn
+ · · · (2.27)

The logarithmic terms are specific to odd-dimensional bulk spacetimes [42]. The near-

boundary analysis only leaves undetermined φ2(t). The remaining coefficients φn≥3 and

ψn≥2 are given in terms of φ2(t), a(t) and their derivatives by expressions of the form

φn

(
M,a, ȧ, . . . , a(n), φ2, φ̇2, . . . , φ

(n−2)
2

)
, (2.28a)

ψn

(
M,a, ȧ, . . . , a(n)

)
. (2.28b)

There is a similar expression for the fall-off of the five-dimensional bulk metric with

one undetermined coefficient a4(t). From the bulk viewpoint, the function φ(r, t0) and the

coefficient a4(t0) at an initial time t0 are free data. Moreover, if this data and the scale

factor a(t0) are known, then integration of the constraints coming from the Einstein-scalar

equations in the bulk determines the entire five-dimensional metric on the initial time slice

at t = t0.

Eqs. (2.28), which arise from the bulk equations of motion, constitute a set of con-

straints that relate the bulk initial condition φ(r, t0) and the derivatives of the boundary

scale factor. These corner conditions imply that the initial data on the bulk slice and the

boundary conditions on that slice cannot be specified independently. For a non-dynamical

boundary metric, as is in e.g. [43], a(t) can be prescribed arbitrarily and these bulk con-

straints can be used to determine the ψn(t) coefficients. In contrast, in the case of dynamical

boundary gravity, it is highly non-trivial that these bulk constraints can be made compat-

ible with those coming from the boundary Einstein equations (1.1). The latter arise as

follows. The stress tensor depends on the undetermined coefficients and on the scale factor

via expressions of the form [14]

E (a4, φ2, a, ȧ, ä) , P (a4, φ2, a, ȧ, ä) . (2.29)

These, together with (2.25), (2.26) and (2.28a), can be shown to determine all the deriva-

tives of the scale factor at t0 in terms of a(t0), a4(t0) and φn(t0). Through (2.28b), this
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Figure 2. Evolution of the Hubble rate (top), of the energy density and pressure (middle), and of

the effective temperature (bottom), for G = 1/2500 and three different values of Λ.
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Figure 3. Comparison between the holographic result for the pressure/energy ratio (blue) and

the ideal (red) and viscous (green) hydrodynamic approximations, for G = 1/750, Λ = 0 and three

different initial conditions.

fixes all the logarithmic terms in φ(r, t0). This is particularly important for our scheme

because numerically we work with “subtracted” variables that differ from the original ones

by a number of logarithmic (and some non-logarithmic) terms. Specifically, our evolution

scheme is as follows. At t0 we specify a(t0), a4(t0), φ2(t0) and the subtracted version of

φ(r, t0). We then use the procedure above to find a(n)(t0) up to n = 4. These determine all

the necessary logarithmic terms. Next we integrate the Einstein-scalar constraints and find

all the bulk data on the initial time slice. By construction this is consistent with the corner

conditions up to the desired order. Finally, we use the bulk and the boundary evolution

equations to obtain a, a4, φ2 and the subtracted version of φ at t0 + ∆t.

3 Results

We perform evolutions for three different values of the cosmological constant Λ = {−0.5, 0, 2}.
As initial data at t0 = 0 we use a(0) = 1 and a radial profile φ(r, t0) that corresponds to

a thermal equilibrium state in flat space. In all cases we choose a4(0) = −2000, except in

Fig. 3, for which a4(0) = −100.

Fig. 2(top) shows the evolution of the Hubble rate. Negative Λ leads to a “Big Crunch”

where the Hubble rate evolves towards minus infinity and the spacetime collapses. For

Λ = 0 the Hubble rate decays to zero and the spacetime approaches Minkowski space.

Positive Λ leads to an exponentially expanding dS Universe.

Fig. 2(middle) shows E and P. For Λ < 0 the energy density reaches a minimum,

after which it diverges as the Big Crunch is approached. For Λ = 0, E and P decrease in

a power-law fashion that is well described by hydrodynamics (see below). For Λ > 0 the
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Universe approaches dS with a small Casimir contribution from the non-conformal matter,

EdS = −PdS ≈ 0.2667. 3

In Fig. 2(bottom) we show the temperature of the gauge theory state, T = κ/2π,

computed from the surface gravity, κ, of the event (EH) and of the apparent (AH) horizons

of the bulk geometry. For Λ < 0 the AH reaches the boundary of AAdS at a finite boundary

proper time. The boundary itself collapses at this point, and TAH diverges. We do not show

TEH because the definition of the EH is unclear in this case. For Λ > 0 the temperatures

at late times approach TEH = −TAH = H/2π, in agreement with [33, 14]. For Λ = 0 the

horizon falls deep into the bulk and at late times H ∝ t−1 and T ∝ t−1/2, as expected. In

addition, Eqn. (2.25) implies E/H4 ∼ t2/G� 1, meaning that the dynamics is dominated

by the energy density. As a consequence, the late-time boundary state approaches a thermal

state in Minkowski space and the bulk EH and AH become indistinguishable.

Holography can evolve strongly-coupled, far-from-equilibrium, quantum matter which,

after some time, is expected to enter a hydrodynamic regime (except in dS [14], see below).

For Λ = 0 this is illustrated in Fig. 3, which shows the evolution of the pressure/energy

ratio for three different initial conditions, IC1, IC2 and IC3. For IC2 and IC3 we added

respectively +2 and −1.5 to the subtracted φ(r, 0) of IC1. This leads to evolutions that

are just about numerically stable and hence as far from equilibrium as our code allows.

The blue curves are the holographic results. The difference with the viscous hydrodynamic

approximation [14] (green curves) at early times shows that the initial dynamics is far from

equilibrium. After ∆t ≈ 2 the evolution becomes well described by viscous hydrodynamics,

consistently with a hydrodynamization time of O(1/T ) [44, 45]. The comparison to ideal

hydrodynamics in the right panel of Fig. 3 shows that viscous corrections can be sizable

even at late times.

The initial far-from-equilibrium period leaves an imprint on the scale factor. This is

illustrated in Fig. 4, which shows the Hubble rate for the three evolutions of Fig. 3 as a

function of the redshift z(t) = a(tobs)/a(t)− 1. The time tobs is defined for each curve by

the physical condition that E reaches some late-time value, in this case E(tobs) = 0.02.

At small redshift the evolutions are equivalent as a consequence of the applicability of

hydrodynamics at late times shown in Fig. 3. In contrast, at large redshift the far-from-

equilibrium dynamics at early times leads to significantly different Hubble rates.

In Fig. 5 we show the analogous results for Λ = −0.5. The dashed, grey line marks

the time where E reaches a minimum and H = 0. The entire evolution is well described by

viscous hydrodynamics. As above, viscous corrections are non-negligible at late times.

Fig. 6 illustrates the asymtotically dS case. At late times the backreaction is dominated

by the cosmological constant, which here includes a Casimir contribution that we subtract

in the plot. Once the expansion has diluted the energy density so that E − EdS . H4,

the system is driven out of equilibrium and the hydrodynamic approximation ceases to be

valid, as expected from the non-backreacted analysis [14].

3This value is consistent with [14] after taking into account a typo in Sec 4.3 of [14], where we wrote

that we chose α = 0 while the actual value was α = 3/4.
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Figure 4. Evolution of the Hubble rate as function of redshift z for the three different initial

conditions presented in Fig. 3.
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Figure 5. Comparison between the holographic result for the pressure/energy ratio (black) and

the ideal (blue) and viscous (red) approximations, for G = 1/2500 and Λ = −0.5.

4 Discussion

We have provided the first example of holographic time evolution with dynamical boundary

gravity in which both the bulk and the boundary geometries are constructed dynamically,

one time step at a time.
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Figure 6. Same as in Fig. 5 but for Λ = 2.

In order to illustrate our approach in the simplest possible setting, we have focused

on homogeneous and isotropic states. However, we expect that our scheme can be gener-

alised to situations with no symmetry assumptions. Our work thus suggests new possible

applications of holography that we will develop elsewhere. Here we just close with brief

comments on two of them.

Inflation could be studied by promoting the boundary value of the bulk scalar field to

a dynamical boundary scalar field which would play the role of the inflaton. This would

allow us to use holography to study e.g. the pre- and re-heating processes at the end of

inflation [46, 47].

In the absence of symmetry assumptions, cosmological backgrounds are expected to

suffer from instabilities [48]. This has been studied holographically in the linear approxi-

mation [34]. Our approach would allow us to determine the endpoint of these instabilities

deep into the nonlinear regime.
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