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ABSTRACT

A considerable effort has been dedicated recently to the construction of generic equations of state (EOSs)
for matter in neutron stars. The advantage of these approaches is that they can provide model-independent
information on the interior structure and global properties of neutron stars. Making use of more than 106

generic EOSs, we asses the validity of quasi-universal relations of neutron star properties for a broad range of
rotation rates, from slow-rotation up to the mass-shedding limit. In this way, we are able to determine with
unprecedented accuracy the quasi-universal maximum-mass ratio between rotating and nonrotating stars and
reveal the existence of a new relation for the surface oblateness, i.e., the ratio between the polar and equatorial
proper radii. We discuss the impact that our findings have on the imminent detection of new binary neutron-star
mergers and how they can be used to set new and more stringent limits on the maximum mass of nonrotating
neutron stars, as well as to improve the modelling of the X-ray emission from the surface of rotating stars.
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1. INTRODUCTION

Matter inside neutron stars is compressed by gravity to
densities a few times larger than the saturation density of
atomic nuclei, ns = 0.16 fm−3, making them the most com-
pact material objects known in our present universe. In prin-
ciple, the properties of neutron stars are fully determined by
the equation of state (EOS) of dense and cold, neutron-rich
baryonic and possibly quark matter. In practice, however,
because the EOS is known only with large uncertainties, our
knowledge of even the most basic properties suffers from se-
rious limitations that are only mildly mediated by astronomi-
cal observations and laboratory experiments. Among the var-
ious properties of neutron stars for any given EOS, the max-
imum mass of rotating Mmax and nonrotating configurations
(TOV), MTOV , bear particular significance both in gravity
and in nuclear physics.

Direct mass and radius measurements set strict lower
limits on the maximum mass of neutron stars MTOV ≳
2M⊙ (Fonseca et al. 2021) and constrain their radii to ≃ 11-
14 km (Miller et al. 2021; Riley et al. 2021). Additional
upper bounds on neutron-star radii and tidal deformabilities
have been deduced from the first direct gravitational-wave
detection of a binary neutron-star merger GW170817 by the
LIGO and Virgo collaborations (The LIGO Scientific Col-
laboration et al. 2019). From this event, upper bounds on the

maximum mass M
TOV

≲ 2.33M⊙ have been derived from
the associated gamma-ray burst GRB170817A (Margalit &
Metzger 2017; Rezzolla et al. 2018a; Ruiz et al. 2018; Shi-
bata et al. 2019).

One of the reasons why accurate theoretical predictions of
neutron-star properties are difficult is that reliable calcula-
tions of the EOS are currently only available from Chiral Ef-
fective Field Theory at densities nb ≲ ns (see, e.g., Hebeler
et al. 2013; Gandolfi et al. 2019; Keller et al. 2021; Drischler
et al. 2020) and in the opposite limit from pQCD (see,
e.g., Freedman & McLerran 1977; Vuorinen 2003; Gorda
et al. 2021a,b) at densities nb ≳ 40 ns, that are much larger
than those reached inside neutron stars (see also Komolt-
sev & Kurkela 2022). Between these limits, the only avail-
able options are to either build models that reproduce the
expected behaviour of QCD (see, e.g., Beloin et al. 2019;
Bastian 2021; Traversi et al. 2020; Jie Li et al. 2021; Demir-
cik et al. 2022; Ivanytskyi & Blaschke 2022, for some re-
cent attempts), or to construct agnostic (model independent)
parametrizations for the EOS and constrain them with astro-
nomical or multi-messenger measurements.

Our incomplete knowledge of the EOS is partially com-
pensated by a number of quasi-universal relations, i.e., essen-
tially EOS-independent, that have been found among certain
neutron-star quantities over the years, both in terms of iso-
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lated rotating and nonrotating stars (see, e.g., Yagi & Yunes
2013; Doneva et al. 2014; Haskell et al. 2014; Chakrabarti
et al. 2014; Pappas & Apostolatos 2014; Breu & Rezzolla
2016; Weih et al. 2018; Konstantinou & Morsink 2022; Nath
et al. 2023) and of the gravitational-wave signal from binary
systems (see, e.g., Bauswein & Janka 2012; Read et al.
2013; Bernuzzi et al. 2014; Takami et al. 2015; Rezzolla
& Takami 2016; Most et al. 2019; Bauswein et al. 2019;
Weih et al. 2020; Gonzalez et al. 2022) and Yagi & Yunes
(2017) for a review. Clearly, the robustness of these quasi-
universal relations depends on the number of EOSs that are
employed in determining the relations. So far, the identifi-
cation and study of quasi-universal relations was often lim-
ited by the relatively small number of available models. At
the same time, a growing number of recent works have ex-
plored the possibility of building very large sets of model-
independent EOSs that satisfy all known theoretical and
observational constraints and cover the physically allowed
space of EOSs (Annala et al. 2020; Landry & Essick 2019)
and of related quantities, such as the sound speed (Altipar-
mak et al. 2022; Ecker & Rezzolla 2023; Gorda et al. 2022),
or the conformal anomaly (Marczenko et al. 2023; Annala
et al. 2023; Brandes et al. 2023). These EOSs are built ei-
ther using generic piecewise polytropes (see, e.g., Kurkela
et al. 2014; Lattimer & Steiner 2014; Steiner et al. 2018;
Most et al. 2018; Tews et al. 2018a,b), a parameterization
of the sound speed (see, e.g., Annala et al. 2020; Altiparmak
et al. 2022; Ecker & Rezzolla 2023) or non-parametric Gaus-
sian process regression (see, e.g., Gorda et al. 2022; Gorda
et al. 2023).

The purpose of this work is to exploit such large ensem-
bles of generic EOSs to revisit the validity of quasi-universal
relations of isolated slowly and rapidly rotating stars, and to
study how the results depend on input from pQCD and on
recently measured bounds.

2. QUASI-UNIVERSAL RELATIONS

Among the quasi-universal relations found for isolated
stars, one is particularly relevant for its impact on the stability
of stellar models and was first discussed by Breu & Rezzolla
(2016) (BR16 hereafter). More specifically, using a relatively
small number of 28 tabulated EOSs, BR16 pointed out that
the critical mass Mcrit, that is, the mass of uniformly rotating
neutron stars on the turning-point line, can be expressed in a
quasi-universal relation through the specific angular momen-
tum jcrit and that at the mass-shedding limit jKep [jcrit and
jKep are also indicated as χcrit and χKep, respectively (Most
et al. 2020)]

Mcrit

MTOV

= 1 + a2

(
jcrit
jKep

)2

+ a4

(
jcrit
jKep

)4

, (1)

where a2 = 0.132, a4 = 0.071 (Breu & Rezzolla 2016).
A few remarks are worth making. First, expression (1)

provides the stellar mass along the so-called “turning-point”
line (Friedman et al. 1988), that is, the line in the (M,nc)

plane along which ∂M/∂nc|J = 0, where nc is the cen-
tral number density. Second, because the turning-point cri-
terion is a sufficient criterion for dynamical instability, the
importance of (1) is that it allows one to determine for any
rotation rate the critical mass above which a dynamical in-
stability would trigger the collapse to a rotating black hole.
Third, when considering the maximum value allowed for the
specific angular momentum, Eq. (1) marks the maximum
mass of stable uniformly rotating configurations, namely,
Mmax := Mcrit(jcrit = jKep). Finally, because the turning-
point criterion is only a sufficient but not a necessary criterion
for dynamical instability, the maximum mass at the upper end
of the dynamical-instability line is actually set by the upper
end of the so-called “neutral-stability” line. Such a mass is
normally slightly larger than Mmax and is attained at some-
what smaller central densities (see Takami et al. 2011; Weih
et al. 2018, for a discussion).

In practice, the quasi-universal relation (1) is most often
used to relate the endpoints of the critical line via the ratio of
the maximum masses of rotating and nonrotating configura-
tions, namely,

R :=
Mmax

M
TOV

. (2)

Using Eq. (1), BR16 estimated the mass ratio to be
R = 1.203 ± 0.022, in rough agreement with cruder es-
timates obtained previously with a much smaller number
of EOSs (Cook et al. 1994a,b; Lasota et al. 1996); simi-
lar values have later been reported by Bozzola et al. (2019)
(1.15− 1.31), Demircik et al. (2021) (1.227+0.031

−0.016) for EOSs
with a phase transition, and by Jie Li et al. (2023a) for EOSs
with heavy baryons (1.20815). In what follows, we assess the
validity of Eqs. (1) and (2) and refine the quasi-universal be-
haviour exploiting a set of more than 106 different EOSs1 that
covers the entire physically allowed space of EOSs consistent
with constraints from dense-matter theory and neutron-star
observations.

For the construction of our EOSs we follow the procedure
presented in a number of previous works where the interested
reader can find additional details (Altiparmak et al. 2022;
Ecker & Rezzolla 2023, 2022). What is relevant to recall here
is that we construct the EOSs with a 10-segment parameter-
ization of the sound speed in which we can either impose or
not the pQCD constraints at ∼ 40ns. From the astrophysics
side, we impose constraints coming from radius measure-
ments by the NICER collaboration on J0740+6620 (Miller

1 Interestingly, already O(103) EOSs are sufficient to obtain results very
similar to those from the full set of 106 EOSs. This is because the prob-
ability density functions (PDFs) converge very rapidly, as demonstrated in
the Appendix.
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Figure 1. Left: 95% (dark colors) and 100% (light colors) confidence-level contours for an ensemble of 106 EOSs with M (−)
TOV

= 2.2 M⊙ for
which the pQCD constraints are imposed (red) or not (blue). Right: Corresponding 95% confidence-level contours for the mass-radius relations
of nonrotating stars (j = 0) and stars rotating at the mass-shedding frequency (j = jKep; in this case the equatorial proper radii are used).
Shaded areas indicate the imposed astrophysical constraints or the limits from the threshold mass to collapse Koeppel et al. (2019); the bottom
panels report slices of the PDFs at M = 1.4M⊙.

et al. 2021; Riley et al. 2021) and J0030+0451 (Miller et al.
2019; Riley et al. 2019) by rejecting EOSs for which R2.0 <

10.75 km or R1.1 < 10.8 km, where the subscript indicates
the corresponding gravitational mass of nonrotating stars. In
addition, we impose an upper bound on the binary tidal de-
formability Λ̃ as deduced from the LIGO/Virgo detection of
GW170817 by rejecting all EOSs with Λ̃ > 720 (low-spin
prior) (The LIGO Scientific Collaboration et al. 2019) at a
chirp mass Mchirp = 1.186 M⊙ for mass ratios q > 0.73.
The constraints from these astrophysical observations are
imposed as sharp cutoffs on the EOS ensemble, which, as
shown by Jiang et al. (2022), leads to good agreement of the
important central part of the PDF obtained from a more ex-
pensive Bayesian analysis. Finally, we impose a lower bound
M (−)

TOV
on the maximum mass of nonrotating neutron stars

(MTOV ) by rejecting all models with MTOV below a pre-
scribed cutoff. Since this constraint has been shown to have
a significant impact on the space of allowed EOSs (Ecker &
Rezzolla 2023), we have explored different values for M (−)

TOV

to account for the uncertainties on this bound.
Once the EOS ensemble has been generated, the corre-

sponding models for rotating stars are constructed with the
RNS code (Stergioulas & Friedman 1995). In particular, we
solve for stationary and axisymmetric equilibrium solutions
of uniformly rotating perfect fluids with varying central den-
sities along constant angular-momentum sequences between
J = 0 and J = JKep, where JKep is the Keplerian (or “mass-
shedding”) angular momentum and is a function of nc (see
also Konstantinou & Morsink 2022; Jie Li et al. 2023b, for
similar analyses with a much smaller set of EOSs). The set of
stellar models having J = JKep is also referred to as the Ke-
plerian limit because along this sequence the angular velocity

is the largest possible; any increase of the angular momentum
at constant central density would lead to a shedding of mass
at the equator. The endpoint of the Keplerian sequence marks
the maximum mass at a Keplerian frequency, Mmax,Kep and
this is close to, but systematically larger than Mmax. The
relative difference between the two masses is rather small,
i.e., Mmax,Kep/Mmax − 1 ≲ 10−2, and therefore often ig-
nored (e.g., Annala et al. 2022), but it is conceptually impor-
tant that the two masses are kept distinct, as it is done here.

The left panel of Fig. 1 reports the 95% (dark lines) and
100% (light lines) confidence-level contours for our ensem-
ble of 106 EOSs with M (−)

TOV
= 2.2 M⊙ when the pQCD

constraints are imposed (red) or not (blue). The right panel,
on the other hand, shows the corresponding 95% confidence-
level contours for the mass-radius relations of nonrotating
stars (j = 0) and stars rotating at the mass-shedding limit
(j = jKep); in the rotating case, the equatorial radii are em-
ployed (see Appendix).

3. RESULTS

Making use of our ensemble of 106 EOSs, we have con-
structed more than 108 nonrotating and rotating stellar mod-
els up to the mass-shedding limit. In this way, we have recon-
sidered several quasi-universal relations governing the prop-
erties of neutron stars and first present the outcome of this
analysis for the mass-ratio relation (1). In Fig. 2 we show
results for two different ensembles where the pQCD con-
straints are either imposed (red colors) or not (blue colors).
In both cases, we use a lower bound of M

TOV
> 2.2 M⊙

to ensure consistency with the 1-σ confidence interval for
the direct mass measurement of the black-widow binary pul-
sar PSR J0952-0607 (2.35± 0.17M⊙) (Romani et al. 2022).
More specifically, the colored areas in the (large) left panel
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of Fig. 2 show the (95%) confidence intervals of the PDF
with (red) and without (blue) imposing the pQCD constraint,
while the solid lines of corresponding color mark the me-
dians of the distributions. The median values and the cor-
responding confidence intervals of the distributions are still
well approximated by expression (1), where we use a2 and
R as fitting parameters, thus fixing a4 = R− (a2 + 1); the
best-fit coefficients are listed in Tab. 1 of the Appendix. In-
terestingly, the quadratic term in (1) provides a very good ap-
proximation up to j ∼ 0.7 jKep and the quartic contribution
becomes essential only for larger values of j.

Overall, we find that the new and much larger set of EOSs
shows again a quasi-universal behaviour similar to that pro-
posed by BR16, reported with a black solid line in Fig. 2.
The variance of the new universal relations is slightly larger
than what was found by BR16, but this is expected due to
the much larger set of EOSs considered here. Note also
that the difference between the PDFs obtained when impos-
ing and not imposing the pQCD constraints is small but sig-
nificant and has a clear physical origin, which we discuss
below. More importantly, the new quasi-universal relations
are slightly but systematically larger than those reported in
BR16 and, indeed, the median of the latter falls outside the
95% confidence interval for both the ensembles with and
without pQCD constraints. This is best seen in the right
panel of Fig. 2, which reports the one-dimensional PDFs of
Mcrit/MTOV at j = jKep, i.e., the PDFs of R. The me-
dians of these PDFs are marked with red/blue dashed lines
for EOSs built with/without the pQCD constraints, and while
they differ by only ≃ 1%, they are clearly separated. The rea-
son for this is that the pQCD constraint leads to a softening of
the EOS at large densities and, as a result, to smaller values
of M

TOV
. Because the central density in maximally rotating

stars is smaller than in TOV stars, the impact on Mmax is also
smaller; the combination of the two trends drives R towards
slightly larger values. Finally, and more importantly, when
considering the PDF obtained with the pQCD constraint be-
ing imposed, we can extract a new estimate for the mass ratio
R = 1.255+0.047

−0.040, which is therefore ≃ 4% larger than the
BR16 estimate.

While the quasi-universality of the mass ratio R is robust,
it is clear that the constraints imposed on the EOS ensem-
ble will influence this ratio. To quantify this dependence, we
also compute R for a smaller (M (−)

TOV
= 2.0M⊙) and a larger

(M (−)
TOV

= 2.35 M⊙) lower bound on M
TOV

. The results are
reported in Tab. 12 and show that the median of the PDFs of
R increases monotonically with the imposed lower bound
on M

TOV
. Stated differently, imposing a larger cutoff on

2 Given the rapid convergence of the PDFs with the number of EOSs (see
Appendix), we have considered for these different bounds 104 EOSs.
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Figure 2. Left: Quasi-universal relation of the gravitational mass
along the critical line between. Red-shaded (blue-shaded) areas in-
dicate the 95% confidence intervals with (without) the pQCD con-
straint, while the solid lines mark the corresponding median val-
ues. The black solid line reports the prediction by Breu & Rez-
zolla (2016) (BR16). Right: One-dimensional slice of the PDFs for
j = jKep.

the TOV mass in the EOS ensemble drives the posterior for
Mmax upwards faster than that of MTOV . While this might
seem counter-intuitive at first, it is simple to understand. We
recall that imposing larger bounds on M

TOV
leads to a signif-

icant stiffening of the EOSs, i.e., in the energy-density range
0.5 < e/(GeV fm−3) < 0.8 [see Fig. 1 of Ecker & Rezzolla
(2023)] and that are relevant for the cores of rapidly rotating
stars. At the same time, such bounds have a negligible im-
pact on energies e ≈ 1 GeV/fm3, that are those relevant for
the cores of nonrotating stars (Altiparmak et al. 2022). This
increase of Mmax not balanced by an equal increase in M

TOV

leads to the measured growth of R with M (−)
TOV

.
The new and more accurate estimate of R provides two

important tools to be employed when a binary neutron-star
merger is detected together with its electromagnetic counter-
part. First, as discussed by Rezzolla et al. (2018b) in the case
of GW170817, the detection of a gamma-ray burst counter-
part following a binary neutron-star merger can be taken as
an indirect evidence for the formation of a black hole from
the remnant and the emergence of a relativistic jet from the
ejected matter (Gill et al. 2019). This implies that the mass
of the merger remnant, properly reduced by the ejected rest-
mass and the mass lost in gravitational waves, is very close to
Mmax, setting an upper limit for it. In turn, making use of R,
this can be used to set an upper limit on M

TOV
. Following

this logic and employing the iterative procedure to account
for an adaptive adjustment of the mass ratio (see Appendix
for details), we obtain the following upper limit for the maxi-
mum mass of a nonrotating neutron star M (+)

TOV = 2.24+0.07
−0.11.

Clearly, the same method can be employed to further refine
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the estimate of M (+)
TOV as new detections of merging binary-

neutron star systems will be made.
A second consequence of the new estimate of R follows

from the discussion made in Most et al. (2020). In particu-
lar, once a gravitational-wave merger event with a significant
mass difference such as GW190814 is detected, the knowl-
edge of the total mass of the system and of the universal mass
ratio R allows one to set constraints on the spin of the sec-
ondary [see Fig. 1 of Most et al. (2020)]. More specifically,
assuming that the secondary of GW190814 was a neutron
star at the merger (see Nathanail et al. 2021, for a different
conclusion), we can employ the new value of R to improve
the constraints on the dimensionless spin of the secondary in
GW190814 to be 0.52 ≲ χ2 ≲ 0.72. Also in this case, the
methodology discussed above can be applied to new detec-
tions of binaries with small mass ratios.

We next employ our large set of rotating-star models to
assess the validity of other quasi-universal relations and we
start by reporting a novel quasi-universal relation found for
the surface oblateness, i.e., the ratio between the polar and
equatorial proper radii, Rp/Re. This ratio is obviously unity
in the case of nonrotating stars and decreases as the angu-
lar momentum is increased, since the equatorial radius be-
comes larger and the quadrupolar deformation of the star in-
creases (see also Konstantinou & Morsink 2022, for different
but equally interesting relations). The result of our analysis
in this case is presented in Fig. 3, which is logically similar to
Fig. 2, but now for the ratio Rp/Re. Interestingly, the quasi-
universal relation has an extremely small variance and this is
most probably due to the fact that Rp/Re depends most sen-
sitively on the low-density part of the EOSs which is rather
well constrained. This hypothesis is also corroborated by the
fact that the result for this relation seems to be essentially
independent on whether or not the perturbative QCD con-
straint is imposed, implying that the high-density portion of
the EOS, where this constraint has an impact, is not involved
in the deformation seen in Fig. 3. Given the simple behavior
of the relation, the corresponding medians can be very ac-
curately described by a second-order polynomial of the form
Rp/Re = 1 − b2 (j/jKep)

2, and the corresponding best-
fit coefficients are reported in Tab. 1 of the Appendix. The
relevance of this result is that it allows for a much more ac-
curate modelling of the emission from rotating neutron stars,
such as those observed by NICER, where a precise knowl-
edge of the surface deformation is essential for the mod-
elling of the X-ray emission from the hot spots of rotating
stars (Morsink et al. 2007; Bogdanov et al. 2019). Further-
more, it can be employed when studying black-widow sys-
tems, where rapid rotation is expected and indeed observed
[with a spin frequency of f = 706Hz, PSR J0952-0607 is the
second-fastest-spinning pulsar known (Romani et al. 2022)
and has j/jKep ≲ 0.46].
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Figure 3. The same as in Fig. 2 but for the novel quasi-universal
relation for the ratio of the polar-to-equatorial radii.

Finally, we use our EOS ensemble to assess the validity
of the so-called “I-Q” quasi-universal relations, where I is
the stellar moment of inertia and Q the mass-quadrupole
moment. The IQ relations were first investigated by Yagi
& Yunes (2013) in the context of slowly rotating neutron
stars and subsequently extended to stars in rapid rotation
by Doneva et al. (2014); Chakrabarti et al. (2014), and Pappas
& Apostolatos (2014). The latter, in particular, have found
quasi-universal relations between I and Q also for rapidly
rotating stars and expressed them in terms of j. Since these
functions were validated using a dozen of nuclear-physics
EOSs only, it is interesting and important to assess the va-
lidity of such relations when employing a much larger set
of model-independent EOSs (see also Nath et al. 2023, for
similar recent work). Overall, we find that the fit proposed
by Pappas & Apostolatos (2014) performs very well also
with the much larger ensemble of EOSs and the differences
in the newly estimated best-fit coefficients are of the order
of 1%, with the largest differences of ∼ 2.5% being attained
in the low-Q and high-j region of the parameter space (see
Appendix for details).

4. CONCLUSION

Motivated by recent advancements in model-agnostic sam-
pling methods for the EOS of neutron-star matter (Kurkela
et al. 2014; Lattimer & Steiner 2014; Steiner et al. 2018;
Most et al. 2018; Tews et al. 2018a; Annala et al. 2020; Alti-
parmak et al. 2022), we have revisited the quasi-universal be-
haviour of isolated rotating and nonrotating neutron stars by
employing a very large sample of generic EOSs constructed
with a 10-segment parameterization of the sound speed (An-
nala et al. 2020; Altiparmak et al. 2022). By exploring the
whole physically allowed space of solutions, our approach
has the advantage of being able to test rigorously whether a
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quasi-universality is present or not, and to study the depen-
dence of the quasi-universal behaviour on the imposed con-
straints.

Our attention here has been focussed on the quasi-universal
relation of the mass along the critical line and, more in par-
ticular, on the mass ratio R between the maximum masses of
rotating and nonrotating stars (Breu & Rezzolla 2016). Our
analysis has revealed that such a relation is still valid when
considering an ensemble of up to 106 EOSs obtained either
imposing or not the constraints from pQCD at high densi-
ties, and with different lower bounds the maximum mass of
nonrotating stars M

TOV
. While the variance in the new es-

timates is comparable but larger than in BR16, the median
values are a few percent larger than the original estimate of
BR16. This is not surprising given the comparatively small
number of EOSs considered by BR16. Furthermore, we have
found that increasing the lower bound on MTOV also leads to
a larger value of R, while neglecting the pQCD constraints
at high densities leads to a decrease of this ratio.

Finally, we have employed our large set of EOSs to assess
the validity of known and novel quasi-universal relations. In
particular, we have revealed the existence of a new and tight
quasi-universal relation for the surface oblateness, which can
be used to model more accurately the emission from the hot
spots on the surface of rotating neutron stars, such as those
observed by NICER. At the same time, we were able to con-
firm the validity of the I-Q relations over a broad range of
rotations, from slow rotation up to the mass-shedding limit,
and to improve the best-fit coefficients of the functional be-
haviour proposed by Pappas & Apostolatos (2014) in the
low-Q and high-j region of the parameter space.

Besides improving previously known results, the more ac-
curate estimate of R offers two important and direct applica-
tions whenever a binary neutron-star merger is detected to-
gether with its electromagnetic counterpart. In particular, it

can be used to set new and tighter constraints on the maxi-
mum mass of nonrotating stars and hence on the EOS. For
example, when considering GW170817, this implies a new
upper limit of M

(+)
TOV = 2.24+0.07

−0.11 M⊙. Furthermore, in
binaries with small mass ratio it can be employed to set con-
straints on the dimensionless spin of the secondary object
when this is represented by a neutron star. For example, when
considering the case of GW190814, the new value of R im-
plies a new bracketing interval of 0.52 ≲ χ2 ≲ 0.72. The
present data-taking runs of the LIGO-Virgo-Kagra collabo-
ration will hopefully provide us with a number of potential
applications of these findings.
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Figure 4. PDFs of the EOSs (left panel), of the mass-radius relation of nonrotating stars (middle panel) and of stars rotating at the mass-
shedding frequency (right panel). The top and bottom row refer respectively to ensembles where the pQCD constraints are imposed or not; in
all cases M (−)

TOV = 2.2M⊙.

APPENDIX

OVERVIEW OF THE STELLAR PROPERTIES

In Fig. 4 we show the PDFs for the EOSs (left panel) and the corresponding mass-radius relation of static (middle panel)
and maximally rotating stars (right panel) when imposing (top row) or not (bottom row) the pQCD constraint and assuming
M (−)

TOV
= 2.2 M⊙. As clearly shown by the figure, the allowed pressure band is influenced by imposing the pQCD constraint

down to energy densities e ∼ 800 MeV, which are relevant for the cores of heavies nonrotating stars TOV and even for rapidly
rotating stars. In particular, the EOSs are allowed to be significantly stiffer and with higher sound speeds [i.e., with steeper curves
in the (p, e) space] in the range 0.8 − 1.2 GeV since the EOSs do not need to be causally connected to the pQCD band at high
densities. As can be observed in the two rightmost columns of Fig. 4, and in Fig. 1, the effect of this stiffening in the intermediate
to high-density regime is to allow for higher masses and to increase the radii of stars close to the stability limit. In particular,
the lower panels in these figures show that the distributions of radii for 1.4M⊙ models varies only modestly whether or not the
EOS ensemble is restricted to be compatible with results of pQCD. On the other hand, the contours of the distribution close to
the critical limit clearly show that the constraint has non-negligible impact on TOVs (which was already shown in Gorda et al.
2022), as well as on rapidly rotating stars, which we show here for the first time.

Similarly, in Fig. 5 we report the one-dimensional PDFs for the sound speed (left column), for the normalized trace anomaly
∆ = 1/3 − p/e (Fujimoto et al. 2022) (middle column) and for the measure of the non-conformality of the matter dc :=√

∆2 + (∆′)2 (right column), where ∆′ is the logarithmic derivative of ∆ with respect to the energy density. All quantities
are computed at the center of j = 0 (top row) and j = jKep (bottom row) stellar models. The median values, together with
the 95% error bars are reported in Tab. 1. Overall, our results compare well with the corresponding slices calculated by Annala
et al. (2023), as well as with the results of Gorda et al. (2022), obtained with a Gaussian-process regression technique (Landry &
Essick 2019).

Finally, in Tab. 1 we also report the median values with 95% error bars for R, the best-fit value for the coefficient a2, the
central sound speed squared in either maximally rotating rotating (c2s,c,Kep) or static stars (c2s,c,TOV

). The last four columns report
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Figure 5. One-dimensional PDFs for the sound speed (left column), for the normalized trace anomaly (middle column) and for the measure of
the non-conformality of the matter (right column). All quantities are computed at the center of j = 0 (top row) and j = jKep (bottom row)
stellar models. Vertical black lines are approximate upper bounds reported in Annala et al. (2023) for of quark matter in pQCD at nb > 40 ns.

M
(−)
TOV pQCD R a2 b2 c2s,c,Kep c2s,c,TOV

∆c,Kep ∆c,TOV dc,Kep dc,TOV

[M⊙]

2.00 yes 1.248+0.054
−0.043 0.18+0.04

−0.02 0.41+0.02
−0.02 0.245+0.381

−0.195 0.208+0.369
−0.172 0.031+0.115

−0.136 0.038+0.117
−0.133 0.118+0.209

−0.095 0.130+0.180
−0.102

no 1.240+0.055
−0.043 0.16−0.04

−0.02 0.40+0.03
−0.02 0.377+0.491

−0.316 0.348+0.502
−0.306 −0.024+0.159

−0.162 −0.031+0.143
−0.174 0.146+0.286

−0.117 0.153+0.260
−0.124

2.20 yes 1.255+0.047
−0.040 0.18+0.03

−0.02 0.41+0.02
−0.02 0.248+0.388

−0.195 0.201+0.360
−0.167 0.017+0.104

−0.129 0.029+0.108
−0.133 0.114+0.214

−0.094 0.135+0.180
−0.107

no 1.244+0.050
−0.039 0.17−0.04

−0.02 0.40+0.02
−0.02 0.398+0.470

−0.325 0.365+0.489
−0.314 −0.038+0.147

−0.153 −0.046+0.167
−0.166 0.146+0.288

−0.120 0.156+0.260
−0.126

2.35 yes 1.260+0.041
−0.034 0.18−0.03

−0.02 0.41+0.02
−0.02 0.256+0.386

−0.198 0.195+0.326
−0.164 0.003+0.094

−0.121 0.019+0.100
−0.129 0.112+0.222

−0.093 0.138+0.180
−0.110

no 1.248+0.046
−0.034 0.16−0.04

−0.02 0.40+0.02
−0.01 0.419+0.458

−0.338 0.375+0.487
−0.322 −0.052+0.137

−0.142 −0.059+0.162
−0.158 0.152+0.285

−0.126 0.161+0.263
−0.131

Table 1. Estimates for various properties of static and rotating neutron stars. The central values and the uncertainties correspond to the median
and the 95% confidence intervals of the PDF, respectively. Note that the upper and lower bounds of a2 have been computed with (1) using the
corresponding upper and lower bounds of R.

the central values of the conformal anomaly ∆c and dc for various choices of M (−)
TOV

, and with or without imposing the pQCD
constraint.

CONVERGENCE AND AN UPPER BOUND ON M
TOV

To demonstrate the robustness and convergence of the results for R obtained with our sampling procedure we compare in Fig. 6
the one-dimensional PDFs obtained with our procedure for the ratio R; obviously, this is the same as showing the distribution of
Mcrit/MTOV

for j = jKep as done in Fig. 2. As can be readily observed, the median of our results is surprisingly robust even
when only 102 EOSs are used and the corresponding median values is well within 1-σ away from the result obtained with 106

EOSs. This notwithstanding, the overall behaviour of the PDF can be seen to be significantly more noisy for the lower statistics
cases, and, in particular, far less EOSs sample the tails of the distribution. For this reason, it is still important to use large statistics
so that the 100% confidence interval can be trusted to span the whole physically allowed region for R.

Next, we discuss how to obtain a new upper limit of the maximum mass of nonrotating stars after using the newly estimate
for R and the assumption that the GW170817 remnant collapsed while still rotating at a frequency close to the mass-shedding
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Figure 6. One-dimensional PDFs of R when varying the number of EOSs in the set. Note that 103 EOSs are already sufficient to obtain a very
small variance.

limit. Under these assumptions, it is possible to obtain a first rough upper bound on M
TOV

by simply observing that Mmax <

MGW170817 = 2.74+0.04
−0.01 M⊙, and by subsequently using the value of R := Mmax/MTOV obtained by the quasi-universal

relation presented in the main text. This estimate can be further refined by making use of the iterative procedure outlined below.

1. We construct an EOS ensemble as discussed in the main text recalling that the dependence of R on the lower bound
imposed on MTOV is weak but non-negligible (we here set of M (−)

TOV = 2.08M⊙).

2. We determine the quasi-universal ratio Rn=1, where n is the iteration number.

3. Assuming that GW170817 collapsed to a black hole, we determine the upper bound M
(+)
TOV.

4. We construct a new ensemble of EOSs, but this time imposing as upper bound on MTOV the value determined in point 3.

5. We recompute Rn and keep iterating from point 3. until convergence has been reached. We find that n = 3 is sufficient to
obtain differences below 1% between Rn and Rn+1.

Following this iterative procedure we have derived the upper limit for the maximum mass of nonrotating neutron stars reported
in the main text: M (+)

TOV = 2.24+0.07
−0.11.

QUASI-UNIVERSAL RELATIONS FOR RAPIDLY ROTATING STARS

Following Pappas & Apostolatos (2014), we define the dimensionless moment of inertia and quadrupole respectively as Ī :=

I/M3 and Q̄ := Q/M3/j2, and seek a quasi-universal expression for Ī as a function of j and Q̄ via the ansatz

√
Ī = A1 +A2

(√
Q̄− ξ0

)
+A3

(√
Q̄− ξ0

)2

, (3)

where

A2 := B1 +B2 j +B3 j
2 , and A3 := C1 + C2 j + C3 j

2 , (4)

with A1, B1 −B3, C1 −C3, ξ0 fitting parameters. The corresponding values for the EOS ensembles with M
(−)
TOV = 2.2M⊙ and

when the pQCD constraints are taken into account or not are reported in Tab. 2.
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Table 2. Best-fit coefficients for the I-Q quasi-universal relation proposed by Pappas & Apostolatos (2014) [cf. Eq. (3)] with M
(−)
TOV = 2.2M⊙.

pQCD A1 B1 B2 B3 C1 C2 C3 ξ0

yes 2.07 0.764 0.238 0.816 0.143 0.0316 −0.128 0.908

no 2.12 0.705 0.537 0.519 0.175 −0.100 0.014 0.951
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