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Abstract: We investigate the impact of non-Hermiticity on the thermodynamic proper-
ties of interacting fermions by examining bilinear extensions to the 3+1 dimensional SU(2)-
symmetric Nambu–Jona-Lasinio (NJL) model of quantum chromodynamics at finite tem-
perature and chemical potential. The system is modified through the anti-PT-symmetric
pseudoscalar bilinear ψ̄γ5ψ and the PT-symmetric pseudovector bilinear iBν ψ̄γ5γ

νψ, intro-
duced with a coupling g. Beyond the possibility of dynamical fermion mass generation at
finite temperature and chemical potential, our findings establish model-dependent changes
in the position of the chiral phase transition and the critical end-point. These are tunable
with respect to g in the former case, and both g and |B|/B0 in the latter case, for both light-
like and spacelike fields. Moreover, the behavior of the quark number, entropy, pressure and
energy densities signal a potential fermion or antifermion excess compared to the standard
NJL model, due to the pseudoscalar and pseudovector extension respectively. In both cases
regions with negative interaction measure I = ε− 3p are found. Future indications of such
behaviors in strongly interacting fermion systems, for example in the context of neutron star
physics, may point toward the presence of non-Hermitian contributions. These trends pro-
vide a first indication of curious potential mechanisms for producing non-Hermitian baryon
asymmetry. In addition, the formalism described in this study is expected to apply more
generally to other Hamiltonians with four-fermion interactions and thus the effects of the
non-Hermitian bilinears are likely to be generic.
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1 Introduction

The concept of PT (parity-time reflection) symmetry has, since its inception by Bender
and Boettcher in 1998 [1], become a highly active field of research in both theoretical and
experimental physics. In general, it has overthrown the prevailing principle that physical
systems must be governed by a Hermitian Hamiltonian and has demonstrated that rich and
unexpected features are found in non-Hermitian systems with PT symmetry. In particular,
the possible occurrence of exceptional points has illustrated consequences beyond those ob-
served in Hermitian models. Various experimental realizations, displaying these particular
properties of PT-symmetric systems have firmly established PT symmetry as an important
feature of classical and quantum-mechanical systems [2–15].

On a fundamental level, however, the development of a quantum-field-theoretical ap-
proach is essential. In the context of 3+1 dimensional fermionic field theories, the oddness
of the time-reversal operator T , i.e., T 2 = −1, becomes a core feature when discussing
non-Hermitian models, centered around their behavior under combined parity reflection
and time reversal [16, 17]. In a recent study [18] we have shown that modifying free Dirac
fermions through the inclusion of non-Hermitian bilinears, PT-symmetric or otherwise, re-
sults in a breakdown of the existence of a real physical fermion mass. In hindsight, this is
due to the odd nature of the fermionic time-reversal operator that also underlies Kramer’s
degeneracy. It is not ensured in the relativistic context, that both necessary conditions for
a real spectrum, [H,PT ] = 0 and the simultaneity of eigenfunctions to both H and PT ,
are met. However, in further studies [19, 20] we demonstrated that such real-mass solu-
tions can in fact exist, when higher-order interactions are also present in the Hamiltonian.
Then mass can be generated dynamically through the inclusion of the non-Hermitian but
PT-symmetric pseudovector extension igBν ψ̄γ5γ

νψ.
However, the existence of a real mass solution and even of dynamical mass generation is

not restricted to non-Hermitian PT-symmetric modifications: a pseudoscalar bilinear term
gψ̄γ5ψ, for example, while being neither Hermitian, nor PT-symmetric, still generates real
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fermion mass dynamically when taken in combination with higher-order interactions [19, 20].
For this reason, we choose here particularly to study these two model interactions, gψ̄γ5ψ

and igBν ψ̄γ5γ
νψ, placed in such a context, as a function of finite temperature and den-

sity. This is most conveniently done within the Nambu–Jona-Lasinio (NJL) model, which
provides a fermionic system with a two-body contact interaction [21, 22], whose results
may easily be taken over for other similar systems [23, 24]. As a commonly used effective
field theory of quantum chromodynamics (QCD), that models in particular the sponta-
neous chiral-symmetry-breaking phase transition at finite temperature and density, the use
of the NJL model furthermore ties this study to the development of a general framework
of PT-symmetric field theories containing four-point contact interactions and the possibil-
ity of non-Hermitian physics beyond the Standard Model, see for example [23–26]. Here,
analyzing the effects of finite temperature and density on non-Hermitian and in particu-
lar PT-symmetric theories marks a crucial step towards developing feasible non-Hermitian
approaches and PT quantum field theories applicable to experimental realizations, such as
heavy-ion collisions and astrophysical models of compact stars. The crucial task of course
is to identify characteristics beyond the existence and generation of real effective fermion
mass, that may both differentiate between Hermitian and non-Hermitian field theories, and
examine whether new features of quantum field theories may arise, when the underlying
system is generally non-Hermitian, and specifically when it is PT-symmetric.

This paper is structured as follows. In section 2 the standard SU(2) NJL model is
reviewed. This discussion serves as the baseline for the examination and the modified ap-
proach used in the study of the non-Hermitian extensions of the NJL model. The gap
equation for the effective fermion mass is presented in a self-consistent Hartree approxima-
tion and within the Matsubara-formalism for finite temperature T and at finite chemical
potential µ, introducing a three-dimensional regulator Λ. The thermodynamic (grand) po-
tential Ω is obtained following the coupling-constant integration method. Based on this,
the phase diagram of the physical fermion mass is determined and the behavior of the ther-
modynamic observables – quark number, pressure, entropy, and energy density, as well as
the interaction measure – is established.

Section 3 adapts the NJL formalism for the study of the model which is modified
through the inclusion of a non-Hermitian non-PT-symmetric bilinear extension based on
the pseudoscalar term γ5, introduced with the coupling constant g. The qualitative results
obtained at zero temperature and chemical potential are seen to verify the behavior found
previously with an Euclidean four-momentum cutoff under similar constraints [20]. The be-
havior of the effective fermion mass, in particular the spontaneous chiral-symmetry-breaking
phase transition and its critical endpoint (CEP), as well as the effect on the thermodynamic
observables is analyzed in dependence of the temperature T and chemical potential µ, as
well as T and the quark number density n for illustrative values of the coupling g. Despite
a dynamical generation of fermion mass within the spontaneously broken approximate chi-
ral symmetry regime, the behavior of the thermodynamic observables is demonstrated to
coincide with the standard NJL model behavior at low temperature and small chemical
potential. In the vicinity of the phase transition and throughout the restored symmetry re-
gion, however, the pseudoscalar extension drives a fermion excess compared to the standard
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NJL model and exhibits interaction measures I = ε− 3p < 0.
In section 4 the NJL model is extended through the inclusion of the non-Hermitian

but PT-symmetric pseudovector bilinear igBν ψ̄γ5γ
νψ. The influence of this modification

on the effective fermion mass at finite T and µ is analyzed for a spacelike, a lightlike and a
timelike background field Bν . We confirm that the results for the spacelike background field
obtained in the zero-temperature and vanishing chemical potential limit coincide qualita-
tively with those previously found using an Euclidean cutoff, demonstrating the robustness
of the regularization procedure in this limit. The effect on the position of the chiral phase
transition, the CEP, and on the behavior of the thermodynamic observables within the T -
µ–plane is investigated, finding a notable deviation from the standard NJL model behavior
and an emphasis on the antifermionic component of the system. This contrasts with the
findings within the pseudoscalar extension.

We conclude and summarize our results in section 5.

2 The NJL model

In the grand canonical ensemble, the two-flavor version of the standard NJL model [21] is
characterized by the Hamiltonian density

HNJL − µN= ψ̄(−iγk∂k +m0 − µ)ψ −G[(ψ̄ψ)2+ (ψ̄iγ5~τψ)2], (2.1)

where N is the quark number density operator, µ is the baryon chemical potential, G is
the two-body coupling strength, and m0 is a bare fermion mass term. ~τ denotes the isospin
SU(2) matrices. The Dirac matrices γ in 3 + 1 dimensional spacetime have the form

γ0 =

(
1 0

0 −1

)
, γk=

(
0 σk

−σk 0

)
, γ5 = iγ0γ1γ2γ3, (2.2)

where σk with k ∈ [1, 3] are the Pauli matrices. In the limit of vanishing bare mass m0,
this model can be used to study the spontaneous chiral symmetry breaking, which occurs
through fermion-antifermion pair production, parallelling the Bardeen-Cooper-Schrieffer
mechanism of superconductivity [27]. It is therefore a commonly used effective model for
the study of QCD in the low-energy regime. Due to the non-renormalizability introduced
by the contact interaction, a cutoff length of Λ = 653 MeV and the coupling strength
GΛ2 = 2.14, determined traditionally through the quark condensate density per flavor and
the pion-decay constant, are fixed within a three-momentum cutoff regularization scheme
in this context, cf. [22].

Following the Feynman-Dyson perturbation theory, the gap equation for the effective
fermion mass m is determined in a self-consistent Hartree approximation to take the well-
established form

mNJL = m0 − 2GNcNf

∫ Λ
d3p

(2π)3
T
∑
n

eiωnη tr[S(pn)], (2.3)

where Nc = 3, Nf = 2, and tr denotes the spinor trace over the fermion propagator
S(pn) = (/pn + µγ0 − mNJL)−1 with pn = (iωn,p) and ωn = (2n + 1)πT . The effects
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Figure 1: Behavior of the effective fermion massm within the NJL model in MeV at the chemical potential
µ = 0 and µ = 0.2Λ as a function of the temperature T in MeV.

of the finite temperature T are included here through the imaginary-time (or Matsubara)
formalism, cf. [28, 29]; the parameter η denotes an infinitesimally small positive imaginary-
time difference, kept for definiteness and ultimately taken to vanish. Upon evaluation of
the Matsubara-frequency summation and in the chiral limit m0 → 0, the gap equation (2.3)
becomes

mNJL = 2GNcNf mNJL

∫ Λ
d3p

(2π)3
1

E

[
tanh

(
E + µ

2T

)
+ tanh

(
E − µ

2T

)]
, (2.4)

where E2 = p2 +m2
NJL, cf. [22].

When evaluating the self-consistent gap equation at vanishing chemical potential µ, one
obtains a finite effective fermion mass solution of mNJL(0, 0) ≈ 313 MeV at T =µ=0, which
decreases monotonically as a function of increasing temperature T , until a second-order
phase transition is reached at a critical value T c(µ=0) ≈ 190 MeV. At higher temperatures
the initial spontaneously broken chiral symmetry of the system is restored, and the effective
fermion mass mNJL vanishes. This behavior is shown in figure 1. A qualitatively similar
second-order phase transition is found for small finite chemical potential µ, differing in a
decrease of the critical temperature T c(µ) and of the mass mNJL(T, µ) in the spontaneously
broken chiral-symmetry phase.

When evaluating the gap equation (2.4) at vanishing (or small) temperature T as a
function of the chemical potential µ, however, a parametric region is reached in which the
gap equation admits multiple real mass solutions. The stable physical mass solution in this
region can then be determined as the global minimum of the thermodynamic potential

ΩNJL(T, µ)=−T ln[Z]=−T ln
(
tr
[
e−(HNJL−µN)/T

])
(2.5)

under variation of m, where Z denotes the (grand canonical) partition function. Using the
coupling-constant integration method, see, e.g., [22, 29], ΩNJL can be determined as follows:
By considering the Hamiltonian density Hλ = H0 +λHint, with Hint denoting the two-body
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Figure 2: Qualitative behavior of the thermody-
namic potential ΩNJL at vanishing temperature T
as a function of the effective mass m for various
chemical potentials µ. The different cases illustrate
the possible existence of extrema at vanishing and
finite mass.
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Figure 3: Behavior of the effective fermion mass
m within the NJL model in MeV at vanishing tem-
perature T as a function of the chemical potential
µ in MeV. The stable physical mass solution asso-
ciated with the global minimum of ΩNJL is shown
as a solid black line, undergoing a first-order phase
transition at µc.

contact interaction term in (2.1), eq. (2.5) implies that

dΩλ

dλ
=

1

λZλ
tr(λHintZλ) =

1

λ
〈Hint 〉. (2.6)

Accordingly, the thermodynamic potential ΩNJL of the system (2.1), associated with λ = 1,
can be determined from the thermodynamic average of the interaction energy to be

ΩNJL − Ω0 =
1

4G

[
(mNJL −m0)2 − 2

∫ 1

0

dλ

λ
(mλ −m0)

dmλ

dλ

]
, (2.7)

cf. [22]. By substituting the λ-dependent equivalent of the gap equation (2.3) for mλ−m0,
the coupling-constant integration thus results in the expression

ΩNJL − Ω0 =
(mNJL −m0)2

4G
− 2T NcNf

∫ Λ
d3p

(2π)3
ln

[
cosh(E+µ

2T ) cosh(E−µ2T )

cosh(E0+µ
2T ) cosh(E0−µ

2T )

]
, (2.8)

with E2
0 = p2 + m2

0. Subtracting the contribution of the denominator in the logarithm,
which is associated with the thermodynamic potential Ω0 of the free theory obtained at
λ = 0, one thus finds

ΩNJL(T, µ) =
(mNJL −m0)2

4G
− 2NcNf

∫ Λ
d3p

(2π)3
E

− 2T NcNf

∫ Λ
d3p

(2π)3
ln
([

1 + e−(E+µ)/T
] [

1 + e−(E−µ)/T
])
.

(2.9)

The gap equation (2.4) can be regained from the extremal condition dΩ/dm = 0 in the
chiral limit.

In figure 2 the behavior of the thermodynamic potential is visualized for vanishing
temperature T and various chemical potentials µ as a function of the effective mass m. For
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small chemical potentials µ < µ− ≈ 314 MeV (dotted black line), the only minimum lies
at a finite value of the fermion mass, which identifies the physical solution in this region of
spontaneously broken chiral symmetry. For µ− < µ < µ+ ≈ 333 MeV the thermodynamic
potential admits a second minimum at vanishing mass, which for µ− < µ < µc ≈ 326 MeV
(dashed black line) is only a local, not a global minimum of ΩNJL(T = 0, µ). Therefore,
the vanishing mass solution is a metastable state in this region. At µc (solid black line)
both minima of ΩNJL lie at the same height. The abrupt transition from the finite fermion
mass to the vanishing mass solution at µc thus marks a chiral-symmetry-breaking first-order
phase transition. For µc < µ < µ+ (dashed red line), the global minimum characterizing
the physical solution lies at vanishing mass, while the finite-mass solution describes a local
minimum associated with a metastable solution only. When µ > µ+ (solid red line), the
only minimum lies at vanishing mass. No additional solutions exist. Moreover, a local
maximum of ΩNJL(T = 0, µ) can be found for µ < µ− at m = 0 (see dotted black curve)
and for µ− < µ < µ+ in between the two existing minima (see dashed curves and solid
black curve). While this maximum denotes a possible mass solution of the gap equation,
such a solution is an unstable state.

The behavior of the stable physical fermion mass, as well as the metastable and unstable
mass solutions of the gap equation, are visualized as a function of the chemical potential µ
in figure 3 as solid, dashed and dotted lines respectively. A qualitatively similar first-order
phase transition behavior is found at small finite temperatures T , causing a small decrease
in the critical chemical potential µc(T ) and the mass mNJL(T, µ) in the spontaneously
broken chiral-symmetry phase.

In figure 4 the behavior of the physical mass mNJL is shown as a function of both the
temperature T and the chemical potential µ, with the chiral phase transition being denoted
in red. The red dot marks the critical end point (CEP) at which the first-order transition
behavior, found at small temperatures, changes to a second-order transition, found at small
chemical potentials. It lies at TCEP ≈ 79 MeV and µCEP ≈ 281 MeV (with a ratio of
(µ/T )CEP ≈ 3.56).

Another instructive representation of the chiral phase transition that is commonly used
in the context of heavy-ion collisions and astrophysical models of compact stars, considers
the behavior of the effective fermion mass as a function of the quark number density n(T, µ)

instead of the chemical potential µ, which is determined through the thermodynamic po-
tential as

nNJL(T, µ) = −∂ ΩNJL(T, µ)

∂µ

∣∣∣
T

= NcNf

∫ Λ
d3p

(2π)3

[
tanh

(
E + µ

2T

)
− tanh

(
E − µ

2T

)]
. (2.10)

It is the physical quantity that enters into the equations of state and which is accessible
experimentally. Such a representation also has the advantage that the stable, metastable
and unstable solutions of the fermion mass found in the region with a first-order phase
transition arise as separate regions of a single-valued function in the quark number density,
while these solutions form overlapping branches in the chemical potential between µ− and
µ+. This is illustrated for the case of vanishing temperature in figure 5(a), where nNJL(T =

0, µ) is shown as a function of the chemical potential. The solutions for stable, metastable
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Figure 4: Effective fermion mass mNJL as a function of the temperature T and the chemical potential µ in
MeV. The chiral phase transition is denoted in red, with a red dot indicating the CEP. At low temperatures
the mass undergoes a discontinuous first-order chiral phase transition, while the transition is of second order
at small chemical potentials.
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Figure 5: (a) Quark number density at vanishing temperature as a function of the chemical potential µ
in MeV, illustrating that, while the stable, metastable and unstable mass solutions of the gap equation
are a function of the chemical potential with multiple branches, they form a single-valued function of the
quark number density. (b) Chiral phase diagram of the NJL model in the temperature-quark number
density plane. The phase transition of the stable physical fermion mass is denoted as solid black line. Red
lines denote the spinoidals associated with µ+ (dashed) and µ− (solid) marking the transition from the
metastable (shaded) to the unstable mass regions.

and unstable fermion masses are indicated as solid, dashed and dotted lines respectively
and the corresponding regions of the quark number density nNJL are indicated. The chiral
phase diagram in the T -n–plane is shown in figure 5(b). The phase transition is denoted
as a solid black line. Red lines denote the spinoidals associated with µ±, that bind the
regions of metastable solutions (shaded in red) and mark the transition to the region of
only unstable results.
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Beyond the identification of the physical effective fermion mass, the thermodynamic
potential in (2.9) allows for the study of various thermodynamic observables. In addition to
the quark number density nNJL, the entropy density sNJL is determined through ΩNJL(T, µ)

to be

sNJL(T, µ) = − ∂ ΩNJL(T, µ)

∂T

∣∣∣
µ

= 2NcNf

∫ Λ
d3p

(2π)3

{
ln
([

1 + e−(E+µ)/T
] [

1 + e−(E−µ)/T
])

+
E

T

− E + µ

2T
tanh

(
E + µ

2T

)
− E − µ

2T
tanh

(
E − µ

2T

)}
.

(2.11)

The pressure density pNJL(T, µ) corresponds to the thermodynamic potential (2.9) up
to an overall sign and relative to the physical vacuum at vanishing temperature and chemical
potential,

pNJL(T, µ) = −
[

ΩNJL(T, µ)− ΩNJL(0, 0)
]
. (2.12)

The energy density εNJL(T, µ) and the interaction measure (or trace anomaly of the energy-
momentum tensor) INJL(T, µ), quantifying the deviation from an ideal-gas behavior, have
the respective forms

εNJL(T, µ) = −pNJL + T sNJL + µnNJL, (2.13)

INJL(T, µ) = εNJL − 3 pNJL. (2.14)

To study the behavior of these observables (2.10 – 2.14), their analysis as a function of
the temperature T along lines of constant µ/T in the T -µ–plane is instructive. Furthermore,
the influence of the three-momentum cutoff scale Λ can be examined by considering the
behavior of the thermodynamic observables along these lines in the limit Λ → ∞. Note
that, while the quark number density (2.10) and entropy density (2.11) remain convergent in
this limit, the thermodynamic potential (2.9), and consequently the pressure density (2.12),
energy density (2.13) and interaction measure (2.14), show an ultra-violet divergence. In
the form (2.9), however, one finds this divergence contained in the last term contributing to
ΩNJL(T, µ), while the three-momentum integration of the logarithmic term remains finite
in the large cutoff limit. Since the divergent term is, in particular, independent of the
temperature T and the chemical potential µ, it is sufficient to remove the cutoff of the
finite logarithmic term in (2.9) to study the behavior at high temperatures.

Notably the algebraic behavior of ΩNJL in the large temperature limit for fixed µ/T

and when removing the cutoff scale Λ→∞ is found to be

ΩNJL(T, µ) ∼ −T 4NcNf

[
7π2

180
+

1

6

( µ
T

)2
+

1

12π2

( µ
T

)4 ] (2.15)

and coincides with the Stefan-Boltzmann (SB) behavior of an ideal massless fermion gas,
which is expected to dominate the behavior of the NJL model in the chirally symmetric
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Figure 6: Thermodynamic observables as a function of the scaled temperature T/T c with three-momentum
cutoff Λ (solid) and in the limit Λ→∞ (dashed).

region. Together with the corresponding expansions of (2.10) and (2.11),

nNJL(T, µ) ∼ T 3NcNf

[ 1

3

( µ
T

)
+

1

3π2

( µ
T

)3 ]
, (2.16)

sNJL(T, µ) ∼ T 3NcNf

[ 7π2

45
+

1

3

( µ
T

)2 ]
, (2.17)

it is thus sensible to present the scaled quantities n/T 3, s/T 3, p/T 4, ε/T 4 and I/T 4 when
considering the behavior of these observables as functions of T for fixed values µ/T , because
they approach finite limits at large temperatures. To compare the behavior of the ther-
modynamic observables along different lines of fixed values µ/T , they are here furthermore
normalized to their respective SB limit values, as determined by (2.15 – 2.17). An exception
is the asymptotically vanishing interaction measure, which is scaled to its value at the phase
transition in the Λ→∞ case instead. Their behaviors are shown in figures 6(a) – 6(e). In
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T c
NJL (n/T 3)SB (s/T 3)SB (p/T 4)SB (ε/T 4)SB (I/T 4)c

µ/T = 10−4 190 MeV 0.0002 9.2116 2.3029 6.9087 1.7399

µ/T = 2 120 MeV 5.6211 17.2116 7.1135 21.3404 11.0912

µ/T = 5 59 MeV 35.3303 59.2116 58.9658 176.8973 182.9054

Table 1: Chiral phase transition temperature, Stefan-Boltzmann limits of the quark number, entropy,
pressure and energy densities, as well as the interaction measure value at the phase transition (for Λ→∞)
along lines of constant µ/T in the T -µ-plane for µ/T = 10−4 (close to the T axis), µ/T = 2 (second-order
transition region) and µ/T = 5 (first-order transition region).

each case, the solid lines denote the behavior with fixed cutoff length Λ as a function of
the scaled temperature T/T c for µ/T = 2 (red), i.e., in the second-order phase-transition
region, and for µ/T = 5 (blue), i.e., in the first-order transition region. For comparison
with the frequently presented case along the temperature axis, the behavior for close-to
vanishing chemical potential, µ/T = 10−4, is included in black. This value of µ/T is not
taken to vanish exactly in order to present a nontrivial reference for the quark number
density n as well, whose SB limit otherwise vanishes as µ → 0, see (2.16). The respective
normalizations, as well as the critical-temperature values T c of the phase transition, are
listed in table 1.

In the region of restored chiral symmetry, that is at large temperatures T > T c, the
effective fermion mass vanishes and thus the free quarks are expected to dominate the
physical behavior of the system. Accordingly, the quark number density, as well as the
pressure, entropy and energy densities, should saturate to the behavior of an ideal gas of
massless fermions. Instead, figures 6(a) – 6(d) show an asymptotic decay of these quantities
at large temperatures beyond the chiral phase transition. The comparison to the Λ → ∞
behavior illustrates, however, that this decay is the consequence of the momentum cutoff
within the model. For definiteness, regard figure 6(c) for the pressure, which is continuous
in all cases. While the NJL(Λ) curves (solid lines) undershoot the SB limit and in fact
go to zero, the NJL(∞) curves (dashed lines), found by removing the cutoff, approach
the SB limit quite rapidly. The ideal gas behavior is not only reached in the asymptotic
large-temperature limit, as previously indicated by the expansions (2.15-2.17), but one
finds rather, that the thermodynamic observables plateau rapidly after crossing the phase
transition at T c - in agreement with expectation. Notably, the quark number density,
figure 6(a), and entropy density, figure 6(b), reach their respective SB limits essentially
upon undergoing the phase transition, while p, ε and I, figures 6(c) – 6(e), approach the
limits rapidly, but not at the phase transition point. So while the effective mass solution m
vanishes immediately, resulting in the presence of a massless fermion gas, the free ideal-gas
behavior is obtained only at some distance from T c. The effective degrees of freedom remain
restricted around the chiral phase transition, which is reflected in the reduced pressure and
higher energy densities as the fermions are still correlated, and the interaction measure
rapidly declining rather than immediately vanishing due to the absence of confinement.

At small temperatures T < T c, the chiral symmetry is spontaneously broken through
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the formation of fermion-antifermion pairs and the fermions gain a finite effective mass.
The behavior of the system is thus expected to be governed by the massless pionic Nambu-
Goldstone mode. Nevertheless, since the standard NJL model is not confining, the ther-
modynamic functions reflect the presence of fermions within this region as well. Their
increasing effect with the temperature T rising toward the phase transition value T c is
clearly seen in the growth of the quark number, entropy, pressure and energy densities in
figures 6(a) – 6(d). Notably, the removal of the momentum cutoff, Λ → ∞, initially does
not result in a significant difference of behavior. Such a deviation is only found as the tran-
sition to the massless-fermion-gas behavior at T c is approached. This difference between
the solid NJL(Λ) and dashed NJL(∞) curves, as well as the influence of the fermions in
the broken symmetry region overall, is much less pronounced at large ratios µ/T , for which
the system undergoes a first-order phase transition with a sudden discontinuous decrease
in the effective fermion mass. While the thermodynamic potential, and thus the pressure
density, remains a continuous function in all cases, the characteristic discontinuity of the
first-order transition is found in the quark number, entropy and energy densities, as well as
the interaction measure.

The interaction measure INJL(T, µ) in figure 6(e) furthermore depicts the change in the
system between the spontaneously broken and restored chiral-symmetry regions clearly:
expressing it in terms of the scaled pressure density,

INJL

T 4
= T

∂

∂T

(pNJL

T 4

)
+ µ

∂

∂µ

(pNJL

T 4

)
, (2.18)

illustrates that INJL naively counts the change in the effective degrees of freedom of the
fermions, cf. [30]. As indicated previously, the results at temperatures close to the phase
transition and throughout the chirally symmetric phase are affected by the momentum
cutoff Λ. In particular the behavior of an ideal massless fermion gas is only recovered in
the limit Λ → ∞. Thus the behavior of INJL in figure 6(e) accounting for a finite cutoff
(solid lines) has to be considered largely artificial. In the limit Λ → ∞ (dashed lines),
however, one finds a characteristic peaked structure, centered around T c, which illustrates
the increase in the fermionic effective degrees of freedom as the system transitions from
a mixture of massive interacting fermions to the free massless fermion gas in the chirally
symmetric region.

Overall, the NJL model can only provide schematic insight into the nature of the chiral
phase transition, especially in the self-consistent first-order approximation discussed here.
But it provides an adequate, accessible framework in the search for general characteristic sig-
nals of non-Hermitian fermionic field theories at finite temperature and chemical potential.
To this end the effects of the non-Hermitian PT-symmetry breaking pseudoscalar exten-
sion gψ̄γ5ψ and the non-Hermitian PT-symmetric pseudovector extension igBµ ψ̄γ5γ

µψ are
investigated in the following sections.

3 Pseudoscalar extension

The NJL model is now extended through the inclusion of the pseudoscalar bilinear term
gψ̄γ5ψ, a modification that breaks the Hermiticity of the system. Nevertheless, an investi-
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gation of this model at vanishing temperature and chemical potential in [20] has established
the existence of real mass solutions and, moreover, dynamical mass generation due to this
non-Hermitian extension term within the framework of the Euclidean four-momentum cut-
off scheme. This feature is particularly relevant in the context of PT theory, for which
the existence of real solutions to non-Hermitian models is a characteristic property. The
non-Hermitian pseudoscalar extension, however, breaks PT symmetry: {PT , γ5} = 0 for
the parity-reflection and time-reversal operators

P : ψ(t,x) → Pψ(t,x)P−1 = γ0ψ(t,−x),

T : ψ(t,x) → T ψ(t,x)T −1 = iγ1γ3ψ∗(−t,x)
(3.1)

in 3 + 1 dimensional spacetime. The extension term is thus anti-PT-symmetric and the
Hamiltonian density

H = HNJL + gψ̄γ5ψ, (3.2)

of the full extended system is non-PT-symmetric overall. Therefore, in the context of (at
least) this fermionic quantum field theory, the reality of the effective fermion mass solution
alone appears not to be a sufficient distinguishing feature of PT models. To identify such
properties of non-Hermitian fermionic systems, we analyze here the behavior of the effective
fermion mass and the thermodynamic observables of the non-Hermitian NJL model with
the pseudoscalar extension gγ5 at finite temperatures and densities. The following section
then contrasts this with the behavior of a non-Hermitian but PT -symmetric pseudovector
extension.

In addition to breaking PT symmetry, the bilinear extension based on γ5 also explicitly
breaks the chiral symmetry of the model considered, similar to including a small bare mass
m0 in the NJL model, see (2.1). The limit of vanishing bare mass, m0 → 0, is therefore
not a chiral limit. Nevertheless, the system retains an approximate chiral symmetry for
small bilinear couplings g. Its effect on the behavior of the effective fermion mass in the
T -µ-plane and across the phase transition is, however, distinctly different to that of the
scalar bare mass m0, as shown in the following.

Since the non-Hermitian bilinear extension leaves the two-body interaction structure
of the NJL model unchanged, the structure of the Feynman-Dyson perturbation approach
remains applicable, cf. [19, 20]. The self-consistent Hartree approximation to the gap equa-
tion for the effective fermion mass keeps the general form (2.3). However, the full fermion
propagator now depends on the extension term gγ5 and can, for the evaluation of the gap
equation, be written in the form

S(pn) = (/pn + µγ0 −m− gγ5)−1 =
/pn + µγ0 +m− gγ5

(iωn + µ)2 − (p2 +m2 − g2)
, (3.3)

with pn = (iωn,p), ωn = (2n+ 1)πT , and thus

tr[S(ωn,p)] =
4m

(iωn + µ)2 − (p2 +m2 − g2)

=
2m√

p2 +m2 − g2

[
1

iωn − (
√

p2 +m2 − g2 − µ)
− 1

iωn + (
√

p2 +m2 − g2 + µ)

]
,

(3.4)
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Figure 7: (a) Behavior of the effective fermion mass m within the pseudoscalar extension of the NJL model
in MeV at vanishing chemical potential µ as a function of the temperature T for various bilinear coupling
values g. (b) Behavior of the effective mass m at vanishing temperature T as a function of the chemical
potential µ for various bilinear coupling values g. The stable physical solutions associated with the global
minimum of Ω are shown as solid lines, while metastable and unstable solutions of the gap equation are
shown as dashed and dotted lines respectively.

similar to the treatment within the four-momentum cutoff scheme at vanishing temperature
and chemical potential [19, 20]. Note in particular, that the non-Hermitian coupling con-
stant g enters effectively as a quadratic shift of the fermion mass m, in the form m2 − g2.
Accounting for this shift, the Matsubara-frequency summation can be performed analo-
gously to the standard NJL model, resulting in the gap equation of the modified system:

m = 2GNcNf m

∫ Λ
d3p

(2π)3
1√

p2 +m2 − g2

[
tanh

(√
p2 +m2 − g2 + µ

2T

)
+ tanh

(√
p2 +m2 − g2 − µ

2T

) ]
.

(3.5)

Notice that the hyperbolic tangents, in combination with the square root in the de-
nominator, form a real-valued expression, even in the case that p2 +m2− g2 < 0, enabling
the existence of real effective mass solutions. In fact, because of the formal similarity to
the gap equation (2.4), with m2

NJL replaced by m2− g2, one can directly infer the existence
of a finite real fermion mass solution m of the modified NJL model as long as a finite mass
solution mNJL in the standard NJL model exists, satisfying:

m2(T, µ, g) = m2
NJL(T, µ) + g2, for mNJL 6= 0. (3.6)

This generalizes the relation found in [20] from the limit of vanishing temperature and
chemical potential into the finite T -µ–plane. However, the existence of such a solution m
does not ensure its physicality, i.e., the solution obtained from (3.6) is not guaranteed to
correspond to the global minimum of the thermodynamic potential Ω. And moreover, real
fermion masses in the modified NJL model are not restricted to the same T -µ regime as
in the standard NJL model, since the relation (3.6) allows for real solutions m where the
corresponding solution in the standard NJL model is an unphysical imaginary result, i.e.,
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NJL (g = 0) g = 0.4Λ g = 0.6Λ gmax

T c(µ = 0, g) 190 MeV 224 MeV 256 MeV 307 MeV

µc(T = 0, g) 326 MeV 310 MeV 282 MeV 197 MeV

Table 2: Phase transition temperatures T c(µ = 0, g) at vanishing chemical potential and transition chem-
ical potentials µc(T = 0, g) at vanishing temperature for various coupling strengths g of the non-Hermitian
extension term.

where −g2 < m2
NJL < 0. Nonetheless, a qualitative resemblance of the effective fermion

mass behavior to the NJL-model result is found upon evaluating the self-consistent gap
equation (3.5) of the modified NJL model.

When both the temperature and chemical potential are zero, one notes that the effective
fermion mass increases as a function of the bilinear coupling strength g, see figure 7(a).
That is, mass is generated on including this term, which confirms the robustness of the
qualitative result previously obtained for the four-momentum Euclidean cutoff, applied
to this model [19, 20]. At small (or vanishing) fixed chemical potential µ the real finite
effective fermion mass solution decreases monotonically with increasing temperature T until
a second-order phase transition is reached at T c(g) > T cNJL and the spontaneously broken
approximate chiral symmetry is restored, see figure 7(a) and table 2. Notably, the mass
vanishes exactly for temperatures T > T c(g), even though the pseudoscalar extension term
breaks the chiral symmetry explicitly. Contrary to the inclusion of a bare mass m0, the
phase transition is not smoothed out, but remains sharp yet shifted to larger temperatures
with increasing bilinear coupling strength g. While this behavior is found for arbitrarily
large values of the real bilinear coupling g, we note that at gmax ≈ 0.877Λ ≈ 573 MeV,
the effective fermion mass at T = µ = 0 reaches the cutoff scale Λ. Therefore, no higher
coupling values are considered in the following discussion.

When evaluating the gap equation (3.5) at small (or vanishing) temperature T as a
function of the chemical potential µ, again a qualitative resemblance to the standard NJL-
model behavior is found, see figure 7(b): real finite mass solutions exist up to a maximum
value µ+ beyond which the mass solution vanishes. Contrasting the second-order transition
behavior of the mass found as a function of temperature at small chemical potential, see
figure 7(a), the fermion mass does not decrease to vanish continuously. Instead a parametric
region with multiple real finite fermion mass solutions is found. As in the standard NJL
model the thermodynamic potential Ω has to be studied to identify the stable physical
mass solution in this region. The position of the critical chemical potential µc(g) of the
approximate chiral phase transition, as well as the effect of the non-Hermitian extension
on it, are not immediately apparent. Note, however, the evidently decreasing lower bound
µ−(g) of the region with multiple real mass solutions as the bilinear coupling g increases,
while the upper bound µ+ ≈ 333 MeV remains unaffected.

The thermodynamic potential Ω(T, µ, g) of the modified NJL model can be determined
from the thermodynamic average of the interaction energy, following a coupling-constant
integration method that parallels the discussion for the standard NJL model, see (2.7). As
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such it is structurally not affected explicitly by the bilinear non-Hermitian extension term.
However, the substitution of the effective mass within the coupling-constant integral here
relies on the modified gap equation (3.5), through which the extension enters implicitly:

2

∫ 1

0

dλ

λ
(mλ −m0)

dmλ

dλ

= 4GNcNf

∫ Λ
d3p

(2π)3

∫ 1

0
dλ

dEλ
dλ

Eλ√
E2
λ − g2

[
tanh

(√
E2
λ − g2 + µ

2T

)
+ tanh

(√
E2
λ − g2 − µ

2T

) ]
= 8GNcNf T

∫ Λ
d3p

(2π)3

{∫ x(1)

x(0)
dx tanh(x) +

∫ y(1)

y(0)
dy tanh(y)

}
= 8GNcNf T

∫ Λ
d3p

(2π)3
ln

(
cosh[x(1)] cosh[y(1)]

cosh[x(0)] cosh[y(1)]

)
,

where E2
λ = p2+m2

λ and the variable of integration λ was changed to x(λ) = 1
2T (
√
E2
λ − g2+

µ) and y(λ) = 1
2T (
√
E2
λ − g2 − µ), with dx = dy = 1

2T
Eλ√
E2
λ−g2

dEλ
dλ dλ. One thus arrives at

the formal equivalent of the relation (2.8),

Ω− Ω0 =
(m−m0)2

4G
− 2T NcNf

∫ Λ
d3p

(2π)3
ln

[
cosh(

√
E2−g2+µ

2T ) cosh(

√
E2−g2−µ

2T )

cosh(

√
E2

0−g2+µ

2T ) cosh(

√
E2

0−g2−µ
2T )

]
, (3.7)

which establishes the thermodynamic potential Ω(T, µ, g) after subtracting the contribution
associated with the thermodynamic potential Ω0 of the non-Hermitian free theory obtained
at λ = 0:

Ω(T, µ, g) =
(m−m0)2

4G
− 2NcNf

∫ Λ
d3p

(2π)3

√
E2−g2

− 2T NcNf

∫ Λ
d3p

(2π)3
ln
([

1 + e−(
√
E2−g2+µ)/T

][
1 + e−(

√
E2−g2−µ)/T

])
.

(3.8)

Like the gap equation (3.5) of the modified NJL model, which is recovered from the
extremal condition dΩ/dm = 0 in the limit of vanishing bare mass m0, the thermodynamic
potential (3.8) is a real-valued expression, even in the case that E2− g2 < 0. This property
is seen clearly in (3.7), whereas the separation of the momentum integral in (3.8) obfuscates
this slightly. Nevertheless, this separation of the square-root term, without explicit depen-
dence on the temperature or the chemical potential, is advantageous for the identification of
cutoff effects in the SB limit of large temperatures T , where it separates off the ultraviolet
divergence of Ω(T, µ, g). Canceling imaginary contributions are in particular restricted to
a fixed region of small momenta |p| ≤ g < Λ and as such unaffected by a removal of the
cutoff limit in the logarithmic integral contribution for comparison to the SB limit.

The stable physical mass solution is now determined as the global minimum of the
thermodynamic potential Ω(T, µ, g) under variation of the effective mass m, whereas local
minima characterize metastable solutions and unstable solutions of the gap equation are
maxima of Ω. These characterizations of the possible real mass results are visualized in
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Figure 8: Phase diagrams of the modified NJL model in the T -µ–plane (a) and the T -n–plane (b) at
various strengths g of the non-Hermitian extension. The phase transitions are denoted as solid lines, while
the dotted and dashed lines mark the position of the spinoidals associated with µ+(T, g) and µ−(T, g)

respectively. The positions of the critical end-points are shown as dots.

figure 7(b) as solid, dashed and dotted lines respectively. The chemical potential µc of
the phase transition is denoted as a dot. Similar to the standard NJL model, the modified
system at small temperatures undergoes a first-order phase transition marked by the abrupt
transition from a finite to a vanishing physical mass at µc. Notably, µc decreases with
increasing bilinear coupling strength g of the non-Hermitian extension term, see table 2,
contrasting the trend in the second-order transition behavior, cf. figure 7(a). This implies
in particular, that while the relation (3.6) connects the possible finite real mass solutions of
the standard NJL gap equation to possible real masses of the modified system, it does not
preserve the physicality of this solution: finite real physical masses in the NJL model do
not necessarily have corresponding finite real physical mass solutions in the non-Hermitian
model.

The overall behavior of the phase transition within the T -µ-plane is visualized in fig-
ure 8(a) for the coupling strengths g = 0.4Λ and g = 0.6Λ of the non-Hermitian extension

NJL (g = 0) g = 0.4Λ g = 0.6Λ

TCEP(g) 79 MeV 122 MeV 163 MeV

µCEP(g) 281 MeV 253 MeV 236 MeV

(µ/T )CEP 3.56 2.07 1.45

Table 3: Temperature and chemical potential of the critical end-points of the modified NJL model for
various coupling strengths g of the non-Hermitian extension term.
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term. The respective critical end-points, marking the change from a second-order transition
behavior at low chemical potentials to a first-order behavior at low temperatures, are shown
as dots and their position is listed in table 3. Note in particular, that with an increase in
the bilinear coupling g, the position of the CEP in the modified NJL model follows the
trend previously outlined of moving to higher temperature and lower chemical potential.
One observes furthermore, that the spinoidal which marks the upper bound µ+(T ) of the
region with multiple finite mass solutions in the case of a first-order phase transition, cf.
the special case of T = 0 shown in figure 7(b), remains generally independent of the bilinear
coupling g. Its position in the T -µ-plane, shown as a dotted line in figure 8(a), does not de-
viate from the NJL model case (in black), but merely extends beyond it as the CEP moves
to higher temperatures and lower chemical potentials with increasing bilinear coupling g.

On the other hand, the position of the spinoidal marking the lower bound µ−(T ),
shown as dashed lines in figure 8(a), rapidly moves towards a small chemical potential with
increasing g, like the phase transition itself, cf. again the case of vanishing temperature in
figure 7(b).

In addition to the analysis of the phase diagram in the T -µ–plane, the thermodynamic
potential (3.8) of the modified NJL model enables the study of the thermodynamic observ-
ables, paralleling the standard NJL model approach. The evaluation of the quark number
density,

n(T, µ, g) = − ∂ Ω(T, µ, g)

∂µ

∣∣∣
T

=NcNf

∫ Λ
d3p

(2π)3

[
tanh

(√
E2 − g2 + µ

2T

)
− tanh

(√
E2 − g2 − µ

2T

)]
,

(3.9)

in particular allows for the visualization of the phase transition in the T -n–plane, where
regions of stable, metastable and unstable effective fermion mass solutions are distinguished
clearly. Like the thermodynamic potential and the modified gap equation, n(T, µ, g) is a
real-valued function. The behavior of the phase transition in the T -n–plane is shown in
figure 8(b) for the coupling values g = 0.4Λ and g = 0.6Λ. The transition is in each case
denoted through solid lines, while the spinoidals associated with µ+ and µ−, which bind
the shaded regions of metastable solutions and mark the transition to a region of unstable
results only, are denoted as dotted and dashed lines respectively, cf. also figure 5(b).

Together with the entropy density,

s(T, µ, g) =− ∂ Ω(T, µ, g)

∂T

∣∣∣
µ

= 2NcNf

∫ Λ
d3p

(2π)3

{
ln
([

1 + e−(
√
E2−g2+µ)/T

] [
1 + e−(

√
E2−g2−µ)/T

])
+

√
E2 − g2
T

−
√
E2 − g2 + µ

2T
tanh

(√
E2 − g2 + µ

2T

)
−

√
E2 − g2 − µ

2T
tanh

(√
E2 − g2 − µ

2T

)}
,

(3.10)

and the pressure density, determined by the thermodynamic potential (3.8) of the modified
system,

p(T, µ, g) = −
[

Ω(T, µ, g)− Ω(0, 0, g)
]
, (3.11)
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the energy density and interaction measure are found to be

ε(T, µ, g) = −p(T, µ, g) + T s(T, µ, g) + µn(T, µ, g), (3.12)

I(T, µ, g) = ε(T, µ, g)− 3 p(T, µ, g), (3.13)

analogous to the standard NJL model. Like Ω(T, µ, g) itself, they are entirely real-valued
functions, even when E2 − g2 < 0. Note furthermore, that the non-Hermitian bilinear
coupling ultimately always enters in combination with the temperature as g/T in (3.9)
to (3.13). As such, the large temperature limit remains unchanged by the inclusion of
the non-Hermitian pseudoscalar bilinear extension, which is temperature suppressed, when
considered for fixed µ/T and removing the cutoff scale Λ → ∞ (with the exception of
the UV-divergent term in Ω in the related pressure and energy densities as well as in the
interaction measure, cf. the discussion within the standard NJL model). One finds the
same SB limits (2.15) to (2.17) of an ideal massless fermion gas as in the standard NJL
model.

To illustrate the effect of the non-Hermitian extension on the thermodynamic observ-
ables at finite values of the temperature and the chemical potential, the behavior of the
quantities n, s, p and ε, scaled to their respective SB limits, is presented in figures 9(a)
– 9(h). Shown is their behavior for the non-Hermitian coupling strengths g = 0.4Λ and
g = 0.6Λ along lines in the T -µ–plane with constant ratio µ/T = 0.5 (red), in which case
the phase transition remains of second order, and for the ratio µ/T = 5 (blue), for which
the system undergoes a first-order phase transition, cf. figure 8(a). Solid lines denote
the behavior with a fixed cutoff length Λ as a function of the temperature scaled to the
associated transition temperature within the standard NJL model, T/T cNJL, while dashed
lines show the behavior when the cutoff is removed. Table 4 lists the corresponding critical
temperatures T c(g).

In both the second-order transition case with µ/T = 0.5 and the first-order transition
case with µ/T = 5, the behavior of the thermodynamic functions (3.9) – (3.13) coincides
with the behavior of the standard NJL model functions within the overlapping sponta-
neously broken symmetry regions, despite the dynamical generation of fermion mass. This
is to be expected because, like for the modified gap equation (3.5), these functions show
a formal equivalence to the corresponding standard NJL model observables (2.10) – (2.14)
with m2

NJL replaced by m2 − g2. Due to the relation (3.6) between the effective fermion
masses any dependence on the non-Hermitian extension term thus cancels exactly at values

T c
NJL T c(g = 0.4Λ) T c(g = 0.6Λ)

µ/T = 0.5 182 MeV 213 MeV 242 MeV

µ/T = 5 59 MeV 58 MeV 54 MeV

Table 4: Phase transition temperature along lines of constant µ/T = 0.5 (second-order transition region)
and µ/T = 5 (first-order transition region) for various coupling strengths g of the non-Hermitian extension
term.
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of T and µ that lie within the spontaneously broken symmetry region of both the standard
NJL model and the modified system. However, the position of the phase transition within
the T -µ–plane is affected by the non-Hermitian extension term, resulting in some notable
differences.

Due to the increase of the transition temperature T c(g) in the second-order phase
transition case with µ/T = 0.5 (red), one observes a continued increase of the quark number
density n for T cNJL < T < T c(g), see figure 9(a). When the cutoff is removed (dashed lines)
this increase in particular exceeds the SB limit. Beyond the phase transition, n then displays
an asymptotic decay toward either a vanishing limit, for finite Λ, or toward the SB limit,
for Λ → ∞. As in the standard NJL model the vanishing large-temperature behavior
can thus be identified as a cutoff artifact. The asymptotic decay throughout the restored
approximate chiral symmetry region at T > T c(g) toward the standard SB limit of an ideal
massless fermion gas for Λ→∞, contrasting the plateauing behavior found in the NJL(∞)
case, is a result of the temperature-suppressed influence of the extension term. A notable
deviation from the massless ideal gas behavior in the form of a fermion excess remains until
the temperature well exceeds the transition value T c(g). A comparable phenomenology is
found for the entropy, pressure and energy density, cf. figures 9(c), 9(e) and 9(g).

In the first-order transition case with µ/T = 5 (blue), see figures 9(b), 9(d), 9(f) and
9(h), the pseudoscalar extension results in a decrease of the transition temperature T c(g)

with increasing bilinear coupling g instead. As such the behavior of the modified system
coincides with the NJL model behavior throughout the entire region of spontaneously broken
approximate chiral symmetry at T < T c(g). However, after undergoing the phase transition
at T c(g), with the characteristic discontinuous jump in all thermodynamic quantities but the
pressure, a notable increase beyond the SB limit is observed in all functions, followed again
by an asymptotic decay toward either an artificial vanishing limit at high temperatures,
for finite Λ, or toward the SB limit of an ideal massless fermion gas, when the cutoff is
removed. As in the second-order transition case, a notable deviation from the ideal gas
behavior remains until the temperature well exceeds the transition value T c(g).

The behavior of the interaction measure is illustrated in figures 9(i) and 9(j). Since
I(T, µ, g) vanishes in the SB limit, it is normalized instead to the value Ic at the phase
transition of the NJL(∞) case as before. The behavior of the pressure and the energy
density close to the phase transition and beyond are affected notably by the momentum
cutoff Λ, so that again the behavior of I/Ic when accounting for a finite cutoff (solid lines)
has to be considered largely artificial. In the limit Λ → ∞ (dashed lines), the interaction
measure behaves as follows.

Like the corresponding energy and pressure densities, the behavior of I/Ic coincides
with the behavior of the standard NJL model within the overlapping spontaneously broken
symmetry regions. For the second-order transition case with µ/T = 0.5, see figure 9(i),
where the transition temperature increases with the bilinear coupling g, the interaction
measure decreases less rapidly than in the standard NJL model for T cNJL < T < T c(g) until
T c(g) is reached, reflecting the presence of a fermion excess in the modified system. Beyond
the phase transition I/Ic continues to decrease, although - contrary to the standard NJL
case - it notably does not approach the vanishing SB limit monotonically. Instead, a decrease
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Figure 9: Thermodynamic observables as a function of the scaled temperature T/T cNJL with three-
momentum cutoff Λ (solid) and in the limit Λ→∞ (dashed) for fixed µ/T = 0.5 (second-order transition
regime; in red) and µ/T = 5 (first-order transition regime; in blue).
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to negative values is found, until a minimum is reached and the vanishing large-temperature
limit is approached from below. For the first-order transition case with µ/T = 5, see
figure 9(j), the interaction measure of the extended system coincides with the standard
NJL model all throughout the spontaneously broken symmetry region, since the transition
temperature here decreases with increasing g. The fermion excess becomes apparent only
after undergoing the phase transition, cf. figure 9(d); similar to the second-order transition
case, I/Ic takes on larger values than in the standard NJL model in the restored symmetry
regime close to the phase transition, but rapidly decreases toward a minimum at negative
values before approaching the vanishing SB limit from below.

Altogether the behavior of the interaction measure in the modified system shows the
characteristic peaked structure found in the standard NJL model due to the system transi-
tioning from a mixture of massive interacting fermions and bound states to a free massless
fermion gas, combined with the effects of a fermion excess in the vicinity of the phase tran-
sition due to the non-Hermitian extension. The presence of negative interaction measure
values within the region of restored approximate chiral symmetry marks a notable change
in behavior of the modified NJL model that includes a non-Hermitian pseudoscalar bilinear
term when compared to the standard NJL model case. While relativistic theories satisfying
ε < 3p were initially disregarded based on the observation that ε = 3p for the electro-
magnetic field and ε > 3p for massive free noninteracting particles [31], it has long been
demonstrated that such theories are not necessarily at odds with relativistic causality [32].
In the case of the present study, this can be clearly seen in the presence of a subluminal
(vs < 1) speed of sound,

v2
s(T, µ, g) =

(∂ p(T, µ, g)

∂T

∣∣∣
µ

)(∂ ε(T, µ, g)

∂T

∣∣∣
µ

)−1
, (3.14)

shown in figure 10. While in accordance with relativistic causality, it is noteworthy that
v2
s(T, µ, g) does exceed the conjectured speed of sound bound of v2

s = 1/3 [33]; this bound
has, however, been called into question by examinations of the constraints of neutron star
masses and radii [34–36] finding higher speeds of sound crucial for the existence of neutron
stars above two solar masses. Models with negative interaction measure have, furthermore,
been considered recently [37–39] in the context of scalar-tensor theories, where this property
may result in a significant deviation from the theory of general relativity around neutron
stars. Considering that the discussion of quark matter within neutron stars is frequently
modeled using an equation of state taken from the NJL model, the possible occurrence
of negative interaction measure values due to the non-Hermitian pseudoscalar extension
provides a noteworthy feature of this system, connecting it to the discussion of extended
theories of general relativity.

Overall, modifying the NJL model through the inclusion of a non-Hermitian pseu-
doscalar bilinear term gψ̄γ5ψ results in a dynamically generated increase of the effective
fermion mass in the spontaneously broken approximate chiral regime of the system at finite
temperature and chemical potential. The position of the phase transition in the T -µ–plane
is affected by this extension, moving toward higher temperatures for low chemical potential
values (second-order transition region) and toward lower chemical potentials for low tem-
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Figure 10: Behavior of the speed of sound as a function of the scaled temperature T/T cNJL for fixed
µ/T = 0.5 [(a); second-order transition regime; in red] and µ/T = 5 [(b); first-order transition regime; in
blue] in the case of removed three-momentum cutoff, Λ→∞.

peratures (first-order transition region); the position of the CEP follows this trend, moving
toward higher TCEP and lower µCEP with increasing coupling strength of the non-Hermitian
term. Despite the generation of fermion mass, the behavior of the quark number, entropy,
pressure and energy densities remains unchanged for small T and µ. In the vicinity of the
phase transition and throughout the restored symmetry regime, however, a notable fermion
excess is observed, which decreases asymptotically, approaching the limit of an ideal mass-
less fermion gas deep within the restored symmetry region. Here, at some distance from the
phase transition, the modified system is furthermore characterized by negative interaction
measure values, which mark a notable deviation from the standard NJL model behavior.

4 Pseudovector extension

Another possible non-Hermitian bilinear extension of the NJL model is the addition of an
imaginary pseudovector extension term igBν ψ̄γ5γ

νψ. As with the previous modification,
an investigation at vanishing temperature and chemical potential has demonstrated the
retained existence of real mass solutions and the possibility of dynamical mass generation
due to the non-Hermitian extension term, within the Euclidean four-dimensional cutoff reg-
ularization scheme, and with spacelike fields Bν [19, 20]. Unlike the previous modification,
however, this pseudovector bilinear preserves the PT symmetry in 3+1 dimensional space-
time: [PT , iγ5γ

ν ] = 0 for the parity-reflection and time-reversal operators in (3.1). Thus
the full extended non-Hermitian system with the Hamiltonian density

H = HNJL + igBν ψ̄γ5γ
νψ (4.1)

is PT-symmetric overall. As is characteristic of many PT systems, the existence of real
fermion masses at T = µ = 0 is restricted to a finite region up to a critical value of the
coupling strength g, cf. [19, 20], beyond which the (nontrivial) mass solutions occur in
complex conjugate pairs. This transition is the consequence of a spontaneous breaking of
the PT symmetry of the system.
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Moreover, the pseudovector extension anticommutes with γ5, preserving the axial flavor
symmetry and thus the overall chiral-symmetry properties. As such the limit of vanishing
bare mass, m0 → 0, remains the chiral limit of this modified NJL model.

Similar to the pseudoscalar extension discussed in the previous section, the two-body
interaction structure of the NJL model remains unchanged under the addition of the pseu-
dovector bilinear term and the general form (2.3) of the self-consistent Hartree approxi-
mation of the gap equation is kept intact. The full fermion finite temperature propagator,
which accounts for the axial bilinear modification, takes the form:

S(pn) = (/pn+ µγ0 −m− igBνγ5γ
ν)−1

=
(/pn+ µγ0 +m+ igBνγ5γ

ν) {(iωn + µ)2−p2−m2−g2B2 + 2igmBνγ5γ
ν + 2ig[B0(iωn + µ)−B · p]γ5}

[(iωn + µ)2 − p2 −m2 + g2B2]2 + 4g2{[B0(iωn + µ)−B · p]2 −B2[(iωn + µ)2 − p2]} ,

(4.2)

and thus

tr[S(ωn,p)] =
4m[(iωn + µ)2 − p2 −m2 + g2B2]

[(iωn + µ)2 − p2 −m2 + g2B2]2 + 4g2{[B0(iωn + µ)−B · p]2 −B2[(iωn + µ)2 − p2]} ,

(4.3)

where pn = (iωn,p), ωn = (2n + 1)πT and B2 = BνB
ν , similar to the treatment within

the four-momentum cutoff scheme [19, 20].
The gap equation of the modified NJL model now follows after evaluating the summa-

tion over the Matsubara frequencies. It can be performed analogously to the standard NJL
model after a partial fraction decomposition of (4.3). To this end one first determines the
roots of the denominator, which is a depressed quartic polynomial,

tr[S(x,p)] =
4m(x2 − a)

(x2 − a)2 − (bx2 + cx+ d)
, (4.4)

denoting x = iωn + µ, as well as

a = p2 +m2 − g̃2(1− s2), b = −4g̃2s2,
(4.5)

c = 8g̃2s |p| cos θ, d = −4g̃2p2(1− s2 sin2 θ).

For the latter parameters the angle θ between the spatial vectors B and p has been intro-
duced, so that B · p = |B| |p| cos θ, which remains an argument of the three-momentum
integration in the gap equation (2.3). Furthermore, g̃ = gB0 denotes the scaled bilinear
coupling constant and the parameter s = |B|/B0 quantifies the characteristics of the back-
ground field Bν : s > 1 for a spacelike background, s < 1 for a timelike background and
s = 1 for a lightlike background field.

Following Ferrari’s method [40], the depressed quartic denominator is expanded to the
form

[x2 − a+ n]2 − [(2n+ b)x2 + cx+ (d− 2na+ n2)], (4.6)

where n is then chosen to complete the square in the second term. That is to say, n satisfies
the cubic equation

n3 + n2
(

1

2
b− 2a

)
+ n (d− ab) +

(
1

2
bd− 1

8
c2
)

= 0. (4.7)
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Figure 11: Effective fermion mass m of the modified NJL model at vanishing temperature and chemical
potential as a function of the (scaled) coupling strength g̃ of the extension term for a space-, light- and
timelike background field case.

Out of the three solutions determined by the cubic formula,

n =
4a− b

6
− K1

3
[

1
2(K2 +

√
4K3

1 +K2
2 )
]1/3 +

1

3

[
1
2(K2 +

√
4K3

1 +K2
2 )
]1/3 (4.8)

is selected for simplicity, where

K1 = −4a2−ab− 1

4
b2+3d, K2 = 16a3 + 6a2b− 3

2
ab2− 1

4
b3! +

27

8
c2−18ad−9bd. (4.9)

The denominator of (4.3) thus takes the form

[x2 − a+ n]2 −
[
x
√

2n+ b+
c

2
√

2n+ b

]2
, (4.10)

which is now factorized straightforwardly into

(x+ r1) (x+ r2) (x− r3) (x− r4) (4.11)

with

r1 =
1

2

(√
2n+ b−

√
b−2n+4a− 2c√

2n+ b

)
, r2 =

1

2

(√
2n+ b+

√
b−2n+4a− 2c√

2n+ b

)
,

r3 =
1

2

(√
2n+ b+

√
b−2n+4a+

2c√
2n+ b

)
, r4 =

1

2

(√
2n+ b−

√
b−2n+4a+

2c√
2n+ b

)
.

(4.12)

While not immediately apparent, r1 and r2, as well as r3 and r4, form complex conju-
gate pairs, as is to be expected, based on the complex conjugate root theorem, since the
coefficients (4.5) are real-valued expressions.

Using this factorization, the partial fraction decomposition of the trace of the full
fermion propagator (4.3) has the form

1

4m
tr[S(ωn,p)] = − α1

iωn + (r1 + µ)
− α2

iωn + (r2 + µ)
+

α3

iωn − (r3 − µ)
+

α4

iωn − (r4 − µ)
, (4.13)
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with the coefficients

α1 =
r2

1 − a
(r1 − r2)(r1 + r3)(r1 + r4)

, α2 =
r2

2 − a
(r2 − r1)(r2 + r3)(r2 + r4)

,

(4.14)
α3 =

r2
3 − a

(r3 + r1)(r3 + r2)(r3 − r4)
, α4 =

r2
4 − a

(r4 + r1)(r4 + r2)(r4 − r3)

obtained using the residue theorem. As a consequence of the complex conjugate pair struc-
ture of (4.12) the coefficients α1 and α2, as well as α3 and α4, are complex conjugate
expressions.

The summation over the Matsubara frequencies ωn can now be performed in complete
analogy to the standard NJL model, cf. [22, 28, 29], resulting in the gap equation of the
modified system in the chiral limit:

m = 4GNcNf m

∫ Λ
d3p

(2π)3

[
α1 tanh

(r1 + µ

2T

)
+ α2 tanh

(r2 + µ

2T

)
+ α3 tanh

(r3 − µ
2T

)
+ α4 tanh

(r4 − µ
2T

) ]
.

(4.15)

Notice that this is a real-valued expression due to the complex conjugate pair structure of
(4.12) and (4.14), facilitating the existence of real effective mass solutions.

Before discussing the behavior of the effective fermion mass m at finite temperature
and chemical potential, it is instructive to consider briefly the case of vanishing T and µ and
compare the results obtained within the three-momentum cutoff scheme used in this study,
with those of the previously employed four-momentum cutoff regularization in [19, 20]. In
particular, utilizing the parameter s the behavior of both timelike and lightlike cases of the
background field Bν can be examined, whereas the discussion in [19, 20] was restricted to
the spacelike case only. Their behavior is visualized in figure 11 as a function of the scaled
coupling strength g̃ for the illustrative values s = 0.5 (timelike), s = 2 (spacelike) and the
lightlike case with s = 1. The dynamical mass generation of the spacelike case at small
coupling values reproduces the behavior observed within the four-momentum cutoff scheme
in [19, 20]. A mass increase relative to the standard NJL model is found furthermore in the
lightlike case, as well as timelike cases close to the lightlike case. However, sufficiently far
within the timelike sector (small values of s) one instead observes a monotonic decrease of
the effective fermion mass with increasing strength of the non-Hermitian extension term.
Dynamical mass generation is then no longer possible.

At sufficiently large coupling values g̃ the existence of real (nontrivial) fermion mass
solutions, indicative of an unbroken PT-symmetry region, breaks down for any value s and
the system is realized in a regime of spontaneously broken PT symmetry instead. Contrary
to the behavior within the four-momentum cutoff scheme, where the system undergoes a
continuous, second-order transition, one instead finds the PT phase transition to be of first
order within the three-momentum cutoff regularization for all parameters g̃ and s. (The
position of the transition as well as the identification of stable (solid lines), metastable
(dashed lines) and unstable mass solutions (dotted lines), see figure 11, is determined based
on the thermodynamic potential Ω, as described for finite T and µ in the following.) This
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Figure 12: (a) Behavior of the effective fermion mass m within the pseudovector extension of the NJL
model in MeV as a function of the temperature T at vanishing chemical potential µ for the bilinear coupling
values g̃ = 0.2Λ and g̃ = 0.3Λ in a spacelike (s = 2), the lightlike (s = 1) and a timelike case (s = 0.5).
(b) Behavior of the effective mass m as a function of the chemical at vanishing temperature T potential µ
for various values of the bilinear coupling strength g̃ and the parameter s. The stable physical solutions
associated with the global minimum of Ω are shown as solid lines, while metastable and unstable solutions
of the gap equation are shown as dashed and dotted lines respectively.

difference between regularization schemes, together with the observation that the PT tran-
sition typically occurs at comparably large coupling values relative to the cutoff length Λ,
suggests that for the characterization of the PT-symmetry breaking phase transition of the
modified NJL model, the self-consistent Hartree approximation is not robust in this regime.
From a physical point of view, one might expect dynamical mass changes that are small, so
that values g̃ � 1 are important. Thus, the following discussion focuses on the system at
small coupling values of the PT extension term (g̃ = 0.2Λ and g̃ = 0.3Λ), the study of its
behavior at finite temperature and baryon chemical potential, and an examination of the
effects of the PT bilinear term on the chiral phase transition.

Figure 12(a) presents the effective fermion mass m, as determined by the self-consistent
gap equation (4.15) of the extended model, as a function of the temperature T at vanishing
chemical potential µ. Illustrated are a spacelike (s = 2, blue), a lightlike (s = 1, green)
and a timelike (s = 0.5, red) case at coupling values g̃ = 0.2Λ and g̃ = 0.3Λ. As in the
standard NJL model, visualized in black, the system undergoes a continuous second-order
chiral phase transition, beyond which chiral symmetry is restored and the effective mass
vanishes. The position T c(g̃, s) of this transition increases with the coupling g̃ and with
increasing values of s, see also table 5. In all cases, the extension of the system through the
inclusion of the PT-symmetric non-Hermitian term results in a raised critical temperature
compared to the standard NJL model. An effective increase of the fermion mass relative
to the standard NJL result is found at small finite values of the temperature as well, when
s = 2 and s = 1, in agreement with the behavior of m(T = 0, µ = 0) shown in figure 11. For
s = 0.5, however, an effective mass loss due to the extension term is observed. A notable
difference to the behavior of the effective mass in the standard NJL model is the fact that
it does not decrease monotonically with increasing temperature T . Instead, m increases
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initially to reach a maximum, before decreasing to vanish at the transition temperature T c.
When the gap equation (4.15) is evaluated as a function of the chemical potential µ

at vanishing temperature T , the behavior of the effective mass qualitatively resembles that
obtained within the standard NJL model, see figure 12(b). Shown are again a spacelike
(s = 2, blue), the lightlike (s = 1, green) and a timelike (s = 1/2, red) case at the
coupling values g̃ = 0.2Λ and g̃ = 0.3Λ, in addition to the standard NJL model behavior
in black. The effective fermion mass does not decrease to vanish continuously. Instead a
parametric region with multiple mass solutions is found and the physical stable result has
to be identified again using the thermodynamic potential Ω(T, µ, g̃, s). It can be determined
from the thermodynamic average of the interaction energy in analogy to the discussion for
the standard NJL model, cf. (2.7), by following a coupling-constant integration method.
As in the case of the pseudoscalar extension, the non-Hermitian pseudovector bilinear term
does not affect the approach structurally. But the substitution of the effective mass within
the coupling-constant integral relies on the modified gap equation (4.15), through which
the extension enters implicitly:

2

∫ 1

0

dλ

λ
(mλ −m0)

dmλ

dλ
= 4GNcNf T

∫ Λ
d3p

(2π)3

4∑
j=1

∫ xj(1)

xj(0)
dxj

[
4mαj

(
drj
dm

)−1]
tanh(xj)

= 4GNcNf T

∫ Λ
d3p

(2π)3
ln

(
cosh[x1(1)] cosh[x2(1)] cosh[x3(1)] cosh[x4(1)]

cosh[x1(0)] cosh[x2(0)] cosh[x3(0)] cosh[x4(0)]

)
,

where x1(λ) = (r1(λ) + µ)/2T , x2(λ) = (r2(λ) + µ)/2T , x3(λ) = (r3(λ) − µ)/2T , and
x4(λ) = (r4(λ)− µ)/2T . The λ-dependence refers to the use of the mass result mλ, which
solves the λ-dependent equivalent of the gap equation (4.15), where G → λG within the
coupling-constant integration method. One thus obtains the formal equivalent of the rela-
tion (2.8), which establishes the thermodynamic potential Ω(T, µ, g̃, s) after subtracting off
the contribution Ω0 of the non-Hermitian free theory obtained at λ = 0:

Ω(T, µ, g̃, s) =
(m−m0)2

4G
− 2NcNf

∫ Λ
d3p

(2π)3
1

4

(
r1 + r2 + r3 + r4

)
− 2T NcNf

∫ Λ
d3p

(2π)3
1

2
ln
([

1+ e−(r1+µ)/T
][

1+ e−(r2+µ)/T
]

(4.16)

×
[
1+ e−(r3−µ)/T

][
1+ e−(R4−µ)/T

])
.

Like the gap equation (4.15), which is recovered from the extremal condition dΩ/dm = 0

in the limit of vanishing bare mass m0, the thermodynamic potential (4.16) is a real-valued
expression due to the complex conjugate pair structure of (4.12). Notably, this property is
unaffected by a removal of the three-momentum cutoff limit Λ in the logarithmic integral
contribution for the comparison to the SB limit.

As in the previous sections, the stable physical fermion mass result is determined as
the global minimum of the thermodynamic potential Ω(T, µ, g̃, s) under variation of the
fermion mass m. Meanwhile, local minima characterize metastable solutions and maxima
correspond to unstable solutions of the gap equation. These properties of the fermion mass
are shown in figure 12(b) as solid, dashed and dotted lines respectively. The position µc of
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the first-order chiral phase transition, accompanied by an abrupt transition to a vanishing
fermion mass, is visualized as a dot and its values are listed in table 5. Notice that with
increasing coupling strength g̃ of the non-Hermitian modification term, this transition moves
to larger values of the chemical potential in the spacelike case with s = 2, while decreasing in
the lightlike case, where s = 1, and the timelike case with s = 0.5. Similar to figure 12(a)
an effective mass increase relative to the standard NJL result is found when s = 2 and
s = 1, while an effective mass loss arises for s = 0.5, in agreement with the behavior of
m(T = 0, µ = 0) shown in figure 11.

The overall behavior of the chiral phase transition within the T -µ–plane is visualized in
figures 13 for the timelike case with s = 0.5, the lightlike case (s = 1) and the spacelike case
with s = 2. Shown is the boundary between the spontaneously broken and restored regions
for coupling strengths g̃ = 0.2Λ (solid line) and g̃ = 0.3Λ (dashed line) of the non-Hermitian
extension, as well as the standard NJL model case in black. The phenomenological behavior
along the T and µ axes, as shown in figure 12, is generally continued into the T -µ–plane:
For small chemical potentials, the model undergoes a second-order chiral phase transition at
sufficiently large temperatures; the transition temperature increases with the coupling g̃ and
with the value s quantifying the space- or timelikeness of the non-Hermitian background.
At small temperatures, a first-order chiral phase transition is found at sufficiently large
chemical potentials; the transition chemical potential decreases with increasing g̃ for s = 0.5

and s = 1, but increases in the spacelike case with s = 2. The respective critical end-points,
marking the change from a second-order to a first-order transition behavior, are illustrated
as dots and their position is listed in table 6. The CEP moves to higher values of the
temperature and chemical potential with an increasing bilinear coupling g̃; for increasing
value s, the chemical potential µCEP decreases, while the temperature TCEP increases.

Beyond the identification of the physical fermion mass at finite temperature and chem-
ical potential, the thermodynamic potential (4.16) of the modified NJL model allows for
the study of the thermodynamic observables. Again the approach parallels that within the
standard NJL model, leading to the quark number density

n(T, µ, g̃, s) = −∂ Ω(T, µ, g̃, s)

∂µ

∣∣∣
T

= NcNf

∫ Λ
d3p

(2π)3
1

2

[
tanh

(r1 + µ

2T

)
+ tanh

(r2 + µ

2T

)
− tanh

(r3 − µ
2T

)
− tanh

(r4 − µ
2T

) ]
,

(4.17)

g̃ = 0
(NJL)

s = 0.5,
g̃ = 0.2Λ

s = 0.5,
g̃ = 0.3Λ

s = 1,
g̃ = 0.2Λ

s = 1,
g̃ = 0.3Λ

s = 2,
g̃ = 0.2Λ

s = 2,
g̃ = 0.3Λ

T c(µ = 0) 190 MeV 193 MeV 197 MeV 211 MeV 234 MeV 261 MeV 319 MeV

µc(T = 0) 326 MeV 286 MeV 212 MeV 310 MeV 288 MeV 359 MeV 365 MeV

Table 5: Phase transition temperatures T c(µ = 0, g̃, s) at vanishing chemical potential and transition
chemical potentials µc(T = 0, g̃, s) at vanishing temperature for various coupling strengths g̃ and parameters
s of the non-Hermitian extension term.
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Figure 13: Phase diagrams of the modified NJL model in the T -µ–plane for coupling values g̃ = 0.2Λ and
g̃ = 0.3Λ in the timelike case with s = 0.5, the lightlike case (s = 1), and the spacelike case with s = 2.

g̃ = 0
(NJL)

s = 0.5,
g̃ = 0.2Λ

s = 0.5,
g̃ = 0.3Λ

s = 1,
g̃ = 0.2Λ

s = 1,
g̃ = 0.3Λ

s = 2,
g̃ = 0.2Λ

s = 2,
g̃ = 0.3Λ

µCEP 281 MeV 315 MeV 347 MeV 286 MeV 294 MeV 259 MeV 266 MeV

TCEP 79 MeV 80 MeV 94 MeV 112 MeV 141 MeV 180 MeV 240 MeV

(µ/T )CEP 3.56 3.92 3.70 2.55 2.07 1.44 1.11

Table 6: Temperature and chemical potential of the critical end-point of the modified NJL model for
various coupling strengths g̃ and parameters s of the non-Hermitian extension term.
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the entropy density

s(T, µ, g̃, s) =− ∂ Ω(T, µ, g̃, s)

∂T

∣∣∣
µ

= 2NcNf

∫ Λ
d3p

(2π)3

{
r1 + r2 + r3 + r4

4T
+

1

2
ln
([

1 + e−(r1+µ)/T
][

1 + e−(r2+µ)/T
]

×
[
1 + e−(r3−µ)/T

][
1 + e−(r4−µ)/T

])
− 1

2

[
r1 + µ

2T
tanh

(
r1 + µ

2T

)
+

r2 + µ

2T
tanh

(
r2 + µ

2T

)
+

r3 − µ
2T

tanh
(
r3 − µ

2T

)
+

r4 − µ
2T

tanh
(
r4 − µ

2T

)]}
,

(4.18)

and the pressure density

p(T, µ, g̃, s)=−
[
Ω(T, µ, g̃, s)−Ω(0, 0, g̃, s)

]
. (4.19)

The energy density and interaction measure are then determined through the well-established
relations

ε(T, µ, g̃, s) =− p(T, µ, g̃, s) + T s(T, µ, g̃, s) + µn(T, µ, g̃, s) (4.20)

and

I(T, µ, g̃, s) = ε(T, µ, g̃, s)− 3 p(T, µ, g̃, s). (4.21)

As with the thermodynamic potential (4.16) itself, these quantities form real-valued expres-
sions, due to the complex conjugate pair structure of (4.12).

Moreover, the bilinear coupling g ultimately always enters in combination with the
temperature as g/T in (4.17) to (4.21), since the terms r1 to r4 in (4.12) enter as r/T , with g
contained in the parameters (4.5). The large temperature limit therefore remains unchanged
by the inclusion of the non-Hermitian PT-symmetric pseudovector bilinear extension along
lines of fixed µ/T and when removing the cutoff scale Λ→∞ (except for the UV-divergent
term in Ω and the related pressure and energy densities as well as the interaction measure).
The same SB limits of an ideal massless fermion gas are found as in the standard NJL
model, see (2.15) – (2.17).

The effect of the PT extension on the thermodynamic observables at finite values of
the temperature and chemical potential is illustrated in figures 14 and 15. Shown is the
behavior of the expressions (4.17) to (4.20), scaled to their respective SB limit, as a function
of the scaled temperature T/T cNJL. The timelike case with s = 0.5 is shown in figure 14,
while figure 15 shows the spacelike case with s = 2. In both cases the thermodynamic
observables are evaluated along lines in the T -µ–plane with constant ratio µ/T = 0.5 (red),
where the phase transition remains of second order for all cases, and for the ratio µ/T = 5

(blue), for which the system undergoes a first-order phase transition. Coupling values of
g̃ = 0.2Λ and g̃ = 0.3Λ are shown as light and dark color variants respectively. Solid lines
denote the behavior with a fixed cutoff length Λ, while dashed lines show the behavior when
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Figure 14: Thermodynamic functions for s = 0.5 (timelike) along µ/T = 0.5 (red) and µ/T = 5 (blue) at
couplings g̃ = 0.2Λ (light colors) and g̃ = 0.3Λ (dark colors). Standard NJL case in black.
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Figure 15: Thermodynamic functions for s = 2 (spacelikelike) along µ/T = 0.5 (red) and µ/T = 5 (blue)
at couplings g̃ = 0.2Λ (light colors) and g̃ = 0.3Λ (dark colors). Standard NJL case in black.
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the cutoff is removed. A list of the critical temperatures T c(g̃, s) for the illustrated cases
can be found in table 7.

For the second-order transition case with µ/T = 0.5, a decrease of all thermodynamic
functions with increasing coupling strength g̃ is observed compared to the corresponding
standard NJL model observables throughout the spontaneously broken and the restored
chiral symmetry phases for both a finite cutoff and for Λ → ∞. When considering for
instance the behavior of the quark number density n in figures 14(a) and 15(a), one notes
that, contrary to the monotonically increasing behavior toward the phase transition within
the standard NJL model, n decreases to a minimum at negative values within the non-
Hermitian NJL model before subsequently increasing when approaching the phase transition
at T c. This behavior remains present when removing the three-momentum cutoff, Λ→∞,
and is therefore not a cutoff artifact. In the case of a finite cutoff the quark number vanishes
asymptotically beyond the phase transition, while it approaches the SB limit when the cutoff
is removed. In this, the behavior of the modified system qualitatively agrees with that of the
standard NJL model, but a notable deviation from the massless ideal fermion gas behavior
remains present until the temperature well exceeds the transition value T c. For a finite
cutoff Λ the behavior in the spacelike case with s = 2 differs from that in the timelike case
with s = 0.5 only in so far as that the decrease of the thermodynamic functions compared
to the NJL model is more pronounced. For Λ → ∞, on the other hand, the decrease
of the thermodynamic functions is initially more pronounced at small temperatures, but
in the vicinity of the phase transition the difference to the standard NJL model behavior
becomes less prominent when s = 2, than in the timelike case with s = 0.5. In addition, the
position of the minimum within the spontaneously broken chiral symmetry region increases
to higher temperatures in the spacelike case with s = 2, but remains decidedly below the
phase transition temperature T c. A comparable phenomenology is found for the entropy,
pressure and energy density.

In the first-order transition case with µ/T = 5 of the timelike (s = 0.5) system for
Λ → ∞, shown as dashed blue lines in figure 14, one again observes a decrease of the
thermodynamic functions relative to the standard NJL model. Similar to the second-order
transition case, the quark number density n, see figure 14(b), admits an initial decrease
to negative values. A notable difference to the previous case is the fact that the range of
temperatures in which a decrease toward a minimum is found, lies beyond the phase transi-
tion when the coupling constant is sufficiently large: For g̃ = 0.2Λ such a minimum occurs
in the spontaneously broken symmetry phase, with n increasing monotonically thereafter

g̃ = 0
(NJL)

s = 0.5,
g̃ = 0.2Λ

s = 0.5,
g̃ = 0.3Λ

s = 2,
g̃ = 0.2Λ

s = 2,
g̃ = 0.3Λ

µ/T = 0.5 182 MeV 185 MeV 189 MeV 247 MeV 300 MeV

µ/T = 5 59 MeV 66 MeV 42 MeV 68 MeV 72 MeV

Table 7: Phase transition temperature T c(g̃, s) along lines of constant µ/T = 0.5 (second-order transition
region) and µ/T = 5 (first-order transition region), cf. figure 13
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when approaching the phase transition and following the behavior of nNJL qualitatively. For
g̃ = 0.3Λ, however, n decreases up to the phase transition, undergoing the characteristic
discontinuous jump at T c, and then continues to decrease toward a minimum within the
restored chiral symmetry regime before asymptotically approaching the SB limit. The be-
havior of the entropy, pressure and energy density follows a comparable trend with respect
to the standard NJL model behavior. For a finite three-momentum cutoff Λ an additional
asymptotic decay at high temperatures is found, as in all models discussed prior.

In the spacelike case with s = 2, see figure 15, the first-order transition behavior for
µ/T = 5 at Λ → ∞ also admits a region, in which the thermodynamic functions decrease
toward a minimum, similar to the timelike case. But these regions here occur at even
higher temperatures, deep within the restored chiral symmetry region. With an increase
of the coupling constant g̃, the minimum again shifts toward even higher temperatures.
As such, the decrease of the thermodynamic functions due to the non-Hermitian extension
within the spontaneously broken symmetry region at low temperatures is found to be less
pronounced for g̃ = 0.3Λ than for g̃ = 0.2Λ. Another notable difference to the timelike
case with s = 0.5 is the increased jump at the discontinuous phase transition. Due to this
increase the quark number density n and the energy density ε even increase in the restored
symmetry region beyond T c when being close to the phase transition, exceeding the SB limit.
Nevertheless this is followed by a rapid decrease toward the aforementioned minimum at
high temperatures and a successive asymptotic approach of the SB limit. A finite three-
momentum cutoff Λ introduces an additional asymptotic decay toward a vanishing limit at
high temperatures instead.

The effects of the non-Hermitian but PT-symmetric pseudovector extension igBν ψ̄γ5γ
νψ

can be interpreted by considering the particle and antiparticle contributions to the fermion
wavefunction ψ. Due to the structure of the Dirac matrices (2.2), the B0 component of the
bilinear extension introduces a mixing between fermionic and antifermionic contributions,
while the Bk, k ∈ [1, 3] components do not. Instead they modify the system comparable
to a mass term, resulting in either an increase (s = 2) or a decrease (s = 0.5) of the
effective fermion mass, cf. figure 12. In direct contrast to the pseudoscalar extension dis-
cussed in section 3, a decrease of the quark number density, n = nq − nq̄, compared to
the standard NJL model and the occurrence of negative values of n describes an empha-
sis on the antifermionic component within the pseudovector-extended theory, rather than
the fermion excess found in the pseudoscalar-extended system. One nevertheless observes
an increase toward the same SB limit of an ideal massless fermion gas as in the pseu-
doscalar extension case and the standard NJL model at high temperatures, because of the
temperature-suppressed influence of the extension term.

Figures 14(i),14(j), 15(i), and 15(j) show the behavior of the interaction measure (4.21),
scaled to the value Ic at the phase transition of the NJL(∞) case since its high temperature
limit vanishes. As in all previous cases, the pressure and the energy density are affected
notably by the momentum cutoff Λ, so that the behavior of I/Ic when accounting for a finite
cutoff (solid lines) has to be considered largely artificial. For Λ → ∞ (dashed lines) the
interaction measure shows two competing trends in both the second-order (µ/T = 0.5) and
the first-order (µ/T = 5) transition region and in both the spacelike (s = 0.5) and timelike
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(s = 2) case: A localized decrease toward a minimum in accordance with the corresponding
behavior within the other thermodynamic observables, in particular the quark number
density; and an overall increase of the interaction measure compared to the standard NJL
model behavior, is found throughout all temperatures. As before, the localized decrease
toward a minimum arises at higher scaled temperatures for larger coupling constant values
g̃, for the first-order transition region with µ/T = 5 compared to the second-order region
with µ/T = 0.5, and in the spacelike case with s = 2 compared to the timelike case with
s = 0.5. Notably, the interaction measure becomes negative within this region, marking a
notable change in behavior of the modified non-Hermitian system compared to the standard
NJL model. Contrary to the pseudoscalar extension discussed in section 3, this deviation
from the standard NJL model arises typically at comparatively low temperatures and within
the spontaneously broken chiral symmetry regime.

Overall, the inclusion of the non-Hermitian, but PT-symmetric and chiral symmetry
preserving, pseudovector bilinear term igBν ψ̄γ5γ

νψ presents an intriguing complement to
the non-Hermitian pseudoscalar extension. The dynamical generation of effective fermion
mass within the spontaneously broken chiral symmetry region, previously described for a
spacelike background Bν at vanishing T and µ [19, 20], remains a prominent and robust
feature at finite values of the temperature and chemical potential. However, this property
does depend on the space- or timelikeness of the background; an effective mass loss can be
found for a timelike Bν instead. The extent of the spontaneously broken chiral symmetry
regime and the position of the chiral phase transition within the T -µ–plane are affected by
the extension term as well, ranging toward higher temperatures for low chemical potential
values, i.e., in the second-order transition region, similar to the effects of the pseudoscalar
extension. At low temperatures (second-order transition region), the position of the phase
transition decreases toward lower chemical potential values in the time- and lightlike cases
of the background field - again similar to the gψ̄γ5ψ modification. But for a sufficiently
spacelike background it increased to higher values of µc instead. A notable departure
from the behavior of both the standard NJL model and the pseudoscalar extension of
the system is found in all cases within the quark number, entropy, pressure and energy
densities, displaying a marked decrease compared to the standard NJL model behavior and
even extending to negative values. Instead of the fermion excess within the pseudoscalar
extension of the system, the PT-symmetric pseudovector modification shows an emphasis
on the antifermionic component within the theory.

5 Concluding remarks

Due to the presence of real effective fermion masses in non-Hermitian extensions of the
NJL model at vanishing temperature and density [19, 20], there seems to be no reason for
discarding such systems. In this study we have generalized the established finite temper-
ature and chemical potential approach of the NJL model to investigate the effects of the
non-Hermitian bilinear extension terms gψ̄γ5ψ and igBν ψ̄γ5γ

νψ on the thermodynamic be-
havior of the system in search for general characteristic signals of non-Hermitian fermionic
quantum field theories.
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In both extensions of the NJL model a dynamical generation of effective fermion mass
due to the non-Hermitian contribution can be observed in the spontaneously broken (ap-
proximate) chirally symmetric regime; in the case of the pseudovector modification, how-
ever, this property depends on the characteristics of the background field Bν , resulting
in an effective mass loss for sufficiently timelike cases instead. The position of the chiral
phase transition in the T -µ–plane moves to higher temperatures at small fixed chemical
potentials, that is in the second-order transition region, in both non-Hermitian systems.
In the first-order transition region at small fixed temperatures, on the other hand, the
transition chemical potential decreases for increasing coupling strength of a non-Hermitian
pseudoscalar bilinear. In the pseudovector modified model the change of the transition
chemical potential depends on the characteristics of the background field again, increas-
ing for sufficiently spacelike cases, but decreasing otherwise. The position of the critical
end-point marking the boundary between first- and second-order chiral phase transitions
moves toward higher critical temperatures TCEP in both modified NJL models; for the pseu-
doscalar extension the critical chemical potential µCEP decreases, while it increases for the
inclusion of a pseudovector bilinear term.

Further deviations from the standard NJL model become apparent in the behavior of
the quark number, entropy, pressure and energy densities. When the system is extended
through the inclusion of the term gψ̄γ5ψ, these thermodynamic observables remain initially
unchanged compared to the standard NJL model behavior in the spontaneously broken
approximate chiral symmetry region at low temperature and chemical potential despite
the dynamical fermion mass generation. But in the vicinity of the phase transition and
throughout the restored symmetry phase a notable fermion excess arises, increasing beyond
the high-temperature SB limit. This is contrasted by the behavior of the PT-symmetric
pseudovector modification, where the thermodynamic observables decrease due to the ex-
tension term, reaching even negative values. This non-Hermitian extension reflects an
emphasis on the antifermionic component of the theory instead. These trends may pro-
vide a first indication of curious potential mechanisms for producing non-Hermitian baryon
asymmetry.

Moreover, negative values of the interaction measure I = ε − 3p were found in both
non-Hermitian extensions of the NJL model, arising within the restored approximate chiral
symmetry region for the pseudoscalar bilinear, but in the spontaneously broken symmetry
region and the vicinity of the phase transition for the pseudovector term. This feature
builds an interesting connection to recent discussions of the constraints of neutron star
masses and extended theories of general relativity.
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