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Abstract. We consider ground state solutions u ∈ H2(RN ) of biharmonic
(fourth-order) nonlinear Schrödinger equations of the form

�2u + 2a�u + bu − |u|p−2u = 0 in R
N

with positive constants a, b > 0 and exponents 2 < p < 2∗, where 2∗ = 2N
N−4 if

N > 4 and 2∗ = ∞ if N ≤ 4. By exploiting a connection to the adjoint Stein–Tomas
inequality on the unit sphere and by using trial functions due to Knapp, we prove
a general symmetry breaking result by showing that all ground states u ∈ H2(RN )
in dimension N ≥ 2 fail to be radially symmetric for all exponents 2 < p < 2N+2

N−1
in a suitable regime of a, b > 0.
As applications of our main result, we also prove symmetry breaking for a mini-
mization problem with constrained L2-mass and for a related problem on the unit
ball in R

N subject to Dirichlet boundary conditions.

1 Introduction

The study of biharmonic (fourth-order) nonlinear Schrödinger equations (NLS) has
attracted a significant amount of attention in the recent past; see, e.g., [17, 1, 12, 19,
20, 21, 6, 3, 5, 4, 10]. The main purpose of the present paper is to prove a symmetry
breaking result for ground state solutions of biharmonic NLS (suitably defined as
energy minimizers), which is in striking contrast to the well-known results of radial
symmetry for ground states of classical second-order NLS. As a key ingredient
in our approach to show symmetry breaking, we shall exploit a close connection
between Fourier extension estimates and ground states for suitable biharmonic
NLS.

As a concrete model problem, we consider ground state solutions u ∈ H2(RN)
of biharmonic NLS of the form

(1.1) �2u + 2a�u + bu − |u|p−2u = 0 in R
N .
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where a, b > 0 are positive constants. We remark that positivity of a > 0 implies
that the Fourier symbol of the ‘mixed dispersion’ differential operator �2 + 2a�

is radially symmetric but fails to be monotone increasing in the radial variable.
Throughout the following, we consider the subcritical case with 2 < p < 2∗, where
we set

2∗ :=

{
2N

N−4 for N > 4,

∞ for N ≤ 4

Furthermore, the constants a, b > 0 in (1.1) are chosen such that the associated
quadratic form

qa,b(u) =
∫
RN

(|�u|2 − 2a|∇u|2 + b|u|2) dx =
∫
RN

ga,b(|ξ|)|û(ξ)|2 dξ

is positive definite on the Sobolev space H := H2(RN). Here û denotes the Fourier
transform of u and the corresponding symbol ga,b(|ξ|) above reads

ga,b(|ξ|) = |ξ|4 − 2a|ξ|2 + b = (|ξ|2 − a)2 + b − a2.

Thus we readily see that qa,b is positive definite if and only if b > a2 holds. In this
situation, we find that

(1.2) Ra,b(p) := inf
u∈H\{0}

qa,b(u)
‖u‖2

p
= inf

u∈H,‖u‖p=1
qa,b(u) > 0,

and that this infimum is attained. Here ‖ ·‖p denotes the usual Lp(RN)-norm. More
precisely, the following result follows from classical arguments.

Theorem 1.1. Suppose N ≥ 1, a > 0, b > 0, and 2 < p < 2∗. Then we

have Ra,b(p) > 0 if and only if b > a2. Moreover, if b > a2, then Ra,b(p) is attained
in H \ {0}, and every minimizer u ∈ H \ {0} corresponds, after multiplication with

a positive factor, to a solution of (1.1). Finally, any minimizer u ∈ H \ {0} is
real-valued up to a trivial constant complex phase, i.e., we have eiθu(x) ∈ R for

a.e. x ∈ R and some θ ∈ R.

For the convenience of the reader, we provide a short proof of Theorem 1.1 in
the appendix. Moreover, we note that a slightly different proof of the first statement
in this theorem is given in [10, Theorem 3.6]. We say that a solution u ∈ H \ {0}
of (1.1) is a ground state solution if the infimum Ra,b(p) in (1.2) is attained at the
function u. To justify this notion, we recall that the energy functional associated
with (1.3) is given by

Ea,b(u) =
1
2

qa,b(u) − 1
p
‖u‖p

p.
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A standard argument shows that the least energy value among nontrivial solutions
of (1.1) is characterized as

ca,b := inf
u∈H\{0} sup

t≥0
Ea,b(tu) =

(
Ra,b(p)

) p
p−2 .

Moreover, minimizers of the quotient in (1.2) correspond, up to multiplication by
a positive factor, to nontrivial solutions of (1.1) where the least energy value ca,b

is attained. This justifies the term ground state solutions.
The main aim of the present paper is to study the asymptotics of Ra,b(p) and

the shape of ground state solutions in the limiting case where b is slightly larger
than a2. Without loss of generality, by rescaling, we may assume that a = 1 from
now on. By writing b = 1 + ε with some ε > 0, we thus arrive at the equation

(1.3) �2u + 2�u + (1 + ε)u − |u|p−2u = 0 in R
N .

Clearly, the corresponding quadratic is given by

(1.4) qε(u) =
∫
RN

(|�u|2 − 2|∇u|2 + (1 + ε)|u|2) dx =
∫
RN

gε(|ξ|)|û(ξ)|2 dξ

where the Fourier symbol is given by

gε(|ξ|) = (|ξ|2 − 1)2 + ε.

Furthermore, the corresponding minimal energy quotient reads

(1.5) Rε(p) := inf
u∈H\{0}

qε(u)
‖u‖2

p
> 0 for 2 < p < 2∗.

As noted above, minimizers of the quotient in (1.5) correspond, after multiplication
by a positive factor, to ground state solutions of (1.3). We shall see below that,
for fixed p ∈ (2, 2∗), the value Rε(p) tends to zero as ε → 0+. In fact, a detailed
analysis of this limit shows that ground states u ∈ H cannot be radially symmetric
for sufficiently small ε > 0 and for exponents

2 < p < 2∗.

Here we define the exponent

2∗ :=
2N + 2
N − 1

,

which arises from the adjoint version of the celebrated Stein–Tomas inequality
for the Fourier restriction on the sphere SN−1 ⊂ R

N in dimension N ≥ 2. More
precisely, we have the following main result.



780 E. LENZMANN AND T. WETH

Theorem 1.2 (Symmetry Breaking). If N ≥ 2 and 2 < p < 2∗, then there

exists ε0 = ε0(p) > 0 with the property that every ground state solution u ∈ H
of (1.3) is a nonradial function if 0 < ε ≤ ε0.

Remarks. (1) It is interesting to note that the nonradial ground states u ∈ H
in Theorem 1.2 can still be even functions. By the recently developed Fourier
symmetrization methods in [7, 18], one can prove for N ≥ 1 and p ∈ 2N
with 2 < p < 2∗ that any ground state solution u ∈ H for all ε > 0 must be
an even function (up to a translation in space), i.e., we have u(−x) = u(x) for
a.e. x ∈ R

N; see Lemma B.1 below. In particular, this result applies in the case
N = 2 and p = 4 < 2∗ which is admissible for Theorem 1.2. So in this case, ground
state solutions are nonradial but even up to translation.

(2) The evenness result given in Lemma B.1 below also shows that Theorem 1.2
cannot be extended to the case N = 1 since symmetry breaking does not occur
for p ∈ 2N.

(3) We do not expect any symmetry breaking of ground states u ∈ H2(RN)
for (1.1) if a ≤ 0 holds. In this case, the corresponding Fourier symbol ga,b(|ξ|)
becomes strictly increasing in |ξ| and, by Fourier rearrangementmethods from [18],
we obtain radial symmetry (up to translation) for any ground state u ∈ H2(Rd)
provided that p ∈ 2N is an even integer. Also, by maximum principles and
classical rearrangement techniques, it can be shown for any 2 < p < 2∗ that
ground states u ∈ H2(RN) for (1.1) must be radial (up to translation) whenever
a < 0 satisfies |a| >

√
b; see [3, Theorem 3.9].

Note that Theorem1.2 does not rule out symmetry breaking for exponents p≥2∗.
Nevertheless, the special role of the exponent 2∗ is highlighted by the following
result, which shows that the rate of convergence of the minimal energy quotient
Rε(p) in (1.5) is p-independent if 2∗ ≤ p < 2∗, whereas it depends nontrivially
on p if 2 < p < 2∗.

Theorem 1.3 (Expansion of Rε(p)). Let N ≥ 2. For 2 < p < 2∗, there exist
constants C(p) > 0 with the following properties.

(i) If p ≥ 2∗, we have

(1.6) Rε(p) = C(p)
√

ε + o(
√

ε) as ε → 0+.

(ii) If 2 < p < 2∗, we have

(1.7) Rε(p) ≥ C(p)ε
3
4 + 1

2p − N
2 ( 1

2 − 1
p ) + o(ε

3
4 + 1

2p − N
2 ( 1

2 − 1
p )) as ε → 0+.

Moreover, this asymptotic lower bound is sharp in the sense that

(1.8) Rε(p) = O(ε
3
4 + 1

2p − N
2 ( 1

2 − 1
p )) as ε → 0+.
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Remarks. (1) The constants C(p) are characterized in (1.14) below.

(2) Note that 3
4 + 1

2p − N
2 ( 1

2 − 1
p ) = 1

2 for p = 2∗ holds. Thus the dependence on
the exponent on p is continuous.

(3) In [10, Proposition 3.7], the authors derive the general upper bound
Rε(p) ≤ C

√
ε for ε > 0 sufficiently small and some constant C > 0 depend-

ing on p and N. However, such a bound will not be sufficient to conclude the
symmetry breaking result in Theorem 1.2.

Next, we discuss an application of Theorem 1.2 to the associated energy mini-
mization problem with fixed mass (i.e., L2-norm), which has been studied recently
in [10]. For this we consider the energy functional

(1.9) Ẽ : H → R, Ẽ(u) =
∫
RN

|�u|2 dx − 2
∫
RN

|∇u|2 dx − 2
p

∫
RN

|u|p dx

and the fixed mass constraint given by

(1.10) S(m) :=
{

u ∈ H :
∫
RN

|u|2 dx = m
}

.

As discussed in detail in [10], both the energy Ẽ and the set S(m) are invariant under
the corresponding biharmonic nonlinear Schrödinger flow. As a consequence of
this invariance, the problem of minimizing Ẽ on S(m) is closely related to orbital
stability properties of the set of associated minimizers. In [10, Theorems 1.2
and 1.3], it is proved that, for every m > 0, the infimum of Ẽ on S(m) is attained in
the mass-subcritical case where 2 < p < max(4, 2(N+5)

N+1 ) and p < 2 + 8
N , and every

minimizer u ∈ S(m) is a ground state solution of (1.3) for some ε = ε(m), whereas
ε(m) → 0+ as m → 0. The following theorem on symmetry breaking in the case
of small fixed mass is an immediate corollary of these results and Theorem 1.2.

Theorem 1.4. Let N ≥ 2, and suppose that 2 < p < 14
3 if N = 2 and

2 < p < 2∗ if N ≥ 3. Then there exists m0 = m0(p) > 0 with the property that for
every 0 < m < m0(p) all minimizers of Ẽ on S(m) are nonradial functions.

In our final main result, we show that the symmetry breaking phenomenon is
not restricted to biharmonic equations in the entire space but also arises in the case
of Dirichlet problems in the unit ball B = B1(0). More precisely, we consider the
boundary value problem

(1.11)

⎧⎨
⎩�2u + 2a�u + bu − |u|p−2u = 0 in B,

u = ∂νu = 0 on ∂B.
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Related to (1.11) we consider the restriction

u �→ qa,b,B(u) =
∫

B
(|�u|2 − 2a|∇u|2 + b|u|2) dx

of the quadratic form qa,b to the subspace H2
0(B) ⊂ H and the value

(1.12) Ra,b,B(p) := inf
u∈H2

0 (B)\{0}
qa,b,B(u)
‖u‖2

Lp(B)

.

Similarly as in Theorem 1.1, we see that, for N ≥ 1, a > 0 b ≥ a2 and 2 < p < 2∗

we have Ra,b,B(p) > 0, and this value is attained in H2
0(B) \ {0}. Moreover, every

minimizer u ∈ H2
0(B) \ {0} corresponds, after multiplication with a positive factor,

to a solution of (1.11). We say that a solution u ∈ H2
0(B) \ {0} of (1.11) is a ground

state solution if the infimum in (1.12) is attained at u. We then have the following
result.

Theorem 1.5. Let N ≥ 2 and 2 < p < 2∗, and let ε0 = ε0(p) > 0 be given by

Theorem 1.2. For 0 < ε ≤ ε0, there exists a0 = a0(ε, p) > 0 with the property that
every ground state solution u ∈ H of (1.11) is a nonradial function if a > a0 and

b = (1 + ε)a2.

To our knowledge, this is the first result on nonradiality of ground state solutions
for a rotationally invariant semilinear elliptic Dirichlet problem with constant co-
efficients in a ball. In the case a = b = 0 and 2 < p < 2∗, the radial symmetry (and
uniqueness) of ground state solutions of (1.11) has been proven in [11], whereas in
the remaining cases the question of radial symmetry remains largely open. Related
to this aspect, we mention the analogue in [2] of the Gidas–Ni–Nirenberg result on
Schwarz symmetry of nonnegative solutions for polyharmonic Dirichlet problems
in the unit ball with increasing nonlinearity and the counterexamples given in [24]
and [16]. For a comprehensive discussion of various aspects of semilinear higher
order boundary value problems, see [15].

As already indicated above, the limiting exponent 2∗ in Theorem 1.3 hints at
the Stein–Tomas inequality (see [25, 23]), which indeed will be of key importance
in our paper. We recall this inequality in the following convenient adjoint version
as a Fourier extension estimate.

Theorem 1.6 (Stein–Tomas inequality, adjoint version). Suppose N ≥ 2 and

let S := SN−1 be the unit sphere in R
N. If p ≥ 2∗, then

(1.13) CST (p) := inf
w∈L2(S)\{0}

‖w‖2
L2(S)

‖w̌‖2
p

> 0,
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where, for w ∈ L2(S), the function w̌ ∈ Lp(RN) is a.e. given by

w̌(x) = (2π)−N/2
∫

S
eix·θw(θ) dσ(θ).

Consequently, the inequality ‖w̌‖p ≤ 1√
CST (p)‖w‖L2(S) holds for every w ∈ L2(S).

The existence of optimizers for the Stein–Tomas inequality above in the non-
endpoint case when p > 2∗ can be inferred from [9]. However, existence of
optimizers in the endpoint case p = 2∗ is an open problem except for the cases
N ∈ {2, 3} (see [8, 22, 13]); see also [14] for a conditional existence result for the
endpoint case in general space dimensions.

The Stein–Tomas inequality plays a key role in the proof of the expansions
given in Theorem 1.3. In fact, we obtain the following characterization of the
constants C(p) occurring in Theorem 1.3 in terms of the constants CST (p) in the
Stein–Tomas inequality:

(1.14) C(p) =

⎧⎨
⎩

2
π

CST (p) if 2∗ ≤ p < 2∗,

( 2
π

CST (2∗))(N+1)( 1
2 − 1

p ) if 2 < p < 2∗.

While the Stein–Tomas inequality is sufficient to derive the asymptotic expan-
sion (1.6) in the case where p ≥ 2∗, we have to combine the Stein–Tomas in-
equality with interpolation estimates to obtain the lower asymptotic bound (1.7) in
the case 2 < p < 2∗. It is somewhat surprising that this approach already yields
the optimal exponent, as shown by (1.8). To obtain the sharp asymptotic upper
bound (1.8), we have to construct suitable nonradial test functions to estimate the
quantity Rε(p). The construction builds on the well-known test functions used by
Knapp to characterize the optimal exponent 2∗ for the Stein-Tomas inequality; see,
e.g., [26, Chapter 7]. For the attentive reader, we mention that the numerical fac-
tor 2

π
in (1.14) appears due to the second-order derivative of the Fourier symbol gε

at its minimum; see Lemma A.1 below.

The paper is organized as follows. In Section 2, we first derive Theorem 1.2
from Theorem 1.3 and related asymptotic bounds for radial functions, see Theo-
rem 2.1 below. In Sections 3 and 4, we then complete the proof of Theorem 1.3
by deriving upper and lower asymptotic bounds for the quantity Rε(p). Moreover,
we prove the radial asymptotic estimates given in Theorem 2.1. In Section 5, we
then consider the Dirichlet problem (1.11) and complete the proof of Theorem 1.5.
Finally, in Appendix A we prove an elementary technical lemma which is needed
in the proofs of Theorems 1.3 and 2.1, and in Appendix B we prove Theorem 1.1.
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2 Symmetry breaking: Proof of Theorem 1.2

We first prove the symmetry breaking result stated in Theorem 1.2, which will
be based on Theorem 1.3 and further estimates, whose proofs will be postponed
to the sections below. Let Hrad denote the closed subspace of radial functions
in H = H2(RN). For 2 < p < 2∗, we define

(2.1) Rrad
ε (p) := inf

u∈Hrad\{0}
qε(u)
‖u‖2

p
≥ Rε(p).

Our goal is to show that, for exponents 2 < p < 2∗, there exists ε0 = ε0(p) > 0
with the property that

(2.2) Rrad
ε (p) > Rε(p) for 0 < ε < ε0.

Once this is proved, it immediately follows that all ground state solutions of (2.2)
are nonradial for 0 < ε < ε0. The starting point of the proof of (2.2) is the well-
known observation that the range of admissible exponents in the Stein–Tomas
inequality can be extended for the subspace of radial functions in L2(S), which is
merely the one-dimensional space of constant functions defined on S = SN−1. For
this we recall that the function 1̌S ∈ C∞(RN) is given by

1̌S(x) = (2π)−N/2
∫

S
eix·θdσ(θ), x ∈ R

N .

Standard estimates for oscillatory integrals yield the classical bound

|1̌S(x)| ≤ CN(1 + |x|)− N−1
2 with some constant CN > 0.

As a consequence, we have

1̌S ∈ Lp(RN) for p > 2rad
∗ :=

2N
N − 1

.

We therefore may define

(2.3) Crad
ST (p) :=

‖1S‖2
L2(S)

‖1̌S‖2
p

=
ωN−1

‖1̌S‖2
p

,

where ωN−1 denotes the measure of the unit sphere S = SN−1 ⊂ R
N . Thus, for

every radial (i.e., constant) function w ∈ L2(S), we have the equality

(2.4) ‖w̌‖p =
1√

Crad
ST (p)

‖w‖2
L2(S) for p > 2rad

∗ .

Using this equality, we can prove the following asymptotic estimates for Rrad
ε (p).
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Theorem 2.1. Let N ≥ 2. We have the following estimates.

(i) If 2rad∗ < p < 2∗, we have

(2.5) Rrad
ε (p) =

2Crad
ST (p)
π

√
ε + o(

√
ε) as ε → 0+.

(ii) If 2 < p ≤ 2rad∗ , then for every β > 1 − N( 1
2 − 1

p ) there exists a constant

C(p, β) > 0 with the property that

(2.6) Rrad
ε (p) ≥ C(p, β)εβ + o(εβ) as ε → 0+.

Proof. See Sections 3 and 4 below. �
For N ≥ 2 and 2 < p < 2∗, the key strict inequality (2.2) now follows by

combining Theorem 2.1 with the estimates in Theorem 1.3, since we have

3
4

+
1
2p

− N
2

(1
2

− 1
p

)
>

⎧⎨
⎩

1
2 for 2rad∗ < p < 2∗,

1 − N( 1
2 − 1

p ) for 2 < p ≤ 2rad∗ .

This proves that the strict inequality (2.2) holds for some ε0 = ε0(p) > 0. This
completes the proof of Theorem 1.2. �

3 Upper estimates for Rε(p) and Rrad
ε (p)

In this section, we prove the upper estimates for Rε(p) and Rrad
ε (p) needed in the

proofs of Theorems 1.3 and 2.1. We begin with the following result.

Proposition 3.1. (i) For 2∗ ≤ p < 2∗, we have

Rε(p) ≤ 2CST (p)
π

√
ε + o(

√
ε) as ε → 0+.

(ii) For 2rad∗ < p < 2∗, we have

Rrad
ε (p) ≤ 2Crad

ST (p)
π

√
ε + o(

√
ε) as ε → 0+.

Proof. (i) Recall that S = SN−1 ⊂ RN denotes the unit sphere. Assume first
that p > 2∗ and let w ∈ L2(S) be an extremal function for the adjoint Stein–Tomas
inequality, i.e.,

‖w‖2
L2(S) = CST (p)‖w̌‖2

p,

where w̌ is given by

w̌(x) =
∫

S
eixθw(θ) dσ(θ).
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We then fix s ∈ (0, 1
2 ), put

ρε :=
∫ 1+εs

1−εs

rN−1 dr
gε(r)

for ε ∈ (0, 1)

and we define uε ∈ H by its Fourier transform

ûε(ξ) :=

⎧⎨
⎩

1
gε(|ξ|)w( ξ

|ξ| ) if ||ξ| − 1| ≤ εs,

0 if ||ξ| − 1| ≥ εs.

Then we have

qε(uε) =
∫
RN

gε(|ξ|)|ûε(ξ)|2dξ =
∫ 1+εs

1−εs

rN−1

gε(r)

∫
S
|w(θ)|2 dσ(θ) dr

= ρε

∫
S
|w(θ)|2 dσ(θ) = ρεCST (p)‖w̌‖2

p.

Moreover, for x ∈ R
N we have

uε(x) = (2π)−N/2
∫
RN

eixξ ûε(ξ) dξ = (2π)−N/2
∫ 1+εs

1−εs

rN−1

gε(r)

∫
S
eirxθw(θ)dσ(θ) dr

=
∫ 1+εs

1−εs

rN−1

gε(r)
w̌(rx) dr.

Therefore,

∣∣∣uε(x)
ρε

− w̌(x)
∣∣∣ =

1
ρε

∣∣∣∣
∫ 1+εs

1−εs

rN−1

gε(r)
(w̌(rx) − w̌(x))dr

∣∣∣∣ ≤ sup
|r−1|≤εs

|w̌(rx) − w̌(x)| → 0

as ε → 0+. Hence Fatou’s Lemma yields

lim inf
ε→0+

∥∥∥uε(x)
ρε

∥∥∥
p
≥ ‖w̌‖p.

Consequently,

Rε(p) ≤ qε(uε)
‖uε‖2

p
≤ ρεCST (p)‖w̌‖2

p

ρ2
ε(‖w̌‖2

p + o(1))
≤ CST (p)

ρε
(1 + o(1))

as ε → 0+. Moreover, since

ρε = (1 + o(1))
∫ 1+εs

1−εs

dr
gε(r)

as ε → 0+,

it follows from Lemma A.1 and Remark A.1 in Appendix A below that we have

√
ερε → π√

1
2g

′′
0(1)

=
π

2
as ε → 0+.
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Thus we conclude that

lim sup
ε→0+

Rε(p)√
ε

≤ CST (p) lim
ε→0+

1√
ερε

=
2CST (p)

π
.

This proves the claimed upper bound for Rε(p) in the case 2∗ < p < 2∗. In the
endpoint casewhen p = 2∗ (and the existence of optimizers w ∈ L2(S) for the Stein–
Tomas inequality in dimensions N ≥ 4 is still open), we can choose for any δ > 0
an approximate optimizer w ∈ L2(S) such that ‖w‖2

L2(S) = (CST (p∗) + δ)‖w̌‖2
p. By

the exact reasoning as above, we find that

Rε(p∗) ≤ 2(CST (p∗) + δ)
π

√
ε + o(ε).

Since δ > 0 can be chosen arbitrarily, we are done.
(ii) The upper bound for Rrad

ε (p) with 2rad∗ < p < 2∗ follows by the above
arguments if we take the constant function w ≡ 1 ∈ L2(S) on the unit sphere and
use (2.4). �

Next, we treat the case p < 2∗.

Proposition 3.2. For 2 < p < 2∗, we have

Rε(p) = O(ε
3
4 + 1

2p − N
2 ( 1

2 − 1
p )) as ε → 0+.

Proof. Inspired by Knapp’s well known example (see, e.g., [26, Chapter 7]),
we construct test functions by using characteristic functions of spherical caps. Let
ε ∈ (0, 1) in the following. As usual, we use S = SN−1 to denote unit sphere in RN .
We define the spherical cap

(3.1) Cε = {θ ∈ S : 1 − θN ≤ ε
1
2 } = {θ ∈ S : |θ − eN| ≤ √

2ε
1
4 },

where eN := (0, . . . , 0, 1) is the N-th coordinate vector and the latter equality
follows since |θ − eN |2 = 2(1 − θ · eN) = 2(1 − θN) for θ ∈ S. We note that

(3.2) |θi| ≤ |θ − eN| ≤ √
2ε

1
4 for θ ∈ Cε, i = 1, . . . ,N − 1,

and that

‖wε‖2
L2(S) = |Cε| for wε := 1Cε

∈ L2(S).

In the following, we shall estimate Rε(p) with the test function uε ∈ H defined by

ûε(ξ) :=

⎧⎨
⎩wε(

ξ
|ξ| ) if ||ξ| − 1| ≤ √

ε,

0 if ||ξ| − 1| ≥ √
ε.
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Since 0 ≤ gε(r) ≤ Cε for |r − 1| ≤ √
ε with a constant C > 0, we have

(3.3)
qε(uε) =

∫
RN

gε(|ξ|)|ûε(ξ)|2dξ ≤ Cε

∫ 1+
√

ε

1−√
ε

rN−1
∫

S
|wε(θ)|2dσ(θ)dr

≤ 2Cε
3
2 (1 +

√
ε)N−1‖wε‖2

L2(S) ≤ 2NC|Cε|ε 3
2 .

To estimate ‖uε‖p, we now define, for δ > 0, the set

Mε,δ := {x ∈ R
N : |xN| ≤ δε− 1

2 , |xi| ≤ δε− 1
4 for i = 1, . . . ,N − 1.},

which has the volume
|Mε,δ| = δNε− N+1

4 .

We also note that

(3.4)
Re (e−ixN w̌ε(x)) = (2π)−

N
2

∫
Cε

Re (eix·(θ−eN ))dσ(θ)

= (2π)−
N
2

∫
Cε

cos(x · (θ − eN))dσ(θ),

whereas, by (3.1) and (3.2),

x·(θ−eN) =
N−1∑
i=1

xiθi+xN(θN −1) ≤ [(N−1)
√

2+1]δ ≤ 2Nδ for x ∈ Mε,δ, θ ∈ Cε.

Hence, setting δ0 := π
8N , we have

|x · (θ − eN)| ≤ π

4
for x ∈ Mδ0,ε, θ ∈ Cε,

By (3.4), we deduce that

(3.5) Re (e−ixN w̌ε(x)) ≥ (2π)−
N
2 |Cε| cos

π

4
=

|Cε|√
2(2π)

N
2

for x ∈ Mε,δ0 .

Similarly, we also compute that

(3.6)

|Im (e−ixN w̌ε(x))| = (2π)−
N
2

∣∣∣∣
∫

Cε

Im (eix·(θ−eN ))dσ(θ)
∣∣∣∣ ≤ (2π)−

N
2 |Cε| sin π

4

=
|Cε|√
2(2π)

N
2

for x ∈ Mε,δ0 .

For x ∈ R
N we now have

uε(x) =
∫
RN

eixξ ûε(ξ)dξ = (2π)−N/2
∫ 1+

√
ε

1−√
ε

rN−1
∫

S
eirxθwε(θ)dσ(θ)

=
∫ 1+

√
ε

1−√
ε

rN−1w̌ε(rx)dr
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and therefore

(3.7)

Re (e−ixNuε(x))

=
∫ 1+

√
ε

1−√
ε

rN−1Re (e−ixN w̌ε(rx))dr

=
∫ 1+

√
ε

1−√
ε

rN−1[Re (e−irxN w̌ε(rx))Re ei(r−1)xN

− Im (e−irxNw̌ε(rx))Im ei(r−1)xN ]dr

=
∫ 1+

√
ε

1−√
ε

rN−1[Re (e−irxN w̌ε(rx)) cos((r − 1)xN)

− Im (e−irxNw̌ε(rx)) sin((r − 1)xN)]dr.

Here we note that

|r − 1||xN| ≤ δ0 ≤ π

6
for |r − 1| ≤ √

ε, x ∈ Mε,δ0 .

We thus find that

(3.8)
cos((r − 1)xN) ≥

√
3

2
and | sin((r − 1)xN)| ≤ 1

2
for |r − 1| ≤ √

ε, x ∈ Mε,δ0 .

We now fix δ := δ0
2 . By (3.5) and (3.6), we have the implications

x ∈Mε,δ =⇒ rx ∈ Mε,δ0 for r ∈ (0, 1 +
√

ε)

=⇒ Re (e−ixN w̌ε(rx)) ≥ |Cε|√
2(2π)

N
2

and Im (e−ixN w̌ε(rx)) ≤ |Cε|√
2(2π)

N
2

for r ∈ (0, 1 +
√

ε).

Combining these estimates with (3.7) and (3.8), we see that

Re (e−ixNuε(x)) ≥
∫ 1+

√
ε

1−√
ε

rN−1 |Cε|√
2(2π)

N
2

√
3 − 1
2

dr

≥ (
√

3 − 1)(1 − √
ε)N−1√ε|Cε|√

2(2π)
N
2

for x ∈ Mε,δ . This also implies that

|uε(x)| ≥ (
√

3 − 1)(1 − √
ε)N−1√ε|Cε|√

2(2π)
N
2

for x ∈ Mε,δ .
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From this we deduce that

(3.9)

‖uε‖p ≥ (
√

3 − 1)(1 − √
ε)N−1√ε|Cε|√

2(2π)
N
2

|Mε|1/p

=
(
√

3 − 1)(1 − √
ε)N−1ε

1
2 − N+1

4p |Cε|√
2(2π)

N
2

.

By combining (3.3) and (3.9), we obtain

Rε(p) ≤ q(uε)
‖uε‖2

p
≤ 2N+1(2π)NC|Cε|ε 3

2

(
√

3 − 1)2(1 − √
ε)2(N−1)ε1− N+1

2p |Cε|2

=
2N+1(2π)NC

(
√

3 − 1)2(1 − √
ε)2(N−1)

ε
1
2 + N+1

2p

|Cε| .

Noting finally that

2N+1(2π)NC

(
√

3 − 1)2(1 − √
ε)2(N−1)

= O(1) as ε → 0+

and that

|Cε| = ε
N−1

4 (ωN−2 + o(1)) as ε → 0+,

where ωN−2 is the measure of the N −2-dimensional unit sphere, we conclude that

Rε(p) = O(ε
1
2 + N+1

2p − N−1
4 ) = O(ε

3
4 + 1

2p − N
2 ( 1

2 − 1
p )) as ε → 0+.

The claim follows. �

4 Lower bounds for Rε(p) and Rrad
ε (p)

We now turn to deriving lower bounds for Rε(p) and Rrad
ε (p). We can summarize

our results as follows.

Proposition 4.1. The following lower bounds hold.

(i) If 2∗ ≤ p ≤ 2∗, we have

Rε(p) ≥ 2CST (p)
π

√
ε + o(

√
ε) as ε → 0+.

(ii) If 2rad∗ < p ≤ 2∗, we have

Rrad
ε (p) ≥ 2Crad

ST (p)
π

√
ε + o(

√
ε) as ε → 0+.
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(iii) If 2 < p < 2∗, we have

Rε(p) ≥
(2CST (2∗)

π

)(N+1)( 1
2 − 1

p )
ε

3
4 + 1

2p − N
2 ( 1

2 − 1
p ) + o(ε

3
4 + 1

2p − N
2 ( 1

2 − 1
p )) as ε → 0+.

(iv) If 2 < p ≤ 2rad∗ , then we have

(4.1) Rrad
ε (p) ≥

(2Crad
ST (qβ)
π

)2−2β
εβ + o(εβ) as ε → 0+

for every

(4.2) β ∈
⎧⎨
⎩(1 − N( 1

2 − 1
p ),

1
2 + 1

p ) in the case N ≤ 4,

(1 − N( 1
2 − 1

p ), 1 − N
4 ( 1

2 − 1
p )) in the case N ≥ 5

and qβ = 4(1−β)
1+ 2

p −2β
∈ (2rad∗ , 2∗].

Proof. (i) Let δ ∈ (0, 1) and Aδ := {ξ ∈ R
N : ||ξ| − 1| ≤ δ}, and let u ∈ H be

a function with û(ξ) = 0 for ξ ∈ R
N \ Aδ. Then

‖u‖p = (2π)−N/2

∥∥∥∥
∫
RN

ei(·)ξ û(ξ) dξ

∥∥∥∥
p
= (2π)−N/2

∥∥∥∥
∫ 1+δ

1−δ
rN−1

∫
S
eir(·)θû(rθ) dσ(θ)dr

∥∥∥∥
p

≤ (2π)−N/2
∫ 1+δ

1−δ
rN−1

∥∥∥∥
∫

S
eir(·)θû(rθ) dσ(θ)

∥∥∥∥
p
dr

= (2π)−N/2
∫ 1+δ

1−δ
rN−1− N

p

∥∥∥∥
∫

S
ei(·)θû(rθ) dσ(θ)

∥∥∥∥
p
dr

≤ 1√
CST (p)

∫ 1+δ

1−δ
rN−1− N

p ‖û(r(·))‖L2(S)dr

≤ 1√
CST (p)

(∫ 1+δ

1−δ
rN−1− 2N

p gε
−1(r)dr

) 1
2
(∫ 1+δ

1−δ
rN−1gε(r)‖û(r(·))‖2

L2(S)dr
) 1

2

=
1√

CST (p)

(∫ 1+δ

1−δ
rN−1− 2N

p gε
−1(r)dr

) 1
2

×
(∫ 1+δ

1−δ
rN−1gε(r)

∫
S
|û(rθ)|2dσ(θ)dr

) 1
2

=
1√

CST (p)

(∫ 1+δ

1−δ
rN−1− 2N

p gε
−1(r)dr

) 1
2
(∫

RN
gε(|ξ|)|û(ξ)|2dξ

) 1
2

=
1√

CST (p)

(∫ 1+δ

1−δ
rN−1− 2N

p gε
−1(r)dr

) 1
2 √

qε(u)

≤ 1√
CST (p)

(1 + δ)
N−1

2 − N
p

(∫ 1+δ

1−δ
gε

−1(r)dr
) 1

2 √
qε(u).
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Here we used the fact that N−1
2 − N

p > 0 since p > 2∗. Consequently,

(4.3)
qε(u)
‖u‖2

p
≥ (1 + δ)

2N
p −(N−1)CST (p)

(∫ 1+δ

1−δ
gε

−1(r)dr
)−1

.

For ε > 0, let uε ∈ H be a function with ‖uε‖p = 1 and qε(uε) = Rε(p), i.e., uε

minimizes the quotient in (1.5). We write uε = vε + zε with

v̂ε = ûε1Aδ
and ẑε = ûε1RN\Aδ

.

By the properties of gε, there exists a constant c = c(δ) > 0 with

gε(r) ≥ c(1 + r4) for r ∈ [0, 1 − δ] ∪ [1 + δ,∞) and ε > 0.

Consequently, by Proposition 3.1(i) and Sobolev embeddings,

O(
√

ε) ≥ qε(uε) ≥ qε(zε) ≥ c
∫
RN

(1 + |ξ|4)|ẑε(ξ)|2 ≥ c1‖zε‖2
p as ε → 0

with a constant c1 > 0. Therefore,

‖vε‖p ≥ ‖uε‖p − ‖zε‖p = 1 − o(1) as ε → 0.

Applying the estimate (4.3) to vε in place of u, we find

Rε(p) = qε(uε) ≥ qε(vε) = (1 − o(1))
qε(vε)
‖vε‖2

p

= (1 − o(1))(1 + δ)
2N
p −(N−1)CST (p)

(∫ 1+δ

1−δ
gε

−1(r)dr
)−1

.

From Lemma A.1 below, we thus deduce that

lim inf
ε→0

Rε(p)√
ε

≥ (1 + δ)
2N
p −(N−1)CST (p) lim

ε→0

1√
ε

(∫ 1+δ

1−δ
gε

−1(r)dr
)−1

= (1 + δ)
2N
p −(N−1) 2CST(p)

π
.

Since δ ∈ (0, 1) can be chosen arbitrarily, we conclude that

lim inf
ε→0

Rε(p)√
ε

≥ 2CST (p)
π

.

(ii) This follows by precisely the same argument as in (i), where now the
definition of Crad

ST (p) is used in place of Theorem 1.6 and Part (ii) of Proposition 3.1
is used in place of Part (i).
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(iii) We use the interpolation inequality

‖u‖p ≤ ‖u‖1−α
2 ‖u‖α

2∗ for u ∈ H

with

α =
1 − 2

p

1 − 2
2∗

=
1 − 2

p

1 − N−1
N+1

= (N + 1)
(1
2

− 1
p

)
.

Now for every u ∈ H we have

ε‖u‖2
2 = ε

∫
RN

|û(ξ)|2dξ ≤
∫
RN

gε(|ξ|)|û(ξ)|2dξ = qε(u),

and therefore

qε(u)
‖u‖2

p
≥ qε(u)1−αqε(u)α

(‖u‖2
2)

1−α(‖u‖2
2∗)

α
≥ ε1−α

( qε(u)
‖u‖2

2∗

)α
.

Consequently, by (i),

Rε(p) ≥ ε1−α
(

inf
u∈H\{0}

qε(u)
‖u‖2

2∗

)α ≥ ε1−α
(2CST (2∗)

π
ε

1
2 + o(ε

1
2 )
)α

≥
(2CST (2∗)

π

)α
ε1− α

2 + o(ε1− α
2 ).

Since 1 − α
2 = 3

4 + 1
2p − N

2 ( 1
2 − 1

p ), the claim follows.
(iv) We argue similarly as in (iii), choosing now q > 2rad∗ = 2N

N−1 and setting

α = αp,q =
1− 2

p

1− 2
q
. We then use the interpolation inequality ‖u‖p ≤ ‖u‖1−α

2 ‖u‖α
q and

obtain, as above, that

qε(u)
‖u‖2

p
≥ ε1−α

(qε(u)
‖u‖2

q

)α
for every u ∈ Hrad.

Consequently, by (ii),

(4.4)
Rrad

ε (p) ≥ ε1−α
(

inf
u∈Hrad\{0}

qε(u)
‖u‖2

q

)α ≥ ε1−α
(2Crad

ST (q)
π

ε
1
2 + o(ε

1
2 )
)α

≥
(2Crad

ST (q)
π

)α
ε1− α

2 + o(ε1− α
2 ).

Now, for any β satisfying the restrictions in (4.2), we choose

q = qβ =
2

1 − 1− 2
p

2−2β

=
4(1 − β)

1 + 2
p − 2β

∈ (2rad
∗ , 2∗),

and we note that

α = αp,q =
1 − 2

p

1 − 2
q

= 2 − 2β

in this case, i.e., we have 1 − α
2 = β. Hence (4.4) implies (4.1). The proof of

Proposition 4.1 is thus finished. �
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5 The Dirichlet problem in the unit ball

In this section we complete the proof of Theorem 1.5. For this we fix p ∈ (2, 2∗)
and we put Br := Br(0) for r > 0. Moreover, we consider, for ε > 0, the restriction

u �→ qr
ε(u) =

∫
Br

(|�u|2 − 2|∇u|2 + (1 + ε)|u|2) dx

of the quadratic form qε defined in (1.4) to the subspace H2
0(Br) ⊂ H. We also

define

(5.1) Rr
ε(p) := inf

u∈H2
0 (Br)\{0}

qr
ε(u)

‖u‖2
Lp(Br)

and we note that Rr
ε(p) ≥ Rε(p) for every r > 0. Moreover, from the fact

that C∞
0 (RN) is dense in H and Sobolev embeddings, it is easy to deduce that

(5.2) Rr
ε(p) → Rε(p) as r → ∞.

We also define
Rrad,r

ε (p) := inf
u∈H2

0(Br )\{0}
u radial

qr
ε(u)

‖u‖2
Lp(Br)

,

and we note that

(5.3) Rrad,r
ε (p) ≥ Rrad

ε (p) for every r > 0,

where Rrad
ε (p) is defined in (2.1). Next, we let 0 < ε ≤ ε0 with ε0 = ε0(p) given

in Theorem 1.2. Combining (2.2) with (5.2) and (5.3), we find that there exists
a0 = a0(p, ε) > 0 with the property that

(5.4) Rrad,r
ε (p) > Rr

ε(p) for r >
√

a0.

Next, we define, for a > 0, the scaling map u �→ Sau := u( (·)√
a ), which is a

topological isomorphism between the spaces H2
0(B) and H2

0(B√
a). Moreover, Sa

maps radial functions to radial functions. A change of variables shows that

(5.5) q
√

a
ε (Sau) = a

N
2 −2qa,(1+ε)a2,B(u) and ‖Sau‖Lp(B√

a)) = a
N
2p ‖u‖Lp(B)

for every u ∈ H2
0(B), where qa,(1+ε)a2,B is defined in (1.12). By (5.4) and (5.5), we

have
qa,(1+ε)a2,B(u)

‖u‖2
Lp(B)

> Ra,(1+ε)a2,B

for every a > a0 and every radial function u ∈ H2
0(B),

where Ra,(1+ε)a2,B is defined in (1.12). Hence, if a > a0 and b = (1 + ε)u2, then
every ground state solution of (1.11) is nonradial. This concludes the proof of
Theorem 1.5.
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Appendix A A technical lemma

Lemma A.1. Suppose that a ∈ R, δ > 0, and let g0 : [a − δ, a + δ] be a
C2-function with g0(r) > 0 for r ∈ [a − δ, a + δ] \ {a} and g0(a) = g′

0(a) = 0,

g′′
0(a) > 0. Moreover, let

gε : [a − δ, a + δ] → R, gε(r) = g0(r) + ε.

Finally, let ε0 > 0 and τ : (0, ε0) → [0, δ] be a function with lim
ε→0+

τ(ε)√
ε

= ∞. Then

we have

lim
ε→0+

√
ε

∫ a+τ(ε)

a−τ(ε)

dr
gε(r)

=
π√

1
2g

′′
0(a)

.

Remark A.1. Under the assumptions of Lemma A.1, it follows in particular,
by choosing the constant function τ ≡ δ, that

lim
ε→0+

√
ε

∫ a+δ

a−δ

dr
gε(r)

=
π√

1
2g

′′
0(a)

.

Moreover, it follows that

lim
ε→0+

√
ε

∫ a+εs

a−εs

dr
gε(r)

=
π√

1
2g

′′
0(a)

for every s ∈
(
0,

1
2

)
.

Proof of Lemma A.1. Without loss of generality, we assume that a = 0.
By assumption, there exists a constant c > 0 with

g0(r) ≥ cr2 for r ∈ [−δ, δ].

Then

√
ε

∫ τ(ε)

−τ(ε)

dr
gε(r)

=
√

ε

∫ τ(ε)

−τ(ε)

dr
g0(r) + ε

=
∫ τ(ε)√

ε

− τ(ε)√
ε

ε dr
g0(

√
εr) + ε

=
∫ τ(ε)√

ε

− τ(ε)√
ε

dr
g0(

√
εr)

ε
+ 1

for every ε > 0 and

1
g0(

√
εr)

ε
+ 1

≤ 1
cr2 + 1

for ε > 0, r ∈
[
− τ(ε)√

ε
,
τ(ε)√

ε

]
.

Since also

lim
ε→0+

1
g0(

√
εr)

ε
+ 1

=
1

1
2g

′′
0(0)r2 + 1

for all r ∈ R,

Lebesgue’s theorem implies that

√
ε

∫ τ(ε)

−τ(ε)

dr
gε(r)

→
∫
R

dr
1
2g

′′
0(0)r2 + 1

=
π√

1
2g

′′
0(0)

as ε → 0+.
�
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Appendix B Existence and properties of ground states

In this section, we provide the proof of Theorem 1.1. Assume that b > a2

and 2 < p < 2∗. Let us first prove that the infimum Ra,b(p) is attained. Suppose
that (un) ⊂ H2(RN) is a sequence with ‖un‖p = 1 for all n ∈ N and

(B.1) qa,b(un) → Ra,b(p) asn → ∞.

In particular, the sequence (un) is bounded in H2(RN). Since we must have un �→ 0
in Lp(RN), it follows from Lions’ concentration compactness lemma for bounded
sequences in H2(RN) together with 2 < p < p∗ that there exist points zn ∈ RN

with the property that, after passing to a subsequence, the sequence of functions
un(· − zn) has a nontrivial weak limit u ∈ H2(RN) \ {0}, say. By translation
invariance, we can replace un by un(· − zn) for every n ∈ N, so that

un ⇀ u ∈ H2(RN) \ {0}.
By Fatou’s lemma, we have

0 < ‖u‖p ≤ lim inf
n→∞ ‖un‖p.

We claim that un → u ∈ Lp(RN). If this is not the case, then we may pass to a
subsequence with the property that ‖vn‖p → d > 0 where we set vn = u−un. Then
we have ‖u‖p

p + dp = 1 and thus ‖u‖2
p + d2 > 1. Consequently, we deduce

Ra,b(p) = lim
n→∞ qa,b(un) = lim

n→∞(qa,b(u) + qa,b(vn))

≥ Ra,b(p) lim
n→∞(‖u‖2

p + ‖vn‖p
p) = Ra,b(p)(‖u‖2

p + dp) > Ra,b(p),

which is a contradiction. Hence un → u in Lp(RN), which implies that ‖u‖Lp = 1
and, by weak lower semicontinuity,

qa,b(u) ≤ lim
n→∞ qa,b(un) = Ra,b(p).

Therefore the infimum Ra,b(p) is attained at u ∈ H2(RN) with u �≡ 0.
Next, we claim that any minimizer u ∈ H2(RN) \ {0} for Ra,b(p) must be real-

valued up to a trivial constant complex phase, i.e., there is some constant θ ∈ R

such that
eiθu(x) ∈ R for a.e. x ∈ R

N .

To prove this claim, we adapt an argument in [14] (see also [7]). First, we recall
that

qa,b(u) =
∫
RN

ga,b(|ξ|)|û(ξ)|2 dξ
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where ga,b(|ξ|) = |ξ|4 − 2a|ξ|2 + b. We split u : RN → C into real and imaginary
parts so that

u(x) = uR(x) + iuI(x)

with the real-valued functions uR, uI : RN → R. From now on, we assume
that uR �≡ 0 and uI �≡ 0 are both nontrivial, since otherwise the result would
directly follow. By elementary properties of the Fourier transform, it holds
that ûR(−ξ) = ûR(ξ) and ûI(−ξ) = ûI(ξ) for a.e. ξ ∈ R

N . Using that ga,b(|ξ|)
is real-valued and even, an elementary calculation shows that

(B.2) qa,b(u) = qa,b(uR) + qa,b(uI).

On the other hand, we use the fact that p > 2 to deduce that

(B.3) ‖u‖2
Lp = ‖|uR|2 + |uI|2‖Lp/2 ≤ ‖|uR|2‖Lp/2 + ‖|uI|2‖Lp/2 = ‖uR‖2

Lp + ‖uI‖2
Lp .

From the strict convexity of the Lp/2-norm for p > 2 (Hanner’s inequality) we see
that equality holds in (B.3) if and only if uI = 0 or u2

R = α2u2
I with some constant

α ≥ 0.
By using (B.2) and (B.3) together with the fact that u ∈ H minimizes Ra,b(p),

we find that

Ra,b(u) =
qa,b(u)
‖u‖2

Lp

≥ qa,b(uR) + qa,b(uI)
‖uR‖2

Lp + ‖uI‖2
Lp

≥ min
(qa,b(uR)

‖uR‖2
Lp

,
qa,b(uI)
‖uI‖2

Lp

)
≥ Ra,b(p).

Since uR �≡ 0 �≡ uI by assumption, equality in (B.3) yields that u2
I = α2u2

R for some
constant α > 0. Next we claim that uI = ±αuR holds, which would complete
the proof. To see this, we define the real-valued functions u1 = 1√

2
(uR + uI) and

u2 = 1√
2
(−uR + uI). This gives us

u(x) = eiπ/4u1(x) + ieiπ/4u2(x).

If u2 ≡ 0 or u1 ≡ 0, we are done since this implies uI = ±uR. Thus we can assume
u1 �≡ 0 and u2 �≡ 0. In the same fashion as above, we find that we can use (B.2)
and (B.3) with uR, uI replaced by u1, u2. Hence we deduce that u2

2 = β2u2
1 with

some constant β > 0. Notice that β2 �= 1 holds, because otherwise we get uRuI ≡ 0
(which yields u ≡ 0 from uI = α2u2

R). In summary, we have found that

u2
R = α2u2

I and
1
2
(1 + α2)(1 − β2)u2

R = (1 + β2)uRuI,

which implies that uI = ±αuR. Thus the functions uR and uI are linearly dependent
and hence eiθu(x) ∈ R almost everywhere in R

N with some constant θ ∈ R. This
completes the proof of Theorem 1.1. �
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Finally, we use the method of Fourier symmetrization to obtain the following
symmetry result in the case of even-integer p > 2.

Lemma B.1. Let N ≥ 1, 2 < p < 2∗, b > a2, and suppose that p ∈ 2N is an

even integer. Then any minimizer u ∈ H for Ra,b(p) must be an even function, i.e.,
we have u(−x) = u(x) for a.e. x ∈ RN.

Remark. From Theorem 1.2 we recall that breaking of radial symmetry for

minimizers u ∈ H must occur in the range N ≥ 2 and 2 < p < 2∗. In this range,
the only compatible choice with Lemma B.1 is N = 2 and p = 4 < 2∗.

Proof. We can invoke the general strategy developed in [7] based on Fourier
methods. For the reader’s convenience, we provide some details on how to apply
these results to our setting. In [7], one considers minimizers of functionals of the
form J : Hs(RN) \ {0} → R with

J(f ) =
〈f, (P(D) + λ)f 〉

‖f‖2
L2σ+2

.

Here P(D) is an elliptic (pseudo-)differential operator of order 2s > 0 with Fourier
symbol p(ξ) and 0 < σ < σ∗ with σ∗ = 2s

N−2s if s < N/2 and σ∗ = ∞ if s ≥ N/2.
The constant λ ∈ R is assumed to satisfy

inf
ξ∈RN

p(ξ) + λ > 0,

which guarantees the norm equivalence ‖f‖2
Hs � 〈f, (P(D) + λ)f 〉. Adapted to our

setting, we have s = 2 and

P(D) = �2 + 2a�, λ = b, σ =
p − 2

2
.

Notice that infξ∈RN p(ξ) + λ > 0 is equivalent to b > a2. Furthermore, it is elemen-
tary to check that the condition 0 < σ < σ∗ is equivalent to 2 < p < 2∗. Thus the
minimizers u ∈ H for Ra,b(p) are exactly minimizers of the above functional J(f )
with our choice of P(D), λ, σ above.

If p ∈ 2N is an even integer (and thus σ = 1
2(p − 2) ∈ N is an integer), we can

apply [7, Theorem 2] to deduce that any minimizer u ∈ H for Ra,b(p) must be an
even function, i.e., it holds that

u(−x) = u(x) for a.e. x ∈ R
N,

using also that the symbol p(ξ) = |ξ|4 − 2a|ξ|2 is real-valued and even together
with the fact that we have the exponential decay property

eμ|·|u ∈ L2(RN)
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for some μ > 0. In fact, the latter exponential decay property can be deduced
from Paley–Wiener type arguments and complex continuation arguments, which
are classical for the operator P(D) = �2 + 2a� having an analytic symbol; see also
the remark following [7, Theorem 2] for exactly this example for P(D).

This completes the sketch of the proof of Lemma B.1. �
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