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ABSTRACT

The category of abelian varieties over Fq is shown to be anti-equivalent to

a category of Z-lattices that are modules for a non-commutative pro-ring

of endomorphisms of a suitably chosen direct system of abelian varieties

over Fq. On full subcategories cut out by a finite set w of conjugacy

classes of Weil q-numbers, the anti-equivalence is represented by what we

call w-locally projective abelian varieties.
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1. Introduction

1.1. The scene. Let q = pr be a power of a prime number p, and let Fq

be a finite field with q elements. In this paper we generalize [CS15] to the

category AVFq of abelian varieties over Fq. Our main result says that there is a

non-commutative pro-ring Sq and an anti-equivalence

(1.1) T : AVFq −→ ModZ-tf(Sq)
between AVFq and the category of left Sq-modules that are free and of finite rank

over Z. The ring Sq arises in the construction of (1.1) and admits a description

as a pro-ring

Sq = lim←−
w

Sw

for Z-orders Sw of certain finite Q-algebras. The construction of T involves

several choices. As a consequence Sq is not unique, however, its center Rq is

unique and can be described explicitly in terms of the set of Weil q-numbers.

Besides having its own interest, our result provides a non-commutative algebra

setting into which potentially every question on AVFq can be translated.

It will be clear to the reader that our work is permeated by Honda–Tate the-

ory [Ho68, Ta68] and by Tate’s result on the local structure of the Hom-groups

[Ta66]. Since these milestones for the subject were placed in the 1960s, vari-

ants of the anti-equivalence (1.1) for several subcategories of AVFq have been

studied by many mathematicians, with reviving interest in recent years. We

recall results on this classical topic in a similar spirit as ours, and apologize in
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advance for possible omissions. Waterhouse [Wa69] studied isomorphism classes

and endomorphism rings of certain simple objects of AVFq . More recently, Yu

[Yu12, Theorem 3.1] classified isomorphism classes of objects of AVFp whose

characteristic polynomial of Frobenius is relatively prime to x2 − p. Giraud

[Gi68, §1] and Waterhouse [Wa69, Appendix] (see also [JKP+18, §4]) exploited
a functor due to Serre and Tate in the converse direction as (1.1) to study

elliptic curves. Deligne [De69] used the canonical lifting of Serre and Tate to

give a complete description of the full subcategory of AVFq consisting of ordi-

nary objects. This construction was further developed by Howe [Ho95] to solve

questions concerning polarizations, a topic also addressed in a similar fashion

by Bergström, Karemaker and Marseglia [BKM23]. The canonical lifting tech-

nique was extended by Oswal and Shankar [OS20] and used to classify objects

in isogeny classes of simple, almost ordinary abelian varieties. Classification of

abelian varieties isogenous to powers of a given simple abelian variety (often an

elliptic curve) has been the focus of attention in [Ka11], [Yu12], [JKP+18].

Our emphasis is on a uniform categorical description of all of AVFq in terms

of modules.

1.2. Frobenius and Weil q-numbers. Before giving more details on our

method and stating a precise theorem we recall some notation and terminology.

Two Weil q-numbers π and π′ are conjugate if there is an isomorphism

Q(π) � Q(π′)

sending π to π′. The set of conjugacy classes of Weil q-numbers is denoted

by Wq. When no confusion is likely to arise, we may suppress the distinction

between a Weil q-number and its conjugacy class. For any π ∈ Wq, we fix

once and for all an Fq-simple abelian variety Bπ belonging to the isogeny class

of AVFq defined by π according to Honda–Tate theory [Ho68, Ta68].

The Weil support w(A) of an object A of AVFq is the finite subset of Wq

consisting of Weil numbers associated to the simple factors of A. This is to say

that there is an Fq-isogeny

A −→
∏

π∈w(A)

Bnπ
π ,

with positive multiplicities nπ. For a subset w ⊆ Wq, finite or infinite, we

denote by AVw the full subcategory of AVFq whose objects are those abelian

varieties A such that w(A) ⊆ w.
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For w ⊆ Wq finite, the minimal central order Rw is the largest quotient

through which the ring homomorphism

(1.2) Z[F, V ]/(FV − q) −→ Q(w) :=
∏
π∈w

Q(π),

sending F and V to the diagonal images of π and q/π respectively, factors. As w

ranges through the finite subsets ofWq, the Rw form a pro-ringRq=(Rw, rw,w′),

where the transition maps rw,w′ : Rw′ → Rw are the natural surjections, defined

when w ⊆ w′. The category AVw has a natural Rw-linear structure which varies

compatibly as w increases. This datum forms what we refer to as the Rq-linear
structure on AVFq .

1.3. The main result.The strategy for constructing the anti-equivalence (1.1)

is similar to that followed in [CS15]. We first construct, for any finite sub-

set w ⊆Wq, what we call a w-balanced abelian variety Aw; see Definition 2.8.

We then show that Aw represents an anti-equivalence

(1.3) Tw : AVw −→ ModZ-tf(Sw), Tw(X) = HomFq (X,Aw),

where Sw = EndFq (Aw) and ModZ-tf(Sw) is the category of left Sw-modules that

are free and of finite rank over Z. The w-balanced object Aw and hence Sw

is not unique. However the center of Sw is isomorphic to Rw under the map

induced by the Rw-linear structure of AVw.

The second step is to show that the objects Aw can be chosen compatibly as w

increases. More precisely, we prove that there is a family of w-balanced abelian

varieties Aw and an ind-object A = (Aw, ϕw,w′) such that the corresponding

ind-representable functor

HomFq(−,A) = lim−→
w

HomFq (−, Aw)

interpolates the anti-equivalences (1.3) for each w. An important by-product

of the construction of A is that the endomorphism rings Sw form a projective

system

Sq = EndFq (A) = (Sw, sw,w′)

with rw,w′-linear and surjective transition maps sw,w′ : Sw′ → Sw, for w ⊆ w′.
Denote by

ModZ-tf(Sq)
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the category of Sq-modules for which the structural action factors through

some Sw, and which as Z-modules are free of finite rank. This category is Rq-
linear and for each object there is a clear notion of support, parallel to that

in AVq. Our main result can be formulated as follows.

Theorem 1.1: Let q = pr be a power of a prime number p. There exists

an ind-abelian variety A = (Aw, ϕw,w′) such that Aw is w-balanced for all

finite w ⊆ Wq and the transition maps are inclusions. With Sq = EndFq(A),
the contravariant and Rq-linear functor

T : AVFq −→ ModZ-tf(Sq),
T (X) = HomFq (X,A)

is an anti-equivalence of categories which preserves the support. Moreover, the

Z-rank of T (X) is equal to 4r dim(X).

Remark 1.2: (1) The main difference with [CS15] is that the varieties Aw

can no longer be chosen to be multiplicity free in general (see Theo-

rem 3.10), and so their endomorphism rings Sw are non-commutative,

hence harder to describe explicitly; see Theorem 4.9. We consider the

use of multiplicities as a major insight which is stimulated by and used

here in the context of Morita equivalence. This explains how we decided

the title of this note.

(2) The rank of the associated Z-lattice T (X) exceeds the dimension

of H1(X) in any Weil cohomology by a factor of 2r. This

cannot be avoided in general; see Proposition 8.9. However the ratio

rkZ(T (X))/2 dim(X) can be lowered to r if r is even or by excluding real

Weil q-numbers from the scope of the anti-equivalence; see Remark 7.2.

(3) The rational version of Theorem 1.1 follows easily from Honda–Tate

theory. Here rational means − ⊗ Q for modules and working up to

isogeny for abelian varieties. In fact, Theorem 1.1 can be seen as a

categorification of an integral version of Honda–Tate theory.

1.4. Geometry of the category of abelian varieties. Let w be a finite

set of Weil q-numbers. Restricted to AVw, our main result has a geometric in-

terpretation on the 1-dimensional scheme Xw = Spec(Rw). The Rw-algebra

Sw corresponds to a coherent sheaf of (in general) non-commutative OXw -

algebras Sw. Finitely generated modules for Sw are coherent sheaves on Xw
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endowed with an OXw -linear Sw-module structure. We call these coherent

Sw-modules. The anti-equivalence (1.3) describes abelian varieties from AVw
as coherent sheaves of Sw-modules that are flat over Spec(Z).

With this point of view, it makes sense to talk about categorically local prop-

erties of an abelian variety X in AVw at a prime � �= p (or at p) as properties

of the �-adic (or p-adic) completion of the module HomFq (X,Aw). With hind-

sight, one should be able to detect local structure of X in a more direct way.

Indeed, Tate’s theorems identify local structure ofX in terms of the Galois mod-

ule T�(X) (resp. the Dieudonné module Tp(X)). The proof of our main result

compares the datum of the Tate module and the completion of HomFq (X,Aw)

based on the special properties of w-balanced objects. We therefore adopt the

terminology of local properties of abelian varieties if these are defined in terms

of Tate modules only (see Definition 3.1 for a refinement which indicates that

the present point of view is only semi-local).

The following definition is an important example of a local property. We

use the notation Dw to denote a certain quotient of the Dieudonné ring to be

explained in (2.5) of Section 2.1.

Definition 1.3: Let q = pr be a power of a prime number p, and let w ⊆ Wq

be a finite subset of Weil q-numbers. An abelian variety A ∈ AVw is w-locally

projective if

(i) for all � �=p the Tate module T�(A) is a projective Rw⊗Z�-module, and

(ii) Tp(A) is a projective Dw-module.

The w-balanced abelian varieties, constructed in Theorem 2.7, are w-locally

projective. The w-locally projective objects of AVw can be characterized as

follows.

Theorem 1.4: Let w ⊆Wq be a finite subset, and let A in AVw be an abelian

variety with S = EndFq (A). Then the following are equivalent.

(a) A is w-locally projective with support w(A) = w.

(b) The functor HomFq (−, A) : AVw −→ ModZ-tf(S) is an anti-equivalence

of categories.

This result will follow from Theorem 6.6. More on the classification of w-

locally projective abelian varieties is explained by Theorem 3.10 and Theo-

rem 8.5.
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Remark 1.5: While w-locally projective is the decisive property for the rep-

resentable anti-equivalence of AVw with a suitable category of modules (see

Theorem 6.6), we have formulated our main result Theorem 1.1 in the more re-

strictive setting using w-balanced abelian varieties. The w-balanced abelian va-

rieties are easy-to-construct (see Theorem 2.7) examples of w-locally projective

objects which fit well together to form an ind-object suitable to prove our main

result, see Section 7.2. Furthermore, (reduced) w-balanced abelian varieties en-

joy a minimality property among the larger set of w-locally projective ones, as

long as w is large enough and Spec(Rw) is connected (see Theorem 3.10).

1.5. The commutative case. Our method can be applied also to the study

of any full subcategory of AVFq of the form AVW , where W ⊆Wq is any subset.

The outcome is the existence of a pro-ring SW and an ind-representable anti-

equivalence

(1.4) TW : AVW −→ ModZ-tf(SW )

between AVW and the category ModZ-tf(SW ) of modules over SW that are finite

and torsion free over Z. As in the case where W =Wq, the functor TW and the

pro-ring SW appearing in (1.4) are far from being unique. The center of any

such SW is the quotient RW of Rq defined by W .

We say that a subset W ⊆ Wq is a commutative set of Weil q-numbers if

there is a functor TW (−) as in (1.4) for which SW is commutative. There are

two examples:

• the subset W ord
q of ordinary Weil q-numbers, and

• for q = p, the set W com
p =Wp \ {±√p} given by the complement of the

real conjugacy class of Weil p-numbers; see [CS15] and Section 7.2.

The existence of (1.4) for W = W ord
q was first shown by Deligne in [De69] (up

to switching the variance of TW ), who exploited the existence of the Serre–Tate

canonical lifting for ordinary objects. In §8.1, see Theorem 8.4, we reprove

his result without involving lifts to characteristic zero. Instead, our argument

relies on a calculation of an endomorphism ring. Then a Morita-equivalence

trick deduces the claimed anti-equivalence of categories.
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These two cases W ord
q and W com

p are the only maximal commutative W , see

Proposition 8.8, and in this case the anti-equivalence (1.4) reads as

(1.5) TW : AVW −→ ModZ-tf(RW )

with the rank of TW (X) being equal to 2 dim(X).

1.6. Outline. This article is structured as follows. In Section 2 we recall

Honda–Tate theory which can be considered as the rational version of our anti-

equivalence of categories. This leads directly to the existence of w-balanced

abelian varieties in Theorem 2.7, a choice of integral structure within the ratio-

nal theory. The study of the local integral theory starts in Section 3 with the

definition of the local Tate modules Tλ(A) (resp. Tp(A)) for maximal ideals λ

(resp. p) of Rw. We moreover compute in Section 4 in Theorem 4.9 a descrip-

tion of the endomorphism ring of balanced abelian varieties and thus make the

main theorem more concrete and potentially accessible to computations.

In Section 5 we provide a formal criterion (Morita equivalence, Theorem 5.4)

for a representable functor (in our setting) to be an anti-equivalence. We subse-

quently apply the criterion in Section 6 to w-locally projective abelian varieties,

in particular to w-balanced abelian varieties: these are injective cogenerators

for the respective w-truncated category of abelian varieties AVw. It should

be emphasized that this step relies on Tate’s theorems (2.4) and (2.7), and,

for the prime-to-p part, on the minimal central order Rw being Gorenstein.

We moreover determine the center of Sq in Section 6.3. Section 7 glues the

truncated anti-equivalences by a limit argument and so completes the proof of

Theorem 1.1.

Section 8 adresses special subcategories for which the multiplicity of the repre-

senting object can be lowered, and we show in Proposition 8.9 that multiplicities

are unavoidable in general.

We conclude in Section 9 with an instructive example that shows why multi-

plicity for the injective cogenerator is important (there are two non-isomorphic

simple objects) and that the cogenerator is not just a product of simple objects

but involves a congruence (the product has a cyclic isogeny onto the injective

cogenerator). Moreover, we classify isogeny classes of injective cogenerators for

Weil q-numbers of supersingular elliptic curves.

Acknowledgements. We are grateful to the anonymous referee for numerous

suggestions that helped improve the presentation of our results.
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2. Rational theory and choice of a lattice

We recall Honda–Tate theory in order to fix notation and to prepare for Theo-

rem 2.7.

2.1. Minimal central orders. For a Weil q-number π, denote by Pπ(x) its

monic minimal polynomial over Q, and by hπ(F, V ) the associated symmetric

polynomial, which is uniquely determined by the equation

hπ(x, q/x) = x− deg(Pπ)/2 · Pπ(x)
and being a linear combination of powers F i and V j with i, j ∈ 1

2Z and i, j ≥ 0.

The symmetric polynomial hπ(F, V ) lies in the polynomial ring Z[F, V ] if π

is not rational, as then deg(Pπ) is even. If π is rational, then r is even and

π = ε
√
q where ε ∈ {1,−1} and √q is the positive rational square root of q. The

symmetric polynomial then is hπ(F, V ) = F 1/2−εV 1/2 and lies in Z[F 1/2, V 1/2].

For a finite subset w ⊆Wq, we define

Pw(x) =
∏
π∈w

Pπ(x) and hw(F, V ) =
∏
π∈w

hπ(F, V ).

We moreover define the degree of w as

deg(w) = deg(Pw) = [Q(w) : Q] =
∑
π∈w

deg(π).

The degree deg(w) is even unless r = [Fq : Fp] is even and w contains exactly

one of the two rational Weil q-numbers
√
q and −√q.

Let us recall the structure of the minimal central order Rw from [CS15, §2.5].
If w either contains both or no rational Weil q-numbers, i.e., if deg(w) = 2d is

even, then the natural map induces an isomorphism

Z[F, V ]/(FV − q, hw(F, V ))
∼−→ Rw,

and shows that we have a Z-basis of Rw given by the elements represented by

(2.1) F d, . . . , F, 1, V, . . . , V d−1 or alternatively by F d−1, . . . , F, 1, V, . . . , V d.

If, on the other hand, we have w equal to w0 ∪ {ε · pm}, where r = 2m is

even, ε ∈ {1,−1}, and w0 contains no rational Weil q-number, then the degree

deg(w) = 2d0 + 1 is odd. Moreover, we have an isomorphism

Z[F, V ]/(FV − q, hw0(F, V )(F − εpm), hw0(F, V )(V − εpm))
∼−→ Rw,
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and a Z-basis of Rw is given by the elements represented by

(2.2) F d0 , . . . , F, 1, V, . . . , V d0 .

2.2. Localizations of AVFq . Let � be a prime number different from p. As

usual, for an object A of AVFq we denote the �-adic Tate module of A by

T�(A),

and by V�(A) the Q�-vector space T�(A)⊗Z�
Q�. For any finite subset w ⊆Wq,

and any A in AVw, the Rw-linear structure on AVw induces on T�(A) the struc-

ture of an Rw⊗Z�-module. The ring Rw⊗Z� is generated over Z� by the image

of F , since � �= p, and we have

(2.3) Rw ⊗ Z� � Z�[x]/(Pw(x)).

Let Fp be a fixed algebraic closure of the prime field Fp, and consider Fq as a

subfield of Fp. The Galois action on T�(A) can be recovered from the Rw ⊗ Z�-

structure, in that F acts on T�(A) as the arithmetic Frobenius

Frobq ∈ Gal(Fp/Fq).

In particular, maps as Galois representations between �-adic Tate modules for

objects in AVw are the same as Rw⊗Z�-module homomorphisms. The theorem

of Tate [Ta66, Main Theorem] thus says that the functor T�(−) induces an

isomorphism

(2.4) HomFq(A,B) ⊗ Z�
∼−→ HomRw⊗Z�

(T�(A), T�(B)),

for all A,B in AVw.

To study the localization of AVFq at p, consider the Dieudonné ring

Dq =W (Fq){F ,V }/(FV − p).
Here W (Fq) is the ring of Witt vectors of Fq, the variable F is σ-linear and V

is σ−1-linear where σ is the arithmetic Frobenius of W (Fq)/Zp. Moreover, F

and V commute with each other. We introduce the notation

Fi :=

⎧⎪⎪⎨
⎪⎪⎩

F i, i > 0,

1, i = 0,

V −i, i < 0.

The ring Dq is a free W (Fq)-module with basis (Fi)i∈Z, and

Zp[F, V ]/(FV − q) −→ Dq, F �→ F r and V �→ V r
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is an isomorphism onto the center of Dq. The contravariant Dieudonné module

Tp(A)

of an object A of AVFq is a left Dq-module which is free of rank 2 dim(A) as

a W (Fq)-module. The Qp-vector space Tp(A)⊗Zp Qp will be denoted by Vp(A).

For any finite subset w ⊆Wq and any A in AVw, just like in the � �= p case, we

deduce an Rw⊗Zp-structure on Tp(A) such that F acts on Tp(A) as the central

element F r ∈ Dq and V as V r.

Let deg(w) = 2d be even, i.e., w contains either both rational Weil q-numbers

or none. Then Dq acts on Tp(A) via its quotient

(2.5) Dw :=W (Fq){F ,V }/(FV − p, hw(F r ,V r)),

which is a free W (Fq)-module with basis by the elements represented by

F−dr, . . . ,Fdr−1 or alternatively F−dr+1, . . . ,Fdr.

Let now deg(w) = 2d0 +1 be odd, i.e., w is equal to w0 ∪{εpm}, where r = 2m

is even, ε ∈ {1,−1}, and w0 contains no rational Weil q-number. Then Dq acts

on Tp(A) via its quotient

Dw :=W (Fq){F ,V }/(FV − p, hw0(F
r ,V r)(Fm − εV m))

which is a free W (Fq)-module with basis by the elements represented by

(2.6)

F−(2d0+1)m, . . . ,F(2d0+1)m−1

or alternatively

F−(2d0+1)m+1, . . . ,F(2d0+1)m.

We remark that

(Fm − εV m) ·Fm = F −√q
and similarly

(Fm − εV m) · V m = −ε(V −√q).
In both cases, even and odd degree deg(w), we find a natural map

Rw ⊗ Zp −→ Dw, F �→ F r and V �→ V r.

Lemma 2.1: The natural map Rw ⊗ Zp → Dw identifies Rw ⊗ Zp with the

center of Dw.
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Proof. Injectivity follows by comparing the Zp-basis of Rw ⊗ Zp (arising from

the Z-basis of Rw described in (2.1) and (2.2)) with the W (Fq)-basis of Dw

described in (2.6). The image is also clearly contained in the center since the

r-th power of the Frobeniuis σ of W (Fq) equals the identity.

The number N = deg(w)r/2 is an integer and Fi for −N ≤ i < N form

a W (Fq)-basis of Dw. Let x =
∑N−1

i=−N xiFi be an element of the center of Dw.

For an arbitrary a ∈ W (Fq) we have

N−1∑
i=−N

axiFi = ax = xa =
N−1∑
i=−N

xiσ
i(a)Fi.

It follows that xi = 0 for all i not divisible by r. Next, let mi = 1 for i < 0

and mi = 0 for i ≥ 0. Then the equation Fx = xF yields

N−1∑
i=−N

σ(xi)p
miFi+1 =

N−1∑
i=−N

xip
miFi+1.

Since the Fi for −N < i ≤ N also form a W (Fq)-basis of Dw, we find that

all xi are in Zp. Hence x lies in the image of Rw ⊗ Zp → Dw.

Using the language of Dieudonné modules, Tate’s theorem [WM71, Part II

Theorem 1] says that the natural map gives an isomorphism

(2.7) HomFq (A,B)⊗ Zp
∼−→ HomDw(Tp(B), Tp(A))

for all A,B in AVw.

2.3. Rational local module structure. For any π ∈ Wq, recall that Bπ

is an Fq-simple abelian variety associated to π via Honda–Tate theory. The ring

Eπ = EndFq(Bπ)⊗Q

of endomorphisms of Bπ in the isogeny category of abelian varieties over Fq

is a central division ring over the subfield Q(π). The index of Eπ will be

denoted by sπ, so that [Eπ : Q(π)] = s2π. While Eπ is determined by π up

to isomorphism, it is well known that its order EndFq (Bπ) is not an isogeny

invariant in general. The structure of Eπ as a central simple algebra over Q(π)

is determined by its local invariants.
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Theorem 2.2 (Tate [Ta68, Theorem 1]): Let π be a Weil q-number.

(1) The dimension of the simple object Bπ is computed by the dimension

formula

2 dim(Bπ) = sπ[Q(π) : Q].

(2) The local invariant of Eπ = EndFq (Bπ) ⊗ Q at a place v of its center

Q(π) is the following element of Q/Z:

invv(Eπ) =

⎧⎪⎪⎨
⎪⎪⎩
0 if v � p∞ or if v is complex,

1
2 if v is real,
v(π)[Kv:Qp]

v(q) = v(π)fv
r if v | p,

where Kv is the completion of Q(π) at v | p and fv is the inertial degree

of v. Here v(−) denotes the normalized additive valuation on Kv.

Let now � be a prime number including for the moment possibly � = p.

The completions Kv of Q(π) at the places v | � are factors of the product

decomposition

(2.8) Q(π)⊗Q� =
∏
v|�
Kv.

The algebra Eπ⊗Q� has center Q(π)⊗Q� and (2.8) similarly induces a decom-

position

Eπ ⊗Q Q� =
∏
v|�

Ev,

where Ev is a central simple algebra over Kv. Since the idempotents cutting

out Kv from Q(π) ⊗ Q� lie in the center of Eπ ⊗ Q�, we have an analogous

decomposition

(2.9) V�(Bπ) =
⊕
v|�

Vv(Bπ)

as a module under Eπ ⊗Q� with the summand Vv(Bπ) being an Ev-module.

For a prime � �= p, the rational Tate module V�(Bπ) has both an action

by Eπ ⊗ Q� and a commuting action by the absolute Galois group of Fq. The

latter was identified in Section 2.2 as the action of the center Rπ⊗Q� of Eπ⊗Q�.
Hence the decomposition (2.9) is also a decomposition as Galois representations,

with Kv acting on Vv(Bπ) capturing the Galois action. The summands have

the following structure.
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Lemma 2.3: For a prime � �= p and a place v | � of Q(π), there is an isomorphim

(2.10) Vv(Bπ) � Kv
⊕sπ

as Galois modules, i.e., as modules for Kv. In particular, there is an isomor-

phism

(2.11) V�(Bπ) � (Q(π) ⊗Q�)
⊕sπ

as Galois modules, i.e., as modules for Q(π)⊗Q�.

Proof. From Tate’s Theorem (2.4) for A = B = Bπ we deduce, by applying

base change along Rπ ⊗ Z� → Kv, a natural Kv-algebra isomorphism

Ev � EndKv(Vv(Bπ)).

The algebra Ev has Kv-dimension s2π as a base change of Eπ. Thus

sπ = dimKv(Vv(Bπ))

and (2.10) follows becauseKv is a field. The existence of the isomorphism (2.11)

follows from (2.10) together with (2.8), since the exponents sπ are independent

of v.

We now turn our attention to the local structure at p. The rational Dieudonné

ring

D0
q =W (Fq){F ,V }/(FV − p)⊗Zp Qp

is central over the algebra Qp[F, F
−1] with F = F r . We set

W (Fq)
0 =W (Fq)

[1
p

]
,

and observe that

W (Fq)
0 ⊗Qp Qp[F, F

−1]

is a cyclic étale Qp[F, F
−1]-algebra of degree r and canonical generator

σ ⊗ id =: σ of its Galois group. This imposes on D0
q the structure of a cyclic

Azumaya algebra

D0
q = (W (Fq)

0 ⊗Qp Qp[F, F
−1], σ, F )

over Qp[F, F
−1]. The action of D0

q on Vp(Bπ) factors through the base change

with

Qp[F, F
−1] � Q(π)⊗Qp, F �→ π,
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namely the quotient

D0
π = D0

q ⊗Qp[F,F−1] (Q(π)⊗Qp) =W (Fq)
0{F}/(Pπ(F r)).

The Qp-linear map sending π to F=F r gives an isomorphism betweenQ(π)⊗Qp
and the center of D0

π . As a base change of a cyclic algebra, the ring D0
π is itself

a cyclic algebra over Q(π)⊗Qp as follows. Consider

Lπ =W (Fq)
0 ⊗Qp (Q(π)⊗Qp)

as a cyclic étale Q(π)⊗Qp-algebra of degree r and σ⊗ id = σ as a distinguished

generator of the Galois group. Then

(2.12) D0
π = (Lπ, σ, π) = Lπ{F}/(F is σ-semilinear, and F r = π)

as a cyclic Azumaya algebra of index r over Q(π)⊗Qp. After decomposing D0
π

according to the components Kv of its center, we obtain a decomposition

D0
π =

∏
v|p

D0
π,v

into the product over the p-adic places of Qp of certain central simple alge-

bras D0
π,v over Kv, each of index r.

The rational Dieudonné module Vp(Bπ) is simultaneously a left module for

the Dieudonné ring D0
π and for the opposite endomorphisms actions by Eop

π ⊗Qp.
Since the idempotents cutting out Kv commute with both these actions, we can

decompose

Vp(Bπ) =
⊕
v|p

Vv(Bπ)

as a module for both actions. The summands have the following structure.

Lemma 2.4: For a place v | p of Q(π), there is an isomorphism

(2.13) Vv(Bπ)
⊕r � (D0

π,v)
⊕sπ

as Dieudonné modules, i.e., as modules for D0
π,v. In particular, there is an

isomorphism

(2.14) Vp(Bπ)
⊕r � (D0

π)
⊕sπ

as Dieudonné modules, i.e., as modules for D0
π .



118 T. G. CENTELEGHE AND J. STIX Isr. J. Math.

Proof. From Tate’s Theorem (2.7) for A = B = Bπ we deduce, by applying

base change along Rπ ⊗ Zp → Kv, a natural Kv-algebra isomorphism

Eop
v � EndD0

π,v
(Vv(Bπ)).

This means that Eop
v is the centralizer of D0

π,v in EndKv (Vv(Bπ)). A corollary

to the double centralizer theorem, [Re75, Corollary 7.14], then states that

Eop
v ⊗Kv D0

π,v = EndKv(Vv(Bπ)).

In particular, comparing the degrees of these simple central Kv-algebras, we

find

sπ · r = dimKv(Vv(Bπ)).

Since modules over D0
π,v are determined, up to isomorphism, by their Kv-

dimension, assertion (2.13) follows by comparing dimensions

dimKv (Vv(Bπ)
⊕r) = r · dimKv (Vv(Bπ)) = sπ · r2 = dimKv ((D

0
π,v)

⊕sπ
).

The existence of the isomorphism (2.14) follows from (2.13) together with (2.8),

since the exponents sπ and r are independent of v.

2.4. Choosing good multiplicities and choice of a lattice. The in-

dex sπ of Eπ agrees with the period of Eπ, defined to be the order of Eπ in the

Brauer group Br(Q(π)) of Q(π) (essentially due to [BHN32], see [Re75] Theo-

rem 32.19 for a textbook reference). By the Hasse–Brauer–Noether Theorem

the period of Eπ is the least common multiple over all places of Q(π) of all local

orders of Eπ in the appropriate Brauer groups. Since the localization of Eπ at

any �-adic place is trivial for � �= p, only p-adic and real places (if any) of Q(π)

must be taken into account to compute the global order sπ from the local ones.

The denominator of the local invariant of Eπ at a p-adic place p divides r

by Theorem 2.2(2). Because the local invariant of Eπ at a real place of Q(π)

equals 1/2, we conclude that

sπ | lcm(r, 2),

and in particular sπ divides 2r in all cases. Notice that unless r is odd and π is

the real conjugacy class {±√q} of Weil q-numbers, then sπ divides r.
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Definition 2.5: The balanced multiplicity of π is the integer

mπ =
2r

sπ
.

Unless r is odd and π is real we define the reduced balanced multiplicity

of π to be the integer

smπ = mπ/2 =
r

sπ
.

This choice of mπ (resp. smπ) ensures that the ranks are independent of

π ∈Wq in the following freeness statement for the rational Tate and Dieudonné

modules of Bmπ
π (resp. BĎmπ

π ).

Proposition 2.6: Let π be a Weil q-number. There is an isomorphism

(1) V�(B
mπ
π )�(Q(π)⊗Q�)⊕2r

ofQ(π)⊗Q�-modules, for any prime � �=p, and
(2) Vp(B

mπ
π ) � (D0

π)
⊕2

of D0
π-modules.

Unless r is odd and π = ±√q there is an isomorphism

(3) V�(B
Ďmπ
π )�(Q(π)⊗Q�)⊕r of Q(π)⊗Q�-modules, for any prime � �=p, and

(4) Vp(B
Ďmπ
π ) � D0

π of D0
π-modules.

Proof. The proposition follows from the fact that V�(Bπ) is a product of modules

over simple algebras, and from Lemmas 2.3 and 2.4.

Proposition 2.6 admits the following integral refinement.

Theorem 2.7: Let w ⊆Wq be a finite subset. There is an abelian variety Aw,

isogenous to
∏
π∈w B

mπ
π , such that

(1) T�(Aw) � (Rw ⊗ Z�)
⊕2r as Galois modules, for all primes � �= p.

(2) Tp(Aw) � (Dw)
⊕2 as Dieudonné module.

If r is even or w avoids π = ±√q there is an abelian variety sAw, isogenous

to
∏
π∈w B

Ďmπ
π , such that

(3) T�( sAw) � (Rw ⊗ Z�)
⊕r as Galois modules, for all primes � �= p.

(4) Tp( sAw) � Dw as Dieudonné module.

Proof. We first work rationally and set A′
w =

∏
π∈w B

mπ
π . Proposition 2.6 thus

gives isomorphisms

(1) V�(A
′
w) � (Q(w)⊗Q�)

⊕2r, for any � �= p,

(2) Vp(A
′
w) � (D0

w)
⊕2.
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Both sides of these isomorphisms contain natural lattices: T�(A
′
w) versus

(Rw ⊗ Z�)
⊕2r, and Tp(A

′
w) versus (Dw)

⊕2
. For abstract algebraic reasons we

may modify all but finitely many of the isomorphisms forcing them to respect

these lattices. The point is that for suitable N ∈ Z the localized ring Rw[
1
N ] is

a product of Dedekind rings, hence after completing at �, for � � Np, all torsion

free modules are locally free. Since the rank of T�(A
′
w) is constant and equal

to 2r we may even deduce that it is necessarily free. A suitable modification of

the isomorphism then maps one free lattice into the other.

It remains to deal with finitely many primes �, and the prime p. But here the

two lattices on both sides are commensurable, hence without loss of generality

we can assume that one is contained in the other, after rescaling the isomor-

phisms. Then a suitable isogeny allows us to replace A′
w with the required Aw.

The construction of sAw with reduced balanced multiplicities follows with the

same proof.

Definition 2.8: Let A be an abelian variety in AVw.

(1) We say that A is w-balanced if A satisfies the conditions of Theo-

rem 2.7 with respect to the balanced multiplicities mπ. An abelian

variety is balanced if it is w-balanced for some finite set w of Weil

q-numbers (necessarily with w equal to the Weil support of the abelian

variety).

(2) We say that A is reduced w-balanced if A satisfies the conditions of

Theorem 2.7 with respect to the reduced balanced multiplicities smπ.

A (reduced) w-balanced abelian variety is w-locally projective in the sense of

Definition 1.3.

3. Integral local theory and locally projective abelian varieties

Let w be a finite set of Weil q-numbers. Let � �= p be a prime number. The

ring Rw ⊗ Z� is a semi-local Z�-algebra, all maximal ideals λ lie over (�) and

there is a canonical product decomposition

Rw ⊗ Z� =
∏
λ

Rw,λ
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where Rw,λ = (Rw ⊗ Z�)λ is the localization (isomorphic to the completion

of Rw at the maximal ideal corresponding to λ). Similarly, we can decom-

pose Rw ⊗ Zp =
∏

pRw,p with respect to the maximal ideals p of Rw ⊗ Zp and

the localization

Rw,p = (Rw ⊗ Zp)p.

Definition 3.1: Let A be an abelian variety in AVw. Let λ (resp. p) be a maximal

ideal of Rw ⊗ Z� (resp. of Rw ⊗ Zp) for some � �= p.

(1) We define the λ-adic Tate module of A as the Rw,λ-module

Tλ(A) = T�(A) ⊗Rw⊗Z�
Rw,λ.

(2) We define the p-component of the Dieudonné ring as

Dw,p = Dw ⊗Rw⊗Zp Rw,p,

and the p-adic Tate module of A as the Dw,p-module

Tp(A) = Tp(A)⊗Rw⊗Zp Rw,p.

The analogs of Tate’s theorems (2.4) and (2.7) continue to hold.

Proposition 3.2: Let A and B be abelian varieties in AVw.

(1) For all maximal ideals λ of Rw ⊗ Z� with � �= p, the functor Tλ(−)
induces an isomorphism

HomFq(A,B) ⊗Rw Rw,λ
∼−→ HomRw,λ

(Tλ(A), Tλ(B))

of Rw,λ-modules.

(2) For all maximal ideals p of Rw ⊗ Zp, the functor Tp(−) induces an

isomorphism

HomFq (A,B)⊗Rw Rw,p
∼−→ HomDw,p(Tp(B), Tp(A))

of Rw,p-modules.

Proof. This follows at once from Tate’s theorems (2.4) and (2.7) in view of base

change by the flat map

Rw ⊗ Z� → Rw,λ

(resp. the flat map Rw ⊗ Zp → Rw,p).
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Definition 3.3: Let q = pr be a power of a prime number p, and let w ⊆ Wq

be a finite subset of Weil q-numbers. An abelian variety A ∈ AVw is w-locally

free if

(i) for all maximal ideals λ of Rw ⊗ Z� the Tate module Tλ(A) is a free

Rw,λ-module, and

(ii) for all maximal ideals p of Rw ⊗ Zp the Tate module Tp(A) is a free

Dw,p-module.

Remark 3.4: The notion of an abelian variety A in AVw being w-locally projec-

tive, see Definition 1.3, is compatible with the point of view towards local prop-

erties taken in Definition 3.3, because T�(A) is projective if and only if Tλ(A)

is projective for all λ | � and similarly Tp(A) is projective if and only if Tp(A)

is projective for all p | p.
Lemma 3.5: Let w ⊆Wq be a finite set of Weil q-numbers. Let p be a maximal

ideal of Rw ⊗ Zp such that F and V are in p.

Let M be a finitely generated Dw,p-module, and set M̄ := M/(F ,V )M .

Then the following hold.

(1) The ideal p equals (p, F, V ), and the ring Dw,p/(F ,V ) equals Fq.

(2) Elements x1, . . . , xm ∈ M generate M as a Dw,p-module if and only if

their images generate M̄ as an Fq-vector space.

(3) M = 0 if and only if M̄ = 0.

Proof. Assertion (1) follows from the definition of Rw ⊗ Zp and of Dw,p. The

assumption implies that the constant term in hw(F, V ) is divisible by p and

thus (F ,V ) is actually a nontrivial two-sided ideal.

Assertion (2) follows from assertion (3) applied to the cokernel of the map

D⊕m
w,p → M induced by the tuple of elements x1, . . . , xm. It therefore remains

to show that M̄ = 0 implies M = 0.

Since Rw,p is a finite Zp-module, the p-adic topology agrees with the p-adic

topology. Therefore pn ⊆ pRw,p for sufficiently large n. By assumption then

(F ,V )nr ⊆ (F r, p,V r)n = pnDw,p ⊆ pDw,p ⊆ (F ,V ).

It follows that the p-adic topology on M agrees with the (F ,V )-adic topology.

Since M is finitely generated as a Dw,p-module, it is also finitely generated as
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a Zp-module and thus p-adically hausdoff. Therefore

0 =
⋂
t≥0

ptM =
⋂
t≥0

(F ,V )tM.

If M̄ = 0, then M equals (F ,V )M , and the latter intersection equals M .

Proposition 3.6: Let p be a maximal ideal of Rw ⊗ Zp. Up to isomorphism

there is a unique non-zero finitely generated indecomposable projective Dw,p-

module Pw,p. All finitely generated projective Dw,p-modules are isomorphic to

multiples P⊕m
w,p for some m ≥ 0.

If p equals the supersingular maximal ideal po = (F, V, p), then the indecom-

posable projective module Pw,po is the free Dw,po-module of rank 1.

Proof. There are three cases. If F /∈ p, then F is a unit in Rw,p. So V = qF−1

holds in Rw,p and

Dw,p = (W (Fq)⊗ Rw,p){F}/(F r − F )
is a cyclic algebra over the complete local ring Rw,p with finite residue field.

It follows from [Mi80, IV Proposition 1.4] and the fact that finite fields have

trivial Brauer group that this cyclic algebra is trivial, i.e., there is an Rw,p-

algebra isomorphism

(3.1) Dw,p � Mr(Rw,p).

By Morita equivalence, projective Dw,p-modules are translated into projective

Rw,p-modules, which are free. So all projective Rw,p-modules are multiples

of a unique indecomposable one. This translates back by Morita equivalence

to Dw,p-modules. The module Pw,p corresponds to the Mr(Rw,p)-module of

column vectors (Rw,p)
r.

If V /∈ p, then we have F = qV −1 in Rw,p and the above holds with F and V

interchanged. So again we have

(3.2) Dw,p � Mr(Rw,p)

with the same conclusion.

In the third case both F and V are contained in p and we are in the situation

of Lemma 3.5. Let P be a finitely generated projective Dw,p-module, and

let m = dimFq P/(F ,V )P . Then, by choosing an Fq-basis of P/(F ,V )P ,

Lemma 3.5(2) shows there is a surjection

f : Dm
w,p � P.
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This surjection splits since P is projective. Therefore Q = ker(f) is a di-

rect summand, and consequently also finitely generated as a Dw,p-module.

Since f modulo (F ,V ) is an isomorphism, we deduce that Q/(F ,V )Q = 0.

Lemma 3.5(3) implies Q = 0 and hence P � D⊕m
w,p is free. So in this case Pw,p

equals Dw,p.

The connection between the notions ‘w-locally projective’ and ‘w-locally free’

is summarized by the following proposition.

Proposition 3.7: Let q = pr be a power of a prime number p, and let w ⊆Wq

be a finite subset of Weil q-numbers. Let A be an abelian variety in AVw.

(1) If A is w-locally free, then A is w-locally projective.

(2) If A is w-locally projective, then there is an n ≥ 1 such that An is

w-locally free. In fact n = r always works.

Proof. Assertion (1) is obvious because free modules are projective. We now

prove (2) and assume that A is w-locally projective. Tate modules are finitely

generated modules, and finitely generated projective modules over a commu-

tative local ring are free. Therefore, since for � �= p and all maximal ideals λ

of Rw ⊗ Z� the ring Rw,λ is a commutative local ring, we find that Tλ(A) is a

free Rw,λ-module and the same holds for multiples An.

It remains to discuss the local structure at all maximal ideals p of Rw ⊗ Zp.

By Proposition 3.6, the p-adic Tate module Tp(A) is a multiple of Pw,p. As in all

cases considered in Proposition 3.6 the r-th multiple P⊕r
w,p is a free Dw,p-module,

the claim follows.

Example 3.8: Let w be a finite set of non-real Weil q-numbers, and set Pw(x)

to be the product of the minimal polynomials Pπ(x) for π ∈ w. Let 2d be

the degree of Pw(x). Since x �→ q/x permutes the roots of Pw(x), there is a

Polynomial Qβ(x) ∈ Z[x], the polynomial with roots β = π + q/π for π ∈ w,
with

Pw(x) = xdQβ(x+ q/x).

Now Qβ(x) has totally real roots of absolute value |β| < 2
√
q. Let us assume

that Qβ(x) + 1 still is separable with totally real roots, all of which have ab-

solute value bounded by 2
√
q. This certainly can happen when d = 1, i.e.,

when w = {π} and Pπ(x) is a quadratic polynomial. Then

Pw(x) + xd = xd(Qβ(x+ q/x) + 1)
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is still a separable Polynomial with Weil q-numbers as roots. Let w′ be the set

of conjugacy classes of roots of Pw(x) + xd, so that Pw′(x) = Pw(x) + xd. It

follows that

hw′(F, V ) = hw(F, V ) + 1.

Therefore the the natural map

Rw∪w′ −→ Rw ×Rw′

is an isomorphism in this case. There are no ‘congruences’ between π ∈ w

and π′ ∈ w′.
Let us consider balanced abelian varieties Aw in AVw and Aw′ in AVw′ . Then,

for n, n′ ∈ N, the abelian variety A = Anw × An
′
w′ is w ∪ w′-locally projective.

But T�(A) is free as Rw∪w′ ⊗ Z�-module only if n = n′, while Tλ(A) is a free

Rw∪w′,λ-module for all n, n′. This phenomenon occurs because Spec(Rw∪w′,λ) is

local while Spec(Rw∪w′ ⊗Z�) is only semi-local and not connected in the exam-

ple. This illustrates the conceptual advantage of Tλ(−) over T�(−), since Tλ(−)
is local in the sense of Section 1.4.

The above example exploits a case where Spec(Rw) is not connected. Now

we analyse the connected case.

Proposition 3.9: Let w be a finite set of Weil q-numbers. Let A and B be

w-locally projective abelian varieties.

(1) If w consists only of ordinary Weil q-numbers, then po = (F, V, p) is not

a maximal ideal of Rw and HomFq (A,B) is a projective Rw-module.

(2) If w contains a non-ordinary Weil q-number, then po = (F, V, p) is a

point in Xw = Spec(Rw), the coherent sheaf described by the Rw-

module HomFq(A,B) is locally free on Xw−{po}, and there is a Zariski

open neighborhood Uw of po such that the rank is constant on Uw−{po}.
Proof. Since Xw = Spec(Rw) is the union of the Xπ = Spec(Rπ) in

SpecZ[F, V ]/(FV − q),

the point po lies on Xw if and only if there is a π ∈ w with po contained in Xπ.

The latter is equivalent to the existence of a quotient Rπ � Fp that sends F, V

to 0. In other words, there is a prime ideal of the order Rπ at which π and q/π

lie in the maximal ideal. This happens if and only if π is not ordinary.
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The (completed) local structure as an Rw-module at a maximal ideal λ above

a prime � �= p (resp. at p above p) is described by Proposition 3.2. Since A and B

are w-locally projective, at λ the modules Tλ(A) and Tλ(B) are projective and

HomFq (A,B)⊗Rw Rw,λ = HomRw,λ
(Tλ(A), Tλ(B))

is a projective Rw,λ-module. To analyse the situatioin at p we may replace A

and B by multiples according to Proposition 3.7 and thus assume that A and B

are w-locally free. It then follows that

Tp(A) � D⊕n
w,p and Tp(B) � D⊕m

w,p

for some n,m ∈ N0 and

(3.3) HomFq(A,B) ⊗Rw Rw,p = HomDw,p(D
⊕m
w,p ,D

⊕n
w,p)

is isomorphic to a space of matrices with entries in EndDw,p(Dw,p) � Dop
w,p.

The first claim follows if Dw,p for p �= po is a free Rw,p-module. This follows

if F �∈ p from (3.1) and if V �∈ p from (3.2). This completes the proof of (1).

We now prove (2). From the proof of (1) we learn that still the coherent

sheaf on Xw associated to HomFq (A,B) is a locally free sheaf of finite rank

on Xw − {po}. So it is locally away from po a vector bundle, but the rank a

priori may depend on the connected component of Xw − {po}. Assertion (2)

claims that this rank is actually the same on all components of Xw − {po}
whose Zariski closure passes through po. Therefore it remains to work locally

at p = po, i.e., on the completion Spec(Rw,po), where our coherent sheaf is

described by (3.3) as isomorphic to the coherent sheaf associated to the Rw,po-

module (Dw,po)
⊕mn. Note that the Rw,po-module structure is insensitive to

passing to the opposite ring.

The generic points of Spec(Rw,po) correspond to the branches of Xw at po.

We must therefore show that Dw,po ⊗ Qp has the same rank at each generic

point of Spec(Rw,p0). These generic points correspond to π ∈ w and places v

of Q(π) above p with 0 < v(π) < v(q). But after inverting p, the Qp-algebra

Dw⊗Qp is an Azumaya algebra of dimension r2 over Q(w)⊗Qp, see (2.12), and

so the same holds for the base change to Rw,p0 ⊗Qp. It follows that indeed the

rank of Dw,po ⊗ Qp on the generic points of Spec(Rw,p0) is constant and equal

to r2.
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Theorem 3.10: Let w be a finite set of Weil q-numbers. We assume that

(i) Xw = Spec(Rw) is connected, and

(ii) there exists π ∈ w which is non-ordinary.

Let Aw be a w-balanced abelian variety. Then the following holds.

(1) If r is even or w only consists of non-real Weil q-numbers, in which case

a reduced w-balanced abelian variety sAw exists, then any w-locally

projective abelian variety A is isogenous to a power of sAw.

(2) If r is odd and the real conjugacy class of Weil q-numbers {±√q} is con-
tained in w, then any w-locally projective abelian variety A is isogenous

to a power of Aw.

Proof. Since w contains a non-ordinary Weil q-number by assumption, the ideal

po = (F, V, p) is a maximal ideal of Rw, see Proposition 3.9. By Proposition 3.6

there is an n ∈ N such that

(3.4) Tpo(A) � D⊕n
w,po

.

The Rw-module HomFq (Aw, A) is locally free on Xw −{po} by Proposition 3.9.

Moreover, by assertion (2) of Proposition 3.9 its rank is locally constant in a

neighborhood of po. Since Xw is connected, such a neighborhood meets every

connected component of Xw − {po}. It follows that HomFq (Aw, A) actually

corresponds to a vector bundle on Xw−{po} of some fixed rank. This rank can

be computed over Rw,po ⊗Qp from the proof of Proposition 3.9 and (3.4) to be

rkRw,po⊗Qp(HomFq (Aw, A)⊗Rw Rw,po ⊗Qp)

= rkRw,po⊗Qp(HomD0
w,po

(Vpo(A), Vpo (Aw)))

= rkD0
w,po

(Vpo(A)) · rkD0
w,po

(Vpo(Aw)) · rkRw,po⊗Qp(D
0
w,po

) = 2nr2.

For all maximal ideals λ of Rw over a prime � �= p we deduce that

2r · rkRw,λ
(Tλ(A)) = rkRw,λ

(Tλ(Aw)) · rkRw,λ
(Tλ(A))

= rkRw,λ
(HomRw,λ

(Tλ(Aw), Tλ(A)))

= rkRw,λ
(HomFq (Aw, A)⊗Rw Rw,λ)

= rkRw,po⊗Qp(HomFq(Aw, A)⊗Rw Rw,po ⊗Qp) = 2nr2,

where we used that the rank of the vector bundle HomFq (Aw, A) on Xw −{po}
is the same at λ and over a formal punctured neighborhood of po. In particular,
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the Rw,λ-rank of Tλ(A) equals nr and is independent of λ, so that as Rw ⊗Z�-

modules

T�(A) �
∏
λ|�

Tλ(A) � (Rw ⊗ Z�)
⊕nr.

For a moment we assume that r is odd and the real Weil q-number {±√q}
is contained in w. We set A(π) to be the maximal abelian subvariety of A with

Weil support in π, and we let nπ denote the multiplicity up to isogeny of the

simple Bπ in A(π). Let � be a prime different from p. By performing base

change along Rw → Q(w)→ Q(
√
q) we obtain the rational �-adic Tate module

(3.5) V�(A(±√q)) = T�(A)⊗Rw⊗Z�
Q(
√
q)⊗Q� � (Q(

√
q)⊗Q�)

⊕nr.

Comparing Q�-dimensions of (3.5) with the help of Theorem 2.2(1) yields

n±√
q · s±√

q · [Q(
√
q) : Q] = n±√

q · 2 dim(B±√
q) = 2 dim(A(±√q))

= dimQ�
(V�(A(±√q))) = dimQ�

((Q(
√
q)⊗Q�)

⊕nr)

= nr · [Q(
√
q) : Q].

Since r is odd and s±√
q = 2, it follows that n must be even in this case.

Now we come back to the general case. We set (note that we just proved that

n/2 is an integer in the second case)

B =

⎧⎨
⎩

sAnw if r is even or w only consists of non-real Weil q-numbers,

A
n/2
w if r is odd and w contains the real Weil q-number.

It follows that as Rw ⊗ Z�-modules and thus also as Galois modules

T�(A) � (Rw ⊗ Z�)
⊕nr � T�(B),

Tate’s theorem (2.4) and the usual arguments show that A and B are

isogenous.

Remark 3.11: The connected components of Xw = Spec(Rw) correspond to a

partition w = w1 � . . .� ws such that the natural map

Rw
∼−→ Rw1 × · · · ×Rws

is an isomorphism. Since all connected components Xi = Spec(Rwi) with a

non-ordinary Weil q-number in wi contain the point po = (F, V, p), there is at

most one such connected component: we call it the non-ordinary component.

All the other connected components will be called ordinary connected com-

ponents. Any w-locally projective abelian variety is the product of wi-locally
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projective abelian varieties. Theorem 3.10 describes the factor arising from the

non-ordinary component if that is present. The factor from ordinary compo-

nents will be explained in Theorem 8.5.

4. Endomorphism rings of balanced abelian varieties

4.1. Modifying endomorphism rings by local conjugation. In Section

8.1 we will benefit from a certain flexibility to modify the endomorphism ring

of a balanced abelian variety. This technique already occurred in [Wa69] and

we explain it here in a form suitable for our application.

Definition 4.1: Let A and B be abelian varieties in AVFq . We say that A and B

are Tate-locally isomorphic if

(i) for all primes � �= p the Tate modules T�(A) and T�(B) are isomorphic

as Galois modules,

(ii) and Tp(A) is isomorphic to Tp(B) as Dieudonné modules.

Versions of this notion have appeared with various terminology, e.g., Zarhin uses

‘almost isomorphic’ in the context of abelian varieties over finitely generated

fields over Q in [Za17].

Remark 4.2: Since we have canonical product decompositions

T�(A) =
∏
λ|�

Tλ(A)

(
resp. Tp(A) =

∏
p|p

Tp(A)

)
,

as Rw⊗Z�-modules (resp. as Dw-modules), we do not get something different in

Definition 4.1 if we replace T�(A) and Tp(A) by their more local versions Tλ(A)

and Tp(A).

Proposition 4.3: Let w be a finite set of Weil q-numbers. Let A and B be

isogenous abelian varieties in AVw. Then, if two of the properties

(a) A and B are Tate-locally isomorphic,

(b) A is w-locally projective,

(c) B is w-locally projective,

hold, then also the third holds. The same holds with ‘w-locally projective’

replaced by ‘w-locally free’, or (even without assumingA andB being isogenous)

‘w-balanced’ or ‘reduced w-balanced’.
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Proof. Projective Rw,λ-modules (resp. projective Dw,p-modules) are isomorphic

to a multiple of a single indecomposable projective module, because Rw,λ is a

local ring (resp. by Proposition 3.6). Therefore it suffices to compare ranks to

deduce (a) from (b) and (c). This is taken care of by the assumption that A

and B be isogenous. The other implications are easy.

Lemma 4.4 (compare with [Za17, Lemma 2.3]): Let A and B be abelian va-

rieties in AVFq . Then A and B are Tate-locally isomorphic if and only if for

every prime number � (including � = p) there exists an isogeny A→ B of degree

prime to �.

In particular, if f : A → B and g : B → A are isogenies of coprime degree,

then A and B are Tate-locally isomorphic.

Proof. This follows from Tate’s theorems recalled in (2.4) and (2.7) as follows.

Given an isomorphism ϕ : T�(A) → T�(B) as Galois or Dieudonné modules,

there are isogenies f : A → B and g : B → A such that T�(f) and T�(g) agree

with ϕ respectively ϕ−1 modulo �. It follows that f and g are bijective on

�-torsion, hence their degree is coprime to �.

For the converse direction let f : A→ B be an isogeny of degree prime to �.

Then there is an isogeny g : B → A such that g◦f is multiplication by an integer

prime to �, and consequently both T�(f) and T�(g) are isomorphisms.

Definition 4.5: Let w ⊆ Wq be a finite set of Weil q-numbers. An Rw-order

in a finite dimensional Q(w)-algebra E is an Rw-subalgebra O ⊆ E which is

finitely generated as an Rw-module and contains a Q(w)-basis of E.

(1) Two Rw-orders O ⊆ E and O′ ⊆ E′ are called Tate-locally isomor-

phic if for every prime number � (including � = p) the rings O⊗Z� and

O′ ⊗ Z� are isomorphic as Rw ⊗ Z�-algebras.

(2) Two Rw-orders O,O′ ⊆ E are called Tate-locally conjugate if for

every prime number � (including � = p) the rings O⊗ Z� and O′ ⊗ Z�

are conjugate inside E ⊗Q�.

Remark 4.6: We will consider Rw-orders in E = EndFq (A)⊗Q for abelian vari-

eties A ∈ AVw. Since these E are Azumaya algebras over Q(w), it follows from

the Skolem–Noether Theorem [Mi80, IV, Proposition 1.4] that after identifying

E � E′ all isomorphisms to be considered are restrictions of inner automor-

phisms of E. In this case the term Tate-locally isomorphic coincides with the

notion of being Tate-locally conjugate.
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Lemma 4.7: Let f : A→ B be an isogeny in AVw, and let � be a prime number

that is coprime to the degree of f . Then the isomorphism

f(−)f−1 : EndFq (A)⊗Q
∼−→ EndFq (B)⊗Q

maps the Rw-order EndFq (A) to an Rw-order that agrees with EndFq(B) after

completion at �, i.e., considered as coherent algebras on Spec(Rw), these orders

agree Zariski locally at (�).

Proof. Wemay complete �-adically and use Tate’s theorem. We will only discuss

the case � �= p. The case of � = p works mutatis mutandis. We are led to consider

the isomorphism

f(−)f−1 : EndRw⊗Q�
(V�(A))

∼−→ EndRw⊗Q�
(V�(B)).

But by assumption and the proof of Lemma 4.4 the map

T�(f) : T�(A)→ T�(B)

is an isomorphism. The claim follows at once from Tate’s theorems (2.4)

(resp. (2.7)).

Proposition 4.8: Let A be an abelian variety in AVw. Let O be an Rw-order

in EndFq (A) ⊗ Q that is Tate-locally isomorphic to EndFq (A). Then there is

an abelian variety B that is Tate-locally isomorphic to A and an Fq-isogeny

f : A→ B such that the induced isomorphism of Rw ⊗Q-algebras

EndFq (A)⊗Q
f(−)f−1

−−−−−→ EndFq(B)⊗Q

restricts to an isomorphism O � EndFq (B) of Rw-orders.

Proof. Since O and EndFq (A) are both Rw-orders of EndFq(A)⊗Q there is only

a finite set Σ of bad prime numbers � (including potentially � = p) for which

EndFq (A) and O do not agree after completion at �. We argue by induction on

the size #Σ. If Σ is empty, then EndFq(A) = O, and we are done.

We now assume that � ∈ Σ and construct an isogeny f : A → B of degree a

power of � such that A and B are Tate-locally isomorphic and the set of bad

primes for B with respect to

O � fOf−1 ⊆ EndFq (B)⊗Q

is contained in Σ \ {�}.
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By Remark 4.6 there is an element ϕ̂ ∈ EndFq(A) ⊗Q� such that

ϕ̂(O⊗ Z�)ϕ̂
−1 = EndFq(A) ⊗ Z�

in EndFq (A)⊗Q�. Since the stabilizer of O⊗Z� is open, we may approximate ϕ̂

by an element ϕ ∈ EndFq(A) which still conjugates O⊗Z� onto EndFq (A)⊗Z�.

By primary decomposition of ker(ϕ) we may factor ϕ : A→ A as

ϕ : A
f−→ B

g−→ A

such that f has degree a power of � and g has degree prime to �. It follows from

Lemma 4.4 that B is Tate-locally isomorphic to A.

Moreover, Lemma 4.7 applied to f tells us that primes different from � at

which O and EndFq(A) agree locally, remain primes at which fOf−1 agrees lo-

cally with EndFq (B). In particular the bad primes for B with respect to fOf−1

are contained in Σ.

It remains to show that the situation has improved at �. For that we compare

via g and again by Lemma 4.7, now applicable to � since g is of degree coprime

to �. It follows that

EndFq (B)⊗ Z� = g−1(EndFq (A)⊗ Z�)g = f(ϕ−1(EndFq (A)⊗ Z�)ϕ)f
−1

= f(O⊗ Z�)f
−1 = fOf−1 ⊗ Z�.

This concludes the inductive step and thus proves the proposition.

4.2. A structure theorem for endomorphism rings of balanced ob-

jects. We now describe the endomorphism ring Sw = EndFq (Aw) for a partic-

ular choice of a w-balanced abelian variety Aw in AVFq . A similar description

also holds for a reduced w-balanced abelian variety by cancelling a factor of 2

at various places. But first we need to choose some data and fix notation.

Let w be a finite set of Weil q-numbers. Recall that

Q(w) = Rw ⊗Q =
∏
π∈w

Q(π).

Then

S 0(w) =
∏
π∈w

Mmπ(Eπ)

is an Azumaya algebra overQ(w) of degree 2r (so locally a form of M2r(−)) with
the local invariants as specified by Tate’s formulas recalled in Theorem 2.2(2).

It follows that the desired Sw is an Rw-order in S 0(w).
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Waterhouse proves in [Wa69, Theorem 3.13] that there is a simple abelian

variety Bπ ∈ AVπ such that EndFq (Bπ) is a maximal order Oπ in Eπ . We set

Bw =
∏
π B

mπ
π and define

S̃ (w) := EndFq (Bw) =
∏
π∈w

Mmπ(Oπ) ⊆
∏
π∈w

Mmπ(Eπ) = S 0(w).

Then S̃ (w) is a maximal Rw-order of S 0(w). We next choose a splitting for

all � �= p and for p as

ψ� : S̃ (w) ↪→ S 0(w) ⊗Q�
ψ0

�−−→∼ M2r(Q(w)⊗Q�),

ψp : S̃ (w) ↪→ S 0(w)⊗Qp
ψ0

p−−→∼ M2(D
0
w).

Now, for every prime number � �= p, the proof of the Skolem–Noether theorem

(see also Proposition 2.6) shows that there is an isomorphism of Galois modules

h� : (Q(w) ⊗Q�)
⊕2r ∼−→ V�(Bw)

such that conjugation h�(−)h−1
� agrees with

M2r(Q(w)⊗Q�)
ψ0

�←−−∼ S 0(w) ⊗Q�
Tate−−−→∼ EndQ(w)⊗Q�

(V�(Bw)).

And, similarly for p, we have an isomorphism of Dieudonné modules

hp : Vp(Bw)
∼−→ (D0

w)
⊕2

such that conjugation hp(−)h−1
p agrees with (note that we have passed to the

opposite rings)

EndD0
w
((D0

w)
⊕2)op = M2(D

0
w)

ψ0
p←−−∼ S 0(w) ⊗Qp

Tate−−−→∼ EndD0
w
(Vp(Bw))

op.

Now we perform the construction of a w-balanced abelian variety from the

proof of Theorem 2.7. We choose N coprime to p and large enough such

that Rw ⊗ Z[ 1
Np ] is a product of Dedekind rings. For all prime numbers � � Np

we may modify h� and perforce ψ0
� and ψ� so that h� induces an isomorphism

of integral structures

h� : (Rw ⊗ Z�)
⊕2r ∼−→ T�(Bw).

Moreover, we suitably scale h� for � | N and hp such that these maps restrict

to maps

h� : (Rw ⊗ Z�)
⊕2r ↪→ T�(Bw)
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and

hp : Tp(Bw) ↪→ (Dw)
⊕2.

Using the standard dictionary translating lattices in Tate and Dieudonné mod-

ules into isogenies, it follows that there is a corresponding isogeny

h : Aw → Bw

of degree a product of primes dividing Np, such that h� = T�(h) for all � | N
and hp = Tp(h). It follows by construction and the proof of Lemma 4.4 that Aw

is indeed w-balanced. Moreover, we have the following description of its endo-

morphism ring.

Theorem 4.9: With the above notation the endomorphism ring

Sw = EndFq(Aw) of the w-balanced abelian variety Aw constructed above sits

in the following cartesian square:

Sw S̃ (w) ⊗ Z[ 1
Np ]

(ψp,ψ�)

M2(Dw)×
∏
�|N

M2r(Rw ⊗ Z�) M2(D
0
w)×

∏
�|N

M2r(Q(w) ⊗Q�).

Proof. The cartesian square is essentially nothing but the obvious cartesian

square (fpqc descent)

EndFq(Aw) EndFq(Aw)⊗ Z[ 1
Np ]

EndFq
(Aw)⊗ Zp ×

∏
�|N

EndFq(Aw)⊗ Z� EndFq
(Aw)⊗Qp ×

∏
�|N

EndFq(Aw)⊗ Q�

suitably translated by isomorphisms as follows. In view of

T�(Aw) = (Rw ⊗ Z�)
⊕2r

for � �= p (used here only for � | N) and

Tp(Aw) = D⊕2
w
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as by construction, Tate’s theorem translates the bottom row into the inclusion

M2(Dw)×
∏
�|N

M2r(Rw ⊗ Z�)→ M2(D
0
w)×

∏
�|N

M2r(Q(w) ⊗Q�).

It remains to identify the right vertical arrow. We may compare Aw

with Bw along h : Aw → Bw as in the following diagram, in which the top

arrow is an isomorphism because deg(h) is invertible in Z[ 1
Np ] in combination

with Lemma 4.7

EndFq
(Aw)⊗ Z[ 1

Np ]
h(−)h−1

∼ EndFq
(Bw)⊗ Z[ 1

Np ] = S̃ (w) ⊗ Z[ 1
Np ]

EndFq (Aw)⊗Qp ×
∏
�|N

EndFq (Aw)⊗Q�
h(−)h−1

∼ EndFq (Bw)⊗Qp ×
∏
�|N

EndFq(Bw)⊗Q�.

Now we translate the bottom row of the previous diagram into the top row of

the following diagram due to Tate’s theorem.

End(Vp(Aw))
op ×

∏
�|N

End(V�(Aw))
(hp(−)h−1

p ,h�(−)h−1
�

)

∼ End(Vp(Bw))
op ×

∏
�|N

End(V�(Bw))

M2(D
0
w)×

∏
�|N

M2r(Q(w)⊗Q�) S 0(w) ⊗Qp ×
∏
�|N

S 0(w)⊗Q�.
(ψ0

p,ψ
0
� )

∼

Tate�

As the bottom square commutes by the definition of hp and h�, we have identi-

fied the right vertical map in the asserted cartesian square as the map claimed

in the theorem.

Remark 4.10: The ring Sw constructed in Theorem 4.9 considered as a coherent

algebra over Spec(Rw) differs from a maximal order in the appropriate Azumaya

algebra over Q(w) at most above prime numbers � at which Rw is singular and

those above p. The construction can be performed more carefully so that Sw

only differs from a maximal order at most in the singularities of Spec(Rw) and

in the supersingular locus, the vanishing locus of the ideal (F, V, p).
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5. Representable functors on AVw

In this section we spell out abstract Morita equivalence, originally formulated

with abelian categories as for example in [Re75, Chapter 4], in the context of

the additive category AVFq .

Let w ⊆Wq be a finite set of conjugacy classes of Weil q-numbers, and let A

be any object of AVw. Denote by

S(A) = EndFq(A)

the Rw-algebra of Fq-endomorphisms of A, and by

(5.1) TA : AVw −→ ModZ-tf(S(A)), TA(X) = HomFq(X,A)

the contravariant functor represented by A, viewed as valued in the category of

left S(A)-modules that are torsion free as Z-modules. Just like AVw, the cate-

gory ModZ-tf(S(A)) has a natural Rw-linear structure, since the center of S(A)

is an Rw-algebra in a natural way. Moreover, it is clear that the functor TA(−)
is Rw-linear.

The main result of this section is Theorem 5.4, a twofold criterion for deciding

when (5.1) induces an anti-equivalence.

5.1. The maps IA and GA. The following constructions go back toWaterhouse

[Wa69]. Let X be any object of AVw, and let H ⊆ X be any closed subgroup

scheme of X . Define the kernel of restriction to H :

IA(H) = {f ∈ TA(X) : H ⊆ ker(f)} = ker(HomFq (X,A)→ HomFq (H,A)),

a left S(A)-submodule of TA(X) = HomFq(X,A). Notice that the quotientX/H

as group scheme is in fact an abelian variety in AVw and the pull-back via the

quotient map ψH : X → X/H gives an identification of left S(A)-modules

(5.2) TA(X/H)
∼−→ IA(H).

Conversely, if M ⊆ TA(X) is a left S(A)-submodule, define

GA(M) =
⋂
r∈M

ker(r)

as the closed subgroup scheme of X given by the scheme-theoretic intersection

of all kernels of elements of M . Notice that the above intersection equals an

intersection of finitely many kernels, since M is a finitely generated abelian
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group. We collect in the next proposition the basic properties of the maps IA

and GA.

Proposition 5.1: Let X be any object of AVw. For any closed subgroup

schemesH,H ′ ofX and any left S(A)-submodulesM,M ′ of TA(X) the following

properties hold:

(1) H ⊆ H ′ =⇒ IA(H) ⊇ IA(H ′),

(2) M ⊆M ′ =⇒ GA(M) ⊇ GA(M ′),

(3) H ⊆ GA(IA(H)),

(4) M ⊆ IA(GA(M)),

(5) IA(H) = IA(GA(IA(H))),

(6) GA(M) = GA(IA(GA(M))),

(7) IA(X [n]) = nTA(X), for all integers n ≥ 1,

(8) GA(nTA(X)) = X [n], for all integers n ≥ 1.

Proof. The properties (1) to (4), (7) and (8) easily follow from the definition

of IA and GA. To see (5) and (6), notice that the inclusions

IA(H) ⊆ IA(GA(IA(H))) and GA(M) ⊆ GA(IA(GA(M)))

are the special cases (4) for M = IA(H) and (3) for H = GA(M). The cor-

responding opposite inclusions can be deduced after applying properties (1)

and (2) to the inclusions expressed by (3) and (4) respectively.

Remark 5.2: A consequence of Proposition 5.1 is that IA(H) ⊆ TA(X) has finite

index if and only if H ⊆ X is finite, and that GA(M) ⊆ X is a finite subgroup

if and only if M ⊆ TA(X) has finite index.

Remark 5.3: We point out that the map GA has already been considered by Wa-

terhouse for X = A, see [Wa69, §3.2]. In this circumstance, a finite index sub-

module M ⊆ TA(A) = EndFq (A) is an ideal containing an isogeny, and GA(M),

denoted H(M) in loc. cit., is studied via the isogeny A→ A/GA(M). The con-

verse construction IA(H) yields a kernel ideal in the terminology of [Wa69,

p. 533]. Waterhouse proves that if M is a kernel ideal then the structure

of A/H(M) depends only onM as an EndFq (A)-module [Wa69, Theorem 3.11].

He moreover proves in [Wa69, Theorem 3.15] that for an abelian variety A

whose endomorphism ring is a maximal order in End(A) ⊗ Q any finite index

submodule M ⊆ TA(A) arises as a kernel ideal.
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5.2. A criterion for a functor to be an anti-equivalence of cate-

gories. We now state and prove the main theorem of the section. Condition (c)

of Theorem 5.4 is inspired by the use of injective cogenerators in embedding the-

orems for abelian categories; see [Fr64]. Note that the category AVw is additive

as a full subcategory of the abelian category of all finite type group schemes over

the field Fq; see [SGA3, Exp. VI, §5.4 Théorème]. But AVw is not an abelian

category, because an isogeny of abelian varieties is both a monomorphism and

an epimorphism in AVw without necessarily being an isomorphism.

Theorem 5.4: Let w ⊆ Wq be a finite subset and let A ∈ AVw be an abelian

variety. Let

TA : AVw −→ ModZ-tf(S(A)), TA(X) = HomFq (X,A),

be the functor represented by A. We consider the following statements.

(a) TA is an anti-equivalence of categories:

(a1) TA is fully faithful,

(a2) TA is essentially surjective.

(b) For all X ∈ AVw, the assignments H �→ IA(H) and M �→ GA(M) are

mutually inverse maps that describe a bijection

{H ⊆ X ;finite subgroup scheme}
←→ {M ⊆ TA(X); finite index S(A)-submodule}.

More precisely:

(b1) for all X ∈ AVw and all finite subgroup schemes H ⊆ X , we have

H = GA(IA(H)),

(b2) for all X ∈ AVw and all S(A)-submodules M ⊆ TA(X) of finite

index, we have

M = IA(GA(M)).

(c) A is an injective cogenerator:

(c1) for allX∈AVw, there exist an n∈N and an injective homomorphism

X ↪→ An,

(c2) for any X,Y ∈ AVw and any injective homomorphism ϕ : X ↪→ Y ,

the induced map

ϕ∗ : TA(Y ) � TA(X)

is surjective.
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We have the following two chains of equivalences:

(a) ⇐⇒ (b) ⇐⇒ (c)

and

(a1) ⇐⇒ (b1) ⇐⇒ (c1).

Proof. (a1)=⇒(b1): Let H ⊆ X be a finite subgroup scheme, and

set G = GA(IA(H)). By Remark 5.2 also G is a finite subgroup scheme. Since

the inclusion H ⊆ G trivially holds, see Proposition 5.1, there is a natural

isogeny

ϕ : X/H −→ X/G.

By the very definition of GA(−), it follows that the induced map

ϕ∗ : TA(X/G) −→ TA(X/H)

is an isomorphism. Since by assumption the functor TA(−) is fully faithful, we

conclude that ϕ is an isomorphism as well and therefore H = G = GA(IA(H)).

(b1)=⇒(c1): This is just the special case H = 0. Let {ψ1, . . . , ψn} be a set

of generators of TA(X) as an S(A)-module and consider the homomorphism

ψ : X → An whose i-th component is ψi. Since the ψi’s generate TA(X), we

have

ker(ψ) = GA(TA(X)).

Assuming (b1), we have 0 = GA(IA(0)); hence we deduce

ker(ψ) = GA(TA(X)) = GA(IA(0)) = 0,

which proves (c1).

(c1)=⇒(a1): We must show that for all abelian varieties X,Y ∈ AVw the

map

(5.3) HomFq(X,Y ) −→ HomS(A)(TA(Y ), TA(X))

is bijective.

We first show that (5.3) is injective. By assumption (c1) there is an injective

map ψ : Y ↪→ An; denote by ψi its i-th component. If f : X → Y is a

homomorphism with

0 = f∗ : TA(Y ) −→ TA(X),

then ψi ◦ f = 0 for all i, and thus ψ ◦ f = 0. But since ψ is injective this

implies f = 0.
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We next address the surjectivity of (5.3). Let, as above, ψ : Y ↪→ An be

an injection. Since TA(Y ) is a finitely generated S(A)-module, we may also

assume that ψ is chosen so that its components ψ1, . . . , ψn : Y → A gener-

ate TA(Y ). Construct the quotient pr : An → Z = An/Y , which is itself an

object of AVw, and choose an injection ι : Z ↪→ Am, which exists again by

assumption. Setting σ = ι ◦ pr : An → Am, we obtain a short exact sequence

(a co-presentation)

0→ Y
ψ−→ An

σ−→ Am.

We may view σ as an m × n matrix σ = (sij) ∈ Mm×n(S(A)) with entries

in S(A). Let now

g : TA(Y )→ TA(X)

be any map of S(A)-modules, and let ϕ : X → An be the morphism whose i-th

component is given by ϕi = g(ψi) : X → A, where 1 ≤ i ≤ n. Let (σ ◦ ϕ)j
be the j-th component of the composition σ ◦ ϕ, where 1 ≤ j ≤ m. From the

S(A)-linearity of g we deduce for any j

(σ ◦ ϕ)j =
∑

1≤k≤n
sjkϕk =

∑
1≤k≤n

sjkg(ψk) = g

( ∑
1≤k≤n

sjkψk

)
= g((σ◦ψ)j) = 0.

Therefore ϕ factors as ψ ◦ f , for a unique map f : X → Y . Since

f∗(ψi) = ψi ◦ f = ϕi = g(ψi),

the maps f∗ and g : TA(Y ) → TA(X) agree on a generating set, hence g = f∗

and (5.3) is indeed surjective.

After having established the equivalence of the assertions (a1), (b1) and (c1)

we show that of (a), (b) and (c). We recall that A has Weil support equal to w

by assumption.

(a)=⇒(b2): Let X be an object of AVw and let M ⊆ TA(X) be a submodule

of finite index. Thanks to the the fact that TA(−) is essentially surjective by

assumption, there is an object Y of AVw and an isomorphism TA(Y ) � M of

S(A)-modules. We deduce an injective S(A)-homomorphism

ι : TA(Y ) ↪→ TA(X)

with finite cokernel and which is induced from a homomorphism ϕ : X → Y ,

because TA(−) is assumed to be fully faithful.
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Since ι ⊗ Q : HomFq (Y,A) ⊗ Q → HomFq(X,A) ⊗ Q is an isomorphism

and A has Weil support equal to w, the map ϕ must be an isogeny. It then

follows from the definition that M = IA(ker(ϕ)). Applying now property (5) of

Proposition 5.1 to the subgroup ker(ϕ) we find

M = IA(ker(ϕ)) = IA(GA(IA(ker(ϕ))) = IA(GA(M)).

(b)=⇒(c2): Let ϕ : X ↪→ Y be an injective homomorphism in AVw. We have

to show that an arbitrary map f : X → A extends to a certain f̃ : Y → A. By

composing ϕ with an inclusion Y ↪→ An, which exists by (c1), we may assume

that Y = An.

Let ϕi : X → A be the i-th component of ϕ and denote by M the S(A)-

submodule of TA(X) generated by all the ϕ1, . . . , ϕn. Poincaré’s theorem of

complete reducibility implies that X is a direct factor of An up to isogeny, i.e.,

there is an abelian subvariety Z ⊆ An such that ϕ : X ↪→ An factors as the

inclusion of X ↪→ X × Z followed by an isogeny

ψ : X × Z −→ An.

Then f extends as the composition f ◦ pr1 with the first projection to a

map X × Z → A, and the nonzero multiple g = mf with m = deg(ψ) extends

to a morphism g̃ : An → A. This means precisely that g belongs to M . In this

way we see that M has finite index in TA(X) and hence, by assumption (b2),

we have

M = IA(GA(M)) = IA

(⋂
i

ker(ϕi)

)
= IA(ker(ϕ)) = IA(0) = TA(X).

Thus there are si ∈ S(A) with f =
∑
i siϕi and therefore the map s : An → A

defined as

s =
∑
i

si ◦ pri,

where pri : A
n → A is the i-th projection, extends f as desired.

(c)=⇒(a2): Let M be an object of ModZ-tf(S(A)) and choose a finite presen-

tation

S(A)⊕m
f−→ S(A)⊕n →M → 0.

By S(A) = TA(A) and additivity of TA(−) the map f comes from a ϕ :An→Am.

Let Y be the image of ϕ and let X = ker(ϕ)0 be the reduced connected com-

ponent of the kernel. Both X and Y are objects of AVw. Let G = ker(ϕ)/X be

the finite group scheme of connected components. Since the functor TA(−) is
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left exact as a functor on group schemes over Fq, we obtain a diagram of S(A)-

modules

S(A)⊕m

f

TA(G)

0 TA(Y ) S(A)⊕n
g

i∗

TA(ker(ϕ))

M
h

TA(X)

0

with an exact middle row and exact columns. The map S(A)⊕m � TA(Y )

comes from Y ↪→ Am and is surjective by assumption (c2). The same applies

to i∗ : S(A)⊕n � TA(X) which comes from the inclusion i : X ↪→ ker(ϕ) ↪→ An.

It follows that the map denoted g induces an injective map M ↪→ TA(ker(ϕ)).

Because TA(G) is finite, we deduce that the composite h

h :M −→ TA(X)

has finite kernel, and moreover is surjective due to i∗ being surjective. But M

is torsion free by assumption, hence h is an isomorphism showing that M lies

in the essential image of TA(−).

6. The truncated anti-equivalence for finite Weil support

Let w ⊆Wq be any finite subset fixed throughout the section, and let Aw be a w-

locally projective abelian variety (see Definition 1.3) with Fq-endomorphism ring

EndFq (Aw) denoted by Sw. In this section we show that the functor represented

by Aw

Tw : AVw −→ ModZ-tf(Sw), Tw(X) = HomFq (X,Aw)

is an anti-equivalence of categories if Aw has full support w(Aw) = w.
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The ring Sw is a finite Rw-algebra and free as a Z-module. If λ (resp. p) is a

maximal ideal of Rw ⊗ Z� for � �= p (resp. of Rw ⊗ Zp), we introduce notation

Sw,λ = Sw ⊗Rw Rw,λ and Sw,p = Sw ⊗Rw Rw,p.

It follows from the local version of Tate’s theorem, Proposition 3.2, that Tλ(−)
and Tp(−) induce natural isomorphisms

Sw,λ = EndRw,λ
(Tλ(Aw)),

Sw,p = EndRw,p(Tp(Aw))
op.

6.1. Preliminary lemmata. We now present four lemmata that are needed

when proving that Tw(−) is an anti-equivalence of categories. The first lemma

clarifies an assumption on the support.

Lemma 6.1: Let A be an abelian variety in AVw with support w(A) = w.

(1) Tλ(A) is nontrivial for all maximal ideals λ of Rw ⊗ Z� for � �= p.

(2) Tp(A) is nontrivial for all maximal ideals p of Rw ⊗ Zp.

Proof. Since A has support w, there is an n ≥ 1 and an isogeny B ×A′ → An

with B being a w-balanced abelian variety. By Definition 2.8 and Definition 3.1,

we have Tλ(B) � (Rw,λ)
⊕2r. The induced map

(Rw,λ)
⊕2r � Tλ(B) ↪→ Tλ(A

n) = Tλ(A)
⊕n

is injective, and this shows claim (1). The argument for (2) is similar but uses

an isogeny An → B ×A′ and the map

(Dw,p)
⊕2 � Tp(B) ↪→ Tp(A

n) = Tp(A)
⊕n.

We continue by introducing some notation. If λ (resp. p) is a maximal ideal

of Rw ⊗ Z� for � �= p (resp. of Rw ⊗ Zp), denote by

ModZ�-tf(Rw,λ) (resp. ModZp-tf(Dw,p) )

the category of finitely generated Rw,λ-modules that are free over Z� (resp.

finitely generated Dw,p-modules that are free over Zp). Similarly, let

ModZ�-tf(Sw,λ) (resp. ModZp-tf(Sw,p) )

be the category of finitely generated left modules over Sw,λ that are free over Z�

(resp. finitely generated Sw,p-modules that are free over Zp). If N is any object
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of ModZ�-tf(Rw,λ), the formula

(6.1) N� := HomRw,λ
(N,Tλ(Aw))

defines a contravariant functor on ModZ�-tf(Rw,λ) with values in ModZ�-tf(Sw,λ),

thanks to the identification Sw,λ = EndRw,λ
(Tλ(Aw)) that follows from Propo-

sition 3.2 (1).

Lemma 6.2 (Local anti-equivalence at λ): Let w ⊆ Wq be any finite subset,

and let Aw be a w-locally projective abelian variety with support w(Aw) = w.

Let λ be a maximal ideal of Rw ⊗ Z� for � �= p. The functor

(−)� : ModZ�-tf(Rw,λ) −→ ModZ�-tf(Sw,λ)

is an anti-equivalence of categories.

Remark 6.3: In (2.3) we recalled that for a prime � �= p the ring Rw ⊗ Z�

is isomorphic to Z�[x]/Pw(x). In particular, Rw ⊗ Z� is a Gorenstein ring of

dimension one, being a complete intersection. The relevant consequence for us

is that any object of ModZ�-tf(Rw,λ) is reflexive, that is to say that the dual

module functor

(6.2) (−)∨ := HomRw,λ
(−, Rw,λ)

is an anti-equivalence of ModZ�-tf(Rw,λ) to itself. For more details see [CS15,

Lemma 13].

Proof of Lemma 6.2. For any object N of ModZ�-tf(Rw,λ) there is a natural

isomorphism

ξN : N� ∼−→ N∨ ⊗Rw,λ
Tλ(Aw)

which depends functorially on N , where N∨ is the dual of N , as defined in

(6.2). This is to say that (−)� is isomorphic to the composition of functors

(6.3)
ModZ�-tf(Rw,λ)

(−)∨−−−→ModZ�-tf(Rw,λ)

−⊗Rw,λ
Tλ(Aw)−−−−−−−−−−→ ModZ�-tf(Sw,λ).

Since Tλ(Aw) is a free Rw,λ-module, and moreover nontrivial by Lemma 6.1

due to the assumption on the Weil support, the functor − ⊗Rw,λ
Tλ(Aw) is a

Morita equivalence, and thus (−)� is an anti-equivalence of categories, being a

composition of the anti-equivalence (6.2) with an equivalence.
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For what concerns the situation at p, for an object N of ModZp-tf(Dw,p) the

formula

N� := HomDw,p(Tp(Aw), N)

defines a covariant functor from ModZp-tf(Dw,p) to ModZp-tf(Sw,p). Notice

that Sw,p acts on N� from the left thanks to the contravariance of Proposi-

tion 3.2 (2) and the natural right action of EndDw,p(Tp(Aw)) on N�.

Lemma 6.4 (Local equivalence at p): Let w ⊆ Wq be any finite subset, and

let Aw be a w-locally projective abelian variety with support w(Aw) = w. Let p

be a maximal ideal of Rw ⊗ Zp. The functor

(−)� : ModZp-tf(Dw,p) −→ ModZp-tf(Sw,p)

is an equivalence of categories.

Proof. Since Aw is assumed w-locally projective, by Proposition 3.7 there is an

integer n ≥ 1 such that Anw is w-locally free. The functors (−)� for Aw and

the power Anw are linked by a Morita equivalence. Therefore we may assume

without loss of generality that Tp(Aw) is a free Dw,p-module.

Let Tp(Aw) be free of rank n over Dw,p. By Lemma 6.1, due to the assump-

tion on the Weil support, we have n ≥ 1. A choice of a basis determines an

isomorphism Tp(Aw) � D⊕n
w,p and a natural isomorphism

N� = HomDw,p(Tp(Aw), N) � HomDw,p(D
⊕n
w,p, N) = N⊕n

with the Sw,p action onN� corresponding to the Mn(Dw,p)-action onN⊕n under

the isomorphism

Sw,p = EndDw,p(Tp(Aw))
op � EndDw,p(D

⊕n
w,p)

op = Mn(Dw,p)

of Proposition 3.2 (2) and induced by that very same choice of basis. Hence the

functor (−)� is isomorphic to a Morita equivalence restricted to modules that

are free and finitely generated as Zp-modules.

While Lemmata 6.2 and 6.4 above enter in the proof of fully faithfulness

of Tw(−), the next lemma is needed to show that Tw(−) is essentially surjective.

Lemma 6.5: Let A ↪→ B be an injective homomorphism of abelian varieties

in AVFq , and let � �= p be a prime number. Then the following holds.

(1) The natural map T�(A)→ T�(B) is injective and cotorsion free, i.e., the

cokernel is a free Z�-module.

(2) The natural map Tp(B)→ Tp(A) is surjective.
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Proof. The quotient C = B/A exists in the category of finite type group schemes

over Spec(Fq) and is an abelian variety. For all n ∈ N multiplication by n is

an isogeny, hence surjective. It follows from the snake lemma in the abelian

category of finite type group schemes over Spec(Fq), see [SGA3, Exp. VI, §5.4
Théorème], that we have an exact sequence

(6.4) 0 −→ A[n] −→ B[n] −→ C[n] −→ 0

of finite flat group schemes. By passing to the limit for n = �m one deduces

from (6.4) the exact sequence

0 −→ T�(A) −→ T�(B) −→ T�(C) −→ 0.

Now (1) follows because the cokernel T�(C) is a free Z�-module.

(2) Since Tp(A) is the limit of the Dieudonné modules for the system of A[pm]

and the Dieudonné module functor is exact on finite flat group schemes we also

have an exact sequence

0 −→ Tp(C) −→ Tp(B) −→ Tp(A) −→ 0.

6.2. Existence and characterization of injective cogenerators. We

are now ready to prove the main result of the section.

Theorem 6.6: Let w ⊆Wq be a finite subset, and let Aw in AVw be an abelian

variety. Then the following are equivalent.

(a) Aw is w-locally projective with support w(Aw) = w.

(b) Aw is an injective cogenerator for AVw.

(c) The functor1

Tw : AVw −→ ModZ-tf(Sw), Tw(X) = HomFq (X,Aw)

is an anti-equivalence of categories.

Proof. We start by showing (a)=⇒(c). So Aw is w-locally projective with sup-

port w. The first thing to show is that Tw(−) is fully faithful. To this purpose

1 To avoid double indices, we use the notation Tw for the functor that was previously

denoted by TAw .
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let X,Y be abelian varieties in AVw, and consider the map

τ : HomFq(X,Y ) −→ HomSw(Tw(Y ), Tw(X))

induced by Tw(−). Both source and target of τ are finitely generated Rw-

modules. Hence it suffices to verify that τ⊗Rw,λ and also τ⊗Rw,p are bijective

for all maximal ideals λ of Rw⊗Z�, for � �= p, and all maximal ideals p of Rw⊗Zp
respectively.

The case λ: Consider the commutative diagram

HomFq
(X,Y )⊗Rw Rw,λ

τ⊗Rw,λ

Tate

HomSw
(Tw(Y ), Tw(X))⊗Rw Rw,λ

HomSw,λ
(Tw(Y )⊗Rw Rw,λ, Tw(X)⊗Rw Rw,λ)

Hom(Tate,Tate)

HomRw,λ
(Tλ(X), Tλ(Y )) HomSw,λ

(Tλ(Y )�, Tλ(X)�)

whose arrows all are the natural ones. Thanks to the λ-adic version of Tate’s

isomorphism as in Proposition 3.2, and to flat localization along Rw → Rw,λ,

all vertical arrows of the diagram are isomorphisms. Thanks to Lemma 6.2, the

bottom horizontal arrow is an isomorphism, hence the same is true for τ⊗Rw,λ.
The case p: Similarly, the vertical and the bottom arrows of the commutative

diagram

HomFq
(X,Y )⊗Rw Rw,p

τ⊗Rw,p

Tate

HomSw
(Tw(Y ), Tw(X))⊗Rw Rw,p

HomSw,p(Tw(Y )⊗Rw Rw,p, Tw(X)⊗Rw Rw,p)

Hom(Tate,Tate)

HomDw,p
(Tp(Y ), Tp(X)) HomSw,p

(Tp(Y )�, Tp(X)�)

are isomorphisms, thanks to the p-adic version of Tate’s isomorphism as in

Proposition 3.2, flat localization along Rw → Rw,p, and Lemma 6.4. This

implies that τ ⊗ Rw,p is an isomorphism, completing the proof that Tw(−) is

fully faithful.
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We now show that Tw(−) is essentially surjective. Since we already know

that Tw(−) is fully faithful, it is enough to check that Tw(−) satisfies condi-

tion (c2) of Theorem 5.4, i.e., we need to show that for all injections i : X ↪→ Y

in AVw the induced map

(6.5) i∗ : Tw(Y ) −→ Tw(X)

is surjective. We accomplish this by showing that i∗ ⊗ Z� is surjective for all

primes �.

The case � �= p: By Tate’s isomorphism (2.4) the scalar extension i∗ ⊗ Z� is

identified with the induced map

HomRw⊗Z�
(T�(Y ), T�(Aw)) −→ HomRw⊗Z�

(T�(X), T�(Aw)), ϕ �→ ϕ ◦ T�(i)
on �-adic Tate modules. Define the Rw ⊗ Z�-module M by exactness of the

sequence

0 −→ T�(X) −→ T�(Y ) −→M −→ 0.

Since i is injective, Lemma 6.5 (1) shows thatM is free as Z�-module and hence

reflexive as Rw ⊗ Z�-module; see Remark 6.3. The Ext-sequence

HomRw⊗Z�
(T�(Y ), T�(Aw)) −→ HomRw⊗Z�

(T�(X), T�(Aw))

−→ Ext1Rw⊗Z�
(M,T�(Aw))

shows that surjectivity of i∗ ⊗ Z� follows from the vanishing of

Ext1Rw⊗Z�
(M,T�(Aw)). Since Rw⊗Z� is the product of the local rings Rw,λ, we

have

Ext1Rw⊗Z�
(M,T�(Aw)) =

⊕
λ

Ext1Rw,λ
(M ⊗Rw,λ, Tλ(Aw)).

Since Aw is locally projective, Proposition 3.7 shows that Tλ(Aw) is a free

Rw,λ-module. Now the vanishing

Ext1Rw,λ
(M ⊗Rw,λ, Tλ(Aw)) = 0

is a consequence of [CS15, Lemma 17] and the fact that Rw,λ is a Gorenstein

ring of dimension 1 as the localization of Rw ⊗ Z�.

The case � = p: Using Tate’s isomorphism (2.7), the surjectivity of i∗ ⊗ Zp

translates into the surjectivity of

HomDw(Tp(Aw), Tp(Y )) −→ HomDw(Tp(Aw), Tp(X)),

which is an immediate consequence of Lemma 6.5 (2) and the fact that Tp(Aw)

is a projective Dw-module.
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The equivalence of (c) and (b) is proven as part of Theorem 5.4. It remains to

show that (b) implies (a). For that we pick an auxiliary abelian variety A′
w that

is w-balanced. Such anA′
w exists by Theorem 2.7, and A′

w is w-locally projective

with support w. By what we have already shown, A′
w is an injective cogenerator.

Therefore there exist an n and an embedding i : Aw ↪→ (A′
w)
n according to

Theorem 5.4 (c1). Now we apply Theorem 5.4 (c2) to this embedding, but with

respect to the injective cogenerator Aw. It follows that the map

HomFq ((A
′
w)
n, Aw) � HomFq (Aw, Aw), ϕ �→ ϕ ◦ i

is surjective. A preimage of the identity is a retraction (A′
w)
n → Aw which

shows that Aw is a direct factor of (A′
w)
n. In particular, Tλ(Aw) (resp. Tp(Aw))

is a direct factor of a projective Rw,λ (resp. a projective Dw,p)-module and

hence is itself projective. This shows that Aw is w-locally projective.

For all π ∈ w, applying Theorem 5.4 (c1) to a simple abelian variety Bπ in

the isogeny class associated to π yields an embedding Bπ ↪→ Anw for some n. In

particular, π is contained in the support of Aw. This completes the proof.

Remark 6.7: In an appendix to [La01] Serre proves a version of Theorem 6.6

for w = {π} and an ordinary Weil q-number π associated to an ordinary elliptic

curve E such that Rπ is a maximal order in Q(π). In contrast to Deligne’s

proof in [De69], Serre’s proof uses the covariant functor HomFq (E,−), so no

multiplicities are used.

We reprove in Theorem 8.4 Deligne’s result for the category of all ordinary

abelian varieties. Also in this case the representing object Aord
w is isogenous

to
∏
π∈w Bπ, so again no multiplicities are necessary. However, the general case

requires multiplicities. In Section 9 we discuss the necessity of multiplicities

in the case of AVπ for a Weil q-number π associated to an elliptic curve. The

crucial result concerning multiplicities is Theorem 3.10.

Corollary 6.8: Let A in AVw be an injective cogenerator. Then A is a direct

factor of a power of a w-balanced abelian variety.

Proof. This was proved at the end of the proof of Theorem 6.6.

Proposition 6.9: Let w ⊆ Wq be a finite subset, and let Aw in AVw
be a w-balanced abelian variety. Then, for any X in AVw, the Z-rank of

Tw(X) = HomFq (X,Aw) equals

rkZ Tw(X) = 4r dim(X).
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Proof. Since both sides of the equation are isogeny invariant and additive with

respect to products of abelian varieties, it suffices to consider Fq-simple objects

X = Bπ for π ∈ w. Then
rkZ(Tw(Bπ)) = mπ rkZ(EndFq (Bπ)) =

2r

sπ
· s2π[Q(π) : Q] = 4r dim(Bπ),

where the last equality uses Theorem 2.2(1) from Honda–Tate theory.

6.3. Realizing Rw as the center. If w = {π} consists of a single ordinary

Weil q-number π, then Waterhouse shows in [Wa69, Chapter 7] that the minimal

endomorphism ring Rπ arises as the endomorphism ring of a simple, ordinary

abelian variety Bπ. We will reprove this later as part of Proposition 8.3. In

this section we will show that Rw agrees with the center of EndFq (A) for any

injective cogenerator A in AVw. This verifies the claim made in the introduction

that the center Rq of Sq can be described explicitly in terms of Weil q-numbers.

Proposition 6.10: Let A∈AVw be an injective cogenerator. Then the natural

map

Rw −→ EndFq (A)

identifies Rw with the center of EndFq (A).

Proof. We first prove the result for a w-balanced abelian variety Aw. In order

to show that the map Rw → Z(EndFq (Aw)) is an isomorphism, where Z(−)
denotes the center, it suffices to show this after completion at all prime numbers.

We deduced from Tate’s theorems (2.4) and (2.7) that for all primes � �= p

EndFq(Aw)⊗ Z� = EndRw⊗Z�
(T�(Aw))

� EndRw⊗Z�
((Rw ⊗ Z�)

⊕2r) = M2r(Rw ⊗ Z�),

EndFq (Aw)⊗ Zp = EndDw(Tp(Aw))
op � EndDw(D

⊕2
w )

op
= M2(Dw).

In both cases we determine the center as indeed Rw ⊗ Z� (resp. Rw ⊗ Zp, see

Lemma 2.1).

Now let A be an arbitrary injective cogenerator. Let S = EndFq (A) and

denote the anti-equivalence HomFq(−, A) by T (−). Then the composition of

the natural injective maps

Rw ↪→ Z(S) ↪→ Z(EndS(T (Aw))) = Z(EndFq(Aw)
op)

is an isomorphism due to the discussion of the w-balanced case. The result

follows.
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Remark 6.11: The converse to Proposition 6.10 does not hold for q = p4

and π = p2. The simple object in AVπ is an elliptic curve Bπ with End(Bπ) a

maximal order in the quaternion algebra over Q ramified in p∞. Then Rπ = Z

equals the center of End(Bπ). But Hom(−, Bπ) is not an anti-equivalence ac-

cording to [JKP+18, Theorem 1.1]. Since π is non-ordinary, Theorem 3.10 says

that all injective cogenerators of AVπ are isogenous to a power of a reduced

π-balanced object. Thus injective cogenerators of AVπ have even multiplicity

because of smπ = r/sπ = 2.

7. Compatible truncated anti-equivalences

7.1. Maximal subgroup with partial Weil support. Recall that for an

abelian variety A over Fq we set

S(A) = EndFq (A),

and that S(A) is an Rw-algebra if A ∈ AVw.

Proposition 7.1: Let v ⊆ w ⊆ Wq be finite sets of Weil q-numbers, and

let Aw ∈ AVw be an injective cogenerator. Then the subgroup generated by all

images

Av,w := 〈im(f); f : X → Aw, X ∈ AVv〉 ⊆ Aw
satisfies the following:

(1) Av,w belongs to AVv and is an abelian subvariety of Aw.

(2) Av,w is an injective cogenerator in AVv.

(3) Restriction to Av,w induces a natural surjection

prv,w : S(Aw) � S(Av,w)

that is an Rw � Rv algebra map.

(4) We set Tw(X) = HomFq (X,Aw) and Tv,w(X) = HomFq (X,Av,w). The

following diagram naturally commutes:

(7.1) AVw
Tw

ModZ-tf(S(Xw))

AVv

⋃
Tv,w

ModZ-tf(S(Xv,w)).

⋃
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Here the right inclusion is defined by pulling back the S(Av,w)-module

structure via prv,w to a S(Aw)-module structure.

(5) If Aw is w-balanced, then Av,w is v-balanced.

Proof. Assertion (1) is trivial.

(2) Being an injective cogenerator means that property property (c) of The-

orem 5.4 holds, so this holds for Aw. We are going to show that property (c)

also holds for Av,w. Now (c1) holds because for an arbitrary X ∈ AVv there is

an injection

X ↪→ Anw

for a suitable n that factors through Anv,w ⊆ Xn
w by the definition of Av,w.

To show (c2) we start with an injection X ↪→ Y in AVw and a homomor-

phism f0 : X → Av,w. By composing with i : Av,w ↪→ Aw we can ex-

tend f = i ◦ f0 to a g : Y → Aw since Aw is an injective object, i.e., Aw

satisfies property (c2). By definition g factors through g0 : Y → Av,w and g0

extends f0 because i is injective.

(3) Restriction with i : Av,w ↪→ Aw yields a surjection by Theorem 5.4 (c2)

prv,w : S(Aw) =HomFq(Aw , Aw)

� HomFq (Av,w, Aw) = HomFq (Av,w, Av,w) = S(Av,w)

with the next to last equality due to the definition of Av,w. Here prv,w(g) for a

homomorphism g : Aw → Aw is the unique homomorphism so that the following

commutes:

Aw
g

Aw

Av,w

i

prv,w(g)

Av,w.

i

The map prv,w is indeed a ring homomorphism as for a composition f ◦ g of

f, g ∈ S(Aw) the composition prv,w(f)◦prv,w(g) completes the square as in the

following diagram:

Aw
g

Aw
f

Aw

Av,w

i

prv,w(g)

Av,w
prv,w(f)

i

Av,w.

i
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Moreover, the map prv,w is an Rw � Rv algebra map, because Frobenius and

Verschiebung are natural with respect to i : Av,w ↪→ Aw.

Assertion (4) follows from the natural equality for every X ∈ AVv

HomFq (X,Av,w) = HomFq(X,Aw),

since every morphism f : X → Aw takes values in the subvariety Av,w ⊆ Aw.
Now we show (5). If Aw is w-balanced, then all simple abelian varieties Bπ

for π ∈ w occur in Aw with multiplicity mπ. Since up to isogeny Av,w consists

of all isogeny factors Bπ of Aw with π ∈ v, we deduce that Av,w has the

same multiplicities mπ for all π ∈ v. Thus Av,w is isogenous to a v-balanced

abelian variety Av. Being an injective cogenerator, Av,w is v-locally projective

by Theorem 6.6. Since Av is also v-locally projective, now Proposition 4.3

shows that Av,w and Av are Tate-locally isomorphic. Again Proposition 4.3

then shows that Av,w is v-balanced, since Av is v-balanced.

7.2. The direct system. In order to prove Theorem 1.1 we construct a direct

system

A = lim−→
w

Aw

consisting of abelian varieties Aw indexed by finite subsets w ⊆ Wq of Weil

q-numbers such that for all w the functors

Tw : AVw −→ ModZ-tf(Sw),

Tw(X) = HomFq (X,Aw)

are anti-equivalences, that moreover are naturally compatible among each other.

Proof of Theorem 1.1. For any finite subset w ⊆ Wq let Z(w) be the set of

isomorphism classes [A] of w-balanced abelian varieties The set Z(w) is not

empty by Theorem 2.7. The elements of Z(w) all belong to the same isogeny

class, and so Z(w) is finite, since there are only finitely many isomorphism

classes of abelian varieties over a finite field lying in a given isogeny class (in

fact, Zarhin shows in [Za77, Theorem 4.1] that finiteness holds for isomorphism

classes of abelian varieties of fixed dimension).



154 T. G. CENTELEGHE AND J. STIX Isr. J. Math.

For any pair v ⊆ w of finite subsets of Weil q-numbers, we construct a map

ζv,w : Z(w) −→ Z(v)

by

ζv,w([A]) = [B]

where B is the abelian subvariety of A generated by the image of all f : C → A

with w(C) ⊆ v. Proposition 7.1 (5) states that ζv,w indeed takes values in Z(v).

These maps satisfy the compatibility condition

ζu,w = ζu,vζv,w ,

for all tuples u ⊆ v ⊆ w, hence they define a projective system

(Z(w), ζv,w)

indexed by finite subsets w ⊆Wq . Since the sets Z(w) are finite and non-empty,

a standard compactness argument shows that the inverse limit is not empty:

Z = lim←−
w

Z(w) �= ∅.

We choose a compatible system z = (zw) ∈ Z of isomorphism classes of abelian

varieties.

Now we would like to choose abelian varieties Aw in each class zw and inclu-

sions

ϕw,v : Av −→ Aw

for every v ⊆ w that are isomorphic to the inclusions Av,,w ⊆ Aw discussed in

Proposition 7.1 in a compatible way: for u ⊆ v ⊆ w we want

ϕw,u = ϕw,vϕv,u.

Because the set of Weil q-numbers is countable, we may choose a cofinal

totally ordered subsystem of finite subsets of Wq

w1 ⊆ w2 ⊆ · · · ⊆ wi ⊆ · · · ,
where cofinal implies

⋃
iwi =Wq. Working with this totally ordered subsystem,

we can construct a direct system

A0 = (Awi , ϕwj ,wi)

of abelian varieties as desired by induction. If Awi is already constructed, then

we choose Awi+1 in zwi+1 and deduce from ζwi,wi+1(zwi+1) = zwi that there is an

injective homomorphism ϕwi+1,wi : Awi → Awi+1 as desired. By construction,



Vol. 257, 2023 ABELIAN VARIETIES OVER Fq 155

the map ϕwi+1,wi is an isomorphism of Awi with the abelian subvariety Awi,wi+1

of Awi+1 as discussed in Proposition 7.1.

Once A0 is constructed, we may identify all transfer maps of the restricted

system A0 with inclusions. Let now w be a general finite subset of Wq. Since⋃
iwi = Wq is a union of a totally ordered system of wi, we find w ⊆ wi for

all large enough i. Then we can define the abelian variety Aw by means of the

construction of Proposition 7.1 as the abelian subvariety

Aw := Aw,wi ⊆ Awi .

This choice is well defined, i.e., independent of i � 0. Furthermore, there are

compatible transfer maps ϕv,w : Av → Aw for all v ⊆ w that lead to the desired

direct system

A = (Aw, ϕw,v).

In the sense of ind-objects we have A0 � A and so A0 would suffice for The-

orem 1.1. But we prefer the more aesthetic ind-system A indexed by all finite

subsets w ⊆Wq.

Let X be any element of AVFq , and set

T (X) = HomFq (X,A) = lim−→
w

HomFq (X,Aw) = lim−→
w

Tw(X).

The groups HomFq(X,Aw) are stable when w is large enough. More precisely,

if w, w′ are finite subsets of Weil q-numbers with w(X) ⊆ w ⊆ w′, then the

map

ϕw′,w ◦ − : HomFq (X,Aw) −→ HomFq (X,Aw′)

is an isomorphism; cf. Proposition 7.1 (4). Moreover, T (−) restricted to AVw
recovers the functor Tw(−) of Theorem 6.6 constructed using the object Aw

of A. Furthermore, the functor Tw(−) induces an anti-equivalence between AVw
and ModZ-tf(Sw) by Theorem 6.6 because Aw is w-balanced.

We next show that T (−) is an Rq-linear functor. We denote the linear Frobe-

nius isogeny for an abelian variety X over Fq by πX : X → X . Observe that,

since Frobenius is a natural transformation, for any finite subset w ⊆ Wq and
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for any f ∈ HomFq (X,Aw) the diagram

X
πX

f

X

f

Aw
πAw

Aw

is commutative. This implies that, for w sufficiently large so that

T (X) = HomFq (X,Aw), w large,

the action F (f) = πAw ◦ f on f ∈ T (X) of the image of F in Rw ⊆ Sw is given

by the morphism induced by the Frobenius isogeny πX via functoriality of T :

T (πX) : f �→ f ◦ πX = πAw ◦ f.

A similar consideration with the isogeny Verschiebung shows that indeed T (−)
is Rq-linear.

Compatibility in w shows that T (−) induces an anti-equivalence

T = lim−→Tw : AVq = lim−→
w

AVw
∼−→ lim−→

w

ModZ-tf(Sw) = ModZ-tf(Sq).

Complemented by the rank computation of Proposition 6.9, this is precisely the

claim of Theorem 1.1 and so its proof is complete.

Remark 7.2: When reduced w-balanced abelian varieties exist, i.e., if we avoid

π = ±√q when r is odd, then the above proof of Theorem 1.1 can be applied

mutatis mutandis to construct an anti-equivalence of categories represented

by an ind-abelian variety sA = ( sAw, ϕw,w′) consisting of reduced w-balanced

abelian varieties. This anti-equivalence yields modules HomFq (X,Aw) of Z-

rank 2r dim(X). For r = 1, this reproves the main result of [CS15].

7.3. Weil restriction of scalars and base change. Another form of

compatibility can be established with respect to Weil restriction of scalars and

with respect to base change. We will not need these compatibilities here and

therefore only report the results, all of which have quite formal proofs.



Vol. 257, 2023 ABELIAN VARIETIES OVER Fq 157

Proposition 7.3: Let w be a finite set of Weil qm-numbers, and set

m
√
w := {π;πm ∈ w}.

(1) Let A ∈ AVw be an injective cogenerator. Then the Weil restric-

tion RA := RFqm |Fq
(A) is an injective cogenerator for AV m

√
w, and for

all X ∈ AV m
√
w we have a natural isomorphism of functors in X

TA(X ⊗Fq Fqm) � TRA(X).

(2) Let A ∈ AV m
√
w be an injective cogenerator. The base change

Am := A⊗Fq Fqm

is an injective cogenerator for AVw, and for all X ∈ AVw we have a

natural isomorphism of functors in X

TA(RFqm |Fq
(X)) = TAm(X).

(3) Let A m
√
w ∈ AV m

√
w be m

√
w-balanced. Then the scalar extension

Aw := A m
√
w ⊗Fq Fqm

in AVw is w-balanced.

One can further show that an ind-representing objectA = (Aω)ω⊆Wq provides

a similar ind-representing object A ⊗Fq Fqm after base changing those with

index m
√
w for subsets w ⊆Wqm .

8. The commutative case and optimal rank

We discuss when a modified anti-equivalence takes values in modules over a

commutative ring.

8.1. Recovering Deligne’s result: the ordinary case. In this section

we will be concerned with lowering multiplicities of injective cogenerators for

sets of ordinary Weil q-numbers.

Lemma 8.1: For a finite set w of ordinary Weil q-numbers, we have

Dw �Mr(Rw ⊗ Zp).
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Proof. It suffices to determine the structure locally at maximal ideals p of

Rw ⊗ p, because Rw⊗Zp is the product of these localizations. As w consists only

of ordinary Weil q-numbers either F /∈ p or V /∈ p. The claim Dw,p = Mr(Rw,p)

now follows from the local structure results (3.1) and (3.2) obtained in the proof

of Proposition 3.6.

Proposition 8.2: Let w be a finite set of ordinary Weil q-numbers. Then

there exist a w-balanced abelian variety Aw and an Rw-linear isomorphism

EndFq(Aw) �M2r(Rw).

Proof. Let A′
w be an arbitrary w-balanced abelian variety. Then EndFq(A

′
w)⊗Q

is an Azumaya algebra of degree 2r over its centerQ(w). This center is a product

of number fields. The local-global principle for the Brauer group, see [BHN32],

shows that EndFq (A
′
w)⊗Q is split as an Azumaya algebra over Q(w), because all

local invariants are trivial by Tate’s formula as recalled in Theorem 2.2(2). Here

we use that w only contains ordinary Weil q-numbers. The splitting translates

into a Q(w)-algebra isomorphism

EndFq (A
′
w)⊗Q �M2r(Q(w)).

Moreover, the integral local structure of S′
w = EndFq (A

′
w) can be deduced from

Tate’s theorems (2.4) and (2.7) and Lemma 8.1 as

S′
w ⊗ Z� = EndRw⊗Z�

(T�(A
′
w)) � EndRw⊗Z�

((Rw ⊗ Z�)
⊕2r) = M2r(Rw ⊗ Z�),

S′
w ⊗ Zp = EndDw(Tp(A

′
w))

op � EndDw(D
⊕2
w )

op
= M2(Dw) = M2r(Rw ⊗ Zp).

Proposition 4.8 applied to the Rw-order O = M2r(Rw) shows that there ex-

ists an abelian variety Aw that is Tate-locally isomorphic to A′
w and such

that EndFq(Aw) � M2r(Rw). The abelian variety Aw is also w-balanced by

Proposition 4.3.

Proposition 8.3: Let w be a finite set of ordinary Weil q-numbers. Then

there exists an abelian variety Aord
w with the following properties.

(i) The Weil support of Aord
w is equal to w,

(ii) the natural inclusion Rw ⊂ EndFq (A
ord
w ) is an isomorphism,

(iii) Aord
w is w-locally projective, and

(iv) 2 dim(Aord
w ) = [Q(w) : Q].



Vol. 257, 2023 ABELIAN VARIETIES OVER Fq 159

In particular, the corresponding contravariant functor

TAord
w

: AVw −→ ModZ-tf(Rw), TAord
w

(X) = HomFq(X,A
ord
w )

gives an Rw-linear anti-equivalence of categories.

Proof. We choose a w-balancedAw and fix an isomorphism End(Aw)�M2r(Rw)

as in Proposition 8.2. Let ei ∈ End(Aw) be the idemponent that corresponds

in End(Aw) �M2r(Rw) to the matrix with a single 1 at the ith diagonal entry.

These idempotents e1, . . . , e2r commute and sum to the identity. Let Ai be the

image of ei : Aw → Aw. It follows formally as in any additive category that

Aw � A1 × · · · ×A2r.

Moreover, let eij ∈ End(Aw) � M2r(Rw) correspond to the elementary matrix

with a single 1 in the ith row and jth column. Then eij |Aj : Aj → Ai is an

isomorphism, so all direct factors of Aw are mutually isomorphic. We define

Aord
w = e1(Aw) = A1,

so that Aw � (Aord
w )2r. In particular, the support of Aord

w is the support of Aw

and equal to w. Moreover, we can compute as Rw-algebras

End(Aord
w ) = e1End(Aw)e1 = Rw.

Now Aord
w is w-locally projective because a multiple Aw = (Aord

w )2r is w-locally

projective, and direct summands of projective modules are again projective.

As Aord
w has full support, by Theorem 6.6 we have that Aord

w indeed represents

the desired anti-equivalence of the claim.

In order to compute the dimension of Aord
w , we note that all π ∈ w are

ordinary and thus have commutative Eπ = EndFq (Bπ). Hence sπ = 1, and

the multiplicity of Bπ in Aw is mπ = 2r. It follows that Aord
w is isogenous

to
∏
π∈w Bπ. The dimension formula is a consequence of Theorem 2.2(1)

and Q(w) =
∏
π∈wQ(π).

We can now reprove Deligne’s main result of [De69]. We choose to state

a contravariant form in accordance with our overall choice. By precomposing

with the functor dual abelian variety we can pass from contravariant to covariant

equivalences.

Recall that AVord
Fq

denotes the full subcategory of AVFq consisting of ordinary

abelian varieties. Similarly, we denote by Rord
q the projective system (Rw, rv,w)

restricted to finite sets w of ordinary Weil q-numbers.
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Theorem 8.4 (Deligne [De69]): Let q = pr be a power of a prime num-

ber p. There exists an ind-abelian variety Aord = (Aord
w , ϕw,w′) indexed by

finite sets w ⊆ W ord
q of ordinary Weil q-numbers, such that Aord

w is w-locally

projective, the transition maps are inclusions, and EndFq (A
ord
w ) = Rw. The

contravariant and Rord
q -linear functor

T ord : AVord
Fq
−→ ModZ-tf(Rord

q ), T ord(X) = HomFq (X,Aord)

is an anti-equivalence of categories which preserves the support. Moreover, the

Z-rank of T ord(X) is equal to 2 dim(X).

Proof. The construction of Proposition 7.1 applied to an Aord
w produced by

Proposition 8.3 yields an injective cogenerator Aord
v,w such that EndFq (A

ord
v,w)

is an Rv-algebra that is a quotient of Rw = EndFq (A
ord
w ). It follows that

also EndFq(A
ord
v,w) = Rv.

Now the construction of the ind-abelian variety Aord works as in the proof

of Theorem 1.1 by replacing w-balanced abelian varieties by varieties Aord
w that

are w-locally projective with EndFq (A
ord
w ) = Rw. This proves the claim.

The reduction of multiplicity achieved in Proposition 8.3 allows to complete

the structure theory of w-locally projective abelian varieties begun in Section 3.

Recall that there is a tensor product construction between abelian varieties

with multiplication by a ring R and certain R-modules; see Serre’s appendix to

[La01] and [JKP+18, §4.1].
Theorem 8.5: Let w be a finite set of ordinary Weil q-numbers, and let Aord

w

be a w-locally projective abelian variety with Rw = EndFq (A
ord
w ) as in Proposi-

tion 8.3. Then any w-locally projective abelian variety A is of the form

A � Aord
w ⊗Rw P

where P = HomFq (A
ord
w , A) is a finitely generated projective Rw-module.

Proof. Proposition 3.9 (1) shows that HomFq (A
ord
w , A) is indeed projective. The

general properties of the tensor product yield an evaluation map

Aord
w ⊗Rw HomFq (A

ord
w , A) −→ A.

In order to show that this map is an isomorphism, it sufffices to show this locally

on �-adic and p-adic Tate modules. There it follows because A and Aord
w are

w-locally projective and T�(A
ord
w ) (resp. Tp(A

ord
w )) is locally free of rank 1 (resp.

the unique indecomposable projective module, see Proposition 3.6).
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Remark 8.6: Using Theorem 3.10 and Theorem 8.5 one obtains a complete

description of the isogeny classes of AVw containing an injective cogenerator

for AVw. See also Remark 3.11.

8.2. Injective cogenerators with commutative endomorphism ring.

Let W ⊆ Wq be a (possibly infinite2) set of Weil q-numbers. The proof of

Theorem 1.1 adapts immediately to provide an ind-abelian variety AW that

ind-represents an anti-equivalence of AVW with ModZ-tf(SW ), where SW equals

the pro-ring EndFq(AW ).

We would like to determine all setsW for which there is such an AW as above

with SW commutative.

Recall that we denote by r the degree of Fq over Fp.

Proposition 8.7: Let π be a Weil q-number, and let Aπ be an injective co-

generator for AVπ that has a commutative ring of endomorphisms Sπ. Then

(1) π is ordinary, or

(2) r = 1 and π is not the real conjugacy class of Weil p-numbers {±√p}.
Proof. In order to have a commutative ring of endomorphisms, Aπ must be Fq-

simple and sπ = 1. The last condition also imples that Q(π) has no real places

and thus that a reduced π-balanced object exists. If π is not ordinary, then by

Theorem 3.10 (note that Spec(Rπ) is connected), the abelian variety Aπ must

be isogenous to a power of a reduced π-balanced abelian variety. The variety Aπ

being Fq-simple, this in particular implies smπ=1, and thus r=sπ · smπ=1.

We conclude that the examples of commutative cases as presented in Sec-

tion 1.5 of the introduction cover all commutative cases.

Proposition 8.8: The only sets of Weil q-numbersW with a commutative SW
and an ind-representable RW -linear anti-equivalence AVW → ModZ-tf(SW ) are

contained in

(i) the set W ord ⊆Wq of ordinary Weil q-numbers, or

(ii) the set W com
p =Wp \ {±√p} of non-real Weil p-numbers.

2 We choose the notation W over w to distinguish the case of a distinctive finite set w of

Weil q-numbers from the general case W .
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Proof. Let AW be an inductive system of abelian varieties from AVW that

ind-represents an anti-equivalence of categories as in the proposition. By a

diagonal process based on the technique of Proposition 7.1, we may assume

that AW = (Aw)w⊆W is indexed by finite subsets of Weil q-numbers in W ,

and such that Aw represents the restriction of the anti-equivalence to AVw. It

follows from Theorem 6.6 that, for all π ∈ W , the abelian variety Aπ must be

an injective cogenerator for AVπ with a commutative ring of endomorphisms.

Now the claim follows from Proposition 8.7.

8.3. Lattices of optimal rank. A noticeable feature of the main result

Theorem 1.1 is the necessity to work with lattices whose rank is a multiple of

the first Betti number.

Proposition 8.9: Let Λ : AVFq → ModZ-tf(Z) be an additive, contravariant

functor that attaches to any abelian variety over Fq a free Z-module of finite

rank. Assume that there is a constant γ > 0 such that

rkZ(Λ(X)) = γ · dim(X)

for any X in AVFq . Then γ is divisible by 2 lcm(r, 2).

Proof. Let π be a Weil q-number, and Bπ a simple object of AVFq associated

to π. The Q-vector space Λ(Bπ) ⊗ Q defines, via functoriality of Λ, a right

representation of Eπ = EndFq(Bπ)⊗Q.

Since Eπ is a division algebra, Eπ is the unique simple object in the category

of right representations of Eπ. It follows that Λ(Bπ) ⊗ Q is isomorphic to a

multiple of Eπ. Therefore

γ · dim(Bπ) = dimQ Λ(Bπ)⊗Q

is a multiple of (using Theorem 2.2(1))

dimQEπ = s2π[Q(π) : Q] = 2sπ dim(Bπ).

Hence γ is divisible by the least common multiple of all 2sπ for all Weil q-

numbers π. It was discussed in Section 2.4 that sπ always divides lcm(r, 2).

To complete the proof it is enough to show that

• for any r > 2 there exists a Weil q-number π′ such that sπ′ = r, and

• for any r ≥ 1 there exists a Weil q-number π′′ with sπ′′ = 2.

The first statement is the content of Lemma 8.10 below. The second is proved

after checking that any root π′′ of x2 − q satisfies the required properties.
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Lemma 8.10: Let r > 2, and let π be a root of the polynomial f(x) = x2−px+q,
which is irreducible in Q[x]. Then π defines a Weil q-number such that the

index sπ of Eπ is r.

Proof. The discriminant of f(x) is p2 − 4q < 0. Thus f(x) is irreducible with

two complex conjugate roots and hence π is a Weil q-number.

In order to compute sπ we must compute the order of the local invariants

at p-adic places as in Theorem 2.2(2). The assumption r > 2 ensures that

the Newton polygon of x2 − px+ q with respect to the p-adic valuation vp has

two different (negative) slopes 1 and r − 1. Therefore f(x) splits in Qp[x] into

a product of two distinct linear factors corresponding to two distinct primes

of Q(π) above p. Moreover, by comparing with the slopes, we can choose a

prime p | p such that vp(π) = 1. By Theorem 2.2(2), the local invariant of the

division ring Eπ at p is 1/r (mod 1), which suffices to ensure sπ = r.

9. Abelian varieties isogenous to a power of an elliptic curve

Let E be an elliptic curve over Fq and π = πE the associated Weil q-number.

The category AVπ defined in Section 1.2 is the full subcategory of AVq whose

objects are the abelian varieties over Fq isogenous to a power ofE. This category

is the object of study of [JKP+18]. In this stimulating paper the authors give

a characterization of those elliptic curves E for which the functor

TE : AVπ −→ ModZ-tf(EndFq (E)),

TE(X) = HomFq (X,E)

is an anti-equivalence of categories. Their main result [JKP+18, Theorem 1.1]

says that TE is an anti-equivalence precisely in the following cases (recall that

r = [Fq : Fp]):

• π is ordinary and End(E) = Rπ;

• π is supersingular, r = 1, and End(E) = Rπ, or

• π is supersingular, r = 2, and End(E) is of Z-rank 4.

Remark 9.1: This result provides the complete list of Weil q-numbers π for

which an injective cogenerator of dimension 1 for AVπ exists.
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For those supersingular Weil q-numbers π associated to an elliptic curve that

are left out from the treatment of [JKP+18], it is natural to ask what the

minimal dimension of an injective cogenerator of AVπ is. To this purpose we

draw the following consequence of Theorem 3.10.

Corollary 9.2: Let π be a Weil q-number corresponding to an isogeny class

of supersingular elliptic curves over Fq. Then

smπ =

⎧⎨
⎩r if π /∈ Q

r/2 if π ∈ Q

is an integer and equals the minimal dimension of an object A ∈ AVπ such that

the functor
TA : AVπ −→ ModZ-tf(EndFq (A)),

TA(X) = HomFq (X,A),

is an anti-equivalence of categories.

Proof. The formula for smπ follows from Theorem 2.2(1). If π is rational, then r

is even, hence smπ is a natural number.

Let sAπ be a reduced π-balanced abelian variety; see Theorem 2.7 for the

construction. Since Spec(Rπ) is connected and π is supersingular, Theorem 3.10

and Theorem 6.6 show that any injective cogenerator for AVπ is isogenous to a

power of sAπ. Because sAπ is π-locally projective, it is an injective cogenerator by

Theorem 6.6. In particular, the minimal dimension of an injective cogenerator

is equal to dim( sAπ), which equals smπ · dim(Bπ). Since Bπ is 1-dimensional the

corollary follows.

We conclude the section and the paper with the detailed analysis of an ex-

ample of a Weil number π corresponding to a supersingular elliptic curve where

the reduced π-balanced object sAπ is 2-dimensional. In this example, all local

invariants of Eπ = EndFq (Bπ)⊗Q are trivial and the endomorphism ring of sAπ

is a non-maximal order of M2(Q(π)) that will be computed explicitly.

Let p be a prime number such that p ≡ 3 (mod 4) and let r = 2, so that

q = p2. Let π = ip be the Weil q-number whose minimal polynomial is x2 + p2.

Let Bπ be any Fq-simple abelian variety over Fq associated to π via Honda–

Tate theory. Since p is inert in the quadratic field Q(i) = Q(π), we deduce from

Theorem 2.2(2) that all local invariants of Eπ are trivial. Hence

Eπ = EndFq (Bπ)⊗Q = Q(π) = Q(i)
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is commutative and Bπ is an elliptic curve by Theorem 2.2(1). Since the

trace π + q/π of π is zero, the elliptic curve Bπ is supersingular, however, not

all of its geometric endomorphisms are defined over Fq. The minimal central

order associated to {π} is

Rπ = Z[π, q/π] = Z[ip],

which has index p in the maximal order Z[i]. In particular, Rπ is not maximal

at p. On the other hand, any such supersingular elliptic curve Bπ has an

endomorphism ring which is maximal at p, cf. [Wa69, Theorem 4.2(3)]. Thus

the inclusion of Rπ in EndFq(Bπ) is proper and more precisely

Z[ip] = Rπ � EndFq(Bπ) = Z[i].

This shows that the functor

TBπ : AVπ −→ ModZ-tf(EndFq(Bπ)),

TBπ(X) = HomFq(X,Bπ)

is not an anti-equivalence, for otherwise EndFq(Bπ) would have to agree with Rπ

(see Proposition 6.10). More directly, we can use that EndFq (Bπ) = Z[i] is a

principal ideal domain and therefore ModZ-tf(EndFq (Bπ)) has a unique simple

object. On the other hand, it follows from [Wa69, Theorem 5.1] that AVπ has

two non-isomorphic objects of dimension 1, which therefore are both simple

objects (see also Remark 9.6). That also shows that TBπ(−) is not an anti-

equivalence.

The functor HomFq (−, Bπ) has only a problem locally at p that prevents it

from being fully faithful. We will calculate Dieudonné modules for Bπ, for its

Frobenius twist

B(p)
π = Bπ ×Fq,Frob Fq

and for a choice of a reduced balanced Āπ in order to show what the obstacle

is and how Āπ circumvents the local problem at p. Let K = Qp(π) be the

completion of Q(π) at the unique prime above p, fix an embedding W (Fq) ↪→ K

and denote by oK the image of W (Fq). The nontrivial Galois automorphism

of K/Qp will be denoted by a �→ ā.
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Lemma 9.3: There is an isomorphism of K-algebras ψ : D0
π

∼−→ M2(K),

ψ(a) =

(
a 0

0 ā

)
for all a ∈ W (Fq),

ψ(F ) =

(
0 1

ip 0

)
and ψ(V ) =

(
0 −i
p 0

)
.

The integral Dieudonné ring Dπ is identified by ψ with the oK-subalgebra

(9.1) ψ(Dπ) =

{(
a b

c d

)
∈ M2(oK); p|c and a ≡ d̄ (mod p)

}

of index p4 in the maximal order M2(oK).

Proof. The minimal polynomial of π = ip is Pπ(x) = x2 + p2. As defined in

Section 2.1, it follows that hπ(F, V ) = F + V , and (2.5) implies the description

D0
π =W (Fq){F ,V }/FV − p,F 2 + V 2)⊗Zp Qp

in terms of generators and relations. A computation shows that ψ is well defined.

Since both D0
π and M2(K) are central simple algebras over K of degree 2, the

map ψ must be an isomorphism.

It remains to compute the image ψ(Dπ). The elements V , 1,F and F 2

span Dπ as a left W (Fq)-module. Hence ψ(Dπ) is the set of

ψ(uV + x · 1 + vF + yF 2) =

(
x+ yip v − iu

p(−ū+ iv̄) x̄+ ȳip

)

for all x, u, y, v ∈ W (Fq). Now the claim follows from{(
x+ yip

x̄+ ȳip

)
;x, y ∈ W (Fq)

}
=

{(
a

d

)
; a, d ∈W (Fq), a ≡ d̄ (mod p)

}
,

{(
v − iu
−ū+ iv̄

)
;u, v ∈ W (Fq)

}
=

{(
b

c′

)
; b, c′ ∈W (Fq)

}
.

Via the embedding Dπ ⊆ M2(K) induced by ψ of Lemma 9.3 we obtain two

Dπ-modules

Λ1 = {
(
a

c

)
∈ o⊕2

K ; p | c}, Λ2 = o⊕2
K ,

as the first column, respectively the second column, of the matrix description.

This results in the following embedding of Dπ-modules:

(9.2) Dπ ⊆ Λ1 ⊕ Λ2 ⊆ M2(oK) � Λ2 ⊕ Λ2.
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Lemma 9.4: Up to K×-homothety, there are only two Dπ-lattices in K⊕2,

namely Λ1 and Λ2.

Proof. Since we have

pM2(oK) ⊆ Dπ ⊆ M2(oK),

any Dπ-lattice Λ can by homothety be brought to a position

pΛ2 ⊆ Λ ⊆ Λ2.

The choice of Λ corresponds to a Dπ-stable subgroup of

Λ2/pΛ2 = o⊕2
K /po⊕2

K = F⊕2
q

on which Dπ acts through the reduction mod p, i.e., the image of

Dπ
ψ−→ M2(oK) � M2(oK/poK) � M2(Fq).

This image consists of {(
a b

0 d

)
∈M2(Fq); a = d̄

}
.

Therefore the only nontrivial invariant subspace in Λ2/pΛ2 is the image

of Λ1.

Let Frob : Bπ → B
(p)
π be the Fq-isogeny given by the relative (p-)Frobenius

morphism. We set Tp(Bπ) = Λ and identify Frob via Dieudonné theory with

the inclusion of Dπ-modules

Tp(B
(p)
π ) = FΛ ⊆ Λ = Tp(Bπ),

which has a cokernel ofW (Fq)-length 1 corresponding to the kernel of Frobenius

under the Dieudonné functor for finite group schemes. Up to exchanging Bπ

with its Frobenius twist, we may and will assume that

Tp(Bπ) = Λ2 and Tp(B
(p)
π ) = Λ1 ⊆ Λ2.

With these identifications in place, the Dπ-embedding Dπ ↪→ Λ1⊕Λ2 from (9.2)

has cokernel of W (Fq)-length 1 and determines an isogeny

B(p)
π ×Bπ −→ Āπ

of degree p with Tp(Āπ) = Dπ .

Proposition 9.5: The abelian variety Āπ constructed above is a reduced π-

balanced object in AVπ and hence an injective cogenerator.



168 T. G. CENTELEGHE AND J. STIX Isr. J. Math.

Proof. By construction, Tp(Āπ) = Dπ is a free Dπ-module of rank 1. For � �= p,

the Rπ⊗Z�-module T�(Āπ) is free of rank 2 because Rπ=Z[ip] and the localiza-

tion Rπ[
1
p ]=Z[i, 1p ] is a Dedekind ring, hence Rπ is regular away from p.

Remark 9.6: We may formulate the failure for Bπ to be an injective cogenerator

as follows. There are failures in two steps:

(1) There are two non-isomorphic Dπ lattices Λ1 and Λ2 that represent

non-isomorphic simple objects in AVπ, while the target category of

EndFq(Bπ)-modules has only one isomorphism type of simple objects

that those can be mapped to.

(2) The reduced π-balanced abelian variety Āπ does a better job because

first of all it combines both Dπ-lattices. ButB
(p)
π ×Bπ also does this, and

still HomFq(−, B(p)
π ×Bπ) is not an anti-equivalence, because otherwise

B
(p)
π × Bπ was π-locally projective and then the same would apply to

the direct factor Bπ, contradiction.

(3) The decisive improvement of Āπ over the product B
(p)
π × Bπ comes

from choosing an appropriate sublattice Dπ in the product Λ1 ⊕ Λ2.

Now, the abelian variety Āπ has Tp(Āπ) = Dπ and so is also locally

projective at p. The construction of the sublattice can be described in

terms of a congruence as follows. Although Λ1 is not isomorphic to Λ2

as Dπ-modules, the Frobenius on Fq induces an isomorphism of finite

Dπ-modules

Λ1/FΛ1
∼−→ Fq

x �→x̄−−−→ Fq
∼←− Λ2/FΛ2(

a

c

)
+ FΛ1 �→ a+ poK �−→ d ≡ ā+ poK ←�

(
b

d

)
+ FΛ2.

This congruence yields a description of Dπ as a fiber product of Dπ-

modules

Dπ Λ2

(bd) �→d̄

Λ1

(ac)�→a

Fq,

and in some sense it is this coincidence of a congruence between Λ1

and Λ2 as Dπ-lattices which endows Tp(Āπ) and a posteriori Āπ with

its remarkable properties.
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We conclude the example by computing Sπ = EndFq (Āπ).

Proposition 9.7: There is an isomorphism

Sπ = EndFq (Āπ) �
{(

a b

c d

)
∈M2(Z[i]); p|c and a ≡ d̄ (mod p)

}
.

Proof. This follows by the proof of Theorem 4.9 applied to the isogeny of p-

power degree

ϕ : Bπ ×Bπ Frob× id−−−−−−→ B(p)
π ×Bπ → Āπ.

As a consequence of Proposition 9.7 the category AVπ is anti-equivalent to

the category of modules over the non-maximal order Sπ of M2(Q(i)) which are

finite and free as Z-modules.
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