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Abstract
Predator-prey interactions are vital for organismal survival. They shape anti-predator 
mechanisms and often depend on sensory abilities. Tadpoles use chemical cues, such as 
injury cues (alarm cues), to assess predation risks and modify their life-history, morphol-
ogy, and behaviours accordingly. However, the prevalence of chemically mediated anti-
predator responses in species with distinct ecological niches (e.g. within phytotelmata) 
remains unknown, hindering our understanding of the ecological significance and evolu-
tion of alarm substances. Therefore, our study aimed to investigate chemically mediated 
anti-predator responses in tadpoles of two Neotropical poison dart frogs, Ranitomeya si-
rensis and Epipedobates anthonyi (and compare their responses to two Palearctic model 
organisms, Rana temporaria and Bufo bufo, which are known to utilise alarm substances). 
Through behavioural bioassays, we exposed predator-naïve tadpoles to extracts of each 
species (i.e. con- and heterospecific cues), including water as a control (i.e. five treatments 
per species). We assessed changes in their activity before and after stimulus introduction. 
Our results show that E. anthonyi did not respond to any of the stimuli, whereas R. si-
rensis displayed increased activity levels exclusively in response to conspecific cues, but 
not to heterospecific cues. With this, our findings suggest a specialized recognition system 
in R. sirensis, potentially directed at conspecific competitors but likely unrelated to anti-
predator mechanisms. In contrast, E. anthonyi may be insensitive to injury cues or utilize 
alternative sensory modalities to respond to acute predation events. This study sheds light 
on the chemical alarm response system of Neotropical poison dart frog tadpoles, providing 
foundational understanding of how dendrobatids react to injury cues. It prompts questions 
about the ecological significance and evolutionary implications of chemical communica-
tion in species facing extreme resource limitation during development and underscores the 
importance of comparative research for understanding chemical communication in diverse 
aquatic ecosystems.

Keywords Dendrobatidae · Chemical communication · Anti-predator · Behaviour · 
Alarm substance · Damage-released alarm cue
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Introduction

Predation plays a crucial role in the survival of organisms, driving the evolution of sophis-
ticated sensory abilities and plastic anti-predator mechanisms (Ferrari et al. 2010; Brad-
bury and Vehrencamp 2011; Davies et al. 2012). Olfaction plays a critical role in evading 
predation, especially in aquatic ecosystems, where other sensory modalities are limited or 
impaired (Ferrari et al. 2010; Bradbury and Vehrencamp 2011). Thus, aquatic prey organ-
isms heavily rely on chemical cues to evaluate and efficiently respond to ambient predation 
risks (Kats and Dill 1998; Ferrari et al. 2010; Brönmark and Hansson 2012). Chemical cues 
from conspecifics and predators, in particular, provide valuable information about spatial 
and temporal predation risks (Kats and Dill 1998; van Buskirk and Arioli 2002; Ferrari et 
al. 2006; van Buskirk et al. 2014; Crane et al. 2023) as well as predator identity (Relyea 
2003; Hawkins et al. 2007), enabling prey to regulate their short-term defences in a threat-, 
context- and species-dependent manner (Ferrari et al. 2010; Hossie et al. 2016; Mitchell et 
al. 2017). With this, accurate identification of chemical cues is imperative for survival and 
leads to the evolution of both innate (Petranka and Hayes 1998; Fendt 2006; Epp and Gabor 
2008; Lau et al. 2021) and acquired cue identification (i.e. learning processes; Suboski 
1990; Mirza and Chivers 2000; Dalesman et al. 2006; Mirza et al. 2006; Ferrari et al. 2010).

Amphibian larvae, due to their aquatic lifestyle and heightened vulnerability during 
early developmental stages (Duellman and Trueb 1994; McDiarmid and Altig 1999; Wells 
2007), have evolved anti-predator mechanisms centred around the perception of predator- 
and prey-borne cues (Ferrari et al. 2010; Hettyey et al. 2015; Hossie et al. 2016; Mitchell 
et al. 2017). Tadpoles use predator kairomones (predator odours and diet cues; Mitchell et 
al. 2017) but also prey-borne cues emitted by stressed or injured conspecifics (disturbance 
cues or injury cues; Mitchell et al. 2017; see also Caballero-Díaz et al. 2023 for the use of 
social cues) to assess ambient predation risk. They use these cues to respond by altering 
morphology (van Buskirk and Mccollum 2000; Relyea 2001; Teplitsky et al. 2005; Hossie 
et al. 2010; Middlemis Maher et al. 2013) life-history (Chivers et al. 2001; Relyea and Auld 
2004; Ireland et al. 2007; Gazzola et al. 2015), and behaviour (van Buskirk and Mccollum 
2000; Relyea 2001; Ferrari et al. 2009a; Fraker et al. 2009; Hossie et al. 2010; Rödin-Mörch 
et al. 2011; Gazzola et al. 2015; Hettyey et al. 2015; Bairos-Novak et al. 2020). Behavioural 
response patterns towards prey-borne injury cues tend to emerge at the family level (Rödin-
Mörch et al. 2011). For example, bufonid tadpoles predominantly display avoidance and 
vivacity upon perceiving conspecific injury cues, whereas ranid tadpoles exhibit a broader 
spectrum of behavioural responses, including reduced activity and avoidance (Rödin-Mörch 
et al. 2011). Although the study of chemical communication and anti-predator responses in 
tadpoles has gained significant attention (Schulte et al. 2023), there is still a notable gap in 
our understanding, particularly regarding species with specific ecological niches and envi-
ronmental interactions.

Previous research has primarily focused on a few anuran families, predominantly study-
ing species with high larval individual counts and gregarious tendencies (e.g. loose associa-
tion and shoaling behaviour with kin or conspecifics; Rödin-Mörch et al. 2011; Hossie et al. 
2016). This limited focus excludes families or species characterised by low larval individual 
counts, non-social behaviours (including latent aggression towards conspecifics), or habi-
tats with extreme resource limitations (i.e. space and food availability) which are equally 
important to comprehensively understand chemical communication systems and alarm sub-
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stance evolution in tadpoles (Summey and Mathis 1998; Chivers et al. 2012). Among these 
understudied groups, the Neotropical poison dart frogs (Dendrobatidae and Aromobatidae; 
Grant et al. 2006) offer intriguing prospects for investigating the ecological and evolution-
ary significance of alarm cues and chemically mediated anti-predator responses.

Neotropical poison dart frogs primarily inhabit the tropical rainforests of Central and 
South America (Lötters et al. 2007) and are renowned for their aposematic skin colouration, 
which deter predators and signal their toxicity (Maan and Cummings 2012; Saporito et al. 
2012). In addition they exhibit complex parental care behaviours, including egg attendance, 
tadpole transport, and offspring provisioning (Summers and Tumulty 2014; Schulte et al. 
2020; Schulte and Summers 2021). The tadpoles of many species rely on specific larval 
deposition habitats, such as phytotelmata, which are small water reservoirs in leaf axils, 
bromeliad pools, or water-filled cavities in trees (Brust 1993; Caldwell and De Araújo 1998; 
Summers 1999; Poelman and Dicke 2007; Wells 2007). This habitat and corresponding 
lifestyle (i.e. solitary or small groups) is in stark contrast to that of typical model organ-
isms, most notably from the families Ranidae and Bufonidae, with distinctly larger clutch 
sizes, high degree of larval sociality and ecological interactions (Duellman and Trueb 1994; 
Wells 2007). While evidence suggests poison dart frog tadpoles are able to assess and 
respond to visual predator cues (i.e. predator presence; Stynoski and Noble 2012; Szabo et 
al. 2021) and potentially kairomones (Szabo et al. 2021), the prevalence and significance of 
chemically mediated anti-predator responses among Neotropical poison dart frog tadpoles 
remains unknown. Given the unique ecological characteristics and complex life history of 
Neotropical poison dart frogs, investigating the presence and effectiveness of chemically 
mediated anti-predator responses in their tadpoles can greatly contribute to our understand-
ing of the evolution and adaptive significance of alarm substances in poison dart frog tad-
poles and other anuran taxa (Summey and Mathis 1998; Hagman 2008; Chivers et al. 2012; 
Wisenden 2015).

In this comparative study, we primarily aimed to expand and investigate chemically medi-
ated anti-predator behaviour in response to conspecific injury cues (i.e. prey-borne chemical 
cues that indicate acute predation events like predator attacks or capture of prey; Hettyey et 
al. 2015; Wisenden 2015) in poison dart frogs. Specifically, we focused on two Neotropi-
cal poison dart frogs of the family Dendrobatidae, Ranitomeya sirensis and Epipedobates 
anthonyi. While R. sirensis lays 2–4 eggs and transports their predatory (potentially can-
nibalistic) tadpoles individually into small phytotelmata (e.g. bromeliad leaf axils; Brown 
et al. 2011; Kahn et al. 2016), E. anthonyi lays 5–32 eggs and transports their tadpoles in 
groups into small streams, puddles or water-filled holes in boulders (Lötters et al. 2007). 
Unlike R. sirensis, tadpoles of E. anthonyi do not show aggressive behaviours towards 
other tadpoles (Walls 1994). Furthermore, we sought to compare the response (changes in 
activity) to conspecific injury cues of these two species with two commonly studied model 
organisms (within the context of chemical communication): Rana temporaria (Ranidae) 
and Bufo bufo (Bufonidae). Both species lay clutches of several thousand eggs in tempo-
ral and permanent ponds (Lardner 2000; Glandt 2018), and the resulting tadpoles exhibit 
aggregations characterised by non-aggressive behaviour towards each other (Wells 2007). 
In addition to our main goal, we sought to contribute to the understanding of the evolution-
ary and ecological significance of these substances in tadpoles by exploring the responses 
of all species involved to all possible heterospecific injury cues. Considering cross-species 
reactions and phylogenetic differences (especially concerning R. temporaria and B. bufo) 
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helps refine hypotheses and develop future studies about the evolution of injury cues, their 
characteristics (i.e. phylogenetically conserved and/or convergent elements), and ecologi-
cal significance (Summey and Mathis 1998; Hagman 2008; Chivers et al. 2012; Wisenden 
2015).

We predict that (Hy1) Ranitomeya sirensis tadpoles will show no behavioural changes in 
response to both con- and heterospecific injury cues, reflecting absent evolutionary adapta-
tions to discern and interpret these cues as heightened predation risk, given their solitary 
lifestyle, cannibalistic tendencies and limited options for action in their resource-limited 
environment (i.e. small water bodies in bromeliad leaf axis). We further predict that (Hy2) 
Epipedobates anthonyi, tadpoles will show decreased levels of activity in response to con-
specific injury cues, reflecting evolutionary adaptations to enhance fitness by discerning and 
interpreting conspecific injury cues as heightened predation risks by sit-and-wait predators 
(Greeney 2001; McKeon and Summers 2013), facilitated by their gregarious lifestyle (i.e. 
loose aggregation with conspecifics and kin) in resource limited environments (e.g. small 
puddles or water-filled holes in boulders). Furthermore, we expect the strongest response 
(decrease in activity) towards conspecific injury cues and diminished anti-predator behav-
iour towards heterospecific injury cues, attributable to phylogenetic differences. Lastly, pre-
vious studies indicate that both Rana temporaria and Bufo bufo exhibit reduced activity 
levels as typical anti-predator responses to various predators (Van Buskirk 2001; Marquis et 
al. 2004; Maag et al. 2012; Nunes et al. 2013). Therefore, we predict that (Hy3a) R. tempo-
raria and (Hy3b) B. bufo tadpoles will show reduced activity levels in response to conspe-
cific injury cues and diminished anti-predator responses towards heterospecific injury cues, 
attributable to phylogenetic differences.

Methods

Animals

Ranitomeya sirensis (Aichinger, 1991) is a dendrobatid species endemic to the Serranía 
de Sira mountain range in east-central Peru (Lötters et al. 2007). Epipedobates anthonyi 
(Noble, 1921) occurs in southwestern Ecuador and northwestern Peru, extending west of the 
Andes at elevations ranging from 153–1387 m (Lötters et al. 2007). Tadpoles of R. sirensis 
and E. anthonyi used in this study were obtained from laboratory populations maintained 
at the Goethe University in Frankfurt am Main since 2018 (see supplementary material 
S1 for husbandry of adults). In laboratory populations, adult poison dart frogs deposited 
tadpoles in 50 mL falcon tubes or 280 mL beakers, which we then removed regularly and 
transferred to a dedicated tadpole housing environment. Newly hatched R. sirensis tadpoles 
were transferred into separate housing beakers individually (8.5 cm diameter, water level 
4 cm), while E. anthonyi tadpoles were placed in tanks as sibling groups of 10 to 20 indi-
viduals (30 × 20 cm, water level 7 cm). Both tadpole housing environments were filled with 
demineralised water and included pieces of dried almond leaves (Prunus dulcis). Tadpoles 
of Rana temporaria (Linnaeus, 1758) and Bufo bufo (Linnaeus, 1758) were obtained by col-
lecting and culturing eggs from a wild population where both species occur sympatrically. 
We collected eggs from 12 clutches annually (in each breeding season) from a permanent 
pond built by the Naturschutzbund Deutschland (NABU) in Steinau-Marborn, Hesse, Ger-
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many (coordinates: 50°19’34.28” N, 9°25’27.08” E). The eggs were transferred to cooling 
boxes with water from the collection site and transported within 1 h to the animal mainte-
nance facilities at Goethe University of Frankfurt. In the laboratory, the eggs hatched, and 
the tadpoles were reared in large glass aquaria (40 × 50 × 100 cm) containing 200 L of well-
aerated aged tap water (1–2 individual’s/L). The tanks were equipped with an air lift pump, 
sponge ceramic rings filter system and enriched with synthetic algae, clay pots, and stones 
to provide hiding places for the tadpoles. Months in advance, the filter system and water 
were inoculated with bacteria, phyto- and zooplankton from the respective collection sites.

Individuals of all species (breeding adults and tadpoles alike) were kept in the same 
room at constant temperatures (23–25 °C) and 12 L:12D photoperiod. Tadpoles of all spe-
cies were fed with nettle powder every 2nd day and occasionally supplemented with rabbit 
chow. Water changes (25–50%) for tadpoles of R. temporaria and B. bufo were performed 
every third day, whereas tadpoles of R. sirensis and E. anthonyi did not require any water 
changes.

Behavioural assay

To investigate tadpole responses to conspecific and heterospecific injury cues, we conducted 
a series of behavioural bioassays between April 2021 and May 2023. The bioassays involved 
investigating the activity of predator-naïve tadpoles from Ranitomeya sirensis (N = 140), 
Epipedobates anthonyi (N = 141), Rana temporaria (N = 134) and Bufo bufo (N = 135), 
before and after the introduction of one of five different stimuli (i.e. five treatments). In 
each trial, tadpoles were individually placed in plastic cups (8 cm in diameter) filled with 
495 mL of water and exposed to extracts of either R. sirensis (x-Rs), E. anthonyi (x-Ea), R. 
temporaria (x-Rt), B. bufo (x-Bb) or water (control). Thus, tadpoles of every species were 
exposed to (a) conspecific extracts, (b) each of one of three possible heterospecific extracts 
and (c) water as a control. Each trial comprised three phases: (1) pre-stimulus, (2) stimulus, 
and (3) post-stimulus (each lasting 5 min). After an acclimatisation period (1 h) the trials 
started with the pre-stimulus phase, followed by the administration of one of the five stimuli 
mentioned. To introduce the stimuli, we gently placed the syringes on the cups’ side with-
out disturbing the animal. We then slowly dripped the content (5mL) into the cups, which 
marked the start of the stimulus phase. Prior observations (test with food dye) ensured 5 min 
time to be adequate for the stimulus to disperse in the second phase throughout the entire 
water body before initiating the post-stimulus phase; upon completion, a trial ended. Tad-
pole activity was recorded during the trials using a Panasonic camera and a mirror posi-
tioned at a suitable angle over the cups to capture the cups interior without obstructing the 
camera’s line of sight. Observer presence was found to have no impact on tadpole activity 
based on preliminary trials (see also McIntyre et al. 2004; Carlson et al. 2015). Therefore, 
we carefully stepped in front of the sides of the mirror to apply the stimuli via the syringes. 
To minimise a potential influence of “time-of-day effects” on tadpole behaviour (e.g.  Fer-
rari et al. 2008b), the trials were conducted alternately at one of five different time slots 
between 10:00 and 17:00 each day. Moreover, we ensured that the same species-stimulus 
combination was not tested on two consecutive days during the same time slot. Each indi-
vidual underwent a single testing session. The specific developmental stages of tadpoles in 
bioassays according to Gosner (1960), were: R. sirensis (28–36), E. anthonyi (28–36), R. 
temporaria (28–32), and B. bufo (28–32).
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Extraction of injury cues

To obtain injury cues indicating acute predatory events (Hettyey et al. 2015; Wisenden 2015), 
we randomly selected tadpoles from husbandry environments and euthanised them with a 
blow to the head (Ferrari et al. 2007; Lucon-Xiccato 2019a,b). This physical method was 
chosen to preserve the activity of alarm substances, as previous studies have shown negative 
effects of chemical euthanasia methods (i.e. anaesthetics) on alarm substance activity in fish 
(Losey and Hugie 1994) and tadpoles (Achtymichuk et al. 2022; own unpublished data). 
Moreover, we prepared extracts immediately before each trial (within 30 min of euthanasia) 
to avoid the degradation of substances mediating anti-predatory responses (van Buskirk et 
al. 2014; Crane et al. 2023). Euthanised tadpoles were pooled and homogenised in 2 ml of 
water using a handheld rotor-stator homogeniser (TissueRuptor II, Quiagen). The crude 
extracts were then centrifuged (10,000 ×g for 10 min at 4 °C) to separate water-soluble from 
insoluble fractions. The aqueous supernatant was diluted with water (5mL per euthanised 
tadpole), split up and loaded into 5mL syringes, and used immediately in the bioassay. The 
choice of water type for extract preparation (demineralised or aged tap-water) depended on 
the species used in the bioassay due to differences in the husbandry of tadpoles. Deminer-
alised water was used for bioassays with dendrobatid tadpoles, while aged tap-water was 
used for bioassays with ranid and bufonid tadpoles. Given the lack of available information 
regarding the dose-dependent effects of alarm substances in poison dart frogs, we opted for 
sacrificing one tadpole per individual participating in the bioassay (tadpoles euthanized: 
Ranitomeya sirensis (N = 140), Epipedobates anthonyi (N = 141), Rana temporaria (N = 134) 
and Bufo bufo (N = 135). This approach allowed us to obtain preliminary insights into the 
perception of alarm substances in poison dart frog tadpoles within an anti-predator context, 
while also ensuring comparability between species in this study. To record the applied bio-
mass in bioassays but reduce handling of animals, we conducted regular weight measure-
ments of participating tadpoles every 3rd day. For this, we used a microscale and a small 
beaker with a specific volume of water to introduce the tadpoles, and then calculated the 
differences to determine the wet biomass of tadpoles used for extract preparation. The final 
concentrations of extracts per trial were as follows: x-Rs (0.20–0.48 mg/mL), x-Ea (0.28–
0.64 mg/mL), x-Rt (0.11–0.44 mg/mL), and x-Bb (0.09–0.38 mg/mL). With this, the applied 
end concentrations were above concentrations used in studies with evident responses from 
ranid and bufonid tadpoles (e.g. Hagman and Shine 2008; Fraker et al. 2009; Lucon-Xiccato 
2019a,b; Crossland et al. 2019). The specific developmental stages of the tadpoles used 
for extract preparation, according to Gosner (1960), were: R. sirensis (28–38), E. anthonyi 
(28–38), R. temporaria (28–32), and B. bufo (28–32).

Video evaluation and statistical analysis

To compare the recorded tadpole behaviour before and after stimulus application, we quan-
tified tadpole activity (total time being active) in the (1) pre- and (3) post-stimulus phases 
by scoring their total active time (in seconds) using the behaviour coding software “Cow-
Log.“ (Version 3.0.2; Hänninen and Pastell 2009). Tadpoles were considered active when 
moving (i.e. swimming or exhibiting tail movement). Tadpoles showing slight tail move-
ments that did not result in forward body movement were also considered active, as den-
drobatid tadpoles often inhabit spatially limited environments (Brust 1993; Caldwell and 
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De Araújo 1998; Summers 1999; Poelman and Dicke 2007). We then calculated a response 
index (response activity) for each individual within a treatment as the difference between 
the activity in the (3) post- and (1) pre-stimulus phase: [post - pre = response activity]. 
Therefore, the response activity represented the change in activity following exposure to the 
stimuli in phase (2), with positive numbers indicating increases and negative numbers indi-
cating decreases in activity. Animals that had been inactive in both phases were excluded 
from the analysis. Due to data non-normality (assessed by the Kolmogorov-Smirnov test), 
tadpole responses of each species were compared using a Kruskal-Wallis one-way ANOVA 
(k samples). The dependent variable was “response activity” and the groups included in the 
analysis were “treatments” (i.e. five stimuli tested). Significant test results of species were 
subsequently assessed using Mann-Whitney U pairwise comparisons of each extract (x-Rs, 
x-Ea, x-Rt, x-Bb) against the control (water), including a Bonferroni-adjusted alpha value 
for four comparisons (P = 0.0125). Each species was analysed individually (i.e. no statistical 
analysis of treatments between species). All statistical analyses were conducted using SPSS 
20 (SPSS Inc., Chicago, IL, USA).

Results

We quantified the activity and calculated the median response activity for tadpoles of Rani-
tomeya sirensis (N = 129), Epipedobates anthonyi (N = 131), Rana temporaria (N = 131) and 
Bufo bufo (N = 135; Table 1). Kruskal-Wallis one-way ANOVA rejected the null hypothesis 
for R. sirensis (H = 9.532, df = 4, P < 0.05), R. temporaria (H = 29.989, df = 4, P < 0.0001) 
and B. bufo (H = 9.703, df = 4, P < 0.05), indicating significant differences between tadpole 
responses towards introduced stimuli. Kruskal-Wallis test, however, did not reject the null 
hypothesis for tadpole responses of E. anthonyi (H = 3.527, df = 4, P = 0.474), indicating no 
significant differences towards any of the introduced stimuli. Therefore, Mann-Whitney U 
post hoc tests were conducted to compare response activities among treatments for R. siren-
sis, R. temporaria, and B. bufo (Table 2).

In R. sirensis a significant difference in tadpole activity was observed between the con-
trol and the group exposed to x-Rs (Z = -2.587, P = 0.010). Tadpoles exposed to extracts 
of conspecifics exhibited higher median response activity than the control, indicating 
increased activity (Table 1; Fig. 1). No significant difference in R. sirensis tadpole activity 
was observed between the control group and those exposed to heterospecific extracts (x-Ea, 
x-Rs, and x-Bb).

In R. temporaria, significant differences were found in tadpole activity between the con-
trol and the groups exposed to x-Rs (Z = -3.086, P = 0.002), x-Ea (Z = -2.848, P = 0.004) and 
x-Rt (Z = -4.731, P < 0.001) Tadpoles exposed to extracts of conspecifics, as well as hetero-
specific extracts of both poison dart frog species (R. sirensis, E. anthonyi) showed decreased 
median response activity compared to the control group, indicating reduced activity. No 
significant difference in R. temporaria tadpole activity was found between the control and 
the group exposed to x-Bb.

In B. bufo a significant difference in tadpole activity was observed between the control 
group and the group exposed to x-Rt (Z = -2.989, P = 0.004). Tadpoles exposed to hetero-
specific R. temporaria extracts exhibited higher median response activity than the control 
group, indicating increased activity. No significant difference in B. bufo tadpole activity was 
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observed between the control and the groups exposed to conspecific extracts of x-Bb and 
heterospecific extracts of x-Rs and x-Ea.

Discussion

In this study we focused on the perception and responses to injury cues (alarm cues) in 
dendrobatid tadpoles, specifically emphasizing Ranitomeya sirensis and Epipedobates 
anthonyi. Additionally, we broaden our study to include tadpoles and injury cues from Rana 
temporaria and Bufo bufo, enabling us to explore the perception of heterospecific responses 
among all the aforementioned species, each with distinct ecological niches and degrees of 
sociality. We hypothesized diverse responses to con- and heterospecific injury cues among 
tadpoles, with variations attributable to differences in their degree of sociality, habitat con-
straints and phylogenetic relationships.

Our results diverge from the predictions made in hypotheses (Hy1), (Hy2), and (Hy3b). 
Contrary to expectations, R. sirensis tadpoles increased their activity when exposed to con-
specific injury cues. Furthermore, E. anthonyi and B. bufo tadpoles did not show reduced 
activity levels as anticipated in response to con- and heterospecific cues (with the excep-
tion of increased activity of B. bufo tadpoles towards R. temporaria cues). Our findings do, 
however, support hypothesis (Hy3a), as R. temporaria tadpoles exhibited reduced activity in 
response to both con- and heterospecific cues, with varying levels of intensity.

Tadpole response - Ranitomeya sirensis

Contrary to our prediction (Hy1), R. sirensis tadpoles increased not decreased their activity 
towards conspecific injury cues. The increased activity towards conspecific injury cues may 
suggest a chemically mediated agitation or cannibalistic behavioural response (potentially 
related to feeding behaviour; Spieler and Linsenmair 1999; Hagman 2008), considering 
the species’ solitary lifestyle and latent aggressive behaviour towards conspecific competi-
tors (personal observation). Previous studies have reported facultative, opportunistic can-
nibalism in several genera of poison dart frogs (Caldwell and De Araújo 1998; Gray et al. 
2009; Rojas 2014; Dugas et al. 2016), including Ranitomeya (Summers 1999; Summers 
and Symula 2001; Poelman and Dicke 2007; Schulte et al. 2011; Brown et al. 2011; Schulte 
2014). Meaning that due to the risk of reducing inclusive fitness by consuming close rela-
tives, many tadpoles consume only conspecifics that are already deceased or weakened. The 
evolution of such behaviour in dendrobatids is likely driven by increased parental invest-
ments and limited resources for tadpoles in their environment (Caldwell and De Araújo 
1998; Summers 1999; Summers and McKeon 2004; Carvajal-Castro et al. 2021). Since 
injury cues are involuntary released substances during predation events (Hettyey et al. 2015; 
Wisenden 2015) and likely associated with potential nutrient-rich carcasses, the perception 
of these stimuli likely triggers an altered perception of increased nutrient availability in fac-
ultative cannibalistic tadpoles. This, in turn, induces feeding behaviour, which is associated 
with increased levels of activity.

Surprisingly, however, R. sirensis tadpoles did not respond to heterospecific injury cues, 
raising the question of the adaptive advantage of this discriminatory behaviour towards 
injury cues. If aggressive behaviour enhances survivorship and reproductive output, aggres-
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sive cannibalism, as seems to be the case in R. sirensis, may be favoured by natural selec-
tion (Bobisud 1976; Jones 1982; Stenseth 1985). This is because traits accelerating tadpole 
development or increasing body size at metamorphosis can confer advantages such as ear-
lier reproductive maturity or larger body size at maturity (Wilbur 1980; Werner 1986; Smith 
1987), rendering in-discriminatory elimination of competitors (Crump 1992) and potential 
predators (Caldwell and De Araújo 1998) a beneficial fitness increasing trait (Bobisud 1976; 
Jones 1982; Stenseth 1985). As many poison dart frog species deploy their offspring indi-
vidually and often actively avoid phytotelmata with conspecific competitors (Brust 1993; 
Caldwell and De Araújo 1998; Summers 1999; Poelman and Dicke 2007), the potential cost 
of reducing their inclusive fitness, should become minimal, thus facilitating the evolution 
of in-discriminatory aggression or cannibalism even more. Our results, however, suggest a 
specialised recognition system that targets conspecific competitors and might be the results 
of an isolated evolutionary history mediated by selective individual tadpole deposition in 
unoccupied phytotelmata (Brust 1993; Caldwell and De Araújo 1998; Summers 1999; Poel-
man and Dicke 2007; Schulte et al. 2011) that left tadpoles of R. sirensis unable to perceive 
or interpret heterospecific cues appropriately (but see Schulte and Lötters 2014). Although 
evidence suggests that conspecific cannibalism may provide greater benefits compared to 
consuming heterospecifics due to proper proportion of nutrients (Nagai et al. 1971; Meffe 
and Crump 1987; Crump 1990; Wildy et al. 1998), future studies should delve deeper into 
the factors influencing these responses (e.g. naturally occurring heterospecific interactions 
among dendrobatids).

Tadpole response - Epipedobates anthonyi

Contrary to our hypothesis (Hy2), E. anthonyi tadpoles did not exhibit any observable 
behavioural response to the tested injury cues (i.e. neither con- nor heterospecific). Our 
results suggest that chemical cues associated with acute predation events do not mediate 
anti-predator responses in this species. A potential reason would be associated with the 
information transmission characteristics. While chemical cues possess advantageous long-

Fig. 1 Short term changes in activity (response activity) in tadpoles of Ranitomeya sirensis, Epipedobates 
anthonyi, Rana temporaria and Bufo bufo after experiencing extracts of: R. sirensis (x-Rs), E. anthonyi 
(x-Ea), R. temporaria (x-Rt), B. bufo (x-Bb) or water (i.e. control) during behavioural trials. Trials with 
extracts from conspecific tadpoles are arranged next to the control (C) on the left side, trials with hetero-
specific extracts on the right side of each panel. ***P < 0.001, ** < P 0.01, in post hoc Mann-Whitney U 
pairwise comparisons of treatments vs. control (alpha value adjusted for four comparisons per species; 
P = 0.0125)
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lasting properties that facilitate the perception and fine-tuning of anti-predator mechanisms, 
their information transmission may be insufficient (i.e. too slow and non-directional) com-
pared to other modalities such as acoustic and visual cues (Bradbury and Vehrencamp 
2011). This limitation could reduce chemical communication’s utility and adaptive benefits 
in anti-predator contexts in small water bodies, especially in situations with rapidly escalat-
ing predator-prey interactions. In contrast, the rapid transmission of information within a 
short timeframe becomes crucial in spatially limited environments, such as puddles or low-
current bays in rivers. However, evidence suggests that tadpoles have poor vision (Man-
teuffel et al. 1977; Hoff et al. 1999; Eluvathingal et al. 2009), which can be further impaired 
in murky, turbulent, or densely vegetated water bodies where tadpoles are commonly found 
(McDiarmid and Altig 1999; Wells 2007). Indeed, E. anthonyi tadpoles appeared unaffected 
by approaching shrimp nets, shadows, or movements just above the water level until close 
proximity (personal observation).

In spatially limited aquatic environments, like puddles or low-current bays in tropical 
rainforests, alternative modalities such as short-range communication may play a more sig-
nificant role. Unlike chemical cues, stimuli like touch and hydrodynamic cues can rapidly 
convey information and are highly effective over short distances, particularly when vision 
is impaired (Bradbury and Vehrencamp 2011). Similar to chemical cues, these cues possess 
advantageous properties and are vital for many aquatic predators and prey organisms (Brad-
bury and Vehrencamp 2011). Generating hydrodynamic cues, including currents, vortices, 
and surface disturbances, is inherent to locomotion in predominantly aquatic organisms (i.e. 
involuntary generated) and can provide valuable information to prey animals about the size, 
speed, and shape of the generating organism (Hanke et al. 2000; Coombs 2001). In fact, 
numerous aquatic organisms rely on hydrodynamic cues to track prey (Bleckmann 1994; 
Dehnhardt et al. 1998, 2001; Pohlmann et al. 2001, 2004; Schulte-Pelkum et al. 2007) or 
detect nearby predators and navigate their environments through hydrodynamic communi-
cation (Hassan 1986; Budelmann and Bleckmann 1988; Gray and Denton 1991; Budelmann 
1995; Coombs and Montgomery 1999; Mogdans et al. 2002; Burt De Perera 2004; Janssen 
and Strickler 2006; Platvoet et al. 2007; Bradbury and Vehrencamp 2011).

Given that tadpoles have well-developed lateral line systems (Lannoo 1987; McDiar-
mid and Altig 1999), and considering dendrobatid interactions in which visual and tactile 
cues are of more importance (e.g. mother offspring communication; Stynoski and Noble 
2012), the potential involvement of short-range modalities in anti-predator mechanisms of 
E. anthonyi tadpoles remains plausible. Moreover, blind cave fish actively generate turbu-
lences while moving and rely on distortions in reflected eddies and vortices to detect and 
warn conspecifics about obstacles in their proximity (Hassan 1986; Burt De Perera 2004), 
leaving room for speculation about sophisticated use and interpretation of hydrodynamic 
cues in E. anthonyi tadpoles. Likewise, there is the possibility that responses to avoid pre-
dation may have remained undetected within the confines of our experimental design (e.g. 
limited space with no options for tadpoles to escape or hide and undetected behavioural 
changes immediately after the introduction of cues in the stimulus phase). Anti-predator 
behaviour is often more intricate and may also manifest in spatial avoidance and increased 
hiding behaviour (Teplitsky and Laurila 2007; Eterovick et al. 2010; Szabo et al. 2021).

Both assumptions regarding the utilization of short-range modalities and more intricate 
behavioural changes are supported by observations during husbandry activities. In these 
instances, E. anthonyi individuals displayed heightened sensitivity to water body move-
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ments and surface disturbances. Tadpoles exhibited rapid, agile swimming responses when 
encountering unusual water movements or disturbances in close proximity, often resulting 
in shelter-seeking behaviour. Therefore, our results lead us to postulate that tadpoles of E. 
anthonyi employ distinct short-range modalities and behavioural responses to avoid preda-
tion, which may extend beyond activity adjustments and include behaviours such as rapid 
shelter-seeking. Consequently, further investigations are necessary to explore alternative 
sensory modalities and anti-predator strategies employed by E. anthonyi tadpoles in their 
natural environment.

Tadpole responses - Rana temporaria & Bufo bufo

Contrary to our expectations outlined in hypotheses (Hy3a) and (Hy3b), our study reveals 
notable inter-species differences between R. temporaria and B. bufo. Specifically, our 
results provide support only for hypothesis (H3a). Tadpoles of R. temporaria exhibited a 
reduced activity response to conspecific injury cues, consistent with previous research (Lau-
rila 2000; Laurila et al. 2004; Marquis et al. 2004; Mandrillon and Saglio 2009; Hettyey et 
al. 2015), while demonstrating a milder reaction to heterospecific cues. In contrast (Hy3b), 
B. bufo tadpoles did not exhibit the expected reduction in activity in the presence of either 
conspecific or heterospecific cues, deviating from prior research findings with conspecific 
injury cues (Marquis et al. 2004; but see Rödin-Mörch et al. 2011). Instead, B. bufo tadpoles 
displayed an increase in activity when exposed to cues from R. temporaria.

Literature suggests that the phylogenetic relationship and shared evolutionary history 
among species contribute to heterospecific responses due to the presence of similar metabo-
lites and specialised mixture compositions (Mirza and Chivers 2001; Dalesman et al. 2007; 
Ferrari et al. 2007, 2008a, 2009a; Ferland-Raymond and Murray 2008; Mitchell et al. 2012, 
2017). Therefore, the diminished response of R. temporaria to heterospecific cues may be 
attributed to the phylogenetic distance between the species involved and the presence of 
phylogenetically conserved or convergent elements of injury cues mediating anti-predator 
behavioural responses (Ferrari et al. 2010). However, the evolution of injury cues remains 
largely unclear but may be facilitated through kin-selection (Ferrari et al. 2010; Chivers et 
al. 2012; see also Wisenden 2015 for a comprehesive list of hypothesis).

The responses of bufonid tadpoles to heterospecific injury cues have been shown to be 
quite variable in previous studies, ranging from “no response” (Hagman and Shine 2009), 
decreased activity (Summey and Mathis 1998; Hagman and Shine 2009), attraction/forag-
ing (Petranka 1989; Hagman and Shine 2009), to avoidance behaviour (Hews and Blaustein 
1985). In our experimental setup using cups, behavioural responses such as attraction/forag-
ing and avoidance would translate into increased activity levels. This is because, increased 
movement may be utilized by feeding tadpoles to churn up food particles from the pond 
floor (Spieler and Linsenmair 1999; Hagman 2008), or as an attempt to escape the area (i.e. 
the cup) associated with elevated predation risk (Rödin-Mörch et al. 2011). Consequently, it 
remains uncertain whether the response exhibited by B. bufo tadpoles to injury cues from R. 
temporaria represents attraction to a food source or an escape strategy.

Between-species differences in the context of anti-predator behaviour between R. tem-
poraria and B. bufo have previously been reported by Laurila et al. (1997). Although they 
investigated behavioural responses to different types of cues (i.e. predator-borne cues), 
their findings align with those of our study (i.e. no activity reduction in B. bufo tadpoles 
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but observed reductions in R. temporaria tadpoles), and suggest that such differences may 
result from variations in species-specific predation risks as well as costs associated with 
anti-predator behaviour (e.g. energetic and opportunity costs; Lima and Dill 1990; Laurila 
et al. 1997; Lima and Bednekoff 1999; Ferrari et al. 2009b). Studies have shown that anti-
predator behaviour, such as decreased activity, can lead to reduced growth rates and smaller 
size at metamorphosis (Holomuzki 1986; Skelly and Werner 1990; Skelly 1992), ultimately 
impacting lifelong reproductive success (Smith 1987; Semlitsch et al. 1988; Berven 1990; 
Scott 1994). Given that R. temporaria and B. bufo tadpoles can coexist in dense populations 
(Laurila et al. 1997; Bardsley and Beebee 1998; Nyström and Åbjörnsson 2000; personal 
observation of our study system), the expression of behavioural anti-predator behaviour 
might lower their competitive abilities. Therefore, maintaining high activity levels in B. 
bufo (Chovanec 1992), may be favoured to prevent a loss of competitive ability (Laurila et 
al. 1997). Furthermore, B. bufo possesses inherent physiological defence mechanisms (i.e. 
noxious skin compounds; Flier et al. 1980) that render it unpalatable to certain predators 
(Griffiths and Denton 1992; Semlitsch and Gavasso 1992). In contrast, R. temporaria lacks 
such additional defence mechanisms and therefore might face a generally higher risk of 
consumption by predators compared to B. bufo (Álvarez and Nicieza 2009). This disparate 
predation risk could explain why B. bufo maintains its activity levels while R temporaria 
exhibits anti-predator behaviour (Laurila et al. 1997).

Study limitations

Given tadpoles in this study were all predator naïve, our results point towards innate 
response and thus do not account for potential undetected behavioural responses mediated 
by learning (i.e. past experiences with additional predator-borne cues; Suboski 1990; Mirza 
and Chivers 2000; Dalesman et al. 2006; Mirza et al. 2006; Ferrari et al. 2010). Moreover, 
although prey-borne injury cues can elicit behavioural responses in isolation (e.g. Marquis 
et al. 2004; Fraker et al. 2009; Rödin-Mörch et al. 2011; Hettyey et al. 2015), evidence 
suggests that additional presence of predator kairomones may be necessary for a complete 
manifestation of short term induced defences (Petranka and Hayes 1998; van Buskirk and 
Arioli 2002; Schoeppner and Relyea 2005, 2009; Richardson 2006; Hettyey et al. 2010, 
2015; Hemnani et al. 2022). Future research should therefore also strongly consider includ-
ing predator odours and diet cues (Mitchell et al. 2017), to be able to formulate more reliable 
conclusions about chemically induced short term anti-predator mechanisms in poison dart 
frog tadpoles (e.g. Szabo et al. 2021).

Lastly, our study is limited to conclusions about individual tadpole responses. In fish, 
predator avoidance behaviour triggered by injury cues can be influenced by group size 
(Surova et al. 2009) and disturbance cues can lead to tighter group cohesion and increased 
coordination (Bairos-Novak et al. 2019; Crane et al. 2020). Given that tadpoles also exhibit 
group formation based on familiarity or kinship (Waldman and Adler 1979; Halverson et al. 
2006; Eluvathingal et al. 2009; Pizzatto et al. 2016), tadpoles of socially oriented species 
involved in our study (i.e. E. anthonyi, R. temporaria, and B. bufo) may demonstrate differ-
ent group-level responses compared to individual responses. Future research should there-
fore incorporate more complex bioassays (e.g. testing groups of tadpoles) and deploy more 
complex quantitative measures to elucidate the full range of anti-predator responses in these 
species. Particularly exploring the degree of sociality of E. anthonyi and the extent of their 
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gregarious behaviour would provide valuable insights into their microhabitat preferences 
and potential kin associations mechanisms (e.g. attraction to conspecifics vs. repulsion from 
heterospecifics; Eluvathingal et al. 2009).

Conclusion

Our study provides preliminary insights into the chemical alarm cue response system of 
Neotropical poison dart frog tadpoles in comparison to species inhabiting temperate cli-
mates. In contrast to species such as ranids and bufonids, which exhibit social behaviour 
and inhabit large permanent pools characterised by intricate ecological communities and 
significant predator pressure, dendrobatid tadpoles, residing solitarily or in small sibling 
groups within small or ephemeral pools, solely responded to conspecific cues or displayed 
no response to chemical cues altogether. Being the first investigation of perception and 
responses to con- and heterospecific injury cues (alarm cues) in dendrobatid tadpoles, this 
research prompts new questions and ideas regarding the ecological significance and evolu-
tion of chemical communication in species facing limited resources and reduced preda-
tor pressure during development. Further investigations are needed to explore the factors 
influencing these responses, investigate alternative sensory modalities, and elucidate the 
anti-predator strategies employed by different tadpole species in their natural environments. 
Moreover, our study underscores the necessity of comparative research for a comprehensive 
understanding of chemical communication in different aquatic ecosystems and developing 
new ideas for the evolution of chemical alarm systems and the substances involved in con-
veying information’s about environmental risks.
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