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Abstract: We use the quantum null energy condition in strongly coupled two-

dimensional field theories (QNEC2) as diagnostic tool to study a variety of phase

structures, including crossover, second and first order phase transitions. We find a

universal QNEC2 constraint for first order phase transitions with kinked entangle-

ment entropy and discuss in general the relation between the QNEC2-inequality and

monotonicity of the Casini–Huerta c-function. We then focus on a specific example,

the holographic dual of which is modelled by three-dimensional Einstein gravity plus

a massive scalar field with one free parameter in the self-interaction potential. We

study translation invariant stationary states dual to domain walls and black branes.

Depending on the value of the free parameter we find crossover, second and first order

phase transitions between such states, and the c-function either flows to zero or to a

finite value in the infrared. We present evidence that evaluating QNEC2 for ground

state solutions allows to predict the existence of phase transitions at finite temperature.
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1 Introduction

While the main job description of holography is to teach us how quantum gravity

works, its favorite pastime is to enlighten us about strongly coupled quantum field

theories (QFTs). Starting with the seminal work by Ryu and Takayanagi (RT) [1]

on the holographic computation of entanglement entropy (EE), the last 1.5 decades

have led to a cross-fertilization between quantum information and holography, yielding

numerous new tools and insights, see e.g. [2–5] and refs. therein.

In the present work we focus on a particular such tool, namely the Quantum Null

Energy Condition (QNEC) [6] with the aim of using it to diagnose strongly coupled

QFTs, their phase structure, and their ultraviolet (UV) and infrared (IR) behavior. We

always assume that the QFT under consideration is two-dimensional, has a conformal

field theory (CFT2) fixed point in the UV and a holographic description in terms of a

three-dimensional gravity theory with asymptotically anti-de Sitter (AdS3) solutions.

QNEC locally constrains the expectation value of null projections of the energy-

momentum tensor 〈Tkk〉 in terms of lightlike variations (denoted by prime) of EE

S

QNEC : 2π 〈Tkk〉 ≥
1√
h
S ′′ 〈Tkk〉 := 〈Tµνkµkν〉 ∀k2 = 0 (1.1)

where h is the determinant of the induced metric at the boundary of the entangling

region (for details see [6]). Proofs of QNEC exist for free bosonic [7] and fermionic [8]

theories, for CFTs with holographic duals [9] and for interacting QFTs in spacetime

dimension d > 2 [10, 11]. Recently the notion of QNEC has been extended also to

non-relativistic theories [12].

In CFT2 QNEC takes the stronger form

QNEC2 : 2π 〈Tkk〉 ≥ S ′′ +
6

c

(
S ′
)2

(1.2)

where c is the central charge of the CFT2 and the additional positive contribution 6
c
(S ′)2

follows from the conformal transformation properties of EE [13]. The lightlike variations

denoted by prime are defined as follows. At the spacetime point where the left hand

side of the QNEC2 inequality is evaluated one of the two endpoints of the entangling

interval is anchored, while the second one can be chosen arbitrarily. The first endpoint

is deformed into the null direction kµ, parametrized by an infinitesimal parameter λ. EE
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then depends on the deformation parameter λ and prime means derivative with respect

to it. We shall be more explicit about this construction and how to evaluate QNEC2

in our review in section 2. For sake of brevity, when there is no chance of confusion,

sometimes we refer to the expression on the right hand side of the inequality (1.2) and

sometimes to the inequality itself as QNEC2.

The first part of our discussion will be general, where we review some known

properties of QNEC2 and address also some novel ones, related to kinked EE, first order

phase transitions and monotonicity of the Casini–Huerta c-function. Later on we focus

on bulk matter in AdS3 described by a massive scalar field φ, which on the field theory

side corresponds to a deformation of the CFT2 by a scalar operator Oφ. For concrete

examples we assume a family of scalar field potentials with a single free parameter,

similar to those studied in [14–19], which lead to a non-trivial phase structure. The

study of this phase structure and in particular of crossovers, second and first order

phase transitions using QNEC2 and EE is one of the main goals of our work.

The paper is structured as follows: in section 2 we summarize main aspects of

QNEC2, holographic EE and AdS3/CFT2, in particular a convexity constraint on kinked

EE and the relation between QNEC2 and monotonicity of the Casini–Huerta c-function;

in section 3 we review the holographic model, its formulation through a superpotential,

its holographic renormalization, domain wall and black brane solutions; in section 4 we

present results for the thermodynamic quantities, including free energy, entropy density

and the speed of sound for different choices of the potential leading to different kinds of

phase transitions; in section 5 we present the results for the holographic EE and the

Casini–Huerta c-function, perturbatively for small and large entangling intervals and

numerically in between; in section 6 we present results for QNEC2, in particular for

the ground state, where we see evidence for first and second order phase transitions

at finite temperature; in section 7 we conclude with a summary and an outlook to

generalizations.

2 QNEC2 and AdS3/CFT2

In this section we review salient features of QNEC2, including holographic aspects, and

present also novel features. In section 2.1 we give a lightning review of AdS3/CFT2.

In section 2.2 we display a uniformized result for (holographic) EE valid for all states

dual to vacuum solutions of the Einstein equations. In section 2.3 we summarize the

proof that QNEC2 saturates for all such states. In section 2.4 we recall relevant features

when QNEC2 does not saturate, in particular the half-saturation effect for quenches.

In section 2.5 we present a shortcut to QNEC2 for boost invariant states. In section

2.6 we show how to determine efficiently the QNEC2 combination of EE variations for
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general states. In section 2.7 we demonstrate that QNEC2 poses a convexity constraint

on kinks in EE. Finally, in section 2.8 we show a relationship between QNEC2 and the

Casini–Huerta c-function.

2.1 AdS3/CFT2

We work mostly on the gravity side and are not specific about the dual QFT, except

that it must have a UV fixed point corresponding to a CFT2 without gravitational

anomaly and with central charge c = 3`AdS

2G3
� 1, where `AdS is the AdS radius (which we

set to one) and G3 is Newton’s constant. The inequality is necessary for the validity of

the (super-)gravity approximation. The CFT is put either on a torus, a cylinder or the

plane. On the cylinder we use standard coordinates ds2 = − dt2 + dϕ2 with ϕ ∼ ϕ+ 2π,

and on the plane we use ds2 = − dt2 + dx2.

The gravity theory we consider is AdS3 Einstein gravity with scalar matter, reviewed

in detail in the next section. In the absence of matter the boundary conditions are the

seminal ones by Brown and Henneaux [20] and the solutions to this theory are given by

the Bañados metrics [21]

ds2 =
dz2 − dx+ dx−

z2
+ L+(x+)

(
dx+

)2
+ L−(x−)

(
dx−

)2 − z2L+(x+)L−(x−) dx+ dx−

(2.1)

where we used lightcone coordinates x± = t ± ϕ. The solution L± = −1
4

(L± = 0)

describes global (Poincaré patch) AdS3, while constant positive L± yield non-extremal

BTZ black holes with horizons located at r± = |
√
L+ ±

√
L−|, temperature T =

(r2
+ − r2

−)/(2πr+) and angular velocity Ω = r−/r+.

The holographic dictionary relates the Bañados geometries (2.1) to CFT2 states

|L+,L−〉 (global AdS3 corresponds to the vacuum state |0〉). Key relations for us are

the expectation values of the flux components of the CFT2 energy-momentum tensor

expressed in terms of the metric functions L±,

2π
〈
L+,L−

∣∣T±±(x±)
∣∣L+,L−

〉
=
c

6
L±(x±) . (2.2)

The fact that all Bañados geometries are locally diffeomorphic to each other leads

to corresponding uniformization results on the CFT-side. We summarize below this

uniformization for EE, which is a necessary ingredient for QNEC2.

2.2 Uniformized result for holographic entanglement entropy

There is a simple and uniform result for EE in CFT2 for all states dual to Bañados

geometries, namely

S(x±1 , x
±
2 ) =

c

6
ln
(
`+(x+

1 , x
+
2 )`−(x−1 , x

−
2 )/`2

cut

)
(2.3)
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where x±1 and x±2 are the two endpoints of the entangling interval, `cut is a UV cutoff

(that tends to zero when the cutoff is removed) and the functions `± = ψ±1 (x±1 )ψ±2 (x±2 )−
ψ±2 (x±1 )ψ±1 (x±2 ) are bilinears in solutions to Hill’s equation, ψ± ′′ −L± ψ± = 0, subject

to unit Wronskians, ψ±1 ψ
± ′
2 − ψ±2 ψ± ′1 = ±1.

On the gravity side the geometric reason for this uniformization is that all solutions

to the vacuum Einstein equations are locally AdS3 and therefore there is a diffeomorphism

that maps any such geometry locally to Poincaré patch AdS3 with coordinates x±PP and

zPP [22, 23]. The coordinate transformation involves the solutions to Hill’s equation

above, x±PP =
∫

dx±/ψ± 2 − z2ψ∓ ′/[ψ± 2ψ∓(1− z2/z2
h)] and zPP = z/[ψ+ψ−(1− z2/z2

h)],

where zh = [ψ+
a ψ
−
b /(ψ

+ ′
c ψ− ′d )]1/2 (a, b = 1, 2 and c, d = 1, 2 in some permutation) is the

locus of one of the Killing horizons; since we want to map the outside causal patch to

Poincaré patch AdS3 for us zh is always the black hole event horizon, so we have to

choose a, b, c, d accordingly.

For Poincaré patch AdS (L± = 0) Hill’s equation is solved by ψ+
2 = 1 = ψ−1 , ψ+

1 = x+

and ψ−2 = x− leading to `± = ±x±1 ∓ x±2 , thereby recovering the well-known result for

EE of a constant-time interval ` = |x+
2 − x+

1 | = |x−1 − x−2 | in a CFT2 on the plane [24]

SPP =
c

3
ln

`

`cut
. (2.4)

By slight abuse of notation we refer to logarithmic behavior in the entangling interval as

‘area law’. Following the RT prescription [1] the result (2.4) is obtained on the gravity

side from the length of a geodesic anchored at the endpoints of the entangling interval.

For non-extremal BTZ black holes or black branes (L± = const. > 0) Hill’s equation

is solved by ψ±1 = exp (
√
L±)/(4L±)1/4 and ψ±2 = ∓ exp (−

√
L±)/(4L±)1/4 leading to

`+ = sinh [
√
L+(x+

2 − x+
1 )] and `− = sinh [

√
L−(x−1 − x−2 )], thereby recovering as special

case (non-rotating BTZ, L+ = L− = π/β) the result for EE of thermal states in a CFT2

[25]

Sthermal =
c

3
ln
( β

π`cut
sinh

π`

β

)
(2.5)

where β is inverse temperature and ` = |x+
2 −x+

1 | = |x−1 −x−2 | is again the constant-time

interval defining the entangling region. In the large ` limit EE (2.5) obeys the volume

law

Sthermal(`� 1) =
cπ`

3β
+ subleading . (2.6)

2.3 QNEC2 saturation for vacuum-like states

By virtue of the uniformized result (2.3) for EE it is straightforward to prove that the

QNEC2 inequality (1.2) saturates for all CFT2 states dual to Bañados geometries (2.1)
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[26]. Namely, defining a function resembling a vertex-operator, V = exp (6S/c) = V +V −

with V ± = `±/`cut, leads to the right hand side of QNEC2, cV ± ′′/(6V ±) = S ′′ + 6
c

(S ′)2,

where prime denotes d/ dx+
1 for the upper sign and d/ dx−1 for the lower sign. On the

other hand, the explicit form of the vertex-functions V ± shows that they obey Hill’s

equation, V ± ′′ = L±V ±. Using the holographic dictionary (2.2) then establishes the

equality

2π
〈
L+,L−

∣∣T±±(x±)
∣∣L+,L−

〉
= S ′′ +

6

c

(
S ′
)2

(2.7)

which is the saturated version of the QNEC2 inequality (1.2).

A related way to understand QNEC2 saturation is to analyze the transformation

properties of EE under bulk diffeomorphisms or boundary conformal transformations

generated by some [anti-]holomorphic function ξ(x+) [ξ(x−)]. As shown by Wall EE

transforms like an anomalous scalar [13].

δξS = ξS ′ − c

12
ξ′ (2.8)

The first term is the usual Lie-derivative expression for a scalar field and the second,

anomalous, term results from dilatation relative to the cutoff. The QNEC2 combination

then transforms with the same infinitesimal Schwarzian derivative

δξ

(
S ′′ +

6

c

(
S ′
)2
)

= ξ
(
S ′′ +

6

c

(
S ′
)2
)′

+ 2ξ′
(
S ′′ +

6

c

(
S ′
)2
)
− c

12
ξ′′′ (2.9)

as the boundary stress tensor. This means that whenever QNEC2 saturates for one

particular state/geometry it also saturates for all states/geometries related by conformal

transformations/diffeomorphisms, which explains the idea of the proof above.

2.4 QNEC2 non-saturation and half-saturation in presence of bulk matter

When bulk matter is present QNEC2 does not saturate in general, and in particular it

never saturates when the RT surface intersects regions with bulk matter [27]. A sufficient

condition for QNEC2 to hold is that bulk matter obeys the null energy condition [9],

which will always be the case in the present work.

An intriguing aspect discovered (but not explained) in [26] is that there is universal

half-saturation of QNEC2 for quenches (modelled on the gravity side by Vaidya-type of

metrics) in the sense that the ratio of left- and right-hand sides of the QNEC2 inequality

(1.2) approaches 1
2

in the limit of large entangling intervals. Evidence for half-saturation

was extracted from numerical and perturbative calculations. This phenomenon was

explained more recently in a work by Mezei and Virrueta [28] who studied quantum

quenches and QNEC2 constraints imposed on them. Their beautifully simple explanation

of the ratio 1
2

is that it corresponds to 1
d

in CFTd, i.e., one over the spacetime dimension
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of the CFT.1 To be more explicit we recall their key statement. Shortly after the quench

at time t = 0 EE has the expansion2

S(t, `) = s0(`) + s2(`) t2 +O(t4) (2.10)

where ` is the entangling interval. The quantity s0 drops out in the QNEC2 evaluation

since before the quench the Vaidya metric is a special case of a Bañados geometry, so only

s2 enters there. The QNEC2 inequality (1.2) then leads to the bound s2 ≤ 2π(e+ p)/2,

where e is the energy density and p the pressure of the state under consideration (their

sum (e+ p)/2 corresponds to 〈Tkk〉). Mezei and Virrueta were able to holographically

prove a stronger bound for states dual to Vaidya metrics in CFTd, viz. s2 ≤ 2π(e+p)/(2d),

which explains the half-saturation for CFT2. (An intrinsic CFT2 proof of this statement

has not been found so far, but probably exists.)

When bulk matter is present EE and the right hand side of QNEC2 in general can

only be determined numerically, except for special states and in large- or small-interval

limits.

2.5 QNEC2 for boost invariant states

In typical QFTs there is at least one boost invariant state, namely the Poincaré invariant

vacuum. Whenever we have such a boost invariant state there is a simple way to obtain

QNEC2 by calculating EE as function of the interval length ` and taking a suitable

combination of derivatives thereof. We show now how this works.

The null deformation of the interval requires the evaluation of EE for slices where

time is not constant. However, if the state under consideration is boost invariant we can

always boost to the rest frame and determine EE on a constant time slice in that frame.

S(λ, `± λ) = S(0,
√

(`± λ)2 − λ2) =: S0(
√

(`± λ)2 − λ2) (2.11)

The expression on the left hand side denotes EE as a function of the temporal and

spatial extent of the null deformed entangling interval in the original frame, while the

right hand side is EE in the rest frame, which we denote as S0.

Expanding S0 as function of proper length in powers of λ up to second order

establishes the desired relation between QNEC2 and derivatives of EE with respect to

the interval length.

d2S0

dλ2

∣∣∣∣
λ=0

+
6

c

(
dS0

dλ

)2∣∣∣∣
λ=0

=
d2S0

d`2
− 1

`

dS0

d`
+

6

c

(
dS0

d`

)2

(2.12)

1Their results not only explain the half-saturation observed in [26] for CFT2, but also the ‘curious

ratio 0.25’ mentioned in an AdS5/CFT4 context in the first numerical study of QNEC, see the caption

of Figure 3 in [29].
2The state is assumed to be time reflection symmetric at t = 0.
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Thus, if one knows EE as function of the interval length ` for a boost invariant state

then the right hand side of (2.12) yields the right hand side of the QNEC2 inequality

(1.2) for this state.

The simplest holographic example is Poincaré patch AdS3. The result (2.4) for EE

yields
d2SPP

d`2
− 1

`

dSPP

d`
+

6

c

(
dSPP

d`

)2

= − c

3`2
− c

3`2
+

6

c

(
c

3`

)2

= 0 . (2.13)

This result provides an alternative proof of QNEC2 saturation for the state dual to

Poincaré patch AdS3, since also the boundary stress tensor vanishes for this state.

A more interesting example is a situation where the QFT flows from a CFT2 in the

UV with central charge c = cUV to a different CFT2 in the IR with central charge cIR so

that for large values of the interval ` we have EE obeying an area law

lim
`�1

S0 =
cIR
3

ln `+O(1) (2.14)

but with the IR value of the central charge. We then obtain from (2.12) the QNEC2

expression

d2S0

dλ2

∣∣∣∣
λ=0, `�1

+
6

c

(
dS0

dλ

)2∣∣∣∣
λ=0, `�1

= −2cIR
3`2

(
1− cIR

cUV

)
+ . . . (2.15)

where the ellipsis denotes terms that vanish more quickly than the terms displayed in

the limit of large intervals. This means that the well-known inequality cUV ≥ cIR can be

considered as a consequence of the QNEC2 inequality (1.2).

For small ` we expect EE to be close to the Poincaré patch AdS3 result (2.4),

S0 =
c

3
ln `+

∞∑
n=0

sn`
n (2.16)

with some coefficients sn that depend on the boost invariant state. According to (2.12)

QNEC2 contains a piece that diverges at small `.

d2S0

dλ2

∣∣∣∣
λ=0

+
6

c

(
dS0

dλ

)2∣∣∣∣
λ=0

=
3s1

`
+O(1) (2.17)

So despite of being close to AdS3 in general there is a large correction to QNEC2 at small

`. The QNEC2 inequality (1.2) with Tkk = 0 requires non-positivity of the coefficient s1.

s1 ≤ 0 (2.18)
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2.6 QNEC2 with paper and pencil

Having discussed the definition and main properties of QNEC2 we elaborate on how

to calculate the right hand side of the QNEC2 inequality (1.2) holographically. For

concreteness and because this is the only case considered in our work we focus on states

dual to geometries with two commuting Killing vectors (either stationary axi-symmetric

or stationary homogeneous geometries). The presence of two commuting Killing vectors

means that there is always an adapted set of coordinate systems where these Killing

vectors read ∂t and ∂x. We use such a coordinate system from now on. The metric

ds2 = gµν(z) dxµ dxν then depends only on the holographic (‘radial’) coordinate z.

Thanks to RT we just need to calculate the lengths of a one-parameter family of

geodesics, where the family parameter λ corresponds to the null deformation of the

entangling region required to generate the QNEC2 expression. At each step we can work

perturbatively in λ to second order, since in the end we take at most two derivatives

with respect to λ and set it to zero afterwards. Using the spatial coordinate x as affine

parameter the geodesic Lagrangian (dot means derivative with respect to x)

L(ṫ, ż, z) =

√
gtt(z)ṫ2 + gzz(z)ż2 + gxx(z) + gtz(z)ṫż + gtx(z)ṫ+ gzx(z)ż (2.19)

yields the area

A(λ, `, zcut) = 2

(`+λ)/2−ω∫
0

dxL(ṫ, ż, z) (2.20)

where ` is the length of the entangling interval, λ is the aforementioned deformation

parameter, ω is a specific function of the cutoff zcut in the radial coordinate and the

overall factor 2 comes about because we integrate the geodesic from its turning point in

the bulk to the anchor point at the cutoff surface and use the fact that the geodesic is

mirror symmetric around x = 0.

Since the Lagrangian L is x-independent we have the usual Noether-charge associated

with x-translation invariance.

Q1 = ż
∂L
∂ż

+ ṫ
∂L
∂ṫ
− L (2.21)

It is convenient to evaluate the Noether charge Q1 at the turning point z = z∗. The

Lagrangian L is also t-independent, which yields a second Noether charge.

Q2 =
∂L
∂ṫ

(2.22)

The two Noether charges allow to express the velocity of the time coordinate and the

velocity of the radial coordinate as functions of radial coordinate and turning point.
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However, it is more convenient to relabel their dependence on the Noether charges as

dependence on the turning point z∗ and a specific combination Λ of the two Noether

charges that vanishes when the deformation parameter goes to zero, λ→ 0.

ṫ = Λh(z, z∗, Λ) ż = f(z, z∗, Λ) (2.23)

For the special case of diagonal metrics Λ is given by the ratio of the Noether charges,

Λ = Q2/Q1.

The temporal part of the deformed entangling interval is obtained by integrating dt.

λ

2
=

λ/2∫
0

dt =

0∫
z∗

dz
ṫ

ż
= Λ

0∫
z∗

dz
h(z, z∗, Λ)

f(z, z∗, Λ)
(2.24)

The spatial part of the deformed entangling interval is obtained by integrating dx.

`+ λ

2
=

(L+λ)/2∫
0

dx =

0∫
z∗

dz

ż
=

0∫
z∗

dz

f(z, z∗, Λ)
(2.25)

Finally, the area integral (2.20) can be recast as

A = 2

zcut∫
z∗

dz
L(Λh(z, z∗, Λ), f(z, z∗, Λ), z)

f(z, z∗, Λ)
(2.26)

where zcut denotes the cutoff on the radial coordinate; for concreteness we assume that

the limit zcut → 0+ corresponds to removing the cutoff. Evaluating the temporal interval

integral (2.24) yields Λ as function of λ and z∗. Since we can drop terms of order O(λ3)

and to leading order Λ is already linear in λ, we can expand the functions h and f

before integrating, which usually simplifies these integrals considerably. The evaluation

of the spatial interval integral (2.25) allows to express the turning point z∗ in terms

of the interval length ` and the deformation parameter λ. Again one can expand in Λ

and keep only the first few terms, dropping everything of order O(λ3). These results

allow to express the area integral (2.26) entirely in terms of ` and λ, so performing this

integral then yields deformed EE as function of the interval length ` and the deformation

parameter λ.

For most practical purposes these three integrals cannot be performed by hand since

the functions h and f can be quite complicated, even when the metric functions are

known in closed form. However, in the limit of small ` or large ` drastic simplifications

– 10 –



occur that can allow to perform the first two integrals. The third integral diverges when

the cutoff is removed, so it is practical to use instead a renormalized area

Aren(λ, `) = 2

0∫
z∗

dz

(
L(Λh(z, z∗, Λ), f(z, z∗, Λ), z)

f(z, z∗, Λ)
− dAct(z)

dz

)
− 2Act(z∗)

= A0(`) + λA1(`) +
λ2

2
A2(`) +O(λ3) (2.27)

where Act(z) is a counter-term added in such a way that the additional term in the

renormalized area is independent from the interval length ` and the deformation param-

eter λ, i.e., it only depends on the cutoff zcut. The integral in (2.27) is now finite and

has 0 as one of its boundaries, which considerably simplifies its evaluation. Inserting

the solutions for Λ and z∗ in terms of ` and λ yields the functions Ai(`) in the second

line in (2.27).

The RT-formula

S(λ, `) =
A(λ, `)

4G3

=
Aren(λ, `)

4G3

+ λ-independent terms (2.28)

establishes the final expression appearing on the right hand side of QNEC2

d2S

dλ2

∣∣∣∣
λ=0

+
6

c

(
dS

dλ

)2∣∣∣∣
λ=0

=
c

6

(
A2(`) +A1(`)2

)
(2.29)

where we replaced Newton’s constant by the central charge, 1
4G3

= c
6
. In later sections

we shall provide some examples where A2(`) and A1(`) are calculated in the limits of

small and/or large entangling interval `.

For boost invariant states, like domain wall solutions, we can instead determine EE

as function of the interval length ` and apply (2.12). In the algorithm above this means

that λ and Λ can be set to zero and the time integral (2.24) need not be calculated,

which makes the calculation a bit shorter.

2.7 QNEC2 constraint on kinked entanglement

Sometimes holographic EE leads to two or more branches of geodesics [30, 31], so there

can be a critical interval value where one jumps from one of these branches to another.

If this happens then EE as a function of the interval ` has a kink, and there is a first

order phase transition (the converse is not necessarily true: there can be first order

phase transitions without kinks in EE). We show now that QNEC2 imposes a constraint

on the behavior of EE near such a kink.
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Let us assume EE as function of the entangling region has the following form

S(λ, `+ λ) = fL(λ, `+ λ) θ
(
fL(λ, `+ λ)

)
+ fR(λ, `+ λ) θ

(
fR(λ, `+ λ)

)
(2.30)

where fL and fR are sufficiently smooth functions of the spatial length of the entangling

interval ` and the null deformation parameter λ used in QNEC2. The subscripts L,R

refer to ‘left’ and ‘right’ of the kink at ` + λ = `0. Taylor expanding these functions

without loss of generality yields (αL 6= αR)

fL = αL(λ)(`0 − `− λ) +O(λ2) +O(`+ λ− L0)2 (2.31a)

fR = αR(λ)(`+ λ− `0) +O(λ2) +O(`+ λ− L0)2 . (2.31b)

The expression ` + λ is the proper length of the entangling interval, up to irrelevant

higher order terms, since
√

(`+ λ)2 − λ2 = `+ λ+O(λ2).

With the assumptions above EE (2.30) is smooth except at ` + λ = `0. In the

following we investigate the QNEC2 combination of first and second derivatives of EE

with respect to the null deformation parameter λ.

Consider the first derivative of EE. If the derivative acts on the step function we

obtain an expression of the form x δ(x) which vanishes.

∂S

∂λ
=
∂fL
∂λ

θ(fL) +
∂fR
∂λ

θ(fR) (2.32)

This means that the first derivative of EE is piecewise continuous.

Consider now the second derivative of EE evaluated at vanishing λ.

∂2S

∂λ2

∣∣∣∣
λ=0

=

(
∂fL
∂λ

)2

δ(fL) +

(
∂fR
∂λ

)2

δ(fR) + piecewise continuous (2.33)

Since we are interested in the behavior near the kink we use now the Taylor

expansions (2.31) as well as the identity δ(α(x− x0)) = δ(x− x0)/|α| and obtain the

QNEC2 combination

∂2S

∂λ2

∣∣∣∣
λ=0

+
6

c

(
∂S

∂λ

)2∣∣∣∣
λ=0

= (α0
R − α0

L) δ(`− `0) + piecewise continuous (2.34)

where α0
L,R = |αL,R(λ = 0)|. At the kink ` = `0 the QNEC2 combination has an infinite

peak due to the δ-function. The sign of this peak must be negative since otherwise the

QNEC2 inequality (1.2) would be violated. Therefore, consistency with QNEC2 imposes

the convexity condition

α0
L > α0

R . (2.35)

For ground states the inequality (2.35) is a consequence of RG-flow monotonicity. In

the next subsection we make the relation between QNEC2 and RG-flows more precise.
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2.8 Relation between QNEC2 and Casini–Huerta c-function

If one views EE as function of the interval length ` mechanically as a trajectory then

QNEC2 is the natural acceleration associated with this trajectory. It is then suggestive to

ponder whether the velocity associated with this trajectory also has a physical meaning.

At least for boost invariant states, which we shall refer to as ground states, the answer

is affirmative — the velocity is the Casini–Huerta c-function [30, 32, 33]. We show now

how this relationship works, denoting EE in a general frame by S and in the rest frame

by S0.

The Casini–Huerta c-function for a deformed CFT2

c(`) = 3`
dS0(`)

d`
(2.36)

is proportional to the first derivative with respect to the null deformation parameter (to

reduce sign clutter we assume here an outgoing null deformation)

dS(λ, `+ λ)

dλ

∣∣∣∣
λ=0

=
dS0(

√
(`+ λ)2 − λ2)

dλ

∣∣∣∣
λ=0

=
dS0(`)

d`
=

1

3`
c(`) . (2.37)

So up to an overall factor of 1/(3`) the Casini–Huerta c-function (2.36) is indeed the

‘velocity’ of EE in essentially the same sense that QNEC2 is its ‘acceleration’. It obeys

the monotonicity relation
dc(`)

d`
≤ 0 . (2.38)

Integrating this monotonicity inequality for EE using the definition (2.36) yields a bound

on ground state EE

S0(`) ≤ ĉ

3
ln

`

`cut
ĉ, `cut ∈ R+ (2.39)

which means in particular that at large ` ground state entanglement cannot grow faster

than the area law (2.4).

Consistently, the first derivative of the Casini–Huerta c-function (up to a factor 3`)

1

3`

dc(`)

d`
=

d2S0(`)

d`2
− 1

`

dS0(`)

d`
+

6

c(`)

(
dS0(`)

d`

)2

(2.40)

yields essentially the QNEC2 combination, as evident from our result (2.12) for boost

invariant states.

Thus, for boost invariant states the right hand side of the QNEC2 inequality can be

re-interpreted as the rate by which the Casini–Huerta c-function changes in the UV.

The monotonicity property of this c-function (2.38) is then equivalent to the QNEC2

– 13 –



inequality (1.2) with 〈Tkk〉 = 0 for Poincaré invariant states, except that c is replaced by

c(`). (By the constant c we always mean the UV-value lim`→0 c(`) of the Casini–Huerta

c-function, which in our context is the Brown–Henneaux central charge.) Monotonicity

of the Casini–Huerta c-function (2.38) is stronger than QNEC2 since c ≥ c(`).

For general states that are not boost invariant the function (2.36) need not be

monotonically decreasing. For instance, thermal states dual to BTZ black branes

have EE (2.5) leading to a monotonically increasing function (2.36), c(`) = cπ`
β

coth π`
β

.

Nevertheless, the QNEC2 inequality (1.2) holds in full generality even for states that

are not boost invariant.

3 Holographic model

In our work we consider deformed holographic CFTs that are dual to three-dimensional

Einstein gravity with a minimally coupled massive self-interacting scalar field. In this

section we summarize the gravity side of the holographic model that we study in the

rest of this work.

In section 3.1 we present the Einstein–Klein–Gordon action, including its boundary

terms and the explicit form of the scalar potential in terms of a superpotential. In

section 3.2 we derive solutions corresponding to the ground state of the dual field theory.

In section 3.3 we discuss solutions corresponding to thermal states in the dual field

theory.

3.1 Action

The action of the gravity system

Γ =
1

16πG3

∫
M

d3x
√
−g
(
R− 1

2
(∂φ)2 − V (φ)

)
+

1

8πG3

∫
∂M

d2x
√
−γ K + Ict (3.1)

entails the Ricci scalar R of the bulk geometry on a manifold M with boundary ∂M
and bulk metric gµν , the trace of the extrinsic curvature K of the boundary geometry

with induced metric γij and the counter-term Ict that renders the variational principle

well-defined (and also the on-shell action finite).

For asymptotically AdS3 spacetimes the potential needs to have the small φ expan-

sion

V (φ) = −2 +
1

2
m2φ2 + v4φ

4 + . . . (3.2)

where we assumed the Z2 symmetry V (φ) = V (−φ) for simplicity. By the usual

AdS/CFT dictionary the conformal weight ∆ of the dual operator is related to the mass
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of the scalar field as m2 = ∆(∆ − 2). We restrict to potentials that globally can be

written in terms of a superpotential W .

V (φ) = −1

2
W (φ)2 +

1

2
W ′(φ)2 (3.3)

Technical advantages of this choice are that one can find the ground state (domain

wall) solution more easily, the counter-terms Ict are known explicitly in terms of the

superpotential (see appendix B) and neither in Fefferman–Graham- nor in Gubser-gauge

[defined in (3.13)] the near boundary solution has logarithmic terms. The latter is

related to the absence of the trace anomaly (again, see appendix B). This makes the

numerical analysis of geodesics and QNEC2 on such backgrounds more stable.

It turns out that simple superpotentials characterised by a single parameter

W (φ) = −2− 1

4
φ2 − α

8
φ4 (3.4)

reveal already rich physical features. The associated potential (3.3) reads

V (φ) = −2− 3

8
φ2 − 1

32
φ4 − α (1− 4α)

32
φ6 − α2

128
φ8 . (3.5)

See Figure 1 for three examples. The conformal weight of the dual operator is then

given by ∆ = 1
2

or ∆ = 3
2
, since m2 = −3

4
, and the value of the quartic self-interaction

constant is fixed to v4 = − 1
32

. In the present work we always make the choice ∆ = 3
2

and

consider exclusively the potential (3.5) for our examples. We comment on generalizations

to arbitrary m2 (respecting the Breitenlohner–Freedman bound [34, 35]) and potentials

of other form than (3.4) in sections 6.2 and 7.

Extrema of the potential are obtained when either the superpotential has an

extremum, W ′(φ) = 0, leading to the real solution φ = φ0 = 0 (for negative α there

is an additional extremum with real scalar field φ = φn = 1/
√
−α), or when the

superpotential obeys W ′′(φ±) = W (φ±), leading to the (potentially) real solutions

φ2
± = 6− 1

α
±
√

1− 24α + 36α2

α
. (3.6)

The extremum corresponding to φ0 is always a maximum. The extrema corresponding

to φ+ are maxima and exist only for α > 1
6

(2 +
√

3). The extrema corresponding to φ−
are maxima for α < 0 and minima for 1

6
(2 +

√
3) < α < 1. The extrema corresponding

to φn are always minima. In the range 0 < α < 1
6

(2 +
√

3) the only extremum is at

φ0. We are going to exploit this information when investigating holographic RG flows

between UV and IR conformal fixed points.
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Figure 1. Potential (3.5) for three different holographic RG flows.

3.2 Ground states

Poincaré2-invariant domain wall solutions to the Einstein–Klein–Gordon equations

Rµν −
1

2
gµνR =

1

2
∂µφ ∂νφ−

1

4
(∂φ)2gµν −

1

2
V gµν (3.7a)

∇2φ =
∂V

∂φ
(3.7b)

corresponding to the ground state of the dual deformed CFT can be found easily. The

domain wall parametrization of the metric

ds2 = dρ2 + e2A(ρ)
(
− dt2 + dx2

)
(3.8)

reduces the equations of motion (3.7) in terms of the superpotential to first-order

equations.

dA(ρ)

dρ
= −1

2
W (φ(ρ))

dφ(ρ)

dρ
=

dW (φ(ρ))

dφ(ρ)
(3.9)

The asymptotic region in this parametrization is at ρ→∞. Integrating the equations

of motion (3.9) with the superpotential (3.4) yields

φ(ρ) =
je−ρ/2√

1− αj2e−ρ
(3.10a)

A(ρ) =
(

1− 1

16α

)
ρ− j2

16 (eρ − αj2)
+

log (eρ − αj2)

16α
(3.10b)
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where the integration constant j can be identified with the source of the dual operator.

For real field configurations the inequality αj2 < 1 holds.

Using the near boundary expansion of this solution one can show that the expectation

value of the boundary stress tensor and the operator dual to the scalar field (B.4)-(B.6)

vanish.

〈Tij〉 = 0 = 〈Oφ〉 (3.11)

This shows that this solution has vanishing free energy, F = −〈Txx〉, and thus corresponds

to the ground state of the dual field theory. We shall see that even this elementary

background exhibits remarkable features in EE and QNEC2 studies.

3.3 Thermal states

We are also interested in more general (thermal) states and their entanglement and

QNEC2 properties. To describe their gravity duals we make the ansatz

ds2 = e2A
(
−H dt2 + dx2

)
+ e2B dr2

H
(3.12)

where A,B and H are functions of the radial coordinate r only. The ansatz (3.12)

encodes solutions that are invariant under spacetime translations. If H has a simple

zero at some r = rh, then the geometry is a black brane with regular event- and Killing

horizon at r = rh, which gives rise to finite temperature and entropy density of the dual

field theory state.

The ansatz (3.12) has a residual gauge freedom, namely reparametrizations of the

radial coordinate. We fix this freedom by using Gubser gauge [14], where the radial

coordinate is identified with the corresponding value of the scalar field.

r := φ(r) (3.13)

The equations of motion (3.7),

H (B′ − 2A′)−H ′ + e2BV ′ = 0 (3.14)

2 (A′B′ − A′′)− 1 = 0 (3.15)

H ′′ + (2A′ −B′)H ′ = 0 (3.16)

2A′H ′ +H
(
4A′2 − 1

)
+ 2e2BV = 0 (3.17)

can be rephrased as a single master equation

2G (GV ′ + V )G′′ = (6GV ′ + 2V )G′2 +
(
4G3V ′ + 2G2V ′′ + 4G2V + 3GV ′ + V

)
G′

(3.18)
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for the master field G(φ) := A′(φ), where prime denotes derivatives with respect to φ.

For a given potential V a solution of (3.18) allows to express A,B and H in terms

of integrals of simple functions of G and G′ only. The solution for A can be obtained by

integrating the definition of G

A(φ) = A(φh) +

φ∫
φh

dφ′G(φ′) . (3.19)

The solution for B follows from integrating (3.15)

B(φ) = B(φh) + log
G(φ)

G(φh)
+

φ∫
φh

dφ′

2G(φ′)
. (3.20)

Knowing B allows to express H algebraically by combining (3.14), (3.15) and (3.17)

H(φ) = −e
2B(V +GV ′)

G′
. (3.21)

For certain simple choices of V it is possible to solve the second order ordinary

differential equation (3.18) in closed form [14], but in general the master equation

(3.18) needs to be solved numerically. In that case it is useful to extract the divergent

asymptotic behavior of the master field G inherited from the asymptotic behavior of A

A(φ) =
log(φ)

∆− 2
+ . . . =⇒ G(φ) =

1

(∆− 2)φ
+ G̃(φ) (3.22)

where G̃(φ) remains finite at the boundary φ → 0. As discussed in [14] such a near

boundary behavior of the fields corresponds to a relevant deformation of the CFT2,

namely

L = LCFT2 + j2−∆Oφ . (3.23)

To find the equation of state, we set the source j of the dual operator to one in units of

AdS radius, j = 1. This leaves the horizon value of the scalar field φh (which is equal to

the horizon radius in Gubser gauge) as the only free parameter.

4 Thermodynamics

In this section we analyze the thermodynamics of the system for different choices of the

scalar field (super-) potential resulting in different types of phase transitions. We do this
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for a deformation by an operator with fixed conformal weight ∆ = 3
2
, and modify the

quartic term of the superpotential (3.4) by choosing different values for α. The entropy

density and the temperature of the system can be expressed in terms of horizon data

s =
1

4G3

eA(φh) T =
1

4π
eA(φh)+B(φh) |V ′(φh)| . (4.1)

Figure 2 displays free energy density f , entropy density over temperature s/T and

the speed of sound squared c2
s for three different potentials (we set Newton’s constant

G3 = 1 from now on in all numerical results). By ‘density’ we mean that we divide by

the trivial but infinite volume along the black brane. The free energy of the boundary

theory is determined holographically from the on-shell action Γ and given by the purely

spatial component of the boundary stress-tensor, which in turn is the pressure

f = −〈Txx〉 = −p (4.2)

while the speed of sound squared of the boundary theory can be computed from horizon-

or boundary-data as

c2
s =

d lnT

d ln s
=

dp

de
(4.3)

where

e = 〈Ttt〉 (4.4)

is the energy density of the boundary theory.

At large temperatures the entropy density becomes proportional to the temperature.

This indicates that in this limit the corresponding states in all cases are close to the

CFT2. For α < 0.1605 the system undergoes a smooth crossover as the temperature

increases.3 For α = 0 the speed of sound has a global minimum at T ≈ 0.01 and

we call this the critical temperature of the crossover. For this choice, the free energy,

the entropy density and the speed of sound are smooth functions of temperature. For

α ≈ 0.16 we find a second order phase transition. The speed of sound vanishes at the

critical temperature Tc ≈ 0.024 and the entropy density shows critical behavior close to

Tc

s(T ) = s0 + s1

(
T − Tc
Tc

)1−γ

(4.5)

where we estimate γ ≈ 0.66 for the critical exponent (see Figure 3) and s1 ≈ 0.02.

For α > 0.16 the system has a first order phase transition. On the gravity side it

follows from the existence of three different black brane solutions around the critical

3Hereafter we refer to this specific value as α ≈ 0.16 for brevity.
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Figure 2. Free energy density (left), entropy density over temperature (center), speed of sound

squared (right). Blue: crossover (α = 0). Orange: second order phase transition (α = 0.16).

Magenta: first order phase transition (α = 0.32). Vertical gray: locus of phase transition.

Dashed: thermodynamically unstable solutions with imaginary speed of sound.
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Figure 3. Entropy density close to second order phase transition. Orange dots: numerical

results. Green line: fit (4.5) with γ = 0.66 and s1 = 0.02.

point. They have the same Hawking temperature but different free energies. In this

family we choose α = 0.32 as example, which leads to a first order phase transition at

Tc ≈ 0.04 between a large and small black brane geometry. The imaginary speed of sound

in the middle branch (dashed line in Figure 2) corresponds to unstable quasinormal

modes in the sound channel which is known as spinodal instability [36]. The dynamics of

the first order phase transition was studied in detail in 4D [19] and 5D [18] and a static

black brane geometry with inhomogenous horizon and Hawking temperature T = Tc
[19, 37] identified as the thermodynamically stable classical solution. This solution is a

mixed state dual to an inhomogeneous arrangement of large and small black branes of

equal temperature Tc.

We checked that different choices for ∆ lead to qualitatively equivalent thermo-

dynamic properties. In particular, the critical exponent γ turns out to be remarkably

universal. By computing γ for various values of the conformal scaling dimension, for
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different forms of the potential and for different numbers of spacetime dimensions we

always find values consistent with γ = 2/3 discovered in [14] for d = 4. In Table 1 we

summarize the different cases we have checked. In each row we show the boundary

dimension d in the first column and the (super)potential in the second column. For

each row we sampled (equi-distantly) nine different values of conformal weights of the

dual scalar operator in the interval given in the third column. The last column shows

the mean and standard deviation of the critical exponent γ defined in (4.5) averaged

over the sample of nine different conformal weights.

d (super)potential ∆ γ

2 W (φ) = −2 + ∆−2
2
φ2 + α̃ φ4 [1, 2] 0.6681 ± 0.0041

2 V (φ) = −2 cosh( φ√
3
) + 3∆2−6∆+2

6
φ2 + α̃ φ4 [1, 2] 0.6658 ± 0.0062

3 W (φ) = −4 + ∆−3
2
φ2 + α̃ φ4 [3

2
, 3] 0.6670 ± 0.0045

3 V (φ) = −6 cosh( φ√
3
) + ∆2−3∆+2

2
φ2 + α̃ φ4 [3

2
, 3] 0.6635 ± 0.0055

4 W (φ) = −6 + ∆−4
2
φ2 + α̃ φ4 [2, 4] 0.6667 ± 0.0078

4 V (φ) = −12 cosh( φ√
2
) + ∆2−4∆+6

2
φ2 + α̃φ4 [2, 4] 0.6691 ± 0.0080

Table 1. Means and standard deviations of critical exponents averaged over conformal weights

From Table 1 we see that our hypothesis that the critical exponent γ is independent

from the dimension, the choice of potential and the conformal weight is supported by the

data. Using the whole data set of 54 data points yields the critical exponent averaged

over dimensions, potentials and conformal weights.

γ̄ = 0.6667± 0.0062 (4.6)

The averaged critical exponent (4.6) is in excellent agreement with our hypothesis that

the true critical exponent always is given by γ = 2/3.

5 Entanglement entropy

In this section we calculate EE for our theory holographically using the RT formula. In

some cases this means we need to numerically determine geodesics.

In section 5.1 we summarize briefly the main formulas for the special class of

geometries discussed in sections 3.2 and 3.3. In section 5.2 we focus on ground state

entanglement, which already exhibits non-trivial features such as the appearance of

different branches that we discuss in detail. In section 5.3 we calculate EE holographically

for thermal states, finding a rich phase structure.
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5.1 Entanglement entropy from geodesics

We adopt the algorithm described in section 2.6 for QNEC2 to calculate EE holo-

graphically, basically by setting the deformation parameter λ in that section to zero,

specializing to static metrics

ds2 = gtt(z) dt2 + gzz(z) dz2 + gxx(z) dx2 . (5.1)

EE for an interval with a separation ` along the spatial direction x holographically is

given by the geodesic length [times a factor 1/(4G3)] [1]

SEE(`) =
1

2G3

zcut∫
z∗

dz

√
gzz(z)√

1− gxx(z∗)
gxx(z)

(5.2)

where we assumed that the asymptotic AdS boundary is at z = 0, the cutoff surface that

regulates UV divergences is at z = zcut, and the geodesic hanging from the boundary

into the bulk has a turning point at z = z∗. The quantity A0(`)/(4G3) in (2.27) is a

renormalized version of EE (5.2) where the cutoff term is subtracted. Using renormalized

EE has the technical advantage that the integral extends from 0 to z∗ and thus is a bit

simpler to perform and also more stable to evaluate numerically, if required. Whenever

we evaluate EE (5.2) numerically we set Newton’s constant to unity, G3 = 1.

The Noether charge (2.21) establishes ż =
√
gxx(z)/gzz(z)

√
gxx(z)/gxx(z∗)− 1,

which allows to evaluate the spatial interval integral (2.25). The ensuing relation

between the turning point z∗ and the spatial separation `

` = 2

z∗∫
0

dz

gxx(z)

√
gzz(z)gxx(z∗)√

1− gxx(z∗)
gxx(z)

(5.3)

may not be one to one and thus can lead to several branches, as we shall see explicitly

in some of the examples below.

We are going to evaluate the integrals above numerically for arbitrary interval

lengths ` and perturbatively in the limits of small and large ` (the former works since we

need to know only the asymptotic expansion of the metric, while the latter works only

without numerics if we have closed form expressions for the metric). For the numerical

evaluation one can use simple methods, such as Mathematica’s NIntegrate.

The perturbative treatment at small ` schematically works as follows. The turning

point has to be close to the AdS boundary, so we parametrize it using a parameter δ

that tends to zero when the AdS boundary is approached (e.g. in the coordinates used

above we could use z∗ = δ) and make expansions in δ for all quantities. This simplifies
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the integrals so that often they can be performed in closed form. The integral (5.3)

then establishes a series in δ for the turning point z∗ as function of the interval length `.

Plugging this series into the renormalized version (2.27) of the area integral (5.2) by

virtue of the RT formula then leads to a generalized power series for EE

S(`� 1) =
c

3
ln `+

∞∑
n=0

sn`
n + Scut (5.4)

where the universal leading order term comes from the asymptotic AdS behavior and Scut

is an `-independent term depending on the UV cutoff that drops out in renormalized EE.

The Taylor–Maclaurin coefficients sn are determined from relatively simple integrals,

as described above. We are going to display the first few coefficients for the examples

studied in subsection 5.2 below.

At large ` the situation is similar, but technical details regarding the evaluation of

integrals are quite different, essentially because one can get arbitrarily close to branch

cuts in integrands. There are basically three different scenarios at large `.

In the first one the radial coordinate, and thus the turning point, is unbounded,

by which we mean that there is neither a center nor a horizon that would provide an

IR cutoff on the radial coordinate. If this happens the situation is similar to the small

` expansion, except that the integrals now extend into the deep IR. As a technical

consequence the final expression for EE is not a generalized power series (5.4) but can

have a more complicated functional behavior on the (large) interval `. For example, as

we shall see in the next subsection the leading order term can start with a double log,

S(`� 1) ∝ ln ln `+O(1).

In the second scenario there is an IR cutoff at z = zcen due to a center (which may

be a regular center or feature a curvature singularity). The turning point is then close

to this IR cutoff, so we introduce a small parameter δ, e.g. z∗ = zcen (1− δ). While the

integrals now remain bounded in the IR, the relation between the expansion parameter

δ and the (large) interval length ` again leads to an expression for EE that is not a

generalized power series of the form (5.4). In the example studied in the next subsection

the leading behavior is going to be S(`� 1) ∝ S0 + 1/ ln `+O(ln ln `/ ln2 `) with some

constant S0. The physical reason behind these drastic changes of EE is the IR behavior

of the Casini–Huerta c-function.

Finally, in the third scenario there is an IR cutoff at z = zh due to a black brane

horizon with inverse temperature β. Again the turning point is close to this IR cutoff,

so we use e.g. z∗ = zh (1− δ). In this scenario the small parameter δ turns out to be

suppressed exponentially in the (large) interval length, δ ∼ exp (−2π`/β). If one is

interested only in the leading order term in EE then no complicated integrals need to

be evaluated and the final result is the volume law (2.6) plus exponentially suppressed
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corrections. If EE is calculated for QNEC2 purposes the story is conceptually the same,

but technically slightly more complicated since the structure of the integrals is more

delicate. We discuss this rather explicitly in appendix C for the domain wall and black

brane examples studied in section 6 below.

5.2 Ground states

We calculate now EE for ground states dual to the domain wall solutions (3.10). These

states are Poincaré invariant and have vanishing temperature, so a useful cross-check

on the correctness of the results is positivity and monotonicity of the Casini–Huerta

c-function, see section 2.8. There are three qualitatively different possibilities for the

parameter α in the potential (3.5): Case 0, where α = 0, Case I, where 0 < α < 1 and

Case II, where α < 0.

Geometrically, the difference between these three cases is as follows. Case 0 develops

a curvature singularity at large negative values of the radial coordinate ρ in the domain

wall metric (3.8). Case I has a curvature singularity at the finite value ρ = lnα. Case

II has a second locally asymptotically AdS3 region at large negative values of ρ, with

AdS-radius `IRAdS given by
`IRAdS

`UV
AdS

=
1

1− 1/(16α)
(5.5)

which is smaller than its UV pendant. From these geometric considerations we expect

the Casini–Huerta c-function to flow to the trivial value cIR → 0 for Cases 0 and I, while

for Case II it should flow to the non-trivial value cIR = cUV/(1− 1/(16α)) where cUV = c

is the Brown–Henneaux central charge. Below we show, among other things, that these

expectations turn out to be correct.

We consider first Case 0. The metric function (3.10b) simplifies to A = ρ−exp(−ρ)/8.

The integrals in section 2.6 4

`eA∗ = 2

∞∫
ρ∗

dρ
( 1√

1− y
−
√

1− y
)

A∗ := A(ρ∗) (5.6)

Aren(`) = `eA∗ − 2ρ∗ + 2

∞∫
ρ∗

dρ
(√

1− y − 1
)

y := exp
(
2A∗ − 2A(ρ)

)
(5.7)

4In order to compare with sections 2.6 and 5.1 we need to redefine the radial coordinate as

z = exp (−ρ). The respective turning points z∗ = exp (−ρ∗) and UV cutoffs zcut = exp (−ρcut) are

related correspondingly.
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can be evaluated perturbatively for small ` (using ρ∗ = − ln δ with δ � 1, see appendix

C)

S0(`� 1) =
c

3
ln `− cπ

192
`+

c(64− 3π2)

73728
`2 − cπ(π2 − 5)

1179648
`3 +O(`4) + Scut (5.8)

and for large ` (using ρ∗ = ln δ with δ � 1)

S0(`� 1) =
c

3
ln ln `+ c ln 2− c ln 2

ln `
+O(1/ ln2 `) + Scut . (5.9)

The Casini–Huerta c-function (2.36) in these limits

c(`� 1) = c
(

1− π

64
`+

64− 3π2

12288
`2 +O(`3)

)
(5.10a)

c(`� 1) =
c

ln `
+

3c ln 2

ln2 `
+O(1/ ln3 `) (5.10b)

is indeed a strictly monotonically decreasing positive function of `. The large ` behavior

in (5.10) shows that the central charge flows to zero in the IR in such a way that for

an RG scale given by the (large) interval ` we have cUV = cIR ln `+ . . . . For Case I the

small ` computation is very similar to Case 0 and yields

SI(`� 1) = S0(`� 1)− cα `2

192
+
( 11α

98304
− α2

1536

)
πc `3 +O(`4) (5.11)

which has a smooth limit to (5.8) for vanishing α. At large ` there is a qualitative

change: there is a minimal value of the radial coordinate ρmin = lnα, as opposed to

Case 0 where ρ could take arbitrarily negative values. This implies a different large `

behavior of EE

SI(`� 1) = − c
3

lnα− c

48α ln `
+
c (32α− 1)

768α2

ln ln `

ln2 `
+O(1/ ln2 `) + Scut (5.12)

that has no smooth limit to (5.9) for vanishing α. The fact that EE does not grow

at large ` can be understood geometrically from the presence of a center at ρ = ρmin:

since most of the geodesic is close to this center at large values of ` and the center is

geometrically a point, there is practically no contribution to the length of the geodesic,

which means that changing ` from a large to an even larger value almost does not affect

the geodesic length. It would be interesting to find a field theoretic explanation of this

plateau behavior of EE at large `.

Also for Case I the Casini–Huerta c-function (2.36) is a positive strictly monotonically

decreasing function of ` in both limits. The relation between UV and IR values now

reads cUV = cIR 16α ln2 `+ . . . .
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Case II, α < 0, is the only situation where we flow to another CFT fixed point

in the IR. It is possible to evaluate all geodesic integrals exactly in the limit of large

negative α, yielding a result for EE

SII(`� 1) =
cIR
3

ln `+ . . . (5.13)

that obeys the area law (2.4), but with a central charge that is smaller than the UV

result

cIR =
cUV

1− 1/(16α)
. (5.14)

The ellipsis in (5.13) denotes terms that are `-independent or vanish at large `, as well

as terms that vanish like α−3. Despite the assumption of large absolute values of α,

the IR value of the central charge (5.14) is correct at arbitrary negative values of α.

Consistently, the ratio of IR and UV central charges coincides with the ratio of IR

and UV AdS radii (5.5). The right plot in Figure 4 shows an example of this case

where α = −1. The red solid line is the numerical results and the green dashed line

is the IR expression given in (5.14). By contrast, the left plot in Figure 4 displays the

Casini–Huerta c-function for the Case I example α = 0.32.
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Figure 4. Left plot: Casini–Huerta c-function for α = 0.32. Blue and red solid lines: short

and long RT surfaces on left and right hand sides of kink at `∗. Orange and green dashed lines:

perturbative results for small (5.11) and large (5.12). Right plot: Casini–Huerta c-function

for α = −1. Blue solid: numerical result. Orange dashed line: UV result, cUV = 3/2. Green

dashed line: IR result (5.14), cIR = 24/17 ≈ 1.41.

In order to get EE beyond the small or large interval expansions we resort to

numerics and study three different values α = 0.32, 0.16, 0 of the free parameter in the
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potential (3.5), i.e. two examples of Case I and Case 0. Since Case II does not lead to

interesting phase transitions we do not continue studying it numerically. The central

value of the radial coordinate can be seen in the left panel of Figure 5 where we plot

e2A(z) for the three cases together with the corresponding metric function 1/z2 of pure

AdS3. For small values of the radial coordinate z all geometries converge to AdS3. For

α > 0 the geometry degenerates to a central point at z = zcen = 1
α

where e2A(zcen) = 0.
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Figure 5. Left: Scale factor in domain wall geometry (3.8) for different potentials. Right:

Renormalized EE for four cases in left plot.

In the right panel of Figure 5 we show renormalized EE as function of `. As expected

from the discussion in section 2.8 we find that EE is a monotonic function of `.

Asymptotic AdS3 boundary conditions in the UV (= small z) yield the area law

(2.4) at small `. Geometrically this follows from the fact that RT surfaces with small `

reside predominantly in the asymptotically AdS3 part of the geometry. This can be seen

in the right plot of Figure 5, where at small ` all curves collapse to the universal scaling

of the vacuum state dual to empty AdS3 (blue curve), compatible with the perturbative

results (5.8) and (5.11).

The IR (= large z) properties of the geometry determine the large ` behavior of

EE. For cases where the geometry ends at a finite value of z EE develops a plateau

in the sense that increase of entanglement with ` is suppressed, as evident from the

perturbative result (5.12).

The UV and IR regimes are well-described by the perturbative small and large

` results above. We studied numerically the region at intermediate ` and found that

its details depend crucially on the value of the parameter α. Namely, while EE is a

monotonic and continuous function of ` in all cases, there can be kinks, meaning that
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left and right derivatives can be different at some values of `. The geometric reason for

such kinks is the existence of several saddle points in the area functional, which give rise

to several extremal surfaces with the same ` but different areas. For α < α∗ ≈ 0.277 the

extremalization has a unique solution, but for each α > α∗ there exists a finite range

of ` where the area functional has three different saddle points. EE is associated only

with the dominant saddle point, defined as the one with the smallest surface area. At a

critical interval `∗ two of the saddle points exchange dominance. As a consequence the

first derivative of EE is discontinuous, which is an example for kinked entanglement

discussed in section 2.7.
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Figure 6. Left: EE in intermediate region. Right: Minimal surfaces in domain wall geometry.

We illustrate this situation in Figure 6 for the domain wall with α = 0.32. In the

left plot we show the renormalized EE as a function of ` in the interesting region around

the kink at `∗. In the range 3.870 < ` < 4.058 the area functional has three saddle

points resulting in three different branches for the surface area shown in blue, red and

gray. Dominant branches are shown as solid lines and sub-dominant ones with dashed

lines. The red branch ceases to exist for ` < 3.870 and the blue one for ` > 4.058. At

`∗ ≈ 3.988 the saddle points for the blue and red curve exchange dominance, while the

third saddle point represented by the gray dashed line remains always sub-dominant.

The plot on the right is a bulk picture of the corresponding RT surfaces. The black line

indicates zcen where the geometry degenerates to a point and the dark gray region at

z > zcen is not part of the geometry. Solid red and blue curves are representatives of

minimal surfaces in the respective dominant branches. They can exist in the red and

blue colored regions only. The dashed red and blue curves are subdominant surfaces

with smallest and larges separation in the two branches marked by red and blue dots in
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the left plot.

Curiously, the gray area remains untouched by dominant surfaces and is only traced

out by sub-dominant ones. Thus, modulo x-translations of the interval these gray

areas are entanglement shadows [38], i.e. bulk regions which no RT-surface can probe.

However, permitting x-translations of the interval casts light on these shadows. This

means that a field theory observer trying to reconstruct the bulk geometry will not be

able to do so just by extending their entangling intervals to all possible values of interval

length `; instead, they also have to shift the central position of the interval in order to

reconstruct the gray areas in the bulk.

5.3 Thermal states

We consider now EE of thermal states that are dual to black brane geometries discussed

in section 3.3, first perturbatively and then numerically.

The perturbative analysis is most interesting in the large ` limit, since for small

` the existence of a horizon at finite temperature has almost no effect on EE. We

consider additionally the limit of large temperature, which means that geometry is

dominantly a BTZ black brane. This implies that the scalar field provides only a small

perturbation of the thermal background, so one can solve the Klein–Gordon equation

on a BTZ black brane background and then consider leading order backreactions on

that background. We shall do this analysis in detail in section 6.3 below when analyzing

QNEC2. The result (6.14) for renormalized area yields the anticipated volume law (2.6)

plus corrections that are suppressed exponentially like e−2π`/β, as expected from [39].

In the remainder of this section we discuss numerical results for EE in Gubser gauge

(3.12)-(3.13), but using as radial coordinate z = φ2/φ2
h where φh is the value of the

scalar field at the horizon. The metric then expands near the boundary z = 0 as

ds2 =
φ4
h

(
− dt2 + dx2

)
+ dz2

z2
+ subleading . (5.15)

Renormalized EE and interval length are given by

Sren =
1

2G3

z∗∫
zcut

(
e2B

H (1− e2(A∗−A))

)1/2

dz +
1

2G3

log(zcut)

2−∆
(5.16)

` = 2

z∗∫
0

1

e2A

(
e2(B+A∗)

H (1− e2(A∗−A))

)1/2

dz . (5.17)

We evaluated the metric functions A, B and H and the two integrals above numerically.

Consider first again the large separation behaviour of EE. As stated above, EE

obeys the volume law (2.6) with exponentially small corrections suppressed by e−2π`/β,
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which provides a simple cross-check on the correctness of the numerics. For purposes of

displaying results it is useful to plot EE density

σ(`, T ) :=
dSren

d`
(5.18)

since it is approximately constant at large values of `. In Figure 7 we show the

temperature dependence of σ(`, T ) for several intervals. We use the potential (3.5)

with α = 0.32, which leads to a first order phase transition between large and small

black branes at T = Tc. As expected from the volume law, for large separations σ(`, T )

approaches the entropy density for all black brane geometries. The region around the

critical temperature is more involved and shows that at the point where large black

brane branch and spinodal unstable branch join together the agreement between EE

and thermal entropy can be seen only for very large intervals.
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Figure 7. Comparing entropy density s/T (Gray solid) with EE density σ/T (Colored dashed)

defined in (5.18) for intervals ` = 5, 10, 15, 20.

In Figure 8 we show the renormalized EE as a function of the interval ` for different

thermal states in the theory with α = 0.32 which has a first order phase transition. A

selection of black brane solutions is shown as colored points in the left panel. The labels

for each of these points correspond to the horizon value of the scalar field. We use the

same colors for the renormalized EE in the right panel.

In the following we summarize the main features of EE in theories with first order

phase transitions. For small intervals the turning point of the geodesic is close to the

boundary where the metric is essentially locally AdS3. Therefore, for all thermal states

EE approaches the same value in this regime. For large intervals EE obeys the volume
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Figure 8. Left panel: Entropy density over temperature for first order phase transition

(α = 0.32). Dots: horizon value of scalar field, φh = 1, 3, 5, 8, 10. Right panel: EE computed

using (5.16) for different black brane solutions as function of interval `. Colors correspond to

solutions marked with points in left panel.

law. This is what one expects since most of the geodesic is close and parallel to the

horizon as discussed around Figure 7. In the insertion of the right panel in Figure 8 we

show a novel feature of EE for thermal states at low temperatures dual to small black

branes. The RT surface is a multivalued function for a range of intervals, which is similar

to the case we studied extensively in previous subsection for the ground state of the

same theory. We found this phenomenon for φh > 5.6, which is on the spinodal branch

but close to the joining point to the small black brane branch. The smaller the value of

φh, the larger the critical value of the interval at which the transition between the RT

surfaces occurs and the smaller the range of intervals with multivalued surfaces. We did

not find this phenomenon in theories with crossover or second order phase transitions.

In Figure 9 we show the renormalized EE as a function of ` for various thermal

states in a theory with second order phase transition (α = 0.16). In contrast to the

previously discussed case with first order phase transition, in a theory with second

order phase transition EE is never kinked or discontinuous, but always a monotonic and

smooth function of ` and T . From the result for φh = 8 (dotted blue line) for example

we can see that for large ` EE has only a very mild, plateau-like, volume law scaling at

low T . The reason for this is the small value of the entropy density (4.1) which gives

the leading contribution to the slope of EE (5.18) at large `. On the other hand EE

shows a very rapid volume law scaling at large T , because the corresponding value of

the thermal entropy is large. An example for this is the red curve for φh = 1 in the right

plot of Figure 9.

Finally, in Figure 10 we show the renormalized EE as a function of ` in a theory

with crossover (α = 0). Also in this case EE is monotonic and smooth. As discussed
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Figure 9. Left panel: Entropy density over temperature for second order phase transition

(α = 0.16). Dots: horizon value of scalar field, φh = 1, 3, 5, 8, 10. Right panel: EE computed

using (5.16) for different black brane solutions as function interval `. Colors correspond to

solutions marked with points in left panel.

in subsection 5.2 α = 0 corresponds to Case 0 in which the ground state EE is not

suppressed at large `, but grows like c
3

ln ln ` instead, cf. (5.9). As a consequence at low
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Figure 10. Left panel: Entropy density over temperature for crossover (α = 0). The dots

show the horizon value of the scalar field at each point, φh = 1, 3, 5, 8, 10. Right panel: EE

computed by using the (5.16) for different black hole solutions as function of separation. Colors

correspond to solutions marked with points in left panel.

temperatures the volume law scaling is approached extremely slow. This can be seen

for example from the result for φh = 8 (dotted blue line) shown in the right Figure 10.

The scaling of EE at large T (red line in right Figure 10) is qualitatively similar to the

other two cases discussed above. This universal (theory independent) behavior at large

T follows from (6.14) obtained perturbatively in subsection 6.3.
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We conclude this section with a brief summary table showing renormalized EE

for various states dual to geometries that we studied in the limits of small and large

intervals. QFT refers specifically to the deformed CFT that we study; the subscript

refers to the sign of the parameter α < 1 in the scalar potential (3.5).

State Geometry Small interval `� 1 Large interval `� 1

CFT ground PP AdS c
3

ln ` c
3

ln `

QFT0 ground Dom. wall c
3

ln `− cπ
192

`+O(`2) c
3

ln
(
8 ln `

8

)
+O(ln−2 `)

QFT+ ground Dom. wall c
3

ln `− cπ
192

`+O(`2) − c
3

ln(α + 1
16 ln `

) +O(ln−2 `)

QFT− ground Dom. wall c
3

ln `− cπ
192

`+O(`2) c
3(1−1/(16α))

ln `+O(1)

CFT thermal BTZ c
3

ln `+O(`2) cπ`
3β

+O(e−2π`/β)

Table 2. Renormalized EE for various systems at small and large intervals.

6 Quantum Null Energy Condition

In this section we present our results for QNEC2, starting with the analysis of vacuum

states in section 6.1, followed by remarks on how to predict phase transitions using

QNEC2 in section 6.2, and concluded by the analysis of finite temperature states in

section 6.3.

6.1 Ground states

For boost-invariant ground states small- and large-` expansions of QNEC2 follow directly

from the corresponding expansions of EE in section 5.2. Applying (2.12) to the small

`-expansion (5.11) yields

lim
`�1

(
S ′′ +

6

c

(
S ′
)2
)

= − cπ

64`
+
c(128− 3π2)

18432
− 53π + 9π3

1179648
c `

− cα

24
+

229π

98304
cα `− 5π

512
cα2`+O(`2) . (6.1)

The result (6.1) is valid both for Case 0, I and II (in the former case only the first line

contributes). The first term in (6.1) is negative and thrice the linear `-term in EE (5.8),

compatible with the general results (2.17) and (2.18). For the large ` expansion we need

to discriminate between Case 0 (α = 0), where we apply (2.12) to (5.9)

lim
`�1

(
S ′′ +

6

c

(
S ′
)2
)

= − 2c

3`2 ln `
− c(6 ln 2− 1)

3`2 ln2 `
+O(1/(`2 ln3 `)) (6.2)
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Case I (0 < α < 1), where we apply (2.12) to (5.12)

lim
`�1

(
S ′′ +

6

c

(
S ′
)2
)

= − c

24α `2 ln2 `
+O(1/(`2 ln3 `)) (6.3)

and Case II (α < 0), where we apply (2.15) to (5.14)

lim
`�1

(
S ′′ +

6

c

(
S ′
)2
)

= − 2cIR
3`2(1− 16α)

+ . . . (6.4)

At intermediate values of ` we computed QNEC2 by numerically integrating (5.2)

for a sufficiently large number of values for z∗ which together with (5.3) allows to express

EE as function of `. In the following we do this for several different examples and

compare the results to the perturbative expressions.

As a first example we chose α = 0.32 which lies comfortably in the interesting regime

α > α∗ ≈ 0.27736 where EE can be kinked and QNEC2 discontinuous. In Figure 11 we

show QNEC2 as function of ` for the same setup and color coding as in Figure 6. Blue

and red curves again correspond to two different saddle points in the area functional.

Dotted orange and green curves are the perturbative small- and large-` formulas.

Perturbation theory works remarkably well, except in a finite region close to the

critical separation `∗ where the discontinuity is located. As shown in section 2.7 QNEC2

does not only jump but also has a divergence in form of a negative delta function at `∗

which we indicate by the black dashed line. While the precise value of `∗ and size of

the jump need to be determined numerically, we emphasize that the existence of the

delta-divergence can only be deduced from analytic considerations. For ` < `∗ QNEC2

is not monotonic, but has a local maximum that leads to a finite gap.

The second example is α = 0.16 (see left Figure 12). In this case the extremal

surfaces are unique and EE is a smooth function of `. This results in QNEC2 being

smooth as well, even though is develops a shoulder around ` ≈ 10. The transition from

the UV- to the IR-scaling regime clearly happens in this region.

Finally, the right plot in Figure 12 shows the case α = 0. Compared to the other

examples QNEC2 does not have any distinguished features in this case. The extremal

surfaces are unique, EE and QNEC2 are smooth and it is not possible to localize the

transition between UV- and IR scaling from the numerical results.

6.2 Predicting phase transitions from ground state QNEC2

A striking consequence of our numerical analysis for intermediate ` is the curious fact

that QNEC2 in ground states has features that allow to characterize the thermodynamic

phase structure of the theory. If ground state QNEC2 is non-monotonic in `, which

happens in our one-parameter family of theories for α > 0.2, then the theory has a
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Figure 11. QNEC2 for the domain wall solution with α = 0.32. Blue and red solid lines:

numerical results for QNEC2 in the small and large ` branches left and right of the critical

interval `∗. Orange and green dashed lines: perturbative results for small ` and large ` given

in (6.1) and (6.3), respectively.
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Figure 12. QNEC2 for the domain wall solution with α = 0.16 (left) and α = 0 (right). Red

solid lines: numeric result for QNEC2. Orange and green dashed lines: perturbative results

for small ` and large ` given in (6.1) and (6.3), respectively.

first order phase transition at finite T . Increasing α makes the local minimum that is

responsible for the non-monotonicity of QNEC2 more pronounced until it eventually

turns into a discontinuity for α ≈ 0.277. For α > 0.277 the phenomenon of multiple
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RT-surfaces and the related jump (plus delta function) in QNEC2 occur. Also in this

case the theory always has a first order phase transition. This is illustrated in Figure 13,

showing ground state QNEC2 as function of ` for different values of α. Thus, spotting

� � � � ��
-����

-����

-����

-����

-����

����

Figure 13. Ground state QNEC2 as function of ` for 0.2 ≤ α ≤ 0.3.

non-monotonicity or a jump in QNEC2 for the ground state allows to predict a first

order phase transition at some finite temperature.

Similarly, QNEC2 for the ground state is monotonic and has a smooth, but clearly

visible and localized transition region between the UV- and IR-scaling regime in case the

theory has a second order phase transition at finite T . We show an example for this in

the left plot of Figure 12. If the theory at finite temperature has a smooth crossover then

ground state QNEC2 is a smooth, monotonic and featureless function of the interval `

without a clearly localized transition region between the UV- and IR-scaling regime.

An example for this is shown in the right plot of Figure 12.

This means ground state QNEC2 can be used as diagnostic tool to identify and locate

phase transitions. While the identification of ground state QNEC2 and thermodynamic

phase structure seems remarkable, we find it not to be precisely one-to-one. There are

for example cases in which the theory has a first order phase transition but QNEC2

is monotonic in `. In our model this is the case for 0.16 < α ≤ 0.2. But the converse

statement “if ground state QNEC2 is non-monotonic then the theory has a first order

phase transition” we always find to be true. We have checked for the potentials listed in

Table 1 (two-dimensional cases) that similar features arise rather generically regardless of
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the value of the conformal weight, which suggests they are not artefacts of our particular

choice of model.

6.3 Thermal states

We consider now QNEC2 for thermal states that are dual to black brane geometries

discussed in section 3.3, using metrics of the form

ds2 =
1

z2

(
− A(z) dt2 +

dz2

A(z)
+ S(z) dx2

)
. (6.5)

Again we start with a perturbative analysis, where we are mostly interested in the large

` limit. With no loss of generality we scale the temperature such that 2πT = 1 so that

our only rermaining scale is the interval length `.

The exact expression for the scalar field

φ(z) = ε
4
√
π

Γ(1
4
)2

√
z K
(1− z

2

)
+O(ε2) (6.6)

contains the backreaction parameter ε � 1 and the elliptic integral K. The metric

functions with no loss of generality are given by

A(z) = 1− z2 + ε2A2(z) +O(ε3) S(z) = 1 + ε2S2(z) +O(ε3) (6.7)

where for convenience we fixed the horizon to be located at zh = 1. The near boundary

expansions of these three functions are given by

φ(z) = ε
√
z
(

1− 4π2

Γ(1
4
)4
z +

1

8
z2 +O(z3)

)
(6.8)

A2(z) = −1

4
z ln z + a2z

2 +O(z3) (6.9)

S2(z) = −1

4
z ln z +

3π2

Γ(1
4
)4
z2 +O(z3) (6.10)

where we set to zero some of the leading and subleading coefficients, again with no loss

of generality.

The flux components of the boundary stress tensor

2π〈Tkk〉 =
1

4G3

+
ε2

4G3

(
3π2

Γ(1
4
)4
− a2

)
+O(ε3) (6.11)

can be expressed in terms of the near horizon quantity S2(1) due to the existence of the

radially conserved quantity

Q = −S(z)3/2

2z

d

dz

A(z)

S(z)

dQ

dz
= 0 (6.12)
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which yields Q = 1 + ε2 [3π2/Γ(1
4
)4 − a2] in the near boundary expansion and Q =

1 + 1
2
ε2S2(1) at the horizon. Therefore, the left hand side of the QNEC2 inequality (1.2)

reads

2π〈Tkk〉 =
1

4G3

+
ε2

8G3

S2(1) +O(ε3) . (6.13)

To get the right hand side of the QNEC2 inequality (1.2) we follow the procedure

in section 2.6. See appendix C for details on the integrals. The λ-dependent result for

the renormalized area is given by

Aren(`� 1) = (`+ λ)
(

1 +
ε2

2
S2(1)

)
+
λ2ε2

16

(
S ′2(1)− 4S2(1)

)
+O(e−`) +O(λ3) +O(ε3)

(6.14)

where prime means derivative with respect to z.

From the result (6.14) for the renormalized area we obtain the expected volume law

(2.6) plus corrections that are suppressed exponentially like e−` or at least cubic in the

backreaction parameter ε. Moreover, we obtain expressions for the quantities denoted

by A1 and A2 in (2.27).

A1(`) = 1 +
ε2

2
S2(1) + . . . A2(`) =

ε2

8

(
S ′2(1)− 4S2(1)

)
+ . . . (6.15)

The ellipses denote terms suppressed by e−` or by ε3. Therefore, the right hand side of

the QNEC2 inequality (1.2) reads

∂2
λS +

6

c

(
∂λS

)2
=
c

6
+
cε2

12
S2(1) +

cε2

48
S ′2(1) +O(e−`) +O(ε3) (6.16)

where for clarity we wrote explicitly the λ-derivatives and kept the notation that prime

denotes z-derivative.

Using 4G3 = 6/c we see that left (6.13) and right (6.16) hand sides of QNEC2 almost

cancel and the QNEC2 inequality turns into a convexity condition for the function S2

at the horizon.

2π〈Tkk〉 − ∂2
λS −

6

c

(
∂λS

)2
= −cε

2

48
S ′2(1) ≥ 0 (6.17)

We have checked both numerically and analytically that this condition is satisfied. It is

also possible to argue on general grounds from the second law of black hole mechanics

that the inequality (6.17) has to be satisfied.5 Namely, one can view our backreaction

calculation as a consequence of a dynamical process where initially ε was zero and then

5This goes back to the genesis of the QNEC2 inequality, which was associated with the quantum

focusing conjecture and the generalized second law [6]. Since the QNEC2 inequality must be respected

the fact that (6.17) holds is unsurprising.
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a small amount of scalar matter is thrown into the black hole. The quantity S2(1)

is proportional to the additional entropy density generated in this process and thus

has to be positive. From a field theory perspective it also has to be monotonically

increasing with energy ∼ 1/z. This means that S2 expressed as function of z must be

monotonically decreasing, which is precisely the inequality (6.17).

We turn now to the evaluation of QNEC2 at arbitrary values of the interval length

`. In boost invariant ground states it is possible to write QNEC2 entirely in terms of

`-derivatives of EE. For this a simple shooting algorithm is sufficient to determine EE

as function of ` and subsequently QNEC2. The situation in black brane geometries

is more complicated and one has to evaluate genuine lightlike derivatives of EE. We

do this using the relaxation approach of [26] with either a known geodesic in AdS3 or

previously obtained numerical solutions as initial guess.

These ansatz geodesics are then relaxed to discrete one-parameter families of

geodesics with one endpoint shifted by lightlike vectors kµi,± = iδ(1,±1). Since we only

consider spatially homogeneous and time-reversal invariant states, QNEC2 does not

depend on the orientation of the null vector and also not on which endpoint we vary.

We typically produce a family of seven geodesics with i = −3,−2, ..., 3 and set the

size of the increment to δ = 10−5. From the length of these geodesics we compute the

corresponding EEs and generate a third order polynomial fit S ≈ c0 + c1δ + c2δ
2 + c3δ

3

from which we extract first and second derivative at δ = 0. More details on the numerical

implementation can be found in [40].

We recall that α determines the thermodynamic phase structure of the model and

can be tuned to realize either a first or second order phase transition or a smooth

crossover. Like for EE we study now QNEC2 in specific examples for each of these cases.

It is useful to first look at the left hand side of QNEC2 (1.2) before comparing it with

the right hand side. In Figure 14 we show 〈Tkk〉 as function of T for our three different

values of α. As expected 〈Tkk〉 displays features that are characteristic for the specific
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Figure 14. 〈Tkk〉 as function of temperature for different values of α.
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kind of phase transitions in the respective model. Since 〈Tkk〉 is a positive, but not

necessarily single-valued function of T , all examples we consider satisfy in addition to

QNEC2 also the classical null energy condition.

For α = 0.32 (left plot in Figure 14) 〈Tkk〉 is multi-valued around the critical

temperature Tc, where it has a finite jump. Thermodynamically unpreferred branches

are dashed and preferred ones solid. For T < Tc the energy momentum tensor is

close to the vacuum value 〈Tkk〉 = 0. The ‘critical’ state at T = Tc requires special

attention. As shown in [19, 37, 41] there exists an infinite number of degenerate phases

at T = Tc, which on the gravity side have inhomogenous horizons and can be seen as

a mixture of small and large black branes. We expect this to also be the case in our

two-dimensional model. Because we limit our study to homogeneous states, we cannot

make precise statements about EE and QNEC2 at T = Tc, only that they will inherit

the inhomogeneous structure of the bulk geometry.

In the middle of Figure 14 we plot 〈Tkk〉 for α = 0.16 where the system has a second

order phase transition. In this case 〈Tkk〉 is a single-valued, continuous and monotonic

function of T . For T < Tc 〈Tkk〉 remains close to zero and the transition between UV-

and IR-scaling regime is tightly localized around T = Tc. For T > Tc, i.e., in the large

black hole branch 〈Tkk〉 depends strongly on T and approaches at large T the universal

form given by (6.13).

Finally in the right plot of Figure 14 we show 〈Tkk〉 for α = 0. We recall that we

defined Tc ≈ 0.01 as the temperature where the speed of sound has a local minimum.

Here the curve does not have any distinct features at T = Tc and the transition between

UV- and IR-regime is not localized.

Let us now discuss the results for QNEC2. We begin with α = 0.32 for which the

theory has a first order phase transition at T = Tc and QNEC2 as function of T has

a jump. If we choose ` in the range 3.870 < ` < 4.058 there is, like for domain walls,

an additional discontinuity due to the existence of multiple RT-surfaces. In Figure 15

we show the results for ` = 1, which is well below this range. Blue and gray lines are

left and right hand side of QNEC2 and solid (dotted) lines indicate thermodynamically

preferred (unpreferred) solutions. For T < Tc, i.e., in the small black brane branch,

QNEC2 grows only very slowly with T and remains very close to the T = 0 limit given

by the domain wall result shown as dashed green line.

In Figure 16 we show the case ` = 4 in which QNEC2 has an especially rich structure.

This example has in addition to the phase transition at T = Tc another transition at

T = T ∗ ≈ 0.8784Tc due to the existence of multiple RT-surfaces. Here the two saddle

points for the RT-surfaces displayed in red and blue exchange dominance which leads to

a jump in QNEC2. From the analysis in section 2.7 we know there is actually also a

negative delta function which we indicate by the dashed black line. Curiously, QNEC2
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Figure 15. QNEC2 as function of T for black brane solution with α = 0.32 and ` = 1. Blue

lines show the QNEC2 expression 1
2π

(
S′′ + 6

c (S
′)2
)

and gray lines show 〈Tkk〉, where solid

(dashed) parts of the curves correspond to thermodynamically stable (unstable) phases. In

addition, the dashed green curve shows the value of QNEC2 of the corresponding T = 0

domain wall solution.

is not a monotonic function of T in this case. Starting from small T where it nicely fits

the corresponding domain wall result shown as dashed green curve, QNEC2 decreases

monotonically until it falls at T = T ∗ to the smaller value of the blue branch. This short

blue branch is then monotonically increasing until the jump at T = Tc. Following the

blue curve at T > Tc QNEC2 grows monotonically and approaches (6.16) in the limit

of large T . We emphasize that the two critical temperatures T ∗ and Tc are different

in nature. The former is related to the existence of multiple RT surfaces, while the

latter is related to the thermal phase transition. Additionally we find T ∗ < Tc, because

multiple RT surfaces only exist in the small black brane branch with T < Tc.

The third case we analyze is ` = 8 shown in Figure 17. This case is again outside

(this time above) the regime where multiple RT-surfaces exist. Hence there is only

the discontinuity at the thermal phase transition. Curiously in the thermodynamically

disfavoured branch (dashed line) QNEC2 has two self-intersections, one at T < Tc and

another (barely visible) close to the turning point at T > Tc. At these intersections

QNEC2 takes the same value in two different phases which makes QNEC2 not a good

probe to distinguish different phases. As one can deduce from Figure 8 (right) for ` = 8
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Figure 16. QNEC2 as function of T for black brane solution with α = 0.32 and ` = 4. Blue

and red lines show the QNEC2 expression 1
2π

(
S′′ + 6

c (S
′)2
)

and gray lines show 〈Tkk〉, where

solid (dashed) parts of the curves correspond to thermodynamically stable (unstable) phases.

Red and blue segments correspond to different branches of RT surfaces that dominate at small

and large separations, respectively. In addition, the dashed green curve shows the value of

QNEC2 of the corresponding T = 0 domain wall solution.

we are for T < Tc always in the non-gapped plateau like IR-scaling regime where QNEC2

is almost saturated. This is different to the aforementioned case ` = 4 in which QNEC2

for T < Tc is in the gapped UV-scaling regime and not close to saturation. For the cases

α = 0.16 and α = 0 QNEC2 is a monotonic and continuous function of both T and `.

Finally, we quantify the QNEC non-saturation by plotting in Figure 18 the dimen-

sionless ratio

RQNEC := 1−
S ′′ + 6

c
(S ′)2

2π 〈Tkk〉
(6.18)

for various values of ` and the three values of α discussed above, for temperatures greater

than the critical. When QNEC2 saturates RQNEC vanishes and otherwise is positive, so

this quantity is a good measure for how far we are from saturation. As evident from

the plots, at large temperature the ratio RQNEC tends to zero, which means that QNEC

is approximately saturated at large temperature. We see this analytically by comparing

with (6.17) which also yields a vanishing ratio in the limit of small ε.
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Figure 17. QNEC2 as function of T for black brane solution with α = 0.32 and ` = 8. Blue

lines show the QNEC2 expression 1
2π

(
S′′ + 6

c (S
′)2
)

and gray lines show 〈Tkk〉, where solid

(dashed) parts of the curves correspond to thermodynamically stable (unstable) phases. In

addition, the dashed green curve shows the value of QNEC2 of the corresponding T = 0

domain wall solution.
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Figure 18. QNEC non-saturation ratio RQNEC as function of temperature T > Tc for various

values of interaction strength α and interval length `

7 Conclusion

After summarizing in section 2 general aspects of QNEC2 in deformed holographic CFTs

we focused on a specific example from section 3 onwards, namely a deformed CFT2 dual

to Einstein gravity with a massive scalar field (3.1) and asymptotically AdS3 boundary
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conditions. For sake of specificity we fixed the conformal weight of the operator dual

to the scalar field to ∆ = 3
2

and considered a one-parameter family of potentials (3.5),

which led already to a rich phase structure, with crossovers, second- and first-order

phase transitions that we analyzed in detail in sections 4-6 using QNEC2 (and associated

quantities like EE and the Casini–Huerta c-function) as diagnostic tool. For small and

large intervals we were able to provide closed-form expressions, while for intermediate

intervals we relied on numerics.

Unexpectedly our numerical studies reveal that QNEC2 in ground states displays

certain features that are characteristic for the thermodynamic phase structure of the

theory. For example, if ground state QNEC2 is non-monotonic in `, then the theory

has a first order phase transition at finite temperature. Furthermore, our examples

show that QNEC2 as function of T can have a very rich and non-trivial structure that

includes multiple discontinuities caused by thermal phase transitions and multiple RT

surfaces. Using QNEC2 as tool for detecting phase transitions is similar in spirit to

using entanglement as a probe of confinement [42], but the type of phase transition

discussed in our work differs from the confinement-deconfinement phase transition

We address now some generalizations of our results. Even without changing the

model one could consider more general states than the ones considered in the present

work, by dropping the assumption of stationarity and/or translation invariance. In full

generality this can be done only numerically, but the numerical routines to determine

QNEC2 are typically not hard to implement and computationally not very demanding.

The most straightforward model modification is to change the mass of the scalar

field and the potential. In this way one could scan the model space and study QNEC2

as function of the conformal weight ∆ and additional parameters in the potential, which

may reveal novel features. A particularly interesting set of examples would be critical

states at T = Tc with first order phase transition [19], which we did not analyze in this

paper. Another extension would be to consider more general potentials related to exotic

holographic RG flows classified in [43].

Adding a Maxwell field leads to a wider class of models with even richer phase

structure and phenomenology, like holographic superconductors [44, 45] or other holo-

graphic condensed matter models [46], that can again be analyzed along the lines of the

present work, using QNEC2 as diagnostic tool. Investigating the effects of hyperscaling

violation [47, 48] and breaking of translation invariance [49] from a QNEC2 perspective

could be rewarding as well.

It could also be of interest to venture beyond the supergravity approximation

and consider 1/c corrections to bulk and boundary theories, see section 5 in [26] and

refs. therein for such corrections to QNEC2.

Finally, it will be interesting to consider holographic correspondences beyond

– 44 –



asymptotically AdS3/deformed CFT2. There are two different types of generalizations

(which can also be combined): either one keeps the dimension, but relaxes the asymptotic

AdS3 behavior, e.g. by considering flat space holography and the associated generalization

of QNEC2 [50], or one goes to higher dimensions and uses QNEC (1.1) instead of QNEC2

as diagnostic tool for phase transitions and other phenomenological aspects.

Note added

While finishing our manuscript reference [51] appeared on the arXiv, which uses a similar

logic as in section 6.2 to identify quantum phase transitions. Instead of QNEC they use

a generalized version of the Casini–Huerta c-function [52] as diagnostic tool.
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A Near-boundary analysis and UV/IR relation

Like in the main text we fix the conformal weight of the operator dueal to the scalar

field to ∆ = 3
2
. The metric functions in Fefferman–Graham gauge

ds2 =
dz2 − F (z) dt2 +G(z) dx2

z2
(A.1)

are expanded near the boundary as (generalized) Taylor–Maclaurin series of the radial

coordinate z.

F (z) =
∞∑
i=0

fi z
i G(z) =

∞∑
i=0

gi z
i φ(z) = z1/2

∞∑
i=0

φi z
i (A.2)

The leading order coefficients are given by f0 = g0 = 1 while φ0 = j is the source of the

scalar field. The one-point functions are related to the normalizable modes f2 and φ1.
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Using on-shell conditions the first few terms are given by

F (z) = 1− φ2
0

4
z + f2z

2 +O(z3) (A.3)

G(z) = 1− φ2
0

4
z −

(φ4
0

16
+

3φ0φ1

4
+ f2

)
z2 +O(z3) (A.4)

φ(z) = z1/2
(
φ0 + φ1z +O(z2)

)
. (A.5)

By contrast, the metric functions in Gubser gauge φ(r) = j2−∆r where we set j = 1

from now on

ds2 = e2A
(
−H dt2 + dx2

)
+ e2B dr2

H
(A.6)

have asymptotic expansions involving also logarithmic terms.

A(r) = −2 log r+
∞∑
i=0

a2i r
2i B(r) = log

2

r
+
∞∑
i=0

b2i r
2i H(r) =

∞∑
i=0

h2i r
2i (A.7)

The non-normalizable modes are fixed as a0 = b0 = 0, h0 = 1. The expectation value of

the boundary stress tensor and the operator dual to the scalar field are related to the

normalizable modes a2 and h4. Using on-shell conditions the first few terms are given by

A(r) = −2 log r + a2r
2 +O

(
r4
)

(A.8)

B(r) = log
2

r
−
(
a2 +

1

8

)
r2 +O

(
r4
)

(A.9)

H(r) = 1 + h4r
4
(

1− 1 + 24a2

12
r2 +O

(
r4
) )

. (A.10)

In Gubser gauge the UV and IR data are related as follows. Knowing the functions

A and B one can integrate (3.16) to find

H(r) = H(r0) + C

r∫
r0

e−2A(r′)+B(r′) dr′ (A.11)

where H(r0) and C are constants of integration. By choosing r0 = rh and noting that

H is the blackening function the expression (A.11) reduces to

H(r) = C

∫ r

rh

e−2A(r′)+B(r′) dr′ (A.12)

Differentiating with respect to r and evaluating at the horizon yields

H ′(rh) = C e−2A(φh)+B(φh) . (A.13)
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Comparing equations (A.13) and (3.14) at the horizon determines the integration

constant.

C = e2A(φh)+B(φh)V ′(rh) = −16πG3 s T (A.14)

Finally, expanding both sides in equation (A.13) near the boundary yields C = 2h4,

which combined with (A.14) establishes a relation between boundary and horizon data.

h4 =
1

2
e2A(φh)+B(φh)V ′(rh) (A.15)

B Holographic renormalization

In general holographic renormalization is based on the details of the theory, namely the

conformal weight of the scalar field and the scalar potential. As in the rest of our work

we fix ∆ = 3
2
. It turns out that the counter-terms are

Ict =
1

16πG2
3

∫
∂M

d2x
√
γ
[
`AdS log(ρ)R +

W

`AdS

]
(B.1)

=
1

16πG2
3

∫
∂M

d2x
√
γ
[
`AdS log(ρ)R− 2

`AdS

− 1

4`AdS

φ2 − α

8`AdS

φ4
]

where γ is the determinant of the boundary metric and in the second line we use the

superpotential (3.4). Using the superpotential as counter-term fixes the ambiguous

coefficient of the finite φ4 term to the unique value that gives zero free energy for the

ground state dual to the domain wall geometry. The near boundary solution for static

and stationary solutions with fixed AdS is given in appendix A.

The one point functions are given as functional derivatives of the generating func-

tional

〈Oφ〉 = lim
z→0

z−∆

√
−γ

δΓ

δφ
〈Tij〉 = 2 lim

z→0

z−1

√
−γ

δΓ

δγij
(B.2)

with the holographically renormalized action

Γ = Ibulk + IGHY + Ict (B.3)

that consists of the bulk action Ibulk, the Gibbons–Hawking–York boundary term IGHY

and the holographic counter-term Ict.
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The near boundary expansion from appendix A yields the one point functions

〈Oφ〉 =
1

8πG3

(1

2
φ1 −

α

4
φ3

0

)
(B.4)

〈Ttt〉 =
1

8πG3

(
− 2f2 +

1 + 2α

16
φ4

0 − φ0φ1

)
(B.5)

〈Txx〉 =
1

8πG3

(
− 2f2 +

1− 2α

16
φ4

0 −
1

2
φ0φ1

)
(B.6)

These one-point functions respect the anticipated Ward identity.

〈T ii〉 = φ0 〈Oφ〉 (B.7)

The fact that the trace of the energy-momentum tensor is non-zero in general is due to

the breaking of conformal symmetry in the presence of a dimensionful source.

C Evaluation of typical QNEC2 integrals for large intervals

We follow here the discussion in section 2.6 and evaluate the integrals in the limit of

large intervals, `� 1, for various background geometries.

We start with domain wall solutions, where we can set the null deformation parameter

to zero, λ = 0, since the dual QFT state is boost invariant. As stated in the main text,

for Case 0 we parametrize the turning point as ρ∗ = ln δ with small positive δ, where ρ

refers to the domain wall radial coordinate (3.8). The spatial integral (2.25) simplifies

to

` eA∗ = 2

∞∫
ln δ

dρ
( 1√

1− y
−
√

1− y
)

(C.1)

where y is defined in (5.7). The renormalized area integral (2.27) yields

Aren(`) = −2ρ∗ + 2

∞∫
ln δ

dρ
( 1√

1− y
− 1
)
. (C.2)

The two integrals above can be converted into compact integrals

2

∞∫
ρ∗

dρ f(y) =

1∫
0

dy
f(y)

y dA(ρ(y))
dρ

(C.3)

which require the knowledge of ρ as function of y. For Case 0 this relation reads

ρ = ρ∗ −
1

8
e−ρ∗ − 1

2
ln y +W

(
1
8

√
y exp(−ρ∗ + 1

8
e−ρ∗)

)
(C.4)
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with the Lambert-W function. Its expansion W (exp(x)) = x − lnx + lnx
x

+ O( ln2 x
x2

)

permits to evaluate the two integrals above perturbatively in δ.

2

∞∫
ln δ

dρ
( 1√

1− y
−
√

1− y
)

= 16δ − 128 ln(2) δ2 +O(δ3) (C.5a)

2

∞∫
ln δ

dρ
( 1√

1− y
− 1
)

= 16 ln(2) δ +
16

3

(
π2 − 24 ln 2− 12 ln2 2

)
δ2 +O(δ3) (C.5b)

The first one yields a result for the small parameter δ in terms of the interval `,

δ =
1

8 ln `
16

+ . . . (C.6)

where the ellipsis denotes subleading terms. The second one together with the term

−2ρ∗ in (C.2), when multiplied by c
6
, yields the result for renormalized EE displayed in

the main text (5.9).

Case I is qualitatively different from Case 0 since there is a finite lower bound on

the radial coordinate, lnα. For large intervals the turning point is close to this lower

bound, so as explained in the main text we parametrize it as ρ∗ = (1− δ) lnα, again

with small and positive δ. Both integrals (C.5) are now order O(δ2), so that the leading

contribution to area comes from the term −2ρ∗. Plugging A∗ = 1/(16α ln(α) δ) into

equation (C.1) allows to express δ in terms of `.

δ = − 1

16α ln(α) ln `
+ . . . (C.7)

The renormalized area

Aren = −2ρ∗ + · · · = −2 lnα− 1

8α ln `
+ . . . (C.8)

multiplied by c
6

then leads to the result (5.12) for EE, where we have displayed one

additional subleading term.

Case II can be treated most easily in the limit of large |α|. Like in Case 0 the radial

coordinate is unbounded, so we parametrize again ρ∗ = ln δ with small positive δ. In

the large |α| limit the function A(ρ) is linear in the radial coordinate,

A(ρ) =
(

1− 1

16α

)
ρ+

1 + ln(−α)

16α
+O(α−3) (C.9)

which means that the measure factor in the right hand side of (C.3) is rather trivial

and yet significant, since it provides the ratio between IR and UV values of the central

– 49 –



charge. The simplicity of the measure factor allows to perform all integrals in closed

form and yields the result (5.13) in the main text. It turns out that the same result is

true at small |α|.
Finally, we consider the three relevant integrals for the black brane in the large `

limit, where the backreaction calculation discussed in section 6.3 applies.

The deformed entangling region integral [A∗ = A(z∗) and S∗ = S(z∗)]

`+ λ

2
=

(`+λ)/2∫
0

dx =

0∫
z∗

dz√
Λ2S2(z)− S(z)A(z) + S2(z)A(z)

z2
z2
∗

(
1
S∗
− Λ2

A∗

) (C.10)

the time-shift integral

λ

2
=

λ/2∫
0

dt = Λ

0∫
z∗

dz

A(z)

√
Λ2 − A(z)

S(z)
+ A(z)

z2
z2
∗

(
1
S∗
− Λ2

A∗

) . (C.11)

and the renormalized area integral (zcut tends to +0 when the cutoff is removed)

Aren = 2z∗

√
1

S∗
− Λ2

A∗

zcut∫
z∗

dz

z2

√
Λ2 − A(z)

S(z)
+ A(z)

z2
z2
∗

(
1
S∗
− Λ2

A∗

) − 2 ln zcut (C.12)

for large ` all lead to essentially two types of integral kernels.

I1[h(y); ∆] =

1∫
0

dy
h(y)√

1− y(1− y + ∆ y)3/2
(C.13a)

I2[h(y); ∆] =

1∫
0

dy
h(y)√

1− y(1− y + ∆ y)5/2
(C.13b)

Here h(y) is a function that is continuous in the interval [0, 1] and Taylor expandable

around y = 1, while ∆ = 2δ − δ2 is a small parameter. The integration variable y

is related to our original radial coordinate z by the simple coordinate transformation

y = z2/(1− δ)2.

We evaluate such integrals perturbatively in ∆, displaying one more order than we

need.

I1[h(y); ∆] =
2h(1)

∆
+ h′(1) ln

∆

4
+ 2h′(1) + I1[h(y)] +O(∆ ln ∆) (C.14)

I2[h(y); ∆] =
4h(1)

3∆2
+

2h(1)− 2h′(1)

3∆
− 1

2
h′′(1) ln

∆

4
− 4

3
h′′(1) + I2[h(y)] +O(∆ ln ∆)

(C.15)
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The O(1) integrals are defined as (h(m) denotes the mth derivative of h)

In[h(y)] =

1∫
0

dy
h(y)−

∑n
m=0

(y−1)m

m!
h(m)(1)

(1− y)n+1
. (C.16)

In the rest of the appendix we apply these formulas to the three integrals mentioned

above.

The time-shift integral (C.11) yields

λ =
Λ

δ

(
1 +

ε2

4

(
3A′2(1) + 2S2(1) + S ′2(1)

)) (
1 +O(δ ln δ) +O(ε3)

)
(C.17)

where we assumed A2(1) = 0 since we keep the horizon fixed at z = 1. In this appendix

prime denotes derivative with respect to y (and not with respect to z, as it does in

the main text). Moreover, we set A′2(1) = 0 since we also keep the temperature fixed.

Solving (C.17) for Λ shows that it scales linearly in λ and, to leading order, linearly in

δ. The entangling region interval (C.10) allows to solve δ in terms of `, λ and ε.

δ = 2e−`
(

1 + ε2` f − λ
(
1 + ε2 (`− 1) f

)
+

3

4
λ2
(
1 + ε2(`− 2) f

))
+ . . . (C.18)

with

f :=
S ′2(1)

4
− S2(1)

2
. (C.19)

We deduce from (C.18) that each power of δ is suppressed at large ` by an instanton-like

factor. Note that the suppression by e−` is compatible with general expectations and

precisely agrees with the exponent derived for holographic EE in [39]. Finally, the area

integral (C.12) yields the result (6.14) stated in the main text.
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