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1 Introduction

Holography relates the quantum-mechanical time evolution of a strongly coupled, four-
dimensional gauge theory to that of classical gravity in a five-dimensional asymptotically
anti de Sitter (AAdS) spacetime. The power of this correspondence is that it allows for the
use of classical gravity in five dimensions to tackle otherwise intractable problems on the
gauge theory side.

The spacetime where the gauge theory is formulated is identified with the boundary of
AAdS. We will refer to its four-dimensional metric as the “boundary metric”, and to the
five-dimensional metric in AAdS as the “bulk metric”. In many applications of holography
the boundary metric is taken to be non-dynamical. For example, this metric is flat in the
holographic description of the quark-gluon plasma [1, 2] or in applications to condensed
matter systems [3–5]. Applications with a curved metric include gauge dynamics in black
hole backgrounds [6] or in de Sitter (dS) space [7–14]. In all these cases the boundary
metric influences, but is unaffected by, the gauge theory dynamics. In other words, the
backreaction of the gauge degrees of freedom on the metric is not included.

Despite its successes, this framework is insufficient if the boundary metric is dynamical.
This limits potential applications of holography to cosmological defects, phase transitions
in the early Universe, neutron star mergers, inflation, pre- or re-heating, cosmological
instabilities, etc. In these applications one is interested in the semiclassical-gravity regime.
This means that the gauge theory is quantum mechanical but the metric obeys the classical
Einstein equations sourced by the expectation value of the gauge theory stress tensor:

Rµν −
1
2Rgµν + Λ gµν = 8πG 〈Tµν〉 . (1.1)

All quantities in this equation, including Newton’s constant G and a possible cosmological
constant Λ, refer to the four-dimensional boundary theory. Hereafter we will refer to the
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are given in terms of �2(t), a(t) and their deriva-
tives by expressions of the form

�n

⇣
M,a, ȧ, . . . , a(n),�2, �̇2, . . . ,�

(n�2)
2

⌘
, (5a)

 n

⇣
M,a, ȧ, . . . , a(n)

⌘
. (5b)

There is a similar expression for the fall-off of
the five-dimensional bulk metric with one unde-
termined coefficient a4(t). The GTST depends
on the undetermined coefficients and on the scale
factor via expressions of the form [6]

E (a4,�2, a, ȧ, ä) , P (a4,�2, a, ȧ, ä) . (6)

gµ⌫(t0) , Tµ⌫(t0) (7)

We are now ready to discuss the implications
of the corner conditions, namely the fact that the
initial data in the bulk and at the boundary can-
not be specified independently. From the bulk
viewpoint, the function �(r, t0) and the coeffi-
cient a4(t0) at an initial time t0 are free data.
Moreover, if this data and a(t0) are known, then
integration of the constraints coming from the
Einstein-scalar equations in the bulk determines
the rest of the five-dimensional fields on the ini-
tial time slice. Knowledge of �(r, t0) determines
the scale factor and all its derivatives at t0. This
follows from (5) together with the fall-off coeffi-
cients of other fields that we have not displayed.
derivatives of order n � 2 of the scale fac-

tor at t0 in terms of M,a(t0) and ȧ(t0). Note
that this follows form the coefficients  n(t0) of
the logarithmic terms. In the absence of these
terms, the constraints imposed by the �n(t0) co-
efficients could be interpreted as constraints on
the derivatives of �2(t) at t0, leaving the scale
factor unconstrained.

However, the requirement that the boundary
metric obeys the Friedman equations (2) and the
continuity equation (3) with the stress tensor (??)
constraints the bulk initial data. The reason is
that these equations, together with the knowl-
edge of the �n(t) coefficients, determine all the
derivatives of the scale factor at any given time
t in terms of a(t), a4(t) and �2(t), and this then
fixes all the logarithmic terms in (4). To see how
these constraints arise, consider

For dynamical gravity there are a few technical
challenges.

We first show a sample evolution starting with
flat space initial conditions with a4 = �100 with
several different values of ⇤. These lead to a late

time de Sitter state, a big crunch and an asymp-
totically Minkowski solution (Fig. 2). We also
show the temperatures, where it can be seen that
the temperature extracted from the horizons lag
behind by the temperature extracted from the en-
ergy density by a time of about 1/4T . This shift
in time is a feature of our particular (Eddington-
Finkelstein) time slicing in the bulk.
Secondly, we take the ⇤ = 0 solution (labelled

IC 1) and change the initial conditions to IC 2 and
IC 3 respectively by shifting �̃0(z) by a constant
of +2 and -2.5. These values were maximised to
obtain a regular bulk solution as indicated by a
stable evolution with small constraint violation.
Indeed these two initial conditions initially show
far-from-equilibrium dynamics, with large pres-
sure anisotropies (see Fig. 4 middle). The zoom
of the late time dynamics shows that within a
time of approximately 1/T the solutions are well
described by viscous hydrodynamics, with an im-
portant contribution from the bulk viscosity.

DISCUSSION

We thank Javier Mas for discussions. JCS and
DM are supported by grants FPA2016-76005-
C2-1-P, FPA2016-76005-C2-2-P, 2014-SGR-104,
2014-SGR-1474, SGR-2017-754, MDM-2014-
0369, PID2019-105614GB-C21, PID2019-
105614GB-C22. They also acknowledge financial
support from the State Agency for Research of
the Spanish Ministry of Science and Innovation
through the “Unit of Excellence Maria de Maeztu
2020-2023” award to the Institute of Cosmos
Sciences (CEX2019-000918-M).

[1] J. Casalderrey-Solana, H. Liu, D. Mateos, K. Ra-
jagopal and U. A. Wiedemann, “Gauge/String
Duality, Hot QCD and Heavy Ion Collisions,”
[arXiv:1101.0618 [hep-th]].

[2] W. Busza, K. Rajagopal and W. van der Schee,
“Heavy Ion Collisions: The Big Picture, and the
Big Questions,” Ann. Rev. Nucl. Part. Sci. 68
(2018), 339-376 [arXiv:1802.04801 [hep-ph]].

[3] D. Marolf, M. Rangamani and T. Wiseman,
“Holographic thermal field theory on curved
spacetimes,” Class. Quant. Grav. 31 (2014),
063001 [arXiv:1312.0612 [hep-th]].

[4] A. Buchel and A. Karapetyan, “de Sitter Vacua
of Strongly Interacting QFT,” JHEP 03 (2017),
114 [arXiv:1702.01320 [hep-th]].

[5] A. Buchel, M. P. Heller and J. Noronha, “En-
tropy Production, Hydrodynamics, and Resur-

3

are given in terms of �2(t), a(t) and their deriva-
tives by expressions of the form

�n

⇣
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Figure 1. Penrose diagram of our evolution scheme. The diagonal blue lines are four-dimensional
null slices in the bulk. Each point on the vertical black line is a three-dimensional spatial slice of
the boundary spacetime.

gauge theory stress tensor simply as “the stress tensor”. Since this is O(N2) in the large-N
limit, we assume that G is O(N−2) in order to have a finite back-reaction. In the following
we work with N -independent quantities defined via the rescalings

Tµν →
(
2π2/N2

)
Tµν , G→

(
N2/2π2

)
G . (1.2)

The key point in the semiclassical regime is to determine the quantum-mechanical
evolution of the stress tensor, which must be done self-consistently in the presence of the
dynamical metric gµν . We use holography to determine this evolution (see figure 1). The
initial state at time t0 is defined by the five-dimensional fields on a bulk null slice, together
with the four-dimensional metric on a boundary spatial slice. These two sets of initial
data must satisfy non-trivial “corner” consistency conditions that we will analyse below
(see [15–18] for related discussions). For the moment, it suffices to say that the leading term
in the near-boundary fall-off of the bulk metric must coincide with the boundary metric,
whereas the subleading term in this fall-off determines the expectation value of the stress
tensor. To evolve to a time t1 = t0 + ∆t, we first use equation (1.1) to determine the new
boundary metric at t1. Because AAdS is not globally hyperbolic, this new metric provides
necessary boundary conditions that allow us to evolve the five-dimensional bulk equations
to determine the new bulk fields at t1. The subleading term of the five-dimensional metric
near the boundary then determines the stress tensor at t1.

The semiclassical regime has been previously extensively considered in the holographic
context. An incomplete list of references includes [19–36]. The main novelty of our
approach with respect to previous work is that both the boundary and the bulk spacetimes
are constructed dynamically, one time step at a time. Further differences include the
fact that we do not introduce an ultraviolet cut-off in the gauge theory or branes in
the bulk [19–26, 30, 36] but work directly with dynamical gravity at the boundary; we
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do not assume a perfect-fluid form for the stress tensor [32] or consider a derivative
expansion [37] but allow for arbitrarily-far-from-equilibrium dynamics; and we do not make
use of predetermined bulk solutions [27, 29, 31] or restrict ourselves to constant-curvature
boundary metrics [35].

For simplicity, in this paper we will focus on homogenous and isotropic gauge-theory
states, namely on Friedmann-Lemaître-Robertson-Walker geometries. However, we expect
that our approach can be extended to more general cases. Our full code is publicly available
at http://wilkevanderschee.nl/public-codes.

2 Model, scheme and evolution

2.1 Model

We use the same model as in ref. [14], to which we refer the reader for additional details. The
four-dimensional gauge theory is a large-N , strongly coupled, non-conformal theory with a
mass scale M . We will measure all the dimensionful gauge-theory quantities in units of M .
The five-dimensional bulk theory consists of gravity coupled to a scalar field φ, with action

S = 2
8πG5

∫
M

d5x
√
−g

(1
4R−

1
2(∂φ)2 − V (φ)

)
+ 1

8πG5

∫
∂M

d4x
√
−γK + Sct . (2.1)

Here G5 is the five-dimensional Newton’s constant, R is the Ricci scalar associated to the
five-dimensional bulk metric g onM, γµν is the metric induced on a four-dimensional slice
near the boundary ∂M, and

K = γµνKµν = γµν∇µnν (2.2)

is the trace of the extrinsic curvature Kµν associated to this slice. The second term on the
right-hand side of (2.1) is the familiar Gibbons-Hawking term. The third term in (2.1) will
be described shortly. The potential V (φ) encodes the properties of the dual gauge theory.
As in [14], we choose

V (φ) = −4
3W (φ)2 + 1

2W
′ (φ)2 , (2.3)

where the superpotential is given by

LW (φ) = −3
2 −

φ2

2 + φ4

4φ2
M

. (2.4)

L is a length scale. The dimensionless constant φM is a free parameter that controls the
degree of non-conformality of the model, for example the maximum value of the bulk
viscosity. For concreteness, in this paper we will choose

φM = 2 . (2.5)

Both V (φ) and W (φ) have a maximum at φ = 0 and a minimum at φ = φM . Each of
these extrema yields an AdS solution of the equations of motion with constant φ and radius
L2 = −3/V (φ). In the gauge theory each of these solutions is dual to a fixed point of the
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renormalisation group with a number of degrees of freedom N2 proportional to L3/G5. In
top-down models this relation is known precisely. For example, in the case in which the
gauge theory is N = 4 SYM with N colours we would have

L3

8πG5
= N2

4π2 . (2.6)

In our bottom-up model we will take this as a definition of the number of degrees of freedom
in the gauge theory, N , at each fixed point.

2.2 Scheme

Near the AdS boundary the metric can be written in the so-called Fefferman-Graham (FG)
gauge

ds2 = L2 dρ2

4ρ2 + γµν(ρ, x)dxµdxν . (2.7)

The boundary is located at ρ = 0 and is parametrised by the coordinates xµ with µ = 0, . . . , 3.
Near the boundary the metric and the scalar behave as

γµν(z, x) ∼ gµν(x)
ρ

, φ ∼Mρ1/2 , (2.8)

where gµν(x) is the boundary metric and M is the gauge theory intrinsic scale. Substituting
this in the first term of the action (2.1) we see that it suffers from large-volume divergences.
These divergences can be regularised and renormalised by a procedure called holographic
renormalisation (see e.g. [38–40]), which makes the action finite and the variational principle
well-defined. This procedure is implemented by including in (2.1) the counterterm action

Sct = L

8πG5

∫
∂M

d4x
√
−γ
[(
−1

8R−
3
2 −

1
2φ

2
)

+ 1
2 (log ρ)A+ (2.9)

+ L2
(
αA+ βφ4 + ε φ2R+ ξ1R

2 + ξ2∇2R+ ξ3∇µ∇νRµν
)]
,

where α, β, ε, ξi are real constants and the factors of L are necessary for dimensional reasons.
This action is integrated on a timelike, constant-ρ hypersurface near the boundary with
induced metric γµν . In this and in subsequent equations all metric-dependent terms such
as the Ricci scalar R, the covariant derivative ∇, etc. are those associated to γ. The
second term of (2.1) is also understood to be evaluated on this slice, the first term of (2.1)
is understood to be evaluated by integrating down to this slice, and the limit ρ → 0 is
understood to be taken at the end of the calculation.

In (2.9), A(γµν , φ) is the so-called conformal anomaly, which in our case is given by

A = Ag +Aφ , (2.10)

where
Ag = 1

16

(
RµνRµν −

1
3R

2
)

(2.11)

– 4 –
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is the holographic gravitational conformal anomaly and

Aφ = −φ
2

12R (2.12)

is the conformal anomaly due to matter. In these and in subsequent equations all the terms
are functionals of the metric γµν and of the scalar field φ induced on the ρ-hypersurface.
However, making use of the near-boundary behaviour (2.8) we see that the product with
the determinant of the induced metric yields a finite contribution in the limit in which the
cut-off is removed, since

lim
ρ→0

√
−γA (γµν , φ) = lim

ρ→0

[
ρ−4√−g

][
ρ4A (gµν ,M)

]
=
√
−gA (gµν ,M) . (2.13)

For this reason we will often think of the anomaly, as well as of other curvature invariants,
as functionals of M and the boundary metric gµν .

The fact that
√
−γA yields a finite result has two consequences. First, it means that

the logarithmic term in (2.9) cancels a purely logarithmic divergence from the bulk action.
The requirement that this cancellation takes place fixes uniquely the form of the anomaly,
including the values of all the numerical coefficients in (2.11) and (2.12). The presence of
this logarithmic term on the gravity side breaks diffeomorphism invariance and is dual to
the presence of the conformal anomaly in the dual gauge theory.

The second consequence is that the anomaly itself, without the log, can be added to
the counterterm action with an arbitrary coefficient, which we named α in (2.9). It is
important to note that not just the anomaly but any local, finite term that is invariant under
the symmetries of the theory can be added to the counterterm action with an arbitrary
coefficient. The freedom to add these terms with arbitrary coefficients is part of the general
freedom in the choice of renormalisation scheme. These terms can be constructed out of
non-negative powers of the scalar field and of curvature invariants of the induced metric
γµν in such a way that their overall mass dimension is four.1 The second line of (2.9) is the
most general linear combination of terms of this type, except for the Kretschmann scalar
RµντψR

µντψ. We have not included the latter because, in four dimensions, the integral

1
8π2

∫ √
−γ

(
R2 − 4RµνRµν +RµντψR

µντψ
)

= χ , (2.14)

with χ the Euler character, is a topological invariant. A pedagogical discussion of the
independent curvature invariants in arbitrary dimension can be found in http://kias.dyndns.
org/crg/invariants.html.

The coefficients α and β play special roles. In the first case, this is because α can be
shifted by a scale transformation, which is implemented via the following rescaling of the
coordinates

xµ → λxµ , ρ→ λ2ρ , (2.15)

where λ is a positive real number. It is easy to see that the effect of this transformation
is to shift the counterterm action by a term of the form (log λ)A, which in turn can be

1Derivatives of the scalar field should also be included in situations with non-constant M .
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absorbed through the redefinition α→ α+ log λ. The freedom to rescale ρ, or equivalently
to shift α, is thus the freedom to choose a renormalisation scale. We may therefore think of
α as related to the renormalization group scale or subtraction point µ through

α ∼ logµ . (2.16)

In the second case the reason is that the counterterm associated to β is the only one that
does not vanish for a flat boundary metric. In particular, the value

β = 1
4φ2

M

= 1
16 (2.17)

is special because in this case the βφ4 term combines with the second and the third summands
in the first term of (2.9) to give precisely the superpotential (2.4). This means that, if
the theory (2.1) is the bosonic truncation of a supersymmetric theory with superpotential
W , then this choice of β leads to a supersymmetric renormalisation scheme and, as a
consequence, the full boundary stress tensor vanishes identically if the boundary metric is
flat. We will come back to these points below.

The finite counterterms give contributions to the gauge theory stress tensor, which
therefore we can write as

Tµν = T (0)
µν + α

(
T (g)
µν + T (φ)

µν

)
+ β T (β)

µν + ε T (ε)
µν + ξi T

(i)
µν , (2.18)

where T (0)
µν denotes the stress tensor in the scheme α = β = ε = ξi = 0. This means that, in

the absence of dynamical gravity at the boundary, the boundary stress tensor is ambiguous
to the extent that the coefficients of the finite counterterms are arbitrary. However, in
the presence of dynamical boundary gravity, these coefficients simply renormalize the
gravitational couplings and the ambiguity is replaced by the physical specification of the
renormalized couplings [41]. To see this, imagine first setting all coefficients to zero except
for β and consider the contribution to the full stress tensor of T (β)

µν , which takes the form

T (β)
µν = L3

8πG5
M4 gµν = N2

4π2 M
4 gµν , (2.19)

where we have made use of (2.6). Moving this term to the left-hand side of (1.1) we can
write Einstein’s equations in the form

1
8πG

(
Rµν −

1
2 Rgµν

)
+ Λren

8πG gµν = T (0)
µν , (2.20)

with
Λren
8πG = Λ

8πG −
βM4

4π2 . (2.21)

Note that in this equation the N2-factor coming from (2.19) has cancelled out with the
N2-factor coming from (1.2) in such a way that (2.21) is N -independent. We see that the
effect of the β-counterterm is simply to renormalize the bare cosmological constant2 Λ in

2More precisely, the combination Λ/8πG.
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Einstein’s equations. In other words, Λ and β are not separately meaningful, only the
combination Λren is. It is therefore convenient to choose β as in (2.17), since in this case
flat space is a solution of (1.1) with Λ = 0.

Consider now adding the contribution of the α-term. Also, assume for the moment
that the boundary metric is of FRWL type, which will be our focus below. On this subclass
of boundary states the stress tensor associated to Ag vanishes, namely T (g)

µν = 0, and the
stress tensor of Aφ combines with that of the ε-counterterm to give

L3

8πG5

[
α
(
T gµν + T φµν

)
+ ε T (1)

µν

]
= −N

2

4π2
M2

6 (α+ 2ε)
(
Rµν −

1
2 Rgµν

)
, (2.22)

where we have made use of (2.6). Moving this term to the left-hand side of (1.1) we get

1
8πGren

(
Rµν −

1
2 Rgµν

)
+ Λren

8πGren
gµν = T (0)

µν , (2.23)

with
1

8πGren
= 1

8πG + N2

4π2
M2

6 (α+ 2ε) . (2.24)

As in (2.21), the N2-factors cancel out in (2.24). We see that the effect of the α- and ε-terms
is simply to renormalize the bare, four-dimensional Newton’s constant G. In other words, G,
α and ε are not separately meaningful, only the combination Gren is. Since the coefficient
α is associated to renormalization group transformations through (2.16), eq. (2.24) can
be seen as the renormalization group equation for the running of Newton’s constant. For
convenience we will work in the scheme α = ε = 0.

Consider now what happens if the boundary metric is not FRWL or if we consider the
rest of the finite counterterms with coefficients ζi. These terms are of order higher than two in
derivatives. If we were considering the most general semiclassical gravitational theory, as we
would do in the full effective theory, then these contributions would simply renormalize the
bare values of the coefficients of higher-curvature terms that were omitted in (1.1). As above,
the only meaningful quantities would be the renormalized couplings measured at the physical
energy scale of interest µ. The dynamical regime that we wish to study is that of classical
gravity coupled to quantum matter. This means that µ�Mp, with Mp the Planck mass,
since otherwise we need to include quantum gravity effects. This is the regime of interest,
for example, if we want to understand how the QCD transition took place as the Universe
expanded and cooled. In this regime we expect that the renormalized higher-derivative
couplings will be suppressed by factors of µ/Mp. Therefore it is a consistent approximation
to work with a truncated effective theory in which we set these couplings to zero. Since
only renormalized couplings matter we may therefore declare that, in this approximation,
all the ξi vanish and the left-hand side of (1.1) contains only two-derivative terms.

2.3 Evolution

Having fixed the renormalization scheme, we can now discuss the dynamics. For simplicity,
we focus on homogeneous and isotropic states in the four-dimensional theory, namely on
Friedmann-Lemaître-Robertson-Walker cosmologies. As a consequence, the boundary metric
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is completely determined by a scale factor a(t), and the only non-zero components of the
stress tensor are the energy density E(t) and the pressure P(t). Under these conditions, (1.1)
reduces to the Friedmann equation

(
ȧ

a

)2
≡ H2 = 1

3 Λ + 8πG
3 E (2.25)

and the continuity equation
Ė = −3H (E + P) , (2.26)

with H = ȧ/a the Hubble rate.
Below we will extract the stress tensor from the near-boundary fall-off of the five-

dimensional fields. For illustration, consider the bulk scalar field. In an appropriate null
holographic coordinate r with the boundary at r →∞ we have [14]

φ = M

r
+ φ2(t)

r3 + 1
r

∑
n≥3

φn(t)
rn

+ 1
r

∑
n≥2

ψn(t) log r
rn

+ · · · (2.27)

The logarithmic terms are specific to odd-dimensional bulk spacetimes [42]. The near-
boundary analysis only leaves undetermined φ2(t). The remaining coefficients φn≥3 and
ψn≥2 are given in terms of φ2(t), a(t) and their derivatives by expressions of the form

φn
(
M,a, ȧ, . . . , a(n), φ2, φ̇2, . . . , φ

(n−2)
2

)
, (2.28a)

ψn
(
M,a, ȧ, . . . , a(n)

)
. (2.28b)

There is a similar expression for the fall-off of the five-dimensional bulk metric with
one undetermined coefficient a4(t). From the bulk viewpoint, the function φ(r, t0) and the
coefficient a4(t0) at an initial time t0 are free data. Moreover, if this data and the scale
factor a(t0) are known, then integration of the constraints coming from the Einstein-scalar
equations in the bulk determines the entire five-dimensional metric on the initial time slice
at t = t0.

Eqs. (2.28), which arise from the bulk equations of motion, constitute a set of constraints
that relate the bulk initial condition φ(r, t0) and the derivatives of the boundary scale factor.
These corner conditions imply that the initial data on the bulk slice and the boundary
conditions on that slice cannot be specified independently. For a non-dynamical boundary
metric, as is in e.g. [43], a(t) can be prescribed arbitrarily and these bulk constraints can
be used to determine the ψn(t) coefficients. In contrast, in the case of dynamical boundary
gravity, it is highly non-trivial that these bulk constraints can be made compatible with
those coming from the boundary Einstein equations (1.1). The latter arise as follows.
The stress tensor depends on the undetermined coefficients and on the scale factor via
expressions of the form [14]

E (a4, φ2, a, ȧ, ä) , P (a4, φ2, a, ȧ, ä) . (2.29)
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These, together with (2.25), (2.26) and (2.28a), can be shown to determine all the derivatives
of the scale factor at t0 in terms of a(t0), a4(t0) and φn(t0). Through (2.28b), this fixes all
the logarithmic terms in φ(r, t0). This is particularly important for our scheme because
numerically we work with “subtracted” variables that differ from the original ones by a
number of logarithmic (and some non-logarithmic) terms. Specifically, our evolution scheme
is as follows. At t0 we specify a(t0), a4(t0), φ2(t0) and the subtracted version of φ(r, t0).
We then use the procedure above to find a(n)(t0) up to n = 4. These determine all the
necessary logarithmic terms. Next we integrate the Einstein-scalar constraints and find all
the bulk data on the initial time slice. By construction this is consistent with the corner
conditions up to the desired order. Finally, we use the bulk and the boundary evolution
equations to obtain a, a4, φ2 and the subtracted version of φ at t0 + ∆t.

3 Results

We perform evolutions for three different values of the cosmological constant Λ = {−0.5, 0, 2}.
As initial data at t0 = 0 we use a(0) = 1 and a radial profile φ(r, t0) that corresponds to a
thermal equilibrium state in flat space. In all cases we choose a4(0) = −2000, except in
figure 3, for which a4(0) = −100.

Figure 2(top) shows the evolution of the Hubble rate. Negative Λ leads to a “Big
Crunch” where the Hubble rate evolves towards minus infinity and the spacetime collapses.
For Λ = 0 the Hubble rate decays to zero and the spacetime approaches Minkowski space.
Positive Λ leads to an exponentially expanding dS Universe.

Figure 2(middle) shows E and P. For Λ < 0 the energy density reaches a minimum,
after which it diverges as the Big Crunch is approached. For Λ = 0, E and P decrease in
a power-law fashion that is well described by hydrodynamics (see below). For Λ > 0 the
Universe approaches dS with a small Casimir contribution from the non-conformal matter,
EdS = −PdS ≈ 0.2667.3

In figure 2(bottom) we show the temperature of the gauge theory state, T = κ/2π,
computed from the surface gravity, κ, of the event (EH) and of the apparent (AH) horizons
of the bulk geometry. For Λ < 0 the AH reaches the boundary of AAdS at a finite boundary
proper time. The boundary itself collapses at this point, and TAH diverges. We do not show
TEH because the definition of the EH is unclear in this case. For Λ > 0 the temperatures
at late times approach TEH = −TAH = H/2π, in agreement with [14, 33]. For Λ = 0 the
horizon falls deep into the bulk and at late times H ∝ t−1 and T ∝ t−1/2, as expected. In
addition, eq. (2.25) implies E/H4 ∼ t2/G� 1, meaning that the dynamics is dominated by
the energy density. As a consequence, the late-time boundary state approaches a thermal
state in Minkowski space and the bulk EH and AH become indistinguishable.

Holography can evolve strongly-coupled, far-from-equilibrium, quantum matter which,
after some time, is expected to enter a hydrodynamic regime (except in dS [14], see below).
For Λ = 0 this is illustrated in figure 3, which shows the evolution of the pressure/energy
ratio for three different initial conditions, IC1, IC2 and IC3. For IC2 and IC3 we added

3This value is consistent with [14] after taking into account a typo in section 4.3 of [14], where we wrote
that we chose α = 0 while the actual value was α = 3/4.
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Figure 2. Evolution of the Hubble rate (top), of the energy density and pressure (middle), and of
the effective temperature (bottom), for G = 1/2500 and three different values of Λ.
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Figure 3. Comparison between the holographic result for the pressure/energy ratio (blue) and
the ideal (red) and viscous (green) hydrodynamic approximations, for G = 1/750, Λ = 0 and three
different initial conditions.

respectively +2 and −1.5 to the subtracted φ(r, 0) of IC1. This leads to evolutions that
are just about numerically stable and hence as far from equilibrium as our code allows.
The blue curves are the holographic results. The difference with the viscous hydrodynamic
approximation [14] (green curves) at early times shows that the initial dynamics is far from
equilibrium. After ∆t ≈ 2 the evolution becomes well described by viscous hydrodynamics,
consistently with a hydrodynamization time of O(1/T ) [44, 45]. The comparison to ideal
hydrodynamics in the right panel of figure 3 shows that viscous corrections can be sizable
even at late times.

The initial far-from-equilibrium period leaves an imprint on the scale factor. This is
illustrated in figure 4, which shows the Hubble rate for the three evolutions of figure 3 as a
function of the redshift z(t) = a(tobs)/a(t)− 1. The time tobs is defined for each curve by the
physical condition that E reaches some late-time value, in this case E(tobs) = 0.02. At small
redshift the evolutions are equivalent as a consequence of the applicability of hydrodynamics
at late times shown in figure 3. In contrast, at large redshift the far-from-equilibrium
dynamics at early times leads to significantly different Hubble rates.

In figure 5 we show the analogous results for Λ = −0.5. The dashed, grey line marks
the time where E reaches a minimum and H = 0. The entire evolution is well described by
viscous hydrodynamics. As above, viscous corrections are non-negligible at late times.

Figure 6 illustrates the asymtotically dS case. At late times the backreaction is
dominated by the cosmological constant, which here includes a Casimir contribution that we
subtract in the plot. Once the expansion has diluted the energy density so that E−EdS . H4,
the system is driven out of equilibrium and the hydrodynamic approximation ceases to be
valid, as expected from the non-backreacted analysis [14].
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Figure 4. Evolution of the Hubble rate as function of redshift z for the three different initial
conditions presented in figure 3.
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Figure 5. Comparison between the holographic result for the pressure/energy ratio (black) and the
ideal (blue) and viscous (red) approximations, for G = 1/2500 and Λ = −0.5.
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Figure 6. Same as in figure 5 but for Λ = 2.

4 Discussion

We have provided the first example of holographic time evolution with dynamical boundary
gravity in which both the bulk and the boundary geometries are constructed dynamically,
one time step at a time.

In order to illustrate our approach in the simplest possible setting, we have focused on
homogeneous and isotropic states. However, we expect that our scheme can be generalised to
situations with no symmetry assumptions. Our work thus suggests new possible applications
of holography that we will develop elsewhere. Here we just close with brief comments on
two of them.

Inflation could be studied by promoting the boundary value of the bulk scalar field to
a dynamical boundary scalar field which would play the role of the inflaton. This would
allow us to use holography to study e.g. the pre- and re-heating processes at the end of
inflation [46, 47].

In the absence of symmetry assumptions, cosmological backgrounds are expected to
suffer from instabilities [48]. This has been studied holographically in the linear approxi-
mation [34]. Our approach would allow us to determine the endpoint of these instabilities
deep into the nonlinear regime.
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