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Post-merger gravitational-wave signal from neutron-star binaries: a new look at an old problem
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ABSTRACT

The spectral properties of the post-merger gravitational-wave signal from a binary of neutron stars encodes
a variety of information about the features of the system and of the equation of state describing matter around
and above nuclear saturation density. Characterising the properties of such a signal is an “old” problem, which
first emerged when a number of frequencies were shown to be related to the properties of the binary through
“quasi-universal” relations. Here we take a new look at this old problem by computing the properties of the
signal in terms of the Weyl scalar ψ4. In this way, and using a database of more than 100 simulations, we
provide the first evidence for a new instantaneous frequency, fψ4

0 , associated with the instant of quasi time-
symmetry in the postmerger dynamics, and which also follows a quasi-universal relation. We also derive a new
quasi-universal relation for the merger frequency fhmer, which provides a description of the data that is four
times more accurate than previous expressions while requiring fewer fitting coefficients. Finally, consistently
with the findings of numerous studies before ours, and using an enlarged ensamble of binary systems we point
out that the ℓ = 2,m = 1 gravitational-wave mode could become comparable with the traditional ℓ = 2,m = 2

mode on sufficiently long timescales, with strain amplitudes in a ratio |h21|/|h22| ∼ 0.1 − 1 under generic
orientations of the binary, which could be measured by present detectors for signals with large signal-to-noise
ratio or by third-generation detectors for generic signals should no collapse occur.
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1. INTRODUCTION

The observation of a gravitational-wave (GW) signal from
the binary neutron-star (BNS) merger event GW170817 (The
LIGO Scientific Collaboration & The Virgo Collaboration
2017), and the detection of an electromagnetic (EM) coun-
terpart, has testified the enormous potential of GW astron-
omy. Starting from early works with simplified equations of
state (EOSs) (see, e.g., Shibata et al. 2005; Anderson et al.
2008; Liu et al. 2008; Baiotti et al. 2008; Hotokezaka et al.
2011), increasingly more comprehensive simulations of these
events, which involve an ever more detailed description of the
microphysics (Bauswein et al. 2019; De Pietri et al. 2019;
Gieg et al. 2019; Tootle et al. 2022; Most et al. 2022; Camil-
letti et al. 2022; Ujevic et al. 2023), of the magnetic-field
evolution (Rezzolla et al. 2011; Dionysopoulou et al. 2013;
Ciolfi et al. 2019; Sun et al. 2022; Zappa et al. 2023), and
its amplification (Kiuchi et al. 2015; Palenzuela et al. 2022;
Chabanov et al. 2023), and of transport of neutrinos (Foucart
et al. 2022; Zappa et al. 2023), allow one to make predic-
tions from the early inspiral up to the long-term evolution of
the postmerger remnant (De Pietri et al. 2020; Kiuchi et al.

2022). During each stage in the evolution of the binary, the
features of the GW and EM signals change in a characteristic
manner, encoding information on the properties of the con-
stituent neutron stars and of the hypermassive neutron star
(HMNS) produced after the merger and, hence, on the gov-
erning EOS.

Characterising the properties of the post-merger GW sig-
nal is a rather “old” problem, which has first emerged when
a number of peculiar frequencies were shown to be related
with the properties of the binary through quasi-universal re-
lations, i.e., relations that are almost independent of the spe-
cific EOS. These relations have been suggested for the GW
frequency at merger fmer (Read et al. 2013; Bernuzzi et al.
2014; Takami et al. 2015; Rezzolla & Takami 2016; Most
et al. 2019; Bauswein et al. 2019; Weih et al. 2020; Gonza-
lez et al. 2022), the dominant frequency in the postmerger
spectrum f2 (see, e.g., Oechslin & Janka 2007; Bauswein
& Janka 2012; Read et al. 2013; Rezzolla & Takami 2016;
Gonzalez et al. 2022), and other frequencies identifiable in
the transient period right after the merger (Bauswein & Ster-
gioulas 2015; Takami et al. 2015; Rezzolla & Takami 2016).
Fits to these quasi-universal relations have been employed
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in a number of studies (see, e.g., (Bauswein et al. 2016;
Baiotti & Rezzolla 2017) for some reviews). These EOS-
insensitive relations can help enormously in constraining the
EOS of matter at nuclear densities, marking the possible ap-
pearance of phase transitions (Most et al. 2019; Weih et al.
2020; Liebling et al. 2021; Prakash et al. 2021; Fujimoto
et al. 2023; Tootle et al. 2022; Espino et al. 2023), inform
waveform models (Bose et al. 2018; Breschi et al. 2019);
however, see Raithel & Most (2022) for possible violations
of these relations.

Another relatively “old” problem in the characterisation of
the GW signal from BNS is the one about the relative weight
of the lower-order multipole ℓ = 2,m = 1. Numerical
simulations have highlighted that the HMNS can be subject
to a nonaxisymmetric instability that powers the growth of
ℓ = 2,m = 1 mode of the rest-mass density distribution
and, hence, of the corresponding GW signal (see, e.g., East
et al. 2015; Lehner et al. 2016a,b; Radice et al. 2016; East
et al. 2019; Papenfort et al. 2022). This mode can already be
seeded by the initial asymmetry of the system in the unequal-
mass case, or develop by the shearing of the contact layers of
the binary constituents upon merger. While the ℓ = 2,m = 2

GW mode is the primary contributor to the GW signal, it
is damped faster than the other modes leading to interesting
secular behaviours.

We here take a new look at both of these old problems by
considering the spectral properties of the GW signal when
computed in terms of the Weyl scalar ψ4. In this way, we
are able to find three novel features that can enrich our un-
derstanding of the GW signal from BNS mergers. In partic-
ular, we first highlight the presence of a new instantaneous
frequency, which we dub fψ4

0 , that can be associated with
the instant of quasi time-symmetry in the postmerger dynam-
ics. Interestingly, we find that a quasi-universal relation ex-
ists for fψ4

0 as a function of the tidal deformability κT
2 and

of the binary mass ratio q. Second, by employing a large
number of BNS simulations, some of which are taken from
the CoRe database (Gonzalez et al. 2022), we obtain a new
quasi-universal relation for fmer as a function of κT

2 and q
that not only requires a smaller number of coefficients, but
also provides a more accurate description of the data. Finally,
as already suggested in (Papenfort et al. 2022), we provide
evidence that the ℓ = 2,m = 1 GW mode could become the
most powerful mode on secular timescales after the merger.

2. NUMERICAL AND PHYSICAL FRAMEWORK

Our analysis is based on the GW signal computed via
numerical simulations of BNS mergers in full general rela-
tivity computed with the codes described in (Radice et al.
2014a,b; Most et al. 2019a,b; Papenfort et al. 2021; Tootle
et al. 2021) and using a number of different EOSs (see be-
low). In addition, we employ part of the data contained in

the CoRe database (Gonzalez et al. 2022), from where we
select only simulations with the highest-resolution. The com-
bined data of 118 irrotational binaries covers the range q :=

M2/M1 ∈ [0.485, 1] in the mass ratio, M := M1 +M2 ∈
[2.4, 3.33]M⊙ in the total ADM mass at infinite separation,
and κT

2 ∈ [33, 458] in the tidal deformability. The dataset
comprises a variety of EOSs including some with quark mat-
ter (Prakash et al. 2021; Logoteta, Domenico et al. 2021; Al-
ford et al. 2005; Demircik et al. 2022; Tootle et al. 2022).

A crucial role in our analysis is played by the use of
the Weyl scalar ψ4 in place of the standard dimensionless
strain polarisations h+,×. The two quantities are math-
ematically equivalent and related by two time derivatives
(i.e., ψ4 = ∂2t (h+ − ih×); see (Bishop & Rezzolla 2016)
for a review). However, while ψ4 is computed from the sim-
ulations, h+,× are obtained after a nontrivial double time
integration (the transformation from h+,× to is ψ4 trivial
as it involves derivatives and not integrals; see (Calderon
Bustillo et al. 2022) for a data-analysis framework based
on ψ4, which can obviously be employed for all types of
compact-object binaries). More importantly, the evolution of
the GW frequency from ψ4 is less rapid than from the strain,
i.e., ∂t ln fψ4

GW
(t) ≪ ∂t ln f

h
GW

(t), thus making it easier and
more robust to characterise the features of the ψ4 GW signal.
In this sense, while ψ4 and h+,× are related by simple time
derivatives, the analysis carried out with the former does pro-
vide additional information as it allows for the determination
of properties that are harder to capture with the latter.

3. OLD AND NEW FREQUENCIES

Figure 1 reports the complete information of the GW sig-
nal from a representative binary in our sample. Using a 3D
representation, we report on the left the ℓ = 2,m = 2 mode
of the GW signal ψ4(t) (light red) and its amplitude |ψ4(t)|
(dark red), the instantaneous frequency fψ4

GW
(t) (black), and

the power spectral density (PSD)
√
2f ψ̃4 (blue) as a func-

tion of the frequency f (see Rezzolla & Takami 2016, for
details on the definition). Also indicated are the three main
frequencies in our analysis: the frequency at merger fψ4

mer,
i.e., the GW frequency at the first maximum of |ψ4|, the fre-
quency at quasi time-symmetry fψ4

0 , i.e., the GW frequency
at the first minimum of |ψ4|, and the dominant frequency of
the HMNS emission fψ4

2 . To help the eye, we also mark
with lines the corresponding times tψ4

mer (dashed), tψ4

0 (dot-
ted), and frequencies (dashed, dotted and dot-dashed respec-
tively). The right panel of Fig. 1 shows the same quantities
but when computed from the strain. By comparing the black
lines in the left and right panels it is straightforward to realise
that the variation of fh

GW
(t) is much larger than that in fψ4

GW
(t)

over the same interval of ∼ 1ms after the merger. It is this
very rapid change in fh

GW
(t) that makes the identification of

fh0 extremely difficult, if not impossible. Note also that while
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Figure 1. 3D representation of the complete information in the GW signal from a representative binary (Tootle et al. 2022). The left panel
shows the ℓ = 2,m = 2 mode of the GW signal ψ4(t) (light red) and its amplitude |ψ4(t)| (dark red), the instantaneous frequency fGW (t)
(black), and the power spectral density (PSD)

√
2f ψ̃4 (blue) as a function of the frequency f . Also indicated are the frequency at merger

fψ4
mer, the frequency at quasi time-symmetry fψ4

0 , the dominant frequency of the HMNS emission f2, and the corresponding times where these
frequencies appear. The right panel shows the same quantities but when computed in terms of the GW strain.

in both representations fmer < f2 < f0, the numerical values
of the various quantities are similar but not identical. How-
ever, fψ4

2 ≃ fh2 to very good precision (the largest differ-
ences are ≲ 4%) simply because this frequency is relative
to a mostly monochromatic GW signal; hence, hereafter we
simply assume fψ4

2 = fh2 =: f2. Finally, because in all rep-
resentations f0 is largest frequency measured, even a crude
measure of largest frequency in the signal will serve as a first
estimate of the f0 frequency.1

Besides marking the time of the first amplitude minimum,
from a physical point of view tψ4

0 corresponds to the time
when the two stellar cores have reached the minimum sepa-
ration and are about to bounce-off each other. At this instant,
the corresponding amplitude of ψ4 shows a clear minimum,
while the instantaneous GW frequency a local maximum [the
discussion in the Supplemental Material (SM) illustrates this
behaviour very clearly by employing the toy model intro-
duced in (Takami et al. 2015)].

4. QUASI-UNIVERSAL RELATIONS

We next proceed to the derivation of quasi-universal re-
lations that can be employed to deduce the physical prop-
erties of the binary. Following the approach started al-
ready in (Takami et al. 2014, 2015; Rezzolla & Takami
2016), which captures the logarithmic variation of a prop-
erly rescaled mass and frequency, we express the relevant
frequencies in terms of a power expansion of the mass ra-
tio q, i.e., log10 [(M/M⊙)(f/Hz)] = a0 + (b0 + b1q +

b2q
2) (κT

2 )
n, where f is any of the frequencies we consider

1 From a numerical point of view, we note that the f0 frequency is always
below ∼ 4 kHz and is therefore much smaller than the typical sampling
frequency of the ψ4 scalar, that is ≃ 80−100 kHz.

(i.e., fψ4
mer, f

h
mer, f

ψ4

0 , f2), a0, b0, b1, b2, n are fitting coeffi-
cients. Hereafter, we will refer to this generic fitting func-
tions as F1.

Figure 2 provides a 3D representation of the measured GW
frequencies fψ4

mer and fψ4

0 as a function of κT
2 and q (see also

the SM for fits to fhmer and f2). Also reported is the fitting
surface described by F1, with the best-fit parameters listed in
Table 2 of the SM for all the frequencies considered. Further-
more, for each frequency we report below the relative error of
the fit in the two principal directions of the fit, κT

2 and q. De-
spite their simple form, our fits for fψ4

mer and fψ4

0 capture the
data very well, showing average relative errors that are ≲ 1%

and maximal relative errors ≲ 2% for other than equal-mass
binaries.

It is interesting to compare our functional fitting form F1

for fhmer, which needs only five fitting coefficients, with the
one proposed in (Breschi et al. 2022) for irrotational bina-
ries, which we will refer to as F2, and that requires twice
as many coefficients. In order to compare F1 and F2 it is
first necessary to distinguish the “pipeline”, that is, the tech-
nical procedure employed to extract the frequencies from the
data. We thus indicate with P1 the pipeline discussed above
and with P2 that released in (Gonzalez et al. 2022). Natu-
rally, each fitting function can be applied to either pipeline,
so that F1(P1) indicates the use of our fitting form to data
computed with our pipeline. In Fig. 3, we present the relative
differences between the measured frequencies for the 118 bi-
naries considered and the corresponding values from the fit,
with different rows referring to the four possibilities.

Overall, the comparison in Fig. 3 shows that F1 leads
to smaller relative errors with a maximum residual error of
∼ 2% and an an average residual error that is between two
and four times smaller than for F2. As a cautionary note we
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Figure 2. 3D representation of the GW frequencies fψ4
mer and fψ4

0 as measured from the data (coloured circles) and presented as a function of
κT
2 and q. Also reported are the best-fit surfaces, while shown below are the relative errors of the fit in the two principal directions. Stars mark

binaries modelled with the V-QCD EOS and thus having a strong first-order phase transition (Demircik et al. 2022; Tootle et al. 2022).
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Figure 3. Relative differences between the measured fhmer frequen-
cies and the corresponding values from the fit. Different rows refer
to the four different possibilities of applying the fitting function Fi
to the data pipeline Pi with i = 1, 2; arrows indicate relative differ-
ences above 10%. Note how the new fitting function and pipeline,
i.e., F1(P1), provide errors that are about four times smaller.

should remark that we have specialised the fitting F2, which
is more general and can include spinning and eccentric bina-
ries, to the case relevant for this comparison, namely, irrota-
tional binaries. Hence, our conclusions apply only to such
binaries.

5. SECULAR GW EMISSION

The last point we cover regards the relative strengths of the
ℓ = 2,m = 2 and ℓ = 2,m = 1 GW modes. The impor-
tance of the latter was first pointed out in (Paschalidis et al.
2015; Lehner et al. 2016a) and is produced by correspond-
ing asymmetries in the rest-mass density. The emergence

of an m = 1 deformation is well-known to occur in iso-
lated stars (Chandrasekhar 1969; Shibata et al. 2000; Baiotti
et al. 2007; Franci et al. 2013; Löffler et al. 2015) that have
a sufficiently large amount of rotational kinetic energy T and
emerges when the ratio T/|W |, where W is the gravitational
binding energy, exceeds a certain threshold (in a systematic
analysis, Baiotti et al. 2007, have shown that this happens for
T/|W | ≳ 0.25). In such stars, the m = 1 mode in the rest-
mass density would grow exponentially reaching equiparti-
tion with the m = 2 mode, and, subsequently, represent the
largest deformation. A similar phenomenology seems to be
present also for the postmerger remnant, as already hinted
in (Papenfort et al. 2022), but as shown more clearly by the
numerous binaries considered here. Figure 4 reports the evo-
lution of the ratio of the GW amplitudes in the two modes
|ψ21

4 |/|ψ22
4 |, with the left panel showing a selected set of bi-

naries and with the right panel reporting all binaries (the raw
timeseries are smoothed over a window ∆t = 0.5ms). While
only a few binaries in the sample reach |ψ21

4 |/|ψ22
4 | = 1

within the simulated time, the large majority exhibits a trend
that we try to capture by extrapolating linearly in time after
averaging the last 5ms of the evolution. Using a colour code
to distinguish binaries with different q, it becomes clear that
the initial strength of the m = 1 mode is inversely propor-
tional to the mass ratio, so that for an extremely asymmetric
binary, i.e., q ≲ 0.6, |ψ21

4 |/|ψ22
4 | can be more than two or-

ders of magnitude larger than for equal-mass binaries. At the
same time, the initial mode-amplitude ratio does not depend
on the merger dimensionless spin (Papenfort et al. 2022).
Unsurprisingly, a similar behaviour can be observed when
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Figure 4. Evolution of the ratio of the two main GW modes |ψ21
4 |/|ψ22

4 |, with the left panel showing a selected set of binaries to highlight the
behaviour for different mass ratios (colour code) and the right one reporting all of the binaries. Black dotted horizontal lines are used to mark
the position when the two modes have equal amplitudes, while straight coloured lines report a linear extrapolation after averaging the last 5ms
of the evolution; note that the large majority of binaries exhibits a growing trend that is maintained throughout the computed evolution.

computing the signal-to-noise (SNR) ratio in the m = 2 and
m = 1 modes. Specifically, by computing a time-windowed
SNR ratio we can quantify the growing contribution of the
subdominant mode in a similar fashion to estimates given by
(Lehner et al. 2016b) and find that its increases to ≃ O(1) if
the m = 1 is not suppressed (see SM for details).

If confirmed by systematic, long-term evolutions, this find-
ing would change the standard picture in which the largest
signal in the BNS postmerger is to be expected at the f2 fre-
quency. Rather, the trend reported here suggests that the most
powerful feature in the PSD for long-lived HMNSs may ac-
tually appear at a frequency ≃ 1

2f2. Because this falls in a
more favourable region of the detectors sensitivities, and as-
suming a detection angle not favouring either of the modes,
the corresponding signal-to-noise ratio will grow proportion-
ally to the ratio between detectors noise at 1

2f2 and f2, hence
by a factor of ∼ 2 for LIGO or Virgo.

While promising, this prospect should be accompanied by
some caveats. First, it is possible that the growth rate may
be weaker than the one estimated here. Second, the ex-
trapolation assumes that the HMNS will not collapse to a
black hole before reaching |ψ21

4 |/|ψ22
4 | ∼ 1 and while this

is likely for soft EOSs and low-mass binaries, it may not
happen if the EOS is stiff and the binary massive. Third,
all binaries in our sample have zero deformation. A ro-
bust conclusion that can be inferred from the results shown
in Fig. 4 is that remnants with a long lifetime, as it was
likely the case for GW170817 (Rezzolla et al. 2018; Gill
et al. 2019; Murguia-Berthier et al. 2021), will reasonably
have the ℓ = 2,m = 1 as the least-damped mode. Hence,
considerable spectral power should be present at frequen-
cies 1

2f2 and f2, with the main strain amplitudes in a ratio
|h21|/|h22| ∼ 0.1−1 for generic orientations (e.g., for an in-
clination of 2 arctan(1/2) ∼ 53◦ two modes have the same
spin-weighted spherical-harmonics coefficients).

6. CONCLUSION

Leveraging on a rich literature developed over the last ten
years on this subject, we have considered again the spectral
properties of the signal when computed in terms of the Weyl
scalar ψ4 rather than in terms of the GW strain h+,×. Ex-
ploiting the better behaviour of ψ4, we were able to highlight
three novel features that can be used to better infer physical
information from the detected signal.

First, by employing a large number of simulations span-
ning a considerable set of EOSs and mass ratios, we have
shown the existence of a new instantaneous frequency,
fψ4

0 , that can be associated with the instant of quasi time-
symmetry in the postmerger dynamics. This corresponds to
when the stellar cores in the merger remnant have reached
their minimum separation and are about to bounce-off each
other. Just like other spectral frequencies of the BNS GW
signal, fψ4

0 also follows a quasi-universal behaviour as a
function of the tidal deformability κT

2 and of the binary mass
ratio q, for which we provide a simple and yet accurate an-
alytical expression. Second, we have obtained a new quasi-
universal relation for the merger frequency fhmer as a func-
tion of κT

2 and q. The new expression not only requires
a smaller number of fitting coefficients than alternative ex-
pressions in the literature, but it also provides a more accu-
rate description of the data, with a residual error that is four
times smaller on average. Finally, we have pointed out the
evidence that the ℓ = 2,m = 1 could become the most
powerful GW mode on sufficiently long timescales, with
strain amplitudes for the dominant modes that are in a ratio
|h21|/|h22| ∼ 0.1 − 1. Should this mode not be suppressed
by the collapse of the HMNS to a black hole or by other dis-
sipative effects such as magnetic fields, considerable spectral
power should be present at frequencies 1

2f2, where it could
be detected in conditions of smaller signal-to-noise ratios or
by third-generation detectors.

The results presented here can be improved by enlarging
the number of BNS simulations considered, by increasing
the variance in the microphysical description (e.g., including
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simulations with magnetic fields and neutrino transport), by
performing additional long-term evolutions, and by extend-
ing the fitting approach to binaries with spins and eccentric-
ity. We will explore these extensions in future work.
Data policy. The relevant data that supports the findings of
this paper is available from the first author and can be shared
upon a reasonable request.
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APPENDIX

SUPPLEMENTAL MATERIAL

TOY-MODEL ANALOGY

Although it is possible to characterise the new spectral feature f0 simply in terms of the instantaneous GW frequency at the
time tψ4

0 at which the Weyl scalar has its first minimum, it is more interesting to associate with this definition also a physical in-
terpretation. As mentioned in the main text, tψ4

0 effectively corresponds to when the two stellar cores have reached the minimum
separation and are about to bounce-off each other. At this instant, the radial velocity of the two stellar cores and the angular ve-
locity of the HMNS has a minimum, so that the corresponding amplitude of ψ4 has a minimum and instantaneous GW frequency
a local maximum.

To illustrate this behaviour, we employ the toy model developed in Takami et al. (2015) (and also employed in other studies,
e.g., Ellis et al. (2018); Lucca et al. (2021)) to describe the dynamics of the postmerger remnant and which consists of an
axisymmetric disk rotating rapidly at a given angular frequency, say Ω2, to which two spheres reproducing the two stellar cores
are connected but are also free to oscillate via a spring that connects them (see Fig. 17 Takami et al. (2015)). In such a system,
the two spheres will either approach each other, decreasing the moment of inertia of the system, or move away from each other,
increasing the moment of inertia. Because the total angular momentum is essentially conserved, the system’s angular frequency
will vary between a minimum value Ω1 (corresponding to the time when the two spheres are at the largest separation) and a
maximum value Ω3 (corresponding to the time when the two spheres are at the smallest separation). Overall, the mechanical
toy model will rotate with an angular frequency that is a function of time and bounded by Ω1 and Ω3, where more time is spent
and hence more spectral power is accumulated. If a damping is introduced, the excursion of the oscillations between the spheres
will decrease over time and eventually stop; when this happens, the toy model will simply rotate at the frequency Ω2, as does the
HMNS after the transient period and before other deformations (e.g., the ℓ = 2,m = 1 mode) affect it.

The Lagrangian of the toy model can be found in Takami et al. (2014) and from it it is possible to derive the differential equation
for the radial displacement r(t)

r̈ +
4k(r − r0)

m
−
[

c1
r2 +MR2/(2m)

]2

r +
2br

m
= 0 , (1)

where M and m are the masses of the disc and of the spheres, R is the radius of the disc, c1 an integration constant related to the
total angular momentum, r0 the natural displacement of mass and b is responsible for dissipative effects. The dissipation due to
the emission of GWs and which results in the two spheres getting closer to one another with time and with a decreasing radial
displacement is introduced by varying the natural displacement r0 via via an exponential function exp(−t/τ) with a suitably
chosen relaxation time τ . Note that this modification carries straight from the Lagrangian to the final ODE without additional
time derivatives, as it is present in the derivative of the Lagrangian with respect to the canonical coordinate r(t) and not its
conjugate.

The system is sufficiently simple that it is possible to compute the GW amplitude and frequency derived from the quadrupole
formula so that the strain components read

h+ =
2m

d
[{ṙ2 + r(r̈ − 2rΩ2)} cos(2φ)− r(4ṙΩ+ rΩ̇) sin(2φ) ] ,

h× =
2m

d
[{ṙ2 + r(r̈ − 2rΩ2)} sin(2φ) + r(4ṙΩ+ rΩ̇) cos(2φ) ] ,

with d the distance from the source to the detector. The ψ4 polarisations are obtained by differentiating twice with respect to
time. Introducing the abbreviations A := ṙ2 + r(r̈ − 2rΩ2) and B := r(4ṙΩ + rΩ̇), as well as recalling that Ω(t) = φ̇(t) we
write them now explicitly

ψ4,+ =
2m

d
[− sin(2φ){4φ̇(Ȧ−Bφ̇) + B̈ + 2Aφ̈}+ cos(2φ){−4φ̇(Ḃ +Aφ̇) + Ä− 2Bφ̈} ] ,

ψ4,× = −2m

d
[cos(2φ){4φ̇(Ȧ−Bφ̇) + B̈ + 2Aφ̈}+ sin(2φ){−4φ̇(Ḃ +Aφ̇) + Ä− 2Bφ̈} ] ,

where ψ4,+ := ∂2t h+ and ψ4,× := ∂2t h×.
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Figure 5. Solution of the toy model for a representative set of parameters. The left panel reports the GW frequency (top row) from the toy
model and from an actual simulation (marked by the index “NR”), the GW amplitudes (middle row) and the radial displacement r(t) (bottom
row). The right panel shows instead the relation between the GW quantities and other dynamical quantities of the toy model, such as the time
derivatives of the angular velocity and of the radial displacement. Note that the GW frequencies and amplitudes are anti-correlated and the
minimum in the radial displacement at tψ4

0 corresponds to the maximum frequency fψ4
0 and minimum amplitude. Also, the minima of the

amplitude (maxima of the frequency) correspond to moments in time when the angular frequency Ω attains a local maximum, and the radial
displacement a local minimum.

The amplitude and the instantaneous frequency of the signal are calculated using the usual definitions

|ψ4(t)| :=
√
ψ2
4,×(t) + ψ2

4,+(t) , (2)

fψ4

GW(t) :=
1

2π

d

dt
arctan

(
ψ4,×(t)
ψ4,+(t)

)
. (3)

The rather lengthy final expressions read:

d

2m
|ψ4(t)| =

[
4 sin(2φ)Ȧφ̇+ 4 cos(2φ)Ḃφ̇+ 4A cos(2φ)φ̇2 − 4B sin(2φ)φ̇2 − cos(2φ)Ä+ sin(2φ)B̈ (4)

+2B cos(2φ)φ̈+ 2A sin(2φ)φ̈
]2

+
[
4 cos(2φ)Ȧφ̇− 4 sin(2φ)Ḃφ̇− 4B cos(2φ)φ̇2 − 4A sin(2φ)φ̇2

+sin(2φ)Ä+ cos(2φ)B̈ + 2A cos(2φ)φ̈− 2B sin(2φ)φ̈
]2
,

2π
fψ4

GW

Fψ4
= 48Ȧ2φ̇3 + 48Ḃ2φ̇3 + 32A2φ̇5 + 32B2φ̇5 − 32Aφ̇3Ä+ 6φ̇Ä2 − 32Bφ̇3B̈ + 6φ̇B̈2 − 24Bφ̇Äφ̈ (5)

+24Aφ̇B̈φ̈+ 24A2φ̇φ̈2 + 24B2φ̇φ̈2 + 4Bφ̇2
...
A − B̈

...
A − 2Aφ̈

...
A − 4Aφ̇2

...
B + Ä

...
B − 2Bφ̈

...
B

+2
(
− 4A2φ̇2 +AÄ+B(−4Bφ̇2 + B̈)

) ...
φ + 2Ḃ

(
3B̈φ̈+ 6φ̇2(−3Ä+ 4Bφ̈)− 2φ̇

...
B +A(40

....
φ + 6φ̈2 − 4φ̇

...
φ )

)
+Ȧ

(
6Äφ̈+ 12φ̇2(3B̈ + 4Aφ̈)− 4φ̇

...
A − 4B(20φ̇4 + 3φ̈2 − 2φ̇

...
φ )

)
,

−1

Fψ4
:=16Ȧ2φ̇2 + 16Ḃ2φ̇2 + 16A2φ̇4 + 16B2φ̇4 − 8Aφ̇2Ä+ Ä2 − 8Bφ̇2B̈ + B̈2 + 4(−BÄ+AB̈)φ̈ (6)

+4(A2 +B2)φ̈2 + 8Ȧφ̇(−4Bφ̇2 + B̈ + 2Aφ̈) + 8Ḃφ̇(4Aφ̇2 − Ä+ 2Bφ̈) .

Figure 5 reports the solution of the system when considering the following set of representative parameters: M = m = 10,
k = 0.2, b = 0.25, c1 = 25, R = 22, r0 = 5, ṙ0 = 0.01, τ = 1000. More specifically, the left panel reports the GW frequency
(top row) as computed from the toy model and from an actual simulation (marked by the index “NR”), the corresponding GW
amplitudes (middle row) and the radial displacement r(t) (bottom row). Note how the GW frequencies and amplitudes are anti-
correlated and the minimum in the radial displacement at tψ4

0 corresponds to the maximum frequency, i.e., fψ4

0 , and minimum
amplitude, as expected in a condition of quasi time-symmetry (in the toy model fh0 is actually a local minimum of fhGW(t), a case
often found in NR data). The right panel of Fig. 5, on the other hand, is used to show the relation between the GW quantities of
the toy model and other dynamical quantities such as the time derivatives of the angular velocity, ∂tΩ(t) and ∂2tΩ(t), and of the
radial displacement, ∂tr(t) and ∂2t r(t) (the top row of the right panel contains the same information as in the top and middle row
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Figure 6. The same as in Fig. 2 in the main text but for the GW frequencies fhmer and f2. Note how F1 is equally accurate in modelling other
frequencies, also when obtained from the strain as in the case for fhmer and f2.

of the left panel). It is clear that for the first few oscillations the minima of the amplitude (maxima of the frequency) correspond
to moments in time when the angular frequency Ω attains a local maximum, and the radial displacement a local minimum.

We find it rather remarkable that the model originally developed to provide justification for the dominant postmerger frequency
can be used to mimic the presence of the f0 frequency with no additional adjustments, appearing as a result of chosen parameters
and initial conditions. Finally, while we do not consider it here, it would be useful to generalise the model to admit unequal
sphere masses, i.e., m/M < 1, and assess the impact it has on the f0 frequency and on the evolution of the m = 2 and m = 1

modes.

ON THE EFFECTIVENESS OF THE FIT

To illustrate effectiveness of the fitting functional form F1 in capturing the spectral properties of the signal in a quasi-universal
manner, we report in Fig. 2 the same 3D representation as of the GW frequencies shown in Fig. 2 but for the GW frequencies
fhmer and f2; note that fhmer is referred to as fmax in Takami et al. (2014); Rezzolla & Takami (2016) and that the f2 frequency
corresponds to the peak of the PSD computed using the definition in Tootle et al. (2022), with the time integration encompassing
the full GW signal. Clearly, the fitting function F1 is equally accurate in modelling other frequencies, quite independently of
whether they have been computed from the Weyl scalar or from the GW strain, as it is as it is the case for fhmer and f2. We
also note that the equal-mass limit of the fitting function F1 for the frequency fhmer, recovers quite accurately the simpler fit
examined in Takami et al. (2014) which expressed the merger frequency as a first-order expression of the tidal deformability
fhmer = a0 + b(κT

2 )
1/5. When setting q = 1 and n = 1/5 in F1, we obtain b = b0 + b1 + b2 = −0.199 (cf., Table 1), thus

resulting in a relative difference that is ≲ 2% with respect to the value b = −0.195 found in Takami et al. (2014). At the same
time, we also note that the fit of fhmer is overall slightly better than that for fψ4

mer (see Table 1); while we do not believe this to be
statistically very significant, it may be due to the slightly larger range in which fψ4

mer is measured.
The only exception to the remarkably good fit of the frequencies is found in the fψ4

0 frequency, where a noticeable deviation
from the trend is visible for binary systems with equal or very-unequal masses, regardless of the EOS employed (see lower part
of the bottom-right panel of Fig. 2). We attribute this decrease in accuracy to the already described difficulties of measuring this
frequency using the ψ4 GW signal, which are even more severe when using |h|. From a physical point of view, the moment of
time symmetry corresponds to the time when the non-axisymmetric quadrupolar deformations of the HMNS are at a minimum,
which leads to a severely suppressed GW signal (indeed the amplitude is at a minimum). This is particularly severe for binaries
with q ≃ 1, where the ℓ = 2,m = 2 deformation is the largest and is significantly suppressed at the moment of time-symmetry,
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Freq. a0 b0 b1 b2 n ⟨∆f/f⟩ max(∆f/f) χ2 χ2
red R2

[%] [%] ×10−3

fψ4
mer 4.589 −0.581 0.543 −0.236 0.20 0.65 4.52 0.135 1.19 0.934

fhmer 4.201 −0.330 0.198 −0.067 0.20 0.32 2.99 0.035 0.30 0.957

fψ4
mer 6.067 −2.142 0.970 −0.410 0.07† 0.59 4.24 0.114 1.00 0.938

fhmer 4.457 −0.578 0.262 −0.087 0.14† 0.32 2.94 0.034 0.30 0.957

fψ4
0 6.550 −2.099 0.518 −0.304 0.06† 1.38 4.22 0.477 4.92 0.611

f2 4.617 −0.170 −0.264 0.160 0.20† 0.45 1.34 0.030 0.48 0.926

Table 1. Best-fit values for the coefficients of the functional form F1. Also reported are the maximal and average relative difference, as well as
the χ2, χ2

red and R2 coefficients of the fit. Indicated with a † are the best-fit values of n when this coefficient is constrained by the fit.

and for binaries with q ≪ 1, where the ℓ = 2,m = 2 deformation is further decreased by the mass asymmetry. Notwithstanding
these difficulties, relative fitting error for fψ4

0 [i.e., max(∆f/f )] is at most 4.2% and only 1.4% on average [i.e., ⟨|∆f |/f⟩].

GROWTH OF THE SNR RATIO

In the main text we have discussed how to use the amplitude ratio |ψ21
4 |/|ψ22

4 | as an effective proxy for the relevance of the
m = 1 mode deformation. We next demonstrate that a clear correspondence exists between finding |ψ21

4 |/|ψ22
4 | ∼ 1 and the ratio

of the SNRs in the two modes. We start by recalling that given the power spectral density of the m-th mode of the GW strain
decomposition h̃m(f) (such as the one presented in Fig. 1 for m = 2) and a noise spectral density of the detector Sn(f), the
corresponding m-th SNR is defined as

SNRm=k :=

[∫ ∞

0

4
|h̃m=k(f)|2
Sn(f)

df

] 1
2

. (7)

Clearly, the ratio of the SNRs, SNRm=1/SNRm=2 and the rate at which it evolves depends on the time ti when the signal starts
to be considered. Because there is no m = 1 signal during the inspiral, the SNR ratio would be intrinsically dominated by the
m = 2 component of the signal if ti was chosen to be the time the signal entered the detector. Hence, to fairly assess the growing
contribution of the m = 1 mode, we compute a time-windowed SNR over a running window of width ∆T = 5ms. We should
remark that this approach is logically and mathematically equivalent to what is done when computing spectrograms (see, e.g., The
LIGO Scientific Collaboration & The Virgo Collaboration 2017) and hence determines, at any given time, the characteristic
frequency at which the GW is emitted. In essence, for any time t̄, we compute the SNR as defined in Eq. (7), where the signal in
the time domain is in the interval t ∈ [t̄ − ∆T/2, t̄ + ∆T/2]. This time-windowed SNR provides an “instantaneous” measure
of the ability of a detector to measure a signal of given strength and is mathematically equivalent to what is routinely done when
computing spectrograms in GW data analysis.

As demonstrated in Fig. 7, the SNR ratio computed in this way grows to be of O(1) at the same time when |ψ21
4 |/|ψ22

4 | ≃ O(1),
thus supporting the effectiveness of the mode ratio in acting as a proxy for the SNR ratio. Finally, we note that the estimates
provided in Fig. 7 are similar in spirit to the SNR estimates suggested by Lehner et al. (2016b). We stress that the results shown
should not be interpreted as pointing out to a global-in-time dominance of the m = 1 mode; rather, they suggest a an enhanced
importance of this mode that is local-in-time and appears only long past the merger. When considering the full GW signal, the
m = 2 will always provide the largest contribution, by far.
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Figure 7. Instantaneous SNR ratio as computed for the selected set of configurations in Fig.4 of the main text, where the time-window has been
chosen to be ∆T = 5ms. The detector’s sensitivity is based on the O3 observing run of LIGO and the angle of observation does not favour
either of the modes. Note that SNRm=1/SNRm=2 ≃ O(1) around the same time as |ψ21

4 |/|ψ22
4 | ≃ O(1).
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