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Abstract

The spectral properties of the post-merger gravitational-wave signal from a binary of neutron stars encodes a
variety of information about the features of the system and of the equation of state describing matter around and
above nuclear saturation density. Characterizing the properties of such a signal is an “old” problem, which first
emerged when a number of frequencies were shown to be related to the properties of the binary through “quasi-
universal” relations. Here we take a new look at this old problem by computing the properties of the signal in terms
of the Weyl scalar ψ4. In this way, and using a database of more than 100 simulations, we provide the first evidence
for a new instantaneous frequency, yf0

4, associated with the instant of quasi-time-symmetry in the dynamics, and
which also follows a quasi-universal relation. We also derive a new quasi-universal relation for the merger
frequency f h

mer, which provides a description of the data that is 4 times more accurate than previous expressions
while requiring fewer fitting coefficients. Finally, consistent with the findings of numerous studies before ours, and
using an enlarged ensemble of binary systems, we point out that the ℓ= 2, m= 1 gravitational-wave mode could
become comparable with the traditional ℓ= 2, m= 2 mode on sufficiently long timescales, with strain amplitudes
in a ratio |h21|/|h22|∼ 0.1–1 under generic orientations of the binary, which could be measured by present
detectors for signals with a large signal-to-noise ratio or by third-generation detectors for generic signals should no
collapse occur.

Unified Astronomy Thesaurus concepts: Neutron stars (1108); Gravitational waves (678); Compact binary
stars (283)

1. Introduction

The observation of a gravitational-wave (GW) signal from
the binary neutron-star (BNS) merger event GW170817 (The
LIGO Scientific Collaboration & The Virgo Collabora-
tion 2017), and the detection of an electromagnetic (EM)
counterpart, has testified to the enormous potential of GW
astronomy. Starting from early works with simplified equations
of state (EOSs; see, e.g., Shibata et al. 2005; Anderson et al.
2008; Baiotti et al. 2008; Liu et al. 2008; Hotokezaka et al.
2011), increasingly more comprehensive simulations of these
events, which involve an ever-more detailed description of the
microphysics (Bauswein et al. 2019; De Pietri et al. 2019; Gieg
et al. 2019; Camilletti et al. 2022; Most et al. 2022; Tootle et al.
2022; Ujevic et al. 2023), of the magnetic-field evolution
(Rezzolla et al. 2011; Dionysopoulou et al. 2013; Ciolfi et al.
2019; Sun et al. 2022; Zappa et al. 2023) and its
amplification (Kiuchi et al. 2015; Palenzuela et al. 2022;
Chabanov et al. 2023), and of transport of neutrinos (Foucart
et al. 2023; Zappa et al. 2023), allow one to make predictions
from the early inspiral up to the long-term evolution of the
post-merger remnant (De Pietri et al. 2020; Kiuchi et al. 2023).
During each stage in the evolution of the binary, the features of
the GW and EM signals change in a characteristic manner,
encoding information on the properties of the constituent

neutron stars and of the hypermassive neutron star (HMNS)
produced after the merger and, hence, on the governing EOS.
Characterizing the properties of the post-merger GW signal

is a rather “old” problem, which first emerged when a number
of peculiar frequencies were shown to be related with the
properties of the binary through quasi-universal relations, i.e.,
relations that are almost independent of the specific EOS.
These relations have been suggested for the GW frequency at
merger fmer (Read et al. 2013; Bernuzzi et al. 2014; Takami
et al. 2015; Rezzolla & Takami 2016; Bauswein et al. 2019;
Most et al. 2019a; Weih et al. 2020; Gonzalez et al. 2023), the
dominant frequency in the post-merger spectrum f2 (see, e.g.,
Oechslin & Janka 2007; Bauswein & Janka 2012; Read et al.
2013; Rezzolla & Takami 2016; Gonzalez et al. 2023), and
other frequencies identifiable in the transient period right after
the merger (Bauswein & Stergioulas 2015; Takami et al. 2015;
Rezzolla & Takami 2016). Fits to these quasi-universal
relations have been employed in a number of studies (see,
e.g., Bauswein et al. 2016; Baiotti & Rezzolla 2017 for some
reviews). These EOS-insensitive relations can help enormously
in constraining the EOS of matter at nuclear densities, marking
the possible appearance of phase transitions (Most et al. 2019a;
Weih et al. 2020; Liebling et al. 2021; Prakash et al. 2021;
Tootle et al. 2022; Espino et al. 2023; Fujimoto et al. 2023),
and inform waveform models (Bose et al. 2018; Breschi et al.
2019); however, see Raithel & Most (2022) for possible
violations of these relations.
Another relatively “old” problem in the characterization of

the GW signal from BNS is the one about the relative weight of
the lower-order multipole ℓ= 2, m= 1. Numerical simulations
have highlighted that the HMNS can be subject to a non-
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axisymmetric instability that powers the growth of ℓ= 2, m= 1
mode of the rest-mass density distribution and, hence, of the
corresponding GW signal (see, e.g., East et al. 2015, 2019;
Lehner et al. 2016a, 2016b; Radice et al. 2016; Papenfort et al.
2022). This mode can already be seeded by the initial
asymmetry of the system in the unequal-mass case or develop
by the shearing of the contact layers of the binary constituents
upon merger. While the ℓ= 2, m= 2 GW mode is the primary
contributor to the GW signal, it is damped faster than the other
modes leading to interesting secular behaviors.

We here take a new look at both of these old problems by
considering the spectral properties of the GW signal when
computed in terms of the Weyl scalar ψ4. In this way, we are
able to find three novel features that can enrich our under-
standing of the GW signal from BNS mergers. In particular, we
first highlight the presence of a new instantaneous frequency,
which we dub yf0

4, that can be associated with the instant of
quasi-time-symmetry in the post-merger dynamics. Interest-
ingly, we find that a quasi-universal relation exists for yf0

4 as a
function of the tidal deformability k2

T and of the binary mass
ratio q. Second, by employing a large number of BNS
simulations, some of which are taken from the CoRe
database (Gonzalez et al. 2023), we obtain a new quasi-
universal relation for fmer as a function of k2

T and q that not only
requires a smaller number of coefficients but also provides a
more accurate description of the data. Finally, as already
suggested in Papenfort et al. (2022), we provide evidence that
the ℓ= 2, m= 1 GW mode could become the most powerful
mode on secular timescales after the merger.

2. Numerical and Physical Framework

Our analysis is based on the GW signal computed via
numerical simulations of BNS mergers in full general relativity
computed with the codes described in Radice et al.
(2014a, 2014b), Most et al. (2019b, 2019c), Papenfort et al.
(2021), and Tootle et al. (2021) and using a number of different
EOSs (see below). In addition, we employ part of the data
contained in the CoRe database (Gonzalez et al. 2023), from
where we select only simulations with the highest resolution.
The combined data of 118 irrotational binaries cover the range

q:=M2/M1ä [0.485, 1] in the mass ratio, M:=M1+M2ä
[2.4, 3.33]Me in the total Arnowitt–Deser–Misner (ADM)
mass at infinite separation and [ ]k Î 33, 4582

T in the tidal
deformability. The data set comprises a variety of EOSs,
including some with quark matter (Alford et al. 2005; Logoteta
et al. 2021; Prakash et al. 2021; Demircik et al. 2022; Tootle
et al. 2022).
A crucial role in our analysis is played by the use of the

Weyl scalar ψ4 in place of the standard dimensionless strain
polarizations h+,×. The two quantities are mathematically
equivalent and related by two time derivatives (i.e.,

( )y = ¶ -+ ´h ih ;t4
2 see Bishop & Rezzolla 2016 for a review).

However, while ψ4 is computed from the simulations, h+,× are
obtained after a nontrivial double time integration (the
transformation from h+,× to is ψ4 trivial as it involves
derivatives and not integrals; see Calderon Bustillo et al.
(2022) for a data-analysis framework based on ψ4, which
can obviously be employed for all types of compact-
object binaries). More importantly, the evolution of the GW
frequency from ψ4 is less rapid than from the strain, i.e.,

( ) ( )¶ ¶yf t f tln lnt t
h

GWGW
4  , thus making it easier and more

robust to characterize the features of the ψ4 GW signal. In this
sense, while ψ4 and h+,× are related by simple time derivatives,
the analysis carried out with the former does provide additional
information as it allows for the determination of properties that
are harder to capture with the latter.

3. Old and New Frequencies

Figure 1 reports the complete information of the GW signal
from a representative binary in our sample. Using a 3D
representation, we report on the left the ℓ= 2, m= 2 mode of
the GW signal ψ4(t) (light red) and its amplitude |ψ4(t)| (dark red),
the instantaneous frequency ( )yf t

GW
4 (black), and the power spectral

density (PSD) ỹf2 4 (blue) as a function of the frequency f (see
Rezzolla & Takami 2016, for details on the definition). Also
indicated are the three main frequencies in our analysis: the
frequency at merger yfmer

4 , i.e., the GW frequency at the first

maximum of |ψ4|, the frequency at quasi-time-symmetry yf0
4, i.e.,

the GW frequency at the first minimum of |ψ4|, and the dominant
frequency of the HMNS emission yf2

4. To help the eye, we also

Figure 1. 3D representation of the complete information in the GW signal from a representative binary (Tootle et al. 2022). The left panel shows the ℓ = 2, m = 2
mode of the GW signal ψ4(t) (light red) and its amplitude |ψ4(t)| (dark red), the instantaneous frequency ( )f t

GW
(black), and the power spectral density (PSD) ỹf2 4

(blue) as a function of the frequency f. Also indicated are the frequency at merger yfmer
4 , the frequency at quasi-time-symmetry yf0

4, the dominant frequency of the
HMNS emission f2, and the corresponding times where these frequencies appear. The right panel shows the same quantities but when computed in terms of the GW
strain.

2
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mark with lines the corresponding times ytmer
4 (dashed), yt0

4 (dotted),
and frequencies (dashed for yfmer

4 , dotted for yf0
4, and dotted–

dashed for yf2
4, respectively). The right panel of Figure 1 shows the

same quantities but when computed from the strain. By comparing
the black lines in the left and right panels, it is straightforward to
realize that the variation of ( )f th

GW
is much larger than that in

( )yf tGW
4 over the same interval of ∼1 ms after the merger. It is this

very rapid change in ( )f th
GW

that makes the identification of f h0
extremely difficult, if not impossible. Note also that while in both
representations fmer < f2 < f0, the numerical values of the various
quantities are similar but not identical. However, yf f h

2 2
4  to very

good precision (the largest differences are  4%) simply because
this frequency is relative to a mostly monochromatic GW signal;
hence, hereafter we simply assume ≕=yf f fh

2 2 2
4 . Finally,

because in all representations f0 is the largest frequency measured,
even a crude measure of the largest frequency in the signal will
serve as a first estimate of the f0 frequency.

4

Besides marking the time of the first amplitude minimum,
from a physical point of view yt0

4 corresponds to the time when
the two stellar cores have reached the minimum separation and
are about to bounce off each other. At this instant, the
corresponding amplitude of ψ4 shows a clear minimum, while
the instantaneous GW frequency a local maximum (the
discussion in the Appendix illustrates this behavior very
clearly by employing the toy model introduced in Takami
et al. 2015).

4. Quasi-universal Relations

We next proceed to the derivation of quasi-universal
relations that can be employed to deduce the physical
properties of the binary. Following the approach started

already in Takami et al. (2014, 2015) and Rezzolla & Takami
(2016), which captures the logarithmic variation of a properly
rescaled mass and frequency, we express the relevant
frequencies in terms of a power expansion of the mass ratio q,
i.e., [( )( )] ( )( )k= + + +M M f a b b q b qlog Hz n

10 0 0 1 2
2

2
T ,

where f is any of the frequencies we consider (i.e.,
y yf f f f, , ,h

mer mer 0 2
4 4 ) and a0, b0, b1, b2, and n are fitting

coefficients. Hereafter, we will refer to this generic fitting
functions as 1 .
Figure 2 provides a 3D representation of the measured GW

frequencies yfmer
4 and yf0

4 as a function of k2
T and q (see also the

Appendix for fits to f h
mer and f2). Also reported is the fitting

surface described by 1 , with the best-fit parameters listed in
Table 1 of the Appendix for all the frequencies considered.
Furthermore, for each frequency we report below the relative
error of the fit in the two principal directions of the fit, k2

T and q.

Despite their simple form, our fits for yfmer
4 and yf0

4 capture the
data very well, showing average relative errors that are 1%
and maximal relative errors 2% for other than equal-mass
binaries.
It is interesting to compare our functional fitting form 1 for

f h
mer, which needs only five fitting coefficients, with the one
proposed in Breschi et al. (2022) for irrotational binaries, which
we will refer to as 2 , and that requires twice as many
coefficients. In order to compare 1 and 2 , it is first necessary
to distinguish the “pipeline,” that is, the technical procedure
employed to extract the frequencies from the data. We thus
indicate with 1 the pipeline discussed above and with 2 that
released in Gonzalez et al. (2023). Naturally, each fitting
function can be applied to either pipeline, so that ( )1 1 
indicates the use of our fitting form to data computed with our
pipeline. In Figure 3, we present the relative differences
between the measured frequencies for the 118 binaries
considered and the corresponding values from the fit, with
different rows referring to the four possibilities.

Figure 2. 3D representation of the GW frequencies yfmer
4 and yf0

4 as measured from the data (colored circles) and presented as a function of k2
T and q. Also reported are

the best-fit surfaces, while shown below are the relative errors of the fit in the two principal directions. Stars mark binaries modeled with the EOS based on the
Veneziano Quantum Chromodynamics (VQCD) model and thus having a strong first-order phase transition (Demircik et al. 2022; Tootle et al. 2022).

4 From a numerical point of view, we note that the f0 frequency is always
below ∼4 kHz and is therefore much smaller than the typical sampling
frequency of the ψ4 scalar, that is, ;80–100 kHz.

3
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Overall, the comparison in Figure 3 shows that 1 leads to
smaller relative errors with a maximum residual error of ∼2%
and an average residual error that is between 2 and 4 times
smaller than for 2 . As a cautionary note we should remark that
we have specialized the fitting 2 , which is more general and
can include spinning and eccentric binaries, to the case relevant
for this comparison, namely, irrotational binaries. Hence, our
conclusions apply only to such binaries.

5. Secular GW Emission

The last point we cover regards the relative strengths of the
ℓ= 2, m= 2 and ℓ= 2, m= 1 GW modes. The importance of
the latter was first pointed out in Paschalidis et al. (2015) and
Lehner et al. (2016b) and is produced by corresponding
asymmetries in the rest-mass density. The emergence of an
m= 1 deformation is well known to occur in isolated
stars (Chandrasekhar 1969; Shibata et al. 2000; Baiotti et al.
2007; Franci et al. 2013; Löffler et al. 2015) that have a
sufficiently large amount of rotational kinetic energy T and
emerges when the ratio T/|W|, where W is the gravitational
binding energy, exceeds a certain threshold (in a systematic
analysis, Baiotti et al. 2007 have shown that this happens for
T/|W| 0.25). In such stars, the m= 1 mode in the rest-mass
density would grow exponentially, reaching equipartition with
the m= 2 mode, and, subsequently, represent the largest
deformation. A similar phenomenology seems to be present
also for the post-merger remnant, as already hinted in Papenfort
et al. (2022), but as shown more clearly by the numerous
binaries considered here. Figure 4 reports the evolution of the
ratio of the GW amplitudes in the two modes ∣ ∣ ∣ ∣y y4

21
4
22 , with

the left panel showing a selected set of binaries and with the
right panel reporting all binaries (the raw time series are
smoothed over a window Δt= 0.5 ms). While only a few
binaries in the sample reach ∣ ∣ ∣ ∣y y = 14

21
4
22 within the

simulated time, the large majority exhibits a trend that we try
to capture by extrapolating linearly in time after averaging the
last 5 ms of the evolution. Using a color code to distinguish
binaries with different q, it becomes clear that the initial
strength of the m= 1 mode is inversely proportional to the
mass ratio, so that for an extremely asymmetric binary, i.e.,
q 0.6, ∣ ∣ ∣ ∣y y4

21
4
22 can be more than 2 orders of magnitude

larger than for equal-mass binaries. At the same time, the initial
mode-amplitude ratio does not depend on the merger
dimensionless spin (Papenfort et al. 2022). Unsurprisingly, a

similar behavior can be observed when computing the signal-
to-noise ratio (S/N) in the m= 2 and m= 1 modes.
Specifically, by computing a time-windowed S/N, we can
quantify the growing contribution of the subdominant mode in
a similar fashion to estimates given by Lehner et al. (2016a)
and find that it increases to ( )1 if the m= 1 is not
suppressed (see Appendix for details).
If confirmed by systematic, long-term evolutions, this

finding would change the standard picture in which the largest
signal in the BNS post-merger is to be expected at the f2
frequency. Rather, the trend reported here suggests that the
most powerful feature in the PSD for long-lived HMNSs may
actually appear at a frequency f1

2 2 . Because this falls in a
more favorable region of the detectors sensitivities, and
assuming a detection angle not favoring either of the modes,
the corresponding S/N will grow proportionally to the ratio
between detectors noise at f1

2 2 and f2, hence by a factor of ∼2
for LIGO or Virgo.
While promising, this prospect should be accompanied by

some caveats. First, it is possible that the growth rate may be
weaker than the one estimated here. Second, the extrapolation
assumes that the HMNS will not collapse to a black hole before
reaching ∣ ∣ ∣ ∣y y ~ 14

21
4
22 and while this is likely for soft EOSs

and low-mass binaries, it may not happen if the EOS is stiff and
the binary massive. Third, all binaries in our sample have zero
deformation. A robust conclusion that can be inferred from the
results shown in Figure 4 is that remnants with a long lifetime,
as it was likely the case for GW170817 (Rezzolla et al. 2018;
Gill et al. 2019; Murguia-Berthier et al. 2021), will reasonably
have the ℓ= 2, m= 1 as the least-damped mode. Hence,
considerable spectral power should be present at frequencies

f1

2 2 and f2, with the main strain amplitudes in a ratio
|h21|/|h22|∼ 0.1–1 for generic orientations (e.g., for an
inclination of ( ) ~ 2 arctan 1 2 53 two modes have the same
spin-weighted spherical-harmonics coefficients).

6. Conclusion

Leveraging on a rich literature developed over the last 10 yr on
this subject, we have considered again the spectral properties of the
signal when computed in terms of the Weyl scalar ψ4 rather than in
terms of the GW strain h+,×. Exploiting the better behavior of ψ4,
we were able to highlight three novel features that can be used to
better infer physical information from the detected signal.
First, by employing a large number of simulations spanning a

considerable set of EOSs and mass ratios, we have shown the
existence of a new instantaneous frequency, yf0

4, that can be
associated with the instant of quasi-time-symmetry in the post-
merger dynamics. This corresponds to when the stellar cores in the
merger remnant have reached their minimum separation and are
about to bounce off each other. Just like other spectral frequencies
of the BNS GW signal, yf0

4 also follows a quasi-universal behavior
as a function of the tidal deformability k2

T and of the binary mass
ratio q, for which we provide a simple and yet accurate analytical
expression. Second, we have obtained a new quasi-universal
relation for the merger frequency f h

mer as a function of k2
T and q.

The new expression not only requires a smaller number of fitting
coefficients than alternative expressions in the literature, but it also
provides a more accurate description of the data, with a residual
error that is 4 times smaller on average. Finally, we have pointed
out the evidence that the ℓ= 2, m= 1 could become the most
powerful GW mode on sufficiently long timescales, with strain

Figure 3. Relative differences between the measured f h
mer frequencies and the

corresponding values from the fit. Different rows refer to the four different
possibilities of applying the fitting function i to the data pipeline i with i = 1,
2; arrows indicate relative differences above 10%. Note how the new fitting
function and pipeline, i.e., ( )1 1  , provide errors that are about 4 times smaller.
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amplitudes for the dominant modes that are in a ratio
|h21|/|h22|∼ 0.1–1. Should this mode not be suppressed by the
collapse of the HMNS to a black hole or by other dissipative
effects such as magnetic fields, considerable spectral power should
be present at frequencies f1

2 2, where it could be detected in
conditions of smaller S/Ns or by third-generation detectors.

The results presented here can be improved by enlarging the
number of BNS simulations considered, by increasing the
variance in the microphysical description (e.g., including
simulations with magnetic fields and neutrino transport), by
performing additional long-term evolutions, and by extending
the fitting approach to binaries with spins and eccentricity. We
will explore these extensions in future work.
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Appendix

A.1. Toy-model Analogy

Although it is possible to characterize the new spectral
feature f0 simply in terms of the instantaneous GW frequency at
the time yt0

4 at which the Weyl scalar has its first minimum, it is
more interesting to associate with this definition also a physical

interpretation. As mentioned in the main text, yt0
4 effectively

corresponds to when the two stellar cores have reached the
minimum separation and are about to bounce off each other. At
this instant, the radial velocity of the two stellar cores is at its
minimum and the angular velocity of the HMNS at its
maximum, so that the corresponding amplitude of ψ4 has a
minimum and the instantaneous GW frequency has a local
maximum.
To illustrate this behavior, we employ the toy model

developed in Takami et al. (2015; and also employed in other
studies, e.g., Ellis et al. 2018; Lucca et al. 2021) to describe the
dynamics of the post-merger remnant and which consists of an
axisymmetric disk rotating rapidly at a given angular
frequency, say Ω2, to which two spheres reproducing the two
stellar cores are connected but are also free to oscillate via a
spring that connects them (see Figure 17 Takami et al. 2015).
In such a system, the two spheres will either approach each
other, decreasing the moment of inertia of the system, or move
away from each other, increasing the moment of inertia.
Because the total angular momentum is essentially conserved,
the system’s angular frequency will vary between a minimum
value Ω1 (corresponding to the time when the two spheres are
at the largest separation) and a maximum value Ω3 (corresp-
onding to the time when the two spheres are at the smallest
separation). Overall, the mechanical toy model will rotate with
an angular frequency that is a function of time and bounded by
Ω1 and Ω3, where more time is spent and hence more spectral
power is accumulated. If a damping is introduced, the
excursion of the oscillations between the spheres will decrease
over time and eventually stop; when this happens, the toy
model will simply rotate at the frequency Ω2, as does the
HMNS after the transient period and before other deformations
(e.g., the ℓ= 2, m= 1 mode) affect it.
The Lagrangian of the toy model can be found in Takami

et al. (2014) and from it it is possible to derive the differential
equation for the radial displacement r(t):

̈ ( )
( )

( )+
-

-
+

+ =r
k r r

m

c

r MR m
r

br

m

4

2

2
0, A10 1

2 2

2
⎡
⎣⎢

⎤
⎦⎥

where M and m are the masses of the disk and of the spheres, R
is the radius of the disk, c1 is an integration constant related to
the total angular momentum, r0 is the natural displacement of
mass, and b is responsible for dissipative effects. The
dissipation due to the emission of GWs, and which results in

Figure 4. Evolution of the ratio of the two main GW modes ∣ ∣ ∣ ∣y y4
21

4
22 , with the left panel showing a selected set of binaries to highlight the behavior for different

mass ratios (color code) and the right one reporting all of the binaries. Black dotted horizontal lines are used to mark the position when the two modes have equal
amplitudes, while straight colored lines report a linear extrapolation after averaging the last 5 ms of the evolution; note that the large majority of binaries exhibits a
growing trend that is maintained throughout the computed evolution.
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the two spheres getting closer to one another with time and
with a decreasing radial displacement, is introduced by varying
the natural displacement r0 via an exponential function

( )t-texp with a suitably chosen relaxation time τ. Note that
this modification carries straight from the Lagrangian to the
final ordinary differential equation without additional time
derivatives, as it is present in the derivative of the Lagrangian
with respect to the canonical coordinate r(t) and not its
conjugate.

The system is sufficiently simple that it is possible to
compute the GW amplitude and frequency derived from the
quadrupole formula so that the strain components read
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with d the distance from the source to the detector. The ψ4

polarizations are obtained by differentiating twice with respect
to time. Introducing the abbreviations ( ̈ )= + - WA r r r r: 22 2
and ( )= W + WB r r r: 4   , as well as recalling that ( ) ( )jW =t t ,
we write them now explicitly:
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where y = ¶+ +h: t4,
2 and y = ¶´ ´h: t4,

2 .
The amplitude and the instantaneous frequency of the signal

are calculated using the usual definitions
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The rather lengthy final expressions read
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Figure 5 reports the solution of the system when considering
the following set of representative parameters: M=m= 10,
k= 0.2, b= 0.25, c1= 25, R= 22, r0= 5, =r 0.010 , and
τ= 1000. More specifically, the left panel reports the GW
frequency (top row) as computed from the toy model and from
an actual simulation (marked by the index “Numerical
Relativity”), the corresponding GW amplitudes (middle row),
and the radial displacement r(t) (bottom row). Note how the
GW frequencies and amplitudes are anticorrelated and the
minimum in the radial displacement at yt0

4 corresponds to the
maximum frequency, i.e., yf0

4, and minimum amplitude, as
expected in a condition of quasi-time-symmetry (in the toy
model f h0 is actually a local minimum of ( )f th

GW , a case often
found in NR data). The right panel of Figure 5, on the other
hand, is used to show the relation between the GW quantities of
the toy model and other dynamical quantities such as the time
derivatives of the angular velocity, ∂tΩ(t) and ( )¶ W tt

2 , and of
the radial displacement, ∂tr(t) and ( )¶ r tt

2 (the top row of the
right panel contains the same information as the top and middle
rows of the left panel). It is clear that for the first few
oscillations the minima of the amplitude (maxima of the
frequency) correspond to moments in time when the angular
frequency Ω attains a local maximum and the radial
displacement a local minimum.
We find it rather remarkable that the model originally

developed to provide justification for the dominant post-merger
frequency can be used to mimic the presence of the f0
frequency with no additional adjustments, appearing as a result
of chosen parameters and initial conditions. Finally, while we
do not consider it here, it would be useful to generalize the
model to admit unequal sphere masses, i.e., m/M< 1, and
assess the impact it has on the f0 frequency and on the evolution
of the m= 2 and m= 1 modes.

A.2. On the Effectiveness of the Fit

To illustrate effectiveness of the fitting functional form 1 in
capturing the spectral properties of the signal in a quasi-
universal manner, we report in Figure 6 the same 3D
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Figure 5. Solution of the toy model for a representative set of parameters. The left panel reports the GW frequency (top row) from the toy model and from an actual
simulation (marked by the index “NR”), the GW amplitudes (middle row), and the radial displacement r(t) (bottom row). The right panel shows instead the relation
between the GW quantities and other dynamical quantities of the toy model, such as the time derivatives of the angular velocity and of the radial displacement. Note
that the GW frequencies and amplitudes are anticorrelated and the minimum in the radial displacement at yt0

4 corresponds to the maximum frequency yf0
4 and

minimum amplitude. Also, the minima of the amplitude (maxima of the frequency) correspond to moments in time when the angular frequency Ω attains a local
maximum and the radial displacement a local minimum.

Figure 6. The same as in Figure 2 in the main text but for the GW frequencies f h
mer and f2. Note how 1 is equally accurate in modeling other frequencies, also when

obtained from the strain as in the case for f h
mer and f2.

Table 1
Best-fit Values for the Coefficients of the Functional form 1

Freq. a0 b0 b1 b2 n 〈Δf/f〉 ( )Df fmax χ2 cred
2 R2

(%) (%) ×10−3

yfmer
4 4.589 −0.581 0.543 −0.236 0.20† 0.65 4.52 0.135 1.19 0.934

f h
mer 4.201 −0.330 0.198 −0.067 0.20† 0.32 2.99 0.035 0.30 0.957
yfmer

4 6.067 −2.142 0.970 −0.410 0.07† 0.59 4.24 0.114 1.00 0.938

f h
mer 4.457 −0.578 0.262 −0.087 0.14† 0.32 2.94 0.034 0.30 0.957
yf0

4 6.550 −2.099 0.518 −0.304 0.06† 1.38 4.22 0.477 4.92 0.611

f2 4.617 −0.170 −0.264 0.160 0.20† 0.45 1.34 0.030 0.48 0.926

Note. Also reported are the maximal and average relative difference, as well as the χ2, cred
2 , and R2 coefficients of the fit. Indicated with a dagger are the best-fit values

of n when this coefficient is constrained by the fit.
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representation as of the GW frequencies shown in Figure 2 but
for the GW frequencies f h

mer and f2; note that f h
mer is referred to

as fmax in Takami et al. (2014) and Rezzolla & Takami (2016)
and that the f2 frequency corresponds to the peak of the PSD
computed using the definition in Tootle et al. (2022), with the
time integration encompassing the full GW signal. Clearly, the
fitting function 1 is equally accurate in modeling other
frequencies, quite independently of whether they have been
computed from the Weyl scalar or from the GW strain, as it is
the case for f h

mer and f2. We also note that the equal-mass limit
of the fitting function 1 for the frequency f h

mer recovers quite
accurately the simpler fit examined in Takami et al. (2014),
which expressed the merger frequency as a first-order
expression of the tidal deformability ( )k= +f a bh

mer 0 2
1 5T .

When setting q= 1 and n= 1/5 in 1 , we obtain
b= b0+ b1+ b2=− 0.199 (see Table 1), thus resulting in a
relative difference that is 2% with respect to the value
b=− 0.195 found in Takami et al. (2014). At the same time,
we also note that the fit of f h

mer is overall slightly better than
that for yfmer

4 (see Table 1); while we do not believe this to be
statistically very significant, it may be due to the slightly larger
range in which yfmer

4 is measured.
The only exception to the remarkably good fit of the

frequencies is found in the yf0
4 frequency, where a noticeable

deviation from the trend is visible for binary systems with equal
or very-unequal masses, regardless of the EOS employed (see
lower part of the bottom-right panel of Figure 2). We attribute
this decrease in accuracy to the already described difficulties of
measuring this frequency using the ψ4 GW signal, which are
even more severe when using |h|. From a physical point of
view, the moment of time symmetry corresponds to the time
when the non-axisymmetric quadrupolar deformations of the
HMNS are at a minimum, which leads to a severely suppressed
GW signal (indeed the amplitude is at a minimum). This is
particularly severe for binaries with q; 1, where the ℓ= 2,
m= 2 deformation is the largest and is significantly suppressed
at the moment of time-symmetry, and for binaries with q= 1,

where the ℓ= 2, m= 2 deformation is further decreased by the
mass asymmetry. Notwithstanding these difficulties, the
relative fitting error for yf0

4 [i.e., (Df fmax )] is at most 4.2%
and only 1.4% on average [i.e., 〈|Δf|/f〉].

A.3. Growth of the S/N

In the main text we have discussed how to use the amplitude
ratio ∣ ∣ ∣ ∣y y4

21
4
22 as an effective proxy for the relevance of the

m= 1 mode deformation. We next demonstrate that a clear
correspondence exists between finding ∣ ∣ ∣ ∣y y ~ 14

21
4
22 and the

ratio of the S/Ns in the two modes. We start by recalling that
given the PSD of the mth mode of the GW strain decomposi-
tion ˜ ( )h fm (such as the one presented in Figure 1 for m= 2)
and a noise spectral density of the detector Sn( f ), the
corresponding mth S/N is defined as

≔ ∣ ˜ ( )∣
( )

( )ò=

¥
=h f

S f
dfS N 4 . A7m k

m k

n0

2
1
2

⎡
⎣⎢

⎤
⎦⎥

Clearly, the ratio of the S/Ns, S/Nm=1/S/Nm=2, and the rate at
which it evolves depends on the time ti when the signal starts to
be considered. Because there is no m= 1 signal during the
inspiral, the S/N would be intrinsically dominated by the
m= 2 component of the signal if ti was chosen to be the time
the signal entered the detector. Hence, to fairly assess the
growing contribution of the m= 1 mode, we compute a time-
windowed S/N over a running window of width ΔT= 5 ms.
We should remark that this approach is logically and
mathematically equivalent to what is done when computing
spectrograms (see, e.g., The LIGO Scientific Collaboration &
The Virgo Collaboration 2017) and hence determines, at any
given time, the characteristic frequency at which the GW is
emitted. In essence, for any time t̄ , we compute the S/N as
defined in Equation (A7), where the signal in the time domain
is in the interval [¯ ¯ ]Î - D + Dt t T t T2, 2 . This time-
windowed S/N provides an “instantaneous” measure of the

Figure 7. Instantaneous S/N as computed for the selected set of configurations in Figure 4 of the main text, where the time window has been chosen to be ΔT = 5
ms. The detector’s sensitivity is based on the third observing run of LIGO, and the angle of observation does not favor either of the modes. Note that

( )= =S N S N 1m m1 2   around the same time as ∣ ∣ ∣ ∣ ( )y y 14
21

4
22   .
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ability of a detector to measure a signal of given strength and is
mathematically equivalent to what is routinely done when
computing spectrograms in GW data analysis.

As demonstrated in Figure 7, the S/N computed in this way
grows to be of ( )1 at the same time when ∣ ∣ ∣ ∣ ( )y y 14

21
4
22   ,

thus supporting the effectiveness of the mode ratio in acting as
a proxy for the S/N. Finally, we note that the estimates
provided in Figure 7 are similar in spirit to the S/N estimates
suggested by Lehner et al. (2016a). We stress that the results
shown should not be interpreted as pointing out to a global-in-
time dominance of the m= 1 mode; rather, they suggest an
enhanced importance of this mode that is local in time and
appears only long past the merger. When considering the full
GW signal, the m= 2 will always provide the largest
contribution by far.
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