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Neutron star binaries and their associated gravitational wave signal facilitate precision tests of
General Relativity. Any deviation of the detected gravitational waveform from General Relativity
would therefore be a smoking gun signature of new physics, in the form of additional forces, dark
matter particles, or extra gravitational degrees of freedom. To be able to probe new theories,
precise knowledge of the expected waveform is required. In our work, we consider a generic setup
by augmenting General Relativity with an additional, massive scalar field. We then compute the
inspiral dynamics of a binary system by employing an effective field theoretical approach, while
giving a detailed introduction to the computational framework. Finally, we derive the modified
gravitational waveform at next-to-leading order. As a consequence of our model-agnostic approach,
our results are readily adaptable to a plethora of new physics scenarios, including modified gravity
theories and scalar dark matter models.
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I Introduction

The first direct detection of gravitational waves (GWs)
from a neutron star (NS) binary [1] – GW170817 – has
opened new pathways in modern astrophysics by provid-
ing further precision tests of General Relativity (GR) [2].
As possible new physics effects on the neutron star prop-
erties1 would inherently affect the emission of gravita-
tional radiation, deviations from the GR expectation
would distinctly point towards new phenomena. This
renders NS binary systems a promising cosmic labora-
tory.

Besides existing GW data from the LIGO/Virgo col-
laboration, upcoming data from future runs and next-
generation observatories – such as the Laser Interfer-
ometer Space Antenna (LISA) [4] or the Einstein Tele-
scope (ET) [5] – will be available to significantly narrow
down the landscape of new theories. This concerns both
modifications of GR [6–8] and extensions of the Standard
Model (SM) of particle physics [9]. Such models are in
general well motivated, as they can, e.g., account for dark
matter [10] or explain cosmic inflation [11, 12].

In order to constrain new physics with GW observa-
tions, however, it is crucial to provide precise theoret-
ical predictions of the gravitational waveform. To this
end, different methods may be employed. While the late
stages of the binary evolution are only accessible via non-
perturbative techniques such as numerical relativity, the
early inspiral can be tackled analytically. This is typi-
cally done with a post-Newtonian (PN) expansion [13],
valid at small velocities.

1 Black hole (BH) binaries, in contrast, are typically not as sen-
sitive to new physics as a consequence of no-hair theorems; see
e.g. Ref. [3] for a review.
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In this work, we use an effective field theoreti-
cal (EFT) approach to model the inspiral dynamics
[14, 15] of two compact objects. Here, the scale hierarchy
between the constituent size, the orbital separation, and
the wavelength of the emitted GWs is employed to sys-
tematically compute the waveform at the desired order
in the PN expansion. This framework has been applied
extensively within pure GR [16–24]. More recently, this
has been extended to binaries in certain modified gravi-
ties [25–27] or in the presence of dark matter [28–30].

Here, we take a step further and provide a generalized
computation of the binary evolution in massive scalar-
tensor theories, i.e., GR augmented by a massive scalar
field. By choosing the most general scalar potential and
interactions, we construct the EFT in a fully model-
independent setup. Hence, our calculation extends previ-
ous works on binary dynamics in massless scalar-tensor
gravity [31–39]. We compute the conservative and dis-
sipative dynamics of the system. Moreover, we derive
the power loss via scalar radiation. Finally, we arrive at
our final result – the gravitational waveform at next-to-
leading (NLO) order – which is readily adaptable to a
variety of models which exhibit additional scalar degrees
of freedom. This comprises, e.g., binary systems in f(R)
models [40] or scalar dark matter clouds [41], to name
just a few. All our calculations are documented in a de-
tailed manner, allowing to easily reproduce our results
and extend the computation to higher precision. In ad-
dition, we provide a Python implementation of the final
waveform [42].

Our work is structured as follows. In Sec. II, we intro-
duce our model-independent setup. Subsequently, the
most important aspects of the EFT approach are re-
viewed in Sec. III. Then, we construct the EFT for a
generic scalar-tensor theory in Sec. IV, including the com-
putation of the power loss. Section V contains the re-
sulting waveform. Technical aspects, as well as compu-
tational details, are discussed in the appendices A – F.

In the following, we use units in which ℏ = c = 1 unless
stated otherwise. We further employ M2

Pl = 1/(32πG)
and ηµν = diag (+1,−1,−1,−1).

II Scalar-Tensor Theory

In this work, we consider scalar extensions of General
Relativity. In the Einstein frame and in the presence of
a binary system, such theories are described by an action
of the form [6]

S = SEH + SGF + Spp + SΦ . (1)

Here,

SEH = −2M2
Pl

∫
d4x

√−gR (2)

is the Einstein-Hilbert action with the Ricci scalar R and
the metric determinant g = det gµν . SGF is a gauge-fixing
term that we may choose at our convenience to simplify
calculations. To this end, we employ the harmonic gauge
[14]

SGF = M2
Pl

∫
d4x

√−g ΓµΓνgµν . (3)

Note that we do not include ghost fields as we conduct
our computations at the classical level.

The pure GR action is augmented by a massive and
self-interacting scalar field

SΦ =

∫
d4x

√−g

[
1

2
∂µϕ∂

µϕ− V (ϕ)

]
. (4)

Here the first term denotes the kinetic term, while V (ϕ)
is the scalar potential which can take different functional
forms, depending on the model. The most general ansatz,
expanded around the potential minimum, then reads

V (ϕ) =
m2

s

2!
ϕ2 +MPl

c3
3!
ϕ3 +

λ

4!
ϕ4 + ... , (5)

where ms denotes the scalar mass, and c3 (λ)
parametrizes the cubic (quartic) self-interaction. Note
that we may take the massless limit, ms → 0, such that
the results obtained in this work also apply to massless
scalar fields2.

This new scalar degree of freedom can, e.g., arise
from modifications of GR [44–48] such as f(R) grav-
ity [40, 49, 50], or SM extensions [29, 30, 40, 51]. To re-
tain model independence, we leave the coefficients ms, c3,
and λ generic. Then, our results can directly be ap-
plied to specific theories by adapting the scalar potential.
A discussion of the validity of our approach is given in
App. B.

As long as the distance between the compact objects is
much larger than their size, the binary constituents are –
to leading order (LO) – well described by point particles.
The corresponding point-particle action reads

Spp = −
∑
n=1,2

∫
dτ

(
Mn + qn

ϕ

MPl
+ pn

(
ϕ

MPl

)2

+ ...

)
,

(6)

2 The cubic interaction term typically leads to IR divergences in
the absence of a mass term when evaluating tree-level interac-
tions, as we are doing here. These divergences are of the form
∝ c3/ms and do thus not have to pose a problem, since in many
theories c3 is proportional to powers of the mass. See App. B for
an example. Further note that in the case of a quantum theory
with no bare mass term, one generally expects a generation of a
scalar mass term ms ∼ c3 from loop diagrams. See also Ref. [43]
for a discussion on this.
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where the line element is

dτ = (gµνdx
µdxν)

1/2
. (7)

Further, we decompose the metric via

gµν = ηµν +
hµν

MPl
, (8)

where hµν is a perturbation on top of the flat Minkowski
metric ηµν .

The first term in Eq. (6) simply corresponds to the
action of a point particle in pure GR. The ϕ-dependent
terms denote the scalar contributions, which parameter-
ize the possible couplings of the scalar field to the world-
lines of the NSs. The coupling coefficients are denoted as
the scalar charge qn, and induced scalar charge pn. Sim-
ilar to our treatment of the scalar potential, we include
these EFT parameters in a model-agnostic manner. Our
results can be mapped to specific models by adjusting
Eq. (5) and matching qn and pn to the respective full
theory.

Note that we left out some operators in Eq. (6), e.g.
uµ∂µϕ, with uµ = dxµ/dτ being the four-velocity. This
term is equal to a total derivative and is thus not relevant.
A list of redundant operators is given in App. A, where
we explain that, at the order we consider in this work, we
do not have to consider any other operators than those
already listed in the point-particle action above.

Please note that Eq. (6) generally also contains finite-
size contributions from pure GR at higher orders in the
expansion. These, however, only contribute from the fifth
PN order onward for non-spinning objects, thus are not
relevant here and will be neglected in the further discus-
sion3.

III Effective Field Theory Approach to Binary

Systems

Let us now outline the most important features of the
EFT method to study binary systems in GR and beyond.
This discussion comprises the two main ingredients to
construct the effective theory: the separation of scales
during the inspiral and the resulting power counting
scheme. We closely follow Refs. [14, 15, 17, 23, 24].

3 The first two operators that enter are EµνEµν and BµνBµν with
Eµν = Rµανβu

αuβ and Bµν = ϵµαβρR
αβ

σνuσuρ, which are
the decompositions of the Riemann tensor into its electric and
magnetic type components, respectively. The Wilson coefficients
of these operators capture the leading order finite size effects
arising in pure GR, i.e., the tidal deformability.

Separation of scales. The first step in the EFT
construction is to identify the different energy scales dur-
ing the inspiral. We consider a NS binary system with
constituents of typical size R ∼ Rs, where Rs is the
Schwarzschild radius, separated by a distance r. The
wavelength of the gravitational radiation detected on
Earth is λ. Denoting the typical velocity of the binary
system by v, we obtain using the virial theorem

v2 ∼ GM

r
≡ Rs

2r
. (9)

This holds as long as the dynamics is governed to LO by
a Newtonian interaction. Here we have introduced the
Schwarzschild radius Rs = 2GM , where M is the mass
of the constituents and G is Newton’s constant.

From Eq. (9) we see that while the distance between
the constituents is much larger than their size r ≫ Rs,
the velocity of the system is small v ≪ 1. This corre-
sponds to the early stages of the binary evolution. The
typical wavelength of the emitted GWs relates to the or-
bital frequency via f ∼ v/r. Thus, there exists a clear
separation of scales during the inspiral,

λ ∼ r/v ≫ r ≫ Rs . (10)

This hierarchy will be employed to integrate out the hard
scale r in order to construct a theory valid at the soft
scale λ.

Let us consider the typical momenta present at the
hard and soft scale. The long-wavelength modes carry
away energy from the binary system in the form of gravi-
tational and scalar radiation4. To appear as propagating
degrees of freedom, the fields must be on shell and there-
fore the components of its four-momentum scale as

k0 ∼ v

r
, |k| ∼ v

r
. (11)

In addition to the radiation modes, the system contains
short-wavelength degrees of freedom contributing to the
binding energy between the constituents. These hard
modes naturally live on the orbital separation scale ∼ r
and therefore carry momenta

k0 ∼ v

r
, |k| ∼ 1

r
. (12)

Those off-shell modes do not appear as propagating de-
grees of freedom.

To make the distinction between the short- and long-
wavelength scales explicit, we decompose the graviton
and scalar fields as

hµν(x) = h̄µν(x) +Hµν(x) ,

ϕ(x) = ϕ̄(x) + Φ(x) .
(13)

4 Note that scalar radiation is only emitted if the scalar mass is
sufficiently small, i.e., ms < ω where ω is the orbital frequency.
This will become apparent when computing the radiative dynam-
ics in Sec. IVC.
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Here, Hµν(x) and Φ(x) denote the hard modes which me-
diate the interaction between the binaries at the scale r.
Conversely, h̄µν(x) and ϕ̄(x) represent the soft, propa-
gating degrees of freedom. From the scaling relations of
the momenta, we find the scaling of derivatives acting on
the respective modes

∂0Hµν =
v

r
Hµν , ∂iHµν =

1

r
Hµν ,

∂αh̄µν =
v

r
h̄µν ,

(14)

where Greek (Latin) indices run from 0, ..., 3 (1, ..., 3).
The same relations hold for the scalar field5. Because of
the different scaling of spatial and temporal derivatives,
we further follow Refs. [14, 15] and define the Fourier
transformed fields

Hµν(x) =

∫
d3k

(2π)3
exp (ikx)Hkµν(x

0) ,

Φ(x) =

∫
d3k

(2π)3
exp(ikx)Φk(x

0) .

(15)

In this way, the ∼ 1/r fluctuations from the spatial mo-
menta are disentangled from the fields. Derivatives act-
ing on the coordinates xi can then directly be evaluated.
Thus, all remaining derivatives acting on the fields scale
identically,

∂0Hkµν =
v

r
Hµν , ∂αh̄µν =

v

r
h̄µν . (16)

Power counting. Having established the hierarchy
of scales, we now introduce power counting rules. These
are required to systematically collect all operators that
contribute to the desired order in the PN expansion.
First, we again consider the virial theorem to find

M

rM2
Pl

∼ v2 . (17)

By introducing the angular momentum of the source L =
rMv, we can conclude that

M

MPl
∼ (Lv)

1
2 . (18)

This factor appears, e.g., when considering the coupling
of a graviton to the NS worldline.

Next, we consider the scaling of the graviton field by
constructing the propagator from the quadratic term of

5 When applying the same procedure to the scalar field, there ap-
pears a subtlety due to the finite scalar mass, which introduces
an additional scale. We will comment on this later in this section
when constructing the scalar propagator.

Quantity M/MPl h̄µν Hkµν ϕ̄ Φk

Scaling (Lv)
1
2 v/r v

1
2 r2 v/r v

1
2 r2

TABLE I: Power counting rules for the binary EFT of a
scalar-tensor theory.

the Einstein-Hilbert action (2). For the radiation modes
this yields [14]〈

T
(
hµν(x)hαβ(y)

)〉
= D(x− y)Pµν;αβ , (19)

with

Pµν;αβ =
1

2
(ηµαηνβ + ηναηµβ − ηµνηαβ) ,

D(x− y) =

∫
d4k

(2π)4
i exp(−ik(x− y))

k2 + iϵ
.

(20)

We can now simply apply the velocity dependence of the
on-shell momenta and obtain

µν

k

αβ ∼
(v
r

)4 (v
r

)−2

=
(v
r

)2
. (21)

Therefore, the soft graviton modes scale as

h̄µν ∼ v

r
. (22)

In terms of the hard modes Hkµν , the relevant part of
the Lagrangian reads [14]

LEH ⊃− 1

2

∫
d3k

(2π)3

[
k2HkµνH

µν
−k − k2

2
HkH−k

− ∂0Hkµν∂0H
µν
−k +

1

2
∂0Hk∂0H−k

]
.

(23)

We note that the second line is suppressed by the ve-
locity since k0/|k| ∼ v ≪ 1. Therefore, these terms can
be treated as a perturbation〈

T
(
Hkµν(t1)Hqαβ(t2)

)〉
∼ − i

|k|2
(
1 +

(k0)2

|k|2 + ...

)
.

(24)
Hence, the leading order expression is given by

µν

k

αβ

= −(2π)3
i

|k|2 δ
(3)(k + q)δ(t1 − t2)Pµν;αβ

∼
(
1

r

)−2(
1

r

)−3 ( r
v

)−1

= vr4 .

(25)

From this we read off the scaling of a potential graviton
mode

Hkµν ∼ v
1
2 r2 . (26)
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Eq. (25) corresponds to an instantaneous interaction.
The higher-order terms of the expansion in Eq. (24) are
incorporated as corrections to the propagator, diagram-
matically displayed by

µν αβ

= −(2π)3
i

|k|4 δ
(3)(k + q)

∂

∂t1∂t2
δ(t1 − t2)Pµν;αβ .

(27)

The above procedure is repeated for the scalar degree
of freedom. From the quadratic term in Eq. (4) we obtain
the well-known propagator of a massive scalar field〈

T
(
Φ(x)Φ(y)

)〉
=

∫
d4k

(2π)4
i exp(−ik(x− y))

k2 −m2
s + iϵ

. (28)

For the off-shell modes we neglect the iϵ term and expand

i

k2 −m2
s

= − i

|k|2 +m2
s

(
1 +

(k0)2

|k|2 +m2
s

+ ...

)
. (29)

This gives us the Feynman rules for the momentum space
propagator

k

= −(2π)3
i

|k|2 +m2
s

δ(3)(k + q)δ(t1 − t2) ,

(30)

as well as its LO correction

= −(2π)3
i

(|k|2 +m2
s)

2
δ(3)(k + q)

∂

∂t1∂t2
δ(t1 − t2) .

(31)

In terms of the velocity powers, we obtain the same scal-
ing relations as for the graviton case

Φk ∼ v
1
2 r , ϕ̄ ∼ v

r
. (32)

Table I contains a summary of the relevant power count-
ing rules.

Please note that, when expanding Eq. (29), we implic-
itly assumed that the scalar mass is of similar order as
|k|, i.e. ms ∼ |k| ∼ 1/r. However, we would like to model
the inspiral phase as a whole and thus not only focus on
the stage in which ms ∼ 1/r. In the full EFT spirit,
one therefore has to make a distinction between different
phases of the inspiral, and from that construct different
EFTs. More precisely, three distinct cases emerge for the
potential scalars:

• ms ≫ 1/r: The mass is too large to impact the
inspiral phase. Essentially, as soon as ms ≳ 1/Rs,
all potential effects of the scalar field would need
to be integrated out and would then only appear

via Wilson coefficients in the point particle action.
The same can also be seen from Eq. (29), since
the mass would suppress the propagator. In this
case, one would construct the EFT by neglecting
all potential scalar interactions.

• ms ∼ 1/r: The decomposition of the propagator
in Eq. (29) is valid, the power counting is mani-
fest, and one would include potential scalars in the
further construction of the EFT.

• ms ≪ 1/r: The scalar field behaves essentially
massless on the orbital separation scale. This be-
comes apparent since one could now further expand
the propagator in Eq. (29) in terms of the scalar
mass ms, with the leading order term correspond-
ing to a massless propagator.

However, we decide not to make this distinction and in-
stead use the presented expansion of the scalar propaga-
tor for all of the above cases. This has the great advan-
tage that we do not have to construct multiple EFTs and
instead have one that is valid for all the above-described
cases.

At the same time, this carries the disadvantage that we
lose the manifest power counting since we do not fix the
scale of ms. Instead, when inspecting a certain diagram,
we assign the scale to ms which will result in the overall
lowest scaling for the considered diagram, which effec-
tively means choosing ms ∼ 1/r for all potential scalars.
In this way, we keep all the diagrams that are relevant for
all three cases described above. If we wish to specialize to
a certain case, such as taking the massless limit ms → 0
for a particular quantity, e.g., the binding energy, we can
still do this at the end of the calculations. The same is
true for the large mass limit ms ≫ 1/r. Then, scalar
contributions are exponentially suppressed by terms of
the form ∼ exp(−msr) (cf. Sec. IVB).

Similar considerations apply to soft scalar modes. We
will later see that LO scalar radiation only exists if v/r >
ms, which naturally sets the scale ms ∼ v/r for on-shell
scalar radiation (cf. Sec. IV C).

IV Construction of the Scalar-Tensor EFT

To obtain an effective theory at the soft scale, we inte-
grate out the short-wavelength fields, i.e., the potential
scalar and graviton modes. This leaves us with the effec-
tive action

exp (iSeff) =

∫
DΦ DHµν exp (iS) , (33)

where S is the full action from Eq. (1). In the follow-
ing, we demonstrate the necessary steps to compute this
quantity. First, we derive all relevant interactions at the
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desired order in the PN expansion by expanding the full
action. These are organized in Feynman diagrams, where
potential modes only appear as internal lines, while radi-
ation modes enter externally. Subsequently, we compute
the energy loss of the binary system, which ultimately
leads to a prediction of the gravitational waveform. In
this work, we limit ourselves to the first order in the PN
expansion, which corresponds to O(v2). Higher-order ef-
fects on the waveform will be studied in future work.

A Action Expansion

First, we expand the full action (1) in order to
determine the interactions between the binary system
and the respective fields.

Pure GR. We start by considering the pure GR part
of point-particle action Spp. The first term in Eq. (6)

expands as

Spp ≃−M

∫
dτ̄ − M

2MPl

∫
dτ̄hµν

dxµ

dτ̄

dxν

dτ̄

+
M

8M2
Pl

∫
dτ̄

(
hµν

dxµ

dτ̄

dxν

dτ̄

)2

+ ... ,

(34)

where we have not explicitly written down the sum over
the constituents. In addition, we have introduced

dτ̄2 ≡ ηµνdx
µdxν . (35)

We now expand this expression to O(v4), which yields

dτ̄ = dt

(
ηµν

dxµ

dt

dxν

dt

) 1
2

= dt
(
1− v2

)1/2 ≃ dt

(
1− 1

2
v2 − 1

8
v4

)
.

(36)

In addition, we have

dxµ

dτ̄
=

1

(1− v2)
1
2

≃
(
1 +

1

2
v2 +

3

8
v4

)
dxµ

dt
, (37)

with dxµ/dt = (1,v). Plugging this into Eq. (34), we
obtain

S(0)
pp = −M

∫
dt

(
1− 1

2
v2 − 1

8
v4

)
,

S(1)
pp = − M

2MPl

∫
dt

(
h00 + 2h0iv

i + hijv
ivj +

h00

2
v2 + h0iv

iv2 +
hij

2
vivjv2 +

3

8
h00v

4

)
,

S(2)
pp =

M

8M2
Pl

∫
dt

(
h2
00 + 4h00h0iv

i + 4(h0iv
i)2 + 2h00hijv

ivj +
3

2
h2
00v

2 + 4h0ihjkv
ivjvk + 6h00h0iv

iv2

+
(
hijv

ivj
)2

+ 6
(
h0iv

i
)2

v2 + 3h00hijv
ivjv2 +

15

8
h00v

4

)
.

(38)

This expression contains all couplings between the NS
worldlines and the graviton field. Together with the
power counting rules for radiation/potential gravitons
from Sec. III, we can now pick up all terms relevant at
1PN. To demonstrate this procedure, one may, e.g., con-
sider the first term in S(1)

pp . For the interaction between
the worldline and a potential graviton with polarization
H00, we obtain

SH00−NS = − M

2MPl

∫
dt

d3k

(2π)3
exp (ikx)Hk00

∼ (Mvr)
1
2 v

1
2
r

v

1

r3
r2
√
v =

√
Mvr =

√
L ,

(39)

The corresponding Feynman rule for the H00-NS vertex
reads

= −i
M

2MPl

∫
dt

∫
k

exp (ikx) η0µη0ν . (40)

Note the factor of i which enters via the expansion of the
path integral. Equivalently, for a radiation graviton we
obtain the scaling

Sh̄00−NS =
M

2MPl

∫
dt h̄00 ∼ (Lv)

1
2 . (41)

Regarding the Feynman rule, we have

= −i
M

2MPl

∫
dt h̄00 . (42)
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We repeat this procedure for all operators in Eq. (38).
A summary of the relevant interactions, together with
their Feynman rules and scaling relations, can be found
in App. F 1.

Einstein-Hilbert action. In addition to the dia-
grams which arise from the coupling between the world-
line and the gravitons, we need to take into account the
graviton self-interactions which render n-graviton ver-
tices. These contributions are collected by expanding
the Einstein-Hilbert action SEH. At cubic order, one,
e.g., finds [15]

SH3 ∼ 1

MPl

∫
dt(2π)3δ(3)

(∑
r

kr

)
k2
∏
i

d3kr

(2π)3
Hkr

∼ v2

L
1
2

.

(43)

Since this expression already scales as ∼ v2, we do not
consider interaction terms of higher order. The corre-

sponding momentum space Feynman rule reads [14]

= − i

4MPl
δ(x0

1 − x0
2)δ(x

0
1 − x0

3)(2π)
3

δ(3)

(∑
r

kr

)∏
r

i

k2
r

×
∑
r

k2
r .

(44)

Scalar contributions. Lastly, we consider the
scalar sector. We first perform an expansion of the ϕ-
dependent terms in the point-particle action. From the
linear term, we obtain all couplings between the worldline
and one scalar

S
(0)
ppϕ = − qn

MPl

∫
dt

(
1− 1

2
v2 − 1

8
v4

)
ϕ ,

S
(1)
ppϕ = − qn

2M2
Pl

∫
dt

(
h00 + 2h0iv

i + hijv
ivj +

h00

2
v2 + h0iv

iv2 +
hij

2
vivjv2 +

3

8
h00v

4

)
ϕ ,

S
(2)
ppϕ =

qn
8M3

Pl

∫
dt

(
h2
00 + 4h00h0iv

i + 4(h0iv
i)2 + 2h00hijv

ivj +
3

2
h2
00v

2 + 4h0ihjkv
ivjvk + 6h00h0iv

iv2

+
(
hijv

ivj
)2

+ 6
(
h0iv

i
)2

v2 + 3h00hijv
ivjv2 +

15

8
h00v

4

)
ϕ .

(45)

This is repeated for the term in Spp which is quadratic in ϕ, yielding

S
(0)
ppϕ2 = − pn

M2
Pl

∫
dt

(
1− 1

2
v2 − 1

8
v4

)
ϕ2 ,

S
(1)
ppϕ2 = − pn

2M3
Pl

∫
dt

(
h00 + 2h0iv

i + hijv
ivj +

h00

2
v2 + h0iv

iv2 +
hij

2
vivjv2 +

3

8
h00v

4

)
ϕ2 ,

S
(2)
ppϕ2 =

pn
8M4

Pl

∫
dt

(
h2
00 + 4h00h0iv

i + 4(h0iv
i)2 + 2h00hijv

ivj +
3

2
h2
00v

2 + 4h0ihjkv
ivjvk + 6h00h0iv

iv2

+
(
hijv

ivj
)2

+ 6
(
h0iv

i
)2

v2 + 3h00hijv
ivjv2 +

15

8
h00v

4

)
ϕ2 .

(46)

We can now derive, e.g., the velocity scaling of the inter-
action between a scalar potential mode and the worldine,

SΦ−NS ∼ qn
MPl

∫
dt

∫
d3kΦk ∼ L

1
2
qn
Mn

. (47)

Here Mn and qn denote the mass and scalar charge of the
nth constituent. This results in the Feynman rule

= −i
qn
MPl

∫
dt

∫
k

exp (ikx) . (48)
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H00

H00

H0i

H00H00

H00

(a) Binding energy diagrams at 1PN order in pure GR.

Φ
Φ

ΦΦ H00Φ H00

H00

Φ

(b) Scalar contribution to the binding energy.

FIG. 1: All diagrams contributing to the binding energy at 1PN order.

Similarly, the interaction between a soft mode and the
worldline scales as

Sϕ̄−NS ∼ qn
MPl

∫
dt ϕ̄ ∼ (Lv)

1
2
qn
Mn

. (49)

The Feynman rule reads

= −i
qn
MPl

∫
dt ϕ̄ . (50)

Note that the scalar-worldline interactions depend on the
EFT parameters qn and pn, which are in general model
dependent. To remain model independent, we keep these
coefficients generic throughout our entire computation.
Our results may then be adapted to any theory by per-
forming a matching procedure (see [28, 29, 40] for LO
examples). In App. B, we comment on constraints on
the EFT parameters to retain the validity of our treat-
ment.

The remaining piece is the scalar action, which allows
us to work out the interactions between the graviton and
the scalar field, as well as n-scalar self-interactions. First,
we expand the metric determinant

√−g = 1 +
1

2MPl
hµνη

µν − 1

4M2
Pl

hµνhµν

+
1

8M2
Pl

(hµνη
µν)2 + ... .

(51)

With the generic potential from Eq. (5), the potential
part of the action then reads

Sϕ ⊃ −
∫
d4x

[
m2

s

2
ϕ2 +MPl

c3
3!
ϕ3 +

λ

4!
ϕ4

+
m2

s

4MPl
hµνη

µνϕ2 +
c3

2 · 3!hµνη
µνϕ3

+
λ

2 · 4!MPl
hµνη

µνϕ4 + ...

]
.

(52)

The kinetic term expands as

Sϕ ⊃
∫

d4x

[
1

2
ηµν∂µϕ∂νϕ− hµν

2MPl
∂µϕ∂νϕ

+
hηµν

4MPl
∂µϕ∂νϕ−O(h2)

]
,

(53)

where h = hαβη
αβ . This renders the h− ϕ2 vertex

Shϕ2 ∼ hµν

2MPl
kµkνϕ

2 +
hηµν

4MPl
kµkνϕ

2

− m2
s

4MPl
hµνηµνϕ

2 .

(54)

Considering only the momentum-dependent part, we
have

Shϕ2 ∼
(
ηαβP00;αβ

2
ηµν − P00;µν

)
kµkν = δµ0δν0k

µkν .

(55)
Hence, this expression only has a finite contribution for
the time components of the four-momentum. This, how-
ever, is always suppressed relative to the mass vertex in
Eq. (54). Therefore, we can neglect the couplings gener-
ated by the kinetic term in the following, i.e., only the
term ∼ m2

sh
µνηµν remains. This is exactly the reason

why the h− ϕ2 vertex vanishes in the massless limit [26]
at the considered PN order.

From Eq. (52) we also obtain the scaling of the three-
scalar vertex

SΦ3 ∼ c3MPl

∫
dt
∏
r

∫
d3krΦkr

δ(3)
(∑

i

ki

)
∼ c3MPlrv

1
2 ∼ c3M

2
Plr

2 v2

L
1
2

.

(56)

As for the graviton, we neglect higher orders since this
expression already scales ∼ v2. The corresponding Feyn-
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man rule reads

= −i
c3
3!
MPlδ(x

0
1 − x0

2)δ(x
0
1 − x0

3)

× (2π)3δ(3)

(∑
r

kr

)∏
r

i

k2
r +m2

.

(57)

The remaining scalar interactions and their associated
Feynman rules are listed in Appendix F 1. We now have
all the ingredients to compute the Feynman diagrams
which contribute to the binding energy, as well as the
radiation power of the binary system.

B Conservative Dynamics

Let us first consider the orbital scale and compute the
diagrams that contribute to the conservative dynamics
of the system. To do so, we collect all diagrams with
internal potential modes and no external legs. First, we
derive the potential energy in pure GR, before including
the effects from the scalar field. Eventually, we derive
the scalar modifications to the Kepler relation and
binding energy.

GR contribution. Applying the Feynman rules
from App. F 1, we find five diagrams which scale ∼ v2 at
most, hence contribute up to 1PN. These are depicted in
Fig. 1a. Please note that the first diagram, the exchange
of a potential graviton with polarization H00, contains

only the LO term. For simplicity, we evaluate the third
diagram involving a graviton with polarization H0i by
taking into account higher-order velocity dependencies,
such as ∼ H0iv

i or ∼ H00v
2.

For the complete calculation of all the relevant pro-
cesses at 1PN we refer the reader to App. F 2. Here we
simply state the final result. Including the kinetic term,
we obtain

LGR =
1

2

∑
i=1,2

Miv
2
i +G

M1M2

r
+ LEIH , (58)

where LEIH is the Einstein-Infeld-Hoffmann Lagrangian
[52]

LEIH =
1

8

∑
i=1,2

Miv
4
i +G

M1M2

2r

[
3(v2

1 + v2
2)− 7(v1 · v2)

− (v1 · r)(v2 · r)
r2

]
−G2M1M2(M1 +M2)

2r2
.

(59)

Scalar field contribution. Equivalently to the po-
tential gravitons, the short-wavelength scalar modes me-
diate a force between the binary constituents. The con-
tributions from the scalar field up to 1PN order are shown
in Fig. 1b. Note that these diagrams contain both pure
scalar contributions, but also vertices at which scalars
and gravitons couple together. The full computation of
the diagrams is given in App. F 2. Putting everything
together, the scalar Lagrangian reads

Lϕ =8Gq1q2
e−msr

r

[
1−G

M1 +M2

r
− v2

1 + v2
2

2
− (v1 · r1)(v2 · r2)

2 r2
(1 +msr) +

v1 · v2

2

]
− 64G2(p1q

2
2 + p2q

2
1)
e−2msr

r2
+ 4msG

2M1q
2
2 +M2q

2
1

r

[
e−2msr + 2msrEi(−2msr)

]
− 8msG

2q1q2
M

r

[
log(2msr)e

−msr − Ei(−2msr)e
msr

]
+Gc3q1q2

q1 + q2
2πmsr

[
Ei(−msr)e

−msr − Ei(−3msr)e
msr

]
,

(60)

where Ei(x) =
∫ x

−∞ dt exp(t)/t denotes the exponential
integral.

In the above computations, we have not distinguished
between the bare and physical masses and charges by
neglecting the pure self-force diagrams shown in Fig. 2.
In App. D we demonstrate that the diagrams in Fig. 2a

can be absorbed by defining the physical mass

Mphys = Mb + δMsf = Mb +
ms q

2
b

8πM2
Pl

, (61)

where Mb is the bare gravitational mass. Similarly, the
diagrams in Fig. 2c are taken into account by introducing
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M x γ µ ν Q Q̄ m̄s c̄3 ξq ξp

M1 +M2 (GMω)
2
3

GM

r

M1M2

M

µ

M

q1 + q2
M

q1q2
M1M2

GMms c3GM2QQ̄
q21M2 + q22M1

MM1M2

p1q
2
2 + p2q

2
1

MM1M2

v δq δM Ξp Ξc Ξq g1 g2

(GMf)
1
3

M2q1 −M1q2
M2

M1 −M2
M1p2q1 −M2p1q2

M3
δq

c3Q̄δMδq

M

M2
2 q1 +M2

1 q2
M3

M2
2 q1 −M2

1 q2
M3

M3
2 q1 −M3

1 q2
M4

TABLE II: Overview of the parameters introduced in our work. Besides the typical PN expansion variables, we rescale the
EFT parameters for convenience.

the physical scalar charge

qphys = qb + δqsf +
q2bc3 log 3

16πms
− msMbqb γ

32πM2
Pl

= qb +
qb
4π

[
pb ms

M2
Pl

+
qb c3 log 3

4ms
− msMb γ

8M2
Pl

]
,

(62)

with qb denoting the bare scalar charge, and γ is the
Euler-Mascheroni constant. Here the second term
corresponds to the self-force diagram from Fig. 2c, while
the two last terms arise when evaluating Fig. 1b vi) and
Fig. 1b vii). In the following, we will use the physical
quantities, however drop the corresponding subscript for
brevity.

Modified Kepler relation. The total Lagrangian
is given by

Ltot = LGR + Lϕ , (63)

which allows us to compute the modification of the Ke-
pler relation due to the scalar field. In the remainder of
this work, we specialize to circular orbits with

r1 = r1

cosωt
sinωt
0

 , r2 = r2

cos (ωt+ π)
sin (ωt+ π)

0

 . (64)

The Euler-Lagrange equations

d

dt

∂L

∂ṙi
− ∂L

∂ri
= 0 (65)

can now be used to derive relations between r1, r2 and ω.
Dotted quantities here denote derivatives with respect to
time t. Note that since we consider circular orbits, we
automatically have ∂L/∂ṙi = 0. In order to derive a
relation on r1 and r2, it is convenient to consider

∂L

∂r1
− ∂L

∂r2
= 0 . (66)

This reveals at 1PN order

r2 = r
M1

M
+

νδM

2

[
8Ge−msrQ̄+G− r3ω2

M

]
, (67)

where r = r1 + r2 is the orbital separation. In order
to obtain the above expression, we Taylor expanded in
powers of Q̄ = q1q2/(M1M2) and only kept the LO term.
Other terms, such as those proportional to pi, cancel out
at this order and thus do not contribute. To further ob-
tain a relation between r and ω, i.e., the modified Kepler
relation, we evaluate

∂L

∂r1
+

∂L

∂r2
= 0 . (68)

After solving for ω, we Taylor expand in Q̄ as well as
in the other parameters describing the dynamics, e.g., ξp
(cf. Tab. II). The resulting expression becomes rather
long and is thus presented in App. C, together with all
further derived quantities. In the following we only fo-
cus on the LO contribution arising from the scalar field,
i.e., the contribution proportional to Q̄, in order to illus-
trate the procedure.

At 1PN order and keeping only terms at most linear
in Q̄ we obtain the modified Kepler relation

ω2 =
GM

r3

[
1+8Q̄(1+msr)e

−msr +(ν−3)
GM

r

]
. (69)

Rewriting this expression in terms of the usual PN ex-
pansion parameter, i.e., γ = GM/r and x = (GMω)2/3

(see Tab. II), we obtain the equivalent relation

x3 = γ3

[
1 + 8Q̄

(
1 +

m̄s

γ

)
e−m̄s/γ + (ν − 3)γ

]
. (70)

Inverting this equation for γ and only keeping LO terms
in Q̄, we obtain

γ =

γGR≡︷ ︸︸ ︷
x+

(
1− ν

3

)
x2 −Q̄

8

3
(m̄s + x)e−m̄s/γGR ,

(71)

where m̄s = GMms. The parameter γGR is the usual
one which one would find in pure GR. It can in principle
be exchanged with any higher-order accurate relation.
Further, note that e−m̄s/γGR does not admit a Taylor
expansion at around γGR = 0. Instead, it is feasible
to first expand 1/γGR and then expand the exponential
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function while leaving the LO term in the exponential,
−m̄s/x, untouched. More explicitly, first we expand

− m̄s

γGR
= −m̄s

x
+ m̄s

(
1− ν

3

)
+ m̄sO(x) , (72)

and thus

e−m̄s/γGR = e−m̄s/xem̄s(1−ν/3)+m̄sO(x) . (73)

If we assume m̄s to be on the hard scale, i.e. m̄s ∼ γ,
then we can directly Taylor expand around the LO term
to obtain a well-behaved series, which can be truncated
at the desired order. However, as we wish to keep the
analysis more general, as to be applicable for any value
of m̄s, we are not directly in a position where we can
do this expansion. Nonetheless, note that if one formally
expands the second exponential, we obtain

e−m̄s/γGR = e−m̄s/x
[
1 + m̄s

(
1− ν

3

)
+O(m̄2

s)O(x)
]
.

(74)
This expansion can generally be written as

e−m̄s/γGR =

∞∑
n=0

fn(x)
m̄n

s

n!
e−m̄s/x (75)

with fn(x) absorbing the remaining dependence on x and
some overall coefficients of order O(1)6. Note that each
term individually, if viewed as a function of m̄s, reaches
a maximum at m̄s = ax, such that

fn(x)
m̄n

s

n!
e−m̄s/x ≤ fn(x)x

nn
n

n!
e−n ≤ fn(x)x

n . (76)

Hence, a term proportional to m̄n
s can at most contribute

with xn. This means that effectively we can still assume
m̄s ∼ γ ∼ x when doing this expansion, even if the scalar
mass does not formally live on the hard scale. In other
words, m̄n

s can never become more important than xn.
By assuming m̄s ∼ x we can make sure to always only
keep those terms in the expansion that have a chance to
become relevant at some point during the inspiral. The
same reasoning also applies to the other functions that
appear in the Lagrangian, such that we can also expand
terms like Ei(−m̄s/γGR).

Continuing with the calculation and following the
above discussion, we are allowed to truncate the expan-
sion in Eq. (74) to the desired PN order. At NLO, this
is

e−m̄s/γGR = e−m̄s/x
[
1 + m̄s

(
1− ν

3

)]
, (77)

Inserting this relation into Eq. (71) and truncating at
the relevant order again shows that the inverse Kepler
law becomes

γ = x+
(
1− ν

3

)
x2 − Q̄

8

3
(m̄s + x)e−m̄s/x . (78)

6 A more careful analysis reveals fn(x) = (1/x− 1/γGR)n.

Note in this case the NLO term of Eq. (77) just gets
truncated, so that the above-described expansion effec-
tively results in replacing γGR with x. However, the
quantities presented in App. C are expanded consistently
up to 1PN order, including all NLO terms.

Binding energy. The last quantity we compute re-
garding the conservative dynamics is the binding energy
for a given orbital separation and frequency. Applying
a Legendre transformation to the Lagrangian, we obtain
the Hamiltonian H for this system:

H =
∑
i=1,2

∂L

∂ẋk
i

ẋk
i − L . (79)

From here, we calculate the binding energy for the con-
sidered circular orbits, as

E

µ
= 4Q̄e−

m̄s
γ (m̄s − γ)− γ

2

[
1 +

(
−7

4
+

ν

4

)
γ

]
, (80)

where µ is the reduced mass (cf. Tab. II). This expression
can equivalently be expressed in terms of x at 1PN order
as

E

µ
=

8

3
Q̄e−

m̄s
x (2m̄s − x)− x

2

[
1−

(
3

4
+

ν

12

)
x

]
. (81)

Note that the last term, i.e., the term independent of Q̄,
is just the 1PN expression for the binding energy in pure
GR. The full expression considering all scalar effects is
found in App. C.

C Radiation

Let us now discuss the computations involving soft de-
grees of freedom. Fig. 3 shows all emission diagrams that
contribute at 1PN order. This comprises pure GR, pure
scalar, as well as mixed contributions. We do not carry
out the full calculations of all pure GR diagrams. Instead,
it is more sensible to only calculate the corrections due
to the scalar field. We then add these contributions in
the fashion of a Taylor expansion to an existing template
at high PN order in pure GR.

In the following, we first outline how the power
loss via gravitational waves is affected by the scalar.
Subsequently, the power loss via scalar radiation is
computed.

Gravitational radiation. After integrating out the
orbital scale, the radiation gravitons are sourced by an
effective energy-momentum tensor Tµν

eff , which enters the
effective action via

Seff ⊃ Ssrc, h̄ = − 1

2MPl

∫
dx4 Tµν

eff (x)h̄µν(x) . (82)
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(a) Diagrams contributing to the renormalization of the mass with
no external vertices.

H̄/h̄ H̄/h̄

(b) Diagrams contributing to the renormalization of the mass ver-
tex with one external graviton.

Φ/φ̄ Φ/φ̄

(c) Diagrams contributing to the renormalization of the scalar
charge vertex with one external scalar.

FIG. 2: All self-force diagrams that contribute to the renor-
malization of the charge and mass up to 1PN order. The
renormalization of the induced charge becomes relevant at
higher PN orders.

The general strategy to retain a consistent power count-
ing is to expand hµν in multipole moments [53] around
the source. We intend to compute the gravitational wave-
form at NLO with regard to the scalar emission. As dis-
cussed in the subsequent section, the LO multipole in the
scalar sector is given by the dipole, contributing at −1PN
order. This implies it is sufficient to only consider the
scalar effects on the quadrupolar radiation in the gravi-
ton sector. At LO, the quadrupole moment reads

Iij =

∫
d3xT 00

[
xixj

]STF
, (83)

where STF denotes the symmetric and trace-free pro-
jection. We find that none of the diagrams in Fig. 3b
contribute to this order. Therefore, the quadrupole mo-
ment takes the same form as in pure GR. Explicitly, we
have

Iij =
∑
a=1,2

Ma[r
i
ar

j
a]

STF . (84)

Using our expression for ri and the expansion for r2,
Eq. (64) and Eq. (66), we further obtain

Iij = µ [rirj ]STF , (85)

with r = r1−r2. Here we have already dropped all terms
that will only contribute beyond the LO energy loss. Es-
pecially, all corrections due to the scalar field on r2 will
only contribute beyond 0PN and are thus negligible for
the energy loss due to graviton emission at LO. The en-

ergy loss is then given by the usual quadrupole formula

Ph̄ =
G

5

〈(
∂3
t I

ij
)2〉

=
32G

5
M2ν2r4ω6

=
32

5G
ν2x5 +

1024

15G
ν2Q̄e−m̄s/x(m̄s + x)x4 ,

(86)

where ⟨. . . ⟩ denotes time averaging. In the last line,
we have dropped all terms which are of quadratic or
higher power in Q̄, and also those terms that would
only contribute from 1PN order on. The first term
is the usual pure GR quadrupole radiation, while the
second term describes the modifications arising due to
the scalar field. Notably, the presence of the scalar field
affects the LO graviton radiation only via the modified
Kepler relation, Eq. (C1).

Scalar radiation. Similar to the gravitational radi-
ation, we obtain the energy loss by scalar emission by first
identifying the source term that produces the radiation
at linear order

Seff ⊃ Ssrc, ϕ̄ =
1

MPl

∫
d4xJ(x)ϕ̄(x) (87)

All relevant scalar radiation diagrams contributing to J
are shown in Fig. 3c and 3d. We follow Ref. [53] to obtain
the energy loss. First, we Taylor expand the field around
the center of mass. This allows us to rewrite the source
term via

Ssrc =
1

MPl

∫
dt

∞∑
l=0

1

l!
IL∂Lϕ̄, (88)

where the derivatives ∂Lϕ̄ are evaluated at (t,x = 0). L
denotes a multi index, such that xL = xi1xi2 . . . xil and

IL =

∞∑
p=0

(2l + 1)!!

(2p)!!(2l + 2p+ 1)!!∫
d3x r2pxL

STF (∂2
t +m2

s)
pJ ,

(89)

with r = |x|, are the multipole moments of the source.
A more detailed derivation of the above expression is
given in App. E. Please note that Eq. (89) deviates from
Ref. [53] since we consider a non-vanishing scalar poten-
tial.

Note further that the contributions to the source term
arising from diagrams in which the radiating field couples
directly to one of the worldlines can be calculated with-
out performing the multipole expansion. The source term
then always contains a δ-function, which sets the position
to the current position of the object whose worldline is
being coupled to. The diagrams in which the radiating
scalar instead couples to an interaction vertex whose po-
sition is integrated over, such as in Figs. 3c iii) and 3d i),
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h̄

H

h̄

H
h̄

(a) Pure GR radiation diagrams.

Φ

h̄00

Φ
h̄00, h̄ij

(b) Modified graviton emission.

φ̄

Φ

φ̄

Φ

Φ φ̄

(c) Pure scalar emission.

H00,Hij

Φ φ̄
H00

φ̄

(d) Modified scalar emission.

FIG. 3: All emission diagrams appearing at 1PN, except for the last diagram in Fig. 3d. Figure 3a shows all emission diagrams
appearing in pure GR, while Fig. 3b displays the new graviton emission diagrams appearing due to couplings with the scalar
field. Similarly, Fig. 3c are pure scalar emission diagrams. Fig. 3d shows all scalar emission diagrams that also contain graviton
interactions.

φ̄

IL IL′

h̄

IL IL′

FIG. 4: Self-force diagrams contributing to the LO radiation
power starting at −1PN (left) and 0PN (right), respectively.

are slightly more complicated. They typically require
performing the multipole expansion before the diagram
can be solved analytically. In particular, this means that
each term in the multipole expansion has to be calculated
separately. In previous computations [28, 30] this sub-
tlety has not been taken into account. Instead, higher-
order moments were calculated by supplementing the
monopole term with an appropriate δ-function in order
to isolate the corresponding source term. This approach
however does not capture the full dynamics, which can
be verified by a direct computation of the higher-order
moments. As a consequence, we find additional terms
contributing to the power loss via scalar radiation com-
pared to existing literature. The explicit computations
are relegated to App. F 3.

To derive the energy loss, we need to compute the
imaginary part of the self-force diagrams in which the
scalar field couples to the multipole moments. For our
desired accuracy, it is sufficient to consider the LO topol-
ogy depicted by the left diagram in Fig. 4. The calcula-
tion – see App. E for details – yields

Pϕ̄ =
1

4π2T

∞∑
l=0

1

l!(2l + 1)!!∫ ∞

ms

dω ω
(
ω2 −m2

s

)l+1/2
∣∣∣ĨL(ω)

∣∣∣2 ,

(90)

ms [eV] q1 [M1] q2 [M2] p1 [q1] p2 [q2] c3

Left 10−15 10−3 10−3 5× 10−2 5× 10−2 m2
s/M

2
Pl

Right 10−15 10−4 0 5× 10−3 0 m2
s/M

2
Pl

TABLE III: Model parameters we employ in the respective
panels of Fig. 5. The scalar mass corresponds to a character-
istic value, which is typically not excluded by observations;
see, e.g., the discussion in Ref. [54]. Also, the values for the
scalar charges [28, 47] are typical values that lie in the obser-
vationally viable region. The value of the cubic self-coupling
c3 is motivated by R2 gravity (cf. App. B).

where T = 2πδ(0). A tilde denotes Fourier-transformed
quantities, e.g. in this case

ĨL(ω) =

∫
dt eiωtIL(t). (91)

We decompose the total energy loss into its contributions
from different multipole moments. Up to 0PN order we
obtain

P 0PN
ϕ̄ = P l=1

ϕ̄

(
1− m2

s

ω2

)3/2

+ P l=2
ϕ̄

(
1− m2

s

4ω2

)5/2

,

(92)

where we factored out the common factor that inhibits
scalar radiation for frequencies of ω < ms (ω < ms/2)
in the case of dipole (quadrupole) radiation. Note that
no monopole radiation is emitted, since, as mentioned
above, we only consider circular orbits.

When evaluating Eq. (90), we calculate the p = 0 com-
ponent for each diagram and only keep the p = 1 con-
tribution for the LO scalar emission diagram, i.e., the
one in Fig. 3c i). Judging from the power counting rules,
one does not expect other diagrams to contribute for
l = p = 1 at the considered order. However, a direct
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FIG. 5: Power loss of an inspiraling binary system in massive scalar-tensor gravity, relative to the LO power loss in pure GR.
Different colors indicate different contributions. We display the power loss arising due to scalar effects on the Kepler relation
(dark blue, Eq. (86)), LO scalar dipole radiation (dark red, Eq. (94a)), dipole effects due to the induced scalar charges (dark
gray, Eq. (94b)) and cubic self-coupling (black, Eq. (94c)), NLO scalar dipole radiation (orange, Eq. (94d)), as well as scalar
quadrupole radiation (light blue, Eq. (94e)). The light gray curves indicate higher-order pure GR corrections up to 2PN order.
In addition, we show typical pure GR finite-size contributions, where for the NS tidal deformability we choose a benchmark
value of Λ = 100. In both panels, we fix M1 = 1.8M⊙ and M2 = 2M⊙, while the employed model parameters are found in
Table III. The left panel corresponds to a typical NS-NS binary system. In the right panel, only one constituent carries a scalar
charge – a constellation corresponding to a NS-BH binary. As a consequence, at the here considered order, the scalar degree
of freedom has no effect on the modified Kepler relation. In addition, the contributions from the induced scalar charges p1, p2
and the self-coupling c3 vanish. Also, please note that although we plot the power loss up to x = 1, our perturbative approach
breaks down for large x ≲ 1, i.e., our results can no longer be trusted. In this regime, other methods such as numerical relativity
would have to be invoked to reliably describe the dynamics.

computation of the l = p = 1 component of the diagram
in Fig. 3d i) reveals IR divergent terms in the limit of
ms → 0. Since in the massless limit the diagram it-
self vanishes as there is no corresponding operator in
the action, these contributions are considered unphys-
ical. Yet they contribute to the here relevant order for
non-vanishing ms. We suspect that these divergent terms
are canceled by higher-order diagrams and thus do not
further include their effect, instead postponing a more
detailed study to future research.

Plugging the results from App. F 3 into Eq. (92), we
obtain

P l=1,LO
ϕ̄

=
8

3
GM2δq2r2ω4, (93a)

P l=1,p1,p2

ϕ̄
=

256

3
G2M3Ξp rω

4, (93b)

P l=1,c3
ϕ̄

=
GM1M2M

3πms
Ξc(msr − 1)r2ω4, (93c)

P l=1,NLO
ϕ̄

=
8GM2

15
δq

[
− 10g1GM

+ g2r
3(m2

s − 6ω2)

]
rω4,

(93d)

P l=2
ϕ̄ =

128

15
GM2Ξ2

qr
4ω6. (93e)

Here we have expanded the energy loss terms to only keep
relevant contributions. More precisely, Eq. (93a) con-
tains the LO energy loss, which in our case is the usual
dipole radiation term, formally entering at −1PN order.
Likewise, Eq. (93d) contains the dipole radiation terms
which enter at 0PN order. The terms which contain ef-
fects due to p1, p2 (Eq. (93b)), and c3 (Eq. (93c)) also
contribute at 0PN order as does the scalar quadrupole
radiation (Eq. (93e)).

All combinations of worldline coefficients have been
combined to dimensionless parameters and are summa-
rized in Table II for the reader’s convenience.

We may further use the Kepler relation to express the
power losses in terms of the PN expansion parameter x.
In this case, we obtain

P l=1,LO
ϕ̄

=
8

3G
δq2x4 , (94a)

P l=1,p1,p2

ϕ̄
=

256

3G
Ξp x

5 , (94b)

P l=1,c3
ϕ̄

=
M1M2

3π

m̄s − x

m̄s
Ξc x

3 , (94c)
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P l=1,NLO
ϕ̄

=
16

9G
(−3 + ν)δq2 x5 +

8

15G
m̄2

s g2 δq x
2

− 16

15G
(5g1 + 3g2)δq x

5 ,
(94d)

P l=2
ϕ̄ =

128

15G
Ξ2
q x

5 . (94e)

Fig. 5 shows the different contributions to the power
loss relative to the LO power loss in pure GR. The corre-
sponding model parameters are summarized in Table III.
In the left panel, both (induced) scalar charges are non-
zero, a situation typical for NS-NS binaries. We observe
that the modification of the Kepler relation due to the
impact of the scalar field on the binding energy is clearly
the most significant effect for the chosen values. This
contribution to the power loss is present during a large
part of the inspiral. For small values of x ≲ 10−4, which
corresponds to the radial scale where ms ∼ 1/r, the ex-
ponential suppression of hard scalar interactions becomes
sizable. The effect of the scalar mass also becomes appar-
ent regarding the radiative dynamics of the system. Here,
dipole (quadrupole) radiation is shut off when ms < ω
(ms < ω/2). Therefore, smaller values of ms would shift
this cutoff to lower x, leading to a larger impact of the
scalar field during earlier stages of the inspiral. In partic-
ular, the LO dipole contribution then becomes enhanced
as P l=1,LO

ϕ̄
/PLO

GR ∝ 1/x.
In the right panel, we set q2 = p2 = 0, i.e., only one

constituent carries a scalar charge. Such values would
typically be realized in NS-BH inspirals. We immediately
notice that the power loss contribution from the modified
Kepler relation vanishes. This can be seen from Eq. (86)
as Ph̄ ∝ q1q2. The same is true for scalar radiation emit-
ted via the cubic self-interaction vertex. In addition,
we observe no scalar radiation proportional to induced
scalar charges since P l=1,p1,p2

ϕ̄
∝ (p2q1 − p1q2). Nonethe-

less, please note that the power loss from LO dipole
radiation is comparable to the left panel, although the
scalar charge q1 is an order of magnitude smaller. This is
due to the fact that this contribution is proportional to
δq2 ∝ (M2q1−M1q2)

2, i.e., becomes typically larger if the
scalar charges deviate from each other. The same consid-
erations apply to the NLO dipole. The scalar quadrupole,
on the other hand, scales with Ξ2

q ∝ (M2
2 q1 + M2

1 q2)
2,

hence is suppressed for q2 = 0.

V Gravitational Waveform

We are now set to derive the gravitational waveform.
In the time domain, a gravitational wave h(t) is expressed
by the waveform

h(t) = A(t) cosφ(t) , (95)

where A denotes the amplitude and φ is the phase. We
derive the scalar-induced modifications to the TaylorF2
approximand [55] and thus employ the stationary phase
approximation (SPA). For the Fourier transform of the
above expression we have

h̃(f) = A(f)eiΨ . (96)

Here, Ψ solves the following differential equations [55]:

0 =
dΨ

df
− 2πt(f) ,

0 =
dt

df
+

GπM

3v2
E′(f)

P (f)
.

(97)

Above, v denotes the orbital velocity which is related to
the GW frequency f via v = (πGMf)1/3. Also, the
prime denotes differentiation with respect to v. It is
therefore necessary to calculate the fraction E′/P and
integrate twice with respect to the frequency. Here, the
binding energy E is given by Eq. (C4). The different
contributions to the power loss of the binary are found
in Eq. (86) and Eq. (93), respectively. We perform the
computation by expanding E′/P in terms of the pertur-
bative scalar quantities, such as the scalar charge q and
self-interaction c3. We then only keep the LO terms,
which we calculate up to 0PN order. We thus have

Ψ(q1, q2, . . . ) = ΨGR +ΨST , (98)

where ΨGR denotes the pure GR waveform. ΨST encodes
the corrections due to the scalar field at leading order
in the scalar charge, induced charge and self-interaction.
Note that this means that the following results can be
added to any existing TaylorF2 template. We further
decompose ΨST to be able to easily identify the compo-
nents that arise due to the modification to the binding
energy (C4), which is always present during the inspiral,
and the additional scalar radiation, which is only present
for sufficient large frequencies. Thus, we decompose

ΨST = ΨE + θ

(
v3

m̄s
− 1

)
Ψl=1

+ θ

(
v3

m̄s
− 1

2

)
Ψl=2 ,

(99)

where θ is the Heaviside step function. ΨE denotes the
impact of the scalar field onto the gravitational energy
loss via the modified Kepler relation. The contribution
due to direct emission of scalar dipole and quadrupole
radiation is captured by Ψl=1,2, respectively.

We are now ready to present our final results. The
lowest contribution due to radiation arises at −1PN or-
der, corresponding to scalar dipole radiation. ΨE , on the
other hand, only contributes from 0PN order. These two
corrections read
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Ψ0PN
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5Q̄

6νm̄
5/2
s

[
Γ

(
5
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,
m̄s
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)
+ Γ

(
7

2
,
m̄s

v2

)
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(
9

2
,
m̄s
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5Q̄

6νm̄4
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[
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(
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(
5,

m̄s
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)
+ 2Γ

(
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(100a)

Ψ−1PN
l=1 = δq2

5

896ν3

[
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v7
3F2

(
−3

2
,
5

3
,
7

6
;
8

3
,
13

6
;
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− 90 · 21/331/2v3Γ

(
2
3

)3
247πm̄

10/3
s

+
63Γ

(
1
3

)3
256 · 21/3πm̄7/3

s

]
. (100b)

Here we utilized the upper incomplete gamma function Γ(a, x) =
∫∞
x

ta−1e−tdt and 3F2 denotes a generalized hyper-
geometric function. Note that the above expressions only contain modifications due to the scalar charges q1 and q2.
Corrections due to the induced charges p1 and p2, as well as the self-interaction parameter c3, arise at NLO (0PN)
with respect to the scalar radiation. Explicitly, these terms are given by

Ψ0PN,q
l=1 = − 5g2δqm̄

2
s

9856ν3v11
3F2

(
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,
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,
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v6
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+

45Γ
(
2
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1605632 22/3πν3m̄
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86016ν3v5
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11
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30829568 3
√
2πν3m̄

8/3
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(101a)

Ψ0PN,p
l=1 = Ξp
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Ψ0PN,c3
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Ψ0PN
l=2 = Ξ2
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Above, we denote contributions arising from a certain
scalar field parameter with a respective superscript. For
example, Ψ0PN,c3

l=1 denotes the contribution of c3 to the
0PN order phase shift in dipole radiation. For the defi-
nition of all rescaled parameters, we refer to Table II.

Note that all hypergeometric functions appear in the
form of 3F2 (a, b, c ; b+ 1, c+ 1 ; z), with a, b, c ∈ Q. This
can formally be expanded as

3F2 (a, b, c ; b+ 1, c+ 1 ; z) =

c

c− b
2F1 (a, b ; b+ 1 ; z)− b

c− b
2F1 (a, c ; c+ 1 ; z) .

(102)

Since not all math libraries support higher-order hyper-
geometric functions, this relation might be particularly

useful for the implementation of our results.
Further, keep in mind that in the above expressions, we

use ℏ = c = 1. If one wishes to restore these factors in the
waveform, one may use m̄s = GMms/(ℏc) and replace
the combination GM1M2 appearing in Eq. (101c) with
GM1M2/(ℏc). Additionally, it is necessary to substitute
all occurrences of the velocity v with v/c.

The corrections due to the additional scalar degree of
freedom can now readily be combined with pure GR Tay-
lorF2 templates at arbitrary precision [55]. Further, since
we kept the scalar parameters generic up to this point,
our results can easily be adapted to a large class of scalar-
tensor theories. All there is left to do is adjust the po-
tential parameters and worldline couplings to a desired
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model. To facilitate using our results, we provide a link
to a repository in the supplemental material [42] which
contains a Python implementation of Eqs. (100) & (101).

VI Conclusions

In this work, we have for the first time derived the NLO
gravitational waveform of inspiraling binary systems in
GR augmented by a massive, self-interacting scalar field.
To this end, we have employed the scale hierarchy during
the inspiral to treat the binary within an EFT framework.
We have calculated the conservative and dissipative dy-
namics of the system at 1PN order to ultimately deter-
mine the modifications of the gravitational waveform up
to 0PN order. This corresponds to NLO in the scalar
radiation. This result can now readily be combined with
pure GR templates – in the TaylorF2 approximation – at
arbitrary precision.

Throughout our work, we have chosen a largely model-
independent ansatz by choosing a generic, polynomial
scalar potential and leaving the scalar-wordline couplings
undetermined. This allows to match our result to a mul-
titude of new physics scenarios, including extensions of
GR as well as of the SM of particle physics, provided an
appropriate coupling to the binary worldlines.

Ultimately, the goal is to set constraints on new physics

using data from GW observatories. Therefore, we will
as a next step use data from GW170817 to test various
scalar-tensor theories. Once new data is available in the
future, we will then be able to easily repeat the proce-
dure, further narrowing down the window of new physics.

It will also be interesting to extend the calculations to
elliptic orbits, thus allowing to utilize, e.g., pulsar data.

From the EFT point of view, we will extend our compu-
tations to take into account scalar effects which enter at
a higher order in the velocity expansion, further pushing
the precision of our predictions. In addition, our com-
putations may be further generalized by, e.g., including
vector degrees of freedom. These challenging tasks are
left for future work.
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A Redundant Operators

In general, there are many additional worldline couplings of the scalar field beyond the ones shown in Eq. (6). In
fact, Appendix A of [44] lists these couplings explicitly up to terms containing second derivatives in the scalar field ϕ
and the metric gµν . Here, it is important to note that at this point the authors did not employ any power counting
rules, i.e., these operators do not necessarily contribute at 1PN order. They arrive at the general wordline action

Spp = −
∫

dτ

[
m(ϕ) + I(ϕ)R+ J(ϕ)uµuνRµν +K(ϕ)□ϕ+ L(ϕ)uµuν∇µ∂νϕ

+M(ϕ)uµuν∂µϕ∂νϕ+N(ϕ)gµν∂µϕ∂νϕ

]
.

(A1)

After a series of redefinitions and neglecting operators which cannot contribute at orders lower than v4, one obtains
an equally valid action

Spp = −
∫

dτ

[
m(ϕ) + Ñ(ϕ)gµν∂µϕ∂νϕ

]
, (A2)

where Ñ = N + α(ϕ)L + 2I and α(ϕ) = ∂ lnm(ϕ)/∂ϕ. It is thus directly shown that all other operators are either
redundant or do not contribute at 1PN order, hence do not have to be considered. Also, the second term can be
identified as the LO finite-size effect due to an external tidal field. In order to further investigate at which PN order
these operators contribute, it is useful to expand m(ϕ) and Ñ(ϕ) in a Taylor series:

m(ϕ) = m(0) + q
ϕ

MPl
+ p

ϕ2

M2
Pl

+O(ϕ3) , and Ñ(ϕ) = Ñ(0) + Ñ ′(0)
ϕ

MPl
+O(ϕ2) . (A3)

Here, primes denote the derivative with respect to the scalar field, and we have defined q = MPl m
′(0) and p =

M2
Pl m

′′(0). It is straightforward to identify m(0) with the usual GR mass, while the higher-order derivatives define
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the couplings of the scalar field to the worldline. Employing the power counting rules, it is now easy to see that
at 1PN order the expansion of m(ϕ) can be truncated beyond the quadratic term. Likewise, it can be shown that
the expansion of N(ϕ) contributes only from 3PN order for compact objects. The impact of the second term on the
waveform has been investigated in Ref. [33] for massless scalar fields.

Similarly, by expanding the self-interaction potential of the scalar field in a power series, it can be shown that at
1PN order only the cubic self-interaction is relevant. In fact, a self-interaction term of the form ϕn becomes relevant
at (n− 2)PN order in the expansion.

B Validity of the EFT

Let us comment on the assumptions we make in order for the EFT prescription to be valid. Firstly, throughout the
calculations we assumed that at LO the inspiral is described by Newtonian gravity. This assumption is, e.g., extensively
used when establishing the power counting rules. To justify this perturbative treatment of the binary system, the
Newtonian potential has to remain the LO term even when adding the scalar field, i.e., the scalar exchange has to be
suppressed. This directly gives a constraint on the scalar charges

|qn|
Mn

< 1 , and likewise
|pn|
Mn

< 1 . (B1)

Further, for the cubic self-coupling c3 we note that the three-scalar vertex scales ∼ c3M
2
Plr

2L−1/2v2. Higher-order
terms in c3 scale with higher powers of c3M2

Plr
2. We thus also demand that |c3|M2

Plr
2 < 1, which implies that

|c3|
M2

M2
Pl

< γ2 < 1 . (B2)

With M ∼ M⊙ this implies |c3| < 10−80, which was also noted earlier [43]. However, it is important to keep in mind
that the above constraint only applies for the case when the scalar field behaves effectively massless (i.e., msr ≪ 1),
meaning that it is to be understood as a conservative upper bound on |c3|. If msr ≪ 1 is never achieved during the
inspiral phase, the constraint could be relaxed, since additional exponential suppression in msr helps to subdue higher-
order c3 terms. In the final expressions for the Lagrangian, binding energy, power loss, and waveform, we always have
a combination of the form c3M

2/M2
Pl. Therefore, if c3 fulfills the above-mentioned bound, its effect is still relevant

for the dynamics. While Ref. [43] considered this constraint to be resulting in the need for unnatural fine-tuning on
c3, it is indeed naturally fulfilled in several modified gravity models, such as R2 gravity (see e.g., [6, 50]), where the
Einstein-Hilbert action is supplemented with a term quadratic in the Ricci scalar. After performing a transformation
to the Einstein frame one can isolate an additional scalar degree of freedom with a potential of the form [50, 56]

V (ϕ) ∼ m2
sϕ

2 − m2
s

MPl
ϕ3 +O(ϕ4) , (B3)

where we have dropped O(1) pre-factors for brevity. Hence |c3| ∼ m2
s/M

2
Pl, which is much less than 10−80 for

ms < 10−13 eV, thus fulfilling the above constraint. If ms > 10−13 eV, then msr < 1 is never achieved during the
inspiral and hence all contributions of c3 are highly suppressed, meaning that in either case one expects a perturbative
treatment to be valid.

When applying the here obtained results for, e.g., the power loss, we also implicitly assume that the effects from
higher-order worldline couplings and higher-order self-interactions in the scalar field are suppressed. It is reasonable to
presume, on grounds of the established power counting rules, that those terms would only contribute to higher-order
PN orders. However, the numerical values of the parameter accompanying those higher-order operators might be
large enough to still cause relevant effects even at lower orders in the PN expansion. For example, this is the case
with the tidal deformability in pure GR, which formally contributes at 5PN order for non-spinning objects, but might
be relevant even for lower-order waveforms, if its numerical value is sufficiently large.

Lastly, we assume that the worldline coupling coefficients are constant during the inspiral. However, it is expected
that at higher order in the expansion it is necessary to consider time-dependent couplings [22].
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C Complete Kepler Relations and Binding Energy at 1PN

In the following, we give the full expressions for the modified Kepler relations and the binding energy at 1PN order.
Following the procedure outlined in Sec. IV, we solve Eq. (68) for ω, now taking into account all scalar effects. This
yields

x3 =
γ2c̄3
2πm̄s

[
e

m̄s
γ (m̄s − γ)Ei

(
−3m̄s

γ

)
+ e−

m̄s
γ (m̄s + γ)Ei

(
−m̄s

γ

)]
− 128γ3ξpe

− 2m̄s
γ (m̄s + γ)

+ 4γ3ξqm̄se
− 2m̄s

γ + 8γ2Q̄e−
m̄s
γ

[
− m̄se

2m̄s
γ (m̄s − γ)Ei

(
−2m̄s

γ

)
+ γ(3ν − 4)m̄s

− m̄s (m̄s + γ) log

(
2m̄s

γ

)
+ m̄s + 2γ2(ν − 2) + γ

]
+ γ3(γ(ν − 3) + 1)︸ ︷︷ ︸

≡ xGR

.

(C1)

We invert the above expression to arrive at the inverse Kepler law

γ =
c̄3

6πm̄s

[
−e

m̄s
x (m̄s − x)Ei

(
−3m̄s

x

)
− e−

m̄s
x (m̄s + x)Ei

(
−m̄s

x

)]
+

128

3
xξpe

− 2m̄s
x (m̄s + x)

− 4

3
xξqm̄se

− 2m̄s
x +

8

9
Q̄e−

m̄s
x

[
3m̄se

2m̄s
x (m̄s − x)Ei

(
−2m̄s

x

)
+ ν

(
−4xm̄s + m̄2

s − x2
)

− 3
(
xm̄s + m̄2

s + m̄s + x2 + x
)
+ 3m̄s (m̄s + x) log

(
2m̄s

x

)]
−1

3
(ν − 3)x2 + x︸ ︷︷ ︸
≡ γGR

.

(C2)

To obtain the binding energy in the presence of the scalar field, we compute the Legendre tranformation of the
Lagrangian given in Eq. (63). As a function of γ, the binding energy reads

E

µ
=

c̄3
4πm̄s

[
e−

m̄s
γ (m̄s − γ)Ei

(
−m̄s

γ

)
+ e

m̄s
γ (m̄s + γ)Ei

(
−3m̄s

γ

)]
− 64γξpm̄se

− 2m̄s
γ + ξq

[
−8m̄2

sEi
(
−2m̄s

γ

)
− 2γm̄se

− 2m̄s
γ

]
+ Q̄e−

m̄s
γ

[
− 4m̄se

2m̄s
γ (m̄s + γ)Ei

(
−2m̄s

γ

)
+ 2(−νγ + γ + 2)m̄s

+ 4m̄s (γ − m̄s) log

(
2m̄s

γ

)
− 2γ(γ(ν − 3) + 2)

]
− 1

8
γ(γ(ν − 7) + 4) .

(C3)

Plugging in Eq. (C2), we obtain an expression depending on x:

E

µ
=

c̄3
6πm̄s

e−
m̄s
x

[
(2m̄s − x)Ei

(
−m̄s

x

)
+ e

2m̄s
x (2m̄s + x)Ei

(
−3m̄s

x

)]
− 64

3
xξpe

− 2m̄s
x (4m̄s + x) +

4

3
ξqm̄s

[
x
(
−e−

2m̄s
x

)
− 6m̄sEi

(
−2m̄s

x

)]
+

4

9
Q̄e−

m̄s
x

[
− 6m̄se

2m̄s
x (2m̄s + x)Ei

(
−2m̄s

x

)
− 4(ν − 3)m̄2

s

+ 4((ν − 3)x+ 3)m̄s + 6m̄s (x− 2m̄s) log

(
2m̄s

x

)
+ x((ν − 3)x− 6)

]
+

νx2

24
+

3x2

8
− x

2
.

(C4)

The definitions of all redefined parameters are collected in Tab. II.

D Renormalization

In this section, we discuss some technical aspects regarding the renormalization procedure. In the computation of
the binding energy (cf. Sec. IV) we have neglected pure self-force diagrams, shown in Fig. 2. Here we show that these
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diagrams solely contribute to the renormalization of the worldline couplings, thus can be absorbed by a redefinition
of the gravitational masses Mi and scalar charges qi.

Since we employ dimensional regularization, diagrams such as the right one in Fig. 2a simply vanish, since they
contain scale-less and power-law divergent integrals, i.e.,

∝
∫

d3k

(2π)3
1

k2

dim. reg.−−−−−−→ 0 . (D1)

However, couplings of the worldline to itself via a scalar propagator do not vanish identically in this scheme since
they contain the mass of the scalar particle as a physical scale. As such, the left diagram in Fig. 2a evaluates to

=
1

2

(−iq

MPl

)2 ∫
dt

∫
d3k

(2π)3
−i

k2 +m2
s

=
i

2

(−iq

MPl

)2 ∫
dt

ms

4π
= −i

ms q
2

8πM2
Pl︸ ︷︷ ︸

≡δMsf

∫
dt .

(D2)

Note the factor of 1/2 in front, which arises from the expansion of the action and keeping two identical vertices. Also,
we here used ∫

d3k

(2π)3
1

k2 +m2
s

dim. reg.−−−−−−→ −ms

4π
. (D3)

Thus, the above diagram effectively shifts the mass of the neutron star by δMsf. We denote the mass M appearing in
Spp as the bare mass Mb. Likewise, in the following we denote all other bare parameter, i.e., those parameters that
directly appear in the expansion of the point-particle action, with a subscript ‘b’. Then, at lowest order, the bare
mass is shifted to the physical mass with

Mphys = Mb + δMsf = Mb +
ms q

2
b

8πM2
Pl

. (D4)

By calculating all diagrams in which a single graviton is coupled to the second NS we should get the same result for
the renormalized mass of the first neutron star as the one given in Eq. (D4). Contributing diagrams are the ones
given on the left in Fig. 2b and in Fig. 1b v), respectively. Indeed, the first one evaluates to ∼ 2δMsf and the second
contributes with ∼ −δMsf, thus yielding the same total mass shift as in Eq. (D4).

In addition to the mass, the scalar charge also obtains corrections due to self-force diagrams shown in Fig. 2c.
Evaluating this integral leads to

δqsf = ms
qb pb

4πM2
Pl

. (D5)

However, additional contributions are coming from diagrams in Fig. 1b vi) and 1b vii), which are not pure self-force
diagrams (in the sense that they do not only contain diverging integrals). In total, we obtain

qphys = qb + δqsf +
q2bc3 log 3

16πms
− msMbqb γ

32πM2
Pl

= qb +
qb
4π

[
pb ms

M2
Pl

+
qb c3 log 3

4ms
− msMb γ

8M2
Pl

]
,

(D6)

with γ denoting the Euler-Mascheroni constant and log denoting the natural logarithm.
In summary, by expressing the bare charge and mass in terms of the physical charge and mass via Eqs. (D4) and

(D6), we automatically cancel all pure self-force diagrams appearing in Fig. 2 and additionally also all redundant
terms that appear when evaluating the diagrams in Fig. 1.

E Radiated Energy in Multipole Moments of the Scalar Field

Let us outline how to compute the power loss via scalar radiation. The general procedure to perform the multipole
expansion of a massless scalar field without self-interactions is described in Ref. [53]. Here, a general formula is
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φ̄

IL IL′

FIG. 6: Leading order linear emission diagram, which allows calculating the power emitted in scalar radiation. Here IL

denotes the L multipole moment of the linear source term.

presented to obtain the emitted power in arbitrary moments due to the LO linear emission diagram in Fig. 6. Since
we here consider a massive, self-interacting scalar field, we appropriately modify the derivations of [53] to obtain
adapted expressions for the power loss. For the convenience of the reader, we also repeat some of the initial steps of
the calculation presented in [53], but refer to this publication for the full amount of details.

Considering a linear source term, the relevant part of the scalar field action can be written as

S =

∫
dx4

(
1

2
∂µϕ∂

µϕ+
1

MPl
Jϕ

)
. (E1)

We assume the source to be localized and Taylor expand the field coupled to J at the origin, which we choose to be
inside the source:

ϕ(t,x) =

∞∑
n=0

xN

n!
(∂Nϕ)(t, 0) . (E2)

Inserting this expansion into the linear source term and decomposing the source moments into symmetric and trace
free (STF) tensors, we further obtain

Ssrc =
1

MPl

∫
dx4Jϕ =

1

MPl

∫
dt

∞∑
l=0

1

l!

∞∑
p=0

(2l + 1)!!

(2p)!!(2l + 2p+ 1)!!

∫
d3xJr2pxL

STF(∇2)p∂Lϕ . (E3)

At this point Ref. [53] utilizes that outside the source □ϕ ≡ ∂2
t ϕ − ∇2ϕ = 0, and thus ∇2ϕ = ∂2

t ϕ, in order to turn
the contracted spatial derivatives acting on the last term into time derivatives. However, as was also recently noted
in Ref. [30], in the case of non-vanishing potential the equation of motion instead reads □ϕ ≡ ∂2

t ϕ−∇2ϕ = −V ′(ϕ),
hence ∇2ϕ = ∂2

t ϕ + V ′(ϕ). Since we only consider linear emission diagrams, we can truncate all non-linear terms in
V ′, i.e., only the mass term is relevant. Therefore, Eq. (E3) becomes

Ssrc =
1

MPl

∫
dt

∞∑
l=0

1

l!

∞∑
p=0

(2l + 1)!!

(2p)!!(2l + 2p+ 1)!!

∫
d3xJr2pxL

STF(∂
2
t +m2

s)
p∂Lϕ . (E4)

Partial integration with respect to time now also allows having time derivatives acting on the source term J instead
of the field ϕ. We can thus write

Ssrc =
1

MPl

∫
dt

∞∑
l=0

1

l!
IL∂Lϕ , (E5)

with the multipole moments IL given by

IL =

∞∑
p=0

(2l + 1)!!

(2p)!!(2l + 2p+ 1)!!

∫
d3x r2pxL

STF (∂2
t +m2

s)
pJ . (E6)

Up to 0PN order, the relevant terms are given by

Ii
p=0 =

∫
d3xxiJ , Ii

p=1 =
1

10

∫
d3xxi(∂2

t +m2
s)r

2J , and Iij
p=0 =

∫
d3x

[
xixj

]
STF J . (E7)



22

We now turn to the calculation of the emitted power. The diagram shown in Fig. 6 evaluates to

φ̄

IL IL′

=
1

M2
Pl

1

l! l̃!

∫
dt1

∫
dt2 IL(t1)IL̃(t2)

∫
d4k

(2π)4
eik0(t1−t2)

k2 −m2 + iϵ
kLkL̃

=
1

M2
Pl

1

l! l̃!

∫
d4k

(2π)4
1

k2 −m2 + iϵ
IL(k0)IL̃(k0)

∗kLkL̃

=
1

M2
Pl

1

l! l̃!

∫
k0
2π

∫
dΩ

∫
dk

(2π)3
k2+l+l̃nLnL̃ 1

k20 − k2 −m2 + iϵ
IL(k0)IL̃(k0)

∗ ,

(E8)

where n = k/|k|. In the second line, we have expressed the moments I in terms of their Fourier modes, and
subsequently switched to spherical coordinates. The surface integral results in∫

dΩnLnL̃ = δll̃
4π

(2l + 1)!!
l! , (E9)

such that

φ̄

IL IL′

=
1

M2
Pl

1

l!(2l + 1)!!

1

4π3

∫
dk0

∫
dk k2l+2

∣∣IL(k0)
∣∣2 1

k20 − k2 −m2 + iϵ

=
1

M2
Pl

1

l!(2l + 1)!!

i

4π2

∫
dk0(k0 −m2)l+1/2

∣∣IL(k0)
∣∣2 .

(E10)

In the second line, we have solved the dk integral by closing the contour around the pole k = +
√
k20 −m2 in the

upper plane. The emitted energy is thus given by

P =
1

l!(2l + 1)!!

1

4π2M2
PlT

∫
dω

(
1− m2

s

ω2

)l+1/2

ω2l+2
∣∣IL(ω)

∣∣2 , (E11)

where T = 2πδ(0) and k0 = ω. The same result was presented in Ref. [28], but without elaborating on the calculation
and the authors did not mention that the multipole moments also have to be modified in the massive case.

F Computation of the Feynman Diagrams

In this section, we explicitly compute the Feynman diagrams which are shown in the main text. First, let us give a
general recipe on how to compute the diagrams to a certain PN order with the power counting scheme from Sec. III.
A similar discussion is found in Ref. [26].

1. Expand the full action of the theory (1) in powers of the velocity v, as shown in Sec. IV. This renders all vertices
between the NS worldlines, the scalar field, as well as the graviton field.

2. Decompose the fields into radiation and potential modes. From the power counting rules derived in Sec. III,
identify the PN order at which a vertex contributes.

3. From the action expansion, read off the Feynman rules for the given interactions. These are multiplied by a
factor i from the expansion of the path integral. An overview of the relevant interactions at 1PN order, together
with their corresponding velocity scalings and Feynman rules, is given in Tabs. IV and V.

4. Draw all diagrams that contribute to the desired PN order. Here, consider only diagrams which remain connected
when the wordlines are removed. Note that potential modes can only appear as internal lines, while radiation
modes solely enter as external legs. For any internal line, multiply by the respective propagator. In addition,
neglect quantum loop diagrams as they are suppressed by ℏ/L [14], with L the orbital angular momentum of
the system.

5. Collect the combinatorial factor for each diagram. This includes both pre-factors from the expansion of the
path integral, as well as symmetry factors from the Wick contractions.
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1 Feynman Rules

Diagram Scaling Expression

∼ L i

∫
dt

M

2
v2

v2 ∼ Lv2 i

∫
dt

M

8
v4

∼ 1 −(2π)3
i

|k|2 δ
(3)(k + q)δ(t1 − t2)Pµν;αβ

∼ 1 −(2π)3
i

|k|2 +m2
δ(3)(k + q)δ(t1 − t2)

∼ v2 −(2π)3
i

|k|4 δ
(3)(k + q)

∂2

∂t1∂t2
δ(t1 − t2)Pµν;αβ

∼ v2 −(2π)3
i

(|k|2 +m2)2
δ(3)(k + q)

∂2

∂t1∂t2
δ(t1 − t2)

∼ L
1
2 −i

M

2MPl

∫
dt

∫
k

exp (ikx) η0µη0ν

v
∼ L

1
2 v −i

M

MPl

∫
dt

∫
k

exp (ikx)viη0(µη
ν)
i

v2
∼ L

1
2 v2 −i

M

2MPl

∫
dt

∫
k

exp (ikx)

(
ηµ
i η

µ
j v

ivj +
1

2
η0µη0νv2

)

∼ v2 i
M

8M2
Pl

∫
dt

∫
k,q/

exp (i(k + q)x) η0µη0νη0λη0σ

∼ q

M
L

1
2 −i

q

MPl

∫
dt

∫
k

exp (ikx)

v2
∼ q

M
L

1
2 v2 i

q

2MPl

∫
dt

∫
k

exp (ikx)v2

∼ p

M
v2 −i

p

M2
Pl

∫
dt

∫
k,q

exp (i(k + q)x)
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∼ q

M
v2 −i

q

2M2
Pl

∫
dt

∫
k,q

exp (i(k + q)x)

∼ L− 1
2 v2 − i

4MPl
δ(t1 − t2)δ(t1 − t3)(2π)

3δ(3)
(∑

r

kr

)∏
r

i

k2
r

∑
r

k2
r

∼ m2
s

MPl

r2v2

L
1
2

−i
m2

s

4MPl
δ(t1 − t2)δ(t1 − t3)(2π)

3δ(3)
(∑

r

kr

)( ∏
r=1,2

i

k2
r +m2

)
i

k2
3

ηµνP00;µν

∼ c3
MPlr

2

L
1
2

v2 −i
c3
3!
δ(t1 − t2)δ(t1 − t3)(2π)

3δ(3)
(∑

r

kr

)∏
r

i

k2
r +m2

TABLE IV: Feynman rules necessary to compute the binding energy diagrams at 1PN order.

Diagram Scaling Expression

∼ L
1
2 v

1
2 −i

M

2MPl

∫
dt h̄00

v ∼ L
1
2 v

3
2 −i

M

MPl

∫
dt h̄0iv

i

v2 ∼ L
1
2 v

5
2 −i

M

2MPl

∫
dt

(
h̄ijv

ivj +
h̄00

2
v2

)

∼ q

M
L

1
2 v

1
2 −i

q

MPl

∫
dt ϕ̄

v2 ∼ q

M
L

1
2 v

5
2 −i

q

2MPl

∫
dt v2ϕ̄

∼ v
5
2 −i

M

4M2
Pl

∫
dt

∫
k

exp (ikx) η0µη0ν h̄00

Φ
∼ q

M
v

5
2 −i

q

2M2
Pl

∫
dt

∫
k

exp (ikx) h̄00

Φ

φ̄

∼ p

M
v

5
2 −i

2p

MPl

∫
dt

∫
k

exp (ikx) ϕ̄



25

φ̄

∼ q

M
v

5
2 −i

q

2M2
Pl

∫
dt

∫
k

exp (ikx) η0µη0ν ϕ̄

φ̄

Φ
Φ

∼ c3
Mrv

1
2

L
1
2

−iMPl
3c3
3!

δ(t− t1)δ(t− t2)(2π)
3 i

k2
1 +m2

i

k2
2 +m2

ϕ̄

φ̄

Φ

∼ m̄2
s

1

L
1
2 v

3
2

−i
2m2

s

4MPl
δ(t− t1)δ(t− t2)(2π)

3 i

k2
1 +m2

i

k2
2

ηµνP00;µν ϕ̄

TABLE V: Feynman rules involving the radiation modes, up to 1PN order.

2 Conservative Dynamics

We start with the calculation of the conservative dynamics. This comprises all diagrams at 1PN which only contain
hard scalar and graviton modes (cf. Fig. 1).

H00 = i
M1M2

4M2
Pl

∫
dt1

∫
dt2δ(t1 − t2)

∫
d3k

(2π)3
exp(−ik(x1 − x2))

|k|2 P00;00 = i
M1M2

32πM2
Pl

∫
dt

1

r

= i

∫
dt

GM1M2

r
.

(F1)

H00

= i

(
M1

2MPl

)(
M2

2MPl

)∫
dt1

∫
dt2δ(t1 − t2)

∫
d3k

(2π)3
1

|k|4

× ∂2

∂t1∂t2
exp(−ik(x1(t1)− x2(t2)))P00;00

= i
M1M2

8M2
Pl

v1,iv2,j

∫
dt

∫
d3k

(2π)3
kikj

|k|4 exp(−ik(x1(t1)− x2(t2)))

= i
M1M2

64πM2
Pl

∫
dt

1

r

(
v1 · v2 −

(v1 · r)(v2 · r)
r2

)
= i

∫
dt

GM1M2

2r

(
v1 · v2 −

(v1 · r)(v2 · r)
r2

)
.

(F2)
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H0i = i
M1M2

M2
Pl

∫
dt1

∫
dt2δ(t1 − t2)

∫
d3k

(2π)3
exp(−ik(x1 − x2))

|k|2

×
[

P0i;0j︸ ︷︷ ︸
=−δij/2

v1iv2j +
1

4

( =1/2︷ ︸︸ ︷
P00;00

2
v2
1 + Pij;00︸ ︷︷ ︸

=δij/2

v1,iv1,j

)]

= −i
M1M2

2M2
Pl

∫
dt

∫
d3k

(2π)3
exp(−ik(x1 − x2))

|k|2
(
v1 · v2 −

3

8
v2
1

)

= −4i

∫
dt

GM1M2

r

[
v1 · v2 −

3

8

(
v2
1 + v2

2

)]
.

(F3)

H00H00
= i

∑
1↔2

(
M1

8M2
Pl

)(
M2

2MPl

)(
M2

2MPl

)∫
dt

∫
dt1

∫
dt2δ(t− t1)δ(t− t2)

×
∫

d3k

(2π)3
exp(−ik(x1 − x2))

|k|2
∫

d3q

(2π)3
exp(−iq(x1 − x2))

|q|2 P 2
00;00

=
i

2

∑
1↔2

M1M
2
2

(32π)2M4
Pl

∫
dt

1

r

=
i

2

∫
dt

G2M1M2(M1 +M2)

r2
.

(F4)
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H00
= − i

2

∑
1↔2

(
M1

2MPl

)(
M2

2MPl

)(
M2

2MPl

)(
1

4MPl

)∫
dt

∫
dt2

∫
dt3δ(t− t2)δ(t− t3)

×
∫

d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3
(2π)3 exp [ik1x1 + i(k2 + k3)x2]

× δ(3) (k1 + k2 + k3)
k2
1 + k2

2 + k2
3

|k1|2|k2|2|k3|2

= − i

2

∑
1↔2

M1M
2
2

32M4
Pl

∫
dt

∫
d3k

(2π)3

∫
d3q

(2π)3
|k + q|2 + |k|2 + |q|2

|k + q|2|k|2|q|2 exp (−i(k + q)r)

= − i

2

∑
1↔2

M1M
2
2

32M4
Pl

[∫
dt

∫
d3k

(2π)3

∫
d3q

(2π)3
1

|k|2|q|2 exp (−i(k + q)r)

+

∫
dt

∫
d3k

(2π)3

∫
d3q

(2π)3
|k|2 + |q|2

|k + q|2|k|2|q|2 exp (−i(k + q)r)

]

= − i

2

∑
1↔2

M1M
2
2

32M4
Pl

1

16π2

∫
dt

1

r2
= −i

∫
dt

G2M1M2(M1 +M2)

r2
,

where we drop the second term in the second to last line as it vanishes in dimensional
regularization.

(F5)

Φ =
1

2

∑
1↔2

(−iq1
MPl

)(−iq2
MPl

)∫
dt

∫
d3k

(2π)3
−i

k2 +m2
s

exp (ikr)
(
1− v2

1

)

=
1

2

∑
1↔2

i
q1q2

4πM2
Pl

∫
dt

exp (−msr)

r

(
1− v2

1

)
= i8Gq1q2

∫
dt

exp (−msr)

r

[
1− 1

2

(
v2
1 + v2

2

)]
,

(F6)

Φ
=

(−iq1
MPl

)(−iq2
MPl

)∫
dt1

∫
dt2δ(t1 − t2)

∫
d3k

(2π)3
−i

(|k|2 +m2
s)

2

× ∂2

∂t1∂t2
exp(−ik(x1(t1)− x2(t2)))

= −i
q1q2
M2

Pl

v1,iv2,j

∫
dt

∫
d3k

(2π)3
kikj

(|k|2 +m2
s)

2 exp(−ik(x1(t)− x2(t)))

= −i
q1q2

8πM2
Pl

∫
dt

exp (−msr)

r

(
(v1 · r)(v2 · r)

r2
(1 +msr)− v1 · v2

)

= i4Gq1q2

∫
dt

exp (−msr)

r

(
v1 · v2 −

(v1 · r)(v2 · r)
r2

(1 +msr)

)
.
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ΦΦ
=
∑
1↔2

(−ip1
M2

Pl

)(−iq2
MPl

)(−iq2
MPl

)∫
dt

∫
dt1δ(t− t1)

∫
dt2δ(t− t2)

×
∫

d3k

(2π)3
−i exp(−ik(x1 − x2))

|k|2 +m2
s

∫
d3q

(2π)3
−i exp(−iq(x1 − x2))

|q|2 +m2
s

= −i
∑
1↔2

p1q
2
2

16π2M4
Pl

∫
dt

exp(−2msr)

r2
= −i64G2

∫
dt(p1q

2
2 + p2q

2
1)
exp(−2msr)

r2
.
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H00Φ
=
∑
1↔2

( −iq1
2M2

Pl

)(−iq2
MPl

)(−iM2

2MPl

)∫
dt

∫
dt1δ(t− t1)

∫
dt2δ(t− t2)

×
∫

d3k

(2π)3
−i

k2 exp (ikr)P00;00

∫
d3q

(2π)3
−i

q2 +m2
s

exp (iqr)

=
∑
1↔2

−i
q1q2M2

8M4
Pl

∫
dt

(
1

4πr

)2

exp(−msr) = −i8G2q1q2(M1 +M2)

∫
dt

exp(−msr)

r2
,
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H00

=
∑
1↔2

(−i)3
(−iq2
MPl

)2(−iM1

2MPl

)(−im2
s

4MPl

)
ηµνP00;µν︸ ︷︷ ︸

≡A

∫
dt

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

× eik1r1

k2
1 +m2

s

eik2r1

k2
2 +m2

s

e−ik3r2

k2
3

(2π)3δ(3)(k1 + k2 − k3)

=
∑
1↔2

A

∫
dt

∫
d3k1

(2π)3

∫
d3k3

(2π)3
1

k2
1 +m2

s

1

(k3 − k1)2 +m2
s

eik3r

k2
3

We employ the Feynman parametrisation to rewrite the integral over k1as

∫
d3k1

(2π)3
1

k2
1 +m2

s

1

(k3 − k1)2 +m2
s

=

∫ 1

0

da

∫
d3k1

(2π)3
1[

k2
1 + (a− a2)k2

3 +m2
s)
]2

=

∫ 1

0

da
1

4π
√
(a− a2)k2

3 +m2
s

=
1

2πk3
arctan

(
k3
2m

)
.

=
∑
1↔2

A

∫
dt

∫
d3k3

(2π)3
1

2πk3
arctan

(
k3
2ms

)
eik3r

k2
3

This is solved by using spherical coordinates and partial integration.

=
∑
1↔2

(−i)3
(−iq2
MPl

)2(−iM1

2MPl

)(−im2
s

4MPl

)
ηµνP00;µν︸ ︷︷ ︸

=−1

1

r

1

(2π)3

×
∫

dt

(
−rπ

2
Ei(−2msr) +

π

4ms
− π

4ms
e−2msr

)

= −i
q22M1 + q21M2

256π2M4
Pl

∫
dt
(
−2m2

sEi(−2msr) +
ms

r
− ms

r
e−2msr

)
= −i4G2

(
q22M1 + q21M2

) ∫
dt
(
−2m2

sEi(−2msr) +
ms

r
− ms

r
e−2msr

)
.
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H00
=
∑
1↔2

(−i)3
(−iq2
MPl

)(−iq1
MPl

)(−iM2

2MPl

)(−im2
s

4MPl

)
ηµνP00;µν︸ ︷︷ ︸

A≡

∫
dt

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

× eik1r1

k2
1 +m2

s

eik2r1

k2
2

e−ik3r2

k2
3 +m2

s

(2π)3δ(3)(k1 + k2 − k3)

=
∑
1↔2

A

∫
dt

∫
d3k1

(2π)3

∫
d3k3

(2π)3
1

k2
1 +m2

s

1

(k3 − k1)2
eik3r

k2
3 +m2

s

=
∑
1↔2

A

∫
dt

∫
d3k3

(2π)3
1

2πk3
arctan

(
k3
ms

)
eik3r

k2
3 +m2

s

At this point, we again switch to spherical coordinates and apply partial integration.

=
∑
1↔2

π

r

A

(2π)3
1

ms

∫
dt

2

π

∫ ∞

0

dk′ arctan (k′)
1

k′2 + 1
sin(msrk

′)︸ ︷︷ ︸
≡ I(msr)

, with k′ =
|k3|
ms

= i
q1q2(M1 +M2)

64π2M4
Pl

ms

r

∫
dt I(msr)

= −i8G2q1q2m2ms

∫
dt

1

r

[
− Ei(−2msr)e

msr + log(2msr)e
−msr + γe−msr

]
.
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Φ
=
∑
1↔2

≡A︷ ︸︸ ︷
(−i)3

3!

2

(−iq2
MPl

)2(−iq1
MPl

)(−ic3MPl

3!

)∫
dt

∫
d3rv

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

× eik1(r1−rv)

k2
1 +m2

s

eik2(r1−rv)

k2
2 +m2

s

eik3(rv−r2)

k2
3 +m2

s

=
∑
1↔2

(2π)3A

∫
dt

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3
eik1r1

k2
1 +m2

s

eik2r1

k2
2 +m2

s

e−ik3r2

k2
3 +m2

s

δ(3)(k1 + k2 − k3)

=
∑
1↔2

A

∫
dt

∫
d3k1

(2π)3

∫
d3k3

(2π)3
1

k2
1 +m2

s

1

(k3 − k1)2 +m2
s

eik3r

k2
3 +m2

s

=
∑
1↔2

A

∫
dt

∫
d3k3

(2π)3
1

2πk3
arctan

(
k3
2ms

)
eik3k

k2
3 +m2

s

=
∑
1↔2

π

r

A

(2π)3
1

ms

∫
dt

2

π

∫ ∞

0

dk′ arctan (k′)
1

4k′2 + 1
sin(2msrk

′)︸ ︷︷ ︸
≡ K(2msr)

= i
q2q1(q1 + q2)c3
16π2M2

Plms

∫
dt

K(2msr)

r

= i
q2q1(q1 + q2)c3
64π2M2

Plms

∫
dt

1

r

[
−Ei(−3msr)e

msr + Ei(−msr)e
−msr + log(3)e−msr

]
= i

G

2π

q1q2(q1 + q2)c3
ms

∫
dt

1

r

[
−Ei(−3msr)e

msr + Ei(−msr)e
−msr + log(3)e−msr

]
.
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3 Scalar Radiation

Now we compute the diagrams that contribute to the radiative dynamics of the system. For the gravitational
waveform at NLO, it is sufficient to consider the scalar radiation.

φ̄

= −i
∑
1↔2

∫
dt

(
1− 1

2
v2
1

)
q1
MPl

ϕ̄+O(v4
1)

(F13)

Φ

φ̄

=
∑
1↔2

−i

(−i2p1
M2

Pl

)(−iq2
MPl

)∫
dt

∫
d3k

(2π)3
eik(r1−r2)

k2 +m2
s

ϕ̄ = i
p1q2 + p2q1

2πM2
Pl

∫
dt

e−msr

r

ϕ̄

MPl
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H00

φ̄

=
∑
1↔2

(−i)

( −iq1
2M2

Pl

)(−iM2

2MPl

)∫
dt

∫
d3k

(2π)3
eik(r1−r2)

k2 ϕ̄P00;00

= i
q1M2 + q2M1

32πM2
Pl

∫
dt

1

r

ϕ̄

MPl
.

(F15)

Φ

Φ φ̄
= 3!MPl(−i)2

(−iq1
MPl

)(−iq2
MPl

)(−ic3
3!

MPl

)
︸ ︷︷ ︸

A≡

∫
dt

∫
d3rv

∫
d3k1

(2π)3
eik1(r1−rv)

k2
1 +m2

s

×
∫

d3k2

(2π)3
eik2(r2−rv)

k2
2 +m2

s

ϕ̄

MPl
.

Hence, the contribution of this diagram to the source term is

J = A

∫
d3k1

(2π)3
eik1(r1−rv)

k2
1 +m2

s

∫
d3k2

(2π)3
eik2(r2−rv)

k2
2 +m2

s

.

With this we can use Eq. (89) to calculate the l = 1 and p = 0 moment.

Ii = A

∫
d3rv

∫
d3k1

(2π)3

∫
d3k2

(2π)3
eik1(r1−rv)

k2
1 +m2

s

ek2(r2−rv)

k2
2 +m2

s

riv

= A

∫
d3rv

∫
d3k1

(2π)3

∫
d3k2

(2π)3
eik1(r1−rv)

k2
1 +m2

s

(
i

2ki
2

(k2
2 +m2

s)
2
eik2(r2−rv) +

ri2
k2
2 +m2

s

eik2(r2−rv)

)

= A

∫
d3k1

(2π)3
eik1r

k2
1 +m2

s

(
−i

2ki
1

(k2
1 +m2

s)
2
+

ri2
k2
1 +m2

s

)

= A
1

16msπ
e−msr(ri1 + ri2)

= −i
q1q2c3
16msπ

e−msr(ri1 + ri2) .
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H00,Hij

Φ φ̄
=
∑
1↔2

(−i)2MPl

(−iq1
MPl

)(−iM2

2MPl

)(−i2m2
s

4MPl

)
︸ ︷︷ ︸

≡A

∫
dt

∫
d3rv

∫
d3k1

(2π)3
eik1(r1−rv)

k2
1 +m2

s

×
∫

d3k2

(2π)3
eik2(rv−r2)

k2
2

ηµνPµν;00
ϕ̄

MPl
.

Again we identify the contribution of this diagram to the source term:

J = −A

∫
d3k1

(2π)3
eik1(r1−rv)

k2
1 +m2

s

∫
d3k2

(2π)3
eik2(r2−rv)

k2
2

.

From this we obtain the l = 1 and p = 0 moment via Eq. (89).

Ii =
∑
1↔2

−A

∫
d3rv

∫
d3k1

(2π)3

∫
d3k2

(2π)3
eik1(r1−rv)

k2
1 +m2

s

ek2(r2−rv)

k2
2

riv

=
∑
1↔2

−A

∫
d3rv

∫
d3k1

(2π)3

∫
d3k2

(2π)3
eik1(r1−rv)

k2
1 +m2

s

(
i
2ki

2

|k2|4
eik2(r2−rv) +

ri2
k2
2

eik2(r2−rv)

)

=
∑
1↔2

−A

∫
d3k1

(2π)3
eik1r

k2
1 +m2

s

(
−i

2ki
1

|k1|4
+

ri2
k2
1

)

=
∑
1↔2

−A

[
ri

(m2
sr

2 − 2) + 2e−msr(msr + 1)

4πm4
sr

3
+ ri2

1− e−msr

4πm2
sr

]

=
∑
1↔2

i
q1M2

4M2
Pl

[
ri

(m2
sr

2 − 2) + 2e−msr(msr + 1)

4πm2
sr

3
+ ri2

1− e−msr

4πr

]
.
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