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The absolute branching fraction of the decay Λc(2625)
+ → Λ+

c π
+π− is measured for the first time

to be (50.7 ± 5.0stat. ± 4.9syst.)% with 368.48 pb−1 of e+e− collision data collected by the BESIII
detector at the center-of-mass energies of

√
s = 4.918 and 4.950 GeV. This result is lower than the

naive prediction of 67%, obtained from isospin symmetry, by more than 2σ, thereby indicating that
the novel mechanism referred to as the threshold effect, proposed for the strong decays of Λc(2595)

+,
also applies to Λc(2625)

+. This measurement is necessary to obtain the coupling constants for the
transitions between s-wave and p-wave charmed baryons in heavy hadron chiral perturbation theory.
In addition, we search for the decay Λc(2595)

+ → Λ+
c π

+π−. No significant signal is observed, and
the upper limit on its branching fraction is determined to be 80.8% at the 90% confidence level.
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In recent years, a rich mass spectrum of excited
charmed baryons has been discovered [1–5]. Identi-
fying their quantum numbers and understanding their
properties are important to study the dynamics of the
light quarks in the environment of a heavy quark. The
strong decays of charmed baryons are most conveniently
described by heavy hadron chiral perturbation theory
(HHChPT), in which heavy quark symmetry and chi-
ral symmetry are incorporated [6, 7]. The chiral La-
grangian involves several coupling constants for transi-
tions between s-wave and p-wave charmed baryons, re-
ferred to as h2 to h15 [8, 9]. Among these, h2 and h8 can
be determined from the strong decays of Λc(2595)

+ and
Λc(2625)

+ [1]. These coupling constants are critical to
describe the charmed baryon spectrum and make predic-
tions of decays into other charmed baryons. However, so
far, the strong decays of Λc(2595)

+ and Λc(2625)
+ are

poorly known due to the scarcity of experimental data [2].
The existing determinations of h2 and h8 are based on
the measured decay widths of Λc(2595)

+ and Λc(2625)
+.

Since the width of Λc(2625)
+ is nearly zero [2, 5], only the

upper limit on h8 is provided. Precise measurements of
the branching fractions of the strong decays of Λc(2595)

+

and Λc(2625)
+ are important to determine h2 and h8.

In the quark model, Λc(2595)
+ and Λc(2625)

+ are
the lowest-lying excited states of Λ+

c having spin-parities
of 1/2− and 3/2−, respectively, and are the degener-
ate pair of the p-wave state [1]. Currently, all ob-
served decay modes are measured relative to the dom-
inant hadronic transitions, either Λc(2595)

+ → Λ+
c π

+π−

or Λc(2625)
+ → Λ+

c π
+π− [3, 4]. However, the abso-

lute branching fractions of these π+π− transitions have
until now never been measured experimentally. Assum-
ing isospin symmetry, the ratio between the branching
fractions of π+π− and π0π0 transitions is 2:1, which is
the basis for the branching fractions of various strong
Λc(2595)

+ and Λc(2625)
+ decays quoted in the Particle

Data Group (PDG) [2]. However, isospin symmetry in
these processes has not been verified by any experimental
measurement. In Ref. [10], a novel mechanism called the
threshold effect to take into account the limited transition
phase space in these strong decays is proposed. If this
mechanism applies also here, it would result in a 1:1 re-
lation between π+π− and π0π0 transitions in Λc(2595)

+

decay. Furthermore, this mechanism is sensitive to the
coupling constants [1, 10], and the measurements of their
branching fractions are crucial to determine their cou-
pling constants.

In addition, the internal structure of Λc(2595)
+ and

Λc(2625)
+ have received much attention since the dis-

coveries of these two baryons. Significantly, different de-
cay properties of Λc(2595)

+ and Λc(2625)
+ are observed

in experiments [3, 4, 11–14]. One example is the decay
width: while being approximate 2.6 MeV in the case of
Λc(2595)

+, it is smaller than 1 MeV for Λc(2625)
+ [2].

In addition, the Λc(2595)
+ is located at the Σcπ mass

threshold, and predominantly decays through the in-
termediate state Σc to the hadronic final states Λ+

c ππ,
where Σc represents the isospin triplet Σ0

c , Σ
+
c , and Σ++

c .
However, the Λc(2625)

+ decays into Σc are highly sup-
pressed. Exotic features, such as a molecule-like state
rather than a conventional three-quark structure, have
been proposed as explanations for the difference [15–
18]. Other interpretations include dynamically gener-
ated meson-baryon states [17], analogous to the case of
Λ(1405) and Λ(1520) [19, 20], or a state with large pen-
taquark components [18].

In this Letter, we report the first measurement of the
absolute branching fraction of Λc(2625)

+ → Λ+
c π

+π−

and the upper limit on Λc(2595)
+ → Λ+

c π
+π−, ob-

tained from the processes of e+e− → Λ̄−
c Λc(2595)

+

and Λ̄−
c Λc(2625)

+. We use the data collected with the
BESIII at center-of-mass (c.m.) energies of 4.918 and
4.950 GeV [21]. The integrated luminosities of the
data samples at 4.918 and 4.950 GeV are 208.1 and
160.4 pb−1 [22], respectively. Throughout this Letter,
unless explicitly stated, charge conjugate modes are im-
plicitly included.

Details about design and performance of the BESIII
detector can be found in Ref. [23]. Simulated samples
are produced with Geant4-based [24] Monte Carlo (MC)
software, which includes a full implementation of the de-
tector geometry and response [25] of the BESIII detector.
The simulations are used to determine the efficiency of
the detector and the reconstruction, and to estimate the
background. The inclusive MC sample, which consists of
Λ+
c Λ̄

−
c events, D(s) production, ψ states produced in ini-

tial state radiation processes, and continuum processes
e+e− → qq̄ (q = u, d, s), is generated to estimate the po-
tential background. Here, all the known decay modes of
charmed hadrons and charmonia are modeled with evt-
gen [26, 27] using branching fractions taken from the
PDG [2], while the remaining unknown decays are mod-
eled with lundcharm [28, 29]. Final-state radiation
from charged final-state particles is incorporated using
photos [30]. The processes of these hadron productions
are referred to as inclusive background hereafter.

To determine the branching fractions, the approach
contains two steps. The first is the determination of
the total yields for Λc(2595)

+ or Λc(2625)
+, Ntag, which

follows the same method in the Ref. [31] by using the
productions e+e− → Λ̄−

c Λc(2595)
+ and Λ̄−

c Λc(2625)
+.

Three hadronic decay modes (pK−π+, pK0
S , and Λπ+)

are used to reconstruct the Λ+
c signal, denoted as “tagged

Λ+
c ” hereafter, and the candidates for Λc(2595)

+ and
Λc(2625)

+ are studied with the recoiling mass from the
tagged Λ+

c . The second step is the determination of sig-
nal events for Λc(2595)

+ or Λc(2625)
+ → Λ+

c π
+π−, Nsig,

by further selecting candidates for Λ̄−
c , π

+ and π− par-
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ticles. Finally, the branching fractions are calculated as:

B =
Nsig ·

∑
i Bi

tagϵ
i
tag

Ntag ·
∑

i Bi
tagϵ

i
sig

, (1)

where i represents each reconstruction mode of the
tagged Λ+

c , and Bi
tag labels their branching fractions. The

ϵitag and ϵisig are the efficiencies of determining the total
yields Ntag and signal yields Nsig, respectively.
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FIG. 1. The signal processes and the partial reconstruction
method are schematically presented. (a) The figure corre-
sponds to the Sbachelor process where the tagged Λ+

c comes
directly from the e+e− collision and is reconstructed by the
three hadronic decay modes. (b) This corresponds to the
Sdaughter process, where the tagged Λ+

c comes from the decays
of the Λ∗+

c , which refers to either Λc(2595)
+ or Λc(2625)

+.

To select signal events for Λc(2595)
+ and Λc(2625)

+ →
Λ+
c π

+π−, a partial reconstruction method is used, where
the Λ+

c , π
+ and π− are reconstructed together with an-

other unreconstructed Λ̄−
c , as demonstrated in Fig. 1.

The Λ+
c , which decays into the three hadronic modes,

may come from the e+e− collision, as in Fig. 1(a), or from
the decay of the Λc(2595)

+ or Λc(2625)
+, as in Fig. 1(b).

The process in Fig. 1(a) is referred to as Sbachelor and the
one in Fig. 1(b) as Sdaughter. The signal MC samples are
generated corresponding to the two processes, separately,
for the two c.m. energies using the generator kkmc [32]
incorporating initial-state radiation effects and the beam
energy spread. The Λ̄−

c in both processes is required to
decay into any allowed final states. The line shapes of
e+e− → Λ̄−

c Λc(2595)
+ and Λ̄−

c Λc(2625)
+ cross sections

in the production for signal MC samples are obtained
from the measurements by BESIII [31]. In addition, the
signal MC samples for the charge-conjugate partners are
also produced for processes Sbachelor and Sdaughter, re-
spectively, where the Λ̄−

c is reconstructed with the three
tag modes p̄K+π−, p̄K0

S , and Λ̄π−, and the Λ+
c is re-

quired to decay into any allowed final states.

Charged tracks detected in the helium-based multi-
layer chamber (MDC) are required to be within a polar
angle (θ) range of |cosθ| < 0.93, where θ is defined with
respect to the z-axis, which is the symmetry axis of the
MDC. The distance of closest approach for charged tracks
that do not come from a Λ or K0

S decay are required to
be within ±10 cm along the z-axis and 1 cm in the plane

perpendicular to the beam. Particle identification (PID)
is implemented by combining measurements of the spe-
cific ionization energy loss in the MDC (dE/dx) and the
time-of-flight (TOF) between the interaction point and
the dedicated TOF detector system. Each charged track
is assigned a particle type of pion, kaon or proton, ac-
cording to which assignment has the highest probability.
For the mode Λ+

c → pK−π+, a vertex fit is performed
to each pK−π+ combination candidate, and the re-fitted
momenta are used in the further study.

Candidates for K0
S and Λ are reconstructed by their

dominant modes K0
S → π+π− and Λ → pπ−, respec-

tively, where the charged tracks are required to have dis-
tances of closest approach to the interaction point that
are within ±20 cm along the z-axis. For the Λ decay,
the PID requirement is applied to the proton candidate,
but not to the charged pion. A secondary vertex fit is
performed to each K0

S or Λ candidate, and the re-fitted
momenta are used in the further analysis. AK0

S/Λ candi-
date requires the χ2 of the secondary vertex fit to be less
than 100. Furthermore, the decay vertex is required to
be separated from the interaction point by a distance of
at least twice the fitted vertex resolution, and the invari-
ant mass to be within (0.487, 0.511) GeV/c2 for π+π−

and (1.111, 1.121) GeV/c2 for pπ−.

In the first step of determining the total yields Ntag,
all combinations for each decay mode are kept, and their
invariant mass distributions are shown in the supplemen-
tary materials [33]. The tagged Λ+

c candidates are re-
quired to fall inside the range (2.27, 2.30) GeV/c2. The
distributions of the recoiling mass from the tagged Λ+

c ,
M tag

recoil(Λ
+
c ), are shown in Figs. 2(a) and 2(b) by combin-

ing the three modes. There are two components to the
signal at each energy, depending on whether the tagged
Λ+
c originated from the e+e− collision directly or from

the decay of either Λc(2595)
+ or Λc(2625)

+. If from
the e+e− collision directly, narrow resonances Λc(2595)

+

and Λc(2625)
+ are observed at two energy points

√
s =

4.918 and 4.950 GeV, from the processes of e+e− →
Λ+
c Λ̄c(2595)

− and e+e− → Λ+
c Λ̄c(2625)

−, respectively.
However, if from the decay of either Λc(2595)

+ or
Λc(2625)

+, the Λc(2595)
+ and Λc(2625)

+ from the pro-
cesses e+e− → Λ̄−

c Λc(2595)
+ and Λ̄−

c Λc(2625)
+ dis-

tribute broadly under the resonances. The combined sig-
nal shapes are displayed in Figs. 2(a) and 2(b).

In the second step of determining the Nsig, in addition
to the tagged Λ+

c , a π
+π− pair is selected by imposing

the same criteria as for the charged pion in the mode
Λ+
c → pK−π+. A vertex fit is performed to the π+ and

π− candidates, and the re-fitted momenta are retained in
the further analysis. In the signal processes, there exists
another Λ̄−

c besides the tagged Λ+
c and the π+π− pair.

To improve the detection efficiency, the Λ̄−
c is unrecon-

structed and considered to be a missing particle. If there
is more than one combination in an event, we select only
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the best combination that gives the minimum |∆M |,

∆M=

√√√√
[
2Ebeam −

(∑

i

Ei

)]2
−
(∑

i

p⃗i

)2

−mPDG
Λc

, (2)

where Ebeam is the beam energy and mPDG
Λc

is the
Λ+
c nominal mass [2], Ei and p⃗i represent the energy

and momentum, respectively, and i labels the tagged
Λ+
c , π

+, and π− particles. To suppress inclusive back-
ground contamination, ∆M is required to be greater
than −0.02 GeV, which keeps more than 97% of signal.
With all the selection criteria, the invariant mass distri-
butions of the Λ+

c π
+π− system, M(Λ+

c π
+π−), and the

Λ+
c recoiling mass, M sig

recoil(Λ
+
c ), are obtained as shown in

Figs. 2(c), 2(d), 2(e) and 2(f). The resonance Λc(2625)
+

appears in both the M(Λ+
c π

+π−) and the M sig
recoil(Λ

+
c )

distributions at each energy point, corresponding to the
processes Sdaughter and Sbachelor, respectively. However,
due to quite low detection efficiencies for the low mo-
mentum π+ and π−, Λc(2595)

+ is not observed. Here,

as for Figs. 2(a) and 2(b), the M sig
recoil(Λ

+
c ) signal shapes

in Figs. 2(e) and 2(f) have two components depending
on whether the Λ+

c comes from the e+e− collision or
from Λc(2625)

+. Also the M(Λ+
c π

+π−) signal shapes
in Figs. 2(c) and 2(d) have two components. There is
a narrow component if the Λ+

c is from the decay of the
Λc(2625)

+, and there is a broad component if the Λ+
c is

from the e+e− collision and matched with the π pair com-
ing from the Λc(2625)

+. The separated 1D signal shape
components are displayed in the supplementary mate-
rial [33], and the combined shapes are shown in Figs. 2(c)
to 2(f).

As shown in Figs. 2(a) and 2(b), the remain-
ing contamination of the e+e− → Λ̄−

c Λc(2595)
+ and

Λ̄−
c Λc(2625)

+ candidates is from inclusive background,
e+e− → ΣcΣ̄c and ΣcΛ̄

−
c π. The inclusive background

events are smoothly distributed under the Λc(2595)
+ and

Λc(2625)
+ peaks, and estimated with sideband events

M(Λ+
c ) ∈ (2.18, 2.25) and (2.32, 2.39) GeV/c2. Σc decays

to Λ+
c π dominantly, but the mass distributions from the

processes e+e− → ΣcΣ̄c and ΣcΛ̄
−
c π can be distinguished

from those of e+e− → Λ+
c Λ̄c(2595)

− and Λ+
c Λ̄c(2625)

−.
In Figs. 2(c) to 2(f), the inclusive background contribu-
tion is highly suppressed and is negligible. The remain-
ing contamination comes from e+e− → ΣcΣ̄c and ΣcΛ̄

−
c π

since they have the same final states as the signal.

The total yields Ntag for Λc(2595)
+ or Λc(2625)

+ are
obtained by performing an unbinned maximum likelihood
fit (fittag) to the distributions of M tag

recoil(Λ
+
c ) for each en-

ergy point. The candidates for Λc(2595)
+ and Λc(2625)

+

are from both Sbachelor and Sdaughter (as Fig. 1). The
two contributions have the same cross section but differ-
ent detection efficiencies ϵitag, and their shapes are ob-
tained with MC simulation. In these MC samples, the
decays of Λc(2595)

+ and Λc(2625)
+ are modeled based
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FIG. 2. The distributions of M tag
recoil(Λ

+
c ) at (a)

√
s =

4.918 GeV and (b) 4.950 GeV, and distributions of (c, d)

M(Λ+
c π

+π−), and (e, f) M sig
recoil(Λ

+
c ), with all the selection

criteria for Λ+
c π

+π−. The black points with error bars are
data, the solid curves represent the fit results, and the dashed
ones describe individual components including both signal
and backgrounds.

on the information in the PDG [2], and both of them
decay into Λ+

c π
+π− and Λ+

c π
0π0 final states, where the

decay of Λc(2595)
+ via Σcπ has a rate of 73%. To account

for the resolution difference between data and MC sim-
ulation, the narrow Sbachelor signal shapes are convolved
with Gaussian functions, which are shared between the
two resonances due to the limited sample sizes at in-
dividual energy points. The signal shapes of Sbachelor

and the broad Sdaughter are merged together in the fit,
which are shown in Figs. 2(a) and 2(b). The inclusive
background distributions are modeled by ARGUS func-
tions [34] with the fixed parameters determined by fit-
ting the sideband events. The magnitudes of the inclu-
sive background background are free in the fittag. The
backgrounds from e+e− → ΣcΣ̄c and ΣcΛ̄

−
c π are taken

into account in the fit, shapes of which are derived from
MC simulations and yields are determined in the fittag.
The resultant fit curves are depicted in Figs. 2(a) and
2(b). The significances of the Λc(2595)

+ signal in the
recoil mass distributions from the tagged Λ+

c are 5.27σ
and 8.3σ at

√
s = 4.918 and 4.950 GeV, respectively. The

corresponding values for the Λc(2625)
+ signal are 12.7σ

and 14.0σ.

The signal yields Nsig of Λc(2595)
+ or Λc(2625)

+ →
Λ+
c π

+π− are obtained by simultaneous two dimensional
(2D) unbinned maximum likelihood fits (fitsig) to the

distributions of M(Λ+
c π

+π−) and M sig
recoil(Λ

+
c ) in the
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Λ+
c signal regions of the two c.m. energies, which have

the same branching fraction. The 2D signal shapes of
Λc(2625)

+ → Λ+
c π

+π− and those from e+e− → ΣcΛ̄
−
c π

background are modeled by MC simulations, with the
magnitudes free in the fitsig. The 2D signal MC distri-
butions are shown in the supplementary material [33].
Because the decay Λc(2595)

+ → Λ+
c π

+π− is not ob-
served significantly, as shown in Figs 2(c) to 2(f), its
contribution is not considered in the nominal fitsig. Also,
e+e− → ΣcΣ̄c is not included, since its contribution is
negligible according to the result of fittag. The result-
ing fit curves are shown in Figs. 2(c) to 2(f), and the
yields are listed in Table I. The statistical significance of
Λc(2625)

+ → Λ+
c π

+π− is 11.9σ, as calculated with the
change of the likelihood values between the fits with and
without the signal component, and accounting for the
change in the number of degrees of freedom.

TABLE I. The branching fractions of Λc(2595)
+ and

Λc(2625)
+ → Λ+

c π
+π− and the detection efficiencies of

ϵtag and ϵsig for each reconstruction mode at
√
s = 4.918

(4.950) GeV, where the efficiencies are expressed in percent-
age. The numbers of events of Ntag and Nsig combine the
three reconstruction modes at

√
s = 4.918 (4.950) GeV.

Λ+
c decays pK−π+ pK0

S Λπ+

Λ̄−
c Λc(2625)+

ϵtag / % 46.6 (47.4) 50.0 (49.6) 38.3 (37.6)

ϵsig / % 14.6 (15.0) 16.1 (16.2) 12.0 (11.9)

Ntag 418.7 ± 34.4 (670.9 ± 55.6)

Nsig 66.8 ± 6.6 (107.8 ± 10.6)

B / % 50.7± 5.0± 4.9

Λ̄−
c Λc(2595)+

ϵtag / % 48.5 (48.8) 49.9 (49.0) 38.5 (37.8)

ϵsig / % 2.0 (2.5) 2.2 (2.7) 1.6 (2.1)

Ntag 135.2± 29.0 (210.3± 28.3)

Nsig < 4.2 (9.0)

B / % < 80.8

The branching fraction of Λc(2625)
+ → Λ+

c π
+π− is

determined to be (50.7± 5.0± 4.9)%, where the first un-
certainty is statistical and the second systematic. Since
no significant Λc(2595)

+ signal is observed in the signal
process, we calculate the upper limit of the branching
fraction of Λc(2595)

+ → Λ+
c π

+π− based on the method
in Ref. [35]. We integrate the likelihood curve as a func-
tion of the branching fraction of Λc(2595)

+ → Λ+
c π

+π−

from zero to 90% of the total area, and the upper limit
on its branching fraction at the 90% confidence level is
80.8% (see supplementary materials [33]), where both ad-
ditive and multiplicative uncertainties are considered.

The systematic uncertainties in the branching fraction
measurement are associated with the total yields Ntag,
the π± tracking and PID efficiencies, the signal model-
ing, the requirement of ∆M , and the fit strategy. In
the measurement of absolute branching fractions, the se-
lection criteria of the “tagged Λ+

c ” affect both Ntag and

Nsig in Eq. 1. Therefore, the systematic uncertainties of
detection efficiency and Btag cancel.

The uncertainties on Ntag for Λc(2595)
+ and

Λc(2625)
+, as listed in Table I, are 11.1% and 6.6%, re-

spectively, which arise from statistical uncertainties in
fittag. The uncertainties associated with the π± tracking
and PID efficiencies are calculated to be 3.5%, by using
the control sample of J/ψ → pp̄π+π− [36]. The uncer-
tainty due to the requirement on ∆M is 0.1%, which
has been estimated by studies of the resolution differ-
ence between data and MC simulation on the ∆M dis-
tribution. The uncertainty in the signal MC modeling
is 2.2%, determined by taking into account potential Σc

intermediate resonances to the signal MC samples. The
uncertainties due to the fit strategy are 5.4%, including
those from the wrong match components of Λ+

c π
+π−,

the modeling of e+e− → ΣcΛ̄
−
c π by varying the ratio of

production cross sections of e+e− → Σ0
cΛ̄

−
c π

+, Σ+
c Λ̄

−
c π

0

and Σ++
c Λ̄−

c π
−, and consideration of the potential back-

ground e+e− → Λ+
c Λ̄

−
c π

+π− by replacing the component
e+e− → Σ0

cΛ̄
−
c π

+ by it in the fit. All other sources
are found to be negligible. Assuming all sources are
uncorrelated, the total uncertainties are determined by
the quadratic sum of the individual values, which re-
sult in 13.1% and 9.8% for the decays Λc(2595)

+ and
Λc(2625)

+ → Λ+
c π

+π−, respectively.

In summary, the branching fraction of the strong decay
Λc(2625)

+ → Λ+
c π

+π− and upper limit for Λc(2595)
+ →

Λ+
c π

+π− are determined for the first time, in a model
independent approach by using the 368.5 pb−1 of e+e−

data collected at
√
s = 4.918 and 4.950 GeV with the

BESIII detector. The absolute branching fraction of
Λc(2625)

+ → Λ+
c π

+π− is measured to be (50.7±5.0stat.±
4.9syst.)%, which is 2σ lower than theoretical predic-
tion 67% [2] assuming isospin symmetry in the decay of
Λc(2625)

+. This indicates the novel mechanism “thresh-
old effect” proposed in the decays of Λc(2595)

+ [10] po-
tentially also exists in Λc(2625)

+ decays. Our result pro-
vides critical experimental input to determine the cou-
pling constants in the HHChPT [6, 7]. In addition, the
measured absolute branching fraction is also essential to
calibrate the relative measurements and guide the search
for unknown decays of Λc(2625)

+. No discernible signal
of the decay Λc(2595)

+ → Λ+
c π

+π− is observed and the
upper limit on its branching fraction at the 90% confi-
dence level is 80.8%.
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Supplementary materials of First measurement of absolute branching fractions of
Λc(2595)

+ and Λc(2625)
+ → Λ+

c π
+π−
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FIG. 1. The distributions of invariant masses of the tagged Λ+
c candidates for

√
s = 4.918 (left) and 4.950 GeV (right).

The red arrows indicate the signal region (2.270, 2.310) GeV/c2 while the green arrows indicate the sideband regions
(2.180,2.250) & (2.320, 2.390) GeV/c2.



3

0.1− 0.05− 0 0.05
]2cM  [GeV/∆

0

10

20

30
2 c

E
ve

nt
s 

/ (
3.

75
 M

eV
/

Data
-π+πcΛ→c

2595Λ
-π+πcΛ→c

2625Λ
πcΛcΣ→-e+e

Inclusive Bkg

=4.918 GeVs
+πΛ, 0

s
, pK+π- pK→c

+Λ

0.1− 0.05− 0 0.05
]2cM  [GeV/∆

0

10

20

30

40

2 c
E

ve
nt

s 
/ (

3.
75

 M
eV

/

Data
-π+πcΛ→c

2595Λ
-π+πcΛ→c

2625Λ
πcΛcΣ→-e+e

Inclusive Bkg

=4.950 GeVs
+πΛ, 0

s
, pK+π- pK→c

+Λ

FIG. 2. The distributions of ∆M for
√
s = 4.918 (left) and 4.950 GeV (right). The red arrows indicate the cut ∆M > −0.02
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FIG. 3. The one dimensional distributions (a) and (b) M(Λ+
c π
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+
c ) of signal MC Ssig
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FIG. 4. The two dimensional distributions M(Λ+
c π

+π−) versus Mrecoil(Λ
+
c ) of signal MC Ssig

ππ and Ssig
rec for

√
s = 4.918 (left)

and 4.950 GeV (right).
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