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The Cabbibo-favored decay AT — Z°K 70 is studied for the first time using 6.1 fb~! of eTe™
collision data at center-of-mass energies between 4.600 and 4.840 GeV, collected with the BESIII
detector at the BEPCII collider. With a double-tag method, the branching fraction of the three-
body decay Af — Z°K*7° is measured to be (7.7941.46 £0.95) x 10~3, where the first and second
uncertainties are statistical and systematic, respectively. The branching fraction of the two-body
decay Al — Z(1530)° K™ is (5.99 4 1.0440.32) x 10~3, which is consistent with the previous result
of (5.0240.99 4+ 0.31) x 107>, In addition, the upper limit on the branching fraction of the doubly
Cabbibo-suppressed decay AT — nK 7% is 7.1 x 10~* at the 90% confidence level. The upper limits
on the branching fractions of AT — X°K 7% and AKT7° are also determined to be 1.8 x 10™% and

2.0 x 1073, respectively.

I. INTRODUCTION

Hadronic decays of charmed baryons provide an ideal
laboratory to understand the interplay of weak and
strong interactions in the charm system [IH9], and the
measured branching fractions of charmed baryons play
an important role in constraining models of charmed
hadronic decays [10, 11]. However, no reliable phe-
nomenological model of charmed baryon decays currently
exists. The A} baryon is the lightest charmed baryon,
thus it is often a decay product in many charmed baryon
decays. Hence, an investigation of the A} decay is es-
sential for understanding excited charmed baryons [12].
In charmed baryon decays, the non-factorizable contribu-
tions from W-exchange diagrams play an essential role.

In contrast, these effects are negligible in heavy meson
decays [13]. Therefore, measurements of the absolute
branching fractions of A} decays are important to un-
derstanding the internal dynamics of charmed baryon de-
cays [14].

In recent years, great progress has been made in the
experimental study of the AT baryon at the Belle [15],
LHCDb [I6] and BESIII experiments [I7H20]. First, a
breakthrough was achieved with the measurement of the
absolute branching fraction of A7 — pK 7t [21], 22].
Next, BESIII directly measured the absolute branching
fractions of twelve decay modes for the first time [21].
However, precise measurements for several Cabbibo-
favored (CF) decays of A} are currently unavailable.
Furthermore, a large number of the singly Cabbibo-
suppressed (SCS) decays and the doubly Cabbibo-
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Fig. 1. Typical Feynman diagrams of the decay (a) A} —

suppressed (DCS) decays of AT have not yet been stud-
ied. Based on the data sets at BESIII, measurements of
the branching fractions of A} decays of currently known
decay modes could potentially reach a sensitivity of 1074.
In particular, the branching fraction of A7 — nr™ was
recently measured to be (6.6 £1.2+0.4) x 10~ [17]. In
addition, the data allows for a search of many rare A}
decays.

The three-body CF decay Af — Z0K 7Y is expected
to have a large decay rate. Figure presents a typical
Feynman diagram of this decay. Some phenomenological
models have predicted different branching fractions for
the A} — Z9K+70 decay, which are (4.5+£0.8) x 1072 [23]
and (3.24:0.6) x 1072 [24] by assuming SU(3) flavor sym-
metry and isospin asymmetry, respectively. Experimen-
tally, there are only a few studies of AT decays with a
=0 baryon in the final state, and the three-body decay
A} — Z9K 70 has not yet been studied. Measurement
of the branching fraction will help us further understand
the underlying dynamics of A} decays and distinguish
among the different theoretical models [23].

The three-body DCS decay AF — nKTrY is also of
great interest, and phenomenological models of this de-
cay mode have been proposed [23],24]. SU(3) flavor sym-
metry predicts the branching fraction of AT — nK 7
to be (5.0 & 0.5) x 107> [23]. Figure shows a typ-
ical Feynman diagram of AT — nK™r". Experimental
measurements of DCS decays of A} are limited due to
the suppressed branching fractions. Currently, the only
study of a DCS AT decay is A} — pKTn~. The relative
branching fraction B(A} — pK*77)/ B(Af — pK~—7t)
is measured to be (2.4 4+ 0.3 +0.2) x 1073 [25].

In this paper, the three-body decays Af — Z0K 70,
A — nKtn% AF — SOKT7% AF — AK 70 and
the two-body decay AT — Z(1530)°K ™+ are studied ex-
perimentally with a double-tag (DT) method [26]. Fig-
ure [1(c)| and [1(d)| show typical Feynman diagrams of
AF = XY(A)K 7% and AF — Z(1530)° K+, respectively.
This analysis is performed using a data sample with an
integrated luminosity of 6.1 fb~' collected at center-of-
mass (CM) energies between 4.600 and 4.840 GeV, listed
in Table [I} by the BESIII detector at the BEPCII col-
lider. Throughout the text, the charge conjugate states
are always implied.

£(1530)°
.e o

(d)
KR, (b) nKt7°, (¢) Z°(A)K 7% and (d) =(1530)°K .

<O n°
»

7
0_9 20

(c)

Table 1. The CM energy and the integrated luminosity (Lint)
for each energy point. The first and the second uncertainties

are statistical and systematic, respectively.

Dataset

CM energy (MeV)

Line (pb~")

4.600
4.612
4.620
4.640
4.660
4.680
4.700
4.740
4.750
4.780
4.840

4599.53 £ 0.07 £ 0.74
4611.84 + 0.12 £ 0.28
4628.00 = 0.06 £ 0.31
4640.67 £+ 0.06 £ 0.36
4661.22 £ 0.06 £ 0.29
4681.84 £+ 0.08 £ 0.29
4698.57 £ 0.10 £ 0.32
4739.70 £ 0.20 £ 0.30
4750.05 £ 0.12 £ 0.29
4780.54 £ 0.12 £ 0.33
4843.07 £ 0.20 £ 0.31

586.90 £ 0.10 £ 3.90
103.45 £ 0.05 £ 0.64
519.93 £ 0.11 £+ 3.22
548.15 £ 0.12 £ 3.40
527.55 £ 0.12 £ 3.27
1664.34 + 0.21 £ 10.32
534.40 £ 0.12 £+ 3.31
164.27 £ 0.07 £ 0.87
367.21 £ 0.10 £ 1.95
512.78 £ 0.12 £ 2.72
527.29 £ 0.12 £ 2.79

II. BESIII DETECTOR AND MONTE CARLO

The BESIII detector [29] records symmetric ete™ col-
lisions provided by the BEPCII [30] storage ring, which
operates in the CM energy range from 2.0 to 4.95 GeV,
with a peak luminosity of 1.1 x 1033 ecm™2s~! achieved at
Vs = 3.77 GeV [31]. The cylindrical core of the BESIII
detector covers 93% of the full solid angle and consists of
a helium-based multilayer drift chamber (MDC), a plas-
tic scintillator time-of-flight system (TOF), and a CsI(T1)
electromagnetic calorimeter (EMC), which are all en-
closed in a superconducting solenoidal magnet providing
a 1.0 T magnetic field. The solenoid is supported by an
octagonal flux-return yoke with resistive plate counter
muon identification modules interleaved with steel [32].
The charged-particle momentum resolution at 1 GeV /¢
is 0.5%, and resolution of the ionization energy loss in
the MDC (dE/dz) is 6% for electrons from Bhabha scat-
tering. The EMC measures photon energies with a res-
olution of 2.5% (5%) at 1 GeV in the barrel (end-cap)
region. The time resolution in the TOF barrel region is
68 ps. The end-cap TOF system was upgraded in 2015
using multi-gap resistive plate chamber technology, pro-
viding a time resolution of 60 ps [33].

Simulated samples produced with GEANT4-based [34]
Monte Carlo software, which includes the geometric de-
scription [35] [36] of the BESIII detector and the detec-
tor response, are used to determine the detection effi-



ciency and to estimate backgrounds. Exclusive simula-
tion samples of eTe™ — AFA_ are produced with A7
decaying into ten specific tag modes and A} decaying
into YK 7% and nK+7°. The resonances are modeled
with Breit-Wigner functions, of which masses and widths
are taken from the Particle Data Group (PDG) [42]. The
simulation includes the beam-energy spread and initial-
state radiation (ISR) in the ete™ annihilations with
the specific tag modes [37] modeled with the generator
KKMC [38, B9]. The signal events are modeled with a
phase-space generator. The ete™ — ATA line-shape
implements the description from Ref. [18]. The inclu-
sive simulation sample, which consists of AFA; events,
D) production, ISR return to lower-mass 1 states, and
continuum processes (eTe™ — i, dd and s3) is used to
estimate the potential background. All the known decay
modes of charmed hadrons and charmonia are modeled
with EVTGEN [40, 41] using branching fractions either
taken from the PDG [42], when available, or otherwise
estimated with LUNDCHARM [43], [44]. Final state radi-
ation from charged final state particles is incorporated
using PHOTOS [45].

IIT. METHODOLOGY

The A baryons are fully reconstructed by their
hadronic decays to pKtn~, pK3, pKTm—n% pKIr°,
ﬁKgWJWr’, Ar=, Ar—n at, An 7% X%~ and
Y~ntn~. These reconstructed decays are referred to
as single-tag (ST) A. baryons, where the intermediate
particles K2, A, £° 7, and 7¥ are reconstructed via
Ky = nmfn=, A = prt, 20 = ~A, 7 — pr® and
79 — 77, respectively. From the remaining tracks and
showers, the three-body decays A} — Z0K 70 nK+70,
YOKT 70 and AK 70 are selected to form A} candidates,
which will be referred to as the recoiling system. To-
gether with the A, candidates, these form a sample of
DT events.

The branching fraction is expressed as:

Nsig
Binter - i NPT - (97 /51)

B= (1)
where Ngi, is the signal yield of the DT candidates and
Binter is the product of branching fractions of intermedi-
ate decays on the signal side from the PDG [42]. NPT
denotes the yields of the ST candidates observed in data,
and €T and ePT are the ST and DT efficiencies, respec-
tively.

IV. EVENT SELECTION

The selection criteria in this analysis follow that of
Ref. [I7]. Charged tracks are required to have a polar
angle () within |cosf| < 0.93, where 6 is defined with
respect to the z-axis, which is the symmetry axis of the
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MDC. Tracks, except for those from K and A decays,
are required to originate from an interaction region de-
fined by |[Vuy| < 1 cm and |V;| < 10 cm (referred as a
tight track hereafter), where |V, | and |V;| refer to the
distances of closest approach of the reconstructed track
to the interaction point (IP) in the xy plane and the z
direction, respectively.

Particle identification (PID) for charged tracks com-
bines measurements of the energy deposited in the
MDC (dE/dz) and the flight time in the TOF to form
likelihoods L(h) (h = p, K, ) for each hadron h hypoth-
esis. Tracks are identified as protons when the proton
hypothesis has the greatest likelihood (L£(p) > L(K) and
L(p) > L(m)), while charged kaons and pions are identi-
fied by comparing the likelihoods for the kaon and pion
hypotheses, L(K) > L(m) and L(7) > L(K), respec-
tively.

The selection of tracks from K and A is different
from those of other tracks. Candidates of K2 and A
hadrons are reconstructed from their decays to 77~ and
prT, respectively, where the charged tracks must satisfy
[V, < 20 cm (referred as a loose track hereafter). The
PID selection criteria are imposed on the antiproton can-
didate, while the charged pion is not subject to any PID
requirement. A secondary vertex fit is performed for each
Kg or A candidate, and the momentum obtained from
the fit is used in the subsequent analysis. The K g or A
candidate is retained if the x? of the secondary vertex
fit is less than 100. Furthermore, the decay vertex is re-
quired to be separated from the IP by a distance of at
least twice the vertex resolution. For Kg and A, the in-
variant masses of 7t 7~ and prT pairs are required to be
within (0.487, 0.511) GeV/c? and (1.111, 1.121) GeV/c?,
respectively. The 777~ and pr~ invariant mass reso-
lutions determined through simulations, are 2.9 MeV /c?
and 1.2 MeV/c?, respectively. Similarly, the X% and ¥~
candidates are reconstructed from the yA and pr° final
states with invariant masses within the ranges of (1.179,
1.203) GeV/c? and (1.176, 1.200) GeV/c?, respectively.
The mass resolutions for ¥° and ¥~ are found, using sim-
ulation, to be 3.6 MeV/c? and 4.3 MeV/c?, respectively.

Photon candidates are identified using showers in the
EMC. The deposited energy of each shower must be more
than 25 MeV in the barrel region (|cos ] < 0.80) or more
than 50 MeV in the end-cap region (0.86 < |cosf| <
0.92). To suppress electronic noise and showers unrelated
to the event, the difference between the EMC time and
the event start time is required to be within (0, 700) ns.

A 70 candidate is reconstructed with a photon pair,
and their invariant mass is required to be within the
range (0.115, 0.150) GeV/c%. To improve the resolution,
a kinematic fit is performed, where the diphoton invari-
ant mass is constrained to the known 7° mass [42], and
the x2 of the kinematic fit is required to be less than 200.
The momenta obtained from the kinematic fit are used
in the subsequent analysis.

To distinguish the ST A baryons from combinatorial
backgrounds, the distributions of the energy difference



AFE are used, defined as

AE = Ex- — Fpeam, (2)

where Epeam is the beam energy, and Ejz- is the total
energy of the ST candidate, calculated in the ete™ rest
frame. The signal events are expected to peak around
zero in the AFE distribution. If an event has multiple A
candidates, the one with the smallest |[AFE]| is retained,
and the AE requirements are listed in Table [2]

The beam-constrained mass Mpc of the selected ST
candidates is defined as

Mo = \/ B/ — 5. 7/, (3)

where pz- is the total momentum of the ST candidate

and Mpc peaks at the A mass. For each tag mode, the
ST yield is determined by fitting the Mpc distribution.
In the fit, the A, signal is described by the MC simulated
shape convolved with a Gaussian function to compensate
for the resolution difference between data and MC. The
parameters of the Gaussian function are free in the fit and
different for each energy and tag mode. The combinato-
rial background is described by an ARGUS function [46],
with the end-point parameter fixed to the nominal beam
energy. The fits to the Mpc distributions of the various
tag modes for the 4.600 - 4.700 datasets are the same as
Ref. [37]. The fits to the Mpc distributions for the 4.740,
4.750, 4.780, and 4.840 datasets are shown in Fig.[2] Can-
didates in the Mpc signal region, (2.275,2.310) GeV/c?,
are kept for further analysis. The ST yields in data and
the ST efficiencies for individual tags are listed in Ta-
ble 2l The total ST yield, obtained by summing the ST
yield of all tag modes and all energies, is found to be
NESE = 130439 + 425, where the uncertainty is statisti-
cal.

After the ST selection, we want to determine the num-
ber of Af — ZOK+70 nK*7°% YOK*7% and AK7°
candidates on the opposite side of the ST J_XC_. The K+
and 70 are reconstructed, as described above, from the re-
maining showers and tracks. Using total four-momentum
conservation, the Z° signal is obtained from the distribu-
tion of recoil mass,

M2 G(ASTK 7)) = (Bpeam — Ex+ — Exo)?/c

recoil
- | (4)

—lp- o — Pr+ — Pro|*/ 2,
where Egx+, Ero, P+ and pro are the energies and
momenta of Kt and 7° candidates, respectively, p =

\/Ef)eam/c2 —mA,c? is the magnitude of the A} mo-

mentum, constrained by the beam energy, and py =
_ﬁ/’x:/‘ﬁ]\ﬂ is its direction. Similarly, the yield of the
two-body decay AT — Z(1530)°K T is obtained using
the recoil mass.

M2 (A§TK+) = (Ebeam*EKJr)Q/CZli|p'ﬁ07ﬁK+|2/62'
)

recoil
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The Z(1530)°, 2% and X° predominant decay modes
are £(1530)% — Zm, E° — Ar? and X0 — Ay [42],
respectively. ~ The A baryon has two main decay
modes, which are studied in this analysis: the neu-
tral decay mode A — n7®, which will be referred to
as Cat-1, and the charged decay mode A — pn—,
which will be referred to as Cat-2. The Cat-1 and
Cat-2 decays are shown schematically in Fig. Four
variables M1 (ASTK+70), M 2 (ASTR+70),
M %ETTK+‘ and M2 (ASTK*) are defined
by Egs. 4] and For Cat-1, a single tight track is
reconstructed and identified as a KT meson. In Cat-2,
three charged tracks are reconstructed as a KT, p, and
m~. The KT is a tight track, while the other two are
loose tracks from the A — pr~ decay. The p and 7~ are
constrained to originate from a common vertex to form
the A candidates by a vertex fit [47]. The invariant mass
of the A candidate is required to fall inside the range
(1.111, 1.121) GeV/c.

The 7° candidate is reconstructed via the process 70 —
7. If there are multiple 7° candidates, the one with the
minimum kinematic-fit x? is assumed to originate from
the AT baryon.

To suppress sources of background due to neutral
hyperon decays from the decays Af — AKT, YOKT
and Z°K*, the events falling inside the correspond-
ing intervals of these three decays of the variable
Mgiﬁgl (A;S:TK +) are rejected. This requirement sup-
presses 95% of these backgrounds. Furthermore, elec-
tron mis-PID backgrounds are suppressed using PID and
EMC information. To suppress contaminations from
long-lived particles in the final state, any event with ad-
ditional tracks, either loose or tight, is rejected. The DT
efficiencies of each signal decay for Cat-1 and Cat-2 are
summarized in Tables BHZ

V. BACKGROUND ANALYSIS

Potential sources of background are classified into two
categories: those from ete™ — ATA- (denoted as ATA;
background) and those directly originating from contin-
uum hadron production in eTe™ annihilation (denoted
as ¢qq background).

The A} A background is investigated for both cate-
gories with the AT A inclusive MC samples, after remov-
ing the signal processes. The ATA background distri-
butions are the blue-shaded histograms in Figs. 4] and [5]
and they have been normalized to the same luminosity
as data.

For the Cat-1 ¢ background, the data events in the
Mpc sideband region, defined as Mpc € (2.200,2.265)
GeV/c?, are used. Since AFA_ background is present in
the sideband region, it is estimated using inclusive sim-
ulation samples and subtracted from the total sideband
yield to determine the g background in the sideband.
The gq background in the signal region is extrapolated
from the yield in the sideband using information from
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Fig. 2. The Mgc distributions of ST channels of A_ at (a) 4.740 GeV, (b) 4.750 GeV, (c) 4.780 GeV and (d) 4.840 GeV. The
signal shape of the A, is described by the simulated shape convolved with a Gaussian resolution function, and the background
is modeled with an ARGUS function. The points with error bars represent data. The (red) solid curves indicate the fit results
and the (blue) dashed curves describe the background shapes. The vertical dashed lines show the Mg selection requirements.



Table 2. The AFE requirements, the ST yields, and the ST detection efficiencies of each tag mode for the data samples between
4.740 and 4.840 GeV. The uncertainties of the ST yields are statistical only.

4.740 4.750 4.780 4.840
Tag mode AE (MeV) NPY &Y (%) NPT ST %) NPT SET%) NPT ST (%)
pK T~ (—34, 20) 1201 +£40 48.4 2782 + 60 48.1 3689 + 67 47.1 2676 + 61 43.8
pKs (—20, 20) 256 + 17 48.5 525 + 24 46.9 629 +£ 26 44.2 475 £ 23 424
An~ (=20, 20) 144 +12 36.6 336 +19 37.0 383 +21 355 265+ 17 32.8
ﬁK+7T771’0 (=30, 20) 246 £ 25 17.8 607 + 40 18.3 845 + 37 17.3 583 £ 39 15.7
ﬁKsTI‘O (=30, 20) 76 + 12 18.7 212 £20 18.8 269 +£ 22 18.3 185 + 20 10.9
Ar—n® (=30, 20) 239 £ 18 18.1 529 + 30 17.8 723+ 33 18.0 513 +28 16.9
pK gt~ (—20, 20) 89 +£ 13 20.1 192 + 20 19.3 292 + 24 19.7 202 +£ 20 17.6
Ar—ntn™ (=20, 20) 152+ 14 13.6 326 £ 21 14.7 453 £ 25 17.5 348 £ 22 13.2
07— (—20, 20) 58 £8 225 152 + 13 22.0 196 + 15 20.9 145 + 13 20.5
STrtrT (=30, 20) 136+ 16 199 362432 19.6 500+ 32 19.9 373 +£26 175
I Tag - Tag
ete” — ALAT . g+ ete” — AfA: _ K+
0 0
Tt 1'[0 Tt T[O
Eoﬂ‘ 1'[0 EO‘| ™
P
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Fig. 3. The schematic diagrams of the two analysis strategies, which are denoted (a) Cat-1 and (b) Cat-2 in the text.

the simulation. In Cat-2, the simulated qg samples are
used.

There exists a contamination from mismatched 7° can-
didates (denoted as 7% mismatch), which consists of three
sources: the first is due to the selection of an incorrect 7°
candidate in a signal event with multiple 7° candidates;
the second is where the 70 candidate is reconstructed
using photons that originated from two different 7° de-
cays; the third is caused by noise in the EMC, which
creates a fake photon candidate that is used in the 7°
reconstruction. It has a wide shape and will not con-
tribute to the narrow resonances in the distributions of
M (ASTR+70) and M2 (ASTK 7). The 70
mismatch background is estimated using simulation sam-
ples. Events containing showers where the angular sepa-
ration between the true and reconstructed 7° directions
is greater than 20° are considered 7° mismatch back-
ground, and the background is normalized according to
the branching fractions of A7 — Z(1530)K* and A] —
E9K*70 in the distributions of MJ 1 (ASTK+70) and
M2 (ASTR+70).

recoil

VI. BRANCHING FRACTION MEASUREMENT

For the two-body decay Af — Z(1530)°KT, a si-
multaneous fit is performed by combining the Cat-
1 and Cat-2 distributions of M1 (ASTK*) and

recoil

Mgi;‘l 2 (AETK +). The signal shapes are modeled with
the simulation shapes convolved with a Gaussian func-
tion representing the resolution difference between data
and simulation samples. The background shapes are
described by third-order polynomial functions, and the
background yields are floating. The fitted curves with
distributions of MZ2 01 (ASTKT) and MG 2 (ASTK)
are shown in Fig.[d] The signal yields are 3046 and 20+5
events for Cat-1 and Cat-2, respectively. The DT effi-
ciencies in Cat-1 and Cat-2 are summarized in Table Bl
From Eq. [I} the branching fraction is determined to be
(5.99 4 1.04) x 10~3, where the uncertainty is statistical.
It is consistent with the previous result [49]. The signifi-
cance, at 6.90, is determined by evaluating the difference
in likelihood values between fits that include and exclude
the signal component, while considering the change in
the number of degrees of freedom.

For the three-body decay AF — Z°K*70 the si-
multaneous fit shares the same branching fraction and



Table 3. The DT detection efficiency(%) of A7 — Z(1530)° K™ in Cat-1/Cat-2 for each tag mode and each energy point.

4600 4612 4.620 4640 4.060 4.680 4.700 4.740 4.750 4.780  4.840
pK 7wt 20.3/8.3 19.3/7.4 19.0/6.7 18.6/6.7 18.1/6.5 17.8/6.5 17.4/6.5 15.7/6.5 15.4/6.4 14.9/6.5 13.8/6.1
pK3 22.1/9.0 20.4/7.6 18.7/8.0 18.9/8.1 18.4/6.7 17.4/8.2 17.5/7.5 17.3/7.1 16.8/7.1 17.0/6.6 14.0/6.6
Axt 16.9/7.9 15.6/6.9 14.5/6.2 14.5/6.0 13.3/6.1 13.0/5.6 13.6/4.9 13.9/5.3 13.4/5.4 12.1/5.1 12.1/4.6
pK ntx® 53/1.6 4.8/1.4 4.6/1.5 4.5/1.3 4.4/1.3 4.3/1.3 4.1/1.3 3.6/1.4 3.5/1.4 3.5/1.5 3.3/1.4
ngTrO 8.0/2.9 7.1/2.3 7.1/2.0 6.8/2.1 6.5/2.2 6.6/2.5 6.0/2.1 5.6/2.1 5.3/2.2 5.1/2.1 4.8/2.0
Arta® 6.7/2.0 6.0/1.7 5.8/1.8 5.7/1.8 5.4/1.6 5.2/1.7 51/1.7 4.5/1.8 4.7/1.7 4.4/1.7 4.1/1.8
pK3rtr~ 9.0/2.9 87/24 81/2.0 7.9/22 7.9/22 7.4/22 7.4/26 6.7/2.5 7.0/2.7 6.7/2.8 6.1/2.5
Artatr~ 6.2/1.7 57/1.3 54/1.6 5.3/1.3 51/1.4 53/1.4 52/1.4 4.7/1.6 4.5/1.7 4.2/1.6 4.4/1.8
20nt 8.8/3.7 7.8/3.0 7.8/2.4 7.3/2.8 6.4/2.4 6.6/3.4 6.9/2.6 58/2.5 6.0/2.3 5.4/2.4 5.0/2.3
statro  3.2/25 3.2/23 3.0/2.3 3.0/24 26/2.0 28/1.9 27/22 23/1.0 2.4/1.0 22/1.1 2.0/0.8

Table 4. The DT detection efficiency(%) of AY — E°KT7° in Cat-1/Cat-2 for each tag mode and each energy point.

4.600 4.612 4.620 4.640 4.660 4.680 4.700 4.740 4.750 4.780  4.840
pK 7wt  7.7/33 7.4/28 7.3/28 7.2/27 7.0/2.6 7.1/27 6.8/28 6.3/2.6 6.3/28 5.9/2.8 5.7/2.4
pKQ 8.6/3.7 8.5/3.2 7.6/3.1 7.7/2.8 7.7/2.9 7.7/32 7.3/25 6.5/3.3 6.7/2.9 6.6/3.2 6.3/2.4
Ant 6.3/24 6.0/2.0 6.1/2.2 6.1/2.1 5.1/2.1 55/1.9 59/2.4 53/2.2 55/2.3 52/25 4.7/2.1
pK - wtx® 1.9/0.8 2.0/0.7 2.0/0.7 1.9/0.6 2.0/0.6 1.8/0.7 1.8/0.6 1.5/0.6 1.4/0.6 1.5/0.6 1.3/0.6
pK3r®  2.9/1.1 25/1.1 25/1.0 2.3/1.0 25/1.1 2.6/0.9 2.4/1.0 2.1/0.7 2.1/0.8 2.0/0.9 2.2/0.8
Arta®  25/0.9 22/0.8 2.1/0.8 2.1/0.8 2.1/0.7 2.0/0.8 2.0/0.8 1.8/0.7 1.7/0.7 1.9/0.8 1.8/0.7
pKdntr~ 3.2/14 2.7/1.0 3.0/1.0 3.1/1.0 2.6/1.1 2.7/0.9 3.0/1.1 2.4/0.9 2.8/1.0 2.7/1.0 2.5/1.1
Artatr~ 2.2/0.8 2.0/0.6 1.8/0.6. 2.0/0.6 1.9/0.6 1.9/0.6 1.9/0.7 1.8/0.7 1.6/0.6 1.6/0.6 1.8/0.6
0t 3.2/1.3 2.8/1.3 2.9/1.1 2.5/1.3 2.8/1.3 2.9/1.1 25/1.0 2.7/1.1 2.4/1.2 22/1.0 2.2/1.0
Strta~ 1.3/0.7 1.2/0.4 1.1/0.4. 1.1/0.5 1.1/0.4 1.0/0.5 1.0/0.4 0.8/0.5 0.8/0.4 0.8/0.4 0.9/0.3

Table 5. The DT detection efficiency(%) of AT — nKx° in Cat-1 for each tag mode and each energy point.

4.600 4.612 4.620 4.640 4.660 4.680 4.700 4.740 4.750 4.780 4.840
pK-nT 134 129 122 120 11.7 11.4 11.2 104 102 99 9.2
pK?2 14.3 13.8 13.3 129 121 125 11.5 11.2 11.6 11.1 9.9
An™T 11.3 106 9.7 100 93 94 95 93 82 79 8.1
pK ntx® 3.7 36 35 33 33 32 32 27 27 28 25
pKIn® 48 45 43 45 42 40 38 31 34 34 3.0
Anta® 42 40 36 37 35 34 34 32 31 30 27
pKSW 7~ 5.8 52 48 49 46 45 48 43 38 43 42
ArnTztn= 39 33 35 32 34 34 29 27 28 27 28
O0rt 6.7 58 62 55 52 55 60 43 50 4.0 4.1
Stafr= 24 23 21 23 22 22 20 1.8 19 19 16

Table 6. The DT detection efficiency(%) of Al — S°K 7% in Cat-1/Cat-2 for each tag mode and each energy point.

4600  4.612 4.620 4.640 4.660 4.680 4.700 4.740 4750 4.780 4.840
pK -t  102/5.7 9.7/5.3 9.0/4.9 9.3/49 9.2/49 8.7/48 8.6/4.7 8.3/45 8.1/4.6 7.7/4.5 7.5/42
pK32 11.4/6.1 10.0/5.5 9.7/5.3 9.9/5.6 10.0/5.5 9.0/5.0 9.4/4.6 8.8/5.5 8.6/5.4 8.5/4.9 8.2/4.8
Axt 8.5/4.8 85/3.6 7.3/3.9 7.4/43 7.7/3.9 7.0/4.0 6.8/3.3 6.9/3.9 6.9/4.2 6.2/3.7 6.0/3.5
pK~mtx® 27/12 24/1.1 25/1.1 2.4/1.1 23/1.1 2.2/0.9 24/1.0 2.0/0.9 2.0/1.0 1.9/1.0 1.9/1.0
pK3r° 41/1.7 3.3/2.0 3.4/1.7 3.2/1.8 3.0/1.7 3.4/1.6 3.1/1.8 3.3/1.5 2.7/1.4 2.7/1.7 2.4/1.3
Art O 3.1/1.7 29/1.3 2.7/1.4 2.8/1.4 2.8/1.2 2.8/1.3 2.5/1.2 2.3/1.3 2.3/1.3 2.4/1.2 2.1/1.2
pKSﬂ' ©~ 4.5/21 4.1/1.8 3.6/1.9 3.8/1.9 3.8/1.5 3.4/1.7 3.8/1.7 3.7/1.6 3.0/1.5 3.5/1.6 3.4/1.8
Artrtr™ 3.1/14 26/1.2 25/1.1 2.7/1.2 2.7/1.3 2.5/1.1 2.5/1.2 2.2/1.1 2.2/1.2 2.2/1.2 2.2/1.2
ot 4.4/21 4.6/2.1 3.7/2.2 3.6/1.9 3.9/1.6 3.8/1.8 3.6/1.9 3.4/2.0 3.5/1.7 3.2/1.7 3.1/1.7
Strtr~  18/1.0 1.6/08 1.5/0.8 1.5/0.8 1.5/0.8 1.4/0.9 1.6/0.7 1.2/0.7 1.2/0.7 1.3/0.8 1.2/0.8

10
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Table 7. The DT detection efficiency(%) of AZ — AKT7° in Cat-1/Cat-2 for each tag mode and each energy point.

1600 4612 4620 4640 4660 4.680 4.700 4.740 4.750 4.780 4.840
pK 7t 11.0/6.4 10.5/6.0 10.0/5.6 10.0/5.4 10.1/5.4 9.9/5.5 9.5/5.4 8.7/5.0 8.6/5.1 8.2/5.0 7.9/4.6
pKQ 11.9/7.2 10.9/6.7 10.9/6.2 11.1/6.1 10.5/6.0 9.9/5.6 9.6/5.6 9.6/5.8 9.4/5.9 9.3/5.9 8.5/5.3
Art 9.8/4.9 9.0/48 7.9/45 86/50 80/4.5 7.1/4.6 7.8/4.3 7.6/4.3 7.3/4.8 8.2/4.3 7.4/3.7
pK~ntx® 3.0/1.4 29/1.3 28/1.3 28/1.2 26/1.2 2.6/1.2 2.7/1.1 2.3/1.2 2.2/1.2 2.2/1.1 2.1/1.1
pK3r° 4.6/2.3 3.6/1.9 3.9/1.7 35/1.8 3.2/1.8 3.4/1.9 3.5/1.5 2.7/1.7 3.2/1.6 2.9/1.6 2.5/1.6
Artr® 3.5/1.9 3.2/1.7 3.1/1.6 3.1/1.6 3.1/1.5 3.0/1.5 2.7/1.5 2.6/1.4 2.4/1.3 2.4/1.3 2.3/1.3
pK3ntx™ 4.7/24 4.1/21 4.0/1.9 4.4/1.9 4.2/1.8 3.8/2.0 4.1/1.8 3.8/2.0 3.4/2.0 4.1/2.1 3.5/1.9
Artrta™ 3.0/1.7 27/1.3 27/14 27/14 27/1.3 2.8/1.4 2.9/1.4 2.4/1.4 2.8/1.3 2.5/1.3 2.3/1.4
0t 51/2.8 4.5/24 4.4/27 4.6/24 4.2/24 4.4/21 4.0/2.2 3.8/2.6 3.4/2.5 3.3/2.2 3.0/2.1
Strta—  21/14 19/1.1 18/1.1 16/1.0 1.8/1.1 1.6/1.0 1.5/0.9 1.6/0.8 1.5/0.9 1.3/0.8 1.3/0.8

takes into account the different detection efficiencies
of the individual processes. The fit projections of
M (ASTR+70) and M2 (ASTK+70) are shown
in Fig.[5| and the total signal yields of A7 — Z°K 70 are
5749 and 40+ 7 events for Cat-1 and Cat-2, respectively.

The DT efficiencies of Cat-1 and Cat-2 for AT —
E0K* 7% are summarized in Table @l The simulation
samples use a flat phase space model, but intermediate
resonances could affect the momentum and angular dis-
tributions of the final state particles, which would affect
DT efficiencies. Therefore, the simulation samples are
reweighted to match data. The two variables, M (K +7r0)

and Miecoil (AET’ITO), are selected for the reweighting
procedure using a 6x6 binning scheme with uniformly
spaced bins. The overall efficiency is 3.44% before the
procedure and 3.61% after.

Using the results of fits to MS*'-* (AETKJF) and

recoil
M2 (ASTK*) and correcting for the differences in

eﬁirg(i:(é]rllcy, the contributions to the three-body decays
A} — Z9K+70 are calculated. After subtracting them,
the yields of the three-body decay A}f — ZOK+70 are
4849 and 31+£7 for Cat-1 and Cat-2, respectively. Using
Eq. [1]and the corrected efficiency, the branching fraction
is determined to be (7.79 & 1.46) x 1073, where the un-
certainty is statistical, and the statistical significance is
8.60.

For the three-body decays AT — nK*tn% AF —
YOK+70 and AK+ 70, simultaneous fits are made to the
M (ASTR+70) and MS* 2 (ASTK*70) distribu-
tions as shown in Figs. and Since no significant
signals are observed, the frequentist method is used to
determine the upper limits on the branching fractions of
these decays [48]. The upper limits, at a 90% confidence
level, are determined by integrating the likelihood curves,
which are obtained by scanning over the branching frac-
tion.

For the three-body decay Al — nK*70 the signal
yield is 10 £ 6 events and DT efficiencies in Cat-1 are
summarized in Table [5} The upper limit on the branch-
ing fraction of this decay at the 90% confidence level is
B(A}Y — nK+7n%) < 7.1 x 107%. For the three-body de-
cays AT — YOK*+70 and AK+70, the signal yields of

AF — SOK 7% are 74+ 5 and 6 + 4 events for Cat-1 and
Cat-2, respectively. The signal yields of A7 — AK 70
are 10 £4 and 10 £ 4 events for Cat-1 and Cat-2, respec-
tively. The DT efficiencies in are summarized in Tables 0]
and [7} and the upper limits are B(AT — XK *7%) <
1.8 x 1072 and B(AF — AKT7%) < 2.0 x 1073, respec-
tively. The black solid curves in Figs. |6(b)l |7(c)|and [8(c)|
show the resulting likelihood distributions for these three
decays.

VII. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties for the branching frac-
tion measurements include those associated with the ST
yields (NPT), detection efficiencies of the ST AJ (e57),
detection efficiencies of the DT events (ePT) and signal
yield (Ngg). Since Eq. |1 contains a ratio of ST and DT
efficiencies, any systematic uncertainty on the tag side is
canceled to first order. Each of them is evaluated relative
to the measured branching fraction.

The numbers of charged tracks are required to be only
one (Cat-1) or three (Cat-2) without any extra charged
tracks. This difference between data and MC simulation
for this selection is studied with control sample of A7 —
pK 7t (the other A, goes to the 10 tag modes). The
uncertainty on the requirement of the number of charged
tracks is assigned to be 2.2%, which is denoted as “No
extra charged track” in Table

The tracking efficiencies for K as a function of trans-
verse momentum has been studied with the process
J/Yp — KYKTn~ — Ktrta~n~. The efficiency dif-
ferences between data and MC simulation are both 1%
for KT tracking and PID efficiencies, which are taken as
the systematic uncertainties [50]. The uncertainty asso-
ciated with the 7¥ reconstruction is assigned to be 1.0%,
studied with control sample of J/¢ — w7~ 7 [51].

The uncertainties in the total ST yields are 0.5% [52],
which arise from the statistical uncertainty and fitting
strategy of extracting ST yields.

The uncertainties of the background and fits
of the distributions of MM 1 (ASTK*+7%) and

recoil
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M2 (ASTK+70) arise from the sideband range
and background estimation. First, the uncertainty for
the data sideband and ¢g background estimation is de-
rived from the statistical uncertainty of the background
estimate in the Mpc sideband region and the variation
of the sideband range. Second, the background shape
is changed from a polynomial function to an ARGUS
function. The differences between the new and nominal
results are taken as the systematic uncertainties.

The uncertainty due to the A reconstruction efficiency,
which is estimated by a weighted root-mean-square of the
statistical uncertainties for different (p, cosf) intervals,

is assigned to be 0.6% using a sample of J/¢ — pK+A
decays [53].

The uncertainty due to the 7° selection combines two
sources. The first source is originated from 7% selection
with the minimum kinematic-fit 2, which is studied with
control sample of AT — ¥Tw and AF — 70 The dif-
ference between data and MC simulation is 1%. The
second one is due to the 7° mismatch component, which
is evaluated using simulation samples with an alternative
7Y matching approach, where the 7° candidate closest to
the true 70 is chosen to be the reconstructed 7° candi-
date. The fit is performed on the simulation samples, us-
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the branching fractions of AT — AKT#°.

ing both the nominal and alternative 7° matching, and
the difference in the fitted branching fraction between
them is taken as the systematic uncertainty.

The uncertainty in reweighting the Af — ZOK 70
simulation samples is derived using different 2D variables
and different choices of 2D binning, for instance 6 bins
X 6 bins to 7 bins x 7 bins. The uncertainty is deter-
mined in a similar manner as the uncertainty from the
background shape.

The total systematic uncertainty for the two strategies
is obtained by taking the quadratic sum of the individ-
ual values. Some systematic uncertainties are the same
between two strategies, e.g. tracking and PID of the
charged kaon, so they are assumed to be fully correlated
in the combination. Other systematic uncertainties are
independent between two strategies, e.g. A reconstruc-
tion, background estimation in the fits on the distribu-
tions of M (ASTK+70) and M2 (ASTK*+x0),

recoil recoil
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Table 8. Systematic uncertainties (%).

Sources AT 5 2(1530)°K T [AT = 2K 0 [AF = SPK T [AT = AK a0 |AF — nK 70
Cat-1 Cat-2 Cat-1 Cat-2 [Cat-1 Cat-2 [Cat-1 Cat-2 Cat-1

No extra charged track 2.20

K™ tracking 1.00

K* PID 1.00

70 reconstruction 1.00

ST yield 0.50

Background PDF 1.17 1.17 3.70 3.70 4.18 4.18 3.68  3.68 3.99

A reconstruction — 0.60 — 0.60 — 0.60 — 0.60 —

7¥ selection 2.23 2.23 5.23 5.23 2.86 2.68 3.56  3.42 4.29

Reweighting — — 4.95 2.43 — — — — —

Sum 3.80 3.85 8.58 8.60 5.81 5.76 5.86  5.81 6.51

and they are treated without any correlation in the com- port.  This work is supported in part by National

bination. The different systematic sources are listed in
Table |8 where the two categories have been separated
explicitly.

VIII. SUMMARY

With 6.1 fb™! of ete™ collision data collected at
eleven CM energy points between 4.600 and 4.840 GeV
with the BESIIT detector at BEPCII, the CF decays
A — ZOK+70 and A} — Z(1530)°K+ are observed
with significances of 8.60 and 6.90, respectively. The
branching fraction of AF — Z°KT7% is measured to
be (7.79 £ 1.46 4 0.95) x 1073, where the first and sec-
ond uncertainties are statistical and systematic, respec-
tively. It is smaller than the theoretical predictions
(4.54+0.8) x 1072 [23] and (3.2 £0.6) x 1072 [24]. Com-
parisons of theory and experiment are shown in Ta-
ble [0} The branching fraction of A7 — Z(1530)°K* is
(5.99 + 1.04 £ 0.32) x 1073, which is consistent with the
previous result (5.02 4 0.99 £ 0.31) x 1073 [49].

The upper limits on the branching fractions at the 90%
confidence level of the SCS or DCS decays Al — nK+ 70,
YOK*+70 and AK+70 are 7.1 x 1074, 1.8 x 1072 and
2.0x 1073, respectively. The upper limit of the branching
fraction of AT — AK 70 is incompatible with the theory
predictions [23], 24]. The upper limits of the branching
fractions of Ay — LOKT7% and Af — nKTnare con-
sistent with the theoretical predictions [23] 24]. These
results are essential for the understanding of the dynam-
ics in the charmed baryon decays.
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Table 9. The comparison between the measurement and theoretical predictions (x107?). The first and the second uncertainties

are statistical and systematic, respectively.

AY = E(1530)°KT| A = 2°KT 70 |Af = SOK TR0 Al = AKTROAY — nK A

This measurement 5.99 +1.04 £0.32 |7.79 & 1.46 £ 0.95 <1.8 < 2.0 < 0.71
K. K. Sharma et al . [23] - 45+ 8 1.2+0.3 4.5+0.8 0.05 + 0.005
Jian-Yong Cen et al . [24] - 32+6 0.7+0.2 3.51+0.6 0.05 & 0.006

B(previous results) [49] |5.02+0.99 4+ 0.31
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