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We study the direct production of the JPC = 1++ charmonium state χc1(1P ) in electron-positron
annihilation by carrying out an energy scan around the mass of the χc1(1P ). The data were collected
with the BESIII detector at the BEPCII collider. An interference pattern between the signal process
e+e− → χc1(1P ) → γJ/ψ → γµ+µ− and the background processes e+e− → γISRJ/ψ → γISRµ

+µ−

and e+e− → γISRµ
+µ− are observed by combining all the data samples. The χc1(1P ) signal

is observed with a significance of 5.1σ. This is the first observation of a C-even state directly
produced in e+e− annihilation. The electronic width of the χc1(1P ) resonance is determined to be
Γee = (0.12+0.13

−0.08) eV, which is of the same order of magnitude as theoretical calculations.

In the process e+e− → R, where R represents a
hadronic resonance, the dominant production mecha-
nism, when allowed, is through one virtual photon. This
results in the copious production of vector mesons with
JPC = 1−−, where the quantum numbers J , P , and
C denote the spin, parity, and charge conjugation of R,
respectively. In principle, C-even resonances can also
be produced directly in e+e− annihilation through pro-
cesses with two timelike virtual photons or neutral cur-
rents. Notice that the production via two real photons
is forbidden due to the Landau-Yang theorem. Such
processes were discussed already 40 years ago [1] and
were revisited in Refs. [2–5]. Experimental searches
for e+e− annihilation to the η, η′, f0(980), f0(1300),

f1(1285), f2(1270), a0(980), a2(1320), and the X(3872)
[also known as χc1(3872)] have been carried out at the
VEPP-2M [6–8], VEPP-2000 [9–11], and BEPCII [12]
colliders. The most significant signal (2.5σ) was obtained
for the f1(1285) [11]. All others resulted in upper limits
on the electronic widths (Γee) of the corresponding res-
onances. In a spacelike two-photon scattering process,
e+e− → e+e−X(3872), evidence (3.2σ) for the X(3872)
production has also been found [13] at Belle. As for the
χc1(1P ), which we refer to as the χc1, there have been
no previous searches.
Following the strategy for calculating the electronic

width of the χc1 suggested in Ref. [1], the authors of
Ref. [14] predict Γee = 0.41 eV. This work also consid-



4

ers the interference between the signal process, e+e− →
χc1 → γJ/ψ → γµ+µ−, and the irreducible background
processes e+e− → γISRJ/ψ → γISRµ

+µ− and nonreso-
nant e+e− → γµ+µ−, see blue and red curves in Fig. 1.
Here ISR stands for initial state radiation. Depending
on the value of the relative phase φ between the signal
and background amplitudes, the interference changes the
total cross section line shape dramatically.

 (GeV)s
3.505 3.51 3.515 3.52

 (
nb

)
σ

0.016
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0.02

0.022
data)int.σ+

c1
χσ + (MC
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totalσ
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σ2.8 

σ0.0 

σ1.8 

FIG. 1. The colored curves are energy-dependent cross sec-
tions of the process e+e− → γJ/ψ → γµ+µ− including (green
and blue curves) and not including (red curve) the direct pro-
duction of e+e− → χc1 (see text for more details). The gray
curve denotes the signal strength in the hypothetical case of
no interference. The location of the χc1 mass is indicated by
the vertical line. The black dots with error bars represent
σMC
ISR BG +(σχ

c1
+σint)

data at the χc1 scan data samples. The
numbers next to the four data points indicate the statistical
significances associated with the χc1 production.

In this Letter, we report a search for the reaction
e+e− → χc1 at the BESIII experiment at the BEPCII
collider. First, the background processes are studied and
then we carry out a search for the signal process be-
yond the background. The data samples are collected
at four center-of-mass (c.m.) energies (3.5080, 3.5097,
3.5104, and 3.5146 GeV) in the χc1 mass region (re-
ferred to as the χc1 scan sample) with the BESIII de-
tector [15]. The first two scan points are located below
the χc1 mass, where according to Ref. [14] a construc-
tive interference effect between the signal process and
the irreducible background processes is expected. The
third scan point is very slightly below the mass position,
hence a minimal effect is predicted. The fourth point
is above the χc1 mass, which should lead to a reduc-
tion of events with respect to the scenario with no direct
production of the χc1. If there was no interference, the
excess at the third point would be expected to be the
largest (see gray line in Fig. 1). The data samples are
listed in Table I. The c.m. energies are measured using a
beam energy measurement system (BEMS) [16] with an
uncertainty of ±0.05 MeV and the beam-energy spread

is measured to be (736 ± 27) keV. The total integrated
luminosity of the four data samples is 446 pb−1, which
is measured using large angle Bhabha events. To ver-
ify the background description, we have also analyzed
four already existing control samples, in which the signal
process is absent, with a total integrated luminosity of
6294 pb−1, of which two samples have a large integrated
luminosity (

√
s = 3.773 GeV, and 4.178 GeV), while the

other two are comparable in size to the scan samples
(
√
s = 3.581 GeV and 3.670 GeV), as summarized in

Table I.

The χc1 is reconstructed via its radiative decay χc1 →
γJ/ψ, with the subsequent decay J/ψ → µ+µ−. The
J/ψ → e+e− mode is not used due to large background
from the Bhabha process (e+e− → e+e−).

Monte Carlo (MC) samples are used to determine the
detection efficiencies and to estimate the background
contributions. Simulated samples are produced with a
geant4-based [17] MC package, which includes the ge-
ometric description of the BESIII detector and the de-
tector response. The phokhara [18] event generator
is used to describe the signal process (e+e− → χc1 →
γJ/ψ → γµ+µ−), the irreducible background processes
(e+e− → γISRJ/ψ → γISRµ

+µ− and e+e− → γµ+µ−),
and the interference between them. Angular distribu-
tions for the signal process are implemented into the
phokhara event generator using Ref. [14], while the
background ISR processes are modeled using Ref. [18].
Non-γ(ISR)µ

+µ− background events are found to be neg-
ligible (< 0.2%) by studying control samples [19] and in-
clusive MC simulations, which include the production of
open-charm mesons, the ISR production of vector char-
monium(like) states, and continuum processes.

A full reconstruction method is used to select γµ+µ−

candidate events. The charged tracks and photons are
selected with the same method as described in Ref. [19].
Muon tracks are identified by the energy they deposit
in the electromagnetic calorimeter (EMC) and requiring
EEMC < 0.4 GeV. A four constraint (4C) kinematic fit
is applied with two charged tracks and one of the pho-
tons constraining the total reconstructed four momentum
to that of the initial state. The photon with minimum
χ2
4C is chosen as the best photon candidate. As checked

within a MC simulation, the probability to select a wrong
photon is negligible. We require the polar angle of the
best photon candidate to be | cos θγ | < 0.80 to suppress
background events from ISR processes.

The verification of background description is done
quantitatively by performing a two-dimensional fit to
the µ+µ− invariant mass (Mµ+µ−) distribution and the
| cos θµ| distribution with noninterfering signal and back-
ground components, whose line shapes are extracted
from the corresponding MC simulations. The signal line
shape is taken from the χc1 signal MC simulation at√
s = 3.5080 GeV, smeared with two Gaussian func-

tions, one to account for the resolution difference be-
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TABLE I. The c.m. energies, integrated luminosities, and fit results for the control samples (above the horizontal line) and
for the χc1 scan sample (below). The number of signal events (Nsig) is obtained from a two-dimensional fit without (Nsig w/o
Corr.) and with (Nsig w/ Corr.) the two-dimensional correction described in the text. The first uncertainty is statistical, and
the second is systematic (if applied). The first value in parentheses denotes the statistical significance. The second value in
parentheses for the control samples is the significance when the size of the data set is normalized to 180 pb−1 (thereby increasing
the statistical errors); the second value for the χc1 scan samples is the significance including the systematic uncertainties. The
last column shows the number of signal events derived from a MC sample where the values of Γee and φ are fixed to the values
obtained from a common fit to all χc1 scan samples (the error includes systematic effect).

√
s (MeV) L (pb−1) Nsig w/o Corr. Nsig w/ Corr. Nsig w/ Corr. common fit

3773.0 2932.4 1027 ± 140 (7.5σ; 1.9σ180) 49± 141 (0.3σ; 0.1σ180) · · ·
4178.4 3192.5 522± 104 (5.1σ; 1.2σ180) 40± 104 (0.4σ; 0.1σ180) · · ·
3581.5 85.3 31± 29 (1.1σ; 1.6σ180) −5± 29 (0.2σ; 0.3σ180) · · ·
3670.2 83.6 38± 26 (1.5σ; 2.2σ180) 4± 26 (0.2σ; 0.2σ180) · · ·
3508.0 181.8 320 ± 51 (6.5σ) 210 ± 52± 18 (4.1σ; 4.0σlow) 191+60

−59

3509.7 39.3 85± 24 (3.9σ) 63± 24± 6 (2.8σ; 2.7σlow) 41+20
−19

3510.4 183.6 100 ± 48 (1.7σ) 0+16
−19 ± 23 (0.0σ; 0.0σlow) 42+79

−77

3514.6 40.9 −16+16
−21 (0.7σ) −40± 22± 7 (1.8σ; 1.6σlow) −29+8

−10

Combined 445.6 · · · · · · (5.3σ; 5.1σlow) · · · (5.1σ; 4.2σlow)

tween data and MC simulations and the other for line-
shape differences between different energy points. In
the µ+µ− invariant mass distribution, we expect the
irreducible background events to feature a J/ψ peak
(e+e− → γISRJ/ψ → γISRµ

+µ−) on top of a smooth dis-
tribution (e+e− → γµ+µ−). The relative sizes of these
background contributions are fixed using our best esti-

mate for the electronic width of the J/ψ (Γ
J/ψ
ee ). The

number of signal events (Nsig) is expected to be zero in
the control samples. The statistical significance of the
signal contribution is determined by the difference of the
best log-likelihood (− lnL) value and the log-likelihood
value for a fit with null-signal hypothesis. However, as
summarized in the third column of Table I, nonzero val-
ues for Nsig have been found, representing a discrep-
ancy between the data and the MC simulation of the
irreducible background process. We have verified that
this discrepancy is not due to differences between data
and MC simulation in the experimental efficiencies, but
rather can be explained by uncertainties in the input

Γ
J/ψ
ee and limitations of the phokhara event generator

in simulating the ISR production of the narrow J/ψ res-
onance for large-angle ISR photons [20]. The statistical
significance of the discrepancy differs sizably for the four
control samples. When normalizing the effect of the dis-
crepancy to an integrated luminosity of 180 pb−1, which
corresponds to a typical luminosity of the χc1 scan points,
we observe significances below 2.3σ.

We carry out a two-dimensional correction to the dis-
tributions of Mµ+µ− and | cos θµ| by re-weighting MC
simulated events to correct the discrepancy. The correc-
tion factors are extracted using data and MC samples at√
s = 3.773 GeV or 4.178 GeV and are applied to the MC

simulations at other data samples (see Supplemental Ma-

terial [21]). After applying these correction factors, Nsig

is consistent with zero within one standard deviation for
all control samples.

In order to extract the number of signal events at the
four χc1 scan points, the Mµ+µ− and | cos θµ| distribu-
tions are investigated using a similar method as above.
The fit is performed at each data sample individually us-
ing a two-dimensional unbinned maximum likelihood fit
method. The line shapes for the contributions from the
χc1 production, the irreducible background, and the in-
terference between them are derived from the correspond-
ing individual MC simulations (see Supplemental Mate-
rial [21] for the angular distributions). The same two-
dimensional correction as above is applied to the shapes
of the background processes, and the square root of the
same factor is used for the interference. The numbers of
χc1 (Nχc1

) and irreducible background events (Nbg) are
free parameters, while the interference (Nint) is written
as f ·

√

Nχc1
·Nbg, where the factor f is determined from

signal MC sample with the Γee and φ parameters set to
the optimal values from a common fit to all scan points,
as will be explained below.

The fit results are shown in Fig. 2 and are listed in
Table I. Significant signal components are seen at

√
s =

3.5080 GeV and 3.5097 GeV with Nsig = Nχc1
+ Nint

(and its statistical significance) determined to be 210±52
(4.1σ) and 63± 24 (2.8σ), respectively. The signal com-
ponent is not significant at

√
s = 3.5104 GeV with

Nsig = 0+16
−19 (0.0σ). A negative signal component is

seen at
√
s = 3.5146 GeV with Nsig = −40 ± 22 (1.8σ).

The combined statistical significance, obtained by adding
the log-likelihoods from each of the four data samples, is
5.3σ. The cross section of the signal component and its
uncertainty is calculated as σsig ≡ (σχc1

+ σint)
data =

Nsig/(L · ǫ), where the efficiency ǫ is calculated from
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the simulated signal MC samples. The sum of σsig
and σISR BG at each χc1 scan point is shown in Fig. 1
(black dots), which is in good agreement with the the-
oretical prediction [14]. Here σISR BG is fixed using the
phokhara generator. Statistical tests are performed to
the χc1 scan samples individually using likelihood ratios
t = −(lnLs − lnLns) to discriminate the hypothesis with
or without signal components (distributions to be found
in Supplemental Material [21]).
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FIG. 2. One-dimensional projections of the two-dimensional
fit to the Mµ+µ− and | cos θµ| distributions from the χc1 scan
samples. The black dots with error bars are from data, the
gray histograms are the irreducible background predicted by
the corrected MC simulation. The red curve is the best fit
result, the red dotted (blue dashed) curve is the signal (back-
ground) contribution. The region between 0.8 < | cos θµ| <
0.86 corresponds to the gap between the barrel and end cap
modules of the EMC.

Using a common fit to the four χc1 scan points, the val-
ues of Γee and φ can be determined directly from data.
Since it is not easy to obtain an analytic formula for the
total cross section of e+e− → γ(ISR)µ

+µ− as a function
of Γee and φ, the analysis is done via a scan method. At
each c.m. energy of the χc1 scan sample, the MC samples
of e+e− → γ(ISR)µ

+µ− are produced with different sets of
(Γee, φ) values, see open circles in Fig. 3. The total likeli-
hood from the four samples in the χc1 mass region is then
calculated using the same two-dimensional distributions
used previously with the number of events at each en-
ergy point constrained to the expected number of events
calculated from MC. The best Γee and φ parameters are

determined to be (0.12+0.08
−0.07) eV and (205.0+10.0

−17.0)
◦, re-

spectively, where the uncertainty corresponding to 68.3%
C.L. is statistical only. The 68.3% C.L. contour region
in the (Γee, φ) plane is shown in Fig. 3, in which the red
dot represents the best-fitted value. The green curve in
Fig. 1 shows the cross section line shape for such a set
of parameters. Using this best set of (Γee, φ) values, the
number of signal events is estimated for each χc1 scan
sample and is found to be 191, 41, 42, −29 events for the
four scan samples. The uncertainties on Nsig are esti-
mated by varying the (Γee, φ) values within their 68.3%
C.L. contour and finding the largest variations of Nsig.
Combining the four samples, the statistical significance
is 5.1σ and is found to be in very good agreement with
the previous estimate by fitting each scan sample indi-
vidually, where Γee and φ are not constrained to be the
same.

0.05 0.10 0.15 0.20 0.25
 (eV)eeΓ
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200

220

240

)°
 (φ

200.0−
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200.0−

199.5−

199.0−

198.5−

198.0−
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FIG. 3. The 68.3% C.L. contour of Γee and φ on a distri-
bution of log-likelihood (− lnL) values. The distribution of
− lnL in a larger parameter space region is shown in Supple-
mental Material [21].

Systematic uncertainties for the extraction of Γee and
φ mainly come from the luminosity measurement, the
detection efficiency, the line shapes used in the fit, the
fit range, the two-dimensional correction factor, the non-
γ(ISR)µ

+µ− background contribution, and the c.m. en-
ergy measurement.
The systematic uncertainty on the measurement of the

integrated luminosity is 0.6% for each data sample. We
take 0.5% as the uncertainty for muon reconstruction,
which is assumed to be the same as for electron recon-
struction. The uncertainty in photon reconstruction is
estimated to be 0.2%, obtained using control samples
of the e+e− → γµ+µ− process. The systematic un-
certainties from the integrated luminosity measurement
and detection efficiency are considered simultaneously by
changing the normalization factor used in the scan fit by
1.0%. The uncertainty from the requirement on | cos θγ |
is studied by tightening the requirement from 0.8 to 0.79,
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0.78, 0.77, and 0.76, the largest deviation with respect to
the default one is taken as the systematic uncertainty.
Systematic uncertainties from other selection criteria are
negligible.

The uncertainties from the binning strategy and the
fit procedure are studied using toy MC samples, no bias
is found. The uncertainty from the beam energy spread
is considered by changing it from 736 to 1000 keV, the
change is much larger than its standard deviation mea-
sured by BEMS (27 keV). The fit range of theMµ+µ− dis-
tribution is varied and the difference between the nominal
result is considered as the systematic uncertainty. The
uncertainty from the two-dimensional correction factor is
estimated by replacing the nominal one extracted from
the

√
s = 3.773 GeV data sample with that from the√

s = 4.178 GeV data sample. In addition, the square
root of the correction factor is applied to the interfer-
ence term based on the assumption that the discrepancy
observed at the control sample comes entirely from the
generator level. The uncertainty from this assumption
is studied by dropping the correction to the interference
term. The non-γ(ISR)µ

+µ− background contribution is
neglected in the nominal fit, the uncertainty from it is
considered by including it.
We change the

√
s in MC simulation at each energy

point by ±0.05 MeV and take the changes as system-
atic uncertainty from the c.m. energy. Assuming all
the systematic uncertainties are uncorrelated and adding
them in quadrature, the largest parameter ranges of Γee
and φ corresponding to 68.3% C.L. are determined to be
(0.12+0.13

−0.08) eV and (205.0+15.4
−22.4)

◦, respectively. The to-
tal systematic uncertainties are of a similar size as the
statistical effects. After having estimated the statistical
and systematic uncertainties associated with our fit to
Γee and φ, we study the dependence of signal events by
varying these input parameters within the contour de-
termined at 68.3% C.L., as listed in the last column of
Table I.

Systematic uncertainties for the individual fits are es-
timated using similar methods as listed above. However,
when considering the systematic uncertainties on Nsig,
the one on the requirement of | cos θγ | is excluded since
the signal yields change. One extra term comes from the
input Γee and φ values, which affect the signal line shape
and is considered by varying the values within the 68.3%
C.L. contour.
As summarized in Table I, we list the minimum signif-

icance found both in the case of individual fits (column
“Nsig w/ Corr.”) and in the case of a common fit (column
“Nsig w/ Corr. common fit”). After including the sys-
tematic uncertainties, the minimum significance is found
to be 5.1σ in the first and 4.2σ in the second case. As
the significance obtained by combining individual fits is
more robust to systematic effects and does not rely on
the specific model of Ref. [14], we take it as our nominal
result.

In summary, using data samples taken in the χc1 mass
region, we observe the direct production of the C-even
resonance, χc1, in e+e− annihilation for the first time
with a statistical significance larger than 5σ. We observe
a typical interference pattern around the χc1 mass, which
previously was predicted in Ref. [14]. The electronic
width of the χc1 has been determined for the first time
from a common fit to the four scan samples to be Γee =
(0.12+0.13

−0.08) eV. This observation demonstrates that with
the current generation of electron-positron colliders, the
direct production of C-even resonances through two vir-
tual photons is possible. As a next step, we intend to
embark on a scan around the χc2 resonance at BESIII.
Using future super-tau-charm factories with increased lu-
minosity [22], the Γee and other properties such as the
line shapes of C-even states could be determined by per-
forming a similar scan method. This will shed light on
the intrinsic nature of charmoniumlike resonances.
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THE DISTRIBUTION OF -LN(L) IN A LARGER PARAMETER SPACE REGION

Figure 1 shows the distribution of the log-likelihood value (− ln(L)) as a function of Γee (x-axis) and φ (y-axis)
in a larger parameter space region. The red square (0.12 eV, 205.0◦) represents the point where the likelihood value
is maximum. The orange triangle (0.41 eV, 212.0◦) comes from the theoretical calculation in Ref. [14]. The green
circles are the parameter points where MC samples are produced.
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FIG. 1. The distribution of − ln(L) in a larger parameter space region.

THE CORRECTION FACTOR

Figure 2 shows the correction factors used for the two-dimensional correction to the distribution of Mµ+µ− and
|cosθµ|. The left plot shows the correction factors derived from the

√
s = 3.773 GeV sample and the right plot is

from the
√
s = 4.178 GeV sample. Figure 3, Fig. 4, and Fig. 5 show the results from the two-dimensional fits to

the Mµ+µ− and |cosθµ| distributions from the control samples before correction, after correction using the correction
factors extracted from data and MC samples at

√
s = 3.773 GeV, and the correction factors from

√
s = 4.178 GeV.

THE 2-DIMENSIONAL FIT METHOD

Figure 6 shows the |cosθµ| distribution of the signal MC simulation at different center-of-mass energies, compared
with the distribution from the irreducible background MC simulation. The signal MC samples are produced with Γee
and φ fixed to the best value determined from this study.

SCATTER PLOT AND CHI DISTRIBUTION OF χc1 SCAN SAMPLES

Figure 7 shows the scatter plots of data (left), MC (middle), and the pull distributions from the two-dimentional
fit (right) at χc1 scan samples.

http://arxiv.org/abs/2203.13782v2
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FIG. 3. One-dimensional projections of the two-dimensional fit to the Mµ+µ− and | cos θµ| distributions from the control data
samples. The two-dimensional correction is not applied in this fit. The black dots with error bars are the distributions from
data, the gray histograms are the irreducible background predicted by the corrected MC simulation. The red curve is the best
fit result, the red dotted (blue dashed) curve is the signal (background) contribution.

STATISTICAL TEST FOR THE COMMON FIT

For the χc1 scan samples, statistical tests are performed by using the toy MC samples based on the common fit
result under the signal and the null-signal hypotheses. The difference of the log-likelihood values, t = − lnLs+lnLns,
is used as a test variable, where the signal hypothesis is given by (− lnLs) and the null-signal hypothesis by (− lnLns).
The distributions of t for the four χc1 scan samples are shown in Fig. 8, and the result combining the four samples is
shown in Fig. 9.
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FIG. 4. One-dimensional projections of the two-dimensional fit to the Mµ+µ− and | cos θµ| distributions from the control data
samples. The two-dimensional correction factor is determined from

√
s = 3.773 GeV sample.
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FIG. 5. One-dimensional projections of the two-dimensional fit to the Mµ+µ− and | cos θµ| distributions from the control data
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√
s = 4.178 GeV sample.
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FIG. 8. Distributions of the test variable t from the toy MC samples based on the common fit result under the signal and
null-signal hypotheses at

√
s = 3.5080, 3.5097, 3.5104, and 3.5146 GeV. The red and the blue histograms show the distributions

under the signal and null-signal hypotheses, respectively, while the black vertical lines indicate the values from real data.
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FIG. 9. Distribution of the test variable t from the toy MC samples using all four χc1 scan samples.


