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Using J/ψ radiative decays from 9.0 billion J/ψ events collected by the BESIII detector, we search
for di-muon decays of a CP -odd light Higgs boson (A0), predicted by many new physics models
beyond the Standard Model, including the Next-to-Minimal Supersymmetric Standard Model. No
evidence for the CP -odd light Higgs production is found, and we set 90% confidence level upper
limits on the product branching fraction B(J/ψ → γA0) × B(A0 → µ+µ−) in the range of (1.2 −
778.0) × 10−9 for 0.212 ≤ mA0 ≤ 3.0 GeV/c2. The new measurement is a 6-7 times improvement
over our previous measurement, and is also slightly better than the BaBar measurement in the
low-mass region for tanβ = 1.

The origin of mass is one of the most important ques-
tions in physics. The masses of the fundamental parti-
cles are generated through spontaneous breaking of elec-
troweak symmetry by the Higgs mechanism [1]. The
Higgs mechanism implies the existence of at least one
new scalar particle, the Higgs boson, which was the last
missing Standard Model (SM) particle. It was discovered
by the Large Hadron Collider experiments at CERN [2]
in July 2012 and has a profound effect on our fundamen-
tal understanding of matter.

Many models beyond the SM, such as the Next-to-
Minimal Supersymmetric Standard Model (NMSSM) [3–
5], extend the Higgs sector to include additional Higgs
fields. The NMSSM adds an additional singlet chiral su-
perfield to the Minimal Supersymmetric Standard Model
(MSSM) [6] to alleviate the so-called “little hierarchy
problem” [7]. It contains three CP -even, two CP -odd,
and two charged Higgs bosons [3, 4]. The mass of the
lightest Higgs boson, A0, may be smaller than twice the

mass of the charmed quark, thus making it accessible via
J/ψ → γA0 [8].

The branching fraction of V → γA0 (V = Υ, J/ψ) is
expressed as [8–10]

B(V → γA0)

B(V → l+l−)
=
GFm

2
qg

2
qCQCD√

2πα

(
1−

m2
A0

m2
V

)
, (1)

where α is the fine structure constant, GF is the Fermi
coupling constant, l ≡ e or µ, mq is the quark mass,
CQCD includes the leptonic width of B(V → l+l−) [11,
12] as well asmA0 dependent QCD and relativistic correc-
tions to B(V → γA0) [10], and gq is the effective Yukawa
coupling to the Higgs field to the up- or down-type quark-
pair. In the NMSSM, gc = cos θA/ tanβ (q = c) for the
charm quark and gb = cos θA tanβ (q = b) for the bot-
tom quark, where tanβ is the ratio of up- and down-
type Higgs doublets, and cos θA is the fraction of the
nonsinglet component of the A0 [13, 14]. The value
of cos θA is zero for a pure A0 singlet state [15]. The
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branching fraction of J/ψ → γA0 is predicted to be in
the range of 10−9 − 10−7 depending upon the A0 mass
and the NMSSM parameters [4]. The branching frac-
tion of A0 → µ+µ− is predicted to be much larger for
tanβ ≥ 1 [13]. An experimental study of such a low-
mass Higgs boson is desirable to test the SM [16] and to
look for new physics beyond the SM [3, 4, 17].

The BaBar [18], CLEO [19], and CMS [20] experiment
have searched for di-muon decays of A0, and placed a
strong exclusion upper limit on gb. On the other hand,
the BESIII measurements, sensitive on gc, is complemen-
tary to those by considering gb. The recent BESIII mea-
surement [21], based on 225 million J/ψ events, is slightly
lower than the BaBar measurement [18] in the low-mass
region for tanβ ≤ 0.6. The combined measurements
of the BESIII and BaBar have revealed that the A0 is
mostly singlet in nature because of obtained upper limit
on cos θA(= |√gbgc|)×

√
B(A0 → µ+µ−), independent of

tanβ, is very close to zero especially in the low-mass re-
gion [21]. However, this BESIII limit [21] is still an order
of magnitude above the theoretical predictions [4]. BE-
SIII has recently accumulated about 39 times more J/ψ
events in comparison to the previous measurement [21],
and these can be utilized to discover the A0 or exclude
parameter space of the NMSSM [22].

This paper describes the search for di-muon decays of
a CP -odd light Higgs boson in radiative decays of J/ψ
using 9 billion J/ψ events collected by the BESIII detec-
tor in 2009, 2018, and 2019 [22]. Because muon particle
identification (PID) was not available for the J/ψ data
collected in 2012, we exclude this data sample for the A0

search.

I. BESIII DETECTOR AND MONTE CARLO
SIMULATION

The BESIII detector [23] records symmetric e+e− colli-
sions provided by the BEPCII storage ring [24], which op-
erates with a peak luminosity of 1× 1033 cm−2s−1 in the
center-of-mass (CM) energy range from 2.0 to 4.95 GeV.
BESIII has collected large data samples in this energy
region [25]. The cylindrical core of the BESIII detector
covers 93% of the full solid angle and consists of a helium-
based multilayer drift chamber (MDC), a plastic scintil-
lator time-of-flight system (TOF), and a CsI(Tl) electro-
magnetic calorimeter (EMC), which are all enclosed in
a superconducting solenoidal magnet providing a 1.0 T
magnetic field. The solenoid is supported by an octag-
onal flux-return yoke with resistive plate counter muon
identification modules interleaved with steel. The MDC
measures the momentum of charged particles with a res-
olution of 0.5% at 1 GeV/c. The EMC measures the
photon energies with a resolution of 2.5% (5%) at 1 GeV
in the barrel (end-cap) region. The time resolution of
the TOF in the barrel region is 68 ps. The time resolu-
tion of the TOF in the endcap region was 110 ps before
2015 and was improved to be 60 ps after upgrading with

the multi-gap resistive plate chambers. Muons with mo-
mentum above 0.5 GeV/c are identified by the iron flux
return of the magnet instrumented with about 1272 m2

of resistive plate muon counters (MUC) arranged in nine
(eight) layers in the barrel (endcaps).

Simulated Monte Carlo (MC) events based on
Geant4 [26] are used to optimize the event selection
criteria, to study the potential backgrounds, and to de-
termine the detector acceptance. A MC sample of 9.0
billion inclusive J/ψ events is used for the background
studies with the generic TopoAna tool [27]. The known
J/ψ decay modes are generated by the EvtGen gener-
ator [28] with branching fractions taken from the Par-
ticle Data Group (PDG) [29], and the remaining un-
known decay modes by LUNDCHARM [30]. The fi-
nal state radiation corrections are included in the MC
simulation using PHOTOS [31]. The production of the
J/ψ resonance through e+e− annihilation including the
beam-energy spread and the initial-state-radiation (ISR)
is simulated by the KKMC [32]. A 2.93 fb−1 ψ(3770)
data sample [33, 34] is used to study the background
from the quantum electrodynamics (QED) process of
e+e− → γµ+µ−. To compute the detection efficiency,
we generate 0.12 million simulated signal MC events at
23 different Higgs mass points ranging from 0.212 to 3.0
GeV/c2 with a phase-space model for the A0 → µ+µ−

decay and a P -wave model for the J/ψ → γA0 decay [28].

II. DATA ANALYSIS

We select events with two oppositely charged tracks
and at least one photon candidate. A photon candidate,
reconstructed with clusters of energy deposited in the
EMC, is selected with a minimum energy of 25 MeV in
the barrel region (| cos θ| < 0.8) or 50 MeV in the end-
cap region (0.86 < | cos θ| < 0.92). The energy deposited
in the nearby TOF is included to improve the energy
resolution and reconstruction efficiency. The angle be-
tween a photon and the nearest extrapolated track in the
EMC is required to be larger than 10 degrees to remove
bremsstrahlung photons. The EMC timing is required
to be within 700 ns relative to the event start time to
suppress electronic noise and energy deposits unrelated
to the signal events.

Charged tracks are reconstructed from the ionization
signals measured by the MDC and are required to be in
the MDC detection acceptance region of | cos θ| < 0.93,
where θ is the angle of the charged track with the z
axis, which is the axis of the MDC. Further, their points
of closest approach to the z-axis must be within ±10
cm from the interaction point along the z direction and
within ±1 cm in the plane perpendicular to z. To sup-
press contamination by electrons and pions, both charged
tracks are required to satisfy the following selection cri-
teria: 1) Eµcal/p < 0.9 c, 2) 0.1 < Eµcal < 0.3 GeV,
and 3) the absolute value of the time difference between
the TOF and expected muon time (∆tTOF) must be less
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than 0.26 ns. Here, Eµcal is the energy deposited in the
EMC by the µ+/µ− particle, and p is the momentum
of the charged muon track. To further improve the pu-
rity of muons, one of the charged tracks is required to
have its penetration depth in the MUC be greater than
(−40.0 + 70 × p/(GeV/c)) cm for 0.5 ≤ p ≤ 1.1 GeV/c
and 40 cm for p > 1.1 GeV/c.

The two muon tracks are required to originate from
a common vertex by performing a vertex fit to form an
A0 candidate. A four-constraint (4C) kinematic fit is
performed with the two charged tracks and one of the
photon candidates in order to improve the mass reso-
lution of the A0 candidate. If there is more than one
γµ+µ− candidate, the candidate with the minimum value
of the χ2 from the 4C kinematic fit (χ2

4C) is selected, and
the χ2

4C is required to be less than 40 to reject back-
grounds from J/ψ → π+π−π0 and e+e− → γπ+π−π0.
We reject fake photons by requiring the di-muon invari-
ant mass (mµ+µ−) obtained from the 4C kinematic fit
to be less than 3.04 GeV/c2. To suppress backgrounds
from e+e− → γµ+µ− and J/ψ → µ+µ−(γ), the absolute
value of the cosine of the muon helicity angle (cos θhelµ ),
defined as the angle between the direction of one of the
muons and the direction of the J/ψ in the A0 rest frame,
is required to be less than 0.92.

After the above selection criteria, we determine the
signal yield as a function of mA0 in the interval of
0.212 ≤ mA0 ≤ 3.0 GeV/c2 by performing a series of
one-dimensional unbinned extended maximum likelihood
(ML) fits to the reduced mass, mred =

√
m2
µ+µ− − 4m2

µ

distribution of surviving events. Fig. 1 shows the mred

distribution of surviving events together with the back-
ground predictions from various simulated MC samples
and 2.93 fb−1 of ψ(3770) data [33, 34]. We use mred

rather than mµ+µ− because it is easier to model the non-
peaking background across the entire mA0 region, in par-
ticular, the kinematic threshold region mµ+µ− ≈ 2mµ

(mred ≈ 0). The non-peaking background is dominated
by e+e− → γµ+µ− and J/ψ → µ+µ−(γ), and the peak-
ing background by J/ψ → ρ/ωπ and J/ψ → γf (f =
f2(1270), f0(1500), f0(1710)) decays, where both ρ/ω and
f decay to π+π−. The mred distribution of data is gener-
ally well described by the background predictions, except
in the low-mass region, where KKMC [32] fails to repro-
duce the ISR events for the e+e− → γJ/ψ, J/ψ → µ+µ−

process. This disagreement has little impact on the
search because the signal extraction procedure does not
depend on the background predictions.

The fit function includes the contributions of signal,
continuum background and peaking background com-
ponents from ρ/ω, f2(1270), f0(1500), and f0(1710)
mesons. Table I summarizes the mred fit intervals for
the various mA0 points used to handle both non-peaking
and peaking backgrounds smoothly.

Simulated MC samples are used to develop the prob-
ability density functions (PDFs) of signal and back-
grounds. The A0 is assumed to be a scalar or pseudo-
scalar particle with a very narrow decay width in compar-
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FIG. 1. The mred distribution of data (black dot points
with error bars), together with the background predictions
of the QED e+e− → γµ+µ− process from ψ(3770) data
(black histogram) and J/ψ → ρπ, µ+µ−(γ), γf (f =
f2(1270), f0(1500), f0(1710)) decays from MC samples of
those processes (gray pattern histogram). The dashed cyan
histogram represents the combined background.

TABLE I. The mred fit intervals for various mA0 points.

mred fit interval
(GeV/c2)

mA0 points
(GeV/c2)

Order of Polyno-
mial function

0.002− 0.45 0.212, 0.4 5th

0.3− 0.65 0.401, 0.6 4th

0.4− 1.06 0.601, 1.0 3rd

0.95− 1.95 1.001, 1.8 2nd

1.7− 2.5 1.802, 2.4 5th

2.3− 2.7 2.402, 2.6 4th

2.5− 2.9 2.602, 2.848 5th

2.75− 3.0 2.85, 2.90 6th

2.85− 3.032 2.902, 3.0 5th

ison to the experimental resolution [35]. We describe the
mred distribution of the signal PDF by the sum of two
Crystal Ball (CB) functions [36] with a common peak
value and opposite side tails. The mred resolution varies
from 2 MeV/c2 to 12 MeV/c2 while the signal efficiency
varies between 27% and 53% depending upon the muon
momentum values at different A0 mass points. We in-
terpolate the signal efficiency and signal PDF parame-
ters linearly between the mass points of the generated
signal MC events. The non-peaking background PDF is
described by a function tanh(

∑5
l=1 plm

l
red) in the thresh-

old mass region of 0.212 ≤ mA0 ≤ 0.40 GeV/c2, where pl
are the polynomial coefficients. This function provides
a threshold like behavior in the low-mass region of the
mred distribution and passes through the origin when
mred = 0. In the other mass regions, we use second,
third, fourth, fifth or sixth-order Chebyshev polynomial
function to describe the non-peaking background PDFs
detailed in Table I. We determine the initial parameters
of these background PDFs using a cocktail MC sample
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of all possible non-peaking backgrounds to achieve better
agreement between data and the fit models.

To take into account the well-known structure of the ρ-
ω interference, we describe the peaking background PDF
of the mred distribution with the Gounaris and Saku-
rai (GS) function in the range of 0.4 ≤ mred ≤ 1.06
GeV/c2 [37]. The fit formula, detailed in Ref. [38], is
the same as that used previously by the BaBar [38]
and BESIII [34] experiments in the measurement of the
e+e− → π+π− cross-section in the ρ/ω mass region. The
amplitudes for the higher ρ states, ρ(1450), ρ(1700), and
ρ(2150), as well as the massses and widths of those states
are taken from Ref. [38]. We fix the ω width according to
the PDG [29] value and float the other parameters dur-
ing the fit. We describe the peaking background PDFs
corresponding to f2(1270), f0(1500) and f0(1710) reso-
nances by the sum of the two CB functions [36] using the
parameters determined from MC samples of J/ψ → γf ,
f → π+π− decays, where f = f2(1270), f0(1500), and
f0(1710) mesons.

The search for the A0 narrow resonance is performed
in steps of approximately half the mred resolution, i.e., 1
MeV/c2 in the mass range of 0.22 ≤ mA0 ≤ 1.5 GeV/c2

and 2.0 MeV/c2 in the other mA0 regions, with a total
of 2,035 mA0 points. The PDF parameters of the signal
and peaking backgrounds of J/ψ → γf are fixed while
the non-peaking background PDF, and the numbers of
the signal, peaking, and non-peaking background events
are floated. Plots of the fit to the mred distribution for
two selected mass points are shown in Fig. 2.

The fit is repeated with alternative signal, peaking, and
non-peaking background PDFs to determine the system-
atic uncertainties for the numbers of signal events asso-
ciated with the corresponding PDFs at each mA0 point.
The uncertainty associated with the signal PDF is stud-
ied by replacing the sum of the two CB functions with a
‘Cruijff’ function [39]. The uncertainty associated with
the ρ− ω peak is evaluated by varying the ρ and ω con-
tributions in the formula of Eq.(26) of Ref. [38]. The
uncertainty due to the peaking background of J/ψ → γf
is studied by replacing the sum of the two CB functions
with the simulated MC samples of the corresponding de-
cay processes convolved with a Gaussian function whose
parameters are floated during the fit. The uncertainty
due to the non-peaking background PDF is studied by
replacing the tanh(

∑5
l=1 plm

l
red) and nth order Cheby-

shev polynomial function with tanh(
∑6
l=1 plm

l
red) and

(n+ 1)th order Chebyshev polynomial functions, respec-
tively, in the fit. The one with the largest signal yield
among these fit scenarios is considered to produce the
final result.

The product branching fraction of J/ψ → γA0 and
A0 → µ+µ− as a function of mA0 is calculated as

B(J/ψ → γA0)× B(A0 → µ+µ−) =
Nsig

ε ·NJ/ψ
, (2)

where Nsig is the number of signal events, ε is the sig-
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FIG. 2. Fits to the mred distributions for (top) mA0 = 0.221
GeV/c2 and (bottom) mA0 = 0.696 GeV/c2. The correspond-
ing local significance values at these mass points are observed
to be 3.3σ and 3.5σ, respectively. Black dots with error bars
represent the data, the red long-dashed curve the non-peaking
background, the pink dotted curve the peaking background,
the green dashed curve the signal PDF, and the solid blue
curve the total fit results. In the bottom figure, the well-
known ρ − ω interference is taken care of by describing the
peaking background PDF of the mred distribution by a GS
function [37, 38], as described in the text.

nal selection efficiency, and NJ/ψ = (8.998± 0.039)× 109

is the number of J/ψ events. Fig. 3 shows the plots
of the product branching fractions B(J/ψ → γA0) ×
B(A0 → µ+µ−) and the statistical significance, defined

as S = sign(Nsig)
√

2ln(Lmax/L0), where Lmax (L0) is
the maximum likelihood value for a fit with number of
signal events being floated (fixed at zero). The largest
upward local significance value is determined to be 3.5σ
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FIG. 3. (a) The product branching fractions B(J/ψ → γA0)×
B(A0 → µ+µ−) (BF) and (b) signal significance (S) obtained
from the fit as a function of mA0 .

at mA0 = 0.696 GeV/c2. Based on a large ensemble of
pseudo experiments [18], the probability of observing a
fluctuation of S ≥ 3.5σ is estimated to be 12%. The cor-
responding global significance value is determined to be
at the level of 1σ. Thus, we conclude that no evidence
of Higgs production is found within the searched mA0

regions.

III. SYSTEMATIC UNCERTAINTIES

According to Eq. 2, the systematic uncertainties for
the branching fraction measurement include those from
the number of signal events, the reconstruction efficiency,
and the number of J/ψ events. The uncertainties asso-
ciated with the number of signal events originating from
the PDF parameters of signal and backgrounds are con-
sidered by performing alternative fits at each mA0 point.

Pseudo experiments are utilized to test the reliability
of the fit procedures and compute the fit bias, which may
appear due to imperfect signal and background modeling.
The same fit procedure is performed in each pseudo ex-
periment. The resultant average difference between the
input and output signal yields is determined to be 0.3
events. We consider it as an additive systematic uncer-
tainty (σadd), which may affect the significance of any
observation but does not scale with the reconstructed
signal yield.

The uncertainties associated with the reconstruction
efficiency and the number of J/ψ events don’t affect
the significance of any observation. Thus, we consider
them as multiplicative systematic uncertainties (σmult)
and scale with the number of reconstructed signal events.
The uncertainty associated with the reconstruction effi-
ciency includes those from tracking, PID, and the photon

TABLE II. The fit bias and multiplicative sources of the sys-
tematic uncertainties. The systematic uncertainties associ-
ated with the signal, peaking, and non-peaking background
PDFs are taken as the largest difference of signal yield among
the alternative fit scenarios at each mA0 point as described in
Sect. II.

Source Uncertainty
Additive systematic uncertainties (events)

Fit Bias 0.3
Total 0.3

Multiplicative systematic uncertainties (%)
Tracking 2.0

Photon detection efficiency 0.2
Depth in MUC 2.9 – 4.1

Eµcal 0.1
∆tTOF Negl.
Cosθhelµ 0.8
χ2
4C 1.8

J/ψ counting 0.7
Total 4.1 – 5.0

detection efficiency.

The uncertainty due to MDC tracking is determined to
be 1% per track using the high statistics control samples
of J/ψ → ρπ and J/ψ → pp̄π+π−. A total of 2.0% sys-
tematic uncertainty is assigned for the two charged tracks
in this analysis. The systematic uncertainty associated
with the photon reconstruction efficiency is determined
using a control sample of e+e− → γµ+µ− in which the
ISR photon is predicted using the four momenta of the
two charged tracks. This sample also includes the dom-
inant contribution from J/ψ → γπ+π− decay, including
all the possible intermediate resonances. The relative dif-
ference in efficiency between data and MC is found to be
0.2%, which is considered as a systematic uncertainty.

A control sample of J/ψ → µ+µ−(γ) is used to eval-
uate the systematic uncertainty due to the muon PID,
cos θhelµ , and χ2

4C requirements. In this sample, one track
is tagged with a tight muon PID. The final uncertainty
associated with the muon PID also takes into account
the fraction of events with one or two tracks identified as
muons obtained from the simulated signal MC sample.
The corresponding uncertainties, computed as the rela-
tive change in efficiency between data and MC, are deter-
mined to be (2.9 − 4.1)%, 0.8% and 1.8%, respectively.
The systematic uncertainty due to the number of J/ψ
events is 0.3% using J/ψ inclusive hadronic events. Ta-
ble II summarizes the fit bias and multiplicative sources
of the systematic uncertainties, where we obtain the total
σmult by adding the individual ones in quadrature. The
total σmult varies between 4.1% to 5.0% depending on
the Higgs mass point. The final systematic uncertainty
is calculated as

√
σ2
add + (σmult ×Nsig)2.
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FIG. 4. The 90% C.L. upper limits on the product branch-
ing fractions B(J/ψ → γA0) × B(A0 → µ+µ−) versus mA0

including all the uncertainties, together with the expected
limits computed using a large number of pseudo experiments.
The inner and outer bands correspond to 68% and 95% of the
expected limit values and include the statistical uncertainties
only.

IV. RESULT

Since no evidence of Higgs production is found, we set
90% confidence level (C.L.) upper limits on the product
branching fractions B(J/ψ → γA0)× B(A0 → µ+µ−) as
a function of mA0 using a Bayesian method [29] after in-
corporating the systematic uncertainty by smearing the
likelihood curve with a Gaussian function having a width
equal to the systematic uncertainty. The limits vary in
the range of (1.2 − 778.0) × 10−9 for the Higgs mass re-
gion of 0.212 ≤ mA0 ≤ 3.0 GeV/c2 depending on the
mA0 point, as shown in Fig. 4. The new measurement
has a 6-7 times improvement over the previous BESIII
measurement [21].

To compare our results with the BaBar measure-
ment [18], we also compute 90% C.L. upper limits on
the effective Yukawa coupling of the Higgs fields to the
bottom-quark pair gb(= gc tan2 β)×

√
B(A0 → µ+µ−) as

a function ofmA0 for different values of tanβ using Eq.(1)
as shown in Fig. 5. Our new measurement is slightly
better than the BaBar measurement [18] in the low-mass
region for tanβ = 1.0.

V. SUMMARY

We search for di-muon decays of A0 in J/ψ → γA0

using 9.0 billion J/ψ events collected by the BESIII de-
tector. No evidence of Higgs production is found, and
we set 90% C.L. upper limits on product branching frac-
tions B(J/ψ → γA0) × B(A0 → µ+µ−) in the range of
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FIG. 5. The 90% C.L. upper limits on the effective Yukawa
coupling of the Higgs field to the bottom-quark pair gb(=

gc tan2 β) ×
√
B(A0 → µ+µ−) as a function of mA0 for dif-

ferent values of tanβ together with the BaBar measurement.
Our results are slightly better than the BaBar measurement
in the low mass region for tanβ = 1.

(1.2−778.0)×10−9 for 0.212 ≤ mA0 ≤ 3.0 GeV/c2. This
result has an improvement by a factor of 6-7 over the
previous BESIII measurement [21], and is better than
the BaBar measurement [18] for mA0 ≤ 0.7 GeV/c2 for
tanβ = 1. Thus, our measurement is more stringent
for mA0 ≤ 0.7 GeV/c2 over the existing experimental re-
sults [18–21, 40]. The new BESIII limit is also lower than
the theoretical prediction at the threshold Higgs mass
point of 0.212 GeV/c2, and thus constrains a large frac-
tion of the parameter space of the new physics models,
including NMSSM [3, 4, 17].
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