Supplemental materials for "Determination of the pseudoscalar decay constant $f_{D_s^+}$ via $D_s^+ \rightarrow \mu^+ \nu_{\mu}$ "

M. Ablikim¹, M. N. Achasov^{9,d}, S. Ahmed¹⁴, M. Albrecht⁴, M. Alekseev^{55A,55C}, A. Amoroso^{55A,55C}, F. F. An¹, Q. An^{52,42}, Y. Bai⁴¹, O. Bakina²⁶, R. Baldini Ferroli^{22A}, Y. Ban³⁴, K. Begzsuren²⁴, D. W. Bennett²¹, J. V. Bennett⁵, N. Berger²⁵, M. Bertani^{22A}, D. Bettoni^{23A}, F. Bianchi^{55A,55C}, I. Boyko²⁶, R. A. Briere⁵, H. Cai⁵⁷, X. Cai^{1,42}, O. Cakir^{45A}, A. Calcaterra^{22A}, G. F. Cao^{1,46}, S. A. Cetin^{45B}, J. Chai^{55C}, J. F. Chang^{1,42}, W. L. Chang^{1,46}, G. Chelkov^{26,b,c}, G. Chen¹, H. S. Chen^{1,46}, J. C. Chen¹, M. L. Chen^{1,42}, P. L. Chen⁵³, W. L. Chang^{5,0}, G. Cherkov^{26,9,6}, G. Chen⁻, H. S. Chen⁻, J. C. Chen⁻, M. L. Chen^{-,5,2}, F. L. Chen^{-,5,4},
S. J. Chen³², Y. B. Chen^{1,42}, G. Cibinetto^{23A}, F. Cossio^{55C}, H. L. Dai^{1,42}, J. P. Dai^{37,h}, A. Dbeyssi¹⁴,
D. Dedovich²⁶, Z. Y. Deng¹, A. Denig²⁵, I. Denysenko²⁶, M. Destefanis^{55A,55C}, F. De Mori^{55A,55C}, Y. Ding³⁰,
C. Dong³³, J. Dong^{1,42}, L. Y. Dong^{1,46}, M. Y. Dong^{1,42,46}, Z. L. Dou³², S. X. Du⁶⁰, P. F. Duan¹, J. Z. Fan⁴⁴,
J. Fang^{1,42}, S. S. Fang^{1,46}, Y. Fang¹, R. Farinelli^{23A,23B}, L. Fava^{55B,55C}, S. Fegan²⁵, F. Feldbauer⁴, G. Felici^{22A}, C. Q. $\text{Feng}^{52,42}$, M. Fritsch^4 , C. D. Fu^1 , Y. Fu^1 , Q. Gao^1 , X. L. $\text{Gao}^{52,42}$, Y. Gao^{44} , Y. G. Gao^6 , Z. $\text{Gao}^{52,42}$, B. Garillon²⁵, I. Garzia^{23A}, A. Gilman⁴⁹, K. Goetzen¹⁰, L. Gong³³, W. X. Gong^{1,42}, W. Gradl²⁵, M. Greco^{55A,55C}, L. M. Gu³², M. H. Gu^{1,42}, Y. T. Gu¹², A. Q. Guo¹, L. B. Guo³¹, R. P. Guo³⁶, Y. P. Guo²⁵, A. Guskov²⁶, Z. Haddadi²⁸, S. Han⁵⁷, X. Q. Hao¹⁵, F. A. Harris⁴⁷, K. L. He^{1,46}, F. H. Heinsius⁴, T. Held⁴, Y. K. Heng^{1,42,46}, T. Holtmann⁴, Z. L. Hou¹, H. M. Hu^{1,46}, J. F. Hu^{37,h}, T. Hu^{1,42,46}, Y. Hu¹, G. S. Huang^{52,42}, J. S. Huang¹⁵, X. T. Huang³⁶, X. Z. Huang³², Z. L. Huang³⁰, T. Hussain⁵⁴, W. Ikegami Andersson⁵⁶, M. Irshad^{52,42}, Q. Ji¹,
 Q. P. Ji¹⁵, X. B. Ji^{1,46}, X. L. Ji^{1,42}, X. S. Jiang^{1,42,46}, X. Y. Jiang³³, J. B. Jiao³⁶, Z. Jiao¹⁷, D. P. Jin^{1,42,46}, S. Jin³²,
 Y. Jin⁴⁸, T. Johansson⁵⁶, A. Julin⁴⁹, N. Kalantar-Nayestanaki²⁸, X. S. Kang³³, M. Kavatsyuk²⁸, B. C. Ke¹, T. Khan^{52,42}, A. Khoukaz⁵⁰, P. Kiese²⁵, R. Kliemt¹⁰, L. Koch²⁷, O. B. Kolcu^{45B,f}, B. Kopf⁴, M. Kornicer⁴⁷, M. Kuemmel⁴, M. Kuessner⁴, A. Kupsc⁵⁶, M. Kurth¹, W. Kühn²⁷, J. S. Lange²⁷, M. Lara²¹, P. Larin¹⁴, L. Lavezzi^{55C}, S. Leiber⁴, H. Leithoff²⁵, C. Li⁵⁶, Cheng Li^{52,42}, D. M. Li⁶⁰, F. Li^{1,42}, F. Y. Li³⁴, G. Li¹, H. B. Li^{1,46}, L. Lavezzi ⁻, S. Leiber ⁻, H. Leithon ⁻, C. Li ⁻, Cheng Li ⁻, D. H. Li ⁻, F. Li ⁻, T. Li ⁻, G. Li ⁻, H. D. Li ⁻,
H. J. Li^{1,46}, J. C. Li¹, J. W. Li⁴⁰, Ke Li¹, Lei Li³, P. L. Li^{52,42}, P. R. Li^{46,7}, Q. Y. Li³⁶, T. Li³⁶, W. D. Li^{1,46},
W. G. Li¹, X. L. Li³⁶, X. N. Li^{1,42}, X. Q. Li³³, Z. B. Li⁴³, H. Liang^{52,42}, Y. F. Liang³⁹, Y. T. Liang²⁷, G. R. Liao¹¹,
L. Z. Liao^{1,46}, J. Libby²⁰, C. X. Lin⁴³, D. X. Lin¹⁴, B. Liu^{37,h}, B. J. Liu¹, C. X. Liu¹, D. Liu^{52,42}, D. Y. Liu^{37,h}, F. H. Liu³⁸, Fang Liu¹, Feng Liu⁶, H. B. Liu¹², H. L Liu⁴¹, H. M. Liu^{1,46}, Huanhuan Liu¹, Huihui Liu¹⁶, J. B. Liu^{52,42}, J. Y. Liu^{1,46}, K. Liu⁴⁴, K. Y. Liu³⁰, Ke Liu⁶, Q. Liu⁴⁶, S. B. Liu^{52,42}, X. Liu²⁹, Y. B. Liu³³, Z. A. Liu^{1,42,46}, Zhiqing Liu²⁵, Y. F. Long³⁴, X. C. Lou^{1,42,46}, H. J. Lu¹⁷, J. D. Lu^{1,46}, J. G. Lu^{1,42}, Y. Lu¹, Y. P. Lu^{1,42}, C. L. Luo³¹, M. X. Luo⁵⁹, X. L. Luo^{1,42}, S. Lusso^{55C}, X. R. Lyu⁴⁶, F. C. Ma³⁰, H. L. Ma¹, L. L. Ma³⁶ M. M. Ma^{1,46}, Q. M. Ma¹, X. N. Ma³³, X. X. Ma^{1,46}, X. Y. Ma^{1,42}, Y. M. Ma³⁶, F. E. Maas¹⁴, M. Maggiora^{55A,55C} Q. A. Malik⁵⁴, A. Mangoni^{22B}, Y. J. Mao³⁴, Z. P. Mao¹, S. Marcello^{55A,55C}, Z. X. Meng⁴⁸, J. G. Messchendorp²⁸, G. Mezzadri^{23A}, J. Min^{1,42}, T. J. Min³², R. E. Mitchell²¹, X. H. Mo^{1,42,46}, Y. J. Mo⁶, C. Morales Morales¹⁴ G. Morello^{22A}, N. Yu. Muchnoi^{9,d}, H. Muramatsu⁴⁹, A. Mustafa⁴, S. Nakhoul^{10,g}, Y. Nefedov²⁶, F. Nerling^{10,g}, I. B. Nikolaev^{9,d}, Z. Ning^{1,42}, S. Nisar^{8,k}, S. L. Niu^{1,42}, S. L. Olsen^{35,j}, Q. Ouyang^{1,42,46}, S. Pacetti^{22B}, Y. Pan^{52,42}, M. Papenbrock⁵⁶, P. Patteri^{22A}, M. Pelizaeus⁴, J. Pellegrino^{55A,55C}, H. P. Peng^{52,42}, K. Peters^{10,g}, J. Pettersson⁵⁶, J. L. Ping³¹, R. G. Ping^{1,46}, A. Pitka⁴, R. Poling⁴⁹, V. Prasad^{52,42}, H. R. Qi², M. Qi³², T. Y. Qi², S. Qian^{1,42}, C. F. Qiao⁴⁶, N. Qin⁵⁷, X. S. Qin⁴, Z. H. Qin^{1,42}, J. F. Qiu¹, K. H. Rashid^{54,i}, C. F. Redmer²⁵, M. Richter⁴, M. Ripka²⁵, M. Rolo^{55C}, G. Rong^{1,46}, Ch. Rosner¹⁴, A. Sarantsev^{26,e}, M. Savrié^{23B}, C. Schnier⁴, K. Schoenning⁵⁶, W. Qian¹⁴, K. Schoenning⁵⁶, C. Schnier⁴, K. Schoenning⁵⁶, M. Rolo^{55C}, G. Rong^{1,46}, Ch. Rosner¹⁴, A. Sarantsev^{26,e}, M. Savrié^{23B}, C. Schnier⁴, K. Schoenning⁵⁶, M. Rolo^{55C}, G. Rong^{1,46}, Ch. Rosner¹⁴, A. Sarantsev^{26,e}, M. Savrié^{23B}, C. Schnier⁴, K. Schoenning⁵⁶, M. Rolo^{55C}, G. Rong^{1,46}, Ch. Rosner¹⁴, A. Sarantsev^{26,e}, M. Savrié^{23B}, C. Schnier⁴, K. Schoenning⁵⁶, M. Rolo^{55C}, G. Rong^{1,46}, Ch. Rosner¹⁴, A. Sarantsev^{26,e}, M. Savrié^{23B}, C. Schnier⁴, K. Schoenning⁵⁶, M. Rolo^{55C}, G. Rong^{1,46}, Ch. Rosner¹⁴, A. Sarantsev^{26,e}, M. Savrié^{23B}, C. Schnier⁴, K. Schoenning⁵⁶, M. Rolo^{55C}, G. Rosner¹⁴, K. Schoenning⁵⁶, M. Savrié⁵⁵, M. Rosner¹⁴, K. Schoenning⁵⁶, M. Savrié⁵⁵, M. Rosner¹⁴, K. Schoenning⁵⁶, M. Savrié⁵⁵, M. Savrié⁵⁵, M. Rosner¹⁴, K. Schoenning⁵⁶, M. Savrié⁵⁵, M. Rosner¹⁴, K. Schoenning⁵⁶, M. Savrié⁵⁵, M. Rosner¹⁴, K. Schoenning⁵⁶, M. Savri⁵⁵, M. W. Shan¹⁸, X. Y. Shan^{52,42}, M. Shao^{52,42}, C. P. Shen², P. X. Shen³³, X. Y. Shen^{1,46}, H. Y. Sheng¹, X. Shi^{1,42}, J. J. Song³⁶, W. M. Song³⁶, X. Y. Song¹, S. Sosio^{55A,55C}, C. Sowa⁴, S. Spataro^{55A,55C}, G. X. Sun¹, J. F. Sun¹⁵, L. Sun⁵⁷, S. S. Sun^{1,46}, X. H. Sun¹, Y. J. Sun^{52,42}, Y. K Sun^{52,42}, Y. Z. Sun¹, Z. J. Sun^{1,42}, Z. T. Sun²¹ Y. T Tan^{52,42}, C. J. Tang³⁹, G. Y. Tang¹, X. Tang¹, I. Tapan^{45C}, M. Tiemens²⁸, B. Tsednee²⁴, I. Uman^{45D} G. S. Varner⁴⁷, B. Wang¹, B. L. Wang⁴⁶, C. W. Wang³², D. Y. Wang³⁴, Dan Wang⁴⁶, K. Wang^{1,42}, L. L. Wang¹, L. S. Wang¹, M. Wang³⁶, Meng Wang^{1,46}, P. Wang¹, P. L. Wang¹, W. P. Wang^{52,42}, X. F. Wang¹, Y. Wang^{52,42}, Y. F. Wang^{1,42,46}, Y. Q. Wang²⁵, Z. Wang^{1,42}, Z. G. Wang^{1,42}, Z. Y. Wang¹, Zongyuan Wang^{1,46}, T. Weber⁴,
D. H. Wei¹¹, P. Weidenkaff²⁵, S. P. Wen¹, U. Wiedner⁴, M. Wolke⁵⁶, L. H. Wu¹, L. J. Wu^{1,46}, Z. Wu^{1,42}, L. Xia^{52,42},
X. Xia³⁶, Y. Xia¹⁹, D. Xiao¹, Y. J. Xiao^{1,46}, Z. J. Xiao³¹, Y. G. Xie^{1,42}, Y. H. Xie⁶, X. A. Xiong^{1,46}, Q. L. Xiu^{1,42}, G. F. Xu¹, J. J. Xu^{1,46}, L. Xu¹, Q. J. Xu¹³, Q. N. Xu⁴⁶, X. P. Xu⁴⁰, F. Yan⁵³, L. Yan^{55A,55C}, W. B. Yan^{52,42}, W. C. Yan², Y. H. Yan¹⁹, H. J. Yang^{37,h}, H. X. Yang¹, L. Yang⁵⁷, S. L. Yang^{1,46}, Y. H. Yang³², Y. X. Yang¹¹, Yifan Yang^{1,46}, M. Ye^{1,42}, M. H. Ye⁷, J. H. Yin¹, Z. Y. You⁴³, B. X. Yu^{1,42,46}, C. X. Yu³³, C. Z. Yuan^{1,46}, Y. Yuan¹, A. Yuncu^{45B,a}, A. A. Zafar⁵⁴, A. Zallo^{22A}, Y. Zeng¹⁹, Z. Zeng^{52,42}, B. X. Zhang¹, B. Y. Zhang^{1,42},
 C. C. Zhang¹, D. H. Zhang¹, H. H. Zhang⁴³, H. Y. Zhang^{1,42}, J. Zhang^{1,46}, J. L. Zhang⁵⁸, J. Q. Zhang⁴,

J. W. Zhang^{1,42,46}, J. Y. Zhang¹, J. Z. Zhang^{1,46}, K. Zhang^{1,46}, L. Zhang⁴⁴, S. F. Zhang³², T. J. Zhang^{37,h},

X. Y. Zhang³⁶, Y. Zhang^{52,42}, Y. H. Zhang^{1,42}, Y. T. Zhang^{52,42}, Yang Zhang¹, Yao Zhang¹, Yu Zhang⁴⁶,

Z. H. Zhang⁶, Z. P. Zhang⁵², Z. Y. Zhang⁵⁷, G. Zhao¹, J. W. Zhao^{1,42}, J. Y. Zhao^{1,46}, J. Z. Zhao^{1,42}, Lei Zhao^{52,42}, Ling Zhao¹, M. G. Zhao³³, Q. Zhao¹, S. J. Zhao⁶⁰, T. C. Zhao¹, Y. B. Zhao^{1,42}, Z. G. Zhao^{52,42}, A. Zhemchugov^{26,b},

B. Zheng⁵³, J. P. Zheng^{1,42}, W. J. Zheng³⁶, Y. H. Zheng⁴⁶, B. Zhong³¹, L. Zhou^{1,42}, Q. Zhou^{1,46}, X. Zhou⁵⁷,

X. K. Zhou^{52,42}, X. R. Zhou^{52,42}, X. Y. Zhou¹, A. N. Zhu^{1,46}, J. Zhu³³, J. Zhu⁴³, K. Zhu¹, K. J. Zhu^{1,42,46}, S. Zhu¹,

S. H. Zhu⁵¹, X. L. Zhu⁴⁴, Y. C. Zhu^{52,42}, Y. S. Zhu^{1,46}, Z. A. Zhu^{1,46}, J. Zhuang^{1,42}, B. S. Zou¹, J. H. Zou¹

(BESIII Collaboration)

¹ Institute of High Energy Physics, Beijing 100049, People's Republic of China

² Beihang University, Beijing 100191, People's Republic of China

³ Beijing Institute of Petrochemical Technology, Beijing 102617, People's Republic of China

⁴ Bochum Ruhr-University, D-44780 Bochum, Germany

⁵ Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

⁶ Central China Normal University, Wuhan 430079, People's Republic of China

⁷ China Center of Advanced Science and Technology, Beijing 100190, People's Republic of China

⁸ COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan

⁹ G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia

¹⁰ GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany

¹¹ Guangxi Normal University, Guilin 541004, People's Republic of China

¹² Guangxi University, Nanning 530004, People's Republic of China

¹³ Hangzhou Normal University, Hangzhou 310036, People's Republic of China

¹⁴ Helmholtz Institute Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany

¹⁵ Henan Normal University, Xinxiang 453007, People's Republic of China

¹⁶ Henan University of Science and Technology, Luoyang 471003, People's Republic of China

¹⁷ Huangshan College, Huangshan 245000, People's Republic of China

¹⁸ Hunan Normal University, Changsha 410081, People's Republic of China

¹⁹ Hunan University, Changsha 410082, People's Republic of China

²⁰ Indian Institute of Technology Madras, Chennai 600036, India

²¹ Indiana University, Bloomington, Indiana 47405, USA

²² (A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati,

Italy; (B)INFN and University of Perugia, I-06100, Perugia, Italy

²³ (A)INFN Sezione di Ferrara, I-44122, Ferrara, Italy; (B)University of Ferrara, I-44122, Ferrara, Italy

²⁴ Institute of Physics and Technology, Peace Ave. 54B. Ulaanbaatar 13330. Mongolia

²⁵ Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany

²⁶ Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia

²⁷ Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany

²⁸ KVI-CART, University of Groningen, NL-9747 AA Groningen, The Netherlands

²⁹ Lanzhou University, Lanzhou 730000, People's Republic of China

³⁰ Liaoning University, Shenyang 110036, People's Republic of China

³¹ Nanjing Normal University, Nanjing 210023, People's Republic of China

³² Nanjing University, Nanjing 210093, People's Republic of China

³³ Nankai University, Tianjin 300071, People's Republic of China

³⁴ Peking University, Beijing 100871, People's Republic of China

³⁵ Seoul National University, Seoul, 151-747 Korea

³⁶ Shandong Normal University, Jinan 250014, People's Republic of China

³⁷ Shandong University, Jinan 250100, People's Republic of China

³⁸ Shanqhai Jiao Tong University, Shanghai 200240, People's Republic of China

³⁹ Shanxi University, Taiyuan 030006, People's Republic of China

⁴⁰ Sichuan University, Chengdu 610064, People's Republic of China

⁴¹ Soochow University, Suzhou 215006, People's Republic of China

⁴² Southeast University, Nanjing 211100, People's Republic of China

⁴³ State Key Laboratory of Particle Detection and Electronics,

Beijing 100049, Hefei 230026, People's Republic of China

⁴⁴ Sun Yat-Sen University, Guangzhou 510275, People's Republic of China

⁴⁵ Tsinghua University, Beijing 100084, People's Republic of China

⁴⁶ (A)Ankara University, 06100 Tandogan, Ankara, Turkey; (B)Istanbul Bilgi

University, 34060 Eyup, Istanbul, Turkey; (C)Uludag University, 16059 Bursa,

Turkey; (D)Near East University, Nicosia, North Cyprus, Mersin 10, Turkey

⁴⁷ University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

⁴⁸ University of Hawaii, Honolulu, Hawaii 96822, USA

⁴⁹ University of Jinan, Jinan 250022, People's Republic of China

 50 University of Minnesota, Minneapolis, Minnesota 55455, USA

⁵¹ University of Muenster, Wilhelm-Klemm-Str. 9, 48149 Muenster, Germany

⁵² University of Science and Technology Liaoning, Anshan 114051, People's Republic of China

⁵³ University of Science and Technology of China, Hefei 230026, People's Republic of China

⁵⁴ University of South China, Hengyang 421001, People's Republic of China

⁵⁵ University of the Punjab, Lahore-54590, Pakistan

⁵⁶ (A)University of Turin, I-10125, Turin, Italy; (B)University of Eastern

Piedmont, I-15121, Alessandria, Italy; (C)INFN, I-10125, Turin, Italy

⁵⁷ Uppsala University, Box 516, SE-75120 Uppsala, Sweden

⁵⁸ Wuhan University, Wuhan 430072, People's Republic of China

⁵⁹ Xinyang Normal University, Xinyang 464000, People's Republic of China

⁶⁰ Zhejiang University, Hangzhou 310027, People's Republic of China

⁶¹ Zhengzhou University, Zhengzhou 450001, People's Republic of China

^a Also at Bogazici University, 34342 Istanbul, Turkey

^b Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia

^c Also at the Functional Electronics Laboratory, Tomsk State University, Tomsk, 634050, Russia

^d Also at the Novosibirsk State University, Novosibirsk, 630090, Russia

^e Also at the NRC "Kurchatov Institute", PNPI, 188300, Gatchina, Russia

^f Also at Istanbul Arel University, 34295 Istanbul, Turkey

^g Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany

^h Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry

of Education; Shanghai Key Laboratory for Particle Physics and Cosmology; Institute

of Nuclear and Particle Physics, Shanghai 200240, People's Republic of China

ⁱ Also at Government College Women University, Sialkot - 51310. Punjab, Pakistan.

^j Currently at: Center for Underground Physics, Institute for Basic Science, Daejeon 34126, Korea

^k Also at Harvard University, Department of Physics, Cambridge, MA, 02138, USA

Figure 1 shows the $M_{\rm BC}$ distributions of the ST D_s^- candidates from $e^+e^- \to D_s^-D_s^{*+}, e^+e^- \to D_s^+D_s^{*-}$, and $e^+e^- \to D_s^+D_s^-$ processes based on MC simulation. Both D_s^- mesons directly produced from e^+e^- annihilation and indirectly produced from D_s^{*-} decays are retained by our nominal $M_{\rm BC}$ requirement.

Table I summarizes the ST yield $N_{\rm ST}$, the background yield $N_{\rm ST}^{\rm bkg}$ in the $M_{\rm tag}$ signal regions, the DT yield $N_{\rm DT}$, the signal efficiency $\varepsilon_{\gamma(\pi^0)\mu^+\nu_{\mu}}$ and the obtained $\mathcal{B}_{D_s^+\to\mu^+\nu_{\mu}}$ for each ST mode. Although the background levels for various ST modes are much different, the BFs measured with individual ST modes are consistent with each other.

As an independent check, we further examine the μ^+ PID efficiencies of data and MC simulation, $\varepsilon_{\mu \, \text{PID}}^{\text{data}}$ and $\varepsilon_{\mu \, \text{PID}}^{\text{MC}}$, by analyzing $e^+e^- \rightarrow \gamma_{\text{ISR}}\psi(3686), \psi(3686) \rightarrow \pi^+\pi^- J/\psi, J/\psi \rightarrow \mu^+\mu^-$ events (sample I) and corresponding 2D reweighted efficiencies based on $e^+e^- \rightarrow \gamma \mu^+\mu^-$ samples (sample II). Two samples with much different topologies give consistent $\varepsilon_{\mu \, \text{PID}}^{\text{data}}$, $\varepsilon_{\mu \, \text{PID}}^{\text{MC}}$, and $f_{\mu \, \text{PID}}^{\text{cor}} = \varepsilon_{\mu \, \text{PID}}^{\text{data}}/\varepsilon_{\mu \, \text{PID}}^{\text{MC}}$, as shown in Table II. The obtained $f_{\mu \, \text{PID}}^{\text{cor}}$ in these two samples are different with that in $D_s^+ \rightarrow \mu^+ \nu_{\mu}$ mainly due to much higher muon momentum.

Fig. 1: The $M_{\rm BC}$ distributions of the ST D_s^- candidates from $e^+e^- \to D_s^+D_s^{*-}$, $e^+e^- \to D_s^-D_s^{*+}$, and $e^+e^- \to D_s^+D_s^-$ processes. The red arrows give our nominal $M_{\rm BC}$ window for the ST D_s^- candidates.

Table I: Summary of $N_{\rm ST}$, $N_{\rm ST}^{\rm bkg}$, $N_{\rm DT}$, $\varepsilon_{\gamma(\pi^0)\mu^+\nu_{\mu}}$, and the obtained $\mathcal{B}_{D_s^+ \to \mu^+\nu_{\mu}}$ with various ST modes. The uncertainties are only statistical. The signal efficiencies have been corrected by $f_{\mu\,\rm PID}^{\rm cor}$ as described in manuscript. The variations of the signal efficiencies are mainly due to different multiplicities of the tag sides.

ST mode	N _{ST}	$N_{ m ST}^{ m bkg}$	N _{DT}	$\varepsilon_{\gamma(\pi^0)\mu^+\nu_\mu}(\%)$	$\mathcal{B}_{D_s^+ \to \mu^+ \nu_{\mu}} (\times 10^{-3})$
$K^+K^-\pi^+$	133959 ± 633	173160	373.3 ± 18.9	49.73 ± 0.24	5.55 ± 0.28
$K^+K^-\pi^+\pi^0$	41377 ± 916	221099	123.1 ± 10.7	57.32 ± 0.85	5.14 ± 0.46
$\pi^+\pi^+\pi^-$	35966 ± 913	300499	90.0 ± 9.9	51.21 ± 0.53	4.84 ± 0.55
$K^0_S K^+$	32039 ± 291	18776	79.7 ± 9.0	49.77 ± 0.36	4.95 ± 0.56
$K^0_S K^+ \pi^0$	11294 ± 433	52788	38.4 ± 6.1	56.71 ± 2.34	5.94 ± 0.97
$K^+\pi^+\pi^-$	15877 ± 872	246528	45.6 ± 7.2	51.21 ± 1.30	5.55 ± 0.93
$K^0_S K^0_S \pi^+$	4832 ± 180	11274	20.2 ± 4.4	50.55 ± 1.25	8.19 ± 1.82
$K^0_S K^- \pi^+ \pi^+$	14046 ± 240	26873	44.1 ± 6.5	51.91 ± 0.91	5.98 ± 0.89
$K^0_S K^+ \pi^+ \pi^-$	7171 ± 292	37456	24.7 ± 4.9	54.14 ± 1.21	6.29 ± 1.28
$\eta_{\gamma\gamma}\pi^+$	19323 ± 725	53701	63.5 ± 8.1	52.72 ± 0.62	6.17 ± 0.82
$\eta_{\pi^+\pi^-\pi^0}\pi^+$	5508 ± 202	11225	20.2 ± 4.5	54.00 ± 1.13	6.73 ± 1.51
$\eta'_{\pi^+\pi^-n_{\gamma\gamma\gamma}}\pi^+$	9242 ± 155	5002	33.0 ± 5.7	56.30 ± 0.54	6.27 ± 1.09
$\eta'_{\gamma\rho^0}\pi^{+''}$	25191 ± 695	152363	75.1 ± 8.6	53.74 ± 0.72	5.49 ± 0.65
$\eta_{\gamma\gamma}\rho^+$	32835 ± 1537	166324	108.4 ± 10.5	60.70 ± 0.91	5.38 ± 0.58

Table II: Summary of $\varepsilon_{\mu\,\mathrm{PID}}^{\mathrm{data}}$, $\varepsilon_{\mu\,\mathrm{PID}}^{\mathrm{MC}}$, and $f_{\mu\,\mathrm{PID}}^{\mathrm{cor}}$ obtained from samples I and II.

Samples	$\varepsilon_{\mu { m PID}}^{ m data}$ (%)	$\varepsilon_{\mu \mathrm{PID}}^{\mathrm{MC}}$ (%)	$f_{\mu { m PID}}^{ m cor}$
Ι	76.64 ± 0.68	81.04 ± 0.21	0.946 ± 0.009
II	76.85 ± 0.30	81.66 ± 0.11	0.941 ± 0.004