Towards a better understanding of the geochemical proxy record of complex carbonate archives

M. Mueller^a, B. F. Walter^{b,c,d}, R. J. Giebel^{e,f}, A. Beranoaguirre^{c,d,g}, P. K. Swart^h, C. Lu^h, S. Riechelmann^a, A. Immenhauser^{a,i}

- ^a Institute for Geology, Mineralogy and Geophysics, Ruhr-Universität Bochum. Universitätsstraβe 150, 44801 Bochum, Germany
- ^b Eberhard Karls University Tübingen, Petrology and Mineral Resources, Schnarrenbergstraße 94-96, 72074 Tübingen, Germany
- ^c Karlsruhe Institute for Technology, Chair of Economic Geology and Geochemistry, Adenauering 20b, 76131 Karlsruhe, Campus South, Germany
- ^d Laboratory for Environmental and Rawmaterial Analyses (LERA), Adenauerring 20b, 76131, Karlsruhe, Campus South, Germany
- ^e Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
- ^f University of the Free State, 250 Nelson-Mandela-Drive, Bloemfontein 9300, South Africa
- ^g Frankfurt Isotope and Element Research Center, Goethe-UniversitätFrankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
- ^h Department of Marine Geosciences, Rosenstiel School of Marine, Atmospheric and Earth Sciences, University of Miami, Miami, 33149, FL, USA
- ⁱ Fraunhofer Research Institution for Energy Infrastructures and Geothermal Systems IEG. Am Hochschulcampus 1, 44801 Bochum, Germany

^{*} Corresponding author: mathias.mueller-l1y@rub.de

Digital supplement S1

3. Methodology

3.4 Fluid inclusion thermometry

Microthermometric analyses on fluid inclusions were carried out using a Linkam THMS600 heating-freezing stage at the LERA facilities at Karlsruhe Institute for Technology (KIT). Doublepolished thick sections (100 to 150 µm) for fluid petrography were prepared. The petrographic relation of each fluid inclusion assemblage was carried out by optical and cathodoluminescence microscopy, following the approach of Goldstein and Reynolds (1994). The documented fluid inclusion assemblages (FIA) were classified as (i) primary inclusions, which are situated on growth zones (p), (ii) pseudo-secondary (ps), (iii) secondary (s), and (iv) isolated inclusions with no genetic relationship (iso; Walter et al., 2015). For each analysis, three repeated heating and freezing cycles were performed to document the final dissolution temperature of ice $(T_{m, ice})$ and hydrohalite $(T_{m, ice})$ hh) and the homogenization temperature (Th). For further genetic interpretations, only fluid inclusions were considered, for which a triplet measurement varies between <0.1 °C for T_{m, ice} and $T_{m, hh}$ and <1 °C for T_{h} . All inclusions and the corresponding data were checked for evidence of post-entrapment modifications. Some inclusion analyses resulted in microthermometric data, which indicated a metastable absence of hydrohalite due to the system-related phase diagram NaCl-H₂O-CaCl₂ (Steele-MacInnis et al., 2011). Such inclusions were excluded from the data presentation and interpretation because no geologically correct information can be gathered from them. Synthetic quartz-hosted H₂O, H₂O-NaCl, and H₂O-CO₂ standard inclusions (SynFlinc Standard collection) were used for temperature calibration once a day.

Quantification of molar Ca/(Na+Ca) ratios in the ternary NaCl-CaCl₂-H₂O system were performed with the Excel-based calculation program of Steele-MacInnis et al. (2011). The volume fraction of each fluid inclusion was visually estimated based on published volume proportion tables (Shepherd et al., 1985). The volume fraction notation used is based on the phase assemblage at room temperature, aqueous liquid (Lx, numerical subscription refers to the volume percentage of aqueous liquid), carbonic liquid (Lc), vapor (V), and solid (S) (Shepherd et al., 1985; Bakker and Diamond, 2006; Walter et al., 2019). Pressure correction of the T_h values and density calculation was performed by use of the HOKIEFLINCS_H2O-NACL program of Steele-MacInnis et al. (2011), assuming lithostatic conditions with a depth of the water column inferred from the cumulated overburden lithology thicknesses and maximum paleo-depth of 6,500 m (Drozdzewski and Wrede, 1994; Littke et al. 2000; Götte, 2004). Lithostatic conditions are assumed because of the cover by subsequently deposited Middle/Late Devonian sediments predating dolomitization and tectonic processes. Raman Microspectroscopy was performed, but no signal for semiqualitative analyses was received due to the small inclusion sizes.

3.5 Crush leach analysis

20 samples with one dominant fluid type were selected for bulk fluid crush-leach analyses. About 2 grams of carbonate with a grain size of 0.5 to 1 mm were hand separated, and visible impurities were removed. The separates were washed for 3 hours in Milli-Q water at 60-70 °C. Subsequently, the samples were washed for one week with ultrapure water, changing the water twice a day. These pre-treated samples were dried and crushed to a fine powder in an agate mortar. 20 ml of Milli-Q water was added to the powder in the agate mortar, whereas 10 ml was used for IC and 10 ml for ICPMS. To suppress the adsorption of doubly-charged cations, crush-leach solutions were acidified with supra pure HNO₃ (Köhler et al., 2008; Ladenburger et al., 2020). The loaded solution was injected into a Methrom 930 Compact IC Flex chromatography system equipped with an 858 Professional Sample Processor and a Metrosep A Supp 5 column to quantify anions (F, Cl, Br, J, NO₃, PO₄, and SO₄). To inject the solutions into the Methrom 858 Professional Sample Processor, we used disposable syringe filters CROMAFILE®Xtra RC-20/25 for anions (Ladenburger, 2020). Blank runs were carried out before and after each analysis, and defined standard solutions were regularly analyzed to monitor the reproducibility and precision of the measurements. Uncertainties were usually smaller than 15%, and effective detection limits were generally <10 mg/l.

Trace element concentrations in the crush-leach solutions were measured with an iCAP RQ ICP-M (Thermo Fisher Scientific), which is equipped with a collision cell to eliminate polyatomic clusters. An ICP multi-element standard solution (Merck, Certipur) was used for calibration and quality checks. ¹⁰³Rh and ¹¹⁵In were used as internal standards for all measurements. The certified reference water CRM-TMDW-A (High-Purity standards, Inc.) was used to check for the precision and accuracy of the measurement procedure. Accuracy was between 1 and 8% in the measured sample batch. Absolute element concentrations in the original (non-diluted) fluid compositions were calculated using the microthermometry chlorine results as internal standard.

3.6 Geochemistry

Mineralogy of individual cement phases was analysed using powder X-Ray Diffraction (PXRD). To quantify the minerals present, 70–100 mg of powder was drilled from the samples with a handheld Dremel. Sampling locations within individual phases were based on previous petrographic evaluation using normal, polarised and cathodoluminescence microscopy. Sample powders were homogenously distributed on a silicon sample carrier, before mounting and aligning them on a rotating goniometer head. Measurements were performed on a PANalytical EMPYREAN diffractometer using copper radiation (λ 1=0.154 Å) equipped with a PIXcel1D detector (Medipix2 collaboration, Ruhr-University, Bochum, Germany). Scanning range of 2-Theta was 5 to 80°, with a step size of 0.0131°, and a duration of 598.9 ms. Phases were identified using the software X'Pert HighScore Plus (PANalytical B.V.).

Element concentrations, carbon- and oxygen-isotope values (δ^{13} C and δ^{18} O), and 87 Sr/ 86 Sr ratios were analysed at Ruhr-University Bochum. For δ^{13} C and δ^{18} O analysis, 90-110 µg of carbonate sample powder was reacted with phosphoric acid at 70°C before analysis. Isotope values were determined using a MAT 253 (Thermo Fisher Scientific) continuous flow isotope ratio mass spectrometer (CF-IRMS) coupled with a ConFloIV and a GasBenchII. Values are reported in ‰ relative to the VPDB standard. Measurement error is reported as 1 σ standard deviation (SD). The certified standards IAEA-603 and NBS 18 were used for data correction. The 1 σ -reproducibility of the internal limestone standard was 0.05 ‰ for δ^{13} C and 0.08 ‰ for δ^{18} O (n=134, 2021-2023) and 0.06 ‰ for δ^{13} C and 0.11 ‰ for δ^{18} O (n=80, 2021-2023) for the internal dolomite standard.

Elemental concentrations (Ca, Mg, Sr, Fe, Mn) were measured for all carbonate phases. Samples were run by dissolving approximately 1.5 mg of sample powder in 1 ml 3M HNO₃ for 24 h at room temperature before diluted with 2 ml deionised water. Concentrations were determined by inductively coupled plasma optical emission spectrometry (ICP-OES, iCAP 6500 DUO, Thermo Fisher Scientific). Measurement error is reported as 1 σ standard deviation (SD). The long-term 1 σ -reproducibility of the certified standards BCS-CRM512 (dolomite, Bureau of Analysed Samples Ltd) and BCS-CRM513 (limestone; Bureau of Analysed Samples Ltd) is 0.3 wt.% and 0.6 wt.% for Ca, 0.2 wt.% and 0.002 wt.% for Mg, 0.002 wt.% for Mn, respectively (n=116; 2019-2022).

Strontium-isotope ratio analyses were performed by dissolving between 0.3 to 16.3 mg (to receive a Sr content of 400 ng per sample) of sample powder in 1 ml 6M HCl and dried on a hot plate at 90°C before being re-dissolved in 0.4 ml 3M HNO₃. PFA columns filled with TrisKem Sr ion exchange resin (100-150 mesh) were used to collect the Sr fraction with 2 ml of deionised water. Subsequently, samples are dried on a hot plate at 90°C and re-dissolved in 1 ml of a H₂O₂-HNO₃ to remove organic remains. Samples were then evaporated on a hot plate at 60°C and re-dissolved in 0.4 ml 6M HCl. After evaporation at 90°C, samples were re-dissolved in 1 µl of ionisation-enhancing solution (after Birck 1986) and loaded on Re single filaments. Isotope (⁸⁷Sr/⁸⁶Sr) ratios were analysed by thermal ionisation mass spectrometry (TIMS) TI-BOX (formerly MAT 262; Spectromat). Measurement error is reported as 2σ standard error (SE). The long-term reproducibility of NIST NBS 987 and USGS EN-1 is ⁸⁷Sr/⁸⁶Sr = 0.710247 ± 0.000002 2σ SE (n=181; 2017-2022) and ⁸⁷Sr/⁸⁶Sr = 0.709168 ± 0.000003 2σ SE (n = 146; 2017-2022), respectively.

3.7 Clumped isotope analysis

3.7.1 Isotope analysis

Samples for clumped isotope analysis were taken from single-phase powder samples. Each measurement of the Δ_{47} value requires ~8 mg of carbonate to produce sufficient CO₂ for analysis. Samples were weighed into copper reaction boats and reacted using the common acid bath at 90 °C, using concentrated phosphoric acid (density = 1.95 g/cm³) on the University of Miami Stable Isotope Laboratory's vacuum line. Liberated gas was continuously frozen with liquid nitrogen in a U-trap throughout the reaction to minimize the potential of exchange between CO₂ and water released from the reaction with acid. Calcite samples reacted to completion within 30 min, dolomite samples required longer reaction times, typically reacting for 45 min to 1 h before bubbles were no longer produced. Reaction times were unaffected by carbonate content. The H₂O was separated from CO₂ using a -90 °C methanol slush. Volatile organic compounds and other contaminants were removed by passing the gas through a PorapakTM Q adsorbent trap (passively, no He carrier gas) chilled in methanol between -20 and -30 °C gas was frozen in a trap cooled with LN₂ after passing through to facilitate 100% extraction of gas. Gas samples are frozen into a glass vessel and transferred to a Thermo-253 Plus mass spectrometer.

The CO_2 analysis was performed in analytical sessions, consisting of six blocks of measurements, each including 14.5 alternations between the reference and the sample gases. Samples from both carbonates and equilibrated gases were measured at a signal voltage of 12 V with approximately equal volumes of gas on both the reference and sample bellows. Integration time was 14 seconds with a 15 second delay time before the start of the measurement. Before and after each block the background was measured (four alterations before and four alterations after) using the approach outlined by He et al. (2012). As the signal on the major beam was rebalanced to 12 V between each block, this resulted in a total analytical time on each sample of ~ 2.2 to 2.4 hours on each sample, depending upon the time taken to rebalance the signal. The total integration time on peaks was 2,521 seconds. Based on the calculations of Merritt and Hayes (1994), this provided a shot noise estimate of 0.008 ‰ for Δ_{47} at 12 V. Data reduction and normalization for the calculation of the raw Δ_{47} value followed the framework of Huntington et al. (2009) and the recommendations of Daëron et al. (2016). The final Δ_{47} values ($\Delta_{47-\text{processed}}$) were calibrated by using both the CDES (Carbon Dioxide Equilibrated Scale) of Dennis et al. (2011) and I-CDES (Intercarb CDES) of Bernasconi et al. (2021). The CDES was established by using CO₂ gas contained within sealed quartz tubes heated to 1000°C for several hours and CO₂ gas equilibrated with a single internal laboratory water standard sealed within a Pyrex tube and held within a water bath at 25 and 50°C for 48 hrs. All details of this method are described by Murray et al. (2016). The equilibrated gases were analyzed approximately every 3-4 weeks and the ETH standards (ETH-1, 2, 3, and 4) every seven days. Changes in the intercepts and slopes of the Δ_{47} and δ^{47} values from the equilibrated gases were interpolated to correct the drift during this period. For the I-CDES framework, the ETH standards were used to correct the Δ_{47} values following the InterCarb method in Bernasconi et al. (2018) and Bernasconi et al. (2021). The ETH values are averaged over 15-day and 30-day windows. The 30-day window is equivalent to the interval of the EG and includes 8 to 12 measurements for ETH-1 and 2 standards.

To detect the short-term fluctuations of the slope and intercept suggested by Bernasconi et al. (2018), the 15-day window always consists of 4 to 6 samples of ETH -1 and 2. The linearity correction used ETH-1 and -2 with the "true values" from Bernasconi et al. (2021). The transfer function is based on measurements of four carbonate standards (ETH-1, 2, 3, and 4). The reacting samples are regarded as the unknown values for comparing the EG and ETH frameworks.

The δ^{13} C and δ^{18} O values of the reference gas were determined by analyzing NBS-19 (National Bureau of Standards), and data for the samples reported relative to Vienna Pee Dee Belemnite (V-PDB) using the conventional notation. The δ^{18} O values for dolomite have been corrected by 0.8‰ to account for the differential fractionation of ¹⁸O during the formation of dolomite when compared to calcite (Sharma and Clayton, 1965).

Calculation of temperature and fluid δ^{18} O values: Calculation of temperatures was made using the calibration of Swart et al. (2019):

 $\Delta_{47} = 0.0392 * 10^6 / T^2 + 0.158 .$

Calculation of the δ^{18} O values of fluids ($\delta^{18}O_{fl}$) was performed using the equation of Kim and O'Neil (1997) and Horita (2014) for calcite and dolomite respectively.

3.9. Trace elements in quartz

In-situ trace element compositions of quartz were obtained by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) using a Teledyne Analyte Excite+ ArF (193 nm) excimer laser ablation system coupled to a Thermo-Scientific Element XR sector field mass spectrometer at LERA, KIT. For analysis, a laser spot size of 65 μ m, a pulse rate of 10 Hz and an energy density of 11.0 J/cm² were used. Samples were ablated in a He stream of ~0.5 l/min to which 8-11 ml/min N₂ and ~0.85 l/min Ar were added directly after the ablation cell. All analyses were performed at low oxide production rates (UO+/U+ < 0.1%) and robust plasma conditions (sensitivity ratio U+/Th+ = 1.0) along transects in quartz growth direction. All data were acquired and reduced in blocks of 30 unknowns bracketed by NIST-612 glass reference material. Data were processed using the Iolite data reduction software (Paton et al. 2011) using NIST-612 for external calibration (values of Pearce et al., 1997). All signals were normalized to ²⁹Si as an internal standard using 100 wt.% SiO₂ for data reduction of quartz analyses. To monitor accuracy, NIST-614 glass was analyzed as an unknown and yielded trace element contents of Be = 0.76 ± 0.6 ppm (2 σ), Ti = 3.3

 ± 0.1 ppm (2 σ), Co 0.77 ± 0.02 ppm (2 σ), Ni = 1.10 ± 0.04 ppm (2 σ), Zn = 2.5 ± 0.1 ppm (2 σ), Ge = 0.99 ± 0.08 ppm (2 σ), Rb = 0.87 ± 0.03 ppm (2 σ), Nb = 0.84 ± 0.02 ppm (2 σ), Mo = 0.83 ± 0.03 ppm (2 σ), In = 0.84 ± 0.04 ppm (2 σ), Sb = 0.76 ± 0.02 ppm (2 σ), W = 0.80 ± 0.03 ppm (2 σ), Au = 0.53 ± 0.02 ppm (2 σ), Pb = 2.4 ± 0.1 ppm (2 σ) and Bi = 0.58 ± 0.01 ppm (2 σ), which agree with published values of Jochum et al. (2011).

4. Results

4.1 Cement stratigraphy

A paragenetic succession of the carbonates in the Steltenberg quarry was established from field observations (Figs 2 and 3), thin section data (n = 127), and cathodoluminescence analysis (Figs 4-6). Here, we complement the basic version of this complex paragenetic sequence that we presented in Pederson et al. (2021) with new data. The used dolomite terminology follows Sibley and Gregg (1987).

The Devonian Massenkalk limestone (MK limestone) precursor is characterised by fine- to medium-grained depositional facies, which include fossil brachiopods (*Stringocephalus burtini*), sponges, corals, bivalves, and crinoids. This phase generally has bright red luminescence (Fig. 4A, B). Occasionally, medium- to coarse crystalline euhedral dolomite rhombs occur in the rock matrix. Pores and vugs are often filled by marine or burial cements. The precursor limestone was partially or fully replaced by three dolomite phases and several hydrothermal and meteoric calcite cements as well as hydrothermal quartz, sulphides, and iron oxides. The first dolomite phase Dol 1 is divided into a dark grey fine to medium grained planar-s dolomite with patchy red to pale orange luminescence (Dol 1A; Fig. 4C, D) and a white nonplanar coarse crystalline nonplanar saddle dolomite (Dol 1B; Fig. 4C, D). Locally, the limestone beds are cut by sets of calcite veins likely associated to early Variscan faulting and deformation (VFD LMC). These are characterized by patchy red-orange luminescence and their thickness varies from submillimetre to centimetres.

The second dolomite phase Dol 2 is divided into a brownish fine to medium crystalline planar-s to nonplanar matrix dolomite (Dol 2A; Fig. 4E, F) and a beige nonplanar coarse crystalline nonplanar saddle dolomite (Dol 2B; Fig. 4G, H) with sweeping extinction and red-orange patchy luminescence. It occurs in ENE-WSW trending mm to dm sized veins or as vug-filling cement.

The veins often contain breccia clasts of μ m to dm size (Breccia 1). In places, Dol 1 and Dol 2 were dedolomitized. This phase Dedol 1 is best visible in breccia clasts and vugs, retained dolomite crystal morphology and is non-luminescent. Dolomite Dol 2 and Dedol 1 are typically overgrown by white blocky macrocrystalline LMC 1, a dark red luminescent calcite cement, which forms in vugs and around mm to m sized breccia clasts (Breccia 2) in vein swarms up to several meters in diameter (Figs 2B, D, 4G, H). Similar to Dol 2, the LMC 1 veins are ENE-WSW trending and show a clear relation to the Variscan thrust fault zone.

In places, laminated dolomite cements (Laminite 1, Fig. 3G) occur in vicinity to the NNW-SSE trending Post-Variscan fault zone within filled or later collapsed karst cavities. They have a patchy bright red luminescence and consist of a fine-grained skeletal framework, which forms mmsized bladed crystals (Fig. 6A, B). These are usually intercalated between µm to meter thick layers of brown clayey dolopackstones with a similar patchy bright red luminescence (Fig. 6A, B) and up to dm-sized blocky low Mg calcite (LMC 2) characterized by clear to patchy bright orange luminescence (Fig. 6C, D). The third and last preserved dolomite phase Dol 3 is divided into a medium to coarse crystalline nonplanar matrix dolomite (Dol 3A; Fig. 5A-D) and a coarse crystalline vug-filling nonplanar saddle dolomite (Dol 3B; Fig. 5E, F) characterised by dark to bright red patchy luminescence. Dolomite Dol 3 occurs in NNW-SSE trending veins, which crosscut Dol 2 veins in places, and its formation is clearly related to the NNW-SSE trending Post-Variscan fault zone. In the vicinity of the Post-Variscan fault zone, Dol 3 growth continued between breccia clasts after another breccia was formed (Breccia 3). At a later stage after its formation, most Dol 3 was partly or fully dedolomitized. This Dedol 2 is micro-to macrocrystalline, mostly retained dolomite crystal morphology but is patchy dark red to yellow luminescent (Fig. 5G, H). In places, Dol 3, the Breccia 3 clasts, and Dedolomites were heavily oxidized and contain iron oxides (hematite, goethite, limonite, Figs 2E and 3E). Dolomite Dol 3 and dedolomite Dedol 2 are often overgrown in vugs by fine to coarse crystalline quartz phases (Qz 1 and Qz 2; Fig. 5E-H) with pale green to dark blue luminescence. In places, these phases are overgrown by non luminescent sulphides (pyrite, chalcopyrite). Simultaneously (LMC 2 and LMC 3) and subsequent (LMC 4A to LMC 10) to dolomite, iron oxide, quartz, and sulphide precipitation, a series of calcite cements precipitated. These are divided into several low-Mg calcite phases (LMC 2 to LMC 10), of which LMC 2 to LMC 4 form vein swarms in NNW-SSE direction, indicating a relation to the Post-Variscan fault zone. The calcite cement phase LMC 3 forms macrocrystalline radial to blocky crystals up to several dm size and has dark red luminescence without visible zoning (Fig. 6E, F). Microscopically and macroscopically, fibrous LMC 3 crystals often show features of rapid skeletal growth (Fig. 6F). Locally, LMC 3 contains breccia clasts up to several dm, which are overgrown by up to few dm sized crystals. It is prominent in the main strand of the Post-Variscan fault zone. Along grain boundaries, yellow luminescent LMC 4A overprints LMC 3 and older dolomite/calcite phases (Figs 4H, 6F). In places, this phase is overgrown by macrocrystalline blocky LMC 4B, which forms non-luminescent to yellow cm-sized crystals. In the main strand of the Post-Variscan fault zone it is cut by a quartz gangue (Qz 3) with intensely zoned blue-green luminescence. The phase LMC 5 forms dog tooth to radial-shaped cm to dm-sized clear to cloudy brownish crystals in veins and mm to cm sized white blocky crystals in breccias from the Post-Variscan fault zone. The phase is characterized by a bright orange to patchy phase A and a patchy bright yellow phase B, which often overprints older phases (Fig. 4H; 5B; 6F). The phase LMC 6 consists of subphases A-D, which are characterized by patchy red to orange (LMC 6A, C; Fig. 6G, H) and dark to bright red orange luminescence (LMC 6B, D; Fig. 6G, H). The phase forms macrocrystalline brown to white blocky crystals up to 1 cm size. The phase occurs in vein swarms that crosscut the Post-Variscan fault zone, indicating a younger tectonic origin (Fig. 2E). The micro to macrocrystalline phase LMC 7 consists of an inner inclusion-rich and an outer inclusion-lean layer with patchy bright red (LMC 7A) and clear zoned red to orange luminescence. The phase LMC 8 is found as fracture-filling mm-sized blocky phase between breccia clasts in the vicinity of the Post-Variscan fault zone. It shows dark red to bright red luminescence and is zoned (Fig. 6A, B). The phase LMC 9 typically occurs as youngest phase in vugs on top of either the pre formed LMC phases or dolostones. Within the LMC phases, LMC 9 often altered pre-existing calcite phases by percolation through crystal and grain-boundaries (Fig. 6B). It forms skalenoedric millimetre to centimetre sized inclusion-lean crystals and has intrinsic dark blue to yellow zoned luminescence. The red luminescent phase LMC 10 forms botryoidal fibrous macrocrystalline aggregates and typically builds cement crusts in karst cavities.

4.3 Fluid inclusion data

To decifer the fluid evolution of a hydrothermal system, a detailed fluid-inclusion petrography is required which was performed using transmitted light microscopy (Goldstein and Reynolds, 1994; Walter et al., 2015). It was possible to gather data from primary, pseudo secondary, and isolated inclusions (n = 215 fluid inclusions in 55 fluid inclusion assemblages, FIA) in quartz and carbonate phases. Pseudo-secondary inclusions refer to healed fractures and therefore are per definition older than the overgrowing paragenetic cement generation. Primary inclusions are hosted on growth zones of carbonates. Primary fluid inclusions which occur on crystal growth zones are typically smaller (1-5 µm) than pseudosecondary assemblages (<5-20 µm) and usually do not show well developed inclusion walls. Please note that the very small fluid inclusion sizes and the transparence of the host minerals were the major challenge during the analyses which lead to a relatively low statistic for the individual FIAs. Nevertheless, it was possible to gather data of all important diagenetic phases of the study. Therefore, the presented data have to be treated with caution to avoid over-interpretation of individual compositions. Hence, the fluid characteristics will be discussed in a holistic manner. Homogenization was always into the liquid phase and volume fractions are always ~ 0.95 (L0.95V0.05). This indicates that no significant post-entrapment modification happened, which would be also reflected in single homogenization temperatures within a FIA that are higher than the rest. Moreover, no CO₂ and CH₄ were observed.

Fluid inclusions hosted by Dol 1A always show a metastable behavior. Therefore, no geological meaningful data was collected in this generation. In Dol 1B (n = 10), fluid inclusions are hosted on primary growth zones (n = 7) and in clusters (n = 3). These show T_h between 99 and 124 °C at salinities of 18.4 to 23.9 wt% NaCl+CaCl₂. In generation Dol 2A (n = 22), primary fluid inclusions (n = 13) and clusters (n = 9) show T_h between 63 and 131°C at salinities of 19.2 to 25.7 wt% NaCl+CaCl₂. Fluid inclusions hosted by Dol 2B (n = 37) exclusively occur as clusters in numerous samples. These have T_h of 97-127°C and salinities of 20.0 to 22.6 wt.% NaCl+CaCl₂. Primary fluid inclusions in LMC 1 (n = 10) have T_h of 195-224°C and salinites between 15.1-18.4 wt.% NaCl. Fluid inclusions in Dol 3A (n = 8) are metastable (primary inclusions; n = 4) with T_h between 81-83°C and clustered inclusions (n = 4) between 99-117°C. The latter bear salinities between 22.0 and 23.2 wt.% NaCl+CaCl₂. Fluid inclusions in Dol 3B (n = 18) contain T_h of 147-149°C (primary; n = 4)) at salinities of 20.4-22.0 wt.% NaCl+CaCl₂. Those fluid inclusions hosted in clusters (n = 14) contain lower T_h of 119-130°C at slightly lower but CaCl₂ lacking salinities of

20.6-21.7 NaCl_{eq}. The primary fluid inclusions in Laminite 1 (n = 9) contain T_h from 207-221°C and very low salinities between 2.9 and 6.4 wt.% $NaCl_{eq}$. Those fluids hosted in Dedol 2 (n = 6) occur in clusters with Th of 122-132°C and salinities of 6.8-14.3 wt.% NaCleq. Fluid inclusions in Qz 2A (n = 11; 109-121°C, 21.7-22.8 wt.% NaCl+CaCl₂) and Qz 2B (n = 18; 89-124°C, 21.0-24.7 wt.% NaCl+CaCl₂) are primary (n = 22) or occur in clusters (n = 7). The fluid inclusions in LMC 2 were either metastable or too small for analysis, therefore, no data was collected in this generation. The primary fluid inclusions in LMC 3 (n = 24) have T_h between 76 and 94°C and show a bimodal salinity distribution (4.5-6.4 wt.% NaCl+CaCl₂ versus 22.3-24.3 wt.% NaCl+CaCl₂). Primary fluid inclusions in LMC 4 (n = 4) have T_h between 119 and 130°C and salinities between 5.2 and 5.9 wt. % NaCl_{eq}. Primary fluid inclusions in LMC 5 (n = 7) have T_h between 84 and 93°C and salinities between 24.3 and 26.1 wt.% NaCl+CaCl₂. Primary fluid inclusions in LMC 6 (n = 11) have T_h between 54 and 61°C and salinities between 17.2 and 20.1 wt.% NaCl+CaCl₂. Clustered inclusions (n = 4) have higher T_h of 156-191°C and similar salinities (15.1-17.9 wt. % NaClea). Clustered inclusions in LMC 7 (n = 4) have T_h of 123-130°C and salinities between 16.7 and 18.1 wt. % NaCleq. Primary fluid inclusions in LMC 8 (n = 5) have T_h between 164 and 196°C and salinities between 15.2 and 17.1 wt. % NaCleq. In both LMC 9 and LMC 10 no fluid inclusions with a gas phase were found.

4.6 Isotope geochemistry

Stable δ^{13} C and δ^{18} O isotope values and 87 Sr/ 86 Sr ratios for all drilled cement phases are given in Table 2, where only the most important features are reported. Detailed tables including: (i) major and trace element concentrations; and (ii) δ^{13} C and δ^{18} O ranges, and 87 Sr/ 86 Sr in sample groups, are given in the digital appendix. The δ^{18} O values of 180 powder samples range from -13.9‰ (LMC 1) to -0.4‰ (Laminite 1), independent of mineralogy and age of formation. Among these, the MK limestone bulk host rock yields δ^{18} O values from -9.9 to -5.2‰ (mean of -7.1‰; n = 10). The paragenetically oldest dolomite phase Dol 1 (Dol 1A and Dol 1B) yields δ^{18} O values from -10.1 to -4.5% (mean of -7.4%; n = 27). These data are similar to Dol 2 (Dol 2A and Dol 2B) samples, which yield δ^{18} O values from -9.8 to -5.4‰ (mean of -7.8‰; n = 25). In contrast, Dol 3 samples are enriched in ¹⁸O relative to the other dolomites. These yield δ^{18} O values from -7.2 to -3.4‰ (mean of -5.7%; n = 30) whereas Dol 3B samples are more enriched in ¹⁸O than Dol 3A samples $(\delta^{18}O_{mean} \text{ Dol } 3A = -7.1\%; n = 10); \delta^{18}O_{mean} \text{ Dol } 3B = -5.7\%; n = 20).$ The Laminite 1 dolomite cement phases yield δ^{18} O values from -4.5 to -0.4‰ (mean of -2.3‰; n = 6). The Low Mg calcite phases LMC 1 to LMC 10 and Dedol 1/2 yield δ^{18} O values from -13.9 to -3.4‰ (mean of -6.8‰; n = 79).

The δ^{13} C values of all 180 powder samples range from -7.4‰ (Dedol 2) to +4.6‰ (Dol 3B). Among these, the MK limestone bulk host rock yields δ^{13} C values from +2.4 to +3.2‰ (mean of +2.8‰; n = 10). The paragenetically oldest dolomite phase Dol 1 (Dol 1A and Dol 1B) yields δ^{13} C values from +3.4 to +3.9‰ (mean of +3.6‰; n = 27). The Dol 2 (Dol 2A and Dol 2B) samples yield δ^{13} C values from +1.4 to +3.8‰ (mean of +3.2‰; n = 25). These are similar to Dol 3A samples, which yield δ^{13} C values from +3.2 to +3.8‰ (mean of +3.6‰; n = 10). In contrast, Dol 3B samples are depleted in ¹³C relative to the other dolomites. These yield δ^{13} C values from -1.3 to +4.6‰ (mean of +1.5‰; n = 20). The Laminite 1 dolomite cement phases yield δ^{13} C values from -3.0 to -2.1‰ (mean of -2.6‰; n = 6). The Low Mg calcite phases LMC 1 to LMC 10 and Dedol 1/2 yield δ^{13} C values from -7.4 to +2.7‰ (mean of -0.9‰; n = 79).

The strontium isotope ratios (n = 38, Table 2) range between 0.707915 ± 0.000005 (pristine brachiopod shell) and 0.714721 ± 0.000006 (Laminite 1). The MK limestone host rock has a mean 87 Sr/ 86 Sr ratio of 0.708442 ± 0.000005 (n = 3). The dolomite Phases Dol 1 to Dol 3 plot between 0.708565 ± 0.000005 (Dol 3A) and 0.710021 (Dol 1) with a mean 87 Sr/ 86 Sr ratio of 0.709210 ± 0.000005 (n = 14). The Laminite 1 dolomite cement phases plot between 0.709028 ± 0.000005 (Lam 1 Dol cc, n = 1) and 0.714721 (Lam 1 clayey dolopackstone, n = 1). The Low Mg calcite phases LMC 1 to LMC 9 and Dedol 1/2 plot between 0.708757 ± 0.000005 (LMC 1) and 0.713170 ± 0.000005 (LMC 5) with a mean 87 Sr/ 86 Sr ratio of 0.710087 ± 0.000005 (n = 28).

5. References

- Bakker, R.J. and Diamond, L.W., 2006. Estimation of volume fractions of liquid and vapor phases in fluid inclusions, and definition of inclusion shapes. *American Mineralogist*, **91**: 635–657. https://doi.org/10.2138/am.2006.1845
- Bernasconi, S.M., Muller, I.A., Bergmann, K.D., et al., 2018. Reducing uncertainties in carbonate clumped isotope analysis through consistent carbonate-based standardization: *Geochem. Geophys. Geosys.*, 19(9): 2895-2914. https://doi.org/10.1029/2017GC007385

- Bernasconi, S.M., Daëron, M., Bergmann, K.D., Bonifacie, M., Meckler, A.N., Affek, H.P., Anderson, N., Bajnai, D., Barkan, E. and Beverly, E., 2021. InterCarb: a community effort to improve interlaboratory standardization of the carbonate clumped isotope thermometer using carbonate standards: *Geochem., Geophys., Geosys.*, 22: e2020GC009588.
- Birck, J.L. (1986). Precision K-Rb-Sr isotopic analysis: Application to Rb-Sr chronology. *Chemical Geology*, 56, 73–83. https://doi.org/10.1016/0009-2541(86)90111-7
- Daëron, M., Blamart, D., Peral, M. and Affek, H.P., 2016. Absolute isotopic abundance ratios and the accuracy of Δ₄₇ measurements: *Chemical Geology*, **442**: 83–96. https://doi.org/10.1016/j.chemgeo.2016.08.014
- Dennis, K.J., Affek, H.P., Passey, B.H., Schrag, D.P. and Eiler, J.M., 2011. Defining an absolute reference frame for 'clumped' isotope studies of CO₂. *Geochimica et Cosmochimica Acta*, **75**: 7117–7131. https://doi.org/10.1016/j.gca.2011.09.025
- Drozdzewski, G. and Wrede, V., 1994. Faltung und Bruchtektonik Analyse der Tektonik im Subvariscikum. Fortschr. *Geol. Rheinl. Westfal.*, **38**: 7–187.
- Goldstein, R.H. and Reynolds, T.J., 1994. Systematics of fluid inclusions in diagenetic minerals. Short Course
 31. Society of Economic Paleontologists and Mineralogists, 31: 199 p.
- Götte, T., 2004. Petrographische und geochemische Untersuchungen zu den postvariszischen Mineralisationen im devonischen Massenkalk des nordwestlichen Rechtsrheinischen Schiefergebirges unter besonderer Berücksichtigung der Kathodolumineszenz. *Dissertation University of Bochum*, 186 p.
- He, B., Olack, G.A. and Colman, A.S., 2012. Pressure baseline correction and high-precision CO₂ clumpedisotope (Δ47) measurements in bellows and micro-volume modes: *Rapid Communications in Mass Spectrometry*, 26: 2837–2853.
- Horita, J., 2014. Oxygen and carbon isotope fractionation in the system dolomite–water–CO₂ to elevated temperatures. *Geochimica et Cosmochimica Acta* **129**: 111-124. https://doi.org/10.1016/j.gca.2013.12.027
- Huntington, K. W., Eiler, J. M., Affek, H. P., Guo, W., Bonifacie, M., Yeung, L. Y., et al., 2009. Methods and limitations of 'clumped' CO₂ isotope (Δ₄₇) analysis by gas-source isotope ratio mass spectrometry: *Journal* of Mass Spectrometry, **44**(9): 1318–1329. https://doi.org/10.1002/jms.1614
- Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D.E., Stracke, A., Birbaum, K., Frick, D.A., Günther, D. and Enzweiler, J., 2011. Determination of reference values for NIST SRM 610– 617 glasses following ISO guidelines. *Geostandards and Geoanalytical Research*, 35: 97–429, https://doi.org/10.1111/j.1751-908X.2011.00120.x

- Kim, S.-T. and O'Neil, J.R., 1997. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. *Geochimica et Cosmochimica Acta*, **61**: 3461-3475. https://doi.org/10.1016/S0016-7037(97)00169-5
- Köhler, J., Konnerup-Madsen, J. and Markl, G., 2008. Fluid geochemistry in the Ivigtut cryolite deposit, South Greenland: *Lithos*, **103**: 369-392. https://doi.org/10.1016/j.lithos.2007.10.005
- Ladenburger, S., Walter, B.F., Marks, M.A. and Markl, G., 2020. Combining ion chromatography and total reflection X-ray fluorescence for detection of major, minor and trace elements in quartz-hosted fluid inclusions. *Journal of Analytical Chemistry*, **75**: 1477–1485. https://doi.org/10.1134/S106193482011009X
- Littke, R., Büker, C., Hertle, M., Karg, H., Stroetmann-Heinen, V. and Oncken, O., 2000. Heat flow evolution, subsidence and erosion in the Rheno-Hercynian orogenic wedge of central Europe. In W. Franke, V. Haak, O. Oncken, & D. Tanner (eds.), Orogenic processes: Quantification and modelling in the Variscan Belt. *Special Publication Geological Society of London*, **179**: 231–255. https://doi.org/10.1144/GSL.SP.2000.179.01.15
- Murray, S.T., Arienzo, M.M. and Swart, P.K., 2016. Determining the Δ47 acid fractionation in dolomites. *Geochimica et Cosmochimica Acta*, **174**: 42–53. https://doi.org/10.1016/j.gca.2015.10.029
- Merritt, D.A. and Hayes, J.M, 1994. Factors controlling precision and accuracy in isotope-ratio-monitoring mass spectrometry. *Anal. Chem.*, **66**(14): 2336-2347. https://doi.org/10.1021/ac00086a020
- Paton, C., Hellstrom, J., Paul, B., Woodhead, J. and Hergt, J., 2011. Iolite: Freeware for the visualization and processing of mass spectrometric data. *J. Anal. At. Spectrom.*, 26: 2508-2518. https://doi.org/10.1039/C1JA10172B
- Pearce, N.J.G., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson, S.E., Neal, C.R. and Chenery, S.P., 1997. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. *Geostandards Newsletter: The Journal of Geostandards and Geoanalysis*, 21: 115–144. https://doi.org/10.1111/j.1751-908X.1997.tb00538.x
- Pederson, C., Mueller, M., Lippert, K., Igbokwe, O.A., Riechelmann, S., Lersch, S., Benger, P., Verdecchia, A., Immenhauser, A., 2021. Impact of a regional fault zone on the properties of a deep geothermal carbonate reservoir unit (Devonian of NRW). Z. Dt. Ges. Geowiss. (J. Appl. Reg. Geol.), 172: 339–364. https://doi.org/10.1127/zdgg/2021/0281
- Sharma, T. and Clayton, R.N., 1965. Measurement of O¹⁸/O¹⁶ ratios of total oxygen of carbonates: *Geochimica et Cosmochimica Acta*, **29**: 1347–1353. https://doi.org/10.1016/0016-7037(65)90011-6

- Shepherd, T.J., Rankin A.H. and Alderton, D.H.M., 1985. *A Practical Guide to Fluid Inclusion Studies*. Glasgow and London (Blackie), xi, 239 p.
- Sibley, D.F. and Gregg, J.M., 1987. Classification of Dolomite Rock Texture. *Journal of Sedimentary Petrology*, **57**: 967-975. https://doi.org/10.1306/212F8CBA-2B24-11D7-8648000102C1865D
- Steele-MacInnis, M., Bodnar, R.J. and Naden, J., 2011. Numerical model to determine the composition of H₂O– NaCl–CaCl₂ fluid inclusions based on microthermometric and microanalytical data. *Geochimica et Cosmochimica Acta*, **75**: 21–40. https://doi.org/10.1016/j.gca.2010.10.002
- Swart, P.K., Murray, S.T., Staudigel, P.T. and Hodell, D.A., 2019. Oxygen isotopic exchange between CO₂ and phosphoric acid: Implications for the measurement of clumped isotopes in carbonates. *Geochemistry, Geophysics, Geosystems*, **20**: 3730-3750. https://doi.org/10.1029/2019GC008209
- Walter, B.F., Immenhauser, A., Geske, A. and Markl, G., 2015. Exploration of hydrothermal carbonate magnesium isotope signatures as tracers for continental fluid aquifers, Schwarzwald mining district, SW Germany. *Chemical Geology*, **400**: 87–105. https://doi.org/10.1016/j.chemgeo.2015.02.009
- Walter, B.F., Kortenbruck, P., Scharrer, M., Zeitvogel, C., Wälle, M., Mertz-Kraus, R. and Markl, G., 2019. Chemical evolution of ore-forming brines–Basement leaching, metal provenance, and the redox link between barren and ore-bearing hydrothermal veins. A case study from the Schwarzwald mining district in SW-Germany. *Chemical Geology*, **506**: 126-148. https://doi.org/10.1016/j.chemgeo.2018.12.038

Figure captions:

Fig. S1.1. Additional transmitted light and corresponding cathodoluminescence images of the Massenkalk limestone and Variscan thrust-related carbonates in the Steltenberg quarry. (A, B) Bright red luminescent MK limestone clast including deep-burial related idiomorphic authigenic quartz crystals grown in the matrix. These clasts belong to Breccia 1 and are "floating" in Dol 2B saddle dolomite cement. (C, D) Patchy luminescent Dol 2B saddle dolomite cement surrounds a Dedol 1 clast. Note the pore-filling meteoric cement LMC 9. (E, F) Partially recrystallized dark red luminescent dolo-grainstone Dol 1. Volumetrically, about 40% of the bulk rock now consists of bright red luminescent Dol 2. (G, H) Where Variscan thrust-related dolostones were affected by the Post-Variscan fault zone, Variscan dolomite cement phases were overgrown by Dol 3 cements. A clear genetic separation from the paragenetically older bright red luminescent dolomite cements is shown by dark red luminescence of Dol 3A.

Fig. S1.2. Additional transmitted light and corresponding cathodoluminescence images of the Post-Variscan fault zone related carbonates in the Steltenberg quarry. (A, B) Intense dark to pale bright blue zonation in hypidiomorphic Qz 2 cement. (C, D) Patchy dark red to orange luminescent iron-rich dedolomite (Dedol 2) overgrown by green and blue-luminescent Qz 1 and Qz 2. (E, F) Dedolomitized patchy luminescent saddle dolomite (Dol 3B) overgrown by calcite cements LMC 6 (zoned) and orange patchy luminescent LMC 7. (G, H) Pervasive overgrowth (LMC 4A) along a grain boundary in non-luminescent LMC 2. Note how cleavage planes and microfractures were also used as fluid pathways.

Fig. S1.3. Additional transmitted light and corresponding cathodoluminescence images of the Post-Variscan fault zone related carbonates in the Steltenberg quarry. (A, B) Green and dark blue luminescent Qz 3 from a quartz gangue. Note the dark centers in idiomorphic crystals. (C, D) Calcite vein (LMC 4A or 5B) in quartz overgrown by hematite crystals. (E, F) A spear-shaped Dol 3B saddle dolomite crystal overgrown by intensely non-luminescent to yellow zoned LMC 4. (G, H) Intrinsic blue luminescent LMC 9 including thin orange-yellow zonation. Note the precipitation of iron oxides in micro-karstified spots.

Fig. S1.4. Additional transmitted light and corresponding cathodoluminescence images of the Post-Variscan fault zone related carbonates in the Steltenberg quarry. (A, B) Sulphide overgrowth of patchy luminescent dedolomite (Dedol 2) and bright green luminescent Qz 1. (C, D)Partial overgrowth of orange luminescent radial LMC 5A crystals by pale yellow LMC 5B along grain boundaries. Note the partial overgrowth by LMC 9. (E, F) Dol tooth-shaped LMC 7 crystal overgrown by a thin layer of iron oxides and non-luminescent LMC 9. Note the zonation transition from bright orange-yellow patchy luminescent inclusion-rich LMC 7A to bright red zoned inclusion-lean LMC 7B. (G, H) Botryoidal-shaped LMC 10 crystals build a crust on top of karstified MK limestone and Post-Variscan fault zone precipitates. Note the magenta-to-orange-yellow luminescent transition towards the aggregate's center.

Fig. S1.5. Additional U-Pb plots for phases Dol 2B saddle dolomite, hypogene karst filling LMC 2, LMC 4A, LMC 5A, and LMC 5B.

Figures:

Fig. S1.1.

Fig. S1.2.

Fig. S1.3.

Tables:

Outcrop	Description	Level	Strike	Dip	Comment
1	Slickenside	7	10	70	
1	Slickenside	7	15	60	dextral shear
1	Slickenside	7	13	65	
1	Stretching lineation	7	304	8	
1	Stretching lineation	7	290	5	
1	Slickenside	7	12	45	
2	Brecciated calcite vein	7	268	85	
2	Brecciated calcite vein	7	258	75	
3	Calcite vein	7	258	70	Conjugated set
3	Calcite vein	7	72	68	Conjugated set
3	Calcite vein	7	74	60	Conjugated set
4	Calcite vein	7	170	60	
5	Calcite vein	7	170	70	banded
5	Calcite vein	7	165	70	banded
6	Slickenside	7	170	80	dextral shear
6	Slickenside	7	325	60	dextral shear
7	Calcite vein	7	128	65	
7	Calcite vein	7	80	45	Conjugated set
7	Calcite vein	7	84	30	Conjugated set
7	Calcite vein	7	78	25	Conjugated set
7	Calcite vein	7	210	75	red calcite cutting vein above
8	Slickenside	7	340	65	sinistral shear
8	Slickenside	7	335	60	sinistral shear
9	Slickenside	7	350	60	dextral shear
9	Stretching lineation	7	285	45	
9	Calcite and dolomite veins	7	225	85	Veins cut slickenside above
9	Calcite and dolomite veins	7	228	90	
10	Calcite vein	7	235	90	
10	Calcite vein	7	65	40	Cutting the vein above
11	GHS Calcite vein	7	243	85	U
11	GHS Calcite vein	7	232	85	
12	Slickenside	7	340	45	dextral shear
12	Slickenside	7	334	55	dextral shear
12	Stretching lineation	7	30	40	
13	Ennepe Thrust	6	340	45	
13	Ennepe Thrust	6	220	85	
13	Ennepe Thrust	6	295	65	
13	Calcite vein	6	230	85	Cuts Ennepe Thrust
13	Calcite vein	6	42	85	Conjugated set
13	Calcite vein	6	350	55	Conjugated set
13	Calcite vein	6	5 10	85	Conjugated set
14	Slickenside	6	342	55	J. G
14	Slickenside (old)	6	320	50	Ennepe Thrust
14	Slickenside (young) overprinting old	6	185	30	Großholtshausener Sprung
15	Saddle dolomite vein	5	8	60	Saddle dol vein from Fig. 3
16	Calcite vein	5	114	90	
16	Calcite vein	5	72	85	
16	Calcite vein	5	 78	80	
-		U	. 0		

Table S1.1. Measured strike and dip values for veins, slickensides and stretching lineations in Steltenberg

 Quarry.

Table S1.2a. Carbon, oxygen, and ⁸⁷Sr/⁸⁶Sr isotopic composition as well as major and trace element contents of dolomite and calcite phases from Steltenberg Quarry. Oldest phases at the top, youngest phases at the bottom. Gaps in data are indicative of variations in sampling density.

	$\delta^{13}C^{PDB}$	$\delta^{18}O^{PDB}$		87						
Sample	[‰]	[‰]	Paragenetic phase	°'Sr/°°Sr	$\pm 2 ~\sigma_{mean}$	Ca	Mg	Sr	Fe	Mn
MK-S-2.1	3.2	-6.4	MK bulk matrix			272030	12220	808.0	10930.0	257.0
MK-S-2.2	3.1	-6.9	MK bulk matrix			287200	8031	900.4	7511.0	259.0
MK-S-2.3	3.1	-6.6	MK bulk matrix			280630	7724	917.2	7885.0	237.0
HKW5-MK-S-2-Ch1	2.97	-6.51	MK bulk matrix	0.708420	0.000005	257080	9007	513.6	8218.0	242.0
HKW8-8.1	2.63	-5.32	MK bulk no fossils			391350	4008	269.3	226.9	62.6
HKW8-8 2	2 42	-5.19	MK bulk no fossils	0 708027	0.000005	393100	4269	264.2	251.7	80.2
111/11/0 0.2	2.12	5 47	MK bulk no fossilo	0.700027	0.000000	202600	2527	251.5	1066	57.2
11K w 0-0.5	2.02	-3.47				392000	11240	174.5	180.0	97.2
HKW-5-63.9	2.43	-9.49	MK bulk no fossils			389280	11340	175.1	956.9	820.0
HKW-5-63.10	2.51	-9.53	MK bulk no fossils	0 700070	0.000005	390260	8010	170.5	//4.6	7/6.0
HKW-5-63.11	2.51	-9.95	MK bulk no fossils	0.708879	0.000005	396190	5109	1/8.5	622.1	/05.0
HKW-5-63.13	2.96	-7.11	Brachiopod shell	0.707915	0.000005	399670	2867	443.3	235.3	405.0
HKW-5-63.14	2.75	-7.20	Brachiopod shell			398000	4455	488.2	364.6	404.0
HKW-5-63.15	2.83	-7.72	Brachiopod shell			403170	3126	415.1	292.5	491.0
MKHD-W-6.1	3.4	-9.4	Dol 1A			211740	124000	27.1	738.7	923.0
MKHD-W-6.2	3.5	-9.2	Dol 1A			213940	123500	25.8	425.5	786.0
MKHD-W-6.3	3.4	-9.5	Dol 1A	0.709655	0.000005	212400	122900	24.1	419.5	853.0
MKHD-W-6-3.1	3.6	-9.1	Dol 1A			217050	125500	30.6	590.4	815.0
MKHD-W-6-3.2	3.6	-9.0	Dol 1A			215590	124600	26.8	839.0	1200.0
MKHD-W-6-3.3	3.6	-8.9	Dol 1A			215160	125400	23.6	759.3	1120.0
HKW5-61-Ch2	3.73	-5.10	Dol 1A	0.709707	0.000005	205230	105400	64.9	9551.0	1320.0
HKW-5-61.2	3.88	-5.58	Dol 1A			212050	110800	89.3	9345.0	1600.0
HKW-5-61.3	3.86	-5.38	Dol 1A			214270	109400	98.7	8020.0	1510.0
HKW-5-61.4	3.81	-5.17	Dol 1A			212820	106500	117.5	8148.0	1160.0
HKW-5-61.5	3.62	-5.82	Dol 1A			212590	110500	58.8	7097.0	1570.0
HKW-5-61.10	3.62	-6.04	Dol 1A			214890	110700	61.3	7387.0	1370.0
HKW-5-61.11	3.73	-6.16	Dol 1A			213320	110300	58.0	7335.0	1460.0
HKW-5-61.12	3.62	-6.09	Dol 1A			221910	109900	83.5	5367.0	854.0
HKW-5-61.13	3.72	-5.03	Dol 1A			209590	105300	108.1	7391.0	662.0
HKW-5-61.14	3.81	-4.62	Dol 1A			202690	101400	101.6	6958.0	626.0
HKW-5-61.15	3.81	-4.52	Dol 1A	0.710021	0.000005	204630	103600	99.3	7414.0	610.0
HKW-5-61.19	3.57	-6.21	Dol 1A			220470	113400	60.3	6863.0	1380.0
HKW-5-61.20	3.63	-5.92	Dol 1A			218770	109900	72.8	8598.0	1550.0
HKW5-61-Ch1	3.54	-9.40	Dol 1B	0.708870	0.000005	223970	121900	74.8	912.8	144.0
HKW-5-61.6	3.64	-8.74	Dol 1B			223980	121000	64.1	994.8	123.0
HKW-5-61.7	3.54	-9.40	Dol 1B			224950	119700	79.4	1236.0	149.0
HKW-5-61.8	3.60	-8.68	Dol 1B			230110	119300	84.3	1180.0	139.0
HKW-5-61.9	3.67	-8.24	Dol 1B			225450	119500	72.4	1069.0	203.0
HKW-5-61.16	3.55	-10.14	Dol 1B			223610	124000	54.4	1358.0	154.0
HKW-5-61.17	3.47	-9.63	Dol 1B			230530	118500	83.4	996.7	184.0
HKW-5-61.18	3.69	-9.21	Dol 1B			224800	123600	56.2	1418.0	139.0
MKHD-W-5.1	3.8	-7.1	Dol 2A			215590	119700	23.1	7885.0	2140.0
MKHD-W-5.2	3.8	-7.0	Dol 2A	0.709786	0.000005	215290	119000	24.0	8107.0	2240.0
MKHD-W-5.3	3.8	-7.3	Dol 2A			216110	119800	24.3	6907.0	1890.0
MKHD-W-6-3.4	3.4	-7.8	Dol 2A			216560	121200	43.4	3945.0	1460.0
MKHD-W-6-3.5	3.4	-8.0	Dol 2A			213610	119800	39.5	4105.0	1540.0
MKHD-W-6-3.6	3.3	-7.8	Dol 2A			215960	121700	42.6	4552.0	1660.0
HKW5-63-Ch1	3.6	-7.5	Dol 2A	0.709236	0.000005	220210	120400	28.8	5017.0	1670.0
HKW-5-63.3	2.86	-8.21	Dol 2A			225000	125500	48.7	285.7	348.0
HKW-5-634	1.83	-9.02	Dol 2A			240390	111300	66.4	1153.0	1150.0
HKW-5-63 5	1 37	-8.41	Dol 2A			253010	102800	66.2	1285.0	942.0
HKW-5-63 16	3.48	-7 34	Dol 2A			225690	120200	38.9	5567.0	1950.0
HKW-5-63.18	3.06	-6.65	Dol 2A			226910	115100	30.9	7489.0	2410.0
HKW-5-63 20	3 24	-6 64	Dol 2A	0 709403	0.000005	228760	118200	32.4	7391.0	2410.0
MKHD-W-6-2 10	3.6	-9.5	Dol 2B	5., 57 105		213600	123600	30.0	852.9	558.0
MKHD-W-6-2 11	3.4	-9.5	Dol 2B	0 709524	0.000005	213520	126900	37.6	691 3	563.0
MKHD-W-6-2 12	3.5	-93	Dol 2B	5.769524	0.000000	215020	125100	32.6	827.9	769.0
HKW5_63_Ch7	3.10	-9.5	Dol 2B	0 708861	0.000005	210080	122700	34.0	140.2	232.0
HKW 5 63 1	3 31	- 2.14	Dol 2B	0.700001	0.000000	219900	124700	36.1	315.2	232.0
111X W -J-0J.1	5.51	-0.00	D012D			224310	125500	50.1	515.5	027.0

Table S1.2b. Carbon, oxygen, and ⁸⁷Sr/⁸⁶Sr isotopic composition as well as major and trace element contents of dolomite and calcite phases from Steltenberg Quarry. Oldest phases at the top, youngest phases at the bottom. Gaps in data are indicative of variations in sampling density.

	$\delta^{13}C^{PDB}$	δ ¹⁸ O ^{PDB} [
Sample	[‰]	<u>%</u>]	Paragenetic phase	⁸⁷ Sr/ ⁸⁶ Sr	$\pm 2 \sigma_{mean}$	Ca	Mg	Sr	Fe	Mn
HKW-5-63.2	3.28	-8.74	Dol 2B			224630	125700	39.8	449.5	957.0
HKW-5-63 6	2.95	-9.24	Dol 2B			222660	127300	40.1	261.7	231.0
HKW-5-637	2.90	-9 39	Dol 2B			223790	126900	45.3	189.9	263.0
HKW-5-63.8	3.13	-9.80	Dol 2B			223840	127900	51.4	305.3	282.0
LIKW 5 62 12	2.07	-9.80 5.77	Dol 2B			223040	116800	20.0	10550.0	202.0
HKW-5-03.12	2.97	-5.77	Dol 2B			220780	52770	20.9	6208.0	2900.0
HKW-5-03.17	2.17	-0.00	D012B			2/1820	52770	24.7	0208.0	2220.0
HKW-5-63.19	2.85	-5.39	Dol 2B			230640	113000	19.6	10990.0	3240.0
MKHD-W-6.4	0.5	-7.3	Dedol I			267660	91880	37.0	1539.0	1690.0
MKHD-W-6.5	-2.5	-5.8	Dedol 1			308130	59190	32.9	2537.0	2180.0
MKHD-W-6.6	-3.3	-5.5	Dedol 1	0.709334	0.000004	326230	50340	29.9	2672.0	2110.0
MKHD-S-1.2	1.7	-13.9	LMC 1			400820	2080	167.5	77.2	286.0
MKHD-S-1.3	1.9	-13.7	LMC 1	0.708757	0.000005	399850	1757	92.8	175.4	387.0
MKHD-W-5.4	2.2	-8.6	LMC 1			400890	2541	395.1	590.2	310.0
MKHD-W-5.5	2.0	-8.4	LMC 1			380440	3462	363.5	690.4	328.0
MKHD-W-5.6	1.7	-11.3	LMC 1			397750	3447	596.2	713.3	391.0
MKHD-W-6-2.7	1.8	-11.9	LMC 1			402060	1199	28.1	54.5	553.0
MKHD-W-6-2.8	2.0	-11.7	LMC 1			396650	2046	38.4	69.8	766.0
MKHD-W-6-2.9	1.3	-11.2	LMC 1			391480	3742	40.2	121.7	578.0
HKW5-MKHD-W-6-Ch1	1.93	-11.69	LMC 1	0.709314	0.000005	396320	1283	48.6	51.9	829.0
MKHD-F-71	3.6	-7.2	Dol 3A	0.707011	0.000000	206890	119600	19.8	9027.0	2160.0
	2.5	7.2	Dol 3A			200020	11/000	20.5	8635.0	2180.0
MKIID-E-7.2	2.5	-7.2	Dol 3A			104500	11000	20.5	7774.0	1820.0
MKHD-E-7.3	5.5 2.91	-/.1	Dol SA	0 700575	0.000005	190010	110800	20.1	///4.0	1820.0
HKW5-MKHD-E-/-Chi	3.81	-6.98	Dol 3A	0.708565	0.000005	209750	118400	17.9	8932.0	2210.0
MKHD-E-7.4	3.68	-7.20	Dol 3A	0.708574	0.000005	205270	117600	19.1	8644.0	2130.0
MKHD-E-7.6	3.65	-7.23	Dol 3A			207510	119600	18.1	8257.0	2120.0
HKW8-Dol3A.1	3.18	-6.86	Dol3A			208800	114900	21.3	14830.0	3480.0
HKW8-Dol3A.2	3.35	-6.94	Dol3A			212790	119700	24.5	15260.0	3480.0
HKW8-Dol3A.3	3.26	-7.15	Dol3A			210720	117800	23.6	14400.0	3600.0
HKW8-Dol3A.4	3.38	-6.91	Dol3A			210840	120400	22.7	13970.0	3080.0
HD-S-3.1.1	0.5	-3.4	Dol 3B	0.709047	0.000005	215720	125200	20.4	5831.0	2980.0
HD-S-3.1.2	0.4	-3.7	Dol 3B			215730	124800	17.1	5855.0	2690.0
HD-S-3.1.3	0.6	-4.3	Dol 3B			214010	122500	39.3	6809.0	2860.0
HKW5-HD-S-3.1-Ch1	0.5	-4.4	Dol 3B	0.709064	0.000004	212750	122700	14.0	7293.0	3120.0
HKW8-1-Ch1	2.9	-6.5	Dol 3B fault core	0.708626	0.000005	213000	119900	14.2	11760.0	2580.0
HKW8-1 1	2.65	-6.45	Dol 3B			213810	121900	14.4	10850.0	2470.0
HKW8-1 2	2.75	-6.42	Dol 3B			212580	121100	13.2	10670.0	2370.0
HKW8 1 3	3.02	6.58	Dol 3B			211350	110500	12.2	12510.0	2600.0
UKW 5 64 1	0.54	6.05	Dol 3B			172600	62120	14.6	6502.0	2000.0
11K W-5-04.1	-0.34	-0.05 5 76	Dol 3B			272670	02120	20.0	10020.0	2350.0
ПК W-J-04.2	-0.90	-5.70	DOISB			275070	04010	20.0	10020.0	2400.0
HKW-5-04.5	-1.24	-5.78	D013B			2/1110	85280	20.1	9/05.0	3400.0
HKW-5-64.12	0.39	-5.66	Dol 3B			242610	100100	20.1	80//.0	2800.0
HKW-5-64.13	0.19	-5.72	Dol 3B			240940	99180	20.2	7955.0	2820.0
HKW-5-64.20	-1.28	-4.54	Dol 3B			256570	85720	23.6	7585.0	3090.0
HKW7-CZ3.1	4.60	-5.64	Dol 3B			219880	118100	12.1	17690.0	4050.0
HKW7-CZ3.2	4.21	-5.61	Dol 3B			225370	112500	17.5	17410.0	4060.0
HKW8-Dol3B.1	2.88	-7.02	Dol3B			199590	113200	24.4	11520.0	2500.0
HKW8-Dol3B.2	3.00	-6.82	Dol3B			186780	107300	19.5	11450.0	2540.0
HKW8-Dol3B.3	3.06	-6.73	Dol3B			211370	121100	23.0	13190.0	2780.0
HKW8-Dol3B.4	2.88	-6.85	Dol3B			211870	120300	23.1	13720.0	2990.0
HKW7-GH1.1	-2.08	-4.50	Lam 1 Dol cc	0.709028	0.000005	212960	125100	14.3	6269.0	2630.0
HKW7-GH1.2	-2.19	-4.18	Lam 1 Dol cc			209210	122500	18.2	5080.0	2530.0
HKW7-GH1 3	-2.86	-2.13	Lam 1 Dol3B			211820	123500	19.8	3409.0	2400.0
HKW7-GH1 4	-2.76	-0.41	Lam 1 clayey dolonackstone	0 714721	0.000006	142360	83270	21.7	2189.0	1620.0
HKW7-GH1 5	-3.04	-0.81	I am 1 clayey dolopackstone	5.,17/21	5.000000	128/00	73880	18.1	1553.0	1480.0
UKW7 CU1 4	-3.04 2.84	1.06	Lam 1 alayay dalamaalastara			121090	75720	10.1	2500.0	1500.0
IIKW/-OIII.0	-2.00	-1.70	Lam I clayey dolopackstone	0.711224	0.00000	200210	2245	246 7	2000.0	1300.0
пк w ð- ɔ-Uil	-2.92	-3.11	LIVIC 2	0.711326	0.000005	399310	2243	340./	28.3 129.7	24.3 126.0
пк w 8-3.1	-3.09	-0.41	LIVIC 2			395340	2501	1/9.4	158.7	130.0
HKW8-3.2	-2.50	-6.37	LMC 2			395410	2283	200.9	186.7	211.0

Table S1.2c. Carbon, oxygen, and ⁸⁷Sr/⁸⁶Sr isotopic composition as well as major and trace element contents of dolomite and calcite phases from Steltenberg Quarry. Oldest phases at the top, youngest phases at the bottom. Gaps in data are indicative of variations in sampling density.

	$\delta^{13}C^{PDB}$	δ ¹⁸ O ^{PDB} [0 7 07						
Sample	[‰]	‰]	Paragenetic phase	⁸⁷ Sr/ ⁸⁶ Sr	$\pm 2 ~\sigma_{mean}$	Ca	Mg	Sr	Fe	Mn
HD-S-3.0.1	-7.0	-6.1	Dedol 2			362850	8653	17.3	2424.0	1680.0
HD-S-3.0.2	-7.4	-6.0	Dedol 2			372740	7859	17.9	2408.0	1640.0
HD-S-3.0.3	-7.4	-6.0	Dedol 2	0.709761	0.000005	372650	7512	17.2	2379.0	1560.0
HKW8-2-Ch1	-2.78	-5.36	Dedol 2	0.709934	0.000006	339840	10940	58.6	2342.0	2030.0
HKW8-2.1	-4.40	-5.49	Dedol 2			364510	13270	48.7	3509.0	2330.0
HKW8-2.2	-1.87	-5.56	Dedol 2			352380	20690	58.7	3200.0	3160.0
HKW-5-64.4	-5.91	-5.97	Dedol 2			339190	26680	18.2	7190.0	3800.0
HKW-5-64.5	-6.36	-4.56	Dedol 2			361630	15290	18.3	5076.0	2900.0
HKW-5-64.6	-7.28	-5.68	Dedol 2			358660	8926	17.5	5746.0	2910.0
HKW-5-64.7	-7.01	-5.68	Dedol 2			358070	7873	15.2	5056.0	2790.0
HKW-5-64.8	-6.95	-4.40	Dedol 2			334970	24990	18.4	5292.0	3140.0
HKW-5-64.11	-2.01	-6.68	Dedol 2			273030	76850	17.0	7925.0	3320.0
HKW-5-64.18	-2.29	-6.30	Dedol 2			304600	52800	21.8	7196.0	4200.0
HKW-5-64.19	-3.24	-4.16	Dedol 2			291070	62520	19.2	6854.0	3270.0
HKW7-C1.1	2.16	-7.15	LMC 3			391470	1526	362.0	6071.0	3260.0
HKW7-C1.2	2.65	-6.95	LMC 3			385300	1565	343.9	7047.0	3550.0
HKW7-C2.1	0.86	-9.75	LMC 3	0.710094	0.000005	390330	1268	22.5	474.9	759.0
HKW /-C2.2	0.40	-6.03	LMC 3	0 712520	0.000005	396/30	2561	285.4	358.6	157.0
HKW5-MKHD-W-0-CH2	1.20	-8.32	LNC 4	0.712528	0.000005	200220	1052	79.4	402.5	741.0
MKHD W 6 2 12	1.14	-8.08	LMC 5			399230	1421	212.7	107.0	120.0
MKHD-W-0-2.13	0.3	-0.2	LMC 5	0 712170	0.000005	205600	2449	215.7	127.2	200.0
MKHD-W-6-2.14 MKHD-W-6-2.15	0.2	-6.2	LMC 5	0.713170	0.000005	393090	2127	197.0	112.5	173.0
HD-S-314	0.5	-6.9	LMC 5			392350	2007	181.6	3625.0	4180.0
HD-S-315	0.3	-6.7	LMC 5			389270	1287	171.4	3390.0	4250.0
HD-S-316	0.5	-67	LMC 5			381370	5634	167.5	3361.0	4400.0
HKW8-4-Ch1	1.65	-6.32	LMC 5			399120	783	186.4	3797.0	3000.0
HKW8-5-Ch1	-0.68	-6.13	LMC 5	0.711526	0.000005	399740	2083	348.9	160.6	266.0
HKW5-65.1	-0.74	-5.35	LMC 5			398820	2949	554.2	111.2	223.0
HKW5-65.2	0.40	-5.56	LMC 5			395710	2410	245.3	81.2	170.0
HKW8-4.1	1.09	-5.97	LMC 5			396050	673	195.3	3837.0	3090.0
HKW8-4.2	2.06	-6.58	LMC 5			395250	973	213.3	5158.0	3140.0
HKW8-5.1	0.41	-6.48	LMC 5			396250	3138	234.1	187.3	263.0
HKW8-5.2	0.14	-6.54	LMC 5			394870	1843	250.9	202.8	368.0
HKW8-1-Ch2	1.41	-6.14	LMC 6	0.709306	0.000005	399260	589	104.8	1824.0	1550.0
HKW8-1.4	-0.12	-5.73	LMC 6			393540	2011	71.1	1372.0	1260.0
HKW8-1.5	1.76	-6.15	LMC 6	0.709106	0.000005	399320	363	114.1	1928.0	1680.0
HKW-5-64.14	2.08	-5.93	LMC 6			392770	850	80.3	1705.0	2310.0
HKW-5-64.15	2.00	-6.30	LMC 6			393900	348	77.3	1647.0	2240.0
HKW-5-64.16	0.37	-5.64	LMC 6			396740	1336	74.0	1402.0	1310.0
HKW-5-64.17	2.05	-6.36	LMC 6			398890	390	80.9	1718.0	2350.0
HKW7-CZ3.3	2.07	-5.27	LMC 6A	0.708658	0.000005	394090	1511	114.4	1510.0	2000.0
HKW /-CZ3.4	2.26	-5.42	LMC 6A			395910	002	101.7	1145.0	1860.0
HKW7-CZ3.5	2.23	-5.44	LMC 6A	0.700025	0.000005	394580	740	107.1	1217.0	1850.0
HKW7-CZ5.0	1.91	-0.14	LNC (D	0.709055	0.000005	205000	240	110.0	1/42.0	2040.0
HKW7 C73 8	1.90	-0.32	LMC 6B			393090	340	102.2	1657.0	2020.0
HKW8-5-Ch2	1.90	-6.31	LMC 7	0 709161	0.000005	400690	379	90.9	1777.0	2020.0
HKW8-6-Ch1	2.59	-6.19	LMC 7	0.709101	0.000005	393600	9//	175.0	4878.0	3370.0
HKW8-61	2.00	-0.15	LMC 7	0.707500	0.000005	393660	975	183.8	6495.0	3300.0
HKW8-6 2	2.50	-5.89	LMC 7			394750	593	151.7	3382.0	2430.0
HKW8-5.3	1.32	-6.26	LMC 7			391110	312	92.7	1812.0	3740.0
HKW8-5.4	-0.44	-6.00	LMC 7			388250	1015	162.9	2568.0	1570.0
HKW7-GH1.7	-2.88	-3.75	LMC 8 + LMC 9	0.711656	0.000005	400130	2744	64.3	1632.0	800.0
HKW7-GH1.8	-1.47	-3.42	LMC 8+ LMC 9			391160	3047	79.0	2323.0	1670.0
HKW8-5-Ch3	-3.58	-5.75	LMC 9	0.709386	0.000005	401050	2415	44.8	1088.0	567.0
HKW8-5.5	-4.09	-5.02	LMC 9			440190	2392	77.5	1486.0	617.0
HKW8-5.6	-5.27	-5.29	LMC 9			391510	2789	39.5	434.3	213.0
HKW-6-Schl 1.1.1	-5.96	-8.11	LMC 10			362360	1559	9.5	703.9	20.8
HKW-6-Schl 1.1.2	-6.11	-8.02	LMC 10			362170	1689	9.5	783.4	7.1
HKW-6-Schl 1.1.3	-5.57	-9.23	LMC 10			369270	1111	9.1	247.7	107.0
HKW-6-Schl 1.2.1	-6.10	-8.00	LMC 10			298480	2126	13.7	4158.0	450.0
HKW-6-Schl 1.2.2	-6.40	-7.51	LMC 10			276780	1847	17.9	2077.0	151.0
HKW-6-Schl 1.2.3	-6.11	-8.17	LMC 10			285780	2322	15.9	1449.0	298.0

		253 plus							
Sample	Paragenetic phase	δ ¹³ C	sd	$\delta^{18}O$	sd	Δ ₄₇	T [°C]	sd	##
HKW5-MKS-2-Ch1	MK limestone	3.19	0.03	-6.06	0.10	0.47	85	41	2
HKW5-61-Ch2	Dol 1A	3.79	0.05	-6.19	0.04	0.41	124	5	2
HKW5-61-Ch1	Dol 1B	3.62	0.05	-10.22	0.19	0.35	181	13	2
HKW5-63-Ch1	Dol 2A	3.75	0.01	-8.24	0.13	0.46	90	38	2
HKW5-63-Ch2	Dol 2B	3.11	0.09	-10.14	0.42	0.38	146	21	2
HKW5-MKHD-W-6-Ch1	LMC 1	2.07	0.00	-10.92	0.09	0.32	227	17	2
HKW5-MKHD-E7-Ch1	Dol 3A	3.79	0.09	-8.02	0.28	0.40	130	23	2
HKW8-1-Ch1	Dol 3B	2.95	0.05	-7.57	0.18	0.40	133	34	3
HKW7-GH1.1	Lam 1 Dol cc	-2.41	0.01	-4.80	0.04	0.47	80	22	2
HKW7-GH1.4	Lam 1 clayey dolopackstone	-2.80	0.13	-1.96	0.36	0.43	106	14	3
HKW8-3-Ch1	LMC 2	-2.66	0.02	-5.50	0.05	0.53	48	4	2
HKW8-2-Ch1	Dedol 2	-2.68	0.18	-5.36	0.33	0.59	27	11	3
HKW8-1-Ch2	LMC 3	1.49	0.05	-5.95	0.16	0.52	57	21	2
HKW5-MKHD-W-6-Ch2	LMC 4	1.35	0.13	-8.32	0.40	0.44	102	8	2
HKW8-5-Ch1	LMC 5	-0.61	0.04	-5.87	0.03	0.47	81	30	2
HKW7-CZ3.6	LMC 6	2.01	0.30	-6.03	0.15	0.48	78	14	2
HKW8-5-Ch2	LMC 7	1.26	0.04	-5.96	0.02	0.53	50	1	2
HKW7-CZ3.3	LMC 8	2.04	0.10	-5.94	0.84	0.48	73	1	2
HKW8-5-Ch3	LMC 9	-3.33	0.1	-5.46	0.18	0.61	23	8	3

 Table S1.3. Clumped isotope data for carbonate samples from Steltenberg Quarry.

Sample	Mineral	Host	Estimated min. overburden [m]	FIA	Inclusion type	FI	Tm (I) Th Halite	Th Halite corr.	Th hh corr.	Density
MKHD-W4	dolomite	Dol 1A	2,000	cDol1-1-1	cluster	1	-3.2 no halite	no halite	no hh	1.03
MKHD-W4	dolomite	Dol 1A	2,000	cDol1-1-1	cluster	2	-4.8 no halite	no halite	no hh	1.04
HKW5-61-1	dolomite	Dol 1B	3,000	pDol 1B-1-1	primary	1	-19.4 no halite	no halite	no hh	1.11
HKW5-61-1	dolomite	Dol 1B	3,000	pDol 1B-1-2	primary	2	-19.5 no halite	no halite	no hh	1.12
HKW5-61-1	dolomite	Dol 1B	3,000	pDol 1B-1-3	primary	3	-20.3 no halite	no halite	no hh	1.12
HKW5-61-1	dolomite	Dol 1B	3.000	pDol 1B-1-4	primary	4	-19.4 no halite	no halite	no hh	1.11
HKW5-61-1	dolomite	Dol 1B	3.000	pDol 1B-1-5	primary	5	-22.3 no halite	no halite	no hh	1.13
HKW5-61-1	dolomite	Dol 1B	3.000	pDol 1B-1-6	primary	6	-21.1 no halite	no halite	no hh	1.11
HKW5-61-1	dolomite	Dol 1B	3,000	pDol 1B-1-7	primary	7	-20 no halite	no halite	no hh	1.12
HKW5-61-1	dolomite	Dol 1B	3,000	cDol vein 1-1-1	cluster	1	-15.4 no halite	no halite	no hh	1.08
HKW5-61-1	dolomite	Dol 1B	3,000	cDol vein 1-1-2	cluster	2	-16.3 no halite	no halite	no hh	1.00
HKW5-61-1	dolomite	Dol 1B	3,000	cDol vein 1-1-3	cluster	3	-14.9 no halite	no halite	no hh	1.09
MKHD-WA	dolomite	Dol 24	4,000	pDol 24-9-1	primary	1	-27.1 no halite	no halite	-23	1.00
MKHD W4	dolomite	Dol 2A	4,000	pDol 2A a 2	primary	2	25.8 no halite	no halite	-23	1.14
MKIID-W4	dolomito	Dol 2A	4,000	pDol 2A a 2	primary	2	-25.6 no halite	no halite	-22.2	1.14
MKHD-W4	dolomito	Dol 2A	4,000	pDol 2A-a-3	primary	3	-25.0 no halite	no halite	-22.0	1.13
MKHD-W4	dolomite	Dol 2A	4,000	pDol 2A-a-4	primary	4	-23.2 no name	no nalite	-21.8	1.15
MKHD-W4	doionnite	Dol 2A	4,000	pDoi 2A-0-1	primary	1	-24 no name	no name	-28	1.15
MKHD-W4	dolomite	Dol 2A	4,000	pDol 2A-b-2	primary	2	-24.2 no nalite	no nalite	-27	1.13
MKHD-W4	dolomite	Dol 2A	4,000	pDol 2A-b-3	primary	3	-23.5 no halite	no halite	-27.7	1.12
MKHD-W4	dolomite	Dol 2A	4,000	pDol 2A-b-4	primary	4	-24. / no halite	no halite	-27.4	1.13
MKHD-W-6-1	dolomite	Dol 2A	4,000	cDol2A-1-1	cluster	1	-18.4 no halite	no halite	-23.2	1.10
MKHD-W-6-1	dolomite	Dol 2A	4,000	cDol2A-1-2	cluster	2	-17.9 no halite	no halite	-23.7	1.09
MKHD-W-6-1	dolomite	Dol 2A	4,000	cDol2A-1-3	cluster	3	-19.3 no halite	no halite	-23.2	1.11
MKHD-W-6-1	dolomite	Dol 2A	4,000	cDol2A-1-4	cluster	4	-18.6 no halite	no halite	-23.8	1.11
MKHD-W-6-1	dolomite	Dol 2A	4,000	cDol2A-1-5	cluster	5	-18.9 no halite	no halite	-22.9	1.09
MKHD-W-6-1	dolomite	Dol 2A	4,000	cDol2A-1-6	cluster	6	-17.9 no halite	no halite	-23	1.10
MKHD-W4	dolomite	Dol 2A	4,000	cDol2A-1-1	cluster	1	-19.4 no halite	no halite	-23.2	1.11
MKHD-W4	dolomite	Dol 2A	4,000	cDol2A-1-2	cluster	2	-16.3 no halite	no halite	-23.8	1.09
MKHD-W4	dolomite	Dol 2A	4,000	cDol2A-1-3	cluster	3	-16.9 no halite	no halite	-23.3	1.10
MKHD-W4	dolomite	Dol 2A	4,000	pDol 2A-a-1-1	primary	1	-24.7 no halite	no halite	-26.3	1.15
MKHD-W4	dolomite	Dol 2A	4,000	pDol 2A-a-1-2	primary	2	-24.3 no halite	no halite	-25.7	1.15
MKHD-W4	dolomite	Dol 2A	4,000	pDol 2A-b-1-1	primary	1	-26.4 no halite	no halite	-25.5	1.16
MKHD-W4	dolomite	Dol 2A	4,000	pDol 2A-b-1-2	primary	2	-26.9 no halite	no halite	-25.2	1.18
MKHD-W4	dolomite	Dol 2A	4,000	pdol 2A-c-1-1	primary	1	-27.9 -27.9	-27.9	no hh	1.17
MKHD-W6-2	dolomite	Dol 2B	4,000	cDol 2B-1-1	cluster	1	-21.4 no halite	no halite	-26.4	1.12
MKHD-W6-2	dolomite	Dol 2B	4,000	cDol 2B-1-2	cluster	2	-19.8 no halite	no halite	-24.6	1.11
MKHD-W6-2	dolomite	Dol 2B	4,000	cDol 2B-1-3	cluster	3	-18.6 no halite	no halite	-26.4	1.10
MKHD-W6-2	dolomite	Dol 2B	4,000	cDol 2B-1-4	cluster	4	-18.9 no halite	no halite	-26.4	1.11
MKHD-W6-2	dolomite	Dol 2B	4,000	cDol 2B-2-1	cluster	1	-19.7 no halite	no halite	-23.5	1.12
MKHD-W6-2	dolomite	Dol 2B	4,000	cDol 2B-2-2	cluster	2	-20.5 no halite	no halite	-23.5	1.12
MKHD-W6-2	dolomite	Dol 2B	4,000	cDol 2B-2-3	cluster	3	-21 no halite	no halite	-23.5	1.12
MKHD-W6-2	dolomite	Dol 2B	4,000	cDol 2B-2-4	cluster	4	-20.8 no halite	no halite	-23.5	1.12
MKHD-W6-2	dolomite	Dol 2B	4,000	cDol 2B-2-5	cluster	5	-20 no halite	no halite	-22.9	1.12
MKHD-W6-2	dolomite	Dol 2B	4,000	cDol 2B-2-6	cluster	6	-19.3 no halite	no halite	-22.2	1.12
MKHD-W6-2	dolomite	Dol 2B	4,000	cDol 2B-3-1	cluster	1	-21 no halite	no halite	-24.6	1.12
MKHD-W6-2	dolomite	Dol 2B	4.000	cDol 2B-3-2	cluster	2	-19.8 no halite	no halite	-24.8	1.12
MKHD-W6-2	dolomite	Dol 2B	4.000	cDol 2B-3-3	cluster	3	-19.7 no halite	no halite	-25.2	1.11
MKHD-W6-2	dolomite	Dol 2B	4,000	cDol 2B-3-4	cluster	4	-19.3 no halite	no halite	-23.9	1.12
MKHD-W6-2	dolomite	Dol 2B	4,000	cDol 2B-4-1	cluster	1	-17.9 po halite	no halite	-25.6	1.11
MKHD-W6-2	dolomite	Dol 2B	4,000	cDol 2B-4-2	cluster	2	-18.4 po halite	no halite	-25.4	1.11
MKHD-W6-2	dolomite	Dol 2B	4,000	cDol 2B-4-3	cluster	3	-19.3 po halite	no halite	-24 7	1.11
MKHD-W-6-1	dolomite	Dol 2B	4,000	cDol2B-1-1	cluster	1	-21.1 po halite	no halite	-23.6	1.12
MKHD-W-6-1	dolomite	Dol 2B	4 000	cDol2B-1-2	cluster	2	-20.9 no halite	no halite	-25.4	1 11
MKHD-W-6-1	dolomite	Dol 2B	4 000	cDol2B-1-3	cluster	3	-20.7 no halite	no halite	-25.2	1.12
MKHD-W-6-1	dolomite	Dol 2B	4 000	cDol2B-1-4	cluster	4	-20.4 po halite	no halite	-23.7	1 12
	asionne	20120	-,000		Chaster	- r	20.4 no nulle	no nunc	20.1	1.12

Table S1.4a. Fluid inclusion data for dolomite-, dedolomite-, calcite- and quartz phases from Steltenberg quarry. Palaeooverburden thickness was compiled from Drozdzewski and Wrede (1994) and Götte (2004).

Table S1.4b. Fluid inclusion data for dolomite-, dedolomite-, calcite- and quartz phases from Steltenberg quarry. Palaeooverburden thickness was compiled from Drozdzewski and Wrede (1994) and Götte (2004).

Sample	T _h uncorr.	T _h corr.	Salinity	NaCl wt.%	CaCl2 wt.%	Cl ppm	Ca ppm	Na ppm	Mole Ca	Mole Na	Mole ratio Ca/(Na+Ca)	Na deficit	Ca excess
MKHD-W4	40.0	61.0	5.4	5.4	0.0	32674.2	52	21151.4		0.9	0.00	-129.2	-28.8
MKHD-W4	40.0	59.3	7.8	7.8	0.0	47221.5	75	30568.5		1.3	0.00	-186.7	-41.7
HKW5-61-1	109.0	124.4	22.0	21.9	0.1	133152.6	210	86195.3		3.7	0.00	-526.4	-117.5
HKW5-61-1	103.0	118.1	22.0	22.0	0.1	133609.5	211	86491.1		3.8	0.00	-528.2	-117.9
HKW5-61-1	99.0	114.0	22.6	22.6	0.1	137247.2	217	88845.9		3.9	0.00	-542.6	-121.1
HKW5-61-1	106.0	121.2	22.0	21.9	0.1	133152.6	210	86195.3		3.7	0.00	-526.4	-117.5
HKW5-61-1	102.0	117.2	23.9	20.4	3.5	137510.2	12810	80120.5	0.3	3.5	0.08	-155.9	507.1
HKW5-61-1	120.0	135.9	23.2	23.2	0.1	140857.9	223	91183.3		4.0	0.00	-556.9	-124.3
HKW5-61-1	99.0	113.9	22.4	22.4	0.1	135886.6	215	87965.1		3.8	0.00	-537.2	-119.9
HKW5-61-1	124.0	140.2	18.9	18.8	0.0	114243.8	180	73954.9		3.2	0.00	-451.7	-100.8
HKW5-61-1	119.0	134.9	19.6	19.5	0.1	118634.9	187	76797.4		3.3	0.00	-469.0	-104.7
HKW5-61-1	118.0	133.9	18.4	18.4	0.0	111758.0	177	72345.7		3.1	0.00	-441.8	-98.6
MKHD-W4	122.0	128.1	25.7	11.6	14.1	125959.1	51074	45601.3	1.3	2.0	0.39	1068.6	2427.5
MKHD-W4	120.0	126.0	25.3	13.4	11.9	128304.9	42908	52890.9	1.1	2.3	0.32	807.8	2017.8
MKHD-W4	123.0	129.1	25.2	13.7	11.5	128326.0	41596	53831.3	1.0	2.3	0.31	767.3	1952.3
MKHD-W4	122.0	128.0	25.1	14.4	10.7	129659.2	38653	56774.5	1.0	2.5	0.28	671.3	1804.2
MKHD-W4	120.0	126.0	23.5	9.1	14.4	111851.2	51922	35854.0	1.3	1.6	0.45	1151.2	2483.4
MKHD-W4	124.0	130.0	23.8	10.5	13.3	115836.2	47939	41251.5	1.2	1.8	0.40	1012.6	2280.8
MKHD-W4	122.0	128.0	23.3	9.4	13.9	111498.9	50140	36884.0	1.3	1.6	0.44	1097.7	2394.9
MKHD-W4	123.0	129.0	24.0	10.0	13.9	115707.7	50296	39503.5	1.3	1.7	0.42	1085.7	2398.6
MKHD-W-6-1	112.0	127.5	20.8	15.5	5.3	114907.5	19083	61032.7	0.5	2.7	0.15	127.8	841.8
MKHD-W-6-1	123.0	139.0	20.4	14.1	6.2	110303.0	22491	55639.6	0.6	2.4	0.19	251.1	1016.3
MKHD-W-6-1	114	129.6	21.4	16.0	5.4	118371.4	19658	62872.5	0.5	2.7	0.15	131.6	867.2
MKHD-W-6-1	111.0	126.5	20.8	14.3	6.6	112405.9	23750	56114.1	0.6	2.4	0.20	281.5	1077.1
MKHD-W-6-1	131.0	147.4	21.2	16.5	4.7	118642.3	16928	64977.2	0.4	2.8	0.13	46.4	730.7
MKHD-W-6-1	112.0	127.5	20.5	15.7	4.8	114084.2	17173	61847.8	0.4	2.7	0.14	72.2	747 3
MKHD-W4	117.0	132.7	21.5	16.0	5 5	118752.8	19722	63075.0	0.5	2.7	0.15	132.0	870.0
MKHD-W4	115	130.7	19.2	13.2	6.1	103666.2	21903	51751.1	0.5	2.3	0.20	259.6	993.3
MKHD-W4	113.0	128.6	19.7	14.5	5.2	108462.8	18846	57020.8	0.5	2.5	0.16	146.3	836.2
MKHD-W4	87.0	92.5	24.2	11.7	12.5	120070 5	45038	46046 3	11	2.0	0.36	906.3	2132.0
MKHD-W4	92.0	97.6	24.1	12.6	11.4	121657.5	41297	49718.0	1.0	2.0	0.32	784.8	1943.8
MKHD-W4	94.0	99.7	25.2	12.1	13.1	125025.8	47242	47702.9	1.2	2.1	0.36	954.4	2237.2
MKHD-W4	63.0	68.3	25.4	11.5	13.9	124680 5	50223	45373.6	13	2.0	0.39	1047 5	2386.3
MKHD-W4	87.0	92.6	2011	11.0	1017	12.000.0	00220	1007010	110	2.0	0.07	101/10	2000.0
MKHD_W6_2	110.0	125.5	22.2	10.6	11.6	110151.8	41948	41797 4	1.0	18	0.37	850.9	1987 3
MKHD-W6-2	111.0	126.5	21.5	13.2	84	112685.1	30210	51731.8	0.8	2.3	0.25	479.3	1399.2
MKHD-W6-2	114.0	129.6	20.5	9.8	10.7	101654.4	38712	38573.1	1.0	17	0.37	785.2	1834.0
MKHD-W6-2	112.0	127.5	20.5	9.9	10.7	102591.9	39069	38928.8	1.0	1.7	0.37	792.5	1850.9
MKHD-W6-2	105.0	120.2	20.7	15.5	62	118111 3	22317	60825.7	0.6	2.6	0.17	214.5	1000.1
MKHD-W6-2	104.0	119.2	21.0	15.8	63	121052.2	22873	62340.2	0.6	2.0	0.17	219.9	1025.0
MKHD-W6-2	104.0	119.2	22.2	16.1	6.4	122872.6	23217	63277.7	0.6	2.7	0.17	212.2	1040.4
MKHD_W6-2	103.0	118.1	22.0	16.0	6.4	1220/2.0	23080	62903.5	0.6	2.0	0.17	223.2	1034.3
MKHD-W6-2	105.0	121.2	22.4	17.1	4.9	122145.5	17540	67328.8	0.0	2.7	0.13	/8 1	757 1
MKHD-W6-2	103.0	118 1	21.6	18.7	3.0	12/000 3	10767	73392.0	0.4	3.2	0.08	-168 /	/17.2
MKHD-W6-2	103.0	123.4	21.0	13.6	87	116724.9	31293	53586.4	0.5	2.2	0.25	-100. 4 /96./	1//9 3
MKHD W6 2	103.0	118 1	21.5	12.8	87	1117/0.6	31474	50232.0	0.0	2.5	0.25	521.0	1463.2
MKHD W6 2	110.0	125.4	21.5	12.0	0.7	100640 7	22771	47247.0	0.8	2.2	0.20	601.1	1403.2
MKHD-W6-2	101.0	116.0	21.4	14.4	5.4 6.9	11/1/10 7	25018	56538.0	0.8	2.1	0.29	312.4	1138 /
MKHD W6 2	107.0	122.2	20.1	14.4	0.9	102121.6	23018	42192.0	0.0	1.9	0.20	620.4	1600.4
MKHD W6 2	107.0	144.3	20.1	11.7	2.4 0.3	10/21/21.0	33535	+2103.0	0.0	1.0	0.32	614.2	1572.0
MKHD W6 2	104.0	119.1	20.3	11.2	9.5	1105140.1	30201	50202 7	0.0	1.9	0.50	402.2	1372.9
MKHD W 6 1	100.0	121.2	21.2	12.8	0.4 67	122621.2	24000	50205.7 62408 1	0.8	2.2	0.20	493.2	1409.8
MKHD W 4 1	127.0	142.0	22.0	10.9	10.0	112640.0	24090	02490.1 47522 7	0.0	2.7	0.10	201.0	1004.2
MKHD W 4 1	127.0	145.2	22.1	12.1	0.0	112049.9	30133	+1323.1	0.9	2.1	0.30	619.0	1624.9
MKHD-W-0-1	102.0	125.4	22.0	12.4	9.0	112693.3	34770 24269	40043./	0.9	2.1	0.29	018.9	1020.5
MKHD-W-6-1	103.0	118.1	22.1	15.5	6./	119510.6	24368	00284.1	0.6	2.6	0.19	272.1	1101.1

Sampa Mineral Hots Formation or product Formation or product To all the cort. The Jours Tools. The Jours <											
MKHD-W-61 okamie Da12B 4.000 cDA2B-1-1 exter 1 10.10 -23.2 n.10 m.10 -23.6 1.11 HKW-56.31 okamie Da12B 4.000 cDA2B-1-2 exter 2 2.01.2 n.10 n.01 -23.6 1.11 HKW-56.31 okamie Da12B 4.000 cDA2B-1-4 exter 4 -20.3 n.10 -23.8 1.11 HKW-56.31 okamie Da12B 4.000 cDA2B-1-6 exter 6 -20.9 n.10 a.23.3 1.11 HKW-63.5 okamie Da12B 4.000 cDA2B-1-4 exter 7 -10.3 <n halie<="" td=""> n.0 inite -23.3 1.11 HKW-63.5 okamie Da12B 4.000 cDA2B-1-4 exter 7 -10.3<n halie<="" td=""> n.0 inite -24.9 1.12 HKW-63.5 okamie Da12B 4.000 cDA2B-1-4 exter 7 -10.9<m halie<="" td=""> n.0 inita -24.9<</m></n></n>	Sample	Mineral	Host	Estimated min. overburden [m]	FIA	Inclusion type	FI	Tm (I) Th Halite	Th Halite corr.	Th hh corr.	Density
HKW-56-1 obaries Dol 2B 4.000 cD2B1-1 cluster 1 -20.2 m halie m halie -23.3 1.11 HKW-56-31 dokrnite Dol 2B 4.000 cD2B1-1.4 cluster 3 -19.9 m halie no halie -25.4 1.11 HKW-56-31 dokrnite Dol 2B 4.000 cD2B1-1.6 cluster 5 -20.3 m halie no halie -22.9 1.12 HKW-65-3 dokrnite Dol 2B 4.000 cD2B1-1.6 cluster 1 -17.3 m halie no halie -23.3 1.12 HKW-65-3 dokrnite Dol 2B 4.000 cD2B1-1.4 cluster 3 -20.3 m halie no halie -23.3 1.12 HKW-65.5 dokrnite Dol 2B 4.000 cD2B1-1.6 cluster 6 -18.9 m halie no halie -23.4 1.12 HKW-65.5 dokrnite Dol 2B 4.000 cD2B2-1.6 cluster 8 -19.9 m	MKHD-W-6-1	dolomite	Dol 2B	4,000	cDol2B-1-5	cluster	5	-19.9 no halite	no halite	-25.1	1.12
HKW-56-1 dokamic Dol 2B 4,000 cDo2B-1-2 claster 2 -20.4 n halte -22.6 1.10 HKW-56-1 dokamic Dol 2B 4,000 cDo2B-1-4 claster 4 -20.3 n halte n halte -23.8 1.11 HKW-56-1 dokamic Dol 2B 4,000 cDo2B-1-6 claster 6 -20.5 n halte n halte -23.3 1.11 HKW-65-3 dokamic Dol 2B 4,000 cDo2B-1-4 claster 1 -17.3 n halte n halte -23.3 1.11 HKW-65-3 dokamic Dol 2B 4,000 cDo2B-1-4 claster 4 -20.4 n halte n halte -23.3 n halte n halte -23.3 1.12 HKW-65.3 dokamic Dol 2B 4,000 cDo2B-1-6 claster 7 -29.0 n halte n halte -25.4 1.12 HKW-65.3 dokamic Dol 2B 4,000 cDo2B-1-7 relster	HKW-5-63-1	dolomite	Dol 2B	4,000	cDol2B-1-1	cluster	1	-20.2 no halite	no halite	-23.3	1.11
HKW-563-1 oldomic Dol 2B 4,000 cDol2B-1-3 chaire 3 1-90 phalie no halie -25.4 1.10 HKW-563-1 oldomic Dol 2B 4,000 cDol2B-1-5 chaire 5 -20.5 phalie no halie -22.9 1.11 HKW-653-1 oldomic Dol 2B 4,000 cDol2B-1-1 chaire 1 1-73 phalie no halie -23.3 1.12 HKW-653-1 oldomic Dol 2B 4,000 cDol2B-1-1 chaire 3 -20.3 phalie no halie -23.3 1.12 HKW-653-1 oldomic Dol 2B 4,000 cDol2B-1-3 chaire 7 -19.5 phalie phalie -23.4 1.12 HKW-653-1 oldomic Dol 2B 4,000 cDol2B-1-7 chaire 7 -19.5 phalie phalie phalie -23.4 1.12 HKW-654 oldomic Dol 2B 4,000 cDol2B-1-8 chaire 7 -19.5 phalie phalie phalie phalie	HKW-5-63-1	dolomite	Dol 2B	4,000	cDol2B-1-2	cluster	2	-20.4 no halite	no halite	-23.6	1.11
HKW-56-1 obonite Dol 2B 4,000 cDo2B1-1-6 charer 4 -0.23 no haite no haite -2.38 1.11 HKW-56-31 obterine Dol 2B 4,000 cDo2B1-1-6 charer 6 2.09 no haite no haite -2.33 1.11 HKW-65-5 obterine Dol 2B 4,000 cDo2B1-1-2 charer 2 1.90 nalite no haite -2.32 1.11 HKW-65-5 obterine Dol 2B 4,000 cDo2B1-1-3 charter 3 2.03 no haite no haite -2.32 1.12 HKW-65-5 obterine Dol 2B 4,000 cDo2B1-1-6 charter 7 -1.95 no haite no haite -2.42 1.11 HKW-65-5 obterine Dol 2B 4,000 cDo2B1-16 charter 7 -1.95 no haite no haite -2.42 1.12 HKW-65-5 obterine Dol 2B 4,000 cDo2B1-16 charter 7 -1.95 no haite no haite -2.42 1.12	HKW-5-63-1	dolomite	Dol 2B	4,000	cDol2B-1-3	cluster	3	-19.9 no halite	no halite	-25.4	1.10
HKW-56-31 oblomie Dol 2B 4,000 cD02B-1-5 chaire 75 -20.55 no haire -22.9 1.11 HKW-56-3 oblomie Dol 2B 4,000 cD02B-1-1 chuster 1 17.30 nblaite no haire no haire no haire no haire 23.3 1.12 HKW-635 oblomie Dol 2B 4,000 cD02B-1-3 chuster 3 20.3 no haire no haire 23.4 1.12 HKW-635 oblomie Dol 2B 4,000 cD02B-1-6 chuster 5 -20.9 no haire no haire 23.4 1.12 HKW-635 oblomie Dol 2B 4,000 cD02B-1-6 chuster 8 -19.5 no haire no hair	HKW-5-63-1	dolomite	Dol 2B	4,000	cDol2B-1-4	cluster	4	-20.3 no halite	no halite	-23.8	1.11
HKW-65-5 obonite Dol 2B 4,000 cDo2B1-1-6 charer 6 -20.90 phalite no halite -23.3 1.11 HKW-65-5 oblomite Dol 2B 4,000 cDo2B1-12 charer 2 1-97.00 phalite no halite -23.3 1.11 HKW-65-5 oblomite Dol 2B 4,000 cDo2B1-14 charer 4 20.40 phalite no halite -23.4 1.12 HKW-65-5 oblomite Dol 2B 4,000 cDo2B1-16 charer 5 -20.90 phalite no halite -23.4 1.12 HKW-65-5 oblomite Dol 2B 4,000 cDo2B1-16 charer 7 -13.50 phalite no halite -23.2 1.12 HKW-65-5 oblomite Dol 2B 4,000 cDo2B1-16 charer 9 -20.35 phalite no halite no halite -23.2 1.12 HKW-65-5 oblomite Dol 2B 4,000 cDo2B1-16 charer 9 -20.35 phalite no halite no halite	HKW-5-63-1	dolomite	Dol 2B	4,000	cDol2B-1-5	cluster	5	-20.5 no halite	no halite	-22.9	1.11
$\begin{split} & HKW-655 & dolomite Dol 2B & 4,000 & cDo2B-1-1 & chester 1 & -17.3 no halite no halite -23.2 & 1.12 \\ HKW-655 & dolomite Dol 2B & 4,000 & cDo2B-1.3 & chester 3 & 2.0.3 no halite no halite -23.3 & 1.12 \\ HKW-655 & dolomite Dol 2B & 4,000 & cDo2B-1.5 & chester 4 & 2.0.4 no halite no halite -23.3 & 1.12 \\ HKW-655 & dolomite Dol 2B & 4,000 & cDo2B-1.5 & chester 5 & 2.0.9 no halite no halite -24.4 & 1.12 \\ HKW-655 & dolomite Dol 2B & 4,000 & cDo2B-1.7 & chester 7 & -19.5 no halite no halite -25.2 & 1.12 \\ HKW-655 & dolomite Dol 2B & 4,000 & cDo2B-1.7 & chester 7 & -19.5 no halite no halite -25.2 & 1.12 \\ HKW-655 & dolomite Dol 2B & 4,000 & cDo2B-1.8 & chester 8 & -19.3 no halite no halite -25.2 & 1.12 \\ HKW-655 & dolomite Dol 2B & 4,000 & cDo2B-1.8 & chester 8 & -19.3 no halite no halite -25.2 & 1.12 \\ HKW-655 & dolomite Dol 2B & 4,000 & cDo2B-1.7 & chester 9 & -20.3 no halite no halite -25.9 & 1.12 \\ MKHD-WC2 & cakite LMC 1 & 3,000 & pLMC1-1.2 & primary 2 & -14.8 no halite no halite no halite -25.9 & 1.12 \\ MKHD-WC2 & cakite LMC 1 & 3,000 & pLMC1-1.4 & primary 3 & -14.8 no halite no halit$	HKW-5-63-1	dolomite	Dol 2B	4,000	cDol2B-1-6	cluster	6	-20.9 no halite	no halite	-25.3	1.12
$\begin{split} & HKW - 6.55 & dohome & Dol 2B & 4,00 & cDo 2B - 1.2 & chater & 2 & -1.9 & no halite & no halite & -23.4 & 1.12 \\ HKW - 6.55 & dohome & Dol 2B & 4,000 & cDo 2B - 1.4 & chater & 4 & -20.4 & no halite & no halite & -23.4 & 1.12 \\ HKW - 6.55 & dohome & Dol 2B & 4,000 & cDo 2B - 1.6 & chater & 5 & -20.9 & no halite & no halite & -25.4 & 1.12 \\ HKW - 6.55 & dohome & Dol 2B & 4,000 & cDo 2B - 1.6 & chater & 7 & -15.5 & no halite & no halite & -25.4 & 1.12 \\ HKW - 6.55 & dohome & Dol 2B & 4,000 & cDo 2B - 1.6 & chater & 7 & -15.5 & no halite & no halite & -25.4 & 1.12 \\ HKW - 6.55 & dohome & Dol 2B & 4,000 & cDo 2B - 1.6 & chater & 7 & -15.5 & no halite & no halite & -25.4 & 1.12 \\ HKW - 6.55 & dohome & Dol 2B & 4,000 & cDo 2B - 1.9 & chater & 9 & -3.0 & no halite & no halite & -25.4 & 1.12 \\ HKW - 6.55 & dohome & Dol 2B & 4,000 & cDo 2B - 1.9 & chater & 9 & -3.0 & no halite & no halite & -25.4 & 1.12 \\ HKW - 6.55 & dohome & Dol 2B & 4,000 & cDo 2B - 1.9 & chater & 9 & -3.0 & no halite & no halite & -25.4 & 1.12 \\ HKW - 6.55 & chate & Dol 2B & 4,000 & pLMC - 1.2 & primary & 3 & -14.8 & no halite & no halite & no halite & no halite & -25.4 & 1.12 \\ HKW - 6.52 & chate & LMC 1 & 3,000 & pLMC - 1.5 & primary & 5 & -12.6 & no halite & no hali$	HKW-63-5	dolomite	Dol 2B	4,000	cDol2B-1-1	cluster	1	-17.3 no halite	no halite	-23.3	1.11
$\begin{split} HKW-635 & dohmie Dd 2B & 4,00 & cDo2B-1-3 & chater & 3 & 20.3 no halte no halite -23.4 & 1.12 \\ HKW-635 & dohmie Dd 2B & 4,000 & cDo2B-1-5 & chater & 5 & 20.9 no halte no halite -24.9 & 1.12 \\ HKW-635 & dohmie Dd 2B & 4,000 & cDo2B-1-7 & chater & 7 & -19.5 no halte no halite -24.9 & 1.12 \\ HKW-635 & dohmie Dd 2B & 4,000 & cDo2B-1-7 & chater & 7 & -19.5 no halte no halite -24.7 & 1.12 \\ HKW-635 & dohmie Dd 2B & 4,000 & cDo2B-1-8 & chater & 8 & -19.3 no halte no halite -25.2 & 1.12 \\ HKW-635 & dohmie Dd 2B & 4,000 & cDo2B-1-8 & chater & 8 & -19.3 no halte no halte -25.9 & 1.12 \\ HKW-635 & dohmie Dd 2B & 4,000 & cDo2B-1-8 & chater & 9 & -20.3 no halte no halte -23.9 & 1.12 \\ HKW-635 & dohmie Dd 2B & 4,000 & cDo2B-1-8 & chater & 9 & -20.3 no halte no halte -23.9 & 1.12 \\ HKW-635 & chate LAC 1 & 3,000 & pLMC1-1.2 & primary & 3 & -14.8 no halte no halte no hh & 0.99 \\ MKHD-W62 & cakte LMC 1 & 3,000 & pLMC1-1.4 & primary & 4 & -10.6 no halte no halte no hh & 0.99 \\ MKHD-W62 & cakte LMC 1 & 3,000 & pLMC1-1.4 & primary & 1 & -13.3 no halte no halte no hh & 0.98 \\ MKHD-W62 & cakte LMC 1 & 3,000 & pLMC1-2 & primary & 3 & -13.2 no halte no halte no halte no hh & 0.98 \\ MKHD-W62 & cakte LMC 1 & 3,000 & pLMC1-2 & primary & 3 & -13.2 no halte no halte no hh & no datta \\ MKHD-W62 & cakte LMC 1 & 3,000 & pLMC1-2 & primary & 3 & -13.2 no halte no halte no hh & no datta \\ MKHD-W62 & cakte LMC 1 & 3,000 & pLMC1-2.5 & primary & 4 & -13.7 no halte no halte no hh & no datta \\ MKHD-W62 & cakte LMC 1 & 3,000 & pLMC1-2.6 & primary & 5 & -13.7 no halte no halte no hh & no datta \\ MKHD-W62 & cakte LMC 1 & 3,000 & pLMC1-2.6 & primary & 5 & -13.7 no halte n$	HKW-63-5	dolomite	Dol 2B	4,000	cDol2B-1-2	cluster	2	-19.9 no halite	no halite	-23.2	1.12
$\begin{split} & HKW-635 & dohomite & Dol 2B & 4000 & cDo2B-1-4 & chster & 4 & -20.4 on bailte & on bailte & -23.3 & 1.12 \\ HKW-635 & dohomite & Dol 2B & 4000 & cDo2B-1-5 & chster & 5 & -20.9 on bailte & on bailte & -25.4 & 1.12 \\ HKW-635 & dohomite & Dol 2B & 4000 & cDo2B-1-7 & chster & 7 & -19.5 no hailte & no bailte & -22.7 & 1.12 \\ HKW-635 & dohomite & Dol 2B & 4000 & cDo2B-1-8 & chster & 8 & -19.3 no hailte & no bailte & -22.7 & 1.12 \\ HKW-635 & dohomite & Dol 2B & 4000 & cDo2B-1-8 & chster & 8 & -19.3 no hailte & no bailte & -22.7 & 1.12 \\ HKW-635 & dohomite & Dol 2B & 4000 & cDo2B-1-9 & chster & 9 & -0.3 no haile & no bailte & -22.7 & 1.12 \\ HKW-635 & cakite & LMC 1 & 3000 & pLMC1-1-2 & primary & 2 & -14.9 no bailte & no bailte & no bh & 0.99 \\ MKHD-W6-2 & cakite & LMC 1 & 3000 & pLMC1-1-12 & primary & 4 & -16.6 no bailte & no bailte & no bh & 0.98 \\ MKHD-W6-2 & cakite & LMC 1 & 3000 & pLMC1-1-12 & primary & 1 & -13.3 no bailte & no bailte & no bh & 0.98 \\ MKHD-W6-2 & cakite & LMC 1 & 3000 & pLMC1-22 & primary & 1 & -13.3 no bailte & no bailte & no bh & no datta \\ MKHD-W6-2 & cakite & LMC 1 & 3000 & pLMC1-24 & primary & 1 & -13.3 no bailte & no bhine & no bhin & no datta \\ MKHD-W6-2 & cakite & LMC 1 & 3000 & pLMC1-24 & primary & 4 & -12.4 no bailte & no bhin & no datta \\ MKHD-W6-2 & cakite & LMC 1 & 3000 & pLMC1-2.4 & primary & 1 & -12.3 no bailte & no bh no odatta \\ MKHD-W6-2 & cakite & LMC 1 & 3000 & pLMC1-2.5 & primary & 1 & -12.4 no bailte & no bh no datta \\ MKHD-W6-2 & cakite & LMC 1 & 3000 & pLMC1-2.5 & primary & 1 & -12.4 no bailte & no bh no datta \\ MKHD-W6-2 & cakite & LMC 1 & 3000 & pLMC1-2.5 & primary & 1 & -12.4 no bailte & no bhine & no bh no datta \\ MKHD-W6-2 & cakite & LMC 1 & 3000 & pLMC1-2.5 & primary & 1 & -12.4 no bailte & no bhine & no bh no datta \\ MKHD-W6-2 & cakite & LMC 1 & 3000 & pLMC1-2.5 & primary & 3 & -27.7 & -31.00 & metastable & no data & no data \\ MKHD-W6-2 & cakite & LMC 1 & 3000 & pLMC1-2.5 & primary & 3 & -27.7 & -31.00 & metastable & no data & no data \\ MKHD-W6-2 & cakite & LMC 1$	HKW-63-5	dolomite	Dol 2B	4,000	cDol2B-1-3	cluster	3	-20.3 no halite	no halite	-23.4	1.12
$\begin{split} & HKW-635 & dolomic Dol 2B & 4000 & cDol2B-1-5 & chster 5 & -2.09 no haile & no haile & -2.4.9 & 1.12 \\ HKW-635 & dolomic Dol 2B & 4000 & cDol2B-1-6 & chster 7 & -19.5 no haile & no haile & -2.5.2 & 1.12 \\ HKW-635 & dolomic Dol 2B & 4000 & cDol2B-1-7 & chster 7 & -19.5 no haile & no haile & -2.3.9 & 1.12 \\ HKW-635 & dolomic Dol 2B & 4000 & cDol2B-1-9 & chster 8 & -2.03 no haile & no haile & -2.3.9 & 1.12 \\ HKW-635 & dolomic Dol 2B & 4000 & cDol2B-1-9 & chster 8 & -2.03 no haile & no haile & -2.3.9 & 1.12 \\ MKHD-W52 & cakite LMC 1 & 3000 & pLMC1-1-3 & primary 3 & -1.48 no haile & no haile & no hh & 0.99 \\ MKHD-W52 & cakite LMC 1 & 3000 & pLMC1-1.5 & primary 4 & -1.48 no haile & no hh & 0.99 \\ MKHD-W62 & cakite LMC 1 & 3000 & pLMC1-1.5 & primary 5 & -12.6 no haile & no hh & 0.99 \\ MKHD-W62 & cakite LMC 1 & 3000 & pLMC1-2.1 & primary 1 & -13.3 no haile & no hh & no data \\ MKHD-W62 & cakite LMC 1 & 3000 & pLMC1-2.1 & primary 1 & -13.3 no haile & no hh & no data \\ MKHD-W62 & cakite LMC 1 & 3000 & pLMC1-2.1 & primary 3 & -12.4 no haile & no haile & no hh & no data \\ MKHD-W62 & cakite LMC 1 & 3000 & pLMC1-2.4 & primary 4 & -12.4 no haile & no haile & no hh & no data \\ MKHD-W62 & cakite LMC 1 & 3000 & pLMC1-2.5 & primary 5 & -13.7 no haile & no haile & no hh & no data \\ MKHD-W62 & cakite LMC 1 & 3000 & pLMC1-2.6 & primary 6 & -11.1 no haile & no hh & no data \\ MKHD-W62 & cakite LMC 1 & 3000 & pLMC1-2.6 & primary 6 & -13.8 no haile & no hh & no data \\ MKHD-W64 & dolomite Dol 3A & 1.000 & pDol 3A-c-2 & primary 7 & -25.4 & -35.40 & metastable & no data & no data \\ MKHD-W4 & dolomite Dol 3A & 1.000 & pDol 3A-c-2 & primary 1 & -24.3 & -35.40 & metastable & no data & no data \\ MKHD-W4 & dolomite Dol 3A & 1.000 & cDol-1-1 & chster 1 & -20.3 no haile & no hh & 1.01 \\ HKW5-64-1 & dolomite Dol 3A & 1.000 & cDol-1-2 & chster 3 & -21 no haile & no haile & no hh & 1.11 \\ HKW5-64-1 & dolomite Dol 3A & 1.000 & cDol-31-2 & chster 3 & -21 no haile & no haile & no hh & 1.07 \\ HSN-53-2 & dolomite Dol 3A & 1.000 & cDol-31-2 & chster 1$	HKW-63-5	dolomite	Dol 2B	4,000	cDol2B-1-4	cluster	4	-20.4 no halite	no halite	-23.3	1.12
HKW-63-5 dolomite Dol 2B 4,000 cDol2B-1-7 chster 6 -18.9 no halite no halite -25.4 1.12 HKW-63-5 dolomite Dol 2B 4,000 cDol2B-1-8 chster 8 -19.3 no halite no halite -22.3 no halite no halite -22.3 no halite no halite -22.3 no halite no halite no halite -22.3 no halite no halita no halite no halite	HKW-63-5	dolomite	Dol 2B	4,000	cDol2B-1-5	cluster	5	-20.9 no halite	no halite	-24.9	1.12
HKW-63-5 dokomite Dol 2B 4,000 cDo2B-1-8 chister 7 -19.5 no halite no halite -26.2 1.12 HKW-63-5 dokomite Dol 2B 4,000 cDo2B-1-8 chister 7 -19.5 no halite	HKW-63-5	dolomite	Dol 2B	4,000	cDol2B-1-6	cluster	6	-18.9 no halite	no halite	-25.4	1.12
HKW-63-5 dolomite Dol 2B 4,000 cD02B-1-8 chster 8 -19.3 no halite no halite -22.7 1.12 MKHD-W6-2 cakite LMC 1 3,000 pLMC1-1-2 primary 2 -14.9 no halite no halita ndata ndata <t< td=""><td>HKW-63-5</td><td>dolomite</td><td>Dol 2B</td><td>4,000</td><td>cDol2B-1-7</td><td>cluster</td><td>7</td><td>-19.5 no halite</td><td>no halite</td><td>-26.2</td><td>1.12</td></t<>	HKW-63-5	dolomite	Dol 2B	4,000	cDol2B-1-7	cluster	7	-19.5 no halite	no halite	-26.2	1.12
HKW-63-5dolomicDol 2B4,000cD02B-1-9chuster9-2.0.3 no halizeno haliz	HKW-63-5	dolomite	Dol 2B	4,000	cDol2B-1-8	cluster	8	-19.3 no halite	no halite	-22.7	1.12
$\begin{array}{llllllllllllllllllllllllllllllllllll$	HKW-63-5	dolomite	Dol 2B	4,000	cDol2B-1-9	cluster	9	-20.3 no halite	no halite	-23.9	1.12
MKHD-W6-2 cakite LMC 1 3,000 pLMC1-1-3 primary 3 -14.8 to halite no halite no ha 0.99 MKHD-W6-2 cakite LMC 1 3,000 pLMC1-1-5 primary 4 -10.6 no halite no halite no ha 0.98 MKHD-W6-2 cakite LMC 1 3,000 pLMC1-2-1 primary 1 -13.5 no halite no halite no ha no ha no halite no ha no data MKHD-W6-2 cakite LMC 1 3,000 pLMC1-2-4 primary 4 -12.4 no halite no halite no ha no data	MKHD-W6-2	calcite	LMC 1	3,000	pLMC1-1-2	primary	2	-14.9 no halite	no halite	no hh	0.99
MKHD-W6-2 cakite LMC 1 3,000 pLMC1-14 primary 4 -10.6 no halite no halite no ha 0.99 MKHD-W6-2 cakite LMC 1 3,000 pLMC1-2:1 primary 1 1-3.3 no halite no halite no h 0.99 MKHD-W6-2 cakite LMC 1 3,000 pLMC1-22 primary 2 -11.4 no halite no halite no h no data MKHD-W6-2 cakite LMC 1 3,000 pLMC1-2.4 primary 3 -13.2 no halite no halite no h no data MKHD-W6-2 cakite LMC 1 3,000 pLMC1-2.5 primary 5 -13.7 no halite no halite no h no data no d	MKHD-W6-2	calcite	LMC 1	3,000	pLMC1-1-3	primary	3	-14.8 no halite	no halite	no hh	0.99
MKHD-W6-2cakiteLMC 1 $3,000$ pLMC1-1-5primary5 -1.26 no haliteno haliteno haliteno hhno dataMKHD-W6-2cakiteLMC 1 $3,000$ pLMC1-2-2primary2 -11.4 no haliteno haliteno hhno dataMKHD-W6-2cakiteLMC 1 $3,000$ pLMC1-2-3primary3 -12.4 no haliteno haliteno hhno dataMKHD-W6-2cakiteLMC 1 $3,000$ pLMC1-2-6primary5 -13.7 no haliteno haliteno hhno dataMKHD-W6-2cakiteLMC 1 $3,000$ pLMC1-2-6primary6 -11.1 no haliteno haliteno hhno dataMKHD-W6-2cakiteLMC 1 $3,000$ pDo13A-c-1primary1 -24.3 -35.40 metastableno datano dataMKHD-W4dolomiteDo13A $1,000$ pDo13A-c-2primary3 -27.7 -31.00 metastableno datano dataMKHD-W4dolomiteDo13A $1,000$ cDo13-1-1cluster1 -19.4 no haliteno haliteno hhn.12HKW5-64-1dolomiteDo13A $1,000$ cDo13-1-2cluster3 -21 no haliteno haliteno hh 1.12 HKW5-64-1dolomiteDo13A $1,000$ cDo13-1-2cluster3 -21 no haliteno haliteno hh 1.12 HKW5-64-1dolomiteDo13B $1,000$ cDo13-1-2cluster <td>MKHD-W6-2</td> <td>calcite</td> <td>LMC 1</td> <td>3,000</td> <td>pLMC1-1-4</td> <td>primary</td> <td>4</td> <td>-10.6 no halite</td> <td>no halite</td> <td>no hh</td> <td>0.98</td>	MKHD-W6-2	calcite	LMC 1	3,000	pLMC1-1-4	primary	4	-10.6 no halite	no halite	no hh	0.98
MKHD-W6-2cakiteLMC 1 $3,000$ pLMC1-2.1primary1-1.3.3 no haliteno hali	MKHD-W6-2	calcite	LMC 1	3,000	pLMC1-1-5	primary	5	-12.6 no halite	no halite	no hh	0.99
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MKHD-W6-2	calcite	LMC 1	3,000	pLMC1-2-1	primary	1	-13.3 no halite	no halite	no hh	no data
$\begin{array}{llllllllllllllllllllllllllllllllllll$	MKHD-W6-2	calcite	LMC 1	3,000	pLMC1-2-2	primary	2	-11.4 no halite	no halite	no hh	no data
MKHD-W6-2cakiteLMC 1 $3,000$ pLMC1-2-4primary4-12.4 no haliteno dataMKHD-W6-2cakiteLMC 1 $3,000$ pLMC1-2-6primary6-11.1 no haliteno haliteno datano d	MKHD-W6-2	calcite	LMC 1	3,000	pLMC1-2-3	primary	3	-13.2 no halite	no halite	no hh	no data
MKHD-W6-2cakiteLMC 1 $3,000$ pLMC1-2-5primary 5 -13.7 no haliteno datano data	MKHD-W6-2	calcite	LMC 1	3,000	pLMC1-2-4	primary	4	-12.4 no halite	no halite	no hh	no data
MKHD-W6-2cakiteLMC 1 $3,000$ pLMC1-2-6primary 6 -11.1 no haliteno haliteno haliteno hatano dataMKHD-W4dolomiteDol 3A1,000pDol 3A-c-1primary 1 -24.3 -35.40 metastableno datano dataMKHD-W4dolomiteDol 3A1,000pDol 3A-c-2primary 3 2.76 -31.00 metastableno datano dataMKHD-W4dolomiteDol 3A1,000pDol 3A-c-3primary 4 -25 -34.90 metastableno datano dataMKHD-W4dolomiteDol 3A1,000cDol3-1-1cluster1 -19.4 no haliteno haliteno halitno dataMKW5-64-1dolomiteDol 3A1,000cDol3-1-2cluster3 -21 no haliteno haliteno hh 1.12 HKW5-64-1dolomiteDol 3A1,000cDol3-1-3cluster3 -21 no haliteno haliteno hh 1.12 HKW5-64-1dolomiteDol 3B1,000cDol3-1-1cluster1 -20.5 no haliteno haliteno hh 1.01 HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-1cluster1 -20.5 no haliteno hh 1.09 HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-2cluster1 -23.5 na mata na dataHD-S-3-2dolomiteDol 3B1,000cDol 3B-1-3cluster1	MKHD-W6-2	calcite	LMC 1	3,000	pLMC1-2-5	primary	5	-13.7 no halite	no halite	no hh	no data
MKHD-W4dolomiteDol 3A1,000pDol 3A-c-1primary1-24.3-35.40metastableno datano datano dataMKHD-W4dolomiteDol 3A1,000pDol 3A-c-3primary2-26.4-32.80metastableno datano dataMKHD-W4dolomiteDol 3A1,000pDol 3A-c-4primary3-27.7-31.00metastableno datano dataMKHD-W4dolomiteDol 3A1,000cDol 3A-c-4primary4-25-34.90metastableno datano dataMKHD-W4dolomiteDol 3A1,000cDol3-1-1cLuster1-19.4 no haliteno haliteno haliteno hh1.12HKW5-64-1dolomiteDol 3A1,000cDol3-1-3cLuster2-20.3 no haliteno haliteno hh1.11HD-S-32dolomiteDol 3B1,000cDol3-1-4cLuster4-20.7 no haliteno haliteno hh1.07HD-S-32dolomiteDol 3B1,000cDol 3B-1-1cluster1-20.5 no haliteno haliteno hh1.09HD-S-32dolomiteDol 3B1,000cDol 3B-1-2cLuster2-20.9 no haliteno haliteno hh1.09HD-S-32dolomiteDol 3B1,000cDol 3B-1-3cLuster1-23.7-32.40metastableno datano dataHD-S-32dolomiteDol 3B1,000cDol 3B-1-2cLus	MKHD-W6-2	calcite	LMC 1	3,000	pLMC1-2-6	primary	6	-11.1 no halite	no halite	no hh	no data
MKHD-W4dolomiteDol 3A1,000pDol 3A-c-2primary2-26.4-32.80metastableno datano dataMKHD-W4dolomiteDol 3A1,000pDol 3A-c-3primary3-27.7-31.00metastableno datano dataMKHD-W4dolomiteDol 3A1,000pDol 3A-c-4primary4-25-34.90metastableno datano dataMKW5-64-1dolomiteDol 3A1,000cDol3-1-1cLuster1-19.4 no haliteno haliteno halitno hi1.12HKW5-64-1dolomiteDol 3A1,000cDol3-1-2cluster3-21 no haliteno haliteno hi1.11HKW5-64-1dolomiteDol 3A1,000cDol3-1-3cluster3-21 no haliteno haliteno hi1.12HKW5-64-1dolomiteDol 3B1,000cDol3-1-4cluster1-20.7 no haliteno haliteno hi1.01HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-1cluster1-20.5 no haliteno haliteno hi1.08HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-2cluster2-21.0 no haliteno haliteno hi1.09HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-3cluster1-21.0 no haliteno haliteno hi1.09HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-2cluster2-21.0 no hali	MKHD-W4	dolomite	Dol 3A	1,000	pDol 3A-c-1	primary	1	-24.3 -35.40	metastable	no data	no data
MKHD-W4dolomiteDol 3A1,000pDol 3A-c-3primary3 -27.7 -31.00 metastableno datano dataMKHD-W4dolomiteDol 3A1,000pDol 3A-c-4primary4 -25 -34.90 metastableno datano dataHKW5-64-1dolomiteDol 3A1,000cDol3-1-1cluster1 -19.4 no haliteno haliten	MKHD-W4	dolomite	Dol 3A	1,000	pDol 3A-c-2	primary	2	-26.4 -32.80	metastable	no data	no data
MKHD-W4dolomiteDol 3A1,000pDol 3A-c-4primary4 -25 -34.90 metastableno datano dataHKW5-64-1dolomiteDol 3A1,000cDol3-1-1cluster1 -19.4 no haliteno haliteno h1.12HKW5-64-1dolomiteDol 3A1,000cDol3-1-2cluster2 -20.3 no haliteno haliteno h1.11HKW5-64-1dolomiteDol 3A1,000cDol3-1-4cluster3 -21 no haliteno haliteno h1.11HD-S-3-2dolomiteDol 3B1,000cDol3-1-4cluster4 -20.7 no haliteno haliteno h1.07HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-1cluster1 -19.7 no haliteno haliteno h1.08HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-1cluster1 -20.5 no haliteno haliteno h1.09HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-2cluster3 -21 no haliteno haliteno h1.09HD-S-3-2dolomiteDol 3B1,000cDol 3-1-1cluster1 -23.3 -32.40 metastableno datano dataHD-S-3-2dolomiteDol 3B1,000cDol 3-1-2cluster3 -26.7 -33.00 metastableno datano dataHD-S-3-2dolomiteDol 3B1,000cDol 3-1-2cluster3<	MKHD-W4	dolomite	Dol 3A	1,000	pDol 3A-c-3	primary	3	-27.7 -31.00	metastable	no data	no data
HKW5-64-1dolomiteDol 3A1,000cDol3-1-1cluster1-19.4 no haliteno haliteno hh1.12HKW5-64-1dolomiteDol 3A1,000cDol3-1-2cluster2-20.3 no haliteno haliteno hh1.11HKW5-64-1dolomiteDol 3A1,000cDol3-1-3cluster3-21 no haliteno haliteno hh1.12HKW5-64-1dolomiteDol 3A1,000cDol3-1-4cluster4-20.7 no haliteno haliteno hh1.11HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-1isobed 1-19.7 no haliteno haliteno hh1.07HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-2cluster1-20.5 no haliteno haliteno hh1.08HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-3cluster3-21 no haliteno haliteno hh1.09HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-3cluster3-21 no haliteno haliteno hh1.09HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-1cluster1-23.3-32.40metastableno dataHD-S-3-2dolomiteDol 3B1,000cDol 3B-1-1cluster1-26.8-34.80metastableno dataHD-S-3-2dolomiteDol 3B1,000cDol 3B-1-1primary1-19.5 no haliteno haliteno halitano data <t< td=""><td>MKHD-W4</td><td>dolomite</td><td>Dol 3A</td><td>1,000</td><td>pDol 3A-c-4</td><td>primary</td><td>4</td><td>-25 -34.90</td><td>metastable</td><td>no data</td><td>no data</td></t<>	MKHD-W4	dolomite	Dol 3A	1,000	pDol 3A-c-4	primary	4	-25 -34.90	metastable	no data	no data
HKW5-64-1dolomiteDol 3A1,000 $cDol3-1-2$ cluster2-20.3 no haliteno haliteno hh1.11HKW5-64-1dolomiteDol 3A1,000 $cDol3-1-3$ cluster3-21 no haliteno haliteno hh1.12HKW5-64-1dolomiteDol 3A1,000 $cDol3-1-3$ cluster4-20.7 no haliteno haliteno hh1.11HD-S-3-2dolomiteDol 3B1,000isoDal 3B-1-1cluster4-20.7 no haliteno haliteno hh1.07HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-1cluster1-19.7 no haliteno haliteno hh1.08HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-2cluster2-20.9 no haliteno haliteno hh1.09HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-3cluster3-21 no haliteno haliteno hh1.09HD-S-3-2dolomiteDol 3B1,000cDol 3-1-1cluster1-20.5 no haliteno haliteno hh1.09HD-S-3-2dolomiteDol 3B1,000cDol 3-1-1cluster1-21.0 no haliteno haliteno hh1.00HD-S-3-2dolomiteDol 3B1,000cDol 3-1-1cluster1-23.3-32.40metastableno datano dataHD-S-3-2dolomiteDol 3B1,000cDol 3-1-2cluster2-26.7-33.00metastable <td>HKW5-64-1</td> <td>dolomite</td> <td>Dol 3A</td> <td>1,000</td> <td>cDol3-1-1</td> <td>cluster</td> <td>1</td> <td>-19.4 no halite</td> <td>no halite</td> <td>no hh</td> <td>1.12</td>	HKW5-64-1	dolomite	Dol 3A	1,000	cDol3-1-1	cluster	1	-19.4 no halite	no halite	no hh	1.12
HKW5-64-1dolomiteDol 3A1,000cDol3-1-3cluster3-21 no haliteno haliteno haliteno hh1.12HKW5-64-1dolomiteDol 3A1,000cDol3-1-4cluster4-20.7 no haliteno haliteno hh1.11HD-S-3-2dolomiteDol 3B1,000cDol3B-1-1isolated1-19.7 no haliteno haliteno haliteno hh1.07HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-1cluster1-20.5 no haliteno haliteno hit1.08HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-2cluster2-20.9 no haliteno haliteno hit1.09HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-3cluster3-32.40metastableno datano dataHD-S-3-2dolomiteDol 3B1,000cDol 3-1-1cluster1-23.3-32.40metastableno datano dataHD-S-3-2dolomiteDol 3B1,000cDol 3-1-3cluster3-26.7-33.00metastableno datano dataHD-S-3-2dolomiteDol 3B1,000cDol 3B-1-1primary1-19.5 no haliteno haliteno hit1.08HD-S-3-2dolomiteDol 3B1,000pDol 3B-1-2cluster3-26.7-33.00metastableno datano dataHD-S-3-2dolomiteDol 3B1,000pDol 3B-1-3primary<	HKW5-64-1	dolomite	Dol 3A	1,000	cDol3-1-2	cluster	2	-20.3 no halite	no halite	no hh	1.11
HKW5-64-1dolomiteDol 3A1,000 $cDol3-1-4$ cluster4-20.7 no haliteno haliteno haliteno hn1.11HD-S-3-2dolomiteDol 3B1,000isoDol 3B-1-1isolated1-19.7 no haliteno haliteno hn1.07HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-1cluster1-20.5 no haliteno haliteno hn1.08HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-2cluster2-20.9 no haliteno haliteno hn1.09HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-3cluster3-21 no haliteno haliteno hn1.09HD-S-3-2dolomiteDol 3B1,000cDol 3-1-1cluster1-23.3-32.40metastableno datano dataHD-S-3-2dolomiteDol 3B1,000cDol 3-1-2cluster2-26.8-34.80metastableno datano dataHD-S-3-2dolomiteDol 3B1,000cDol 3B-1-1primary1-19.5 no haliteno haliteno datano dataHD-S-3-2dolomiteDol 3B1,000cDol 3B-1-2cluster2-26.8-34.80metastableno datano dataHD-S-3-2dolomiteDol 3B1,000pDol 3B-1-1primary1-19.5 no haliteno haliteno halitno haliteHKW5-64-1dolomiteDol 3B1,000pDol 3B-1-2primary <td>HKW5-64-1</td> <td>dolomite</td> <td>Dol 3A</td> <td>1,000</td> <td>cDol3-1-3</td> <td>cluster</td> <td>3</td> <td>-21 no halite</td> <td>no halite</td> <td>no hh</td> <td>1.12</td>	HKW5-64-1	dolomite	Dol 3A	1,000	cDol3-1-3	cluster	3	-21 no halite	no halite	no hh	1.12
HD-S-3-2dolomiteDol 3B1,000isoDol 3B-1-1isolated1 -19.7 no haliteno haliteno haliteno hh1.07HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-1cluster1 -20.5 no haliteno haliteno hh1.08HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-2cluster2 -20.9 no haliteno haliteno hh1.09HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-3cluster3 -21 no haliteno haliteno hh1.09HD-S-3-2dolomiteDol 3B1,000cDol 3-1-1cluster1 -23.3 -32.40 metastableno datano dataHD-S-3-2dolomiteDol 3B1,000cDol 3-1-2cluster2 -26.8 -34.80 metastableno datano dataHD-S-3-2dolomiteDol 3B1,000cDol 3-1-3cluster3 -26.7 -33.00 metastableno datano dataHD-S-3-2dolomiteDol 3B1,000pDol 3B-1-1primary1 -19.5 no haliteno haliteno datano dataHKW5-64-1dolomiteDol 3B1,000pDol 3B-1-2primary3 -17.4 no haliteno haliteno hh1.08HKW5-64-1dolomiteDol 3B1,000pDol 3B-1-3primary3 -17.4 no haliteno haliteno hh1.08HKW5-64-1dolomiteDol 3B1,000cDol 3B-1-3 </td <td>HKW5-64-1</td> <td>dolomite</td> <td>Dol 3A</td> <td>1,000</td> <td>cDol3-1-4</td> <td>cluster</td> <td>4</td> <td>-20.7 no halite</td> <td>no halite</td> <td>no hh</td> <td>1.11</td>	HKW5-64-1	dolomite	Dol 3A	1,000	cDol3-1-4	cluster	4	-20.7 no halite	no halite	no hh	1.11
HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-1cluster1-20.5 no haliteno haliteno haliteno hh1.08HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-2cluster2-20.9 no haliteno haliteno hh1.09HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-3cluster3-21 no haliteno haliteno hh1.09HD-S-3-2dolomiteDol 3B1,000cDol 3-1-1cluster1-23.3-32.40metastableno datano dataHD-S-3-2dolomiteDol 3B1,000cDol 3-1-2cluster2-26.8-34.80metastableno datano dataHD-S-3-2dolomiteDol 3B1,000cDol 3-1-3cluster3-26.7-33.00metastableno datano dataHD-S-3-2dolomiteDol 3B1,000pDol 3B-1-1primary1-19.5 no haliteno haliteno datano dataHD-S-3-2dolomiteDol 3B1,000pDol 3B-1-1cluster3-26.7-33.00metastableno datano dataHKW5-64-1dolomiteDol 3B1,000pDol 3B-1-2primary1-19.5 no haliteno haliteno hi1.08HKW5-64-1dolomiteDol 3B1,000pDol 3B-1-2primary3-17.4 no haliteno haliteno h1.07HKW5-64-1dolomiteDol 3B1,000cDol 3B-1-3cluster	HD-S-3-2	dolomite	Dol 3B	1,000	isoDol 3B-1-1	isolated	1	-19.7 no halite	no halite	no hh	1.07
HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-2cluster2-20.9 no haliteno haliteno haliteno hh1.09HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-3cluster3-21 no haliteno haliteno hh1.09HD-S-3-2dolomiteDol 3B1,000cDol 3-1-1cluster1-23.3-32.40metastableno datano dataHD-S-3-2dolomiteDol 3B1,000cDol 3-1-2cluster2-26.8-34.80metastableno datano dataHD-S-3-2dolomiteDol 3B1,000cDol 3-1-3cluster3-26.7-33.00metastableno datano dataHD-S-3-2dolomiteDol 3B1,000pDol 3B-1-3cluster3-26.7-33.00metastableno datano dataHKW5-64-1dolomiteDol 3B1,000pDol 3B-1-1primary1-19.5 no haliteno haliteno hh1.08HKW5-64-1dolomiteDol 3B1,000pDol 3B-1-2primary3-17.4 no haliteno haliteno hh1.08HKW5-64-1dolomiteDol 3B1,000pDol 3B-1-3primary3-17.4 no haliteno haliteno hh1.08HKW5-64-1dolomiteDol 3B1,000cDol 3B-1-3primary4-18 no haliteno haliteno hh1.09HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-2cluster	HD-S-3-2	dolomite	Dol 3B	1,000	cDol 3B-1-1	cluster	1	-20.5 no halite	no halite	no hh	1.08
HD-S-3-2dolomiteDol 3B1,000cDol 3B-1-3cluster3-21 no haliteno haliteno haliteno hh1.09HD-S-3-2dolomiteDol 3B1,000cDol 3-1-1cluster1-23.3-32.40metastableno datano dataHD-S-3-2dolomiteDol 3B1,000cDol 3-1-2cluster2-26.8-34.80metastableno datano dataHD-S-3-2dolomiteDol 3B1,000cDol 3-1-3cluster3-26.7-33.00metastableno datano dataHKW5-64-1dolomiteDol 3B1,000pDol 3B-1-1primary1-19.5 no haliteno haliteno haliteno haliteHKW5-64-1dolomiteDol 3B1,000pDol 3B-1-2primary3-17.4 no haliteno haliteno haliteno haliteHKW5-64-1dolomiteDol 3B1,000pDol 3B-1-3primary3-17.4 no haliteno haliteno haliteno haliteHKW5-64-1dolomiteDol 3B1,000pDol 3B-1-3primary3-17.4 no haliteno haliteno hi1.08HKW5-64-1dolomiteDol 3B1,000cDol 3B-1-3cluster1-18.3 no haliteno haliteno hi1.09HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-2cluster2-17.9 no haliteno haliteno hi1.09HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-3	HD-S-3-2	dolomite	Dol 3B	1,000	cDol 3B-1-2	cluster	2	-20.9 no halite	no halite	no hh	1.09
HD-S-3-2dolomiteDol 3B1,000cDol 3-1-1cluster1-23.3-32.40metastableno datano dataHD-S-3-2dolomiteDol 3B1,000cDol 3-1-2cluster2-26.8-34.80metastableno datano dataHD-S-3-2dolomiteDol 3B1,000cDol 3-1-3cluster3-26.7-33.00metastableno datano dataHKW5-64-1dolomiteDol 3B1,000pDol 3B-1-1primary1-19.5 no haliteno haliteno hh1.08HKW5-64-1dolomiteDol 3B1,000pDol 3B-1-2primary2-18.2 no haliteno haliteno hh1.08HKW5-64-1dolomiteDol 3B1,000pDol 3B-1-3primary3-17.4 no haliteno haliteno hh1.08HKW5-64-1dolomiteDol 3B1,000pDol 3B-1-3primary3-17.4 no haliteno haliteno hh1.08HKW5-64-1dolomiteDol 3B1,000pDol 3B-1-3cluster1-18.3 no haliteno haliteno hh1.09HKW5-64-1dolomiteDol 3B1,000cDol 3B-1-1cluster1-18.3 no haliteno haliteno hh1.09HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-2cluster2-17.9 no haliteno haliteno hh1.09HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-3cluster3-19.1 no hal	HD-S-3-2	dolomite	Dol 3B	1,000	cDol 3B-1-3	cluster	3	-21 no halite	no halite	no hh	1.09
HD-S-3-2dolomiteDol 3B1,000 $cDol 3-1-2$ cluster2-26.8-34.80metastableno datano dataHD-S-3-2dolomiteDol 3B1,000 $cDol 3-1-3$ cluster3-26.7-33.00metastableno datano dataHKW5-64-1dolomiteDol 3B1,000pDol 3B-1-1primary1-19.5 no haliteno haliteno hh1.08HKW5-64-1dolomiteDol 3B1,000pDol 3B-1-2primary2-18.2 no haliteno haliteno hh1.08HKW5-64-1dolomiteDol 3B1,000pDol 3B-1-3primary3-17.4 no haliteno haliteno hh1.08HKW5-64-1dolomiteDol 3B1,000pDol 3B-1-3primary3-17.4 no haliteno haliteno hh1.08HKW5-64-1dolomiteDol 3B1,000pDol 3B-1-4primary4-18 no haliteno haliteno hh1.08HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-1cluster1-18.3 no haliteno haliteno hh1.09HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-2cluster2-17.9 no haliteno haliteno hh1.09HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-2cluster3-19.1 no haliteno haliteno hh1.10HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-2cluster3-19.1 no halite <td>HD-S-3-2</td> <td>dolomite</td> <td>Dol 3B</td> <td>1,000</td> <td>cDol 3-1-1</td> <td>cluster</td> <td>1</td> <td>-23.3 -32.40</td> <td>metastable</td> <td>no data</td> <td>no data</td>	HD-S-3-2	dolomite	Dol 3B	1,000	cDol 3-1-1	cluster	1	-23.3 -32.40	metastable	no data	no data
HD-S-3-2dolomiteDol 3B1,000 $cDol 3-1-3$ cluster3-26.7-33.00metastableno datano dataHKW5-64-1dolomiteDol 3B1,000pDol 3B-1-1primary1-19.5 no haliteno haliteno hh1.08HKW5-64-1dolomiteDol 3B1,000pDol 3B-1-2primary2-18.2 no haliteno haliteno hh1.08HKW5-64-1dolomiteDol 3B1,000pDol 3B-1-3primary3-17.4 no haliteno haliteno hh1.07HKW5-64-1dolomiteDol 3B1,000pDol 3B-1-3primary3-17.4 no haliteno haliteno hh1.08HKW5-64-1dolomiteDol 3B1,000pDol 3B-1-4primary4-18 no haliteno haliteno hh1.08HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-1cluster1-18.3 no haliteno haliteno hh1.09HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-2cluster2-17.9 no haliteno haliteno hh1.09HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-3cluster3-19.1 no haliteno haliteno hh1.10HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-4cluster4-18.4 no haliteno haliteno hh1.10HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-4cluster4-18.4 no haliteno hal	HD-S-3-2	dolomite	Dol 3B	1,000	cDol 3-1-2	cluster	2	-26.8 -34.80	metastable	no data	no data
HKW5-64-1dolomiteDol 3B1,000pDol 3B-1-1primary1-19.5 no haliteno haliteno haliteno hh1.08HKW5-64-1dolomiteDol 3B1,000pDol 3B-1-2primary2-18.2 no haliteno haliteno hh1.08HKW5-64-1dolomiteDol 3B1,000pDol 3B-1-3primary3-17.4 no haliteno haliteno hh1.07HKW5-64-1dolomiteDol 3B1,000pDol 3B-1-4primary4-18 no haliteno haliteno hh1.08HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-1cluster1-18.3 no haliteno haliteno hh1.09HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-2cluster2-17.9 no haliteno haliteno hh1.09HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-3cluster3-19.1 no haliteno haliteno hh1.09HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-3cluster4-18.4 no haliteno haliteno hh1.10HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-3cluster4-18.4 no haliteno haliteno hh1.10HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-5cluster4-18.4 no haliteno haliteno hh1.00HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-5cluster5-17.6 no halite <td< td=""><td>HD-S-3-2</td><td>dolomite</td><td>Dol 3B</td><td>1,000</td><td>cDol 3-1-3</td><td>cluster</td><td>3</td><td>-26.7 -33.00</td><td>metastable</td><td>no data</td><td>no data</td></td<>	HD-S-3-2	dolomite	Dol 3B	1,000	cDol 3-1-3	cluster	3	-26.7 -33.00	metastable	no data	no data
HKW5-64-1dolomiteDol 3B1,000pDol 3B-1-2primary2-18.2 no haliteno haliteno haliteno hh1.08HKW5-64-1dolomiteDol 3B1,000pDol 3B-1-3primary3-17.4 no haliteno haliteno hh1.07HKW5-64-1dolomiteDol 3B1,000pDol 3B-1-4primary4-18 no haliteno haliteno hh1.08HKW5-64-1dolomiteDol 3B1,000cDol 3B-1-4primary4-18 no haliteno haliteno hh1.08HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-1cluster1-18.3 no haliteno haliteno hh1.09HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-2cluster2-17.9 no haliteno haliteno hh1.09HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-3cluster3-19.1 no haliteno haliteno hh1.10HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-5cluster4-18.4 no haliteno haliteno hh1.10HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-5cluster5-17.6 no haliteno haliteno hilteno hilteno hilteHKW5-16-1dolomiteDol 3B1,000cDol 3B-1-5cluster5-17.6 no haliteno haliteno hilteno hilteno hilteHKW5-16-1dolomiteDol 3B1,000cDol 3B-1-5clu	HKW5-64-1	dolomite	Dol 3B	1,000	pDol 3B-1-1	primary	1	-19.5 no halite	no halite	no hh	1.08
HKW5-64-1dolomiteDol 3B1,000pDol 3B-1-3primary3-17.4 no haliteno haliteno haliteno hh1.07HKW5-64-1dolomiteDol 3B1,000pDol 3B-1-4primary4-18 no haliteno haliteno hh1.08HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-1cluster1-18.3 no haliteno haliteno hh1.09HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-2cluster2-17.9 no haliteno haliteno hh1.09HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-3cluster3-19.1 no haliteno haliteno hh1.10HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-3cluster4-18.4 no haliteno haliteno hh1.10HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-5cluster4-18.4 no haliteno haliteno hh1.09HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-5cluster5-17.6 no haliteno haliteno hh1.09HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-5cluster6-18.3 no haliteno haliteno haliteno haliteno haliteHKW5-16-1dolomiteDol 3B1,000cDol 3B-1-6cluster6-18.3 no haliteno haliteno haliteno haliteno haliteHKW5-16-1dolomiteDol 3B1,000cDol 3B-1-6 <td>HKW5-64-1</td> <td>dolomite</td> <td>Dol 3B</td> <td>1,000</td> <td>pDol 3B-1-2</td> <td>primary</td> <td>2</td> <td>-18.2 no halite</td> <td>no halite</td> <td>no hh</td> <td>1.08</td>	HKW5-64-1	dolomite	Dol 3B	1,000	pDol 3B-1-2	primary	2	-18.2 no halite	no halite	no hh	1.08
HKW5-64-1dolomiteDol 3B1,000pDol 3B-1-4primary4-18 no haliteno halit	HKW5-64-1	dolomite	Dol 3B	1,000	pDol 3B-1-3	primary	3	-17.4 no halite	no halite	no hh	1.07
HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-1cluster1-18.3 no haliteno haliteno haliteno hh1.09HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-2cluster2-17.9 no haliteno haliteno hh1.09HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-3cluster3-19.1 no haliteno haliteno hh1.09HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-3cluster3-19.1 no haliteno haliteno hh1.10HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-4cluster4-18.4 no haliteno haliteno hh1.10HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-5cluster5-17.6 no haliteno haliteno hh1.09HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-6cluster6-18.3 no haliteno haliteno hilteno hilteno hilteHKW5-16-1dolomiteDol 3B1,000cDol 3B-1-6cluster6-18.3 no haliteno hilteno hilteno hilteno hilteHKW5-16-1dolomiteDol 3B1,000cDol 3B-1-6cluster6-18.3 no haliteno hilteno hilteno hilteno hilteHKW5-16-1dolomiteDol 3B1,000cDol 3B-1-6cluster6-18.3 no haliteno hilteno hilteno hilteHKW5-16-1dolomiteDol 3B1,000<	HKW5-64-1	dolomite	Dol 3B	1,000	pDol 3B-1-4	primary	4	-18 no halite	no halite	no hh	1.08
HKW5-16-1dolomiteDol 3B1,000cDol 3B-1-2cluster2-17.9 no haliteno hal	HKW5-16-1	dolomite	Dol 3B	1.000	cDol 3B-1-1	cluster	1	-18.3 no halite	no halite	no hh	1.09
HKW5-16-1 dolomite Dol 3B 1,000 cDol 3B-1-3 cluster 3 -19.1 no halite no halite no hh 1.10 HKW5-16-1 dolomite Dol 3B 1,000 cDol 3B-1-4 cluster 4 -18.4 no halite no halite no hh 1.10 HKW5-16-1 dolomite Dol 3B 1,000 cDol 3B-1-5 cluster 4 -18.4 no halite no halite no hh 1.10 HKW5-16-1 dolomite Dol 3B 1,000 cDol 3B-1-5 cluster 5 -17.6 no halite no halite no hh 1.09 HKW5-16-1 dolomite Dol 3B 1,000 cDol 3B-1-6 cluster 6 -18.3 no halite no halite no hilte no h	HKW5-16-1	dolomite	Dol 3B	1,000	cDol 3B-1-2	cluster	2	-17.9 no halite	no halite	no hh	1.09
HKW5-16-1 dolomite Dol 3B 1,000 cDol 3B-1-4 cluster 4 -18.4 no halite no halite no hil 1.10 HKW5-16-1 dolomite Dol 3B 1,000 cDol 3B-1-5 cluster 5 -17.6 no halite no halite no hil 1.09 HKW5-16-1 dolomite Dol 3B 1,000 cDol 3B-1-5 cluster 5 -17.6 no halite no halite no hilte no hilte <td>HKW5-16-1</td> <td>dolomite</td> <td>Dol 3B</td> <td>1.000</td> <td>cDol 3B-1-3</td> <td>cluster</td> <td>3</td> <td>-19.1 no halite</td> <td>no halite</td> <td>no hh</td> <td>1.10</td>	HKW5-16-1	dolomite	Dol 3B	1.000	cDol 3B-1-3	cluster	3	-19.1 no halite	no halite	no hh	1.10
HKW5-16-1 dolomite Dol 3B 1,000 cDol 3B-1-5 cluster 5 -17.6 no halite no hh 1.09 HKW5-16-1 dolomite Dol 3B 1000 cDol 3B-1-6 cluster 6 -18.3 no halite no hilte no hh 1.09	HKW5-16-1	dolomite	Dol 3B	1.000	cDol 3B-1-4	cluster	4	-18.4 no halite	no halite	no hh	1.10
HKW5.16.1 dolomite Dol 3B 1000 cDol 3B.1.6 cluster 6 18.3 no balite no balite no balite	HKW5-16-1	dolomite	Dol 3B	1.000	cDol 3B-1-5	cluster	5	-17.6 no halite	no halite	no hh	1.09
111111 10 10 10 10 10 10 10 10 10 10 10	HKW5-16-1	dolomite	Dol 3B	1,000	cDol 3B-1-6	cluster	6	-18.3 no halite	no halite	no hh	1.10

cluster

primary

primary

primary

cDol 3B-1-7

pLam1-x-1

pLam1-x-2

pLam1-x-3

7

1

2

3

-19.2 no halite

-2 no halite

-2.4 no halite

-2.6 no halite

no halite

no halite

no halite

no halite

no hh

no hh

no hh

no hh

1.10

0.95

0.95

0.96

dolomite

HKW 7-Lam1.1 dolomite Lam 1 dol cc

HKW 7-Lam1.1 dolomite Lam 1 dol cc

HKW 7-Lam1.1 dolomite Lam 1 dol cc

Dol 3B

1,000

1,000

1,000

1,000

HKW5-16-1

Table S1.4c. Fluid inclusion data for dolomite-, dedolomite-, calcite- and quartz phases from Steltenberg quarry. Palaeooverburden thickness was compiled from Drozdzewski and Wrede (1994) and Götte (2004).

Table S1.4d. Fluid inclusion data for dolomite-, dedolomite-, calcite- and quartz phases from Steltenberg quarry. Palaeooverburden thickness was compiled from Drozdzewski and Wrede (1994) and Götte (2004).

Sample	T _h uncorr.	T _h corr.	Salinity	NaCl wt.%	CaCl ₂ wt.%	Cl ppm	Ca ppm	Na ppm	Mole Ca	Mole Na	Mole ratio Ca/(Na+Ca)	Na deficit	Ca excess
MKHD-W-6-1	109.0	124.4	21.5	12.3	9.2	110736.9	33388	48223.9	0.8	2.1	0.28	584.9	1559.6
HKW-5-63-1	115.0	130.7	22.0	16.2	5.8	121160.8	21053	63696.3	0.5	2.8	0.16	163.4	934.1
HKW-5-63-1	114.0	129.6	22.1	15.6	6.5	120093.3	23593	61209.7	0.6	2.7	0.18	245.9	1061.9
HKW-5-63-1	127.0	143.2	21.5	11.7	9.7	109459.9	35112	46177.9	0.9	2.0	0.30	643.1	1646.9
HKW-5-63-1	114.0	129.6	22.0	15.0	6.9	118580.9	25054	59196.7	0.6	2.6	0.20	296.9	1136.3
HKW-5-63-1	117.0	132.8	22.3	17.4	4.9	124864.3	17815	68384.8	0.4	3.0	0.13	48.9	769.0
HKW-5-63-1	110.0	125.5	22.1	12.3	9.8	113088.5	35557	48216.6	0.9	2.1	0.30	642.3	1665.6
HKW-63-5	100.0	115.0	20.0	14.7	5.3	110052.0	19123	57856.3	0.5	2.5	0.16	148.4	848.4
HKW-63-5	104.0	119.2	21.8	16.3	5.5	120649.8	20037	64082.6	0.5	2.8	0.15	134.1	883.9
HKW-63-5	107.0	122.3	22.1	16.0	6.1	120921.5	21933	62919.2	0.5	2.7	0.17	191.4	978.3
HKW-63-5	104.0	119.2	22.2	16.3	59	121905 7	21182	64088.0	0.5	2.8	0.16	164.4	939.8
HKW-63-5	107.0	122.3	22.2	13.0	9.2	114924.3	33137	51116 5	0.8	2.2	0.27	560.4	1543.1
HKW-63-5	99.0	113.9	20.8	11.4	9.4	106203.3	34067	44804 1	0.9	1.9	0.30	624.0	1597.9
HKW-63-5	97.0	112.0	20.0	10.4	10.8	105137.5	38829	40749.0	1.0	1.9	0.35	774.9	1836.5
HKW-63-5	102.0	112.0	21.1	17.3	4.3	121/05 0	15406	67902.6	0.4	3.0	0.12	-11.8	652.0
HKW-63-5	102.0	118.0	21.5	14.8	7.1	118021 7	25800	58307.1	0.4	2.5	0.12	322.1	1174.0
MKHD W6 2	224.0	228.5	18.4	18.4	,.1	111758.0	177	72345 7	0.0	3.1	0.20	141.8	08.6
MKHD W6 2	224.0	226.5	18.4	18.3	0.0	111756.0	176	72021.0		3.1	0.00	430.8	-98.0
MKHD-W0-2	105.0	100.7	10.4	16.5	0.0	00404 6	140	57241.0		2.1	0.00	-439.0	-96.2
MKHD-W6-2	207.0	199.7	14.0	14.0	0.0	00784.2	140	57241.0 64504.5		2.5	0.00	-549.0	-78.0
MKHD-W0-2	207.0	211.7	10.5	10.4	0.0	102524.2	150	67022.1		2.0	0.00	-394.3	-00.0
MKHD-W0-2	202.0	200.1	17.1	17.0	0.0	02004.0	104	67022.1		2.9	0.00	-409.5	-91.5
MKHD-W6-2	214.0	218.3	15.4	15.5	0.0	95094.8	147	60264.2		2.6	0.00	-368.0	-82.1
MKHD-W6-2	218.0	222.4	17.0	17.0	0.0	103004.7	163	666/9.3		2.9	0.00	-407.2	-90.9
MKHD-W6-2	208.0	212.2	10.5	16.2	0.0	98693.3	156	63888.3		2.8	0.00	-390.2	-8/.1
MKHD-W6-2	200.0	204.0	17.4	17.4	0.0	105632.6	167	68380.5		3.0	0.00	-417.6	-93.2
MKHD-W6-2	204.0	208.1	15.1	15.0	0.0	91364.7	144	59144.2		2.6	0.00	-361.2	-80.6
MKHD-W4	82.0	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data
MKHD-W4	82.0	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data
MKHD-W4	81.0	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data
MKHD-W4	83.0	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data
HKW5-64-1	99.0	102.7	22.0	21.9	0.1	133152.6	210	86195.3		3.7	0.00	-526.4	-117.5
HKW5-64-1	113.0	116.9	22.6	22.6	0.1	137247.2	217	88845.9		3.9	0.00	-542.6	-121.1
HKW5-64-1	111.0	114.8	23.2	23.1	0.1	140407.8	222	90891.9		4.0	0.00	-555.1	-123.9
HKW5-64-1	117.0	120.9	22.9	22.9	0.1	139055.5	220	90016.5		3.9	0.00	-549.7	-122.7
HD-S-3-2	161.0	165.3	22.2	22.1	0.1	134521.8	212	87081.7		3.8	0.00	-531.8	-118.7
HD-S-3-2	155.0	159.2	22.8	22.7	0.1	138152.1	218	89431.7		3.9	0.00	-546.2	-121.9
HD-S-3-2	152.0	156.2	23.1	23.0	0.1	139957.4	221	90600.4		3.9	0.00	-553.3	-123.5
HD-S-3-2	156.0	160.3	23.2	23.1	0.1	140407.8	222	90891.9		4.0	0.00	-555.1	-123.9
HD-S-3-2	87.0	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data
HD-S-3-2	82.0	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data
HD-S-3-2	89.0	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data
HKW5-64-1	149.0	153.2	22.0	22.0	0.1	133609.5	211	86491.1		3.8	0.00	-528.2	-117.9
HKW5-64-1	148.0	152.2	21.1	21.0	0.1	127622.6	202	82615.5		3.6	0.00	-504.5	-112.6
HKW5-64-1	149.0	153.2	20.4	20.4	0.1	123878.6	196	80191.9		3.5	0.00	-489.7	-109.3
HKW5-64-1	147.0	151.2	20.9	20.8	0.1	126691.4	200	82012.7		3.6	0.00	-500.9	-111.8
HKW5-16-1	132.0	136.0	21.1	21.1	0.1	128087.1	202	82916.2		3.6	0.00	-506.4	-113.0
HKW5-16-1	122.0	125.9	20.8	20.8	0.1	126224.7	199	81710.6		3.6	0.00	-499.0	-111.4
HKW5-16-1	128.0	132.0	21.7	21.7	0.1	131778.5	208	85305.8		3.7	0.00	-521.0	-116.3
HKW5-16-1	124.0	128.0	21.2	21.2	0.1	128550.9	203	83216.4		3.6	0.00	-508.2	-113.4
HKW5-16-1	130.0	134.0	20.6	20.5	0.1	124819.6	197	80801.0		3.5	0.00	-493.5	-110.1
HKW5-16-1	119.0	122.9	21.1	21.1	0.1	128087.1	202	82916.2		3.6	0.00	-506.4	-113.0
HKW5-16-1	125.0	129.0	21.8	21.8	0.1	132237.1	209	85602.7		3.7	0.00	-522.8	-116.7
HKW 7-Lam1.1	220.0	225.3	3.4	3.4	0.0	20539.5	32	13296.1	0.0	0.6	0.00	-81.2	-18.1
HKW 7-Lam1.1	220.0	225.3	4.0	4.1	0.0	24710.8	39	15996.3	0.0	0.7	0.00	-97.7	-21.8
HKW 7-Lam1.1	214.0	219.3	4.3	4.4	0.0	26748.1	42	17315.2	0.0	0.8	0.00	-105.7	-23.6

Table S1.4e. Fluid inclusion data for dolomite-, dedolomite-, calcite- and quartz phases from Steltenberg quarry. Palaeooverburden thickness was compiled from Drozdzewski and Wrede (1994) and Götte (2004).

Sample	Mineral	Host	Estimated min. overburden [m]	FIA	Inclusion type	FI	Tm (I) T	'h Halite	Th Halite corr.	Th hh corr.	Density
HKW 7-Lam1.1	dolomite	Lam 1 dol cc	1,000	pLam1-x-4	primary	4	-1.7 no	o halite	no halite	no hh	0.97
HKW 7-Lam1.1	dolomite	Lam 1 dol cc	1,000	pLam1-x-5	primary	5	-2 no	o halite	no halite	no hh	0.96
HKW 7-Lam1.1	dolomite	Lam 1 dol cc	1,000	pLam1-x-1	primary	1	-4 no	o halite	no halite	no hh	0.97
HKW 7-Lam1.1	dolomite	Lam 1 dol cc	1,000	pLam1-x-2	primary	2	-1.9 no	o halite	no halite	no hh	0.95
HKW 7-Lam1.1	dolomite	Lam 1 dol cc	1,000	pLam1-x-3	primary	3	-3.6 no	o halite	no halite	no hh	0.97
HKW 7-Lam1.1	dolomite	Lam 1 dol cc	1,000	pLam1-x-4	primary	4	-3 no	o halite	no halite	no hh	0.95
HKW 7-Lam1.1	dolomite	Lam 1 dol cc	1,000	sLam1-1	secondary	1	no data no	o halite	no halite	no hh	no data
HKW 7-Lam1.1	dolomite	Lam 1 dol cc	1,000	sLam1-2	secondary	2	no data no	o halite	no halite	no hh	no data
HKW 7-Lam1.1	dolomite	Lam 1 dol cc	1,000	sLam1-3	secondary	3	no data no	o halite	no halite	no hh	no data
HKW 7-Lam1.1	dolomite	Lam 1 dol cc	1,000	sLam1-4	secondary	4	no data no	o halite	no halite	no hh	no data
HKW5-16-1	calcite	Dedol 2	1,000	Dedol2-1-1	cluster	1	-5.2 no	o halite	no halite	no hh	1.00
HKW5-16-1	calcite	Dedol 2	1,000	Dedol2-1-2	cluster	2	-4.1 no	o halite	no halite	no hh	0.99
HD-S-3-2	calcite	Dedol 2	1,000	cDedol 2-1-1	cluster	1	-8.3 no	o halite	no halite	no hh	1.02
HD-S-3-2	calcite	Dedol 2	1,000	cDedol 2-1-2	cluster	2	-9.4 no	o halite	no halite	no hh	1.04
HD-S-3-2	calcite	Dedol 2	1,000	cDedol 2-1-3	cluster	3	-10.3 no	o halite	no halite	no hh	1.04
HD-S-3-2	calcite	Dedol 2	1,000	cDedol 2-1-4	cluster	4	-8.9 no	o halite	no halite	no hh	1.02
HD-S-3-2	quartz	Qz 2A	1,000	pQz 2A-1-1	primary	1	-20.1 no	o halite	no halite	-23.2	1.11
HD-S-3-2	quartz	Qz 2A	1,000	pQz 2A-1-2	primary	2	-20.4 no	o halite	no halite	-23.7	1.12
HD-S-3-2	quartz	Qz 2A	1,000	pQz 2A-1-3	primary	3	-20.6 no	o halite	no halite	-23	1.12
HD-S-3-2	quartz	Qz 2A	1,000	pQz 2A-1-4	primary	4	-20.6 no	o halite	no halite	-23.8	1.12
HD-S-3-2	quartz	Qz 2A	1,000	pQz 2A-3-1	primary	1	-20.3 no	o halite	no halite	-22.8	1.11
HD-S-3-2	quartz	Qz 2A	1,000	pQz 2A-3-2	primary	2	-20.5 no	o halite	no halite	-23.7	1.12
HD-S-3-2	quartz	Qz 2A	1,000	pQz 2A-3-3	primary	3	-20.3 no	o halite	no halite	-23.3	1.12
HD-S-3-2	quartz	Qz 2A	1,000	pQz 2A-3-4	primary	4	-21.1 no	o halite	no halite	-22.8	1.12
HKW5-64-1	quartz	Qz 2A	1,000	pQz2A-1-1	cluster	1	-20.4 no	o halite	no halite	-23.3	1.11
HKW5-64-1	quartz	Qz 2A	1,000	pQz2A-1-2	cluster	2	-20.6 no	o halite	no halite	-23.2	1.11
HKW5-64-1	quartz	Qz 2A	1,000	pQz2A-1-3	cluster	3	-19.9 no	o halite	no halite	-23.8	1.11
HD-S-3-2	quartz	Qz 2B	1,000	pQz 2B-1-1	primary	1	-24.7 no	o halite	no halite	-26.5	1.15
HD-S-3-2	quartz	Qz 2B	1,000	pQz 2B-1-2	primary	2	-24.5 no	o halite	no halite	-26.6	1.15
HD-S-3-2	quartz	Qz 2B	1,000	pQz 2B-1-3	primary	3	-19.6 no	o halite	no halite	-25.5	1.13
HD-S-3-2	quartz	Qz 2B	1,000	pQz 2B-1-4	primary	4	-20.1 no	o halite	no halite	-26.8	1.13
HD-S-3-2	quartz	Qz 2B	1.000	pQz 2B-1-5	primary	5	-20.5 no	o halite	no halite	-25.2	1.13
HD-S-3-2	quartz	Qz 2B	1,000	pQz 2B-1-6	primary	6	-20.4 no	o halite	no halite	-25.8	1.13
HD-S-3-2	quartz	Qz 2B	1,000	pQz 2B-1-7	primary	7	-19.6 no	o halite	no halite	-27.7	1.13
HD-S-3-2	quartz	Qz 2B	1,000	pQz 2B-1-8	primary	8	-19.6 no	o halite	no halite	-24.9	1.12
HD-S-3-2	quartz	Qz 2B	1,000	pQz 2B-1-9	primary	9	-21.1 no	o halite	no halite	-27.3	1.13
HD-S-3-2	quartz	Qz 2B	1,000	pQz 2B-1-10	primary	10	-20.2 no	o halite	no halite	-26.4	1.13
HD-S-3-2	quartz	Qz 2B	1,000	pQz 2A-2-1	primary	1	-19.4 no	o halite	no halite	-23.1	1.11
HD-S-3-2	quartz	Qz 2B	1,000	pQz 2A-2-2	primary	2	-20.3 no	o halite	no halite	-23.3	1.11
HD-S-3-2	quartz	Qz 2B	1,000	pQz 2A-2-3	primary	3	-20.4 no	o halite	no halite	-23.2	1.11
HD-S-3-2	quartz	Qz 2B	1,000	pQz 2A-2-4	primary	4	-20.7 no	o halite	no halite	-23.8	1.12
HKW5-64-1	quartz	Qz 2B	1,000	cQz2B-1-1	cluster	1	-25 no	o halite	no halite	-24.8	1.15
HKW5-64-1	quartz	Qz 2B	1,000	cQz2B-1-2	cluster	2	-25.1 no	o halite	no halite	-25.2	1.15
HKW5-64-1	quartz	Qz 2B	1,000	cQz2B-1-3	cluster	3	-25.4 no	o halite	no halite	-26.3	1.15
HKW5-64-1	quartz	Qz 2B	1,000	cQz2B-1-4	cluster	4	-24.9 no	o halite	no halite	-25	1.15
HKW 8-LMC 3	calcite	LMC 3	1,000	pLMC3-x-1	primary	1	-20.9 no	o halite	no halite	no hh	decrap
HKW 8-LMC 3	calcite	LMC 3	1,000	pLMC3-x-2	primary	2	-2.5 nc	o halite	no halite	no hh	decrap
HKW 8-LMC 3	calcite	LMC 3	1,000	pLMC3-x-3	primary	3	-22 no	o halite	no halite	no hh	1.15
HKW 8-LMC 3	calcite	LMC 3	1,000	pLMC3-x-4	primary	4	-3.2 no	o halite	no halite	no hh	1.01
HKW 8-LMC 3	calcite	LMC 3	1,000	pLMC3-x-5	primary	5	-21.2 no	o halite	no halite	no hh	1.14
HKW 8-LMC 3	calcite	LMC 3	1,000	- pLMC3-x-6	primary	6	-3.8 no	o halite	no halite	no hh	1.01
HKW 8-LMC 3	calcite	LMC 3	1,000	pLMC3-x-1	primary	1	0 no	o halite	no halite	no hh	0.97
HKW 8-LMC 3	calcite	LMC 3	1,000	pLMC3-x-2	primary	2	-4 no	o halite	no halite	no hh	1.01
HKW 8-LMC 3	calcite	LMC 3	1,000	pLMC3-x-3	primary	3	-23 no	o halite	no halite	no hh	1.15
HKW 8-LMC 3	calcite	LMC 3	1,000	pLMC3-x-4	primary	4	-20 no	o halite	no halite	no hh	1.13

Table S1.4f. Fluid inclusion data for dolomite-, dedolomite-, calcite- and quartz phases from Steltenberg quarry. Palaeooverburden thickness was compiled from Drozdzewski and Wrede (1994) and Götte (2004).

HKW 7-Lamil. 210. 20. 2.9 0.0 173.0 2.0 124.5 0.0 0.5 0.00 -8.12 1.8.1 HKW 7-Lamil. 200 21.4 6.4 0.0 0.05 0.00 1.1 0.00 -1.8.2 1.8.1 HKW 7-Lamil. 200 21.4 5.9 0.0 0.0 307.3 2.8 28.12.7 0.0 1.0 0.00 -1.2.5 -7.1 HKW 7-Lamil. 1800 noda no	Sample	T _h uncorr.	T _h corr.	Salinity	NaCl wt.%	CaCl2 wt.%	Cl ppm	Ca ppm	Na ppm	Mole Ca	Mole Na	Mole ratio Ca/(Na+Ca)	Na deficit	Ca excess
HKW 7-Lamil. 210 25.3 3.4 0.0 208.9 3.2 1.0 0.0 -1.58 -3.54 HKW 7-Lamil. 2070 21.4 3.2 3.2 0.0 1.47.6 3.1 200.77 1.0 0.5 0.00 -1.58.8 -3.54 HKW 7-Lamil. 2080 21.33 5.0 5.1 0.00 307.32 4.0 198.23 0.0 0.9 0.01 0.04 no.44 no.44 HKW 7-Lamil. 1800 no.4m <	HKW 7-Lam1.1	215.0	220.3	2.9	2.9	0.0	17323.9	27	11214.5	0.0	0.5	0.00	-68.5	-15.3
HKW 7-Lamil. 2900 214.3 6.4 6.6 0.0 0.0 0.1 1.0 0.00 -1.7.2 HKW 7-Lamil. 2900 124.3 5.9 6.0 0.0 347.3.3 8.8 250.7 0.0 1.0 0.000 -1.7.2 -7.7.2 HKW 7-Lamil. 165.0 nodat nodat <td>HKW 7-Lam1.1</td> <td>221.0</td> <td>226.3</td> <td>3.4</td> <td>3.4</td> <td>0.0</td> <td>20539.5</td> <td>32</td> <td>13296.1</td> <td>0.0</td> <td>0.6</td> <td>0.00</td> <td>-81.2</td> <td>-18.1</td>	HKW 7-Lam1.1	221.0	226.3	3.4	3.4	0.0	20539.5	32	13296.1	0.0	0.6	0.00	-81.2	-18.1
HKW 7-Lam.1 2070 2124 3.2 3.0 0.97670 3.1 22077. 0.0 0.5 0.00 -77.0 -77	HKW 7-Lam1.1	209.0	214.3	6.4	6.6	0.0	40165.2	63	26000.6	0.0	1.1	0.00	-158.8	-35.4
HKW 74amil 2080 213 5.9 6.0 0.0 34763 5.8 251627 0.0 1.0 0.00 -1412 -322 HKW 74amil 1650 no data	HKW 7-Lam1.1	207.0	212.4	3.2	3.2	0.0	19476.0	31	12607.7	0.0	0.5	0.00	-77.0	-17.2
HKW 74.am.1 2080 21.33 5.0 5.1 0.00 0.9722. 0.97 0.9872. 0.01 0.041 <	HKW 7-Lam1.1	209.0	214.3	5.9	6.0	0.0	36476.3	58	23612.7	0.0	1.0	0.00	-144.2	-32.2
HKW 7-Lam.11 1650 prodata nodata no	HKW 7-Lam1.1	208.0	213.3	5.0	5.1	0.0	30729.2	49	19892.3	0.0	0.9	0.00	-121.5	-27.1
HKW 7-Laml.1 1800 nodan	HKW 7-Lam1.1	165.0	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data
HKW 7-Laml.1 180 ondar	HKW 7-Lam1.1	180.0	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data
HWW 7-1611 1750 modum	HKW 7-Lam1.1	180.0	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data
HKWS-16-10 1250 1287 8.3 8.3 0.0 50981. 80 23754. 1.1 1.4 0.00 -2000 -4.4.4 HKWS-16-1 1250 129.3 12.2 12.2 0.00 73840.8 117 4780.3 2.1 0.00 -291.9 -65.2 HDS-3-2 1230 12.1 14.3 14.3 0.0 8602.7 137 5677.8 2.4 0.00 -330.4 -7.1.5 HDS-3-2 1220 136.4 14.3 14.3 0.0 8602.7 137 5677.8 2.4 0.00 -387.7 -687.1 HDS-3-2 1120 115.8 12.0 15.8 12.0 15.8 10.0 77.7 68.7 HDS-3-2 111.0 1148 22.2 15.2 7.0 106618 67532 0.5 2.8 0.10 77.7 68.1 HDS-3-2 110.0 1148 22.2 15.2 7.7 7.7 67.81 67332	HKW 7-Lam1 1	175.0	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data
HKW 56161 126.0 130.8 6.8 6.8 0.0 41070.2 65 2686.5 1.2 0.00 -162.4 -56.2 HD-53-2 125.0 127.2 13.4 11.3 0.0 80051 128 52467.2 2.3 0.00 -320.4 -71.5 HD-53-2 122.0 126.1 14.3 14.3 0.0 8602.7 137 5005.8 2.4 0.00 -342.5 -764.4 HD-53-2 112.0 15.4 12.8 0.0 77840.6 2.5 5083.0 2.2 0.00 -37.2 -68.7 HD-53-2 112.0 115.8 12.4 17.2 5.2 122.6 648.4 0.5 2.8 0.15 135.0 889.4 HD-53-2 11.0 11.4 2.22 17.5 4.7 12476.0 184.4 6042.1 0.4 7.80 144.5 7.93 144.5 195.3 11.4 148.2 7.92 144.5 7.92 144.5 7.92 144.5 7.92 144.5 7.92 144.5 7.92 144.5 7	HKW5-16-1	125.0	129.7	83	83	0.0	50598.1	80	32754 3	no uuu	14	0.00	-200.0	-44 6
HD-8-3-2 1250 1223 122 122 0.00 73840.8 117 47800.3 2.1 0.00 -291.9 -65.2 HD-8-3-2 122.0 126.1 14.3 14.3 0.00 8602.7 125 5407.2 2.3 0.00 -320.4 -7.6.4 HD-8-3-2 132.0 136.4 12.8 12.8 0.00 7780.66 123 5007.5.8 2.4 0.00 -307.7 -68.7 HD-S-3-2 1120 115.8 2.20 16.4 5.6 7.110.6 2486.8 0.624.1 0.6 2.6 0.19 272.1 110.1 HD-S-3-2 1130 116.9 22.1 15.3 6.7 11950.6 2486.8 602.41 0.6 2.6 0.19 272.1 110.1 HD-S-3-2 1130 114.8 122.1 15.2 127.2 12.4 12.446.80 0.6 2.6 0.10 272.9 110.4 HD-S-3-2 1120 115.8 22.1 16.2 5.8 1278.15 271.7 0.4 3.0 0.12 14.4<	HKW5-16-1	126.0	130.8	6.8	6.8	0.0	41070.2	65	26586.5		1.2	0.00	-162.4	-36.2
IDS-32 IZ0 IZ2 IX IX3 IX0 BIOS1 IX8 S2467.2 Z.3 0.00 -530.4 -7.1.5 IDS-3-2 IZ20 IZ6.1 I4.3 IA3 0.0 8602.7 IJ7 56075.8 2.2 0.00 -342.5 -764.5 IDS-3-2 IIZ0 IS6.4 IZ8 IZ8 0.0 7780.6 IZ3 5083.0 2.2 0.00 -342.5 -764.5 IDS-3-2 IIZ0 IIS6.4 IZ8 IZ2 IIS8 IZ4.1 IID1.1 IIIA 12.4 IID1.1 IIIA 2.2 IZ2 IZ2.1 IID1.1 IIIA 2.2 IZ2.7 IID1.1 IIIA 2.2 IZ2.4 IID2.1 IZ2.1 IID1.1 IIIA 2.2 IZ2.4 IZ2.2 IZ2.4 IZ2.4 IZ2.2 IZ2.4 IZ2.4 IZ2.2 IZ2.4 <	HD-S-3-2	125.0	129.3	12.2	12.2	0.0	73840.8	117	47800 3		2.1	0.00	-291.9	-65.2
HD S-3-2 H20 H21 H43 H44	HD-S-3-2	123.0	127.2	13.4	13.3	0.0	81050 1	128	52467.2		23	0.00	-320.4	-71.5
Invesse	HD-S-3-2	122.0	127.2	14.3	14.3	0.0	86624.7	120	56075.8		2.5	0.00	-342.5	-76.4
HD-S-3-2 H20 H28 H20 H26 H27 H26 H26 H26 H26 H27 H26 H26 H27 H2	HD-S-3-2	132.0	136.4	12.8	12.8	0.0	77830.6	123	50383.0		2.4	0.00	-342.5	-68.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	HD S 3 2	112.0	115.9	22.0	16.4	5.6	121404 4	20162	64483.4	0.5	2.2	0.00	135.0	980.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	HD S 3 2	112.0	115.0	22.0	15.3	5.0	110510.6	20102	60284-1	0.5	2.6	0.15	272.1	1101 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HD S 2 2	112.0	115.9	22.1	17.2	5.2	124590.9	19754	67529.2	0.0	2.0	0.19	78.0	916 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HD-5-5-2	112.0	113.0	22.4	17.2	3.2	110651.9	25291	50721.2	0.5	2.9	0.14	200.6	1146.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HD-5-5-2	111.0	114.0	22.2	13.2	1.0	124764.0	16914	60007.1	0.0	2.0	0.20	19.0	710.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HD-5-5-2	100.0	117.9	22.2	17.5	4.7	124/04.0	10814	69027.1	0.4	5.0	0.12	18.4	/19.1
HD-S-3-2 112.0 113.8 22.1 10.2 5.8 121535.5 2118 65892.3 0.5 2.8 0.16 163.9 957.0 HKW5-64-1 112.0 124.9 22.2 16.3 5.9 12100 17.2 18.9 736.9 HKW5-64-1 121.0 124.9 22.7 14.6 5.7 1232.81.1 2047 65480.3 0.5 2.8 0.15 137.1 903.2 HKW5-64-1 121.0 124.9 21.7 14.9 6.9 1171450.2 44751 1.1 1.9 0.37 941.6 21845 HD-S-3-2 80.0 92.7 24.0 11.2 12.8 118238.6 46358 493260 1.2 1.9 0.38 954.3 2199.7 HD-S-3-2 90.0 95.6 21.9 12.3 9.6 112.49 43572 48562 0.9 2.1 0.29 6153 167.3 HD-S-3-2 90.0 93.6 21.9 9.3	HD-S-3-2	109.0	112.8	22.1	15.4	6.8	1198/0.4	24442	60465.6	0.6	2.6	0.19	272.9	1104.4
HDS-3-2 1120 115.9 22.8 18.0 4.8 12/885.1 11/251 10/25 0.12 18.9 18.9 7.85.9 HKW5-64-1 112.0 124.9 22.2 16.3 5.9 121057 2118.5 24.8 0.16 164.4 939.8 HKW5-64-1 121.0 124.9 22.3 16.6 5.7 123281.1 20474 65480.3 0.5 2.8 0.15 137.1 903.2 HDS-3-2 89.0 92.7 24.1 11.4 128 11221.6 4073 44759.1 1.1 1.9 0.37 941.6 2184.5 HDS-3-2 92.0 95.7 24.0 11.2 12.8 118238.6 4658 4352.0 1.2 1.9 0.33 954.3 2199.7 HDS-3-2 94.0 97.7 21.4 9.7 11.7 104919.8 42292 3816.0 1.1 1.7 0.39 882.4 2009.5 HDS-3-2 90.0 93.6 21.0 8.5 12.5 10077.4 45318 33336.4 1.1 1.5 <td>HD-S-3-2</td> <td>112.0</td> <td>115.8</td> <td>22.1</td> <td>16.2</td> <td>5.8</td> <td>121533.5</td> <td>21118</td> <td>63892.3</td> <td>0.5</td> <td>2.8</td> <td>0.16</td> <td>163.9</td> <td>937.0</td>	HD-S-3-2	112.0	115.8	22.1	16.2	5.8	121533.5	21118	63892.3	0.5	2.8	0.16	163.9	937.0
HKW 56-4-1 121.0 124.9 22.2 16.3 5.9 12105.7 21182 6408.0 0.5 2.8 0.16 164.4 99.98 HKW 56-4-1 118.0 121.9 22.3 16.6 5.7 123281.1 2014 654.8 0.15 137.1 903.2 HDS-5-2 89.0 92.7 24.1 11.4 12.8 11823.6 6438.4 4392.0 1.2 1.9 0.33 9941.6 2184.5 HDS-5-2 92.0 95.7 24.0 11.2 128.8 11823.6 6438.4 4392.0 1.1 1.9 0.33 954.3 2199.1 HDS-5-2 90.0 93.6 21.9 9.7 11.7 104919.8 4292 38162.0 0.9 2.0 0.31 6660.1 160.1 HDS-5-2 90.0 93.6 21.9 12.3 10.5 109424.3 37812 44247.2 0.9 1.9 0.33 7264 178.17 HDS-5-2 90.0 102.7 21.3 12.5 100714.6 45318 33314 1.1	HD-S-3-2	112.0	115.9	22.8	18.0	4.8	12/858.1	1/231	/0/38.9	0.4	3.1	0.12	18.9	/36.9
HKWS-64-1 118.0 121.9 22.3 16.6 5.7 12281.1 2014 54.0 5.5 2.8 0.15 15.1 903.2 HDS-S3-2 89.0 92.7 24.1 11.4 12.8 1174.50 247.51 58479.9 0.6 2.5 0.20 293.3 1122.5 HDS-S3-2 92.0 95.7 24.0 11.2 12.8 11828.6 4658 4392.60 1.2 1.9 0.33 954.3 2199.7 HDS-3-2 90.0 90.6 21.4 9.7 11.7 104919.8 42292 38162.0 1.1 1.7 0.39 882.4 2009.5 HDS-S3-2 90.0 93.6 21.0 8.5 12.5 10074.6 45318 3336.4 1.1 1.5 0.44 992.1 2164.5 HDS-S3-2 90.0 93.6 21.0 8.5 12.5 10071.4 45318 3336.4 1.1 1.5 0.44 992.1 2164.5 HDS-S3-2 90.0 93.6 21.0 8.5 12.5 106211.0 4564.3	HKW5-64-1	121.0	124.9	22.2	16.3	5.9	121905.7	21182	64088.0	0.5	2.8	0.16	164.4	939.8
HKW5-64-1 121.0 121.0 124.9 21.7 14.9 6.9 117145.0 24751 384979 0.6 2.5 0.20 292.3 1122.5 HD-S-3-2 80.0 92.7 24.1 11.4 12.8 118238.6 66073 4479.9 0.6 1.2 1.9 0.37 941.6 2184.5 HD-S-3-2 92.0 95.7 24.0 11.2 12.8 118238.6 66073 4479.9 0.6 1.1 1.7 0.38 954.3 2199.7 HD-S-3-2 94.0 97.7 21.4 9.7 11.7 104919.8 4292 3811.7 0.9 2.1 0.29 615.3 1617.3 HD-S-3-2 90.0 93.6 21.0 8.5 1052.5 10077.4 5318 33364 1.1 1.5 0.44 92.1 164.5 HD-S-3-2 90.0 102.7 21.9 9.3 12.6 106211.0 45643 3645.3 1.1 1.6 0.42 979.8 2174.6 HD-S-3-2 11.0 04.6 1.5 10.3	HKW5-64-1	118.0	121.9	22.3	16.6	5.7	123281.1	20474	65480.3	0.5	2.8	0.15	137.1	903.2
HD-S-3-2 99.0 92.7 24.1 11.4 12.8 11922.6 400/3 440/3 1.1 1.9 0.57 94.6 2182.3 HD-S-3-2 92.0 95.7 24.0 11.2 12.8 1823.8 4658 4392.6 1.2 1.9 0.38 954.3 2199.7 HD-S-3-2 94.0 97.7 21.4 9.7 11.7 104919.8 42292 3816.0 1.1 1.7 0.39 882.4 2009.5 HD-S-3-2 96.0 99.7 21.7 11.2 10.5 109424.3 37812 44247.2 0.9 1.9 0.33 726.4 178.7 HD-S-3-2 90.0 93.6 21.0 8.5 12.5 10074.6 45318 3336.4 1.1 1.6 0.44 992.1 2164.5 HD-S-3-2 90.0 102.7 21.9 9.3 12.6 100211.0 45624 36643 1.1 1.6 0.44 992.1 2164.5 HD-S-3-2 11.0 116.7 21.5 16.3 5.2 11935.8 10499.9	HKW5-64-1	121.0	124.9	21.7	14.9	6.9	117145.0	24751	58479.9	0.6	2.5	0.20	293.3	1122.5
HD-S-3-2 92.0 95.7 24.0 11.2 12.8 11283.6 4328.6 1.2 1.9 0.38 954.3 2199.7 HD-S-3-2 87.0 90.6 21.3 11.5 9.8 108085.9 3531 45117.8 0.9 2.0 0.31 656.0 1660.1 HD-S-3-2 90.0 93.6 21.9 12.3 9.6 112249.6 34572 48368.2 0.9 2.1 0.29 615.3 1617.3 HD-S-3-2 90.0 93.6 21.0 8.5 12.5 10074.6 45318 33336.4 1.1 1.5 0.44 992.1 2164.5 HD-S-3-2 90.0 02.7 21.9 9.3 12.6 106211.0 45645.3 1.1 1.6 0.42 979.8 2174.6 HD-S-3-2 91.0 04.6 21.5 10.3 11.2 10657.1 140886 40439.7 0.5 2.8 0.14 104.2 828.2 HD-S-3-2 113.0 116.9 21.5 16.3 5.2 119358.7 18898 6049.7 0.	HD-S-3-2	89.0	92.7	24.1	11.4	12.8	119212.6	46073	44759.1	1.1	1.9	0.37	941.6	2184.5
HD-S-3-2 87.0 90.6 21.3 11.5 9.8 108085.9 355.1 45117.8 0.9 2.0 0.31 656.0 1660.1 HD-S-3-2 90.0 93.6 21.9 12.3 9.6 112249.6 34572 43868.2 0.9 2.1 0.29 615.3 1617.3 HD-S-3-2 90.0 93.6 21.0 8.5 12.5 100714.6 45318 3336.4 1.1 1.5 0.44 992.1 2164.5 HD-S-3-2 90.0 03.6 21.0 8.5 12.5 1000714.6 45318 3335.4 1.1 1.6 0.44 992.1 2164.5 HD-S-3-2 90.0 102.7 21.3 12.5 8.8 110626.2 31897 49204.8 0.8 2.1 0.27 539.5 1485.4 HD-S-3-2 91.0 94.6 21.5 10.3 11.2 106574.1 40586 4043.9 1.0 1.8 0.37 823.2 192.2 186.5 HD-S-3-2 113.0 116.9 21.5 16.3 5.6 1225	HD-S-3-2	92.0	95.7	24.0	11.2	12.8	118238.6	46358	43926.0	1.2	1.9	0.38	954.3	2199.7
HD-S-3-2 94.0 97.7 21.4 9.7 11.7 104919.8 4229 38162.0 1.1 1.7 0.39 882.4 2005.5 HD-S-3-2 96.0 93.6 21.9 12.3 9.6 112249.6 34572 48368.2 0.9 2.1 0.29 615.3 1617.3 HD-S-3-2 90.0 93.6 21.0 8.5 12.5 10074.6 45318 33336.4 1.1 1.5 0.44 992.1 2164.5 HD-S-3-2 90.0 93.6 21.0 8.5 12.5 100774.6 45318 33336.4 1.1 1.5 0.44 992.1 2164.5 HD-S-3-2 90.0 10.7 21.9 9.3 12.6 10627.10 45034 3664.3 1.1 1.6 0.44 992.1 2164.5 HD-S-3-2 91.0 94.6 21.5 16.3 5.2 119358 1180 63892.3 0.5 2.8 0.16 163.9 937.0 HD-S-3-2 118.0 121.9 22.1 16.5 5.6 12253.0 21863 <td>HD-S-3-2</td> <td>87.0</td> <td>90.6</td> <td>21.3</td> <td>11.5</td> <td>9.8</td> <td>108085.9</td> <td>35351</td> <td>45117.8</td> <td>0.9</td> <td>2.0</td> <td>0.31</td> <td>656.0</td> <td>1660.1</td>	HD-S-3-2	87.0	90.6	21.3	11.5	9.8	108085.9	35351	45117.8	0.9	2.0	0.31	656.0	1660.1
HD-S-3-2 90.0 93.6 21.7 12.3 9.6 112249.6 34872 48368.2 0.9 2.1 0.29 615.3 1617.3 HD-S-3-2 96.0 99.7 21.7 11.2 10.5 109424.3 37812 44247.2 0.9 1.9 0.33 726.4 1781.7 HD-S-3-2 90.0 93.6 21.0 8.5 12.5 10071/6 45318 3336.4 1.1 1.5 0.44 992.1 2164.5 HD-S-3-2 90.0 102.7 21.9 9.3 12.6 106211.0 45624 36645.3 1.1 1.6 0.42 979.8 2174.6 HD-S-3-2 91.0 94.6 21.5 16.3 5.2 11958.7 1888 64049.7 0.5 2.8 0.14 1042.2 282.3 HD-S-3-2 118.0 121.9 22.1 16.2 5.6 12253.0 20349 65082.4 0.5 2.8 0.15 136.2 897.7 HD-S-3-2 103.0 106.8 22.3 15.2 7.0 120007.7 25	HD-S-3-2	94.0	97.7	21.4	9.7	11.7	104919.8	42292	38162.0	1.1	1.7	0.39	882.4	2009.5
HD-S-3-2 96.0 99.7 21.7 11.2 10.5 109424.3 37812 44247.2 0.9 1.9 0.33 726.4 1781.7 HD-S-3-2 90.0 93.6 21.0 8.5 12.5 1007766.2 31893 3336.4 1.1 1.5 0.44 992.1 2164.5 HD-S-3-2 90.0 102.7 21.3 12.5 8.8 106211.0 45624 36645.3 1.1 1.6 0.42 97.8 2174.6 HD-S-3-2 91.0 94.6 21.5 10.3 11.2 106574.1 45886 4049.7 0.5 2.8 0.14 104.2 828.3 HD-S-3-2 113.0 116.9 21.1 16.2 5.8 12135.5 21118 63892.3 0.5 2.8 0.15 136.2 897.7 HD-S-3-2 103.0 106.8 22.3 15.2 7.0 120007.7 2535 59908.9 0.6 2.6 0.20 300.5 1149.9 HKW5-64-1 93.0 96.7 24.7 13.3 10.4 127508 5	HD-S-3-2	90.0	93.6	21.9	12.3	9.6	112249.6	34572	48368.2	0.9	2.1	0.29	615.3	1617.3
HD-S-3-2 90.0 93.6 21.0 8.5 12.5 10077.6.6 43318 33336.4 1.1 1.5 0.44 992.1 216.5 HD-S-3-2 101.0 104.7 21.3 12.5 8.8 110626.2 31897 49204.8 0.8 2.1 0.27 539.5 1485.4 HD-S-3-2 91.0 94.6 21.5 10.3 11.2 106574.1 40586 4049.7 0.5 2.8 0.14 104.2 828.3 HD-S-3-2 113.0 116.9 21.5 16.3 5.2 119358.7 18898 64049.7 0.5 2.8 0.16 163.9 937.0 HD-S-3-2 118.0 121.9 22.1 16.5 5.6 122532.0 20349 65082.4 0.5 2.8 0.16 163.9 937.0 HD-S-3-2 103.0 106.8 22.3 15.2 7.0 12007.7 25355 59908.9 0.6 2.6 0.20 300.5 1149.9 HKW5-64-1 93.0 96.7 24.7 13.9 10.8 126605.7	HD-S-3-2	96.0	99.7	21.7	11.2	10.5	109424.3	37812	44247.2	0.9	1.9	0.33	726.4	1781.7
HD-S-3-2 101.0 104.7 21.3 12.5 8.8 110626.2 31897 49204.8 0.8 2.1 0.27 539.5 1485.4 HD-S-3-2 99.0 102.7 21.9 9.3 12.6 106211.0 45624 36645.3 1.1 1.6 0.42 979.8 2174.6 HD-S-3-2 113.0 116.9 21.5 10.3 11.2 106574.1 40586 40439.9 1.0 1.8 0.37 823.2 1922.8 HD-S-3-2 113.0 116.9 21.5 16.3 5.2 119358.7 18898 6404.97 0.5 2.8 0.16 163.9 937.0 HD-S-3-2 118.0 121.9 22.1 16.2 5.6 122532.0 20349 65082.4 0.5 2.8 0.16 163.9 937.0 HD-S-3-2 103.0 106.8 22.3 15.2 7.0 12007.7 2535 5908.9 0.6 2.6 0.20 300.5 1149.9 HKW5-64-1 97.0 100.8 2.4.7 13.9 10.4 127693.1	HD-S-3-2	90.0	93.6	21.0	8.5	12.5	100774.6	45318	33336.4	1.1	1.5	0.44	992.1	2164.5
HD-S-3-2 99.0 102.7 21.9 9.3 12.6 106211.0 45624 36645.3 1.1 1.6 0.42 97.8 2174.6 HD-S-3-2 91.0 94.6 21.5 10.3 11.2 106574.1 40586 40439.9 1.0 1.8 0.37 823.2 1922.8 HD-S-3-2 118.0 121.9 22.1 16.3 5.2 119353.5 21118 63892.3 0.5 2.8 0.16 163.9 937.0 HD-S-3-2 124.0 128.0 22.2 16.5 5.6 122532.0 20349 65082.4 0.5 2.8 0.15 136.2 897.7 HD-S-3-2 103.0 106.8 22.3 15.2 7.0 120007.7 25356 5908.9 0.6 2.6 0.20 300.5 1149.9 HKW5-64-1 93.0 96.7 24.7 14.3 10.4 127668.7 38993 5454.2 1.0 2.4 0.28 645.7 1748.4 HKW5-64-1 92.0 95.7 24.6 11.9 12.7 122044.6	HD-S-3-2	101.0	104.7	21.3	12.5	8.8	110626.2	31897	49204.8	0.8	2.1	0.27	539.5	1485.4
HD-S-3-2 91.0 94.6 21.5 10.3 11.2 106574.1 40586 40439.9 1.0 1.8 0.37 823.2 1922.8 HD-S-3-2 113.0 116.9 21.5 16.3 5.2 119358.7 18898 64049.7 0.5 2.8 0.14 104.2 828.3 HD-S-3-2 118.0 121.9 22.1 16.2 5.8 12133.2 21118 63892.3 0.5 2.8 0.15 136.2 897.7 HD-S-3-2 103.0 106.8 22.3 15.2 7.0 12007.7 25356 59908.9 0.6 2.6 0.20 300.5 1149.9 HKW5-64-1 93.0 96.7 24.7 14.3 10.4 127568.9 37552 56196.9 0.9 2.4 0.28 645.8 1751.2 HKW5-64-1 92.0 95.7 24.6 11.9 12.7 122044.6 45779 46803.4 1.1 2.0 0.36 921.2 2167.1 HKW5-64-1 98.0 101.8 24.6 14.2 10.4 127093.1	HD-S-3-2	99.0	102.7	21.9	9.3	12.6	106211.0	45624	36645.3	1.1	1.6	0.42	979.8	2174.6
HD-S-3-2113.0116.921.516.35.2119358.71889864049.70.52.80.14104.2828.3HD-S-3-2118.0121.922.116.25.812153.52111863892.30.52.80.16163.9937.0HD-S-3-2124.0128.022.216.55.6122532.02034965082.40.52.80.15136.2897.7HD-S-3-2103.0106.822.315.27.012007.7253565908.90.62.60.20300.51149.9HKW5-64-197.0100.824.713.910.8126605.7389354554.21.02.40.28645.81751.2HKW5-64-192.095.724.611.912.7122044.64577946803.41.12.00.36921.22167.1HKW5-64-198.0101.824.614.210.4127093.13748655934.90.92.40.28645.71748.4HKW 8-LMC 3decrapdecrapdecrapdecrap23.00.113975.4219060.40.03.90.00-553.3-123.5HKW 8-LMC 3decrapdecrapdecrapdecrapdecrapdecrap42.00.02573.44116658.30.00.70.00-101.7-22.7HKW 8-LMC 383.087.65.35.40.032674.25221151.4	HD-S-3-2	91.0	94.6	21.5	10.3	11.2	106574.1	40586	40439.9	1.0	1.8	0.37	823.2	1922.8
HD-S-3-2118.0121.922.116.25.8121533.52111863892.30.52.80.16163.9937.0HD-S-3-2124.0128.022.216.55.6122532.02034965082.40.52.80.15136.2897.7HD-S-3-2103.0106.822.315.27.0120707.72535659908.90.62.60.20300.51149.9HKW5-64-193.096.724.714.310.412768.93755256196.90.92.40.28645.81751.2HKW5-64-197.0100.824.713.910.8126605.73899354554.21.02.40.29694.01824.1HKW5-64-192.095.724.611.912.7122044.64577946803.41.12.00.36921.22167.1HKW 8-LMC 3decrapdecrapdecrap23.00.1139957.422190600.40.03.90.00-553.3-123.5HKW 8-LMC 3decrapdecrapdecrap4.20.025733.44116658.30.00.70.00-101.7-22.7HKW 8-LMC 383.087.65.35.40.032674.25221151.40.00.90.00-260.3343.2HKW 8-LMC 380.083.523.223.30.1141307.722391474.40.04.00.00-558.7-12	HD-S-3-2	113.0	116.9	21.5	16.3	5.2	119358.7	18898	64049.7	0.5	2.8	0.14	104.2	828.3
HD-S-3-2124.0128.022.216.55.6122532.02034965082.40.52.80.15136.2897.7HD-S-3-2103.0106.822.315.27.0120007.72535659908.90.62.60.20300.51149.9HKW5-64-193.096.724.714.310.4127668.93755256196.90.92.40.28645.81751.2HKW5-64-197.0100.824.713.910.812606.73899354554.21.02.40.29694.01824.1HKW5-64-192.095.724.611.912.7122043.655934.90.92.40.28645.71748.4HKW 8-LMC 3decrapdecrap23.00.1139957.42219600.40.03.90.00-553.3-123.5HKW 8-LMC 3decrapdecrap4.20.025733.44116658.30.00.70.00-101.7-22.7HKW 8-LMC 383.087.65.35.40.032674.25221151.40.00.90.00-129.2-28.8HKW 8-LMC 384.088.56.26.30.032674.25221151.40.00.90.00-129.2-28.8HKW 8-LMC 384.088.56.26.30.032674.25221151.40.00.90.00-129.2-28.8HKW 8-LMC 384.0	HD-S-3-2	118.0	121.9	22.1	16.2	5.8	121533.5	21118	63892.3	0.5	2.8	0.16	163.9	937.0
HD-S-3-2 103.0 106.8 22.3 15.2 7.0 120007.7 25356 5908.9 0.6 2.6 0.20 300.5 1149.9 HKW5-64-1 93.0 96.7 24.7 14.3 10.4 127568.9 37552 56196.9 0.9 2.4 0.28 645.8 1751.2 HKW5-64-1 97.0 100.8 24.7 13.9 10.8 126065.7 38993 54554.2 1.0 2.4 0.29 694.0 1824.1 HKW5-64-1 92.0 95.7 24.6 11.9 12.70 122044.6 45779 46803.4 1.1 2.0 0.36 921.2 2167.1 HKW5-64-1 98.0 101.8 24.6 14.2 10.4 127093.1 37486 5593.9 0.9 2.4 0.28 645.7 1748.4 HKW 8-LMC 3 decrap decrap 23.0 0.1 139957.4 221 9060.4 0.0 3.9 0.00 -553.3 -148.4 HKW 8-LMC 3 80.0 83.5 23.2 23.3 0.1 141907.7 223	HD-S-3-2	124.0	128.0	22.2	16.5	5.6	122532.0	20349	65082.4	0.5	2.8	0.15	136.2	897.7
HKW5-64-193.096.724.714.310.4127568.93755256196.90.92.40.28645.81751.2HKW5-64-197.0100.824.713.910.8126605.73899354554.21.02.40.29694.01824.1HKW5-64-192.095.724.611.912.712204.64577946803.41.12.00.36921.22167.1HKW5-64-198.0101.824.614.210.4127093.13748655934.90.92.40.28645.71748.4HKW 8-LMC 3decrapdecrapdecrap23.00.1139957.42219060.40.03.90.00-553.3-123.5HKW 8-LMC 3decrapdecrapdecrap4.20.02573.44116658.30.00.70.00-101.7-22.7HKW 8-LMC 383.087.65.35.40.032674.25221151.40.00.90.00-129.2-28.8HKW 8-LMC 380.083.523.223.30.1141307.722391474.40.04.00.00-558.7-124.7HKW 8-LMC 384.088.56.26.30.03834.66124815.60.01.10.00-151.6-33.8HKW 8-LMC 384.589.80.0-0.40.0-2424.1-4-1569.30.0-0.10.00-158.8-35.4	HD-S-3-2	103.0	106.8	22.3	15.2	7.0	120007.7	25356	59908.9	0.6	2.6	0.20	300.5	1149.9
HKW5-64-197.0100.824.713.910.8126605.73899354554.21.02.40.29694.01824.1HKW5-64-192.095.724.611.912.7122044.64577946803.41.12.00.36921.22167.1HKW5-64-198.0101.824.614.210.412793.13748655934.90.92.40.28645.71748.4HKW 8-LMC 3decrapdecrapdecrap23.00.113995.42219060.40.03.90.00-553.3-123.5HKW 8-LMC 3decrapdecrapdecrap4.20.02573.34.116658.30.00.70.00-101.7-22.7HKW 8-LMC 383.087.65.35.40.032674.25221151.40.00.90.00-129.2-28.8HKW 8-LMC 380.083.523.223.30.1141307.722391474.40.04.00.00-558.7-124.7HKW 8-LMC 384.088.56.26.30.03834.66124815.60.01.10.00-151.6-33.8HKW 8-LMC 384.088.56.26.30.032604.2632600.60.01.10.00-151.6-33.8HKW 8-LMC 384.088.56.26.30.032604.2632600.60.01.10.00-151.6-33.8	HKW5-64-1	93.0	96.7	24.7	14.3	10.4	127568.9	37552	56196.9	0.9	2.4	0.28	645.8	1751.2
HKW5-64-1 92.0 95.7 24.6 11.9 12.7 122044.6 45779 46803.4 1.1 2.0 0.36 921.2 2167.1 HKW5-64-1 98.0 101.8 24.6 14.2 10.4 127093.1 37486 55934.9 0.9 2.4 0.28 645.7 1748.4 HKW 8-LMC 3 decrap decrap decrap 23.0 0.1 139957.4 221 90600.4 0.0 3.9 0.00 -553.3 -123.5 HKW 8-LMC 3 decrap decrap decrap 4.2 0.0 25733.4 41 16658.3 0.0 0.7 0.00 -101.7 -22.7 HKW 8-LMC 3 76.0 79.5 23.7 21.1 2.6 138491.4 9545 83063.3 0.2 3.6 0.06 -260.3 343.2 HKW 8-LMC 3 80.0 83.5 5.4 0.0 3267.2 52 21151.4 0.0 0.9 0.00 -129.2 -28.8 HKW 8-LMC 3 80.0 83.5 6.2 6.3 0.0 3836.6 0.0 <td>HKW5-64-1</td> <td>97.0</td> <td>100.8</td> <td>24.7</td> <td>13.9</td> <td>10.8</td> <td>126605.7</td> <td>38993</td> <td>54554.2</td> <td>1.0</td> <td>2.4</td> <td>0.29</td> <td>694.0</td> <td>1824.1</td>	HKW5-64-1	97.0	100.8	24.7	13.9	10.8	126605.7	38993	54554.2	1.0	2.4	0.29	694.0	1824.1
HKW5-64-1 98.0 101.8 24.6 14.2 10.4 127093.1 37486 55934.9 0.9 2.4 0.28 645.7 1748.4 HKW 8-LMC 3 decrap decrap decrap decrap 23.0 0.1 139957.4 221 90600.4 0.0 3.9 0.00 -553.3 -123.5 HKW 8-LMC 3 decrap decrap decrap 4.2 0.0 25733.4 41 16658.3 0.0 0.7 0.00 -101.7 -22.7 HKW 8-LMC 3 76.0 79.5 23.7 21.1 2.6 138491.4 9545 83063.3 0.2 3.6 0.06 -260.3 343.2 HKW 8-LMC 3 83.0 87.6 5.3 5.4 0.0 32674.2 52 21151.4 0.0 0.9 0.00 -129.2 -28.8 HKW 8-LMC 3 80.0 83.5 5.2 23.3 0.1 14137.7 223 91474.4 0.0 4.0 0.00 -558.7 -124.7 HKW 8-LMC 3 84.5 86.2 6.4 0.0 4241.1 </td <td>HKW5-64-1</td> <td>92.0</td> <td>95.7</td> <td>24.6</td> <td>11.9</td> <td>12.7</td> <td>122044.6</td> <td>45779</td> <td>46803.4</td> <td>1.1</td> <td>2.0</td> <td>0.36</td> <td>921.2</td> <td>2167.1</td>	HKW5-64-1	92.0	95.7	24.6	11.9	12.7	122044.6	45779	46803.4	1.1	2.0	0.36	921.2	2167.1
HKW 8-LMC 3 decrap decrap decrap 23.0 0.1 139957.4 221 90600.4 0.0 3.9 0.00 -553.3 -123.5 HKW 8-LMC 3 decrap decrap decrap decrap decrap 4.2 0.0 25733.4 41 16658.3 0.0 0.7 0.00 -101.7 -22.7 HKW 8-LMC 3 76.0 79.5 23.7 21.1 2.6 138491.4 9545 83063.3 0.2 3.6 0.00 -260.3 343.2 HKW 8-LMC 3 83.0 87.6 5.3 5.4 0.0 32674.2 52 21151.4 0.0 0.9 0.00 -129.2 -28.8 HKW 8-LMC 3 80.0 83.5 23.2 23.3 0.1 14137.7 223 91474.4 0.0 4.0 0.00 -558.7 -124.7 HKW 8-LMC 3 84.0 88.5 6.2 6.3 0.0 3234.6 61 24815.6 0.0 1.1 0.00 -151.6 -33.8 HKW 8-LMC 3 84.5 89.8 0.0 -0.4	HKW5-64-1	98.0	101.8	24.6	14.2	10.4	127093.1	37486	55934.9	0.9	2.4	0.28	645.7	1748.4
HKW 8-LMC 3 decrap decrap 4.2 0.0 25733.4 4.1 16658.3 0.0 0.7 0.00 -101.7 -22.7 HKW 8-LMC 3 76.0 79.5 23.7 21.1 2.6 138491.4 9545 83063.3 0.2 3.6 0.06 -260.3 343.2 HKW 8-LMC 3 83.0 87.6 5.3 5.4 0.0 32674.2 52 21151.4 0.0 0.9 0.00 -129.2 -28.8 HKW 8-LMC 3 80.0 83.5 23.2 23.3 0.1 141307.7 223 91474.4 0.0 4.0 0.00 -558.7 -124.7 HKW 8-LMC 3 84.0 88.5 6.2 6.3 0.0 3234.6 61 24815.6 0.0 1.1 0.00 -151.6 -33.8 HKW 8-LMC 3 84.5 89.8 0.0 -0.4 0.0 -2424.1 -4 -1569.3 0.0 -0.1 0.00 9.6 2.1 HKW 8-LMC 3 82.0 86.4 6.6 0.0 40165.2 63 2600.6 0.0 <td>HKW 8-LMC 3</td> <td>decrap</td> <td>decrap</td> <td>decrap</td> <td>23.0</td> <td>0.1</td> <td>139957.4</td> <td>221</td> <td>90600.4</td> <td>0.0</td> <td>3.9</td> <td>0.00</td> <td>-553.3</td> <td>-123.5</td>	HKW 8-LMC 3	decrap	decrap	decrap	23.0	0.1	139957.4	221	90600.4	0.0	3.9	0.00	-553.3	-123.5
HKW 8-LMC 3 76.0 79.5 23.7 21.1 2.6 138491.4 9545 83063.3 0.2 3.6 0.06 -260.3 343.2 HKW 8-LMC 3 83.0 87.6 5.3 5.4 0.0 32674.2 52 21151.4 0.0 0.9 0.00 -129.2 -28.8 HKW 8-LMC 3 80.0 83.5 23.2 23.3 0.1 141307.7 223 91474.4 0.0 4.0 0.00 -558.7 -124.7 HKW 8-LMC 3 84.0 88.5 6.2 6.3 0.0 32334.6 61 24815.6 0.0 1.1 0.00 -151.6 -33.8 HKW 8-LMC 3 84.5 89.8 0.0 -0.4 0.0 -2424.1 -4 -1569.3 0.0 -0.1 0.00 9.6 2.1 HKW 8-LMC 3 82.0 86.4 6.4 6.6 0.0 40165.2 63 2600.6 0.0 1.1 0.00 -158.8 -35.4 HKW 8-LMC 3 85.0 88.6 24.3 18.7 5.5 135382.3 19961	HKW 8-LMC 3	decrap	decrap	decrap	4.2	0.0	25733.4	41	16658.3	0.0	0.7	0.00	-101.7	-22.7
HKW 8-LMC 3 83.0 87.6 5.3 5.4 0.0 32674.2 52 21151.4 0.0 0.9 0.00 -129.2 -28.8 HKW 8-LMC 3 80.0 83.5 23.2 23.3 0.1 141307.7 223 91474.4 0.0 4.0 0.00 -558.7 -124.7 HKW 8-LMC 3 84.0 88.5 6.2 6.3 0.0 3834.6 61 24815.6 0.0 1.1 0.00 -151.6 -33.8 HKW 8-LMC 3 84.5 89.8 0.0 -0.4 0.0 -2424.1 -4 -1569.3 0.0 -0.1 0.00 9.6 2.1 HKW 8-LMC 3 84.5 89.8 0.0 -0.4 0.0 -2424.1 -4 -1569.3 0.0 -0.1 0.00 9.6 2.1 HKW 8-LMC 3 82.0 86.4 6.4 6.6 0.0 40165.2 63 2600.6 0.0 1.1 0.00 -158.8 -35.4 HKW 8-LMC 3 85.0 88.6 24.3 187 5.5 135382.3 19961	HKW 8-LMC 3	76.0	79.5	23.7	21.1	2.6	138491.4	9545	83063.3	0.2	3.6	0.06	-260.3	343.2
HKW 8-LMC 3 80.0 83.5 23.2 23.3 0.1 141307.7 223 91474.4 0.0 4.0 0.00 -558.7 -124.7 HKW 8-LMC 3 84.0 88.5 6.2 6.3 0.0 38334.6 61 24815.6 0.0 1.1 0.00 -558.7 -124.7 HKW 8-LMC 3 84.5 89.8 0.0 -0.4 0.0 -2424.1 -4 -1569.3 0.0 -0.1 0.00 9.6 2.1 HKW 8-LMC 3 82.0 86.4 6.4 6.6 0.0 40165.2 63 26000.6 0.0 1.1 0.00 -158.8 -35.4 HKW 8-LMC 3 85.0 88.6 24.3 18.7 5.5 135382.3 19961 73689.7 0.5 3.2 0.13 72.8 865.9 HKW 8-LMC 3 87.5 91.1 22.4 2.4 0.1 135886.6 215 87965.1 0.0 3.8 0.00 -537.2 -119.9	HKW 8-LMC 3	83.0	87.6	5.3	5.4	0.0	32674.2	52	21151.4	0.0	0.9	0.00	-129.2	-28.8
HKW 8-LMC 3 84.0 88.5 6.2 6.3 0.0 38334.6 61 24815.6 0.0 1.1 0.00 -151.6 -33.8 HKW 8-LMC 3 84.5 89.8 0.0 -0.4 0.0 -2424.1 -4 -1569.3 0.0 -0.1 0.00 9.6 2.1 HKW 8-LMC 3 82.0 86.4 6.4 6.6 0.0 40165.2 63 2600.6 0.0 1.1 0.00 -158.8 -35.4 HKW 8-LMC 3 85.0 88.6 24.3 18.7 5.5 135382.3 19961 73689.7 0.5 3.2 0.13 72.8 865.9 HKW 8-LMC 3 87.5 91.1 22.4 2.4 0.1 135886.6 215 87965.1 0.0 3.8 0.00 -537.2 -119.9	HKW 8-LMC 3	80.0	83.5	23.2	23.3	0.1	141307.7	223	91474.4	0.0	4.0	0.00	-558.7	-124.7
HKW 8-LMC 3 84.5 89.8 0.0 -0.4 0.0 -2424.1 -4 -1569.3 0.0 -0.1 0.00 9.6 2.1 HKW 8-LMC 3 82.0 86.4 6.4 6.6 0.0 40165.2 63 26000.6 0.0 1.1 0.00 -158.8 -35.4 HKW 8-LMC 3 85.0 88.6 24.3 18.7 5.5 135382.3 19961 73689.7 0.5 3.2 0.13 72.8 865.9 HKW 8-LMC 3 87.5 91.1 22.4 2.4 0.1 135886.6 215 87965.1 0.0 3.8 0.00 -537.2 -119.9	HKW 8-LMC 3	84.0	88.5	6.2	6.3	0.0	38334.6	61	24815.6	0.0	1.1	0.00	-151.6	-33.8
HKW 8-LMC 3 82.0 86.4 6.4 6.6 0.0 40165.2 63 2600.6 0.0 1.1 0.00 -158.8 -35.4 HKW 8-LMC 3 85.0 88.6 24.3 18.7 5.5 135382.3 19961 73689.7 0.5 3.2 0.13 72.8 865.9 HKW 8-LMC 3 87.5 91.1 22.4 22.4 0.1 135886.6 215 87965.1 0.0 3.8 0.00 -537.2 -119.9	HKW 8-LMC 3	84.5	89.8	0.0	-0.4	0.0	-2424.1	-4	-1569.3	0.0	-0.1	0.00	9.6	2.1
HKW 8-LMC 3 85.0 88.6 24.3 18.7 5.5 135382.3 19961 73689.7 0.5 3.2 0.13 72.8 865.9 HKW 8-LMC 3 87.5 91.1 22.4 22.4 0.1 135886.6 215 87965.1 0.0 3.8 0.00 -537.2 -119.9	HKW 8-LMC 3	82.0	86.4	6.4	6.6	0.0	40165.2	63	26000.6	0.0	1.1	0.00	-158.8	-35.4
HKW 8-LMC 3 87.5 91.1 22.4 22.4 0.1 135886.6 215 87965.1 0.0 3.8 0.00 -537.2 -119.9	HKW 8-LMC 3	85.0	88.6	24.3	18.7	5.5	135382.3	19961	73689.7	0.5	3.2	0.13	72.8	865.9
	HKW 8-LMC 3	87.5	91.1	22.4	22.4	0.1	135886.6	215	87965.1	0.0	3.8	0.00	-537.2	-119.9

Sample	Mineral	Host	Estimated min. overburden [m]	FIA	Inclusion type	FI	Tm (I) Th Halite	Th Halite corr.	Th hh corr.	Density
HKW 8-LMC 3	calcite	LMC 3	1.000	pLMC3-x-5	primary	5	-20.5 no halite	no halite	no hh	1.13
HKW 8-LMC 3	calcite	LMC 3	unknown	sLMC3-1	Secondary	1	-6.1 no halite	no halite	-19.5	0.92
HKW 8-LMC 3	calcite	LMC 3	1.000	pLMC3-x-1	primary	1	-3.7 no halite	no halite	no hh	1.01
HKW 8-LMC 3	calcite	LMC 3	1.000	pLMC3-x-2	primary	2	-21 no halite	no halite	no hh	1.13
HKW 8-LMC 3	calcite	LMC 3	1.000	pLMC3-x-3	primary	3	-20.8 no halite	no halite	no hh	1.13
HKW 8-LMC 3	calcite	LMC 3	1.000	pLMC3-x-4	primary	4	-19.9 no halite	no halite	no hh	1.13
HKW 8-LMC 3	calcite	LMC 3	1.000	pLMC3-x-5	primary	5	-20.8 no halite	no halite	no hh	1.14
HKW 8-LMC 3	calcite	LMC 3	1.000	pLMC3-x-6	primary	6	-4 no halite	no halite	no hh	1.01
HKW 8-LMC 3	calcite	LMC 3	1.000	pLMC3-x-7	primary	7	-3.2 no halite	no halite	no hh	1.01
HKW 8-LMC 3	calcite	LMC 3	1.000	pLMC3-x-1	primary	1	-2.8 no halite	no halite	no hh	1.00
HKW 8-LMC 3	calcite	LMC 3	1,000	pLMC3-x-2	primary	2	-2.9 no halite	no halite	no hh	1.00
HKW 8-LMC 3	calcite	LMC 3	1,000	pLMC3-x-3	primary	3	-21.1 no halite	no halite	no hh	1.00
HKW 8-LMC 3	calcite	LMC 3	1,000	pLMC3-x-4	primary	4	-3 3 no halite	no halite	no hh	1.00
HKW 8-LMC 3	calcite	LMC 3	1,000	pLMC3-x-5	primary	5	-2 7 no halite	no halite	no hh	0.99
HKW 8-LMC 3	calcite	LMC 3	1,000	pLMC3-x-6	primary	6	-21.2 no halite	no halite	no hh	1 14
MKHD-W6-2	calcite	LMC 4	1 500	pLMC 4-2-1	primary	1	-3.2 no halite	no halite	no hh	0.98
MKHD_W6-2	calcite	LMC 4	1,500	pLMC 4-2-2	primary	2	-3.1 no halite	no halite	no hh	0.97
MKHD-W6-2	calcite	LMC 4	1,500	pLMC 4-2-2	primary	3	-3.1 no halite	no halite	no hh	0.97
MKHD-W6-2	calcite	LMC 4	1,500	pLMC 4-2-3	primary	1	-3.5 no halite	no halite	no hh	0.98
MKHD-W-6-1	calcite	LMC 5	1,000	pLMC +-2-4	primary	1	-28.3 no halite	no halite	-25.3	1.17
MKHD W 61	calcite	LMC 5	1,000	pLMC5.1.2	primary	2	-20.5 no halite	no halite	-25.5	1.17
MKHD W 61	calcite	LMC 5	1,000	pLMC5-1-2	primary	2	28 7 no halite	no halite	-20.7	1.17
MKHD W 61	calcite	LMC 5	1,000	pLMC5-1-3	primary	4	-20.7 no halite	no halite	-20.8	1.17
MKHD W 61	calcite	LMC 5	1,000	pLMC5-1-4	primary	5	26 7 no halite	no halite	-23.9	1.15
MKHD W 61	calcite	LMC 5	1,000	pLMC5-1-5	primary	6	-20.7 no halite	no halite	-24.8	1.10
MKHD W 61	calcite	LMC 5	1,000	pLMC5-1-0	primary	7	-27.0 no halite	no halite	-24.5	1.10
WIKIID- W-0-1	calcite	LMC 6	1,000	pLMC6A v 1	primary	1	-25.0 no halite	no halita	=2.5.0	1.10
HKW 7-CZ2.1	calcite	LMC 6A	1,000	pLMC6A x 2	primary	2	-13.7 no halite	no halite	no hh	1.12
HKW 7-CZ2.1	calcite	LMC 6A	1,000	pLMC6A x 2	primary	2	-14.8 no halite	no halite	no hh	1.12
HKW 7-CZ2.1	calcite	LMC 6A	1,000	pLMC6A × 4	primary	3	-10.8 no halite	no halite	no hh	1.13
HKW 7-CZ2.1	calcite	LMC 6A	1,000	pLMC6A x 5	primary	4	-10.0 no halite	no halite	no hh	1.15
HKW 7-CZ2.1	calcite	LMC 6P	1,000	pLMC6P v 1	primary	1	-13.3 no halite	no halite	no hh	1.12
HKW 7-CZ2.1	calcite	LMC 6B	1,000	pLMC6B x 2	primary	2	-14 no halite	no halite	no hh	1.11
HKW 7-CZ2.1	calcite	LMC 6B	1,000	PLNC6B = 2	primary	2	-14.6 no name	no halite	no hh	1.12
HKW 7-CZ2.1	calcite	LMC 6B	1,000	PLNC6B-x-3	primary	3	-15.5 no halite	no name	no nn	1.11
HKW 7-CZ2.1	calcite	LMC 6B	1,000	pLMC6P x 5	primary	4	-13.3 no halite	no halite	no hh	1.11
HKW 7-CZ2.1	calcite	LMC 6B	1,000	PLNC6B-x-3	primary	1	-15.5 no halite	no halite	no hh	1.11
HKW 7-CZ2.1	calcite	LMC	1,000	PLNC6B-X-1	primary	1	-13.5 no name	no name	no nn	1.12
ПК W 5-04-1	calcite		1,000	CLMC6-1-1	cluster	1	-11.1 no name	no name	no nn	1.00
ПК W 5-04-1	calcite		1,000	CLMC6-1-2	cluster	2	-12.5 no name	no name	no nn	1.00
ПК W 5-04-1	calcite		1,000	CLMC6-1-5	cluster	5	-11.9 no name	no name	no nn	1.01
HKW5-04-1	calcite	LMC 6	1,000	cLMC6-1-4	cluster	3	-14.3 no nalite	no nalite	no nn	1.05
HKW5-16-1	calcite	LMC 7	1,000	cLMC2-1-1	cluster	1	-13.1 no nalite	no nalite	no nn	1.06
HKW5-16-1	calcite	LMC 7	1,000	cLMC2-1-2	cluster	2	-14.2 no nalite	no nalite	no nn	1.07
HKW5-16-1	calcite	LMC 7	1,000	cLMC2-1-3	cluster	3	-14.5 no nalite	no nalite	no nn	1.07
пк w 5-16-1	calcite	LMC /	1,000	CLMC2-1-4	ciuster	4	-12.9 no halite	no nalite	no hh	1.06
HKW /-Laml.l	calcite	LMC 8	1,000	pLMC8-x-1	primary	1	-12. / no halite	no halite	no hh	1.03
HKW /-Laml.l	calcite	LMC 8	1,000	pLMC8-x-2	primary	2	-12.3 no halite	no halite	no hh	1.02
HKW /-Laml.1	calcite	LMC 8	1,000	pLMC8-x-3	primary	3	-13.2 no halite	no halite	no hh	1.01
HKW 7-Laml.1	calcite	LMC 8	1,000	pLMC8-x-4	primary	4	-11.2 no halite	no halite	no hh	0.99
HKW 7-Lam1.1	calcite	LMC 8	1,000	plmC8-x-5	primary	5	-11.8 no halite	no halite	no hh	1.00

Table S1.4g. Fluid inclusion data for dolomite-, dedolomite-, calcite- and quartz phases from Steltenberg quarry. Palaeooverburden thickness was compiled from Drozdzewski and Wrede (1994) and Götte (2004).

Table S1.4h. Fluid inclusion data for dolomite-, dedolomite-, calcite- and quartz phases from Steltenberg quarry. Palaeooverburden thickness was compiled from Drozdzewski and Wrede (1994) and Götte (2004).

Sample	T _h uncorr.	T _h corr.	Salinity	NaCl wt.%	CaCl2 wt.%	Cl ppm	Ca ppm	Na ppm	Mole Ca	Mole Na	Mole ratio Ca/(Na+Ca)	Na deficit	Ca excess
HKW 8-LMC 3	84.0	87.6	22.7	22.7	0.1	138152.1	218	89431.7	0.0	3.9	0.00	-546.2	-121.9
HKW 8-LMC 3	219.0	224.0	9.3	9.5	0.0	57853.1	91	37450.8	0.0	1.6	0.00	-228.7	-51.0
HKW 8-LMC 3	92.3	96.9	6.0	6.2	0.0	37409.0	59	24216.4	0.0	1.1	0.00	-147.9	-33.0
HKW 8-LMC 3	90.2	93.8	23.0	23.1	0.1	140407.8	222	90891.9	0.0	4.0	0.00	-555.1	-123.9
HKW 8-LMC 3	88.3	91.9	22.9	23.0	0.1	139506.6	220	90308.6	0.0	3.9	0.00	-551.5	-123.1
HKW 8-LMC 3	87.5	91.1	22.3	22.3	0.1	135432.1	214	87670.9	0.0	3.8	0.00	-535.4	-119.5
HKW 8-LMC 3	80.3	83.8	22.9	23.0	0.1	139506.6	220	90308.6	0.0	3.9	0.00	-551.5	-123.1
HKW 8-LMC 3	86.3	90.8	6.4	6.6	0.0	40165.2	63	26000.6	0.0	1.1	0.00	-158.8	-35.4
HKW 8-LMC 3	80.8	85.4	5.3	5.4	0.0	32674.2	52	21151.4	0.0	0.9	0.00	-129.2	-28.8
HKW 8-LMC 3	89.3	94.0	4.6	4.7	0.0	28754.0	45	18613.7	0.0	0.8	0.00	-113.7	-25.4
HKW 8-LMC 3	94.2	98.9	4.8	4.9	0.0	29745.4	47	19255.4	0.0	0.8	0.00	-117.6	-26.2
HKW 8-LMC 3	90.6	94.2	23.1	23.2	0.1	140857.9	223	91183.3	0.0	4.0	0.00	-556.9	-124.3
HKW 8-LMC 3	87.8	92.4	5.4	5.5	0.0	33635.6	53	21773.8	0.0	0.9	0.00	-133.0	-29.7
HKW 8-LMC 3	92.5	97.3	4.5	4.6	0.0	27754.9	44	17966.9	0.0	0.8	0.00	-109.7	-24.5
HKW 8-LMC 3	80.0	83.5	23.2	23.3	0.1	141307.7	223	91474.4	0.0	4.0	0.00	-558.7	-124.7
MKHD-W6-2	121.0	125.9	5.4	5.4	0.0	32674.2	52	21151.4		0.9	0.00	-129.2	-28.8
MKHD-W6-2	130	135.0	5.2	5.2	0.0	31705.4	50	20524.3		0.9	0.00	-125.3	-28.0
MKHD-W6-2	119	123.9	5.2	5.7	0.0	34589.7	55	22391.4		1.0	0.00	-136.7	-30.5
MKHD-W6-2	127.0	131.9	59	5.8	0.0	35536.6	56	23004.3		1.0	0.00	-140 5	-31.4
MKHD-W-6-1	87.0	102.1	26.0	10.0	16.0	123404 3	57754	39226.1	14	1.0	0.46	1284.5	2763 3
MKHD-W-6-1	88.0	103.2	26.0	9.1	17.0	122182.7	61256	35960.1	1.4	1.7	0.49	1397.3	2939.3
MKHD-W-6-1	85.0	100.0	26.0	9.1	16.6	122102.7	59883	36001 5	1.5	1.6	0.49	1354.6	2870.7
MKHD-W-6-1	89.0	103.7	20.0	16.2	8.1	130290.8	20307	63722.6	0.7	2.8	0.40	383.8	13/11 7
MKHD-W-6-1	92.0	107.1	25.4	11.8	13.6	125176.5	/8083	46570.9	1.2	2.0	0.38	1007.3	2324.0
MKHD W 6 1	03.0	107.1	25.4	10.8	15.0	124461.3	54045	40570.7	1.2	1.0	0.30	1166.1	2524.0
MKHD W 61	93.0 84.0	08.7	23.8	13.2	11.6	125087.1	/1001	52036.0	1.5	23	0.42	788.8	1074.2
HKW 7 C72 1	56.0	50.7	10.2	19.0	0.1	115718.8	183	74000 7	0.0	2.3	0.32	157.5	102.1
HKW 7 CZ2 1	57.2	60.5	19.2	19.0	0.1	111256 4	176	72021.0	0.0	2.1	0.00	420.9	-102.1
HKW 7-CZ2.1	58.0	61.2	20.1	10.5	0.0	121022.6	101	72021.0	0.0	2.1	0.00	-439.0	-90.2
HKW 7-CZ2.1	50.0	62.9	20.1	19.9	0.1	121035.0	191	76550.2	0.0	2.4	0.00	-476.5	-100.8
HKW 7-CZ2.1	57.0	60.2	19.9	19.8	0.1	11/726.9	190	74274.0	0.0	2.4	0.00	-4/4./	-105.9
HKW 7 CZ2 1	56.5	50.8	17.0	17.6	0.1	107196.0	160	60286.6	0.0	3.2	0.00	402.9	-101.2
HKW 7-CZ2.1	50.5	59.0	17.0	17.0	0.0	111256 4	109	72021.0	0.0	2.1	0.00	-423.0	-94.0
HKW 7-CZ2.1	55.5	J0.0	10.5	18.5	0.0	102524.2	170	67022.1	0.0	2.0	0.00	-439.0	-90.2
HKW 7-CZ2.1	57.0	60.5	17.2	17.0	0.0	105554.2	104	67702.0	0.0	2.9	0.00	-409.5	-91.5
HKW 7-CZ2.1	54.0	57.2	17.5	17.2	0.0	104567.2	164	67022.1	0.0	2.9	0.00	-413.3	-92.5
HKW 7-CZ2.1	54.0	57.5	17.2	17.0	0.0	105554.2	104	74274.0	0.0	2.9	0.00	-409.5	-91.5
HKW /-CZ2.1	102.0	28.2	19.0	18.9	0.1	01264.7	101	74274.0	0.0	3.2	0.00	-455.0	-101.2
HKW5-64-1	185.0	18/./	15.1	15.0	0.0	91304.7	144	59144.2 62522.0		2.0	0.00	-301.2	-80.6
HKW5-04-1	191.0	195.0	16.2	16.2	0.0	98144.4	155	(2006.4		2.8	0.00	-388.0	-80.0
HKW5-64-1	182.0	180.0	15.8	15.8	0.0	95925.1	152	62096.4		2.7	0.00	-3/9.2	-84.6
HKW5-64-1	156.0	160.3	17.9	17.9	0.0	108/25.3	1/2	/0382.5		3.1	0.00	-429.8	-95.9
HKW5-16-1	123.0	127.0	16.9	16.9	0.0	1024/3.2	162	66335.2		2.9	0.00	-405.1	-90.4
HKW5-16-1	128.0	132.1	17.9	17.8	0.0	108214.2	1/1	70051.7		3.0	0.00	-427.8	-95.5
HKW5-16-1	126.0	130.0	18.1	18.1	0.0	109/42.6	1/5	/1041.0		5.1	0.00	-455.9	-96.8
HKW5-16-1	130.0	134.1	16.7	16.7	0.0	101404.0	160	65643.1		2.9	0.00	-400.9	-89.5
HKW 7-Lam1.1	164.0	168.5	16.6	16.5	0.0	100326.3	158	64945.5	0.0	2.8	0.00	-396.6	-88.5
HKW /-Laml.1	164.0	168.5	16.2	16.2	0.0	98144.4	155	63533.0	0.0	2.8	0.00	-388.0	-86.6
HKW /-Laml.1	185.0	189.6	17.1	17.0	0.0	103004.7	163	66679.3	0.0	2.9	0.00	-407.2	-90.9
HKW 7-Lam1.1	196.0	200.7	15.2	15.1	0.0	91944.1	145	59519.3	0.0	2.6	0.00	-363.5	-81.1
HKW 7-Lam1.1	192.0	196.7	15.8	15.7	0.0	95364.1	151	61733.3	0.0	2.7	0.00	-377.0	-84.1

Laboratory & Sample Preparation							
Laboratory name	Laboratory for Environmental and Raw Materials Analysis (LERA), Karlsruher Institut for Technology (Germany)						
Sample type/mineral	Carbonate						
Sample preparation	Regular thin sections						
Imaging	Petrographic microscope						
Laser ablation system							
Make. Model & type	Analyte Excite+. Teledyne PhotonMachines ArF excimer laser						
Ablation cell	HelEx 2-volume cell						
Laser wavelength	193 nm						
Pulse width	4 ns						
Fluence	2 J/cm2						
Repetition rate	10 Hz						
Pre-ablation	5 pulses (same parameters as main ablation)						
Ablation duration	18 s						
Ablation rate	~ 0.8-1 µm/s						
Spot shape & size	Round, 150 µm (65 µm and 85 µm for primary RM)						
Sampling mode	Static spot ablation						
Gasses	Sample cell: He. Funnel: He + Ar. Tubbing: He + Ar + N						
Gas flows	He (300 ml/min, cell), He (200 ml/min, funnel), Ar (900 ml/min), N (12 ml/min)						
ICP-MS Instrument							
Make, Model & type	ThermoScientific ElementXR sector field ICP-MS						
Sample introduction	Ablation aerosol						
RF power	1200 W						
Detection system	Secondary electron multiplier (with conversion dynode at -8kV). Simultaneous analogue and counting (pulse) modes of detection (conversion factors calculated per mass and applied offline). Magnetic field fixed. Detection by peak jumping with electrostatic analyzer.						
Masses measured	202, 204, 206, 207, 208, 232, 238						
Dwell times	202: 3 ms, 204: 3 ms, 206: 18 ms, 207: 32 ms, 208: 9 ms, 232: 7 ms, 238: 12 ms						
Samples per peak/integration type	3 for 202 and 204; 4 for the rest of masses						
Total time per run	90 ms						
Number of runs/total time	330 / 32.5 s						
Acquisition mode	Trigger from laser (15 s after pre-ablation), background: 14.5 s, ablation: 18 s						
Dead time	19 ns						

Table S1.6. LA-ICP-MS U-Th-Pb data report 2.

Data Processing							
Gas blank	14.5 s on-peak zero subtracted.						
	- Primary RM: SRMNIST612 (Jochum et al., 2011)						
Calibration stratage	- Offset RM: WC-1 carbonate (Roberts et al., 2017)						
Calibration strategy	- Validation RM: JT-1 (Guillong et al., 2020), and B-6 (Pagel et al., 2018)						
	carbonates						
	In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009).						
Data processing / LIEF correction	Intercept method for LIEF correction, assumes Pbc corrected WC-1 and samples						
	behave identically.						
Mass discrimination	²⁰⁷ Pb/ ²⁰⁶ Pb (-0.4/0-0.18/-0.09/0.36 %) and ²⁰⁶ Pb/ ²³⁸ U (23.69/24.23/18.7/20.79 %)						
	normalised to primary RM (values for each of the sessions).						
Common-Pb correction	No common-Pb correction applied						
	Uncertainties are quoted at 2s absolute and are propagated by quadratic addition of						
	the within run precision, counting statistics, background, common Pb correction (if						
	applicable) and the excess of scatter (calculated from the primary RM). In addition, in						
Uncertainty level & propagation	the session 4, an excess of variance of 0.49 % (1s), calculated from the offset RM,						
	was added quadratically to the 206Pb/238U ratios. Systematic uncertainties are						
	reported as an expanded uncertainty, considering long term reproducibility (1.5%, 2s)						
	and decay constant uncertainties.						
	Session 1 (Matrix offset $= 0.88$):						
	WC-1: 254.0 ± 1.9 Ma (2s, MSWD = 0.46, n = 16)						
	JT-1: 13.85 ± 1.44 Ma (2s, MSWD = 0.83, n = 16)						
	B-6: 43.25 ± 0.92 Ma (2s, MSWD = 0.99, n = 16)						
	Session 2 (Matrix offset = 0.895):						
	WC-1: $253.6 + 1.6$ Ma (2s, MSWD = 0.69, n = 13)						
	$IT-1: 14 32 \pm 0.98 Ma (28 MSWD = 0.85 n = 14)$						
	B-6: 43.00 + 0.77 Ma (2s, MSWD = 0.55, $n = 14$)						
	Session 3 (Matrix offset $= 0.985$):						
	WC-1: 254.0 ± 1.5 Ma (2s, MSWD = 0.83, n = 12)						
Quality control / Validation	JT-1: 14.48 ± 1.19 Ma (2s, MSWD = 0.70, n = 12)						
	B-6: 41.61 ± 0.86 Ma (2s, MSWD = 1.51, n = 12)						
	Session 4 (Matrix offset $= 0.96$):						
	WC-1: 254.0 ± 1.9 Ma (2s, MSWD = 1.0, n = 10)						
	JT-1: 13.84 ± 0.97 Ma (2s, MSWD = 0.61, n = 12)						
	B-6: 42.74 ± 0.80 Ma (2s, MSWD = 1.01, n = 12)						
	Session 5:						
	WC-1: 254.1 ± 2.2 Ma (2s, MSWD = 0.99, n = 14)						
	B6: 42.64 ± 0.44 Ma (2s, MSWD = 1.02, n = 12)						
	Duff Brown Tank: 64.31 ± 1.00 Ma (2s, MSWD = 1.70, n = 14)						
	(Ages are the 206 Pb/ 238 U lower intercent ages of the calculated isochrons with the						
	concordia curve in the Tera-Wasserburg space)						
	concordia cui ve in the rera- w asserburg space)						