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Abstract

The human immune system is determined by the functionality of the human
lymph node. With the use of high-throughput techniques in clinical diag-
nostics, a large number of data is currently collected. The new data on the
spatiotemporal organization of cells offers new possibilities to build a mathe-
matical model of the human lymph node - a virtual lymph node. The virtual
lymph node can be applied to simulate drug responses and may be used
in clinical diagnosis. Here, we review mathematical models of the human
lymph node from the viewpoint of cellular processes. Starting with classi-
cal methods, such as systems of differential equations, we discuss the values
of different levels of abstraction and methods in the range from artificial
intelligence techniques formalism

Keywords: lymph node, immune response, modeling, Petri net,
agent-based modeling, ordinary differential equation, partial differential
equation, artificial intelligence

1. Introduction

The immune system provides the human body with a toolbox of complex
defense mechanisms. Even simple immune systems such as in the marine
invertebrate tunicate show an intertwined interplay of cellular players that is
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yet not fully understood [1]. The evolution of various immune systems has
been the topic of comparative immunity studies [2, 3].

Several hundreds of lymph nodes are distributed over the human body.
Lymph liquid circulates through the lymph nodes and may transport a for-
eign substance called antigens, e.g., a COVID-19 virus, AIDS virus, cancer
cell, fungus, bacterium, or just a simple virus that may cause a common
cold. In the lymph node, densely packed B cells, T cells, plasma cells, and
macrophages are responsible for filtering and detecting antigens and trigger-
ing an immune response. The immune response has not only to deal with
a broad diversity of antigens but to be specific enough to avoid mistakenly
targeting and attacking functional parts of the body.

To understand the functionality of the human immune system, we have
to consider the main organ, the lymph node, and explore its components and
their cellular interplay. In modern pathology, lymph nodes are investigated
mainly using imaging techniques. Digitization of tissue sections is part of
current workflows in modern pathology. For a more detailed look at the
preparation by staining and digitization of lymph node tissue sections, see
Appendix A.1. and Appendix A.2. in the supplemental material.

Theoretical modeling is necessary to understand the immune response
from a holistic point of view and predict the dynamic behavior under medi-
cal treatment. Mathematical models in biology have been applied to answer
questions in pharmacology and for treatment procedures of organisms to re-
duce experiments, in particular, in testing components of applications and
the prediction of experimental results. For modern computers, computa-
tional tasks have become inexpensive, and numerous user-friendly tools have
been developed [4]. Recently, specific methods for precision medicine and
digital twins have been developed [5]. Systems biology concepts, e.g., steady
states, local stability, and sensitivity, however, are still tractable only for
small systems [6-8].

This work is motivated and influenced by our experience in generating
experimental 2D, 3D, and 4D data on the human lymph node as well as in
modeling the human lymph node by applying the Petri net formalism without
the use of kinetic parameters. This review does not intend to give guidance or
even a tutorial on how to build a human lymph node model. We further em-
phasize that we focus on lymph node models of humans and not mice or rats
since their physiological behavior significantly differs [9]. This review aims
at compiling recently applied and derived modeling techniques to explore the
human lymph node. To the best of our knowledge, this is the first review



on that topic. The contribution of the work is the compilation of modeling
techniques of the human lymph node published in the last few years. We
structure the paper according to the different modeling approaches, first dis-
cussing the different levels of abstraction and then the modeling techniques,
focusing on models based on ordinary differential equations (ODEs), partial
differential equations (PDEs), artificial intelligence techniques, agent-based
simulations, and Petri nets in the context of the lymph node.

2. Levels of abstraction
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Figure 1: The pyramid of levels of abstraction. We divide the level of abstraction into
molecule, cell, tissue, organ, and organism levels. On the top of the pyramid, we find the
molecular level with a small graphical pattern that represents a transmembrane protein
to which a ligand binds. On the second level, we have the cell with its properties, such as
shape and motility, with a lymphocyte as a small figure. The black line indicates a track of
the cell. The black box indicates the possible place where a transmembrane protein could
be located. The third level describes the tissues and the compartments of the lymph node
depicted by a germinal center with light and dark zones. On the fourth level, the organ
is addressed with a small figure representing a lymph node with the subcapsular sinus in
yellow, the germinal center in blue, and the paracortex in green. On the bottom level, we
consider the organism, here, the human body. The small figure represents a patient with
his/her lymphatic network, which is not explicitly illustrated.



Theoretical modeling in systems biology has to compromise on the level
of abstraction and the choice of aspects the modeler wants to describe.
The lack of quantitative data often hampers the simulation of dynamics by
ODEs. General characteristics, e.g., the reachability of states may become
intractable by complexity issues.

For more than five decades, mathematical modeling has been applied to
understand the complex functional behavior of the lymph node, for exam-
ple, see the review of Siskind and Benacerraf from the year 1969 [10]. For
a review of more recent work, we refer to Margaris and Black [11] and Cap-
puccino et al. [12]. The models covered various levels of abstraction, ranging
from molecular metabolic and signaling pathways over cell-cell interactions
to whole-body models [13-17].

Driven by the data available, we can consider different levels of abstrac-
tion in terms of a molecular level, cellular level, tissue level, organ level,
and organism level, see Figure 1 Each level of abstraction is associated with
its scale of periods and spatial resolution. We summarize the dimensions
according to the levels in Table A.2. in the supplementary material.

Molecular level: On top of the pyramid, molecules are located. Typ-
ically, the sizes of molecules range from fractions of 0.1 nm, e.g., for a hy-
drogen atom, to 100 nm, e.g., for an adenovirus. Fast reactions such as the
self-ionization of water, may happen on the scale of picoseconds and can be
assumed to have reached a steady state. Other biochemical reactions, e.g.,
protein folding, however, can be much slower and may require milliseconds or
several hours. Chemically, the number of molecules is measured in terms of
the Avogadro constant, and classical approaches consider the concentrations
of molecules by ODEs or PDEs. Diffusion constants in water may range
from 0.005 pum?/s for mRNA to 2000 um?/s for CO,. Within the lymph
node, specific molecules such as chemokines play an essential role in cell-cell
communication.

Cellular level: Here, the theoretical modeling describes cells and cel-
lular processes, e.g., replication, movement, cell-cell interaction, maturation,
and differentiation. To model a lymph node, we have to know the sizes and
numbers of the different cells. Sizes of cells are in the order of 5 um for B cells
to 20 um for macrophages. The concentrations of cells vary for each cell type
and compartment. For example, concentrations in the order of 10! — 10'2
B cells per liter have been measured in the germinal center under reactive
conditions in lymphadenitis [18]. An exemplary value of 5.8 pum/min has
been reported for the migration of T follicular helper cells in the germinal



center [19]. The lifespan of cells greatly varies across types and tissues, for
example, from 3 — 5 days for gut epithelia to years for cardiomyocytes [20].
For B cells, mean lifespans of 52 days [21] and 76 days [22] have been mea-
sured. Cells effectively can communicate over a distance of 250 pum within
a timescale of 10 — 30 minutes [23]. The spatial signaling range is, however,
highly dependent on the concrete situation and is often limited to nearby
cells only.

Tissue level: The tissue of the healthy lymph node enables the trans-
port of lymph, blood, and cells. The lymph node consists of compartments,
e.g., subcapsular sinus, germinal center, and medulla. During the immune
reaction, the spatiotemporal organization of the lymph node changes dy-
namically. The inflow of lymph increases, the lymph node swells, and new
germinal centers emerge and grow. Typically, about 60 germinal centers with
a median size of about 500 gm are in a lymph node [18]. Due to the dynamic
processes in the lymph node, quantitative data exhibit high variations, mak-
ing the quantitative characterization of a representative compartment, such
as a mean germinal center, questionable [24, 25].

Organism level: Here, we consider a patient. An individual patient
consists of molecules, cells, tissues, and organs but in clinical practice, a pa-
tient can not be reduced to its biological functions. Factors such as age, sex,
lifestyle, previous illnesses, body mass index, medication, and even mindset
are crucial for choosing an appropriate treatment. About 600 lymph nodes
in the human body filter the lymph for antigens with a total lymph flow of
about 4 —5 liters per day. After infection or while exercising, the lymph flow
can strongly increase. The recognition of an antigen is the starting point of
an immune response, which takes place on the timescale of hours to several
days.

A broad range of techniques has been applied to model the lymph node
such as systems of ODEs and PDEs [26], agent-based models [27], Potts
models [28], graph theory-based models [29], Petri nets [30], and Boolean
networks [31]. In the following, we summarize the different modeling tech-
niques in the context of lymph node models without explicitly giving the
assignment to the level of abstraction. Because of the desired size of the
paper, we will provide a choice of up to now frequently used modeling ap-
proaches.



3. Modeling techniques

3.1. Kinetic modeling based on ordinary differential equations

Systems of ODEs usually apply the mass action kinetics and assume a
well-mixed, homogeneous concentration of cells. The assumption of homoge-
neous concentrations is certainly an oversimplification for the lymph node as
a whole because there exist different compartments, e.g., subcapsular sinus,
germinal centers, light zones, dark zones, T zone, and medulla, which exhibit
key functions and different populations of cells. Additionally, cancerous cells
may destroy the internal structure of the lymph node, and hence, can cause
a lethal breakdown of the immune response [32].

In 1970, Bell developed a system of ODEs of clonal selection and antibody
production to predict the constants of simple experimental systems [26, 33].
The mathematical model of Bell describes six species, four types of cells,
antigens, and antibodies and discriminates target cells, proliferating cells,
plasma cells, and memory cells. The model has been generalized to allow for
a multi-group representation of cells and antibody heterogeneity. Appropri-
ate kinetic rate constants have been chosen, and a volume of 0.2 liters has
been assumed for the immune system. Inside the immune system, simula-
tions have been started with 1000 target cells that have been divided into
seventeen groups, each of which with an individual association constant for
the antibody (bovine v-globulin). Antigen has been involved in the models,
either as an initial condition or as a prolonged source. Because of the lack of
experimental characterization, the number of sites per cell and the response
of cells to antigens have to be chosen rather arbitrarily. Nevertheless, many
features like an increase in the effective antibody association constant and a
faster second response have been modeled in excellent agreement with exper-
iments. However, the model has failed to simulate special effects such as high
and low concentration tolerances and threshold doses in secondary responses.
Systems of ODEs may reflect a confined view of aspects of a single compart-
ment, for example, to model the dynamics of a single germinal center by
Kesmir and De Boer [34]. More theoretically, Kepler and Perelson [35] have
applied mathematical techniques of control theory to optimize the mutation
rate of the B-cell population dynamics in the lymph node. For further details
on the kinetic modeling, see Appendix A.3 in the supplementary material.



3.2. Spatiotemporal modeling based on partial differential equations

Non-homogeneous spatial distributions of cells can be modeled either by
the framework of coupled well-mixed reactors or a system of PDEs [36, 37].
Since the individual lymph node is not a rigid organ, the dynamic, complex
flow of lymph liquid is yet a challenge for PDEs [38-41]. During an immune
response, the velocity of inflow increases, and the lymph node becomes big-
ger. The swelling of lymph nodes is a typical immune response, indicating
an infection. Additionally, germinal centers become initiated, increasing in
number and size [18]. PDEs with fixed boundary conditions are not able to
reflect such basic aspects of an immune response. Inside the compartments
of the lymph node, cells are not present in typical molar concentrations. The
size of a compartment can be small, e.g., a germinal center may range from
several 10 pum to more than 3 mm [18, 42, 43]. To estimate the number of
cells, the Avogadro constant is certainly not an appropriate measure. Addi-
tionally , the movement of an individual cell is directed by chemokines and
fibers of either fibroblastic reticular cells [44] or follicular dendritic cells [45].
The straight-line movements of cells are interrupted by changes in the direc-
tion [46]. On a macroscopic scale, the movement may be approximated by a
random Brownian movement and hence, by the diffusion process of a PDE.
On the microscopic scale, a PDE fails to reflect the spatial distribution of
cells.

3.3. Modeling applying artificial intelligence techniques

Hybrid discrete/continuous models have addressed the shortcomings of
systems of ODEs and PDEs, see, for example, Baldazzi et al. [47]. The
simulation of the movements of cells in the lymph node is, however, still a
theoretical challenge as in the cellular Potts model for the interaction and
motility of T cells and dendritic cells, see Beltman et al. [28]. The motility
of cells is important for the timescale of the detection of an antigen and the
triggered immune response [48]. Tracks for immunostained cells and machine
learning have been applied to define the entities of human cells [49].

The increasing number of clinical data has enabled the application of
methods and tools from machine learning. In the field of digital pathology,
artificial intelligence has attracted immense interest [50]. The early detec-
tion of lymphoma by processing medical imaging with models of artificial
intelligence has reached a pooled sensitivity of 87%, for a recent review and
meta-analysis, we refer to Bai et al. [51]. Satisfactory diagnostic performance
has been obtained in subgroup analyses but the black-box characteristic of
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machine learning has raised trust issues for automatic application in diagnos-
tics and clinical decision-making. Since the visual inspection of an image by
an experienced pathologist takes only seconds, the high expectations for ar-
tificial intelligence models have yet not been realized in the clinical practice.
In the future, explainable artificial intelligence [52] may change the situation.

3.4. Modeling with agent-based simulation

The dynamics of cells inside the lymph node has been modeled by numer-
ous groups [53-61]. Special attention has been focused on local dynamics in
germinal centers [62-65]. Cells shape their microenvironment of neighboring
cells [66-68]. Cancerous cells may exploit a microenvironment of neighboring
cells as an immune escape [69]. Note that, evolving therapeutic approaches
such as the adaptive T-cell therapy, relies on the redirection of T lympho-
cytes toward selected tumor-associated antigens [19, 70]. To simulate the
complex behavior in a population of interacting cells, agent-based simulation
is an attractive framework [27, 56]. The effects of the local microenviron-
ment of the individual cell, cell movement, and spatiotemporal distributions
can be explicitly incorporated [27, 56]. Conventionally, agent-based models
represent each cell by an object called an agent with individual properties
and rules for activation, cell-cell interaction, cell-environment interaction,
and movement [27, 71]. Limited computational resources may restrict agent-
based simulation of the spatiotemporal organization of cells. Further details
on agent-based simulation can also be found in Appendix A.4 in the supple-
mentary material.

3.5. Semi-quantitative modeling with Petri nets

An alternative viewpoint on lymph node models comes from Petri net
formalism introduced by Carl Adam Petri in 1962 for the representation and
analysis of systems with concurrent processes [72]. The Petri net formalism
is well-established in many technical applications, theoretical computer sci-
ence, and since 1993 in systems biology [73]. In 2020, Pernice et al. [74] have
referred to the Petri net as a technique that is a ”powerful tool for mod-
eling and studying biological systems”. Petri nets cover a diverse range of
applications for biological systems [75, 76]. Techniques such as the invariant
analysis and in silico knockout analysis provide valuable methods to partly
verify the completeness and correctness of a model [77-82]. Pennisi et al. [83]
have applied colored Petri nets to the immune system at the cellular level.
Moreover, due to the strict separation between the active and the passive
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part of the system, modifications to receive hybrid models, Boolean models,
or even kinetic models become possible. Signaling during hepatitis C virus
infection has been studied by Obaid et al. [84]. Other examples are Petri net
models of inflammation and oxidative stress [85] and microenvironmental sig-
nals on macrophage differentiation [86]. In the last years, several models of
signaling pathways at the molecular level, in particular in medical applica-
tions, have been developed, for a review, see [76]. Petri nets enable a holistic
view of the cellular processes inside the lymph node [30]. For further de-
tails on semi-quantitative modeling, see Appendix A.5 in the supplementary
material.

4. Summary and Conclusion

Early models have focused on the lymph nodes of animal models such as

mice because any experimental verification on humans has been not possible
for ethical reasons. Nowadays, automatizing, high throughput, digitization,
and data storage produce data from human lymph nodes with rapidly in-
creasing speed and number . Based on our joint work with co-authored
pathologists who have been specialists in lymph node research for more than
30 years, we give an overview of ongoing research on a virtual lymph node
model.
The literature on the theoretical modeling of lymph nodes is diverse and vast.
Here , we cannot give a comprehensive and complete overview. Focusing on
the developments in the last years, we considered the modeling concepts ac-
cording to their different, hierarchical levels of abstraction, see Table A.1
in the supplementary material. We took into account concepts of digital
pathology, artificial intelligence, pharmacokinetics, systems biology, network
theory, and theoretical computer science to investigate the lymph node. The
collection of the necessary data remains the bottleneck in computational
modeling, in particular of such complex organs as the human lymph node.
Moreover, the data of different quality and quantity have to be combined
properly to address all their differences. Therefore, most studies investigate
specific research questions in a very narrow range. The review demonstrates
not only recent developments but also the strong need for more effort in the
field, experimentally as well as computationally.
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