SUPPLEMENTARY MATERIAL

This supplementary material is structured in three sections. Section SM-1 discusses the second-order transport coefficients from the Shakhov model. Section SM-2 presents the entropy production, while Section SM-3 summarizes the details of the numerical scheme used to solve the Shakhov model equation.

SM-1. Second-order transport coefficients of the relativistic Shakhov model

In this section we employ the method of moments of Refs. [1, [2] to derive the first- and second-order transport coefficients corresponding to the relativistic Shakhov model. These transport coefficients arise at first- and second-order with respect to the Knudsen number Kn, being the ratio of the particle mean free path and a characteristic macroscopic scale, and the inverse Reynolds number Re^{-1}, being the ratio of an out-of-equilibrium and a local-equilibrium macroscopic field.

Irreducible moments and orthogonal basis.- The irreducible moments from Eq. (6) are expressed as [1],

$$
\begin{equation*}
\delta f_{\mathbf{k}}=f_{0 \mathbf{k}} \tilde{f}_{0 \mathbf{k}} \sum_{\ell=0}^{\infty} \sum_{n=0}^{N_{\ell}} \rho_{n}^{\mu_{1} \cdots \mu_{\ell}} k_{\left\langle\mu_{1}\right.} \cdots k_{\left.\mu_{\ell}\right\rangle} \mathcal{H}_{\mathbf{k} n}^{(\ell)} \tag{SM-1}
\end{equation*}
$$

where $N_{\ell} \rightarrow \infty$ is an expansion order. The functions $\mathcal{H}_{\mathbf{k} n}^{(\ell)}$ are polynomials of order N_{ℓ} with respect to $E_{\mathbf{k}}$, defined in full generality in Eq. (29) of Ref. [1], and are constructed such that Eq. (6) is satisfied for $0 \leq r \leq N_{\ell}$. We remark that, while Eq. (SM-1 employs an irreducible basis, the expansion does not account explicitly for the negative-order moments $\rho_{r}^{\mu_{1} \cdots \mu_{\ell}}$ with $r<0$, but these must be reconstructed from those with $0 \leq r \leq N_{\ell}$ in a manner which becomes exact only in the limit $N_{\ell} \rightarrow \infty$. The simple structure of the RTA model allows us to circumvent such construction in Eq. SM-1 by employing a basis-free approach, as discussed in Ref. [3].

We note that the functions $\mathcal{H}_{\mathrm{k} n}^{(\ell)}$, related to the representation of $\delta f_{\mathbf{k}}$ are also useful in the context of the Shakhov model. However, for the Shakhov distribution, N_{ℓ} is not the expansion order of $\delta f_{\mathbf{k}}$, but the order of the $\mathcal{H}_{\mathbf{k} 0}^{(\ell)}$ polynomials satisfying the constraints in Eq. 20, namely $N_{0}=2, N_{1}=1$, and $N_{2}=0$.

The Shakhov collision term from Eq. [12] is

$$
\begin{equation*}
C_{r-1}^{\mu_{1} \cdots \mu_{\ell}}=-\frac{1}{\tau_{R}} \rho_{r}^{\mu_{1} \cdots \mu_{\ell}}+\frac{1}{\tau_{R}} \rho_{\mathrm{S}, r}^{\mu_{1} \cdots \mu_{\ell}} \tag{SM-2}
\end{equation*}
$$

where the second term involves the irreducible moments of $\delta f_{\mathbf{S k}}=f_{0 \mathbf{k}} \tilde{f}_{0 \mathbf{k}} \mathbb{S}_{\mathbf{k}}$ defined in Eq. (14). Now, using the Shakhov distribution from Eq. (22), leads to

$$
\begin{gather*}
\rho_{\mathrm{S}, r}=-\frac{3 \Pi}{m_{0}^{2}}\left(1-\frac{\tau_{R}}{\tau_{\Pi}}\right) \mathcal{F}_{-r, 0}^{(0)}, \quad \rho_{\mathrm{S}, r}^{\mu}=V^{\mu}\left(1-\frac{\tau_{R}}{\tau_{V}}\right) \mathcal{F}_{-r, 0}^{(1)}, \\
\rho_{\mathrm{S}, r}^{\mu \nu}=\pi^{\mu \nu}\left(1-\frac{\tau_{R}}{\tau_{\pi}}\right) \mathcal{F}_{-r, 0}^{(2)}, \tag{SM-3}
\end{gather*}
$$

while the higher-rank moments are set to vanish, i.e., $\rho_{\mathrm{S}, r}^{\mu_{1} \cdots \mu_{\ell}}=0$ with $\ell>2$. Now, using Eq. (28) for polynomial orders $N_{0}=2$, $N_{1}=1$ and $N_{2}=0$ ensures that $\mathcal{F}_{0,0}^{(0)}=\mathcal{F}_{0,0}^{(1)}=\mathcal{F}_{0,0}^{(2)}=1$ and $\mathcal{F}_{-1,0}^{(0)}=\mathcal{F}_{-2,0}^{(0)}=\mathcal{F}_{-1,0}^{(1)}=0$.

The second-order transport coefficients also require the knowledge of various other moments $\rho_{r \neq 0}^{\mu_{1} \cdots \mu_{\ell}}$. Here we recall the first-order approximation to such irreducible moments in the so-called basis-free approach of Ref. [3]:

$$
\begin{equation*}
\rho_{r \neq 0} \simeq-\frac{3}{m_{0}^{2}} \mathcal{R}_{r 0}^{(0)} \Pi, \quad \rho_{r \neq 0}^{\mu} \simeq \mathcal{R}_{r 0}^{(1)} V^{\mu}, \quad \rho_{r \neq 0}^{\mu \nu} \simeq \mathcal{R}_{r 0}^{(2)} \pi^{\mu \nu}, \tag{SM-4}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{R}_{r 0}^{(0)}=\frac{\zeta_{r}}{\zeta}, \quad \mathcal{R}_{r 0}^{(1)}=\frac{\kappa_{r}}{\kappa}, \quad \mathcal{R}_{r 0}^{(2)}=\frac{\eta_{r}}{\eta} . \tag{SM-5}
\end{equation*}
$$

Now, substituting the expressions for the first-order transport coefficients from Eqs. (31) into Eq. SM-5) gives

$$
\begin{equation*}
\mathcal{R}_{-r, 0}^{(\ell)}=\frac{\tau_{R}}{\tau_{\mathrm{S}}^{(\ell)}} \frac{\alpha_{-r}^{(\ell)}}{\alpha_{0}^{(\ell)}}+\left(1-\frac{\tau_{R}}{\tau_{\mathrm{S}}^{(\ell)}}\right) \mathcal{F}_{r 0}^{(0)} . \tag{SM-6}
\end{equation*}
$$

Using these results, the relaxation times can be computed using Eqs. (38) of Ref. [4]:

$$
\begin{equation*}
\tau_{\Pi}=\sum_{r \neq 1,2} \tau_{0 r}^{(0)} \mathcal{R}_{r 0}^{(0)}, \quad \tau_{V}=\sum_{r \neq 1} \tau_{0 r}^{(1)} \mathcal{R}_{r 0}^{(1)}, \quad \tau_{\pi}=\sum_{r} \tau_{0 r}^{(2)} \mathcal{R}_{r 0}^{(2)} . \tag{SM-7}
\end{equation*}
$$

Recalling the expression for $\tau_{n r}^{(\ell)}$ from Eqs. (29) together with Eq. SM-6, the above definitions leads to $\tau_{\Pi}=\tau_{\mathrm{S}}^{(0)}, \tau_{V}=\tau_{\mathrm{S}}^{(1)}$ and $\tau_{\pi}=\tau_{\mathrm{S}}^{(2)}$, as expected.

As discussed in Ref. [3], the second-order transport coefficients involve only the coefficients $\mathcal{R}_{-1,0}^{(\ell)}$ and $\mathcal{R}_{-2,0}^{(\ell)}$. These coefficients also require the expressions for $\mathcal{F}_{r 0}^{(\ell)}$, computed using the functions $\mathcal{H}_{\mathbf{k} 0}^{(\ell)}$ in Eq. 23), as shown below:

$$
\begin{gather*}
\mathcal{F}_{r 0}^{(0)}=\frac{J_{-r, 0} G_{33}-J_{1-r, 0} G_{23}+J_{2-r, 0} G_{22}}{J_{00} G_{33}-J_{10} G_{23}+J_{20} G_{22}}, \\
\mathcal{F}_{r 0}^{(1)}=\frac{J_{2-r, 1} J_{41}-J_{3-r, 1} J_{31}}{J_{21} J_{41}-J_{31}^{2}}, \quad \mathcal{F}_{r 0}^{(2)}=\frac{J_{4-r, 2}}{J_{42}} . \tag{SM-8}
\end{gather*}
$$

Equations of motion.- The relaxation equations for $\Pi=$ $-m_{0}^{2} \rho_{0} / 3, V^{\mu}=\rho_{0}^{\mu}$, and $\pi^{\mu \nu}=\rho_{0}^{\mu \nu}$ are obtained by setting $n=0$ in Eqs. 30). Up to second order with respect to Kn and Re^{-1}, these equations read, see Eqs. (88-93) in Ref. [3],

$$
\begin{align*}
& \tau_{\Pi} \dot{\Pi}+\Pi=-\zeta \theta-\ell_{\Pi V} \nabla_{\mu} V^{\mu}-\tau_{\Pi V} V_{\mu} \dot{u}^{\mu}-\delta_{\Pi \Pi} \Pi \theta \\
& -\lambda_{\Pi V} V_{\mu} \nabla^{\mu} \alpha+\lambda_{\Pi \pi} \pi^{\mu \nu} \sigma_{\mu \nu}, \tag{SM-9a}\\
& \tau_{V} \dot{V}^{\langle\mu\rangle}+V^{\mu}=\kappa \nabla^{\mu} \alpha-\tau_{V} V_{\nu} \omega^{\nu \mu}-\delta_{V V} V^{\mu} \theta \\
& -\ell_{V \Pi} \nabla^{\mu} \Pi+\ell_{V \pi} \Delta^{\mu \nu} \nabla_{\lambda} \pi_{v}^{\lambda}+\tau_{V \Pi} \Pi \dot{u}^{\mu}-\tau_{V \pi} \pi^{\mu \nu} \dot{u}_{v} \\
& -\lambda_{V V} V_{\nu} \sigma^{\mu \nu}+\lambda_{V \Pi} \Pi \nabla^{\mu} \alpha-\lambda_{V \pi} \pi^{\mu \nu} \nabla_{\nu} \alpha, \tag{SM-9b}\\
& \tau_{\pi} \pi^{\langle\mu \nu\rangle}+\pi^{\mu \nu}=2 \eta \sigma^{\mu \nu}+2 \tau_{\pi} \pi_{\lambda}^{\langle\mu} \omega^{\nu\rangle \lambda}-\delta_{\pi \pi} \pi^{\mu \nu} \theta \\
& -\tau_{\pi \pi} \pi^{\lambda\langle\mu} \sigma_{\lambda}^{\nu\rangle}+\lambda_{\pi \Pi} \Pi \sigma^{\mu \nu}-\tau_{\pi V} V^{\langle\nu} u^{\mu\rangle} \\
& +\ell_{\pi V} \nabla^{\langle\mu} V^{\nu\rangle}+\lambda_{\pi V} V^{\langle\mu} \nabla^{\nu\rangle} \alpha . \tag{SM-9c}
\end{align*}
$$

Shakhov model for the Bjorken flow.- In the case of the Bjorken expansion, we considered a massive, ideal, uncharged gas, such that $\alpha_{r}^{(0)}$ is given by Eq. (10). The first-order transport coefficients ζ and η are listed in Eqs. (38). The second-order transport coefficients appearing in Eq. (37) are listed here from Ref. [2]:

$$
\begin{align*}
& \delta_{\Pi \Pi}=\tau_{\Pi}\left(\frac{2}{3}+\frac{m_{0}^{2}}{3} \frac{J_{10}}{J_{30}}+\frac{m_{0}^{2}}{3} \mathcal{R}_{-2,0}^{(0)}\right), \tag{SM-10}\\
& \lambda_{\Pi \pi}=\tau_{\Pi} \frac{m_{0}^{2}}{3}\left(\frac{J_{10}}{J_{30}}+\mathcal{R}_{-2,0}^{(2)}\right), \quad \delta_{\pi \pi}=\tau_{\pi}\left(\frac{4}{3}+\frac{m_{0}^{2}}{3} \mathcal{R}_{-2,0}^{(2)}\right), \\
& \tau_{\pi \pi}=\tau_{\pi}\left(\frac{10}{7}+\frac{4 m_{0}^{2}}{7} \mathcal{R}_{-2,0}^{(2)}\right), \quad \lambda_{\pi \Pi}=\tau_{\pi}\left(\frac{6}{5}+\frac{2 m_{0}^{2}}{5} \mathcal{R}_{-2,0}^{(0)}\right) .
\end{align*}
$$

Since the Shakhov distribution employed in Eq. (34) uses $\tau_{\Pi}=\tau_{R}$, the coefficients $\mathcal{R}_{-r, 0}^{(0)}$ reduce to their corresponding values for the AW model, namely

$$
\begin{equation*}
\mathcal{R}_{-r, 0}^{(0)} \equiv \frac{\alpha_{-r}^{(0)}}{\alpha_{0}^{(0)}}=\frac{J_{1-r, 0} J_{31}-J_{1-r, 1} J_{30}}{J_{10} J_{31}-J_{11} J_{30}} \tag{SM-11}
\end{equation*}
$$

where Eq. (10) was employed to replace $\alpha_{r}^{(0)}$. On the other hand, $\mathcal{R}_{-r, 0}^{(2)}$ becomes

$$
\begin{equation*}
\mathcal{R}_{-r, 0}^{(2)}=\frac{\tau_{\Pi}}{\tau_{\pi}} \frac{J_{3-r, 2}}{J_{32}}+\left(1-\frac{\tau_{\Pi}}{\tau_{\pi}}\right) \frac{J_{4-r, 2}}{J_{42}}, \tag{SM-12}
\end{equation*}
$$

which, in the limit of $\tau_{\Pi}=\tau_{\pi}$, recovers the analogous coefficient appearing in the AW model, $\alpha_{-r}^{(2)} / \alpha_{0}^{(2)}=J_{3-r, 2} / J_{32}$. Therefore, the transport coefficients $\lambda_{\Pi \pi}, \delta_{\pi \pi}$, and $\tau_{\pi \pi}$ involving $\mathcal{R}_{-2,0}^{(2)}$ are modified with respect to their AW expressions, while $\delta_{\Pi \Pi}$ and $\lambda_{\pi \Pi}$ remain unchanged.

Shakhov model for longitudinal waves.- In the case of the longitudinal waves concerning an ultrarelativistic classical ideal gas, we have

$$
\begin{array}{ll}
J_{n q}=\frac{P \beta^{2-n}(n+1)!}{2(2 q+1)!!}, & P=\frac{g e^{\alpha}}{\pi^{2} \beta^{4}}, \\
\alpha_{r}^{(1)}=\frac{P(r+2)!(1-r)}{24 \beta^{r-1}}, & \alpha_{r}^{(2)}=\frac{P(r+4)!}{30 \beta^{r}} \tag{SM-13}
\end{array}
$$

The transport coefficients from Eq. (SM-9b] reduce to [3]:

$$
\begin{gather*}
\delta_{V V}=\tau_{V}, \quad \ell_{V \pi}=\frac{\tau_{V}}{h}\left(1-h \mathcal{R}_{-1,0}^{(2)}\right), \quad \tau_{V \pi}=\frac{\tau_{V}}{h}\left(1-h \frac{\partial \mathcal{R}_{-1,0}^{(2)}}{\partial \ln \beta}\right), \\
\lambda_{V V}=\frac{3}{5} \tau_{V}, \quad \lambda_{V \pi}=\tau_{V}\left(\frac{\partial \mathcal{R}_{-1,0}^{(2)}}{\partial \alpha}+\frac{1}{h} \frac{\partial \mathcal{R}_{-1,0}^{(2)}}{\partial \beta}\right), \quad(\mathrm{SM}-14) \tag{SM-14}
\end{gather*}
$$

where $h=(e+P) / n$ is the enthalpy per particle. Noting that

$$
\begin{equation*}
\mathcal{F}_{10}^{(2)}=\frac{\beta}{5}, \quad \mathcal{R}_{-1,0}^{(2)}=\frac{\beta}{4}\left(1+\frac{\tau_{R}-\tau_{\pi}}{5 \tau_{\pi}}\right), \tag{SM-15}
\end{equation*}
$$

the Shakhov model alters only the following coefficients:

$$
\begin{equation*}
\ell_{V \pi} \equiv \tau_{V \pi}=\frac{\beta}{20}\left(1-\frac{\tau_{R}}{\tau_{\pi}}\right) \tau_{V} \tag{SM-16a}
\end{equation*}
$$

$$
\begin{equation*}
\lambda_{V \pi}=\frac{\beta}{16}\left(1+\frac{\tau_{R}-\tau_{\pi}}{5 \tau_{\pi}}\right) \tau_{V} . \tag{SM-16b}
\end{equation*}
$$

Similarly, the coefficients appearing in Eq. (SM-9c) are

$$
\begin{equation*}
\delta_{\pi \pi}=\frac{4}{3} \tau_{\pi}, \quad \tau_{\pi \pi}=\frac{10}{7} \tau_{\pi}, \quad \ell_{\pi V}=\tau_{\pi V}=\lambda_{\pi V}=0 \tag{SM-16c}
\end{equation*}
$$

while $\kappa=\frac{\beta P}{12} \tau_{V}$ and $\eta=\frac{4 P}{5} \tau_{\pi}$. The Shakhov collision term considered in Eq. (39) employs $\tau_{\pi}=\tau_{R}$, hence the dependence on τ_{π} disappears in Eqs. SM-16 and all transport coefficients reduce to the AW ones (with τ_{R} replaced by τ_{V} or τ_{π}, as appropriate), see for comparison Eqs. (168) and (169) in Ref. [3].

SM-2. Entropy production

We now discuss the thermodynamic consistency of the Shakhov model by considering the entropy production

$$
\begin{equation*}
\partial_{\mu} S^{\mu}=-\int d K C_{\mathrm{S}}[f] \ln \left(f_{\mathbf{k}} / \tilde{f}_{\mathbf{k}}\right) \tag{SM-17}
\end{equation*}
$$

where $S^{\mu}=-\int d K k^{\mu}\left(f_{\mathbf{k}} \ln f_{\mathbf{k}}+a \tilde{f}_{\mathbf{k}} \ln \tilde{f}_{\mathbf{k}}\right)$ is the entropy fourcurrent. As originally pointed out by Shakhov [5], asserting the sign of $\partial_{\mu} S^{\mu}$ for arbitrary distributions $f_{\mathbf{k}}$ is difficult, but if the fluid is not far from equilibrium, quadratic terms in $\delta f_{\mathbf{k}}$ or $\delta f_{\text {Sk }}$ can be neglected and the logarithm in Eq. SM-17) can be approximated as:

$$
\begin{equation*}
\ln \frac{f_{\mathbf{k}}}{\tilde{f}_{\mathbf{k}}}=\ln \frac{f_{0 \mathbf{k}}\left(1+\tilde{f}_{0 \mathbf{k}} \phi_{\mathbf{k}}\right)}{\tilde{f}_{0 \mathbf{k}}\left(1-a f_{0 \mathbf{k}} \phi_{\mathbf{k}}\right)} \simeq \ln \frac{f_{0 \mathbf{k}}}{\tilde{f}_{0 \mathbf{k}}}+\phi_{\mathbf{k}}+O\left(\phi_{\mathbf{k}}^{2}\right) \tag{SM-18}
\end{equation*}
$$

where $\phi_{\mathbf{k}}=\delta f_{\mathbf{k}} /\left(f_{0 \mathbf{k}} \tilde{f}_{0 \mathbf{k}}\right)$. Thus, Eq. SM-17) becomes

$$
\begin{align*}
& \partial_{\mu} S^{\mu} \simeq \frac{1}{\tau_{R}} \int d K E_{\mathbf{k}}\left(\delta f_{\mathbf{k}}-\delta f_{\mathrm{Sk}}\right) \ln \frac{f_{0 \mathbf{k}}}{\tilde{f}_{0 \mathbf{k}}} \\
&+\frac{1}{\tau_{R}} \int d K E_{\mathbf{k}} \delta f_{\mathbf{k}}\left(\phi_{\mathbf{k}}-\mathbb{S}_{\mathbf{k}}\right) \tag{SM-19}
\end{align*}
$$

where on the second line, we have used the relation ($\delta f_{\mathbf{k}}-$ $\left.\delta f_{\text {Sk }}\right) \phi_{\mathbf{k}}=\delta f_{\mathbf{k}}\left(\phi_{\mathbf{k}}-\mathbb{S}_{\mathbf{k}}\right)$ with $\mathbb{S}_{\mathbf{k}}=\delta f_{\text {Sk }} / f_{0 \mathbf{k}} \widetilde{f_{0 \mathbf{k}}}$. Since $\ln \left(f_{0 \mathbf{k}} / \tilde{f}_{0 \mathbf{k}}\right)=\alpha-\beta E_{\mathbf{k}}$, the first term on the right-hand side of the equation vanishes due to the matching conditions in Eq. (19). The second term can be estimated using Eq. (13), leading to

$$
\begin{equation*}
\phi_{\mathbf{k}}-\mathbb{S}_{\mathbf{k}} \simeq-\frac{\tau_{R}}{E_{\mathbf{k}}} k^{\mu} \partial_{\mu}\left(\alpha-\beta E_{\mathbf{k}}\right) \tag{SM-20}
\end{equation*}
$$

and with Eq. 17) confirms the second law of thermodynamics,

$$
\begin{equation*}
\partial_{\mu} S^{\mu} \simeq \frac{\beta}{\zeta} \Pi^{2}-\frac{1}{\kappa} V_{\mu} V^{\mu}+\frac{\beta}{2 \eta} \pi_{\mu v} \pi^{\mu \nu} \geq 0 \tag{SM-21}
\end{equation*}
$$

SM-3. Numerical method for the Shakhov model

To solve the Shakhov kinetic model $k^{\mu} \partial_{\mu} f_{\mathbf{k}}=C_{\mathrm{S}}[f]$, we employ a discrete velocity method inspired by the Relativistic Lattice Boltzmann algorithm of Refs. [6, 7, 8, 9, 10]. We consider the rapidity-based moments of $f_{\mathbf{k}}$ introduced in Ref. [2], which eliminates two out of the three dimensions of the momentum space for the particular case of the $(1+1)$-dimensional longitudinal waves SM-3.1, and the $(0+1)$-dimensional boost invariant expansion SM-3.2, respectively.

SM-3.1. Longitudinal wave damping problem

In the application of Sec. 6, the fluid is homogeneous with respect to the x and y directions. Parameterizing the momentum space using ($m_{\perp}, \varphi_{\perp}, v^{z}$) as in Ref. [2],

$$
\begin{equation*}
\binom{k^{t}}{k^{z}}=\frac{m_{\perp}}{\sqrt{1-v_{z}^{2}}}\binom{1}{v^{z}}, \quad\binom{k^{x}}{k^{y}}=\sqrt{m_{\perp}^{2}-m_{0}^{2}}\binom{\cos \varphi_{\perp}}{\sin \varphi_{\perp}} \tag{SM-22}
\end{equation*}
$$

the Boltzmann equation with the Shakhov model for the collision term reduces to

$$
\begin{equation*}
\partial_{t} f_{\mathbf{k}}+v^{z} \partial_{z} f_{\mathbf{k}}=-\frac{u \cdot v}{\tau_{R}}\left(f_{\mathbf{k}}-f_{\mathrm{Sk}}\right), \tag{SM-23}
\end{equation*}
$$

where $v^{\mu}=k^{\mu} / k^{t}$ and $u \cdot v=\gamma\left(1-\beta^{z} v^{z}\right)$, with β^{z} being the fluid three-velocity along the z direction and $\gamma=1 / \sqrt{1-\beta_{z}^{2}}$. Introducing the rapidity-based moments [2]

$$
\begin{equation*}
F_{n}=\frac{g}{(2 \pi)^{3}} \int_{0}^{2 \pi} d \varphi_{\perp} \int_{m_{0}}^{\infty} \frac{d m_{\perp} m_{\perp}^{n+1}}{\left(1-v_{z}^{2}\right)^{(n+2) / 2}} f_{\mathbf{k}} \tag{SM-24}
\end{equation*}
$$

Eq. (SM-23) becomes

$$
\begin{equation*}
\partial_{t} F_{n}+v^{z} \partial_{z} F_{n}=-\frac{u \cdot v}{\tau_{R}}\left(F_{n}-F_{n}^{\mathrm{S}}\right) \tag{SM-25}
\end{equation*}
$$

It can be shown [11] that the macroscopic quantities N^{t}, N^{z}, $T^{t t}, T^{t z}$ and $T^{z z}$ can be obtained from F_{1} and F_{2} via

$$
\binom{N^{t}}{N^{z}}=\int_{-1}^{1} d v^{z}\binom{1}{v^{z}} F_{1}, \quad\left(\begin{array}{l}
T^{t t} \tag{SM-26}\\
T^{t z} \\
T^{z z}
\end{array}\right)=\int_{-1}^{1} d v^{z}\left(\begin{array}{c}
1 \\
v^{z} \\
v_{z}^{2}
\end{array}\right) F_{2}
$$

For the case of massless particles considered in Sec. 6, $T^{\mu}{ }_{\mu}=0$, such that $T^{x x}=T^{y y}=\left(T^{t t}-T^{z z}\right) / 2$. From the above, it is clear that the time evolution of both N^{μ} and $T^{\mu v}$ is fully determined by the functions F_{1} and F_{2}. In order to solve Eq. (SM-25], the functions F_{n}^{S} must be obtained by integrating Eq. 39, yielding:

$$
F_{1}^{\mathrm{S}}=\frac{n}{2(u \cdot v)^{3}}-\frac{3 V\left(\beta^{z}-v^{z}\right)}{2(u \cdot v)^{4}}\left(1-\frac{\tau_{\pi}}{\tau_{V}}\right), \quad F_{2}^{\mathrm{S}}=\frac{3 P}{2(u \cdot v)^{4}}
$$

(SM-27)
The time discretization is performed using equal time steps $\delta t=10^{-3} \mathrm{fm} / c$ and the time stepping is performed using the third-order total variation diminishing (TVD) Runge-Kutta scheme [12, [13]. The spatial domain $[-L / 2, L / 2]$ is discretized using $S=100$ cells of size $\delta s=L / S$, centred on $z_{s}=$ $\left(s-\frac{1}{2}\right) \delta s-\frac{L}{2}, 1 \leq s \leq S$. The spatial derivative $v^{z} \partial_{z} F_{n}$ is approximated using finite differences:

$$
\begin{equation*}
\left(v_{z} \frac{\partial F_{n}}{\partial z}\right)_{s}=\frac{\mathbf{F}_{n ; s+1 / 2}-\mathbf{F}_{n ; s-1 / 2}}{\delta s} \tag{SM-28}
\end{equation*}
$$

where $\mathbf{F}_{n ; s+1 / 2}$ represents the flux at the interface between cells s and $s+1$. For definiteness, we compute this flux using the upwind-biased fifth-order weighted essentially non-oscillatory (WENO-5) scheme introduced in Ref. [14, 15]. Finally, the v^{z} momentum space coordinate is discretized via the GaussLegendre quadrature with $K=20$ points, such that $P_{K}\left(v_{j}^{z}\right)=0$,
with $1 \leq j \leq K$ and $P_{K}(z)$ being the Legendre polynomial of order K. Then, integrals with respect to v^{z} of a function $g\left(v^{z}\right)$ are approximated via

$$
\begin{equation*}
\int_{-1}^{1} d v^{z} g\left(v^{z}\right) \simeq \sum_{j=1}^{K} g_{j}, \quad g_{j} \equiv w_{j} g\left(v_{j}^{z}\right) \tag{SM-29}
\end{equation*}
$$

with w_{j} being the Gauss-Legendre quadrature weights [16].

SM-3.2. Algorithm for the Bjorken expansion

The algorithm for the Bjorken expansion is identical to that described in Ref. [2], hence we only recall the main method here. The spatial rapidity is $\eta_{s}=\operatorname{artanh}(z / t)$, and the parametrization of the momentum space is as in Eq. (SM-22), with $\left(k^{t}, k^{z}\right)$ replaced by $\left(k^{\tau}, \tau k^{\eta_{s}}\right)$, where

$$
\begin{equation*}
k^{\tau}=\frac{1}{\tau}\left(t k^{t}-z k^{z}\right), \quad \tau k^{\eta_{s}}=\frac{1}{\tau}\left(t k^{z}-z k^{t}\right) . \tag{SM-30}
\end{equation*}
$$

Retaining the definition SM-24 of the rapiditybased moments, the non-vanishing components of $T^{\mu \nu}=\operatorname{diag}\left(e, P_{\perp}, P_{\perp}, \tau^{-2} P_{l}\right)$ are given by [2]

$$
\begin{equation*}
\binom{e}{P_{l}}=\int_{-1}^{1} d v^{z}\binom{1}{v_{z}^{2}} F_{2}, \quad P_{\perp}=\int_{-1}^{1} d v^{z}\left(\frac{1-v_{z}^{2}}{2} F_{2}+\frac{m_{0}^{2}}{2} F_{0}\right) \tag{SM-31}
\end{equation*}
$$

The Boltzmann equation becomes
$\partial_{\tau} F_{n}+\frac{1+(n-1) v_{z}^{2}}{\tau} F_{n}-\frac{1}{\tau} \frac{\partial\left[v^{z}\left(1-v_{z}^{2}\right) F_{n}\right]}{\partial v^{z}}=-\frac{1}{\tau_{R}}\left(F_{n}-F_{n}^{\mathrm{S}}\right)$,
where F_{n}^{S} can be obtained by integrating Eq. 344):

$$
\begin{equation*}
F_{n}^{\mathrm{S}}=F_{n}^{\mathrm{eq}}-\frac{\beta^{2} \pi\left(1-\frac{\tau_{\Pi 1}}{\tau_{\pi}}\right)}{4(e+P)}\left[m_{0}^{2} F_{n}^{\mathrm{eq}}-\left(1-3 v_{z}^{2}\right) F_{n+2}^{\mathrm{eq}}\right] \tag{SM-33}
\end{equation*}
$$

where $F_{n}^{\mathrm{eq}}=\frac{g}{4 \pi^{2}} \Gamma(n+2, \zeta) / \beta^{n+2}, \Gamma(n, \zeta)=\int_{\zeta}^{\infty} d x x^{n-1} e^{-x}$ is the incomplete Gamma function and $\zeta=\beta m_{0} / \sqrt{1-v_{z}^{2}}$. Since $\pi=\frac{2}{3}\left(P_{\perp}-P_{l}\right)$, the system is closed in terms of F_{0} and F_{2}.

The time integration and v^{z} discretization proceed as in the previous subsection, however now the time step $\delta \tau_{n}=\tau_{n+1}-\tau_{n}$ is determined adaptively via

$$
\begin{equation*}
\delta \tau_{n}=\min \left(\alpha_{\tau} \tau_{n}, \alpha_{R} \tau_{R}\right) \tag{SM-34}
\end{equation*}
$$

with $\alpha_{\tau}=10^{-3}$ and $\alpha_{R}=1 / 2$. Furthermore, the derivative with respect to v^{z} is performed by projecting F_{n} onto the space of Legendre polynomials, as described in Ref. [8]. Considering the discretization with $K=20$ discrete velocities $1 \leq j \leq K$, we have

$$
\begin{equation*}
\left\{\frac{\partial\left[v^{z}\left(1-v_{z}^{2}\right) F_{n}\right]}{\partial v^{z}}\right\}_{j}=\sum_{j^{\prime}=1}^{K} \mathcal{K}_{j, j^{\prime}} F_{n ; j^{\prime}} \tag{SM-35}
\end{equation*}
$$

where the kernel $\mathcal{K}_{j, j^{\prime}}$ is given in Eq. (3.54) of Ref. [8].

References

[1] G. S. Denicol, H. Niemi, E. Molnar, and D. H. Rischke. Derivation of transient relativistic fluid dynamics from the Boltzmann equation. Phys. Rev. D, 85:114047, 2012. doi: 10.1103/PhysRevD.85.114047. [Erratum: Phys.Rev.D 91, 039902 (2015)].
[2] V. E. Ambruş, E. Molnár, and D. H. Rischke. Relativistic second-order dissipative and anisotropic fluid dynamics in the relaxation-time approximation for an ideal gas of massive particles. 2023. arXiv:2311.00351.
[3] V. E. Ambruș, E. Molnár, and D. H. Rischke. Transport coefficients of second-order relativistic fluid dynamics in the relaxation-time approximation. Phys. Rev. D, 106(7):076005, 2022. doi: 10.1103/PhysRevD. 106.076005.
[4] D. Wagner, A. Palermo, and V. E. Ambruș. Inverse-Reynolds-dominance approach to transient fluid dynamics. Phys. Rev. D, 106(1):016013, 2022. doi: 10.1103/PhysRevD.106.016013.
[5] E. M. Shakhov. Generalization of the Krook kinetic relaxation equation. Fluid Dyn., 3:95-96, 1968. doi: 10.1007/BF01029546.
[6] V. E. Ambruṣ, L. Bazzanini, A. Gabbana, D. Simeoni, R. Tripiccione, and S. Succi. Fast kinetic simulator for relativistic matter. Nat. Comput. Sci., 2:641-654, 1 2022. doi: $10.1038 / \mathrm{s} 43588-022-00333-\mathrm{x}$.
[7] P. Romatschke, M. Mendoza, and S. Succi. A fully relativistic lattice Boltzmann algorithm. Phys. Rev. C, 84:034903, 2011. doi: 10.1103/ PhysRevC.84.034903.
[8] V. E. Ambruș and R. Blaga. High-order quadrature-based lattice Boltzmann models for the flow of ultrarelativistic rarefied gases. Phys. Rev. C, 98(3):035201, 2018. doi: 10.1103/PhysRevC.98.035201.
[9] A. Gabbana, M. Mendoza, S. Succi, and R. Tripiccione. Kinetic approach to relativistic dissipation. Phys. Rev. E, 96(2):023305, 2017. doi: 10.1103/ PhysRevE.96.023305.
[10] A. Gabbana, D. Simeoni, S. Succi, and R. Tripiccione. Relativistic Lattice Boltzmann Methods: Theory and Applications. Phys. Rept., 863:1-63, 2020. doi: 10.1016/j.physrep.2020.03.004.
[11] V. E. Ambruș and D. Wagner. High-order Shakhov-like extension of the relaxation time approximation in relativistic kinetic theory. 2024. arXiv:2401.04017.
[12] C.-W. Shu and S. Osher. Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys., 77:439-471, 1988. doi: 10.1016/0021-9991(88)90177-5.
[13] S. Gottlieb and C.-W. Shu. Total variation diminishing RungeKutta schemes. Math. Comp., 67:73-85, 1998. doi: 10.1090/ S0025-5718-98-00913-2.
[14] G. S. Jiang and C. W. Shu. Efficient Implementation of Weighted ENO Schemes. J. Comput. Phys., 126:202-228, 1996. doi: 10.1006/jcph.1996. 0130.
[15] L. Rezzolla and O. Zanotti. Relativistic Hydrodynamics. Oxford University Press, Oxford, United Kingdom, 2013.
[16] F. B. Hildebrand. Introduction to Numerical Analysis. Dover, New York, NY, 2nd edition, 1987.

