SUPPLEMENTARY MATERIAL

This supplementary material is structured in three sections. Section SM-1 discusses the second-order transport coefficients from the Shakhov model. Section SM-2 presents the entropy production, while Section SM-3 summarizes the details of the numerical scheme used to solve the Shakhov model equation.

SM-1. Second-order transport coefficients of the relativistic Shakhov model

In this section we employ the method of moments of Refs. [1, 2] to derive the first- and second-order transport coefficients corresponding to the relativistic Shakhov model. These transport coefficients arise at first- and second-order with respect to the Knudsen number Kn, being the ratio of the particle mean free path and a characteristic macroscopic scale, and the inverse Reynolds number Re^{-1} , being the ratio of an out-of-equilibrium and a local-equilibrium macroscopic field.

Irreducible moments and orthogonal basis.– The irreducible moments from Eq. (6) are expressed as [1],

$$\delta f_{\mathbf{k}} = f_{0\mathbf{k}} \tilde{f}_{0\mathbf{k}} \sum_{\ell=0}^{\infty} \sum_{n=0}^{N_{\ell}} \rho_n^{\mu_1 \cdots \mu_\ell} k_{\langle \mu_1} \cdots k_{\mu_\ell \rangle} \mathcal{H}_{\mathbf{k}n}^{(\ell)}, \qquad (\text{SM-1})$$

where $N_{\ell} \to \infty$ is an expansion order. The functions $\mathcal{H}_{\mathbf{k}n}^{(\ell)}$ are polynomials of order N_{ℓ} with respect to $E_{\mathbf{k}}$, defined in full generality in Eq. (29) of Ref. [1], and are constructed such that Eq. (6) is satisfied for $0 \le r \le N_{\ell}$. We remark that, while Eq. (SM-1) employs an irreducible basis, the expansion does not account explicitly for the negative-order moments $\rho_r^{\mu_1\cdots\mu_\ell}$ with r < 0, but these must be reconstructed from those with $0 \le r \le N_{\ell}$ in a manner which becomes exact only in the limit $N_{\ell} \to \infty$. The simple structure of the RTA model allows us to circumvent such construction in Eq. (SM-1) by employing a basis-free approach, as discussed in Ref. [3].

We note that the functions $\mathcal{H}_{\mathbf{k}n}^{(\ell)}$, related to the representation of $\delta f_{\mathbf{k}}$ are also useful in the context of the Shakhov model. However, for the Shakhov distribution, N_{ℓ} is not the expansion order of $\delta f_{\mathbf{k}}$, but the order of the $\mathcal{H}_{\mathbf{k}0}^{(\ell)}$ polynomials satisfying the constraints in Eq. (20), namely $N_0 = 2$, $N_1 = 1$, and $N_2 = 0$. The Shelther collision term from Eq. (12) is

The Shakhov collision term from Eq. (12) is

$$C_{r-1}^{\mu_1 \dots \mu_\ell} = -\frac{1}{\tau_R} \rho_r^{\mu_1 \dots \mu_\ell} + \frac{1}{\tau_R} \rho_{S,r}^{\mu_1 \dots \mu_\ell}, \qquad (SM-2)$$

where the second term involves the irreducible moments of $\delta f_{Sk} = f_{0k} \tilde{f}_{0k} \mathbb{S}_k$ defined in Eq. (14). Now, using the Shakhov distribution from Eq. (22), leads to

$$\rho_{\mathrm{S},r} = -\frac{3\Pi}{m_0^2} \left(1 - \frac{\tau_R}{\tau_\Pi} \right) \mathcal{F}_{-r,0}^{(0)}, \quad \rho_{\mathrm{S},r}^{\mu} = V^{\mu} \left(1 - \frac{\tau_R}{\tau_V} \right) \mathcal{F}_{-r,0}^{(1)},$$
$$\rho_{\mathrm{S},r}^{\mu\nu} = \pi^{\mu\nu} \left(1 - \frac{\tau_R}{\tau_\pi} \right) \mathcal{F}_{-r,0}^{(2)}, \qquad (\mathrm{SM-3})$$

while the higher-rank moments are set to vanish, i.e., $\rho_{S,r}^{\mu_1\cdots\mu_\ell} = 0$ with $\ell > 2$. Now, using Eq. (28) for polynomial orders $N_0 = 2$, $N_1 = 1$ and $N_2 = 0$ ensures that $\mathcal{F}_{0,0}^{(0)} = \mathcal{F}_{0,0}^{(1)} = \mathcal{F}_{0,0}^{(2)} = 1$ and $\mathcal{F}_{-1,0}^{(0)} = \mathcal{F}_{-2,0}^{(0)} = \mathcal{F}_{-1,0}^{(1)} = 0$.

 $\mathcal{F}_{-1,0}^{(0)} = \mathcal{F}_{-2,0}^{(0)} = \mathcal{F}_{-1,0}^{(1)} = 0.$ The second-order transport coefficients also require the knowledge of various other moments $\rho_{r\neq0}^{\mu_1\cdots\mu_\ell}$. Here we recall the first-order approximation to such irreducible moments in the so-called basis-free approach of Ref. [3]:

$$\rho_{r\neq 0} \simeq -\frac{3}{m_0^2} \mathcal{R}_{r0}^{(0)} \Pi, \quad \rho_{r\neq 0}^{\mu} \simeq \mathcal{R}_{r0}^{(1)} V^{\mu}, \quad \rho_{r\neq 0}^{\mu\nu} \simeq \mathcal{R}_{r0}^{(2)} \pi^{\mu\nu},$$
(SM-4)

where

$$\mathcal{R}_{r0}^{(0)} = \frac{\zeta_r}{\zeta}, \quad \mathcal{R}_{r0}^{(1)} = \frac{\kappa_r}{\kappa}, \quad \mathcal{R}_{r0}^{(2)} = \frac{\eta_r}{\eta}.$$
 (SM-5)

Now, substituting the expressions for the first-order transport coefficients from Eqs. (31) into Eq. (SM-5) gives

$$\mathcal{R}_{-r,0}^{(\ell)} = \frac{\tau_R}{\tau_S^{(\ell)}} \frac{\alpha_{-r}^{(\ell)}}{\alpha_0^{(\ell)}} + \left(1 - \frac{\tau_R}{\tau_S^{(\ell)}}\right) \mathcal{F}_{r0}^{(0)}.$$
 (SM-6)

Using these results, the relaxation times can be computed using Eqs. (38) of Ref. [4]:

$$\tau_{\Pi} = \sum_{r \neq 1,2} \tau_{0r}^{(0)} \mathcal{R}_{r0}^{(0)}, \quad \tau_{V} = \sum_{r \neq 1} \tau_{0r}^{(1)} \mathcal{R}_{r0}^{(1)}, \quad \tau_{\pi} = \sum_{r} \tau_{0r}^{(2)} \mathcal{R}_{r0}^{(2)}.$$
(SM-7)

Recalling the expression for $\tau_{nr}^{(\ell)}$ from Eqs. (29) together with Eq. (SM-6), the above definitions leads to $\tau_{\Pi} = \tau_{S}^{(0)}$, $\tau_{V} = \tau_{S}^{(1)}$ and $\tau_{\pi} = \tau_{S}^{(2)}$, as expected.

As discussed in Ref. [3], the second-order transport coefficients involve only the coefficients $\mathcal{R}_{-1,0}^{(\ell)}$ and $\mathcal{R}_{-2,0}^{(\ell)}$. These coefficients also require the expressions for $\mathcal{F}_{r0}^{(\ell)}$, computed using the functions $\mathcal{H}_{k0}^{(\ell)}$ in Eq. (23), as shown below:

$$\mathcal{F}_{r0}^{(0)} = \frac{J_{-r,0}G_{33} - J_{1-r,0}G_{23} + J_{2-r,0}G_{22}}{J_{00}G_{33} - J_{10}G_{23} + J_{20}G_{22}},$$

$$\mathcal{F}_{r0}^{(1)} = \frac{J_{2-r,1}J_{41} - J_{3-r,1}J_{31}}{J_{21}J_{41} - J_{31}^2}, \quad \mathcal{F}_{r0}^{(2)} = \frac{J_{4-r,2}}{J_{42}}.$$
 (SM-8)

Equations of motion.– The relaxation equations for $\Pi = -m_0^2 \rho_0/3$, $V^{\mu} = \rho_0^{\mu}$, and $\pi^{\mu\nu} = \rho_0^{\mu\nu}$ are obtained by setting n = 0 in Eqs. (30). Up to second order with respect to Kn and Re⁻¹, these equations read, see Eqs. (88-93) in Ref. [3],

$$\tau_{\Pi}\Pi + \Pi = -\zeta\theta - \ell_{\Pi V}\nabla_{\mu}V^{\mu} - \tau_{\Pi V}V_{\mu}\dot{u}^{\mu} - \delta_{\Pi\Pi}\Pi\theta - \lambda_{\Pi V}V_{\mu}\nabla^{\mu}\alpha + \lambda_{\Pi\pi}\pi^{\mu\nu}\sigma_{\mu\nu}, \qquad (SM-9a)$$

$$\tau_{V}\dot{V}^{\langle\mu\rangle} + V^{\mu} = \kappa\nabla^{\mu}\alpha - \tau_{V}V_{\nu}\omega^{\nu\mu} - \delta_{VV}V^{\mu}\theta - \ell_{V\Pi}\nabla^{\mu}\Pi + \ell_{V\pi}\Delta^{\mu\nu}\nabla_{\lambda}\pi_{\nu}^{\lambda} + \tau_{V\Pi}\Pi\dot{u}^{\mu} - \tau_{V\pi}\pi^{\mu\nu}\dot{u}_{\nu} - \lambda_{VV}V_{\nu}\sigma^{\mu\nu} + \lambda_{V\Pi}\Pi\nabla^{\mu}\alpha - \lambda_{V\pi}\pi^{\mu\nu}\nabla_{\nu}\alpha, \qquad (SM-9b)$$

$$\tau_{\pi}\dot{\pi}^{\langle\mu\nu\rangle} + \pi^{\mu\nu} = 2\eta\sigma^{\mu\nu} + 2\tau_{\pi}\pi_{\lambda}^{\langle\mu}\omega^{\nu\rangle\lambda} - \delta_{\pi\pi}\pi^{\mu\nu}\theta - \tau_{\pi\pi}\pi^{\lambda\langle\mu}\sigma_{\lambda}^{\nu\rangle} + \lambda_{\pi\Pi}\Pi\sigma^{\mu\nu} - \tau_{\pi V}V^{\langle\nu}\dot{u}^{\mu\rangle} + \ell_{\pi V}\nabla^{\langle\mu}V^{\nu\rangle} + \lambda_{\pi V}V^{\langle\mu}\nabla^{\nu\rangle}\alpha. \qquad (SM-9c)$$

Shakhov model for the Bjorken flow.– In the case of the Bjorken expansion, we considered a massive, ideal, uncharged gas, such that $\alpha_r^{(0)}$ is given by Eq. (10). The first-order transport coefficients ζ and η are listed in Eqs. (38). The second-order transport coefficients appearing in Eq. (37) are listed here from Ref. [2]:

$$\begin{split} \delta_{\Pi\Pi} &= \tau_{\Pi} \left(\frac{2}{3} + \frac{m_0^2}{3} \frac{J_{10}}{J_{30}} + \frac{m_0^2}{3} \mathcal{R}_{-2,0}^{(0)} \right), \qquad (\text{SM-10}) \\ \lambda_{\Pi\pi} &= \tau_{\Pi} \frac{m_0^2}{3} \left(\frac{J_{10}}{J_{30}} + \mathcal{R}_{-2,0}^{(2)} \right), \qquad \delta_{\pi\pi} = \tau_{\pi} \left(\frac{4}{3} + \frac{m_0^2}{3} \mathcal{R}_{-2,0}^{(2)} \right), \\ \tau_{\pi\pi} &= \tau_{\pi} \left(\frac{10}{7} + \frac{4m_0^2}{7} \mathcal{R}_{-2,0}^{(2)} \right), \qquad \lambda_{\pi\Pi} = \tau_{\pi} \left(\frac{6}{5} + \frac{2m_0^2}{5} \mathcal{R}_{-2,0}^{(0)} \right). \end{split}$$

Since the Shakhov distribution employed in Eq. (34) uses $\tau_{\Pi} = \tau_R$, the coefficients $\mathcal{R}^{(0)}_{-r,0}$ reduce to their corresponding values for the AW model, namely

$$\mathcal{R}_{-r,0}^{(0)} \equiv \frac{\alpha_{-r}^{(0)}}{\alpha_0^{(0)}} = \frac{J_{1-r,0}J_{31} - J_{1-r,1}J_{30}}{J_{10}J_{31} - J_{11}J_{30}},$$
(SM-11)

where Eq. (10) was employed to replace $\alpha_r^{(0)}$. On the other hand, $\mathcal{R}_{-r,0}^{(2)}$ becomes

$$\mathcal{R}_{-r,0}^{(2)} = \frac{\tau_{\Pi}}{\tau_{\pi}} \frac{J_{3-r,2}}{J_{32}} + \left(1 - \frac{\tau_{\Pi}}{\tau_{\pi}}\right) \frac{J_{4-r,2}}{J_{42}},$$
 (SM-12)

which, in the limit of $\tau_{\Pi} = \tau_{\pi}$, recovers the analogous coefficient appearing in the AW model, $\alpha_{-r}^{(2)}/\alpha_0^{(2)} = J_{3-r,2}/J_{32}$. Therefore, the transport coefficients $\lambda_{\Pi\pi}$, $\delta_{\pi\pi}$, and $\tau_{\pi\pi}$ involving $\mathcal{R}_{-2,0}^{(2)}$ are modified with respect to their AW expressions, while $\delta_{\Pi\Pi}$ and $\lambda_{\pi\Pi}$ remain unchanged.

Shakhov model for longitudinal waves.– In the case of the longitudinal waves concerning an ultrarelativistic classical ideal gas, we have

$$J_{nq} = \frac{P\beta^{2-n}(n+1)!}{2(2q+1)!!}, \qquad P = \frac{ge^{\alpha}}{\pi^2\beta^4},$$

$$\alpha_r^{(1)} = \frac{P(r+2)!(1-r)}{24\beta^{r-1}}, \qquad \alpha_r^{(2)} = \frac{P(r+4)!}{30\beta^r}.$$
(SM-13)

The transport coefficients from Eq. (SM-9b) reduce to [3]:

$$\delta_{VV} = \tau_V, \quad \ell_{V\pi} = \frac{\tau_V}{h} \left(1 - h \mathcal{R}_{-1,0}^{(2)} \right), \quad \tau_{V\pi} = \frac{\tau_V}{h} \left(1 - h \frac{\partial \mathcal{R}_{-1,0}^{(2)}}{\partial \ln \beta} \right),$$
$$\lambda_{VV} = \frac{3}{5} \tau_V, \quad \lambda_{V\pi} = \tau_V \left(\frac{\partial \mathcal{R}_{-1,0}^{(2)}}{\partial \alpha} + \frac{1}{h} \frac{\partial \mathcal{R}_{-1,0}^{(2)}}{\partial \beta} \right), \quad (SM-14)$$

where h = (e + P)/n is the enthalpy per particle. Noting that

$$\mathcal{F}_{10}^{(2)} = \frac{\beta}{5}, \quad \mathcal{R}_{-1,0}^{(2)} = \frac{\beta}{4} \left(1 + \frac{\tau_R - \tau_\pi}{5\tau_\pi} \right),$$
 (SM-15)

the Shakhov model alters only the following coefficients:

$$\ell_{V\pi} \equiv \tau_{V\pi} = \frac{\beta}{20} \left(1 - \frac{\tau_R}{\tau_\pi} \right) \tau_V, \qquad (\text{SM-16a})$$

$$\lambda_{V\pi} = \frac{\beta}{16} \left(1 + \frac{\tau_R - \tau_\pi}{5\tau_\pi} \right) \tau_V.$$
(SM-16b)

Similarly, the coefficients appearing in Eq. (SM-9c) are

$$\delta_{\pi\pi} = \frac{4}{3}\tau_{\pi}, \quad \tau_{\pi\pi} = \frac{10}{7}\tau_{\pi}, \quad \ell_{\pi V} = \tau_{\pi V} = \lambda_{\pi V} = 0, \quad (\text{SM-16c})$$

while $\kappa = \frac{\beta P}{12} \tau_V$ and $\eta = \frac{4P}{5} \tau_{\pi}$. The Shakhov collision term considered in Eq. (39) employs $\tau_{\pi} = \tau_R$, hence the dependence on τ_{π} disappears in Eqs. (SM-16) and all transport coefficients reduce to the AW ones (with τ_R replaced by τ_V or τ_{π} , as appropriate), see for comparison Eqs. (168) and (169) in Ref. [3].

SM-2. Entropy production

We now discuss the thermodynamic consistency of the Shakhov model by considering the entropy production

$$\partial_{\mu}S^{\mu} = -\int dK C_{\rm S}[f] \ln(f_{\rm k}/\tilde{f}_{\rm k}), \qquad (\rm SM-17)$$

where $S^{\mu} = -\int dK k^{\mu} (f_{\mathbf{k}} \ln f_{\mathbf{k}} + a \tilde{f}_{\mathbf{k}} \ln \tilde{f}_{\mathbf{k}})$ is the entropy fourcurrent. As originally pointed out by Shakhov [5], asserting the sign of $\partial_{\mu}S^{\mu}$ for arbitrary distributions $f_{\mathbf{k}}$ is difficult, but if the fluid is not far from equilibrium, quadratic terms in $\delta f_{\mathbf{k}}$ or $\delta f_{\mathbf{Sk}}$ can be neglected and the logarithm in Eq. (SM-17) can be approximated as:

$$\ln \frac{f_{\mathbf{k}}}{\tilde{f}_{\mathbf{k}}} = \ln \frac{f_{0\mathbf{k}}(1+\tilde{f}_{0\mathbf{k}}\phi_{\mathbf{k}})}{\tilde{f}_{0\mathbf{k}}(1-af_{0\mathbf{k}}\phi_{\mathbf{k}})} \simeq \ln \frac{f_{0\mathbf{k}}}{\tilde{f}_{0\mathbf{k}}} + \phi_{\mathbf{k}} + O(\phi_{\mathbf{k}}^2), \quad (\text{SM-18})$$

where $\phi_{\mathbf{k}} = \delta f_{\mathbf{k}} / (f_{0\mathbf{k}}\tilde{f}_{0\mathbf{k}})$. Thus, Eq. (SM-17) becomes

$$\begin{aligned} \partial_{\mu}S^{\mu} &\simeq \frac{1}{\tau_{R}} \int dK E_{\mathbf{k}} (\delta f_{\mathbf{k}} - \delta f_{S\mathbf{k}}) \ln \frac{f_{0\mathbf{k}}}{\tilde{f}_{0\mathbf{k}}} \\ &+ \frac{1}{\tau_{R}} \int dK E_{\mathbf{k}} \delta f_{\mathbf{k}} \left(\phi_{\mathbf{k}} - \mathbb{S}_{\mathbf{k}} \right), \quad (\text{SM-19}) \end{aligned}$$

where on the second line, we have used the relation $(\delta f_{\mathbf{k}} - \delta f_{\mathbf{S}\mathbf{k}})\phi_{\mathbf{k}} = \delta f_{\mathbf{k}}(\phi_{\mathbf{k}} - \mathbb{S}_{\mathbf{k}})$ with $\mathbb{S}_{\mathbf{k}} = \delta f_{\mathbf{S}\mathbf{k}}/f_{0\mathbf{k}}\tilde{f}_{0\mathbf{k}}$. Since $\ln(f_{0\mathbf{k}}/\tilde{f}_{0\mathbf{k}}) = \alpha - \beta E_{\mathbf{k}}$, the first term on the right-hand side of the equation vanishes due to the matching conditions in Eq. (19). The second term can be estimated using Eq. (13), leading to

$$\phi_{\mathbf{k}} - \mathbb{S}_{\mathbf{k}} \simeq -\frac{\tau_R}{E_{\mathbf{k}}} k^{\mu} \partial_{\mu} (\alpha - \beta E_{\mathbf{k}}),$$
 (SM-20)

and with Eq. (17) confirms the second law of thermodynamics,

$$\partial_{\mu}S^{\mu} \simeq \frac{\beta}{\zeta}\Pi^2 - \frac{1}{\kappa}V_{\mu}V^{\mu} + \frac{\beta}{2\eta}\pi_{\mu\nu}\pi^{\mu\nu} \ge 0.$$
 (SM-21)

SM-3. Numerical method for the Shakhov model

To solve the Shakhov kinetic model $k^{\mu}\partial_{\mu}f_{\mathbf{k}} = C_{\mathbf{S}}[f]$, we employ a discrete velocity method inspired by the Relativistic Lattice Boltzmann algorithm of Refs. [6, 7, 8, 9, 10]. We consider the rapidity-based moments of $f_{\mathbf{k}}$ introduced in Ref. [2], which eliminates two out of the three dimensions of the momentum space for the particular case of the (1 + 1)-dimensional longitudinal waves SM-3.1, and the (0+1)-dimensional boost invariant expansion SM-3.2, respectively.

SM-3.1. Longitudinal wave damping problem

In the application of Sec. 6, the fluid is homogeneous with respect to the x and y directions. Parameterizing the momentum space using $(m_{\perp}, \varphi_{\perp}, v^z)$ as in Ref. [2],

$$\binom{k^{t}}{k^{z}} = \frac{m_{\perp}}{\sqrt{1 - v_{z}^{2}}} \binom{1}{v^{z}}, \quad \binom{k^{x}}{k^{y}} = \sqrt{m_{\perp}^{2} - m_{0}^{2}} \binom{\cos\varphi_{\perp}}{\sin\varphi_{\perp}},$$
(SM-22)

the Boltzmann equation with the Shakhov model for the collision term reduces to

$$\partial_t f_{\mathbf{k}} + v^z \partial_z f_{\mathbf{k}} = -\frac{u \cdot v}{\tau_R} (f_{\mathbf{k}} - f_{\mathbf{S}\mathbf{k}}),$$
 (SM-23)

where $v^{\mu} = k^{\mu}/k^{t}$ and $u \cdot v = \gamma(1 - \beta^{z}v^{z})$, with β^{z} being the fluid three-velocity along the *z* direction and $\gamma = 1/\sqrt{1 - \beta_{z}^{2}}$. Introducing the rapidity-based moments [2]

$$F_n = \frac{g}{(2\pi)^3} \int_0^{2\pi} d\varphi_\perp \int_{m_0}^{\infty} \frac{dm_\perp m_\perp^{n+1}}{(1 - v_z^2)^{(n+2)/2}} f_{\mathbf{k}}, \qquad (\text{SM-24})$$

Eq. (SM-23) becomes

$$\partial_t F_n + v^z \partial_z F_n = -\frac{u \cdot v}{\tau_R} (F_n - F_n^S).$$
 (SM-25)

It can be shown [11] that the macroscopic quantities N^t , N^z , T^{tt} , T^{tz} and T^{zz} can be obtained from F_1 and F_2 via

$$\binom{N^{t}}{N^{z}} = \int_{-1}^{1} dv^{z} \binom{1}{v^{z}} F_{1}, \quad \binom{T^{tt}}{T^{tz}}_{T^{zz}} = \int_{-1}^{1} dv^{z} \binom{1}{v^{z}_{z}} F_{2}. \quad (SM-26)$$

For the case of massless particles considered in Sec. 6, $T^{\mu}_{\mu} = 0$, such that $T^{xx} = T^{yy} = (T^{tt} - T^{zz})/2$. From the above, it is clear that the time evolution of both N^{μ} and $T^{\mu\nu}$ is fully determined by the functions F_1 and F_2 . In order to solve Eq. (SM-25), the functions F_n^S must be obtained by integrating Eq. (39), yielding:

$$F_1^{\rm S} = \frac{n}{2(u \cdot v)^3} - \frac{3V(\beta^z - v^z)}{2(u \cdot v)^4} \left(1 - \frac{\tau_{\pi}}{\tau_V}\right), \quad F_2^{\rm S} = \frac{3P}{2(u \cdot v)^4}.$$
(SM-27)

The time discretization is performed using equal time steps $\delta t = 10^{-3} \text{ fm/c}$ and the time stepping is performed using the third-order total variation diminishing (TVD) Runge-Kutta scheme [12, 13]. The spatial domain [-L/2, L/2] is discretized using S = 100 cells of size $\delta s = L/S$, centred on $z_s = (s - \frac{1}{2})\delta s - \frac{L}{2}$, $1 \le s \le S$. The spatial derivative $v^z \partial_z F_n$ is approximated using finite differences:

$$\left(v_z \frac{\partial F_n}{\partial z}\right)_s = \frac{\mathbf{F}_{n;s+1/2} - \mathbf{F}_{n;s-1/2}}{\delta s},$$
 (SM-28)

where $\mathbf{F}_{n;s+1/2}$ represents the flux at the interface between cells *s* and *s* + 1. For definiteness, we compute this flux using the upwind-biased fifth-order weighted essentially non-oscillatory (WENO-5) scheme introduced in Ref. [14, 15]. Finally, the v^z momentum space coordinate is discretized via the Gauss-Legendre quadrature with K = 20 points, such that $P_K(v_i^z) = 0$,

with $1 \le j \le K$ and $P_K(z)$ being the Legendre polynomial of order *K*. Then, integrals with respect to v^z of a function $g(v^z)$ are approximated via

$$\int_{-1}^{1} dv^{z} g(v^{z}) \simeq \sum_{j=1}^{K} g_{j}, \qquad g_{j} \equiv w_{j} g(v_{j}^{z}), \qquad (\text{SM-29})$$

with w_i being the Gauss-Legendre quadrature weights [16].

SM-3.2. Algorithm for the Bjorken expansion

The algorithm for the Bjorken expansion is identical to that described in Ref. [2], hence we only recall the main method here. The spatial rapidity is $\eta_s = \operatorname{artanh}(z/t)$, and the parametrization of the momentum space is as in Eq. (SM-22), with (k^t, k^z) replaced by $(k^\tau, \tau k^{\eta_s})$, where

$$k^{\tau} = \frac{1}{\tau} (tk^t - zk^z), \quad \tau k^{\eta_s} = \frac{1}{\tau} (tk^z - zk^t).$$
 (SM-30)

Retaining the definition (SM-24) of the rapiditybased moments, the non-vanishing components of $T^{\mu\nu} = \text{diag}(e, P_{\perp}, P_{\perp}, \tau^{-2}P_l)$ are given by [2]

$$\binom{e}{P_l} = \int_{-1}^{1} dv^z \binom{1}{v_z^2} F_2, \quad P_\perp = \int_{-1}^{1} dv^z \left(\frac{1 - v_z^2}{2} F_2 + \frac{m_0^2}{2} F_0 \right).$$
(SM-31)

The Boltzmann equation becomes

$$\partial_{\tau}F_{n} + \frac{1 + (n-1)v_{z}^{2}}{\tau}F_{n} - \frac{1}{\tau}\frac{\partial[v^{z}(1-v_{z}^{2})F_{n}]}{\partial v^{z}} = -\frac{1}{\tau_{R}}(F_{n} - F_{n}^{S}),$$
(SM-32)

where $F_n^{\rm S}$ can be obtained by integrating Eq. (34):

$$F_n^{\rm S} = F_n^{\rm eq} - \frac{\beta^2 \pi (1 - \frac{\tau_{\rm II}}{\tau_{\pi}})}{4(e+P)} \left[m_0^2 F_n^{\rm eq} - (1 - 3v_z^2) F_{n+2}^{\rm eq} \right], \quad (\rm SM-33)$$

where $F_n^{\text{eq}} = \frac{g}{4\pi^2} \Gamma(n+2,\zeta) / \beta^{n+2}$, $\Gamma(n,\zeta) = \int_{\zeta}^{\infty} dx \, x^{n-1} e^{-x}$ is the incomplete Gamma function and $\zeta = \beta m_0 / \sqrt{1 - v_z^2}$. Since $\pi = \frac{2}{3} (P_{\perp} - P_l)$, the system is closed in terms of F_0 and F_2 .

The time integration and v^z discretization proceed as in the previous subsection, however now the time step $\delta \tau_n = \tau_{n+1} - \tau_n$ is determined adaptively via

$$\delta \tau_n = \min(\alpha_\tau \tau_n, \alpha_R \tau_R), \qquad (SM-34)$$

with $\alpha_{\tau} = 10^{-3}$ and $\alpha_R = 1/2$. Furthermore, the derivative with respect to v^z is performed by projecting F_n onto the space of Legendre polynomials, as described in Ref. [8]. Considering the discretization with K = 20 discrete velocities $1 \le j \le K$, we have

$$\left\{\frac{\partial[v^{z}(1-v_{z}^{2})F_{n}]}{\partial v^{z}}\right\}_{j} = \sum_{j'=1}^{K} \mathcal{K}_{j,j'}F_{n;j'},\qquad(\text{SM-35})$$

where the kernel $\mathcal{K}_{j,j'}$ is given in Eq. (3.54) of Ref. [8].

References

- G. S. Denicol, H. Niemi, E. Molnar, and D. H. Rischke. Derivation of transient relativistic fluid dynamics from the Boltzmann equation. *Phys. Rev. D*, 85:114047, 2012. doi: 10.1103/PhysRevD.85.114047. [Erratum: Phys.Rev.D 91, 039902 (2015)].
- [2] V. E. Ambruş, E. Molnár, and D. H. Rischke. Relativistic second-order dissipative and anisotropic fluid dynamics in the relaxation-time approximation for an ideal gas of massive particles. 2023. arXiv:2311.00351.
- [3] V. E. Ambruş, E. Molnár, and D. H. Rischke. Transport coefficients of second-order relativistic fluid dynamics in the relaxation-time approximation. *Phys. Rev. D*, 106(7):076005, 2022. doi: 10.1103/PhysRevD. 106.076005.
- [4] D. Wagner, A. Palermo, and V. E. Ambruş. Inverse-Reynolds-dominance approach to transient fluid dynamics. *Phys. Rev. D*, 106(1):016013, 2022. doi: 10.1103/PhysRevD.106.016013.
- [5] E. M. Shakhov. Generalization of the Krook kinetic relaxation equation. *Fluid Dyn.*, 3:95–96, 1968. doi: 10.1007/BF01029546.
- [6] V. E. Ambruş, L. Bazzanini, A. Gabbana, D. Simeoni, R. Tripiccione, and S. Succi. Fast kinetic simulator for relativistic matter. *Nat. Comput. Sci.*, 2:641–654, 1 2022. doi: 10.1038/s43588-022-00333-x.
- [7] P. Romatschke, M. Mendoza, and S. Succi. A fully relativistic lattice Boltzmann algorithm. *Phys. Rev. C*, 84:034903, 2011. doi: 10.1103/ PhysRevC.84.034903.
- [8] V. E. Ambruş and R. Blaga. High-order quadrature-based lattice Boltzmann models for the flow of ultrarelativistic rarefied gases. *Phys. Rev. C*, 98(3):035201, 2018. doi: 10.1103/PhysRevC.98.035201.
- [9] A. Gabbana, M. Mendoza, S. Succi, and R. Tripiccione. Kinetic approach to relativistic dissipation. *Phys. Rev. E*, 96(2):023305, 2017. doi: 10.1103/ PhysRevE.96.023305.
- [10] A. Gabbana, D. Simeoni, S. Succi, and R. Tripiccione. Relativistic Lattice Boltzmann Methods: Theory and Applications. *Phys. Rept.*, 863:1–63, 2020. doi: 10.1016/j.physrep.2020.03.004.
- [11] V. E. Ambruş and D. Wagner. High-order Shakhov-like extension of the relaxation time approximation in relativistic kinetic theory. 2024. arXiv:2401.04017.
- [12] C.-W. Shu and S. Osher. Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys., 77:439–471, 1988. doi: 10.1016/0021-9991(88)90177-5.
- [13] S. Gottlieb and C.-W. Shu. Total variation diminishing Runge-Kutta schemes. *Math. Comp.*, 67:73–85, 1998. doi: 10.1090/ S0025-5718-98-00913-2.
- [14] G. S. Jiang and C. W. Shu. Efficient Implementation of Weighted ENO Schemes. J. Comput. Phys., 126:202–228, 1996. doi: 10.1006/jcph.1996. 0130.
- [15] L. Rezzolla and O. Zanotti. *Relativistic Hydrodynamics*. Oxford University Press, Oxford, United Kingdom, 2013.
- [16] F. B. Hildebrand. Introduction to Numerical Analysis. Dover, New York, NY, 2nd edition, 1987.