SUPPLEMENTARY
MATERIAL

This supplementary material is structured in three sections.
Section discusses the second-order transport coefficients
from the Shakhov model. Section presents the entropy
production, while Section summarizes the details of the
numerical scheme used to solve the Shakhov model equation.

SM-1. Second-order transport coefficients of the relativistic
Shakhov model

In this section we employ the method of moments of Refs. [[1}
2] to derive the first- and second-order transport coefficients
corresponding to the relativistic Shakhov model. These trans-
port coefficients arise at first- and second-order with respect to
the Knudsen number Kn, being the ratio of the particle mean
free path and a characteristic macroscopic scale, and the inverse
Reynolds number Re™!, being the ratio of an out-of-equilibrium
and a local-equilibrium macroscopic field.

Irreducible moments and orthogonal basis.— The irreducible
moments from Eq. @ are expressed as [[11],
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where Ny — oo is an expansion order. The functions 7{:(‘2 are
polynomials of order N, with respect to Ex, defined in full gen-
erality in Eq. (29) of Ref. [1]], and are constructed such that
Eq. @ is satisfied for 0 < r < N,. We remark that, while
Eq. employs an irreducible basis, the expansion does
not account explicitly for the negative-order moments ol
with r < 0, but these must be reconstructed from those with
0 < r < N; in a manner which becomes exact only in the limit
Ny — oo. The simple structure of the RTA model allows us
to circumvent such construction in Eq. by employing a
basis-free approach, as discussed in Ref. [3]].

We note that the functions ?{l((i) related to the representa-
tion of ¢ f are also useful in the context of the Shakhov model.
However, for the Shakhov distribution, N, is not the expansion
order of ¢ f, but the order of the 71]((? polynomials satisfying
the constraints in Eq. (Z0), namely Ny =2, Ny = 1, and N, = 0.

The Shakhov collision term from Eq. (12) is
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where the second term involves the irreducible moments of
dfsk = foxfoxSk defined in Eq. (T4). Now, using the Shakhov
distribution from Eq. (22)), leads to
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while the higher-rank moments are set to vanish, i.e., Sjr‘“" ‘=0
with ¢ > 2. Now, using Eq. (Z8)) for polynomial orders Ny = 2,
N; = 1 and N, = 0 ensures that ?o(,%) = 7—'0(})) = ?—’()(f)) =1 and
T—(??o = ¢—(2?0 = T—(]l?() =0.

The second-order transport coefficients also require the
knowledge of various other moments o/, ;(')'“ ‘. Here we recall
the first-order approximation to such irreducible moments in

the so-called basis-free approach of Ref. [3]:
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where
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Now, substituting the expressions for the first-order transport
coefficients from Eqgs. (31)) into Eq. (SM-3) gives
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Using these results, the relaxation times can be computed using
Egs. (38) of Ref. [4]:
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Recalling the expression for 7§, from Eqs. (29) together with
Eq. (SM-6)), the above definitions leads to 7y = T(SO), Ty = T(Sl)
and 7, = T(Sz), as expected.

As discussed in Ref. [3]], the second-order transport coeffi-

cients involve only the coefficients R(_? o and R(_[;O. These co-
efficients also require the expressions for 7—'r((f), computed using
the functions ‘Hl((? in Eq. (23)), as shown below:
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Equations of motion.— The relaxation equations for II =
—mgpo/3, V¥ = ply, and 7 = p” are obtained by setting n = 0
in Egs. (30). Up to second order with respect to Kn and Re™,
these equations read, see Eqgs. (88-93) in Ref. [3]],
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Shakhov model for the Bjorken flow.— In the case of the
Bjorken expansion, we considered a massive, ideal, uncharged
gas, such that ¥ is given by Eq. (T0). The first-order transport
coefficients ¢ and 7 are listed in Eqs. (38). The second-order
transport coefficients appearing in Eq. (37) are listed here from
Ref. [2]:
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Since the Shakhov distribution employed in Eq. (34) uses
1 = g, the coefficients R” )0 reduce to their corresponding
values for the AW model, namely
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where Eq. (I0) was employed to replace a/( ). On the other
hand, R(Z) becomes
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which, in the limit of 7 = 7, recovers the analogous coeffi-
cient appearing in the AW model, 0(2) /a@ J3-r2/J32. There-

fore, the transport coefficients Ay, 0, and 7,, involving R(
are modified with respect to their AW expressions, while 61-m
and A, remain unchanged.

Shakhov model for longitudinal waves.— In the case of the
longitudinal waves concerning an ultrarelativistic classical ideal
gas, we have
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The transport coefficients from Eq. reduce to [3]]:
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where h = (e + P)/n is the enthalpy per particle. Noting that
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the Shakhov model alters only the following coefficients:
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Similarly, the coefficients appearing in Eq. are
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while k = 7y and 7 = 7,

< The Shakhov collision term
considered in Eq. (39) employs 7, = 7g, hence the dependence
on 7, disappears in Egs. and all transport coeflicients
reduce to the AW ones (with 7 replaced by 7y or 7, as appro-

priate), see for comparison Eqs. (168) and (169) in Ref. [3].

SM-2. Entropy production

We now discuss the thermodynamic consistency of the
Shakhov model by considering the entropy production
St = - de Cs[f1In(fic/ fio)» (SM-17)
where S# = — de k*(fi In fi + afiIn fi) is the entropy four-
current. As originally pointed out by Shakhov [5], asserting
the sign of 4,S# for arbitrary distributions fj is difficult, but if
the fluid is not far from equilibrium, quadratic terms in ¢ fx or
6 fsk can be neglected and the logarithm in Eq. (SM-T7) can be
approximated as:
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where ¢k = 8fi/(foxfox)- Thus, Eq. (SM=17) becomes
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where on the second line, we have used the rela}jon Ofk —
Ofskék = Ofw(dk — Sk) with Sk = 6fsk/foxfox. Since
In(fox/ fox) = a@—pBEx, the first term on the right-hand side of the
equation vanishes due to the matching conditions in Eq. (19).
The second term can be estimated using Eq. (I3), leading to
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and with Eq. (I7) confirms the second law of thermodynamics,
1
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SM-3. Numerical method for the Shakhov model

To solve the Shakhov kinetic model 49, fi = Cs[f], we em-
ploy a discrete velocity method inspired by the Relativistic Lat-
tice Boltzmann algorithm of Refs. [6, (7, |8, 9} [10]. We consider
the rapidity-based moments of f introduced in Ref. [2], which
eliminates two out of the three dimensions of the momentum
space for the particular case of the (1 + 1)-dimensional longitu-
dinal waves[SM-3.1] and the (0+ 1)-dimensional boost invariant

expansion respectively.



SM-3.1. Longitudinal wave damping problem

In the application of Sec. [6] the fluid is homogeneous with
respect to the x and y directions. Parameterizing the momentum
space using (m_, ¢, ,V*) as in Ref. [2],
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the Boltzmann equation with the Shakhov model for the colli-
sion term reduces to
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where v = k*/k" and u - v = y(1 — 5*), with 5 being the

fluid three-velocity along the z direction and y = 1/ /1 — 2.

Introducing the rapidity-based moments [2]
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Eq. (SM-23)) becomes
8,F, +V'0_F, = ——(F - FS). (SM-25)

It can be shown [[11] that the macroscopic quantities N, N<,
T", T* and T% can be obtained from F; and F, via
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For the case of massless particles considered in Sec.[6} 7*,, = 0,
such that 7% = T = (T" — T%)/2. From the above, it is clear
that the time evolution of both N* and T is fully determined
by the functions F; and F». In order to solve Eq. (SM-23)), the
functions F5 must be obtained by integrating Eq. (39), yielding:

FS = n B 3V(BE—V9) |- Tx s 3P
"U2wevd 2wyt ) T 2wt
(SM-27)

The time discretization is performed using equal time steps
6t = 1073 fm/c and the time stepping is performed using
the third-order total variation diminishing (TVD) Runge-Kutta
scheme [12}[13]]. The spatial domain [-L/2, L/2] is discretized
using § = 100 cells of size s = L/S, centred on z, =
(s — %)(5s — %, 1 < s < §. The spatial derivative v*d,F), is
appr0x1mated usmg finite differences:
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where F,..,1,» represents the flux at the interface between cells
s and s + 1. For definiteness, we compute this flux using the
upwind-biased fifth-order weighted essentially non-oscillatory
(WENO-5) scheme introduced in Ref. [14] [15]. Finally, the
v¢ momentum space coordinate is discretized via the Gauss-
Legendre quadrature with K = 20 points, such that PK(vj,) =0

with 1 < j < K and Pk(z) being the Legendre polynomial of
order K. Then, integrals with respect to v* of a function g(v*)
are approximated via
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with w; being the Gauss-Legendre quadrature weights [16]].

SM-3.2. Algorithm for the Bjorken expansion

The algorithm for the Bjorken expansion is identical to
that described in Ref. [2]], hence we only recall the main
method here. The spatial rapidity is ; = artanh(z/7), and the
parametrization of the momentum space is as in Eq. (SM-22)),
with (K, k%) replaced by (k7, Tk"*), where
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Retaining the definition (SM-24) of the rapidity-
based moments, the non-vanishing components of
T = diag(e, P, P,,77%P)) are given by [2]
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The Boltzmann equation becomes
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where FS can be obtained by integrating Eq. (34):
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where F,' = £5T(n + 2, OB, T(n, Q) = f;o dxxX"le™ is

the incomplete Gamma function and ¢ = Bmyg/

= %(Pl — P)), the system is closed in terms of Fy and F5.

The time integration and v* discretization proceed as in the
previous subsection, however now the time step 67, = T+ — Ty
is determined adaptively via

1 —v2. Since
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with @; = 1073 and ag = 1/2. Furthermore, the derivative with
respect to V¢ is performed by projecting F, onto the space of

Legendre polynomials, as described in Ref. [8]. Considering
the discretization with K = 20 discrete velocities 1 < j < K,

we have
6[\1 (I_V)Fn]} Z
{— (}(Jj Fnj,

where the kernel K » is given in Eq. (3.54) of Ref. [8]..
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