
SUPPLEMENTARY
MATERIAL

This supplementary material is structured in three sections.
Section SM-1 discusses the second-order transport coefficients
from the Shakhov model. Section SM-2 presents the entropy
production, while Section SM-3 summarizes the details of the
numerical scheme used to solve the Shakhov model equation.

SM-1. Second-order transport coefficients of the relativistic
Shakhov model

In this section we employ the method of moments of Refs. [1,
2] to derive the first- and second-order transport coefficients
corresponding to the relativistic Shakhov model. These trans-
port coefficients arise at first- and second-order with respect to
the Knudsen number Kn, being the ratio of the particle mean
free path and a characteristic macroscopic scale, and the inverse
Reynolds number Re−1, being the ratio of an out-of-equilibrium
and a local-equilibrium macroscopic field.

Irreducible moments and orthogonal basis.– The irreducible
moments from Eq. (6) are expressed as [1],

δ fk = f0k f̃0k

∞∑
ℓ=0

Nℓ∑
n=0

ρ
µ1···µℓ
n k⟨µ1 · · · k µℓ⟩H

(ℓ)
kn , (SM-1)

where Nℓ → ∞ is an expansion order. The functions H (ℓ)
kn are

polynomials of order Nℓ with respect to Ek, defined in full gen-
erality in Eq. (29) of Ref. [1], and are constructed such that
Eq. (6) is satisfied for 0 ≤ r ≤ Nℓ. We remark that, while
Eq. (SM-1) employs an irreducible basis, the expansion does
not account explicitly for the negative-order moments ρµ1···µℓ

r
with r < 0, but these must be reconstructed from those with
0 ≤ r ≤ Nℓ in a manner which becomes exact only in the limit
Nℓ → ∞. The simple structure of the RTA model allows us
to circumvent such construction in Eq. (SM-1) by employing a
basis-free approach, as discussed in Ref. [3].

We note that the functions H (ℓ)
kn , related to the representa-

tion of δ fk are also useful in the context of the Shakhov model.
However, for the Shakhov distribution, Nℓ is not the expansion
order of δ fk, but the order of the H (ℓ)

k0 polynomials satisfying
the constraints in Eq. (20), namely N0 = 2, N1 = 1, and N2 = 0.

The Shakhov collision term from Eq. (12) is

Cµ1···µℓ
r−1 = −

1
τR
ρ
µ1···µℓ
r +

1
τR
ρ
µ1···µℓ
S,r , (SM-2)

where the second term involves the irreducible moments of
δ fSk = f0k f̃0kSk defined in Eq. (14). Now, using the Shakhov
distribution from Eq. (22), leads to

ρS,r = −
3Π
m2

0

(
1 −
τR

τΠ

)
F

(0)
−r,0, ρ

µ
S,r = Vµ

(
1 −
τR

τV

)
F

(1)
−r,0,

ρ
µν
S,r = π

µν

(
1 −
τR

τπ

)
F

(2)
−r,0, (SM-3)

while the higher-rank moments are set to vanish, i.e., ρµ1···µℓ
S,r = 0

with ℓ > 2. Now, using Eq. (28) for polynomial orders N0 = 2,
N1 = 1 and N2 = 0 ensures that F (0)

0,0 = F
(1)

0,0 = F
(2)

0,0 = 1 and
F

(0)
−1,0 = F

(0)
−2,0 = F

(1)
−1,0 = 0.

The second-order transport coefficients also require the
knowledge of various other moments ρµ1···µℓ

r,0 . Here we recall
the first-order approximation to such irreducible moments in
the so-called basis-free approach of Ref. [3]:

ρr,0 ≃ −
3

m2
0

R
(0)
r0 Π, ρ

µ
r,0 ≃ R

(1)
r0 Vµ, ρµνr,0 ≃ R

(2)
r0 π
µν,

(SM-4)
where

R
(0)
r0 =

ζr
ζ
, R(1)

r0 =
κr
κ
, R(2)

r0 =
ηr

η
. (SM-5)

Now, substituting the expressions for the first-order transport
coefficients from Eqs. (31) into Eq. (SM-5) gives

R
(ℓ)
−r,0 =

τR

τ(ℓ)
S

α(ℓ)
−r

α(ℓ)
0

+

1 − τR

τ(ℓ)
S

F (0)
r0 . (SM-6)

Using these results, the relaxation times can be computed using
Eqs. (38) of Ref. [4]:

τΠ =
∑
r,1,2

τ(0)
0r R

(0)
r0 , τV =

∑
r,1

τ(1)
0r R

(1)
r0 , τπ =

∑
r

τ(2)
0r R

(2)
r0 .

(SM-7)

Recalling the expression for τ(ℓ)
nr from Eqs. (29) together with

Eq. (SM-6), the above definitions leads to τΠ = τ
(0)
S , τV = τ

(1)
S

and τπ = τ
(2)
S , as expected.

As discussed in Ref. [3], the second-order transport coeffi-
cients involve only the coefficients R(ℓ)

−1,0 and R(ℓ)
−2,0. These co-

efficients also require the expressions for F (ℓ)
r0 , computed using

the functionsH (ℓ)
k0 in Eq. (23), as shown below:

F
(0)

r0 =
J−r,0G33 − J1−r,0G23 + J2−r,0G22

J00G33 − J10G23 + J20G22
,

F
(1)

r0 =
J2−r,1J41 − J3−r,1J31

J21J41 − J2
31

, F (2)
r0 =

J4−r,2

J42
. (SM-8)

Equations of motion.– The relaxation equations for Π =
−m2

0ρ0/3, Vµ = ρµ0, and πµν = ρµν0 are obtained by setting n = 0
in Eqs. (30). Up to second order with respect to Kn and Re−1,
these equations read, see Eqs. (88-93) in Ref. [3],

τΠΠ̇ + Π = −ζθ − ℓΠV∇µVµ − τΠVVµu̇µ − δΠΠΠθ

− λΠVVµ∇µα + λΠππµνσµν, (SM-9a)

τV V̇ ⟨µ⟩ + Vµ = κ∇µα − τVVνωνµ − δVVVµθ

− ℓVΠ∇
µΠ + ℓVπ∆

µν∇λπ
λ
ν + τVΠΠu̇µ − τVππ

µνu̇ν
− λVVVνσµν + λVΠΠ∇

µα − λVππ
µν∇να, (SM-9b)

τππ̇
⟨µν⟩ + πµν = 2ησµν + 2τππ

⟨µ
λ ω
ν⟩λ − δπππ

µνθ

− τπππ
λ⟨µσν⟩λ + λπΠΠσ

µν − τπVV ⟨νu̇µ⟩

+ ℓπV∇
⟨µVν⟩ + λπVV ⟨µ∇ν⟩α. (SM-9c)
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Shakhov model for the Bjorken flow.– In the case of the
Bjorken expansion, we considered a massive, ideal, uncharged
gas, such that α(0)

r is given by Eq. (10). The first-order transport
coefficients ζ and η are listed in Eqs. (38). The second-order
transport coefficients appearing in Eq. (37) are listed here from
Ref. [2]:

δΠΠ = τΠ

2
3
+

m2
0

3
J10

J30
+

m2
0

3
R

(0)
−2,0

 , (SM-10)

λΠπ = τΠ
m2

0

3

(
J10

J30
+ R

(2)
−2,0

)
, δππ = τπ

4
3
+

m2
0

3
R

(2)
−2,0

 ,
τππ = τπ

10
7
+

4m2
0

7
R

(2)
−2,0

 , λπΠ = τπ 6
5
+

2m2
0

5
R

(0)
−2,0

 .
Since the Shakhov distribution employed in Eq. (34) uses

τΠ = τR, the coefficients R(0)
−r,0 reduce to their corresponding

values for the AW model, namely

R
(0)
−r,0 ≡

α(0)
−r

α(0)
0

=
J1−r,0J31 − J1−r,1J30

J10J31 − J11J30
, (SM-11)

where Eq. (10) was employed to replace α(0)
r . On the other

hand, R(2)
−r,0 becomes

R
(2)
−r,0 =

τΠ
τπ

J3−r,2

J32
+

(
1 −
τΠ
τπ

)
J4−r,2

J42
, (SM-12)

which, in the limit of τΠ = τπ, recovers the analogous coeffi-
cient appearing in the AW model, α(2)

−r /α
(2)
0 = J3−r,2/J32. There-

fore, the transport coefficients λΠπ, δππ, and τππ involving R(2)
−2,0

are modified with respect to their AW expressions, while δΠΠ
and λπΠ remain unchanged.

Shakhov model for longitudinal waves.– In the case of the
longitudinal waves concerning an ultrarelativistic classical ideal
gas, we have

Jnq =
Pβ2−n(n + 1)!
2(2q + 1)!!

, P =
geα

π2β4 ,

α(1)
r =

P(r + 2)!(1 − r)
24βr−1 , α(2)

r =
P(r + 4)!

30βr . (SM-13)

The transport coefficients from Eq. (SM-9b) reduce to [3]:

δVV = τV , ℓVπ =
τV

h

(
1 − hR(2)

−1,0

)
, τVπ =

τV

h

1 − h
∂R(2)
−1,0

∂ ln β

 ,
λVV =

3
5
τV , λVπ = τV

∂R(2)
−1,0

∂α
+

1
h

∂R(2)
−1,0

∂β

 , (SM-14)

where h = (e + P)/n is the enthalpy per particle. Noting that

F
(2)

10 =
β

5
, R(2)

−1,0 =
β

4

(
1 +
τR − τπ

5τπ

)
, (SM-15)

the Shakhov model alters only the following coefficients:

ℓVπ ≡ τVπ =
β

20

(
1 −
τR

τπ

)
τV , (SM-16a)

λVπ =
β

16

(
1 +
τR − τπ

5τπ

)
τV . (SM-16b)

Similarly, the coefficients appearing in Eq. (SM-9c) are

δππ =
4
3
τπ, τππ =

10
7
τπ, ℓπV = τπV = λπV = 0, (SM-16c)

while κ = βP
12 τV and η = 4P

5 τπ. The Shakhov collision term
considered in Eq. (39) employs τπ = τR, hence the dependence
on τπ disappears in Eqs. (SM-16) and all transport coefficients
reduce to the AW ones (with τR replaced by τV or τπ, as appro-
priate), see for comparison Eqs. (168) and (169) in Ref. [3].

SM-2. Entropy production

We now discuss the thermodynamic consistency of the
Shakhov model by considering the entropy production

∂µS µ = −
∫

dK CS[ f ] ln( fk/ f̃k), (SM-17)

where S µ = −
∫

dK kµ( fk ln fk + a f̃k ln f̃k) is the entropy four-
current. As originally pointed out by Shakhov [5], asserting
the sign of ∂µS µ for arbitrary distributions fk is difficult, but if
the fluid is not far from equilibrium, quadratic terms in δ fk or
δ fSk can be neglected and the logarithm in Eq. (SM-17) can be
approximated as:

ln
fk
f̃k
= ln

f0k(1 + f̃0kϕk)
f̃0k(1 − a f0kϕk)

≃ ln
f0k

f̃0k
+ ϕk + O(ϕ2

k), (SM-18)

where ϕk = δ fk/( f0k f̃0k). Thus, Eq. (SM-17) becomes

∂µS µ ≃
1
τR

∫
dKEk(δ fk − δ fSk) ln

f0k

f̃0k

+
1
τR

∫
dKEkδ fk (ϕk − Sk) , (SM-19)

where on the second line, we have used the relation (δ fk −
δ fSk)ϕk = δ fk(ϕk − Sk) with Sk = δ fSk/ f0k f̃0k. Since
ln( f0k/ f̃0k) = α−βEk, the first term on the right-hand side of the
equation vanishes due to the matching conditions in Eq. (19).
The second term can be estimated using Eq. (13), leading to

ϕk − Sk ≃ −
τR

Ek
kµ∂µ(α − βEk), (SM-20)

and with Eq. (17) confirms the second law of thermodynamics,

∂µS µ ≃
β

ζ
Π2 −

1
κ

VµVµ +
β

2η
πµνπ

µν ≥ 0. (SM-21)

SM-3. Numerical method for the Shakhov model

To solve the Shakhov kinetic model kµ∂µ fk = CS[ f ], we em-
ploy a discrete velocity method inspired by the Relativistic Lat-
tice Boltzmann algorithm of Refs. [6, 7, 8, 9, 10]. We consider
the rapidity-based moments of fk introduced in Ref. [2], which
eliminates two out of the three dimensions of the momentum
space for the particular case of the (1+ 1)-dimensional longitu-
dinal waves SM-3.1, and the (0+1)-dimensional boost invariant
expansion SM-3.2, respectively.
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SM-3.1. Longitudinal wave damping problem
In the application of Sec. 6, the fluid is homogeneous with

respect to the x and y directions. Parameterizing the momentum
space using (m⊥, φ⊥, vz) as in Ref. [2],(

kt

kz

)
=

m⊥√
1 − v2

z

(
1
vz

)
,

(
kx

ky

)
=

√
m2
⊥ − m2

0

(
cosφ⊥
sinφ⊥

)
,

(SM-22)
the Boltzmann equation with the Shakhov model for the colli-
sion term reduces to

∂t fk + vz∂z fk = −
u · v
τR

( fk − fSk), (SM-23)

where vµ = kµ/kt and u · v = γ(1 − βzvz), with βz being the

fluid three-velocity along the z direction and γ = 1/
√

1 − β2
z .

Introducing the rapidity-based moments [2]

Fn =
g

(2π)3

∫ 2π

0
dφ⊥

∫ ∞

m0

dm⊥ mn+1
⊥

(1 − v2
z )(n+2)/2 fk, (SM-24)

Eq. (SM-23) becomes

∂tFn + vz∂zFn = −
u · v
τR

(Fn − FS
n ). (SM-25)

It can be shown [11] that the macroscopic quantities N t, Nz,
T tt, T tz and T zz can be obtained from F1 and F2 via

(
N t

Nz

)
=

∫ 1

−1
dvz

(
1
vz

)
F1,

T tt

T tz

T zz

 =
∫ 1

−1
dvz

 1
vz

v2
z

 F2. (SM-26)

For the case of massless particles considered in Sec. 6, T µµ = 0,
such that T xx = T yy = (T tt − T zz)/2. From the above, it is clear
that the time evolution of both Nµ and T µν is fully determined
by the functions F1 and F2. In order to solve Eq. (SM-25), the
functions FS

n must be obtained by integrating Eq. (39), yielding:

FS
1 =

n
2(u · v)3 −

3V(βz − vz)
2(u · v)4

(
1 −
τπ
τV

)
, FS

2 =
3P

2(u · v)4 .

(SM-27)
The time discretization is performed using equal time steps

δt = 10−3 fm/c and the time stepping is performed using
the third-order total variation diminishing (TVD) Runge-Kutta
scheme [12, 13]. The spatial domain [−L/2, L/2] is discretized
using S = 100 cells of size δs = L/S , centred on zs =

(s − 1
2 )δs − L

2 , 1 ≤ s ≤ S . The spatial derivative vz∂zFn is
approximated using finite differences:(

vz
∂Fn

∂z

)
s
=

Fn;s+1/2 − Fn;s−1/2

δs
, (SM-28)

where Fn;s+1/2 represents the flux at the interface between cells
s and s + 1. For definiteness, we compute this flux using the
upwind-biased fifth-order weighted essentially non-oscillatory
(WENO-5) scheme introduced in Ref. [14, 15]. Finally, the
vz momentum space coordinate is discretized via the Gauss-
Legendre quadrature with K = 20 points, such that PK(vz

j) = 0,

with 1 ≤ j ≤ K and PK(z) being the Legendre polynomial of
order K. Then, integrals with respect to vz of a function g(vz)
are approximated via∫ 1

−1
dvz g(vz) ≃

K∑
j=1

g j, g j ≡ w jg(vz
j), (SM-29)

with w j being the Gauss-Legendre quadrature weights [16].

SM-3.2. Algorithm for the Bjorken expansion

The algorithm for the Bjorken expansion is identical to
that described in Ref. [2], hence we only recall the main
method here. The spatial rapidity is ηs = artanh(z/t), and the
parametrization of the momentum space is as in Eq. (SM-22),
with (kt, kz) replaced by (kτ, τkηs ), where

kτ =
1
τ

(tkt − zkz), τkηs =
1
τ

(tkz − zkt). (SM-30)

Retaining the definition (SM-24) of the rapidity-
based moments, the non-vanishing components of
T µν = diag(e, P⊥, P⊥, τ−2Pl) are given by [2](

e
Pl

)
=

∫ 1

−1
dvz

(
1
v2

z

)
F2, P⊥ =

∫ 1

−1
dvz

1 − v2
z

2
F2 +

m2
0

2
F0

 .
(SM-31)

The Boltzmann equation becomes

∂τFn +
1 + (n − 1)v2

z

τ
Fn −

1
τ

∂[vz(1 − v2
z )Fn]

∂vz = −
1
τR

(Fn − FS
n ),

(SM-32)
where FS

n can be obtained by integrating Eq. (34):

FS
n = Feq

n −
β2π(1 − τΠ

τπ
)

4(e + P)

[
m2

0Feq
n − (1 − 3v2

z )Feq
n+2

]
, (SM-33)

where Feq
n =

g
4π2 Γ(n + 2, ζ)/βn+2, Γ(n, ζ) =

∫ ∞
ζ

dx xn−1e−x is

the incomplete Gamma function and ζ = βm0/
√

1 − v2
z . Since

π = 2
3 (P⊥ − Pl), the system is closed in terms of F0 and F2.

The time integration and vz discretization proceed as in the
previous subsection, however now the time step δτn = τn+1 − τn

is determined adaptively via

δτn = min(αττn, αRτR), (SM-34)

with ατ = 10−3 and αR = 1/2. Furthermore, the derivative with
respect to vz is performed by projecting Fn onto the space of
Legendre polynomials, as described in Ref. [8]. Considering
the discretization with K = 20 discrete velocities 1 ≤ j ≤ K,
we have {

∂[vz(1 − v2
z )Fn]

∂vz

}
j
=

K∑
j′=1

K j, j′Fn; j′ , (SM-35)

where the kernel K j, j′ is given in Eq. (3.54) of Ref. [8].
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