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Zusammenfassung

Diese Arbeit beschäftigt sich mit der Bestimmung von Fehlern der Quadrupolfeldstärken
in Synchrotronen sowie der Minderung des Einflusses ebensolcher Fehler in Strahltrans-
portlinien. Der Beschleunigerkomplex wird hierbei in seiner Gesamtheit betrachtet, indem
die Notwendigkeit verdeutlicht wird, die möglichen Fehlerquellen in allen Abschnitten einer
Beschleunigeranlage gleichermaßen zu betrachten, um gleichbleibend gute Konditionen für die
laufenden Experimente zu gewährleisten. Während die vorgestellten Methoden exemplarisch
für das SIS18 Synchrotron und die HEST Transferlinien am GSI Helmholtzzentrum für
Schwerionenforschung untersucht wurden, sind diese ebenso relevant und anwendbar für die
zukünftigen Beschleunigeranlagen und Transferlinien der Facility for Antiproton and Ion
Research in Europe (FAIR).

Teil 1 dieser Arbeit beschäftigt sich mit dem Problem der Bestimmung von Fehlern
der Quadrupolfeldstärken mittels Response-Matrix Messungen an Synchrotronen. Der Fokus
der Untersuchung liegt hierbei auf dem Einfluss der Verfügbarkeit von Steerer Magneten
und Strahllage Monitoren (BPMs) sowohl auf die Lösbarkeit des dazugehörigen inversen
Problems als auch auf die durch die Messungenauigkeit bedingten Abweichungen der zu
bestimmenden Fehler der Quadrupolfeldstärken. Hierfür wird zunächst ein mathematischer
Ausdruck für die Ableitung der Response-Matrix bezüglich der Quadrupolfeldstärken, also
für die Jacobi-Matrix, hergeleitet. Diese analytische Version der Jacobi-Matrix wird weiter
untersucht, um schließlich die Lösbarkeit des inversen Problems bezüglich der Verfügbarkeit
von Steerern und BPMs herzuleiten und mithilfe von konkreten Bedingungen zu beschreiben.
Diese analytisch erzielten Ergebnisse werden darüber hinaus mithilfe von Simulationen
belegt. Ein Defekt der Jacobi-Matrix impliziert, dass das dazugehörige inverse Problem
keine eindeutige Lösung für den gewählten Parametersatz an Quadrupolfeldstärken zulässt.
Es wird gezeigt, dass bestimmte Abfolgen von Quadrulpol-Magneten, welche nicht durch
Steerer oder BPMs unterbrochen sind, einen solchen Defekt der Jacobi-Matrix hervorrufen.
Betrachtet man die horizontale oder vertikale Response-Matrix separat, so führt eine Abfolge
von drei oder mehr Quadrupolmagneten zu einem Defekt der Jacobi-Matrix. Werden beide
Response-Matrizen gemeinsam berücksichtigt, so führt eine Abfolge von sechs oder mehr
Quadrupolmagneten (bzw. fünf oder mehr Quadrupolmagneten falls Qh − Qv = Ganzzahl,
wobei Qh,v der horizontale und vertikale Tune sind) zu einem Defekt der Jacobi-Matrix. Des



Weiteren wird der Einfluss der Verfügbarkeit von Steerern und BPMs auf die Fehlerfortpflanzung
der Messungenauigkeiten mithilfe der Jacobi-Matrix untersucht. Die Singulärwerte der
Jacobi-Matrix geben zusammen mit den dazugehörigen Singulärvektoren Aufschluss über
die Fehlerfortpflanzung in Bezug auf die verschiedenen Quadrupolfeldstärken des gewählten
Parametersatzes. Die Verfügbarkeit von Steerern und BPMs ist hierbei maßgeblich für die
Existenz von bestimmten Parameterkombinationen, die besonders anfällig für den Einfluss
der Messungenauigkeit im Rahmen der Fehlerfortpflanzung sind. Dies impliziert, dass die
betroffenen Kombinationen an Parametern weniger genau im Rahmen der Lösung des inversen
Problems bestimmt werden können. Eine solche Kombination an Quadrupolfeldstärken existiert
für das SIS18 Synchrotron am GSI Helmholtzzentrum für Schwerionenforschung in Form der
sogenannten D- und T-Quadrupole. Diese Quadrupole zeichnen sich durch einen geringen
Abstand im Sinne des Phasenvorschubs der Betatronschwingungen aus und sind zudem weder
durch Steerer Magnete noch durch BPMs separiert.

Darüber hinaus wird gezeigt, dass der zuvor hergeleitete analytische Ausdruck für die Jacobi-
Matrix anstelle der exakten Jacobi-Matrix, welche typischerweise mittels Differenzenquotienten
berechnet wird, während des Fitting-Vorgangs verwendet werden kann. Der analytische
Ausdruck für die Jacobi-Matrix benötigt lediglich die Twiss-Daten der aktuellen Beschleuniger-
Konfiguration während des Fitting-Vorgangs. Die Beschleuniger-Konfiguration wird in diesem
Kontext über die spezifischen Werte der relevanten Parameter des inversen Problems definiert.
Die Verwendung des analytischen Ausdrucks für die Jacobi-Matrix reduziert den benötigten
Rechenaufwand maßgeblich, verglichen mit der Verwendung von Differenzenquotienten. Der
Faktor, um den der Rechenaufwand bezüglich der involvierten Beschleuniger-Elemente reduziert
wird, ist NSteerer ×NQuadrupole, wobei das Symbol N die Anzahl der Beschleuniger-Elemente
des jeweiligen Typs bezeichnet. Der Fitting-Vorgang mittels der analytischen Jacobi-Matrix
wird mithilfe von umfangreichen Simulationen sowie mithilfe von zweckbestimmten Messungen
am SIS18 Synchrotron am GSI Helmholtzzentrum für Schwerionenforschung getestet. Darüber
hinaus werden verschiedene Methoden zur Minderung des Einflusses der Messungenauigkeiten
auf bestimmte Parameterkombinationen in gemeinsamer Verwendung mit der analytischen
Jacobi-Matrix getestet. Die Ergebnisse, die mithilfe der analytischen Jacobi-Matrix erzielt
wurden, stimmen gut mit den Ergebnissen überein, die mithilfe der herkömmlichen Methode
unter Verwendung von Differenzenquotienten erzielt wurden. Die verwendete Fitting-Methode
wurde zusammen mit der Berechnung der analytischen Jacobi-Matrix als Python Paket
implementiert und verfügbar gemacht [1]. Dies erlaubt eine unkomplizierte Adaptierung der
vorgestellten Methode, auch für andere Konfigurationen oder Beschleuniger.

Die Messungen am SIS18 Synchrotron wurden speziell konzipiert, um eine hohe Präzision
der erzielten Ergebnisse zu gewährleisten. Eine Messungenauigkeit von ⪅ 1 µm wurde für die
Orbit Messung erzielt und eine Messungenauigkeit von ⪅ 5 µm/mrad für die Bestimmung
der Response-Matrix. Hierfür wurde eine Java Anwendung entwickelt, um die Messung
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der Response-Matrix, einschließlich der Dispersion, vollständig zu automatisieren. Die Java
Anwendung ist auf dem Gitlab Server der GSI verfügbar [2]. Der Setup des Experiments
sowie die Java Anwendung sind modular aufgebaut und beliebig erweiterbar und bilden somit
die Grundlage für Messungen der Response-Matrix mit hoher Präzision auch für weitere
Beschleuniger des GSI und zukünftigen FAIR Campus.

Darüber hinaus können die Zusammenhänge des Einflusses der Verfügbarkeit und der
Platzierung von Steerern und BPMs innerhalb eines Beschleunigers auf die Bestimmbarkeit von
Fehlern der Quadrupolfeldstärken bei der Planung von neuen Beschleunigern berücksichtigt
werden, um eine effiziente Lösung des entsprechenden inversen Problems zu gewährleisten. Die
erzielten Ergebnisse können außerdem für das Fitting von großtechnischen Beschleunigern, wie
z.B. dem Large Hadron Collider (LHC) am CERN, verwendet werden. Große Beschleuniger
besitzen eine hohe Anzahl an Steerern und BPMs und dies kann zu einer Größe der Jacobi-
Matrix führen, die in diesem Umfang nicht für das Fitting verwendet werden kann oder die
benötigte Rechenzeit massiv erhöht. Dennoch kann eine Teilmenge der Elemente der Jacobi-
Matrix für den Fitting-Vorgang verwendet werden. Dies reduziert die effektive Größe der
verwendeten Jacobi-Matrix und reduziert darüber hinaus die benötigte Rechenzeit. Um eine
optimale Auswahl der Elemente der Jacobi-Matrix zu gewährleisten, ist es notwendig, deren
Einfluss auf die Lösbarkeit des inversen Problems und auf die Fehlerfortpflanzung zu erfassen.
Darüber hinaus bietet der analytische Ausdruck der Jacobi-Matrix eine effiziente Alternative
mit geringem Rechenaufwand verglichen mit der Verwendung von Differenzenquotienten, was
besonders bei großen Beschleunigern mit einer großen Jacobi-Matrix einen Vorteil in Bezug
auf die benötigte Rechenzeit liefert.

Komplementär zu Teil 1 beschäftigt sich Teil 2 dieser Arbeit mit dem Einfluss von Fehlern
der Quadrupolfeldstärken in Transferlinien bezüglich der Erfüllung der durch die Experimente
vorgegebenen Anforderungen an die Transferlinie. Generell ist es möglich, diese Fehler mit
ähnlichen der in Teil 1 dieser Arbeit beschriebenen Verfahren zu ermitteln, dies erfordert
jedoch exklusive Messzeit, die dem Experimentbetrieb somit abhanden kommt. Teil 2 dieser
Arbeit beschäftigt sich daher mit einem präventiven Ansatz, welcher das Ziel hat, den Einfluss
möglicher Fehler der Quadrupolfeldstärken auf die resultierende Leistung der Transferlinie
durch die gezielte Auswahl geeigneter Konfigurationen der Quadrupolfeldstärken zu minimieren.
Dieser Ansatz macht sich die Flexibilität der Transferlinien in Bezug auf die möglichen
Quadrupolkonfigurationen, die zur Erfüllung der durch die Experimente vorgegebenen
Anforderungen verwendet werden können, zu Nutze. Verschiedene Quadrupolkonfigurationen
unterscheiden sich durch deren Robustheit in Bezug auf die Leistung der Transferlinie unter
Einfluss möglicher Fehler der Quadrupolfeldstärken. Eine robuste Quadrupolkonfiguration
impliziert eine gleichbleibend hohe Leistung der Transferlinie auch in Gegenwart von Fehlern
der Quadrupolfeldstärken. Solch robuste Quadrupolkonfigurationen ermöglichen einen stabilen
Betrieb zur Versorgung der Experimente und reduzieren die Zeit, die Operateure aufwenden
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müssen, um die Transferlinien nachzujustieren. Dies wiederum ermöglicht es, den Experimenten
mehr effektive Strahlzeit zur Verfügung zu stellen.

Zunächst wird das Konzept der robusten Quadrupolkonfigurationen erläutert sowie die
beiden für diese Studie exemplarisch genutzten Transferlinien vorgestellt. Die eine Transferlinie
repräsentiert den Abschnitt der GSI HEST Infrastruktur, der vom SIS18 Synchrotron zu dem
Leuchtschirm TH2DFA, oberhalb des Pion-Production-Targets, führt. Dieser Abschnitt der
Transferlinie wurde gewählt, um eine adäquate Verifizierung der theoretischen Ergebnisse
mittels experimenteller Daten mithilfe des TH2DFA Leuchtschirms zu gewährleisten. Der
TH2DFA Leuchtschirm bietet hervorragende Voraussetzungen für die Messungen, da die
zugehörige Kamera über FESA ausgelesen wird und somit mittels JAPC kontrolliert werden
kann. Darüber hinaus kann die Kamera im Trigger-Modus betrieben werden und erlaubt
somit eine Synchronisierung der Datenerfassung mit der Extraktion des Strahls aus dem SIS18
Synchrotron. Des Weiteren ist die Kamera vollständig kalibriert und stellt das horizontale und
vertikale Strahlprofil, welche aus den aufgenommenen Bildern berechnet werden, zur Verfügung.
Die zweite Transferlinie befindet sich am Forschungszentrum Jülich und repräsentiert den
Abschnitt des Strahltransports, der vom Verzweigungspunkt der verschiedenen Transferlinien
zur BIGKARL Targethalle führt. Während die Polarität der Quadrupolmagnete der HEST
Transferlinie festgelegt ist, ist die der Quadrupolmagnete der BIGKARL Transferlinie variabel.
Manche der Quadrupolmagnete der BIGKARL Transferlinie teilen sich außerdem ein Netzgerät.
Die beiden Transferlinien unterscheiden sich somit in ihren grundlegenden Eigenschaften und
bieten daher die Möglichkeit, die allgemeine Anwendbarkeit der entwickelten Methoden zu
verifizieren.

Zu Beginn wird die Robustheit von Quadrupolkonfigurationen unter Herleitung eines
mathematischen Ausdrucks für ebendiese Eigenschaft mithilfe von Twiss-Parametern untersucht.
Die analytischen Ergebnisse werden dann mit den Daten von umfangreichen Simulationen,
welchen eine systematische Untersuchung des gesamten Konfigurationen-Raums der TH2DFA
Transferlinie zugrunde liegt, verglichen und belegt. Die Simulationen wurden auf Basis
von MADX realisiert, was eine hohe Kompatibilität mit bestehenden Beschreibungen von
Transferlinien gewährleistet. Mithilfe der Simulationsdaten werden des Weiteren veschiedene
charakterisierende Eigenschaften von robusten Quadrupolkonfigurationen identifiziert. Es wird
gezeigt, dass der Verlauf der Beta-Funktionen im vorderen Abschnitt der Transferlinie einen
entscheidenden Einfluss auf die Robustheit der Quadrupolkonfiguration hat. Indem extreme
Werte der Beta-Funktionen in diesem Abschnitt vermieden werden, kann eine Steigerung der
Robustheit der erzeugten Quadrupolkonfigurationen erzielt werden. Des Weiteren erlaubt die
Verwendung einer zusätzlichen Optimierungsroutine, welche der der von MADX verwendeten
Optimierungsroutine LMDIF vorgeschaltet wird, eine weitere Steigerung der Robustheit der
erzeugten Quadrupolkonfigurationen. Für die vorliegende Problemstellung hat sich besonders
die Klasse der sogenannten Differential Evolution Algorithmen als vorteilhaft erwiesen. Als

viii



weitere Methode zur Steigerung der Robustheit der erzeugten Quadrupolkonfigurationen wurde
ein sogenanntes Surrogate Model in Bezug auf die zu erwartende Robustheit in Abhängigkeit
der Twiss-Parameter und Quadrupolfeldstärken einer Quadrupolkonfiguration gefittet. Das
Surrogate Model erlaubt eine höchst recheneffiziente Evaluierung der Robustheit anstelle von
rechenaufwendigen Monte Carlo Simulationen. Eine weitere entscheidende Verbesserung wurde
erzielt, indem das gefittete Surrogate Model auf den Einfluss der für das Fitting verwendeten
Parameter hin untersucht wurde. Dies wurde mithilfe sogenannter Feature Importance
Methoden realisiert. Die Anwendung dieser Methoden erlaubt es, solche Parameter zu
identifizieren, die sich im Rahmen des Fittings als einflussreich auf die resultierende Robustheit
von Quadrupolkonfigurationen gezeigt haben. Da sich die verwendeten Parameter aus den
Twiss-Parametern und Quadrupolfeldstärken der Quadrupolkonfigurationen zusammensetzen,
können diese Ergebnisse wiederum verwendet werden, um die Effizienz der zugrunde liegenden
Optimierungsroutine LMDIF mithilfe entsprechender zusätzlicher Beschränkungen deutlich
zu steigern. Die so erzielten Ergebnisse werden schließlich verwendet, um die Gesamteffizienz
des Rechenprozesses, der der Identifizierung von robusten Quadrupolkonfigurationen dient,
maßgeblich zu verbessern. Dieser Rechenprozess wird als Robuste Optimierung bezeichnet.

Die Ergebnisse und Methoden, welche im Rahmen der Untersuchung der TH2DFA
Transferlinie erzielt wurden, werden schließlich auf die Robuste Optimierung der zweiten
Transferlinie, der BIGKARL Transferlinie, angewandt. Es wird gezeigt, dass dieselben
Methoden für eine effiziente Berechnung von robusten Quadrupolkonfigurationen verwendet
werden können. Abschließend werden die Simulationsergebnisse mithilfe von zweckbestimmten
Messungen an beiden Transferlinien, am GSI Helmholtzzentrum für Schwerionenforschung
und am Forschungszentrum Jülich, verifiziert. Die experimentellen Daten bestätigen die
unterschiedlichen Eigenschaften der Quadrupolkonfigurationen der Transferlinien bezüglich der
Variabilität der Strahlfleckgröße auf den Target-Profil-Monitoren, die im Vorhinein mithilfe von
Simulationen ermittelt wurden. Darüber hinaus verdeutlichen die experimentellen Ergebnisse
die Realisierbarkeit des Auffindens und der Anwendung von robusten Quadrupolkonfigurationen.
Für beide Messungen wurden Software Pakete in Java bzw. Python implementiert, die eine
vollständige Automatisierung der beiden Messungen ermöglichen. Die Anwendungen sind auf
dem GSI Gitlab Server bzw. dem FZJ Gitlab Server verfügbar [3, 4]. Die erzielten Ergebnisse
bilden somit die Grundlage für die Robuste Optimierung und deren experimentelle Überprüfung
für eine Vielzahl an Transferlinien der GSI HEST Infrastruktur sowie darüber hinaus für
Transferlinien an anderen Beschleunigerinstituten. Die erzielten Ergebnisse sind ebenfalls
relevant für die zukünftigen Transferlinien der FAIR Beschleunigeranlagen.
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If I have seen further, it is by standing
on the shoulders of giants.

Isaac Newton
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1
Introduction

The need for stable beam focusing for particle accelerators to reach high energies has been
already recognized by Wideröe in 1928 [5]. A dedicated magnet design to accomplish such
focusing for a betatron accelerator has been proposed by Steenbeck in 1935 [6] and a detailed
mathematical analysis has been established by Kerst and Serber in 1941 [7]. Likewise, the first
synchrotrons used bending magnets with curved or slanted pole faces in order to generate the
radial field gradient that provides the necessary focusing [8, 9, 10, 11]. With the discovery of
the strong focusing principle in the 1950s [12, 13, 14], dedicated quadrupole magnets were
introduced for beam focusing and they constitute a major building block of any modern circular
accelerator. The influence of magnet imperfections and associated field errors has been studied
since the strong focusing principle has been first introduced. The effect of magnetic field
errors on the behavior of the beam inside the accelerator was well known and it imposed tight
bounds for the construction tolerances compared to the already existing constant gradient
accelerators [15, 16, 17, 18].

Early methods for correcting the influence of magnet errors on the optics of an accelerator
relied on the formulas which had been derived in the context of the strong focusing theory.
These methods aim to fit the measured beta functions and phase advances in order to derive
the field gradient errors under a linear approximation. This type of correction is still used
in recent studies [19, 20]. Since its first introduction, the strong focusing principle has been
adopted by many other accelerator facilities and, today, synchrotrons are operated at many
different accelerator institutes worldwide. However, with the ever increasing demand in the
performance of machines such as storage rings at synchrotron light sources, already smaller
quadrupole errors became a hindrance for the successful operation of the machines. Thus, it
became necessary to systematically correct these errors. One of the first approaches which
aimed to fit the observed data from beam position monitors with the data generated by a
linear optics simulation program was presented in 1987 [21]. It required the manual interaction
of a user to select possible error sources in the lattice which the program then varied in order
to find an optimal solution.

An automatic method for fitting of linear optics was introduced in 1993 [22]. This method
used the recordings of beam position monitors in terms of the beam orbit movement induced
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1. Introduction

by variations of steerer dipole magnets, in form of the Orbit Response Matrix (ORM). The
numerical accelerator model, including the modeled quadrupole errors, was then fitted to
match the measured data. Since then, the technique has been further improved and is typically
referred to as extracting linear optics from closed orbit measurements [23]. It has been
successfully employed at various synchrotron light sources [24, 25, 26, 27, 28, 29, 30]. Following
the success of the method for synchrotron light sources, it has been applied at other facilities
operating hadron synchrotrons [31, 32, 33, 34, 35, 36]. However, the results were often affected
by degeneracy present in the system or could not be verified in terms of the optics of the
accelerator. While synchrotron light sources typically have many BPMs installed, the available
BPMs at hadron synchrotrons are rather limited and are typically not dual plane. Also,
the number of steerer magnets can be small compared to synchrotron light sources. These
devices, however, provide the necessary information in form of the measured orbit response
which is used to accurately model and correct the quadrupole errors in the lattice. Lack
of BPMs or steerers enhances the degree to which measurement uncertainty is propagated
and might cause specific lattice parameters to be especially susceptible to the influence of
measurement uncertainty. In some situations it might even cause the inverse problem of
estimating quadrupole errors to be ill-posed in such a way that the estimated errors are not
uniquely determined by the measured ORM data. So far, there has been not much effort to
study the influence of the availability and placement of steerer magnets and beam position
monitors in the lattice on the feasibility of extracting linear optics and model errors from closed
orbit measurements as well as on the quality of obtained results. A profound understanding
of this relationship is, however, required in order to obtain reliable results from the inverse
modeling process and for designing corresponding measurements in order to reach the desired
uncertainty in the estimated model parameters.

At GSI Helmholtz Centre for Heavy Ion Research in Darmstadt (Germany), the SIS18
synchrotron is a flexible synchrotron for the acceleration of a wide variety of ion species up to
a magnetic rigidity of 18 T m. It has been used to successfully accelerate ions of various kinds
from Hydrogen to Uranium. Starting in 1988, the first beam has been injected into SIS18.
After operation has started in 1990, SIS18 has served many fixed target experiments as well
as the Fragment Separator (FRS) and Experimental Storage Ring (ESR). This has lead to
the discovery of various new elements, ranging from atomic number 107 (Bohrium) to 112
(Copernicium), at the Separator for Heavy Ion reaction Products (SHIP). In addition to the
discovery of new elements, SIS18 has enabled various other discoveries at GSI, for example,
the bound-state beta decay in 1992 or the two-proton decay in 2002. Beyond these scientific
discoveries, GSI has led pioneering work in the field of heavy-ion radiotherapy by conducting
a successful pilot study using carbon ions for treatment.

Despite the successful operation of SIS18 over many decades, a tune discrepancy compared
to the accelerator model has long been observed and a basic correction of the accelerator model
relying on the experience of machine experts has been realized [37]. The first attempt for
inverse modeling of linear optics of SIS18 via closed orbit measurements has been conducted
from 2006 until 2008 [38]. This work reports the ORM measurements at injection energy
from three distinct measurement campaigns together with the corresponding estimates of
model parameters. The issues that were encountered during that study include low resolution
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of beam orbit measurement (σh ≈ 0.5 mm, σv ≈ 0.14 mm) and only six of the now twelve
horizontal steerer magnets were available 1. Due to these complications, the obtained results
had large error bars and not all quadrupoles of SIS18 could be included in the fitting. Also,
the dispersion could not be measured. This indicates the necessity to redo inverse modeling
under the improved conditions available today. A thorough understanding and control of the
linear optics of SIS18 is especially important for the high intensity booster operation as part
of the Facility for Antiproton and Ion Research in Europe (FAIR) [39] where SIS18 acts as an
injector for the SIS100 synchrotron [40]. Also for SIS100 the high intensity operation will pose
stringent requirements on the optics correction and the thorough understanding and control of
linear optics forms the basis for any further improvements [41, 42, 43]. Studies of nonlinear
effects such as dynamic aperture require precise knowledge of the lattice parameters in order to
yield accurate results. As an approximation, it might be assumed that the beta beating is fully
corrected in the lattice [43]. However, the quadrupole units in hadron accelerators, including
those of SIS18 and SIS100, are typically divided into groups and each group is powered in series.
Because each quadrupole in a group shares the same power supply, individual quadrupole errors
cannot be fully corrected. As a consequence, the beta beating cannot not be fully corrected
either but only brought to some minimal yet nonzero state. The residual beta beating must
be taken into account during simulation studies and, thus, the precise knowledge of the linear
optics and the corresponding lattice element parameters is important.

For a storage ring based synchrotron light source the ring itself is the final destination for
the beam and, thus, the quality of the ring optics determines the quality of the beam and of
the produced synchrotron light. At synchrotron based fixed target facilities, on the other hand,
the beam must be further transported from the synchrotron to the experimental areas where
it will be used. This means that not only the synchrotron optics determines the quality of the
beam at the experimental target but also the optics along the beam transfer line or, in short,
beamline. Similarly, errors in the quadrupole magnets can result in a degradation of the beam
quality at the experimental target. This effect can be significant already for small quadrupole
errors, due to the typically strong beam focus at the experimental target. While it is possible to
perform an inverse modeling-based correction for beamlines [44], conducting this costs valuable
experimental time. Also, when multiple experiments are to be served by the beamlines, the
magnetic hysteresis plays a role and can lead to a degradation of the beamline optics. In the
long run, also the stability of power converters or other environmental effects can lead to a
change of the nominal quadrupole strengths and, thus, cause a degradation of the optics. It
is therefore desirable to minimize the impact of quadrupole errors on the beamline optics.
The behavior of the optics with respect to quadrupole errors is a property of the beamline’s
specific quadrupole configuration and, usually, beamlines are underconstrained in terms of the
feasible quadrupole settings such that many different quadrupole configurations exist which
meet the requirements of the beamline. Ideally, the beamline operates a configuration which is
particularly robust against the expected quadrupole errors over the course of the experiment
such that the quality of the beam does not degrade below the experimental requirements.
Albeit the effects of field errors find basic treatment in some publications [45], so far, there
has not been much effort towards a detailed and general study of the robustness of beamline

1The remaining six steerer magnets have been installed in the beginning of 2008.
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configurations with respect to quadrupole errors. A profound understanding of beamline
configuration robustness and reliable methods for identifying those configurations will benefit
the operation of beamlines in terms of their reliability as well as reduce the time operators must
spend on fine-tuning the beamlines’ optics and, hence, allow to increase the beam-on-target
time at the experiments.

In the following, the structure of the thesis is described.
In chapter 2, the relevant concepts and results from beam physics in synchrotrons are

introduced which are then used throughout the main part of the thesis.
In chapter 3, the study of inverse modeling of linear optics in the presence of degeneracy is

presented. First, the inverse problem is explained with regard to degeneracy of its solutions. An
analytical expression for the Jacobian matrix of the inverse problem is derived. This expression
for the Jacobian is used to derive the theoretical limitations of the inverse problem in terms of
the placement of steerer magnets and beam position monitors. Further, the influence of different
BPM/steerer placement patterns on the resulting uncertainty of the parameter estimates
is investigated. Depending on the placement pattern, some of the parameters might have
substantially increased uncertainties compared to others, which manifests as a quasi-degeneracy.
In addition, it is shown that during the fitting procedure the analytical version of the Jacobian
can be used in place of the exact Jacobian which is obtained numerically via finite-difference
approximation. Usage of the analytical Jacobian allows for greatly reduced computation times
during the inverse modeling process. The scaling of the computation in terms of the number of
relevant lattice elements is improved by a factor Nsteerers×Nquadrupoles by using the analytical
Jacobian approach. The inverse modeling process by using the analytical Jacobian approach
is tested with large-scale simulations and also with dedicated measurements conducted at
the heavy-ion synchrotron SIS18 at GSI. The fitting procedure is tested in conjunction with
various methods for mitigating quasi-degeneracy. The results obtained with the analytical
Jacobian agree well with those obtained with the numerical Jacobian. A complete Python
software package, including the implementation of the analytical Jacobian approach, has been
created and made publicly available [1]. A dedicated setup for the ORM measurement at
SIS18 is presented. This includes the development of a Java application for fully automatizing
the measurement [2]. The measurement has achieved high precision with an orbit uncertainty
of ⪅ 1 µm and an ORM uncertainty of ⪅ 5 µm/mrad. The developed setup is extensible and,
thus, provides the foundation for high precision ORM measurements and inverse modeling
also for other accelerators of the GSI and future FAIR campus.

In chapter 4, a complementary approach for application to beamlines is presented which
aims to mitigate the influence of quadrupole errors in order to minimize the need for beamline
re-tuning or for estimating quadrupole errors in general. This approach can be used to identify
robust beamline quadrupole configurations, i.e., those configurations whose performance
is particularly robust against possible quadrupole errors. First, the concept of beamline
robustness is introduced and the beamlines which are used exemplary for this study are
introduced. An analytical derivation is presented which can be used to assess the robustness
property of a beamline configuration in terms of its Twiss data. The findings are supported
by the data obtained from systematic exploration of the beamline configuration space via
large-scale simulations. Various important properties of robust configurations are derived
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from the simulated data. It is shown that the previously derived analytical expression for
beamline robustness largely correlates with the simulated robustness scores. Based on these
findings, the initially purely Monte Carlo based procedure for identifying robust configurations
is greatly improved in terms of compute efficiency. These findings are then applied to the
robust optimization of a second beamline where it is shown that the same approach can
be used to efficiently identify robust beamline configurations. This emphasizes the general
applicability of the methods. Eventually, the simulation results are supported by dedicated
experimental data which has been collected at GSI and at Forschungszentrum Jülich. The
measurements compare different quadrupole configurations in terms of their robustness. For
both measurements, dedicated software has been developed which allows to fully automatize
the measurements [3, 4].

Finally, chapter 5 presents the conclusions and outlook with respect to applicability to
other accelerators and beamlines.
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2
Linear optics in synchrotrons and beam

transfer lines

This chapter introduces the concepts and results from the field of accelerator physics which are
relevant for the main part of the thesis. First, the conventions which will be used throughout
the remainder of the manuscript are presented. Then, the derivation of relevant aspects from
beam dynamics under the Hamiltonian formalism is introduced which ultimately leads to
the transfer matrices of various beamline elements. Those transfer matrices can be used to
describe the linear effects on the beam motion which will be used during the assessment of
quadrupole errors. Following this, the derivation of synchrotron optics is introduced. With the
help of the previously derived transfer matrices, the relevant formulas for linear optics errors
are derived. Lastly, different methods for particle beam extraction are introduced, followed
by an introduction of the quadrupole scan method, since these are relevant for the remaining
chapters of the thesis.

2.1 Conventions

2.1.1 Terminology

The term design orbit is used to describe the foreseen trajectory of an ideal reference particle
with an energy that matches the magnet settings. However, due to the existence of various
possible dipole-like error sources, the actual trajectory of the beam will necessarily deviate
from the design orbit. Most notably are alignment errors of quadrupole magnets with respect
to the design orbit. If a quadrupole magnet is placed such that the design orbit does not lie
in the magnetic center of the quadrupole, the corresponding offset of particles will produce
a dipole-like contribution to the motion. This causes the trajectory of the reference particle
to deviate from the design orbit. Courant & Snyder identify this deviating trajectory as
follows [14]:
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2. Linear optics in synchrotrons and beam transfer lines

"We further assume that there is a closed curve in [the bending plane] such that a
particle of a certain magnetic rigidity P0/q can move on this curve. We call this
curve the equilibrium orbit."

The bending plane is the plane to which the dipole fields of all bending magnets are
perpendicular. This does not account for roll errors of bending magnets about the longitudinal
axis, but a similar closed curve can exist without the existence of such a bending plane (this is
derived later in [14]). The term closed orbit is used synonymously for the equilibrium orbit.

The magnetic rigidity of a beam particle is defined as the ratio of its momentum to its
electrical charge, P0/q, and this quantity is similarly denoted as (Bρ). This emphasizes the
fact that an accelerator with bending dipole field B and radius of curvature ρ can host a beam
with rigidity equal to (Bρ).

2.1.2 Coordinate systems

A strong focusing circular accelerator consists of alternating straight and bending sections. The
reference orbit is the closed trajectory of a particle with reference momentum P0. To describe
the straight sections of the accelerator a Cartesian coordinate system labeled by (x, y, z) will
be used where the z-axis points in the direction of the reference orbit. For the bending sections
a curvilinear coordinate system labeled by (x, y, s) will be used where the s-axis is tangent to
the (curved) reference orbit which lies in the (x, s)-plane. The x-axis points radially outwards
with respect to the reference orbit. The coordinate systems are illustrated in Figure 2.1.

The x and y coordinates describe the transverse deviations from the reference orbit. The
longitudinal coordinate, z or s, describes the negative time-difference of a particle with respect
to the reference particle, multiplied by the speed of light c:

{z, s} = −c∆t (2.1)

The transformation from a Cartesian to the curvilinear coordinate system with bending
radius ρ is given by:

x = (ρ+ x̃) cos(s
ρ

)− ρ

y = ỹ

z = (ρ+ x̃) sin(s
ρ

)

(2.2)

where x̃ and ỹ denote the transverse coordinates in the curvilinear coordinate system.
In the curvilinear coordinate system, the gradient of a scalar field ϕ is given by [46, 47]:

(∇ϕ)x = ∂ϕ

∂x

(∇ϕ)y = ∂ϕ

∂y

(∇ϕ)s = 1
1 + hx

∂ϕ

∂s

(2.3)
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2.2 Equations of motion

Figure 2.1: Coordinate systems. The system (x, y, z) is used to describe straight sections of
the accelerator while the system (x, y, s) is used to describe the curved sections. ρ is the bending
radius corresponding to the magnetic rigidity of the beam and the field strength of the bending
magnets.

In the curvilinear coordinate system, the curl of a vector field A is given by [46, 47]:

(∇×A)x = ∂As

∂y
− 1

1 + hx

∂Ay

∂s

(∇×A)y = 1
1 + hx

∂Ax

∂s
− h

1 + hx
As −

∂As

∂x

(∇×A)s = ∂Ay

∂x
− ∂Ax

∂y

(2.4)

2.2 Equations of motion

Since the particles in an accelerator undergo the interaction with various electromagnetic fields
generated by magnets and RF-cavities, it is of importance to understand the dynamics of the
particles subject to the corresponding fields. This section of the introduction mostly follows
[48] and [49, 50] (a similar approach is described in the Appendix B of [14]).

2.2.1 Hamiltonian formalism

The Hamiltonian formalism [51] provides a convenient framework for deriving beam dynamics.
In this framework, the equations of motion are derived from the so called Hamiltonian H(x,p, t)
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2. Linear optics in synchrotrons and beam transfer lines

which is a function in the particle coordinates x, the canonical momentum p and the time t:

dxi

dt
= ∂H

∂pi

dpi

dt
= −∂H

∂xi

(2.5)

The Hamiltonian H and the conjugate momentum p can be derived from the Lagrangian
L(q, q̇, t) given in particle coordinates q ≡ x and velocity q̇ ≡ dq/dt:

pi = ∂L

∂q̇i

H =
∑︂

i

q̇ipi − L
(2.6)

The Lagrangian is based on the principle of least action, that is, a physical system is expected
to behave such that the following condition is satisfied:

δS ≡ δ
(︃∫︂ t2

t1
L(q(t), q̇(t), t)dt

)︃
= 0 (2.7)

where δ indicates a variation of the path from q(t1) to q(t2).
In many cases, the Lagrangian L is given by the kinetic energy T subtracted by the

potential energy V of the system:
L = T − V (2.8)

Similarly, in many cases, the Hamiltonian is the total energy of the system, that is, H = T +V .
Part of establishing a physics theory consists of writing down the Lagrangian or, equivalently,
the Hamiltonian of the system. The correctness of the theory then depends on the correctness
of the Lagrangian or Hamiltonian since anything else is derived from it.

It is noted that, in general, the equations of motion can also be derived within the
Lagrangian formalism by the Euler-Lagrange equations which also satisfy the principle of least
action from equation 2.7:

∂L

∂qi
− d

dt

(︃
∂L

∂q̇i

)︃
= 0 (2.9)

The Lagrangian (eq. 2.9) and Hamilton (eq. 2.5) formalism are equivalent with regard to
the derived physics, but their mathematical formulation is different and for a specific problem
one formalism may be advantageous over the other.

2.2.1.1 Non-relativistic case

For a classical system involving electromagnetic forces, the Lagrangian can be written in terms
of the electric scalar potential ϕ(x), the magnetic vector potential A(x) and the particle’s
mass m and charge q:

L = 1
2mẋ2 − qϕ+ qAẋ (2.10)

Inserting into Hamilton’s equations (2.5) and (2.6) gives the following equations of motion:

d

dt
(mẋ) = q (E + ẋ×B) (2.11)
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2.2 Equations of motion

where the vector fields E and B represent the following quantities:

E = −∇ϕ− ∂A

∂t

B = ∇×A

(2.12)

and × denotes the cross product between two 3-vectors.
Of course, E and B are, respectively, the electric and magnetic field of the system and

equation 2.11 describes the motion subject to the Lorentz force. Thus, it is equivalent to the
result that would have been obtained by considering Newton’s equations. Nevertheless, the
Hamiltonian approach is more flexible and can be generalized to the relativistic case, too.

2.2.1.2 Relativistic case

In special relativity, in the absence of electromagnetic fields, the total energy of a particle is
given by:

E =
√︂

(pc)2 + (mc2)2 (2.13)

where p is the mechanical momentum of the particle 1, m is its rest mass and c is the speed of
light in vacuum.

In the presence of electromagnetic fields, the momentum in equation 2.13 must be replaced
by the conjugate momentum which includes the vector potential, that is, p→ p− qA; also,
the potential energy qϕ due to the electric potential must be added. Again, the Hamiltonian
is considered to represent the total energy of the particle and, thus, is given by:

H =
√︂

(p− qA)2c2 + (mc2)2 + qϕ (2.14)

2.2.1.3 Transformation to accelerator coordinates

The Hamiltonian from equation 2.14 is given in terms of the time t as the independent variable.
In the framework of accelerator physics, a more convenient choice for the independent variable
is, however, the path length along the reference orbit. This is because after constructing an
accelerator lattice, it is known where along the beamline the various electromagnetic elements
are located. A change in the independent variable of the Hamiltonian from time to path length
implies that the longitudinal conjugate coordinates (z, pz) are replaced with (−t, E) where E
is the total energy of the particle. Because later in the derivation of beam dynamics it will be
necessary to make approximations to the Hamiltonian in form of a Taylor series expansion, it is
advantageous to work with a set of variables whose values generally remain small (≪ 1) during
the course around the accelerator lattice. The transverse coordinates x and y are already
small as they describe the deviation from the reference orbit. Their conjugate momenta can
be normalized by the reference momentum P0. Similarly, the longitudinal coordinates can
be transformed to indicate the deviation from the reference particle in terms of time and
energy. To accomplish this, another canonical transformation can be applied which replaces

1Depending on the considered physics of the system, the mechanical momentum might not be identical to
the conjugate momentum from equation 2.6.
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2. Linear optics in synchrotrons and beam transfer lines

the transverse momenta and the longitudinal conjugate coordinates:

px,y → px,y = px,y

P0

−t → {z̃, s̃} = {z, s}
β0

− ct

E → δ = E

P0c
− 1
β0

(2.15)

where β0 is the magnitude of the velocity of a particle with reference momentum P0 divided by
the speed of light. The symbols on the left-hand side of → denote the old coordinates (before
the canonical transformation) and the symbols on the right-hand side of → indicate the new
coordinates in dependency on the old coordinates (on the right-hand side of =). Due to the
normalization with the reference momentum P0, the values of the new conjugate momenta
remain small. In the remainder of this section, accelerator coordinates are used exclusively
and, thus, the transformed longitudinal coordinates {z̃, s̃} are written as {z, s} to simplify the
notation. 2

The canonical transformations also yields a transformed version of the Hamiltonian. For a
straight section the Hamiltonian is given by:

H = δ

β0
−

√︄(︃ 1
β0

+ δ − qϕ

P0c

)︃2
− (px − ax)2 − (py − ay)2 − 1

β2
0γ

2
0
− az (2.16)

where a ≡ qA/P0 is the magnetic vector potential normalized by the magnetic rigidity of the
reference particle.

For a bending section of the accelerator, the Hamiltonian from equation 2.14 must be
transformed into the curvilinear coordinate system (x, y, s) via a canonical transformation,
similar to the transformation from equation 2.15 for the straight sections (x, y, z). In curvilinear
coordinates, the Hamiltonian for a bending section is given by:

H = −(1+hx)
√︄(︃ 1

β0
+ δ − qϕ

P0c

)︃2
− (px − ax)2 − (py − ay)2 − 1

β2
0γ

2
0
−(1+hx)as + δ

β0
(2.17)

where h = ρ−1 is the curvature and ρ is the bending radius of the dipole magnets.
Equations 2.16 and 2.17 allow to derive the equations of motion for various electromagnetic

field configurations by inserting the appropriate values for the electric potential ϕ and the
magnetic potential a.

2It is noted that ({z, s}, δ) is not the only possible choice for the conjugate coordinates and in the field
of accelerator physics other definitions are sometimes used, too. For example, the TRANSPORT simulation
program [52] uses (∆z, ∆P/P0) as the longitudinal conjugate pair, where ∆z and ∆P are, respectively, the
path length deviation and momentum deviation from the reference particle with momentum P0. In the limit
β0 → 1 the two definitions are equivalent.
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2.2 Equations of motion

2.2.2 Electromagnetic field configurations

The electric field E and magnetic field B are defined in terms of the electric scalar potential ϕ
and the magnetic vector potential A:

E = −∇ϕ− ∂A

∂t

B = ∇×A

(2.18)

Only those field configurations are physically relevant which satisfy Maxwell’s equations [46]:

∇E = ρc

ϵ0

∇B = 0

∇×E = −∂B

∂t

∇×B = µ0J + µ0ϵ0
∂E

∂t

(2.19)

where ρc denotes the charge density, J denotes the electric current density and ϵ0 and µ0 are,
respectively, the vacuum permittivity and vacuum permeability.

2.2.2.1 Magnetic multipole expansion

The magnetic field inside a long straight multipole, which is aligned with the z-axis, can be
specified with the help of the following magnetic multipole field expansion [49]:

By + iBx =
∞∑︂

n=0
(bn + ian)

(︃
x+ iy

r0

)︃n

(2.20)

where an, bn are coefficients that must be chosen according to the actual field configuration
and r0 is an arbitrary reference radius. This definition using r0 has the convenience that all
coefficients an, bn have the same physical unit as the magnetic field Bx, By. The coefficients
bn denote the normal components of the multipole while the coefficients an denote the skew
components.

A possible choice for the magnetic vector potential A which generates the magnetic field
from equation 2.20 is given by:

A(x, y, z) =


0
0

−Re
{︃∑︁∞

n=0(bn + ian) r0
n+1

(︂
x+iy

r0

)︂n+1
}︃
 (2.21)

Since in a dipole field the trajectory of particles will be bent, the set of curvilinear coordinates
must be used to describe the corresponding vector potential. In the (x, y, s) system of curvilinear
coordinates the magnetic vector potential of a dipole bending magnet is given by [49]:

Adipole(x, y, s) =


0
0

−B0
(︂
x− 1

2
hx2

1+hx

)︂
 (2.22)
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2. Linear optics in synchrotrons and beam transfer lines

2.2.3 Transfer maps

The transfer maps of the various accelerator elements can be obtained by inserting the
corresponding field configurations from equations 2.21 and 2.22 into the Hamiltonians from
equations 2.16 and 2.17. While for a field-free region, i.e., ϕ ≡ 0 and a ≡ 0, it is possible to
obtain an exact solution for the equations of motion, for nonzero field regions it is necessary to
make an approximation in form of a Taylor expansion. The resulting transformation of particle
coordinates x⃗ ≡ (x, px, y, py, z, δ) through an accelerator element can then be expressed as a
series expansion in x⃗ since all elements of x⃗ have been properly normalized such that x⃗i ≪ 1
(see equation 2.15):

x⃗i ← di +
6∑︂

j=1
Rij x⃗j +

6∑︂
j,k=1

Tijkx⃗j x⃗k +O(x⃗3) (2.23)

where di denotes the zeroth-order contribution to the i-th component of x⃗, Rij denotes the
first-order contribution and Tijk denotes the second order contribution. Rij is also called the
transfer matrix, as it describes the linear properties of the transformation.

In [53] the general transport coefficients Rij and Tijk for a combined-function dipole
(bending magnet), including quadrupole and sextupole fields, are derived. It allows to obtain
the transport coefficients for specific magnetic elements by setting those magnetic fields values
to zero which are not present for a specific magnet. In the following, the derivation of linear
transport coefficients, i.e., the transfer matrices, is presented by using a second order expansion
of the Hamiltonian. For a drift space, the exact solution is presented as well.

2.2.3.1 Transfer map of a drift space

A drift space is characterized as a field-free region, i.e., ϕ ≡ 0 and a ≡ 0. From equation 2.16
the equations of motion can be obtained via equation 2.5 and their solution for a drift space
of length L is given by:

∆x
L

= px√︃(︂
1

β0
+ δ

)︂2
− p2

x − p2
y − 1

β2
0γ2

0

∆y
L

= py√︃(︂
1

β0
+ δ

)︂2
− p2

x − p2
y − 1

β2
0γ2

0

∆z
L

= 1
β0
−

1
β0

+ δ√︃(︂
1

β0
+ δ

)︂2
− p2

x − p2
y − 1

β2
0γ2

0

∆px = ∆py = ∆pz = 0

(2.24)

This is the exact transfer map for a drift space of length L and this exact representation is
used by particle tracking codes, for example. However, for other purposes, specifically linear
optics calculations, the expressions in equation 2.24 can be simplified with the help of a Taylor
expansion while retaining only the linear terms. This results in the following linear transfer
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2.2 Equations of motion

map:
∆x ≈ pxL

∆y ≈ pyL

∆z ≈ L

β2
0γ

2
0

∆px = ∆py = ∆pz = 0

(2.25)

A similar result is obtained when the Hamiltonian from equation 2.16 is expanded to second
order in the coordinates and then the equations of motion are derived via equation 2.5:

Hdrift = p2
x

2 +
p2

y

2 + 1
β2

0γ
2
0

δ2

2 (2.26)

The corresponding transfer matrix of a drift space of length L is:

Rdrift =



1 L 0 0 0 0
0 1 0 0 0 0
0 0 1 L 0 0
0 0 0 1 0 0
0 0 0 0 1 L

β2
0γ2

0

0 0 0 0 0 1


(2.27)

2.2.3.2 Transfer map of a bending magnet

The Hamiltonian for a bending section from equation 2.17 can be used together with the
field configuration from equation 2.22 to derive the equations of motion for a dipole bending
magnet. To obtain a solution for the equations of motion, the Hamiltonian can be expanded
up to second order in the dynamical variables:

Hdipole = p2
x

2 +
p2

y

2 + (k0 − h)x+ hk0
x2

2 −
h

β0
xδ − 1

β2
0γ

2
0

δ2

2 (2.28)

where k0 = b0/(Bρ) is the dipole magnetic field normalized by the magnetic rigidity of the
reference particle.

The corresponding transfer matrix is given by:

Rdipole =



cos(k0L) sin(k0L)
k0

0 0 0 1−cos(k0L)
k0β0

−k0 sin(k0L) cos(k0L) 0 0 0 sin(k0L)
β0

0 0 1 L 0 0
0 0 0 1 0 0

− sin(k0L)
β0

−1−cos(k0L)
k0β0

0 0 1 L
β2

0γ2
0
− k0L−sin(k0L)

k0β2
0

0 0 0 0 0 1


(2.29)

The R{1,2,5}6 elements of the transfer matrix describe the dispersion generated by the
bending magnet. That is, a particle with momentum greater than the reference momentum will
receive less bending from the magnet which results in an additional horizontal and longitudinal
offset. The transfer matrix also implies a focusing in the horizontal dimension. This is
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2. Linear optics in synchrotrons and beam transfer lines

sometimes called geometrical focusing because it is of geometrical nature; the trajectories of
two particles with different horizontal offset will oscillate about each other, as illustrated in
Figure 2.2.

Figure 2.2: Illustration of geometrical focusing. The dashed line indicates the trajectory of the
reference particle and the solid line indicates the trajectory of a particle with horizontal deviation
x from the reference trajectory.

It is noted that in case the field of the dipole k0 is not matched to the design orbit with
curvature h, then the particles will pick up a zeroth-order contribution which is represented
by the (k0 − h) term in the Hamiltonian (eq. 2.28).

2.2.3.3 Transfer map of a quadrupole magnet

Normal quadrupole The second order Hamiltonian of a normal quadrupole magnet (b1 ≠ 0
in equation 2.21) of length L is given by:

H normal
quadrupole

= p2
x

2 +
p2

y

2 + k1
x2

2 − k1
y2

2 + 1
β2

0γ
2
0

δ2

2 (2.30)

where k1 = (b1/r0)/(Bρ) is the normalized quadrupole gradient.
The corresponding transfer matrix for a normal quadrupole with k1 > 0 is:

R normal
quadrupole

=



cos(ωL) ω−1 sin(ωL) 0 0 0 0
−ω sin(ωL) cos(ωL) 0 0 0 0

0 0 cosh(ωL) ω−1 sinh(ωL) 0 0
0 0 ω sinh(ωL) cosh(ωL) 0 0
0 0 0 0 1 L

β2
0γ2

0

0 0 0 0 0 1


(2.31)

where ω =
√
k1. The {cos, sin} terms correspond to a focusing motion in x-dimension whereas

the {cosh, sinh} terms correspond to defocusing motion in y-dimension. Thus, a quadrupole
with k1 > 0 is said to be horizontally focusing. For a horizontally defocusing quadrupole with

16



2.2 Equations of motion

k1 < 0 the diagonal blocks corresponding to the two transverse dimensions are interchanged
and k1 is replaced by −k1 (which causes the quadrupole to be vertically focusing).

Skew quadrupole The second order Hamiltonian of a skew quadrupole magnet (a1 ̸= 0 in
equation 2.21) of length L is given by:

H skew
quadrupole

= p2
x

2 +
p2

y

2 + k1,sxy + 1
β2

0γ
2
0

δ2

2 (2.32)

where k1,s = −(a1/r0)/(Bρ) is the normalized skew quadrupole gradient. The term k1,sxy

implies a coupling between the horizontal and vertical motion.
The corresponding transfer matrix for a skew quadrupole with k1,s > 0 is:

R skew
quadrupole

= 1
2



cx + cy ω−1(sx + sy) cx − cy ω−1(sx − sy) 0 0
−ω(sx − sy) cx + cy −ω(sx + sy) cx − cy 0 0
cx − cy ω−1(sx − sy) cx + cy ω−1(sx + sy) 0 0

−ω(sx + sy) cx − cy −ω(sx − sy) cx + cy 0 0
0 0 0 0 2 2L

β2
0γ2

0

0 0 0 0 0 2


(2.33)

where cx = cos(ωL), cy = cosh(ωL), sx = sin(ωL), sy = sinh(ωL) and ω =
√︁
k1,s. The

coupling is represented by the off-diagonal blocks in the transfer matrix. For k1,s < 0, ω is
replaced by

√︁
−k1,s and the trigonometric terms are interchanged: cx ↔ cy and sx ↔ sy.

2.2.3.4 Transfer map of a combined function dipole

A combined function dipole includes both dipole and quadrupole fields. The second order
Hamiltonian of a combined function dipole is given by [53]:

H2 = 1− n(s)
ρ(s)2

x2

2 + n(s)
ρ(s)2

y2

2 + p2
x

2 +
p2

y

2 + 1
β2γ2

δ2

2 −
1

βρ(s)xδ (2.34)

where the radius of curvature of the reference orbit, ρ(s), is given by

ρ(s) = (Bρ)
By(s) (2.35)

and the normalized radial field gradient n(s) is given by

n(s) = −ρ(s)2

(Bρ)
∂By(s)
∂x

(2.36)

Details are given in Appendix B of [14].
The corresponding equations of motion are:

d2x

ds2 + 1− n(s)
ρ(s)2 x = δ

βρ(s)
d2y

ds2 + n(s)
ρ(s)2 y = 0

(2.37)
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The corresponding transfer matrix is given by [53]:

R combined function dipole =

cos(ωxL) ω−1
x sin(ωxL) 0 0 0 k0

β0
1−cos(ωxL)

ω2
x

−ωx sin(ωxL) cos(ωxL) 0 0 0 k0
β0

sin(ωxL)
ωx

0 0 cos(ωyL) ω−1
y sin(ωyL) 0 0

0 0 −ωy sin(ωyL) cos(ωyL) 0 0
− k0

β0
sin(ωxL)

ωx
− k0

β0
1−cos(ωxL)

ω2
x

0 0 1 L
β2

0γ2
0
− k2

0
β2

0

L−ω−1
x sin(ωxL)

ω2
x

0 0 0 0 0 1


(2.38)

where ωx =
√︂
k2

0 + k1 and ωy =
√
−k1 and k0, k1 are the normalized dipole and quadrupole

fields defined in, respectively, sections 2.2.3.2 and 2.2.3.3.

2.2.3.5 Transfer map of a sextupole magnet

Since the magnetic vector potential for a sextupole magnet (b2 ̸= 0 in equation 2.21) does not
contain any terms that depend on the positions x and y up to second order, the second order
Hamiltonian is the same as the second order Hamiltonian for a drift space. Thus, the linear
contribution of a sextupole to the beam dynamics is the same as for a drift space:

Rsextupole = Rdrift (2.39)

The second order contributions of a thin sextupole with strength (K2L) are [53]:

T211 = −1
2(K2L)

T233 = 1
2(K2L)

T413 = T431 = 1
2(K2L)

(2.40)

2.2.3.6 Transfer map of dipole fringe fields

Due to the finite length of magnetic elements, the fields extend beyond the physical dimension
of the magnets. These fringing fields also influence the particles and the effect is most notable
for dipole magnets with a pole face rotation ψ relative to the beam path (ψ = 0 means that
the pole face is perpendicular to the beam path). In the approximation of a short fringe field
region, the transfer matrix is given by [50]:

R dipole
fringe field

=



1 0 0 0 0 0
B0

(Bρ) tanψ 1 0 0 0 0
0 0 1 0 0 0
0 0 − B0

(Bρ) tanψ 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(2.41)
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2.2 Equations of motion

2.2.3.7 Contraction of transfer maps

The contraction of two transfer maps is the process of combining their coefficients in such
a way that the resulting expression has the form of a single transfer map, describing the
transformation through both elements. In the following, x is used instead of x⃗ to denote the
six-dimensional phase-space coordinates (x, px, y, py, z, δ).

Linear optics Under the approximation of linear optics, each transfer map includes only
coefficients up to first order:

x
(1)
i = d

(1)
i +R

(1)
ij x

(0)
j (2.42)

where R represents the transfer matrix and d represents the zeroth-order term. Superscript is
used to denote the stage of tracking; (0) corresponds to the initial coordinates (before the first
element) and (1) corresponds to the first element, that is, x(1) are the coordinates downstream
of the first element. Similarly, (n) corresponds to the n-th element and x(n) are the coordinates
downstream of that element.

The transformation through the second element takes a similar form as the one above:

x
(2)
i = d

(2)
i +R

(2)
ij x

(1)
j (2.43)

Substituting equation 2.42 for the first transformation into equation 2.43 for the second
transformation, one obtains:

x
(2)
i = d

(2)
i +R

(2)
ij

(︂
d

(1)
j +R

(1)
jk x

(0)
k

)︂
(2.44)

Grouping by power in x yields the following expression:

x
(2)
i =

(︂
d

(2)
i +R

(2)
ij d

(1)
j

)︂
+R

(2)
ij R

(1)
jk x

(0)
k (2.45)

Equation 2.45 can be rewritten as a first order transfer map with coefficients d(c) and R(c):

x
(2)
i = d

(c)
i +R

(c)
ij x

(0)
j (2.46)

where
d

(c)
i = d

(2)
i +R

(2)
ij d

(1)
j

R
(c)
ij = R

(2)
ik R

(1)
kj

(2.47)

Since the resulting first order transfer map completely describes the transformation through
both elements this process can be repeated for an arbitrary number of elements without loosing
exactness of the transformations. This method can be used to obtain the one-turn transfer
map for linear optics.

Second order contributions Including the second order contribution T , the transfer map
is given as:

x
(n)
i = d

(n)
i +R

(n)
ij x

(n−1)
j + T

(n)
ijk x

(n−1)
j x

(n−1)
k (2.48)
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2. Linear optics in synchrotrons and beam transfer lines

When two such transfer maps are chained in order to obtain the coordinates x(2)
i as a function

of the initial coordinates x(0)
i , it becomes obvious that higher order contributions in x are

introduced by the term
T

(2)
ijkx

(1)
j x

(1)
k (2.49)

Here x(1) is itself a second order function of the initial coordinates x(0) and, hence, the resulting
expression contains third and fourth order contributions in x. In order to cast it to a second
order transfer map, which is required to obtain a single transfer map describing both elements,
the higher order terms need to be discarded. As a result, the two-element second order transfer
map will be an approximation of the actual transformation that would be obtained by tracking
both elements separately. The resulting two-element second order transfer map is then given
by:

x
(2)
i = d

(c)
i +R

(c)
ij x

(0)
j + T

(c)
ijkx

(0)
j x

(0)
k (2.50)

where
d

(c)
i = d

(2)
i +R

(2)
ij d

(1)
j + T

(2)
ijkd

(1)
j d

(1)
k

R
(c)
ij = R

(2)
ik R

(1)
kj + 2T (2)

ikl R
(1)
kj d

(1)
l

T
(c)
ijk = T

(2)
ilmR

(1)
lj R

(1)
mk + 2T (2)

ilmT
(1)
ljk d

(1)
m +R

(2)
il T

(1)
ljk

(2.51)

Because the second order contributions to R(c) may lead to a transfer matrix which is non-
symplectic, it should be symplectified in a separate postprocessing step in order to be physically
correct. Otherwise, it would infringe the conservation of phase-space density according to
Liouville’s theorem.

Symplectification of transfer matrices As described above, the transfer matrix
representing the linear coefficients of a concatenated second (or higher) order transfer map
may be non-symplectic. However, there exists an algorithm which restores this property [54].
The method is based on symmetrizing a related matrix W which can then be used to construct
a symplectic version R′ of the original matrix R:

V = S
1−R
1 +R

→ W = 1
2
(︂
V + V T

)︂
→ R′ = 1 + SW

1− SW (2.52)

The matrix W is symmetric by definition and in [54] it is shown that the resulting matrix R′

is symplectic.

2.2.3.8 Computation of closed orbit

Various applications require to find the closed orbit for a given lattice configuration. The
closed orbit is defined as the fixed point of the (non-contracted) one-turn transfer map. That
is, the task is to find a value for x(0) such that when it is tracked through the entire lattice,
one element after another, the resulting value coincides with the initial x(0), i.e., the orbit
closes on itself. For linear optics, the one turn transfer map can be represented exactly as a
contraction of individual transfer maps and is given by equations 2.46. This equation can be
solved for x(0) and the result is given by:

x
(0)
i =

(︂
1−R(c)

)︂−1

ij
d

(c)
j (2.53)
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2.2 Equations of motion

When second order contributions are included, then the closed orbit can be found in an iterative
procedure where the linear contribution from the contracted one-turn map R(c) is used as the
Jacobian for the orbit with respect to itself. During each step, the current guess for x(0) is
updated via:

x
(0)
i ← x

(0)
i +

(︂
1−R(c)

)︂−1

ij

(︂
x(n) − x(0)

)︂
j

(2.54)

where x(n) represents the orbit that emerges from x(0) being tracked through the entire lattice
consisting of n elements. This procedure is repeated until the agreement between x(0) and x(n)

is sufficiently close 3.

2.2.3.9 Slicing of beamline elements

For particle tracking, it is desirable that the description of the lattice in terms of the transfer
maps of its elements is symplectic. For thick elements with non-linear effects such as quadrupoles
this is, however, not the case. In order to make the lattice description symplectic, these devices
can be represented as a sequence of thin multipoles separated by a number of drift spaces such
that the total length L of the element is preserved:

δ | ∆ | ∆ | . . . | ∆ | δ (2.55)

In the above depiction, δ and ∆ represent drift spaces of, respectively, length Lδ and
L∆ and | represents the thin multipole slices. In order to agree with the total length of the
element, 2δ + (n− 1)∆ = L must hold where n is the number of slices. A slicing pattern is
specified by the choice for the values δ and ∆. Table 2.1 shows an overview of various slicing
methods in terms of their choices for δ and ∆. Among all slicing patterns, the Teapot method
gives the most accurate representation of the R21 matrix element of a thick quadrupole; it is
accurate up to second order in the integrated strength K1L of the quadrupole [55].

Table 2.1: Overview of different methods for slicing beamline elements according to equation 2.55.
n represents the number of slices.

δ ∆

Edge 0 1
n−1

Simple 1
2n

1
n

Teapot 1
2(n+1)

n
n2−1

2.2.3.10 Summary of beamline elements

Dipole bending magnets are used to force the beam on its circular trajectory around the
accelerator. The necessary focusing in the transverse dimensions is provided either by a
radial field gradient in the dipole magnets or by using dedicated quadrupole magnets. Skew
quadrupole magnets can be used to correct the transverse coupling in the lattice. Sextupole

3Where "sufficient" has to be specified by the user.
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2. Linear optics in synchrotrons and beam transfer lines

magnets can be used to correct higher order effects such as the chromaticity or to excite
a third-order resonance for resonant slow extraction. RF-cavities provide the longitudinal
focusing for the bunches and, of course, they are used to accelerate the particles to higher
energies. Fringe fields of magnetic elements are an undesired, however, unavoidable property
of these devices. However, clever magnet design aims to minimize the influence of the fringe
fields on the beam.

2.3 Synchrotron optics

The advantage of describing a synchrotron via its optics properties is that the properties of
the machine can be described without the notion of an actual beam. For example, at SIS18 at
GSI, a wide variety of ion species can be accelerated to various energies. Also, the distribution
of particles inside the beam may vary. But the optics description of the machine is agnostic of
that and, thus, allows for a general description of the accelerator properties and this description
is compatible with any type of particle beam. The derivations in this section mostly follow
[14, 48] but using the notation introduced in section 2.1.2 with the difference that s is used
exclusively to denote the path length along the reference orbit.

From a mathematical viewpoint, the differential equations 2.37 are examples of Hill’s
equation, i.e., second-order linear ordinary differential equations with periodic coefficients.
The only difference between the horizontal and vertical dimension is the additional energy
dependent term on the right-hand side of the horizontal equation. This additional term
indicates the energy-dependence of the horizontal motion and it makes the corresponding
differential equation nonhomogeneous. The general solution to a nonhomogeneous linear
differential equation is given by the sum of a particular solution to that differential equation
and the general solution to the complementary homogeneous differential equation. Section 2.3.1
discusses the properties of the homogeneous equation while the nonhomogeneous equation is
discussed in section 2.3.2.

2.3.1 Transverse optics

When neglecting the energy-dependent term 4, both equations of motion can be written in the
form

d2ζ

ds2 = −K(s)ζ (2.56)

where ζ ≡ {x, y} and K(s) is the corresponding coefficient from equation 2.37. Since the
reference orbit is a closed trajectory around the accelerator lattice, K(s) satisfies the periodicity
relation K(s+ C) = K(s) where C is the path length of the reference orbit.

From equations (2.35), (2.36) and (2.56) it becomes apparent that in order to obtain
focusing motion in both transverse dimensions, x and y, the bending field By(s) must have a
gradient in the radial direction x. In early synchrotrons which had no dedicated quadrupole
magnets, this was achieved by using curved pole faces for the dipole magnets, as illustrated in
Figure 2.3. Different magnet shapes, so called E- and C-shape magnets, have been proposed
for the AGS and PS machines [12, 11].

4This implies the assumption that the momentum of particles coincides with the reference momentum.
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2.3 Synchrotron optics

Figure 2.3: Schematic of the cross section of a dipole magnet with curved pole faces that produce
a radial field gradient. The density of field lines decreases when moving towards positive x values
and this field gradient provides vertical focusing. The curvature of the pole faces is exaggerated
for the purpose of illustration.

A general solution for the differential equation 2.56 can be written in the following form [56]:
(︄
ζ(s)
ζ ′(s)

)︄
=
(︄
a(s|s0) b(s|s0)
c(s|s0) d(s|s0)

)︄(︄
ζ(s0)
ζ ′(s0)

)︄
≡M(s|s0)

(︄
ζ(s0)
ζ ′(s0)

)︄
(2.57)

where ζ(s0), ζ ′(s0) are the initial values of the functions ζ(s), ζ ′(s) evaluated at s0. The matrix
M(s|s0) only depends on the coefficient function K(s) between s0 and s and its determinant
is equal to unity [56]:

detM = 1 (2.58)

It is noted that for constant values of K between s0 and s, the matrix M represents the
transfer matrices obtained for the various beamline elements in section 2.2.3. The matrix for
one revolution around the reference orbit, starting at position s, is given by M(s+ C|s) and
the matrix for k revolutions is given by:

M(s+ kC|s) = M(s+ C|s)k (2.59)

In the following the symbol M is used as shorthand notation for M(s+ C|s).

2.3.1.1 Stability of the motion

The motion according to equation 2.57 is stable if and only if all elements of the matrix Mk

remain bounded for k → ∞. A square matrix raised to a power can be represented via its
eigendecomposition

M = QΛQ−1 (2.60)

where Q is the matrix that is obtained by stacking all eigenvectors of M as columns and Λ is
the diagonal matrix whose elements are the corresponding eigenvalues. The eigendecomposition
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2. Linear optics in synchrotrons and beam transfer lines

of M is guaranteed to exist since det(M) = 1. Therefore, the expression Mk can be written as

Mk = QΛkQ−1 (2.61)

Thus, the matrix elements of Mk remain bounded if and only if Λk remains bounded. The
eigenvalues of M , λ1,2, are determined by the equation

det(M − λ1,2I) = 0 (2.62)

where I is the identity matrix. The eigenvalues are then given by

λ1,2 = cos(µ)± i sin(µ) (2.63)

where i is the imaginary unit and cos(µ) is defined as

cos(µ) ≡ 1
2(a+ d) = 1

2 tr(M) (2.64)

In the context of accelerator physics, the quantity µ is referred to as phase advance. In addition,
the quantities α, β, γ, the so-called Twiss parameters, are defined as

α ≡ a− d
2 sin(µ)

β ≡ b

sin(µ)
γ ≡ − c

sin(µ)

(2.65)

These definitions allow rewriting the matrix M in the following way:

M =
(︄

1 0
0 1

)︄
cos(µ) +

(︄
α β

−γ −α

)︄
sin(µ) ≡ I cos(µ) + J sin(µ) (2.66)

Because det(M) = 1 it follows that
βγ − α2 = 1 (2.67)

and
J2 = −I (2.68)

This allows further rewriting M in the following form (see appendix A.2):

M = exp(Jµ) (2.69)

From the trigonometric identities sin(x+ y) = sin(x) cos(y) + cos(x) sin(y) and cos(x+ y) =
cos(x) cos(y)− sin(x) sin(y) it follows that

Mk = I cos(kµ) + J sin(kµ) (2.70)

as well as
M−1 = I cos(µ)− J sin(µ) (2.71)
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2.3 Synchrotron optics

From equation 2.70 follows that the elements of Mk remain bounded if and only if µ is a real
number and, thus, by equation 2.64, if and only if

| tr(M)| < 2 (2.72)

Equation 2.72 is a necessary and sufficient condition for the one-turn transfer matrix M to
produce stable motion around the accelerator lattice. It is noted that in case there exist similar
periods of the accelerator lattice which are shorter than the entire circumference, so called
superperiods, then the same condition applies to the matrix M(s+ L|s) where L is the length
of a superperiod. This is because the derivation of equation 2.72 is based on the periodicity of
the coefficient K(s) from the equations of motion 2.37.

One can define another set of coordinates that emerge from the following transformation:(︄
ζ̃(s)
ζ̃ ′(s)

)︄
= 1√︁

β(s)

(︄
1 0

α(s) β(s)

)︄(︄
ζ(s)
ζ ′(s)

)︄
=
(︄ √︁

β(s)−1
ζ(s)√︁

β(s)−1
α(s)ζ(s) +

√︁
β(s)ζ ′(s)

)︄
(2.73)

For the coordinates (ζ̃(s), ζ̃ ′(s)), the one-turn transfer matrix from equation 2.66 is given by

M̃ =
(︄

cosµ sinµ
− sinµ cosµ

)︄
(2.74)

which represents a rotation in the normalized phase-space (ζ̃(s), ζ̃ ′(s)) [57].

2.3.1.2 Solutions for constant magnetic field gradient

Equation 2.57 introduced the matrix M as the solution to the equations of motion 2.37. For
sections with constant K(s) ≡ K, the solution to the equations of motion is given as:

M(s|s0) =



 cos(
√
K(s− s0))

√
K

−1 sin(
√
K(s− s0))

−
√
K sin(

√
K(s− s0)) cos(

√
K(s− s0))

 , K > 0

 cosh(
√
−K(s− s0))

√
−K−1 sinh(

√
−K(s− s0))

−
√
−K sinh(

√
−K(s− s0)) cosh(

√
−K(s− s0))

 , K < 0

(2.75)
which is the transfer matrix of a combined function dipole magnet with K = k2

0 + k1 (i.e.,
a magnet with dipole and quadrupole field components). If either k0 ≡ 0 or k1 ≡ 0 then
equation 2.75 represents the transfer matrix for, respectively, a quadrupole or dipole magnet
(compare with equations 2.31 and 2.29).

2.3.1.3 Weak focusing

In a constant gradient synchrotron the field coefficients K(s) are constant along the entire
accelerator lattice and, thus, the condition for stable motion is that

√
K is a real number

in both dimensions, x and y. In conjunction with equation 2.37 this leads to the following
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2. Linear optics in synchrotrons and beam transfer lines

conditions:
(y) 0 < n

(x) n < 1
(2.76)

Because of the upper limit on the field gradient, n < 1, this is referred to as weak focusing.
Equation 2.37 implies that when n increases, the restoring force from the magnetic field
decreases in the horizontal dimension. The net focusing that is achieved for n < 1 is due to
the curved path and, thus, of geometrical nature (see section 2.2.3.2 and Figure 2.2).

2.3.1.4 Strong focusing

The breakthrough of the alternating gradient synchrotron theory was to use sections with
alternating positive and negative values of n(s) which allows for much larger magnitudes
|n(s)| ≫ 1; thus, this is referred to as strong focusing. The advantage of strong focusing is that
it allows for greatly reduced magnet apertures compared to weak focusing and, thus, decreases
the effort and cost to construct such accelerators. In its simplest form, the accelerator lattice
consists of N identical superperiods and each superperiod is a segment with n = n1 followed
by a segment with n = −n2 for n1,2 > 0. The transfer matrix for a superperiod is obtained by
multiplying the transfer matrix for the n1 segment with the transfer matrix for the n2 segment
obtained from equation 2.75. The stability of the motion is determined by the trace of the
resulting matrix which is given by

cos(µx) = cos(ϕx) cosh(ψx)− 2− n1 + n2

2
√︁

(n2 + 1)(n1 − 1)
sin(ϕx) sinh(ψx)

cos(µy) = cos(ϕy) cosh(ψy)− n1 − n2
2√n1n2

sin(ϕy) sinh(ψy)
(2.77)

where
ϕx

π
=
√
n2 + 1
N

ψx

π
=
√
n1 − 1
N

ϕy

π
=
√
n1
N

ψy

π
=
√
n2
N

(2.78)

Figure 2.4 shows the well-known "necktie" plot which indicates the region of n1, n2 values for
which the motion is stable according to equation 2.77 (see for example [14, 17]).

2.3.1.5 Phase-space motion

The general solution to the equations of motion 2.37 can also be written as [48, 58]:

ζ(s) = A
√︂
β(s) cos(µ(s) + φ) (2.79)

where A and φ are constants which are determined by the initial values (ζ(s0), ζ ′(s0)) and
µ(s) is defined as

µ(s) =
∫︂ L

0

1
β(s) ds (2.80)
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2.3 Synchrotron optics

Figure 2.4: Necktie plot for the field indices n1 and n2 for the example of N = 100 superperiods
(used for PS). The solid lines indicate the values for which cos(µx,y) = ±1. The shaded area is the
region of values for which the motion is stable according to equation 2.77.

and represents the phase advance of the transverse motion through one superperiod of the
lattice. The definition of the phase advance via equation 2.80 is similar to the definition
via equation 2.64 except that equation 2.64 allows for multiples of 2π to be added while
equation 2.80 is unambiguous. It is noted that equation 2.67 guarantees that β(s) does not
vanish 5 and, thus, equation 2.80 is well defined. Further, the following relations hold between
the quantities α, β, γ:

α(s) = −1
2
dβ(s)
ds

γ(s) = 1 + α(s)2

β(s)

(2.81)

In order to satisfy the differential equation 2.56, β(s) has to satisfy the following relation-
ship [48]:

2β(s)β′′(s)− β′(s)2 + 4β(s)2K(s)− 4 = 0 (2.82)

This equation determines the values of β(s) in dependence on K(s) around the accelerator
lattice.

From the definition 2.79 and the relations 2.81, by using the trigonometric identity
cos(x)2 + sin(x)2 = 1, it follows that the quantity

γ(s)ζ(s)2 + 2α(s)ζ(s)ζ ′(s) + β(s)ζ ′(s)2 = A2 (2.83)
5Provided that the motion is stable.
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is independent of s and, thus, is an invariant of the motion. Equation 2.83 can be rewritten as

(︂
ζ(s) ζ ′(s)

)︂(︄γ(s) α(s)
α(s) β(s)

)︄(︄
ζ(s)
ζ ′(s)

)︄
−A2 = 0 (2.84)

and because according to equation 2.67

det
(︄
γ(s) α(s)
α(s) β(s)

)︄
≡ 1 (2.85)

it follows that equation 2.83 represents the implicit equation of a tilted ellipse in the
(ζ(s), ζ ′(s)) phase-space [59]. The motion of a particle in the (ζ(s), ζ ′(s)) phase-space
from one (super-)period to the next is therefore constrained to the circumference of that
ellipse. In equation 2.83 the term A2 is independent of s and, thus, each point along the
accelerator lattice is characterized by an ellipse of different shape and orientation but with
constant area πA2. Figure 2.5 shows an example for a phase-space ellipse together with
the maximum extent in ζ(s) and ζ ′(s). It is noted that in the transformed phase-space
(
√︁
β(s)−1

ζ(s),
√︁
β(s)−1

α(s)ζ(s) +
√︁
β(s)ζ ′(s)) from equation 2.73, the ellipse becomes a circle

with radius A.

Figure 2.5: Illustration of the phase-space ellipse which is defined by equation 2.83.
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Transformation of Twiss parameters According to equation 2.57, the phase-space
coordinates (ζ, ζ ′) from one position s0 to another position s transform as

(︄
ζ(s)
ζ ′(s)

)︄
= M(s|s0)

(︄
ζ(s0)
ζ ′(s0)

)︄
(2.86)

Thus, with the help of equation 2.58 the invariant of the motion given by equation 2.83 at
position s0 can be expressed in terms of the coordinates (ζ(s), ζ ′(s)) at position s:

A2 =
(︂
M2

21β0 − 2M21M22α0 +M2
22γ0

)︂
ζ(s)2

+ 2 (−M11M21β0 + (M11M22 +M12M21)α0 −M12M22γ0) ζ(s)ζ ′(s)

+
(︂
M2

11β0 − 2M11M12α0 +M2
12γ0

)︂
ζ ′(s)2

(2.87)

where {β, α, γ}0 ≡ {β, α, γ}(s0). Comparing equation 2.87 with equation 2.83 it can be seen
that both equations are of the same quadratic form and the coefficients in equation 2.87
determine the coefficients β(s), α(s), γ(s) in equation 2.83. The new coefficients β(s), α(s), γ(s)
emerge as a linear combination of the old coefficients β(s0), α(s0), γ(s0) and, thus, determine
how these parameters transform from one lattice position to another:

β(s)
α(s)
γ(s)

 =


M2

11 −2M11M12 M2
12

−M11M21 M11M22 +M12M21 −M12M22

M2
21 −2M21M22 M2

22



β(s0)
α(s0)
γ(s0)

 (2.88)

Tune The tune Q 6 describes the (fractional) number of betatron oscillations for one
revolution around the entire accelerator lattice. It is defined as

Q = 1
2π

∫︂ s0+C

s0

1
β(s) ds (2.89)

where C is the circumference of the lattice and s0 is an arbitrary position 7. The integral
represents the phase advance for one revolution around the lattice.

Admittance The admittance of an accelerator is defined in terms of the half-aperture a(s)
of its beamline8:

arg min
s

πa(s)2

β(s) (2.90)

Emittance The emittance of a particle beam, on the other hand, is defined as the total
phase-space area that is occupied by the particles. For practical purposes it may also refer to
the area of the bounding ellipse that encloses a certain fraction of particles. For a stationary
Gaussian phase-space distribution in the (ζ(s), α(s)ζ(s) + β(s)ζ ′(s)) phase-space (compare

6The symbol Q is conventionally used in European literature. In American literature, the tune is typically
denoted by ν.

7The resulting value of the integral is independent of s0. Thus, if a well defined expression for the tune is
desired, one may set s0 = 0.

8The aperture may vary along the beamline, hence the dependence on s.
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2. Linear optics in synchrotrons and beam transfer lines

with equation 2.73; scaled by
√︁
β(s)), an expression for the emittance ϵ is given by [48]

ϵ = −2πσ(s)2

β(s) log(1− F ) (2.91)

where σ(s) is the standard deviation of the Gaussian distribution and is similar in both
dimensions ζ(s) and α(s)ζ(s) + β(s)ζ ′(s), and F is the fraction of particles to be included in
the ellipse. Table 2.2 shows various definitions of the emittance ϵ in dependence on F which
are commonly used by the accelerator community.

Table 2.2: Definitions for beam emittance which are commonly used by the accelerator
community [48].

βϵ F

σ2 0.15
πσ2 0.39
4πσ2 0.87
6πσ2 0.95

Because the amplitude of transverse oscillations decreases when the total momentum of a
particle increases, the emittance will shrink as well. This is referred to as adiabatic damping 9.
It is therefore convenient to define a normalized emittance which is independent of the particle
energy:

ϵN ≡ ϵγβ (2.92)

where β = v/c is the total velocity of the particle divided by the speed of light and γ =√︁
1− β2−1 is the corresponding relativistic factor.

Transformation of beam distributions The implicit equation for an ellipse in any number
of dimensions can be written as

uT Σ−1u = 1 (2.93)

where u is the n-dimensional coordinate vector and Σ is the n× n matrix which describes the
ellipse properties. For two dimensions this coincides with equation 2.84 with

Σ = A2
(︄
β −α
−α γ

)︄
(2.94)

For a Gaussian particle distribution inside the beam, the matrix Σ coincides with the covariance
matrix of the particle distribution:(︄

⟨ζ2
i ⟩ ⟨ζiζ

′
i⟩

⟨ζ ′
iζi⟩ ⟨ζ ′2

i ⟩

)︄
= A2

(︄
β −α
−α γ

)︄
(2.95)

9Here, adiabatic implies that the change in particle momentum is slow compared to the frequency of the
transverse motion.
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2.3 Synchrotron optics

where ζi and ζ ′
i refer to the phase-space coordinates of the i-th particle according to equation 2.79

and ⟨·⟩ denotes the average over the distribution of particles. To use the covariance matrix

Σij ≡ ⟨uiuj⟩ (2.96)

as the beam matrix is a general solution that is applicable for any number of dimensions
and also for any underlying particle distribution (not necessarily Gaussian). Given that
M ≡M(s1|s0) is the transfer matrix for the phase-space coordinates from one lattice position
to another, the ellipse equation 2.93 transforms as

uT
1 Σ−1

1 u1 = uT
0 Σ−1

0 u0

=
(︂
M−1u1

)︂T
Σ−1

0

(︂
M−1u1

)︂
= uT

1

(︂
MΣ0M

T
)︂−1

u1

(2.97)

Thus, the beam matrix Σ transforms as

Σ1 = MΣ0M
T (2.98)

This relationship allows to deduce the value of the emittance from dedicated profile
measurements during a so-called quadrupole scan (see section 2.6.2).

Phase-space matching When particles are transferred from one section to another in the
accelerator, it is important that their phase-space distribution emerging from the upstream
section matches the optics of the downstream section. Given that the particle distribution in
the upstream section follows the Twiss parameters (βu, αu, γu), this requires that the values
of the parameters match with those of the downstream section: (βu, αu, γu) = (βd, αd, γd).
Only in that case, the emittance of the beam is preserved and particles continue to perform
similar betatron oscillations as in the upstream section. If there is a mismatch, the phase-space
distribution will be diluted and, as a consequence, the effectively occupied phase-space area
will grow, leading to an increase in emittance. This behavior is visualized in Figure 2.6. The
mismatched distribution evolves such that it effectively occupies a larger phase-space ellipse;
this implies an increase of the emittance of the beam. The degree of mismatch (or, equivalently,
the degree of overlap) of the initial particle distribution with the space-space ellipse defined
by the optics determines the increase of the effectively occupied phase-space area. Actually,
since the optics of an accelerator are defined without the notion of a beam (excluding the
need to specify an emittance), the degree of mismatch is determined by the mismatch of the
orientation of the eigenvectors of the covariance matrix of the particle distribution given by
the upstream optics and the eigenvectors of the covariance matrix of the downstream optics
given by (︄

βu,d −αu,d

−αu,d γu,d

)︄
(2.99)

In Figure 2.6 the eigenvectors are rotated by π/2 with respect to each other, resulting in a
maximal mismatch.
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2. Linear optics in synchrotrons and beam transfer lines

Figure 2.6: Phase-space evolution for a matched (left) vs. mismatched (right) particle distribution.
The black dots represent the initial particle distribution. The blue area indicates the phase-space
area as defined by the Twiss parameters and by using an emittance similar to the one corresponding
to phase-space area occupied by the initial particle distribution. For the matched case, the particle
distribution evolves such that it remains within the defined blue area. For the mismatched case,
the particle distribution evolves such that it occupies a larger phase-space area indicated by the
orange dashed ellipse.

2.3.2 Dispersion function

Equation 2.37 for the horizontal motion constitutes a nonhomogeneous linear differential
equation. The general solution to a nonhomogeneous linear differential equation is given by
the sum of the general solution to the complementary homogeneous differential equation (see
section 2.3.1) and a particular solution to the nonhomogeneous equation. In the context of
accelerator physics, this particular solution is referred to as momentum dispersion 10 or, short,
dispersion and is given by [47]

D =
∫︂ s

s0

1
ρ(s̃)G(s, s̃) ds̃ (2.100)

where G(s, s̃) is an appropriate Green’s function. The above definition treats δ in equation 2.37
as a constant and, thus, requires that the frequency of betatron oscillations is much higher
than that of longitudinal oscillations, i.e., that δ(s) changes slowly compared to ζ(s). The
function G(s, s̃) can be constructed in terms of the general solution M(s|s0) defined by
equation 2.57 [47]:

G(s, s̃) = M12(s)M11(s̃)−M11(s)M12(s̃) (2.101)

Because of the linear nature of the equation of motion 2.37, the contribution of the dispersion,
multiplied by the momentum deviation, adds linearly to the transverse motion. Thus, the
dispersion evolves similarly to the transverse coordinates around the accelerator lattice, as

10The term momentum indicates that the contribution to the transverse motion is proportional to the
momentum deviation since ∆p

p
= δ

β
where δ is given by equation 2.15.
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2.4 Deviations from the ideal lattice

described by equation 2.57: 
D(s)
D′(s)

1

 =

 M
M13

M23

0 0 1



D(s0)
D′(s0)

1

 (2.102)

where M ≡M(s|s0) and M13,M23 represent the particular solution and are given by the βR16

and βR26 matrix elements of the various transfer matrices presented in section 2.2.3.

2.4 Deviations from the ideal lattice

In the previous sections all derivations were made for a perfect lattice, that is, without the
influence of possible magnet errors. However, in a real machine there are numerous magnet
imperfections, introduced during, for example, construction or by the magnet power supplies.
These magnet imperfections influence the motion of the beam particles and result in properties
of the real machine that are different from those of the ideal model.

2.4.1 Steering contributions

A steering contribution adds in zeroth order to the phase-space coordinates (ζ, ζ ′). It may
come directly from steerer magnets or from transverse alignment errors of quadrupole magnets.
These contributions result in a deviation of the closed orbit trajectory. Suppose there is
a single contribution ∆ζ ′ = θ in the entire lattice located at position s0. In the following,
M ≡M(s0|s0) represents the one-turn transfer matrix at position s0. Then the transformation
of phase-space coordinates for a single turn is given by:(︄

ζ

ζ ′

)︄
turn n+1

= M

(︄
ζ

ζ ′

)︄
turn n

+
(︄

0
θ

)︄
(2.103)

For (ζ, ζ ′) to represent the closed orbit, the values at turn n+ 1 must equal the values at turn
n. Thus, the closed orbit can be computed by solving a system of linear equations:(︄

ζ(s0)
ζ ′(s0)

)︄
= (I −M)−1

(︄
0
θ

)︄
(2.104)

This can be solved with the help of equation 2.69 and noting that the phase advance for a
single turn is given by µ = 2πQ:

(I −M)−1 = (I − exp(J2πQ))−1

= [exp(JπQ) (exp(−JπQ)− exp(JπQ))]−1

= − [2J sin(πQ)]−1 [exp(JπQ)]−1

(2.105)
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2. Linear optics in synchrotrons and beam transfer lines

In the above equation, the identity of the matrix exponential and the sin function follows
similarly to appendix A.2. Equation 2.68 implies that J−1 = −J and, thus, it follows that

(I −M)−1 = 1
2 sin(πQ)J exp(−JπQ)

= J cos(πQ) + I sin(πQ)
2 sin(πQ)

(2.106)

Thus, the solution to equation 2.104 is given by:(︄
ζ(s0)
ζ ′(s0)

)︄
= θ

2 sin(πQ)

(︄
β(s0) cos(πQ)

sin(πQ)− α(s0) cos(πQ)

)︄
(2.107)

Together with the expression for the general transfer matrix between two lattice positions
given by equation A.1, the closed orbit at any other position s > s0 is given by:

ζ(s) = θ

√︁
β(s)β(s0)

2 sin(πQ) cos(µ(s)− µ(s0)− πQ) (2.108)

Because of the linear nature of equation 2.104, the contributions θi from different lattice
positions si to the closed orbit at a given position s simply add up:

ζ(s) =
∑︂

i

θi

√︁
β(s)β(si)

2 sin(πQ) cos(|µ(s)− µ(si)| − πQ) (2.109)

Figure 2.7 shows an example of a distorted closed orbit that emerges from a single dipole-like
error in the lattice; i.e., Figure 2.7 shows the contribution of a single term from equation 2.109.

Figure 2.7: Example of distorted closed orbit (solid line) from a single dipole-like error in the
lattice (i.e., a single term from equation 2.109). The location of the error source is marked by a
red arrow. The dashed line indicates the design orbit.
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2.4 Deviations from the ideal lattice

2.4.2 Quadrupole errors

Quadrupole errors lead to a distortion of the linear lattice functions, for example the beta
function and the phase advance (and, thus, the tune). Under the assumption of a localized
quadrupole error, that is, the error is confined to a single position s0 along the lattice, analytical
expressions for the tune and beta function distortion can be derived. The transfer matrix of
a thin quadrupole 11 can be obtained from the thick quadrupole transfer matrix, given by
equation 2.31, by taking the limit L→ 0 while keeping the integrated quadrupole strength
(K1L) constant. This gives the following transfer matrix:

R thin
quadrupole

=



1 0 0 0 0 0
−(K1L) 1 0 0 0 0

0 0 1 0 0 0
0 0 (K1L) 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(2.110)

Thus, both transverse dimensions can be represented by the same 2× 2 transfer matrix:(︄
1 0

−(K1L) 1

)︄
(2.111)

where (K1L) > 0 represents a focusing quadrupole in that dimension and (K1L) < 0 represents
a defocusing quadrupole.

2.4.2.1 Tune deviation

In the following, the subscript 1 refers to the position s1 of a thin quadrupole error. The
quantity µ̃ ≡ 2πQ̃ is the phase advance for a single revolution around the lattice under the
influence of the quadrupole error. Similarly, µ ≡ 2πQ denotes the one-turn phase advance for
the unperturbed lattice. The one-turn transfer matrix for the perturbed lattice at position s1

is given by:

M̃(s1) = M(s1)
(︄

1 0
−(K1L) 1

)︄
(2.112)

where M(s1) is the transfer matrix of the unperturbed lattice. The matrix M̃(s1) can be
expressed in terms of the unperturbed Twiss parameters according to equation 2.66:

M̃(s1) =
(︄

cos(µ) + α1 sin(µ)− β1 sin(µ)(K1L) β1 sin(µ)
−γ1 sin(µ)− (cos(µ) + α1 sin(µ)) (K1L) cos(µ)− α1 sin(µ)

)︄
(2.113)

The tune is given by the trace of the one-turn transfer matrix and, thus, the tune shift is given
by:

cos(µ̃)− cos(µ) = 1
2 tr M̃(s1)− 1

2 tr M(s1) = −1
2β1 sin(µ)(K1L) (2.114)

11Here, "thin" means that the effect of the quadrupole on the optics is confined to a single position along the
lattice.
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2. Linear optics in synchrotrons and beam transfer lines

Writing µ̃ = µ + ∆µ with ∆µ ≪ 1 and using the first order expansions cos(∆µ) ≈ 1 and
sin(∆µ) ≈ ∆µ allows to simplify the l.h.s. of the equation:

cos(µ̃) = cos(µ+ ∆µ)

= cos(µ) cos(∆µ)− sin(µ) sin(∆µ)

≈ cos(µ)− sin(µ)∆µ

(2.115)

Thus, the tune deviation is given by

∆Q ≡ Q̃−Q ≈ 1
4πβ1(K1L) (2.116)

2.4.2.2 Deviation of beta function

Since the beta function describes the local optics properties of the lattice, the corresponding
expression must take into account that the beta function can be evaluated at an arbitrary
position s2 which is different from the position s1 of the quadrupole error. In the following,
the subscripts 1 and 2 refer to, respectively, the positions s1 and s2 along the lattice. The
quantities µ̃, β̃ refer to the perturbed lattice while the quantities µ, β refer to the unperturbed
lattice. The one-turn transfer matrix of the perturbed lattice at position s2, M̃(s2), can be
obtained by multiplying the transfer matrices of the unperturbed lattice from position s2 to
position s1, the thin transfer matrix of the quadrupole error at s1, and the transfer matrix
from position s1 to position s2 + C (where C is the circumference of the lattice):

M̃(s2) ≡ M̃(s2 + C|s2) = M(s2 + C|s1)
(︄

1 0
−(K1L) 1

)︄
M(s1|s2) (2.117)

The beta function of the perturbed lattice is given by the M̃12 matrix element:

β̃2 = M̃12
sin(µ̃) (2.118)

Thus, the change in the M12 matrix element can be expressed as

∆M12 ≡ M̃12 −M12 ≈ ∆β2 sin(µ) + β̃2 cos(µ)∆µ

= ∆β2 [sin(µ) + cos(µ)∆µ] + β2 cos(µ)∆µ

≈ ∆β2 sin(µ) + β2 cos(µ)∆µ

(2.119)

where ∆µ ≡ µ̃− µ≪ 1 has been used for the approximations. Thus, the change in the beta
function ∆β2 can be expressed as

∆β2 sin(2πQ) = ∆M12 − β2 cos(2πQ)(2π∆Q)

= −1
2(K1L)β1β2 cos(2πQ+ 2µ2 − 2µ1)

(2.120)

where the second equality is obtained with the help of equation 2.116 and the trigonometric
identities sin(x+ y) = sin(x) cos(y) + cos(x) sin(y), sin(2x) = 2 sin(x) cos(x), and cos(2x) =
1− 2 sin(x)2.

36



2.4 Deviations from the ideal lattice

The case where s2 > s1 can be treated similarly by using the corresponding perturbed
one-turn transfer matrix:

M̃(s2 + C|s2) = M(s2 + C|s1 + C)
(︄

1 0
−(K1L) 1

)︄
M(s1 + C|s2) (2.121)

The resulting expression for the change in the beta function is

∆β2 sin(2πQ) = −1
2(K1L)β1β2 cos(2πQ+ 2µ1 − 2µ2) (2.122)

Equations (2.120) and (2.122) can be combined in the following single expression:

∆β2 = −1
2 sin(2πQ)(K1L)β1β2 cos(2πQ− 2|µ1 − µ2|) (2.123)

2.4.3 Effect of multipole errors

In fact, equation 2.37 for the horizontal dimension represents a special case for a perturbation,
specifically a first order perturbation since the nonhomogeneous term does not depend on
neither x nor y. A more general form for a perturbation can be written as [47]:

d2ζ(s)
ds2 +K(s)ζ(s) = prsn(s)xrys (2.124)

where ζ ≡ {x, y}, K(s) describes the nominal magnet coefficients and prsn is a perturbation of
order n with r + s+ 1 = n. Using Floquet theory, the following condition for resonances can
be derived [47]:

iQx + jQy = kN (2.125)

where N denotes the number of superperiods in the lattice, i, j, k ∈ Z and |i|+ |j| is the order
of the resonance. Each resonance implies an unbounded growth of oscillation amplitude for
particles whose tunes satisfy the corresponding resonance condition. However, the rate of
growth is different for each resonance and typically decreases with increasing order of the
resonance. Thus, while low order resonances might cause particles to hit the beam pipe and
be lost very quickly, particles experiencing higher order resonances might have their oscillation
amplitude increased by only a small amount and, therefore, survive until they are extracted.
Figure 2.8 shows the emerging resonance lines up to third order with respect to the horizontal
and vertical tunes. The tunes of a lattice should be chosen such that they stay away from the
resonance lines up to a reasonable order. The chosen tunes are referred to as working point.
When choosing the tunes, it must also be taken into account that the beam space-charge effect
leads to an effective defocusing error (since particles repel each other) and, thus, causes a
negative tune shift according to equation 2.116. Because this shift depends on the position of
the particle within the beam, it is different for different particles. For that reason, it causes a
spreading of the working point and is referred to as incoherent space-charge tune shift.
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2. Linear optics in synchrotrons and beam transfer lines

Figure 2.8: Resonance lines up to third order for N = 1 superperiods. The axes show the
fractional part of, respectively, the horizontal and vertical tune. The resonances of first, second
and third order are represented with, respectively, solid, dashed and dotted lines.

2.5 Closed orbit based measurements of linear optics

As discussed in section 2.4, errors of the magnetic lattice elements in the real machine lead
to a distortion of the optics of the accelerator compared to the design values or predictions
of the ideal model. Inability to identify or counteract the discrepancies between the lattice
elements in the real machine and their description in the corresponding model, also known as
model errors, may result in failure to further improve the machine performance. The physics
properties of lattice elements such as quadrupole gradients are rather difficult to be precisely
measured directly in the machine and, for that reason, techniques for deriving those properties
from measuring their effect on the beam behavior have been employed in order to improve the
quality of the accelerator model with respect to the real machine. Deriving those properties
constitutes an inverse problem since the observed beam behavior is used to estimate the values
of the underlying lattice parameters which gave rise to this behavior and may have arbitrarily
complex dependencies [60]. Solving such an inverse problem is generally referred to as inverse
modeling. The process of inverse modeling involves various aspects:

• A set of observables which can be measured and which depend on the to-be-determined
parameters. These observables need to provide sufficient information such that they
uniquely determine the underlying parameters.
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2.5 Closed orbit based measurements of linear optics

• A simulation model that accurately describes the real system in terms of the considered
fit parameters. Any deviation from the real system beyond the fit parameters represents
a model bias and, thus, will lead to biased results in the parameter estimates.

• A definition of the cost function, i.e., a way to produce a numerical quantity that measures
the discrepancy between a given model configuration and the measured data in terms of
the observables. The goal of inverse modeling is to minimize this cost function. A typical
choice is to use the mean squared error, i.e., the sum of squared differences (residuals)
normalized by their measurement error.

• A routine to minimize the cost function, also referred to as optimizer.

In this context, extracting linear optics and model errors from closed orbit measurements is a
typical method for solving the inverse problem in terms of the quadrupole contributions in the
lattice. This method requires a measured Orbit Response Matrix (ORM) as observable and
then varies all relevant lattice parameters in a multi-dimensional optimization problem in order
to match the simulated with the measured ORM. Based on the outcome of the optimization
procedure, model parameters are adjusted and the adjusted model is expected to accurately
represent the actual machine. Similarly, the devices in the real machine can be adjusted to
better reproduce the design values.

2.5.1 Orbit response matrix (ORM)

The orbit change xb at BPM b when changing the steerers indexed with s by a kick δs, is given
by equation 2.109:

xb =
∑︂

s

δs

√
βbβs

2 sin(πQ) cos(πQ− |µb − µs|) (2.126)

where βb,s and µb,s denote, respectively, the beta functions and the phase advances at BPM
and steerer position, and Q is the betatron tune. If a synchrotron operates close to transition
energy, another energy-dependent term must be added [57]:

xb =
∑︂

s

δs

 √βbβs

2 sin(πQ) cos(πQ− |µb − µs|)−
DbDs(︂

1
γ2 − 1

γ2
t

)︂
C

 (2.127)

where Db,s denotes the the dispersion at, respectively, BPM and steerer position and C is
the circumference of the synchrotron; γ and γt represent, respectively, the beam energy (E)
and transition energy of the lattice (γ = E

E0
where E0 is the rest energy of the beam). This

additional term describes the coupling to the longitudinal motion, that is, a distortion of the
particle trajectory will cause an increased path length which results in a change of the phase
with respect to the RF-system; this dependency couples back into the transverse dimension in
form of the momentum dispersion. Due to the dependency on γ and γt, the energy-dependent
term is only relevant when the beam energy is close to transition energy.

Hence, the orbit change is a linear function in the applied kick and it encodes the optics
via the lattice functions β and µ. The orbit response rbs at BPM b reacting to a single steerer
s is defined as:

rbs = xb

δs
(2.128)

39



2. Linear optics in synchrotrons and beam transfer lines

The Orbit Response Matrix arranges the orbit responses for all BPM/steerer pairs in a
matrix form: rbs, where b is the row index and refers to BPMs and s is the column index and
refers to steerers:

r =



x1
δ1

x1
δ2

. . . x1
δns

x2
δ2

x2
δ2

. . . x2
δns...

... . . . ...
xnb
δ2

xnb
δ2

. . .
xnb
δns

 (2.129)

where nb and ns are, respectively, the number of BPMs and steerers. Equation 2.127 applies
to uncoupled optics, but the ORM can be defined for coupled optics, too:

r =

 rhh rhv

rvh rvv

 (2.130)

where the superscript refers to horizontal (h) and vertical (v) BPMs and steerers. That is, the
ORM is composed of the two main diagonal blocks rhh and rvv and the two coupling blocks
rhv and rvh.

For the purpose of simulations that involve BPMs and steerers of nonzero length, the
closed orbit can be computed by representing steerers with a single thin slice placed in the
center of each steerer 12 and the resulting orbit can be recorded in the center of the BPM (see
appendix A.3).

2.5.2 Jacobian matrix

The derivatives of the ORM elements with respect to the relevant lattice parameters, including
the quadrupole gradients, contain lots of information about the corresponding minimization
problem. The matrix that is obtained by concatenating the derivatives for each lattice
parameter as column-vectors is generally referred to as Jacobian matrix J . This Jacobian
matrix is used by the optimizer, e.g., Levenberg-Marquardt, in order to improve the current
best guess of lattice parameters during an iterative process.

J =



dr11
dθ1

dr11
dθ2

. . . dr11
dθnp

dr12
dθ1

dr12
dθ2

. . . dr12
dθnp

...
... . . . ...

drnbns

dθ1

drnbns

dθ2
. . .

drnbns

dθnp

 (2.131)

where θi are the lattice parameters and np, nb, ns are, respectively, the number of parameters,
BPMs and steerers.

2.5.3 Optimization algorithms

In general, an optimization algorithm seeks to minimize a nonlinear function f(x) in terms of
a set of parameters x (bold face denotes a vector). In the scope of linear optics from closed

12Given that the optics functions do not change noticeably on the spatial extent of the steerers. If the steerers
are realized as trim coils on, for example, bending magnets, this might not be the case, though. In that case,
multiple slices can be used for each steerer and the effect of the slices can be averaged.
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2.5 Closed orbit based measurements of linear optics

orbits, the quantity x represents the relevant parameters of the lattice and the function f(x)
represents the sum of squared residuals inversely weighted by their measurement uncertainty:

f(x) = 1
2
∑︂

i

(mi(x)− oi)2

σ2
i

≡ 1
2r(x)T r(x)

(2.132)

where oi and σi are, respectively, the i-th observation and measurement uncertainty and mi(x)
is the corresponding simulated quantity obtained from the model with parameters x. The
quantity r(x) ≡ (m(x)− o) /σ is referred to as residuals.

Among the various algorithms that exist, there is a class of descent algorithms which
compute a sequence of guesses {xn} with the goal of f(xn+1) ≤ f(xn) in order to yield
convergence. In general, an update is computed from a direction vector d and a step size
matrix Λ:

xn+1 = xn − Λ(xn)d(xn) (2.133)

If (∇f(x))T d > 0, then −d represents a direction of descent, i.e., there exists a number ϵ > 0
for which f(xn − ϵd) < f(xn). Many algorithms use

d = ∇f(x)|x=xn
(2.134)

including those algorithms which are introduced in the remainder of this section 13. Those
algorithms differ in their choice of Λ instead.

2.5.3.1 Gradient descent

The idea behind gradient descent is to repeatedly take steps in the opposite direction of
the gradient of the objective function [62] with an appropriate uniform step size. Thus,
Λ = diag(λ(xn)) in equation 2.133:

xn+1 = xn − λ(xn) ∇f(x)|x=xn
(2.135)

and λ(xn) > 0 is the step size which may be determined anew during each iteration, e.g., via
a dedicated line search method [61]. For a convex, continuous function f(x), the gradient
descent method with appropriate line search is guaranteed to converge to the global minimum.

2.5.3.2 Gauss-Newton algorithm

The Gauss-Newton algorithm uses the Jacobian matrix

J ≡ J(x)|x=xn
= ∇ · r(x)T

⃓⃓⃓
x=xn

(2.136)

in order to compute an update for the parameter estimates. Specifically, Λ = (JTJ)−1 in
equation 2.133 [63]:

xn+1 = xn −
(︂
JTJ

)︂−1
JT r(x)|x=xn

(2.137)

13Different search directions are possible, though, and in some cases might improve the convergence [61].
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2. Linear optics in synchrotrons and beam transfer lines

It is noted that JT r(x) = ∇f(x) for the definition of f(x) according to equation 2.132.
This is closely related to Newton’s method which uses Λ = H(x) the Hessian matrix of the

system, i.e., the second order derivatives:

Hij =
∑︂

k

(︄
∂rk

∂xi

∂rk

∂xj
+ ∂2rk

∂xi∂xj
rk

)︄

=
(︂
JTJ

)︂
ij

+
∑︂

k

∂2rk

∂xi∂xj
rk

(2.138)

Thus, the Gauss-Newton algorithm uses an approximation of the Hessian matrix by neglecting
the second order derivatives in equation 2.138. This is justified if the non-linearity of r(x) is
manageable on the considered scales.

The Gauss-Newton algorithm is not guaranteed to converge, but it can be combined with
an additional step size parameter λ similar to equation 2.135 in order to restore that property:

xn+1 = xn − λ(xn)
(︂
JTJ

)︂−1
JT r(x)|x=xn

(2.139)

An advantage of the Gauss-Newton algorithm over Newton’s method is that it requires
computation of only the Jacobian but not the Hessian matrix which would be expensive to
compute. The Gauss-Newton algorithm converges fast if the residuals are small, i.e., if the
current guess is close to a local minimum.

2.5.3.3 Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm is named after the authors of two independent
publications [64, 65]. It combines aspects from both, gradient descent and the Gauss-Newton
algorithm. Specifically, it uses

xn+1 = xn −
(︂
JTJ + diag(λ(xn))

)︂−1
JT r(x)|x=xn

(2.140)

The parameter λ(xn) is adjusted at every iteration and can therefore shift the update towards
gradient descent (λ≫ ∥JTJ∥) or Gauss-Newton (λ≪ ∥JTJ∥). In doing so, the algorithm can
provide an efficient reduction in f(x) during every iteration also for varying behavior of f(x)
along the sequence {xn}.

2.5.4 Gain errors

Typically, BPMs and steerers will have gain errors eb and es which influence, respectively, the
registered beam orbit position xb or the effective kick strength θs:

xb → (1 + eb)xb ≡ gbxb

θs → (1 + es)θs ≡ gsθs

(2.141)
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2.5 Closed orbit based measurements of linear optics

Under the influence of gain errors, the Orbit Response Matrix R is given by:

R →


gb,1 0 0

0 . . . 0
0 0 gb,nb

 R


gs,1 0 0

0 . . . 0
0 0 gs,ns

 (2.142)

Hence, each ORM element Rij is modified by

Rij → gb,iRijgs,j (2.143)

The relationship from equation 2.143 is invariant under the scaling

gb,i → gb,iλ ∀i

gs,j → gs,jλ
−1 ∀j

(2.144)

and, thus, the gain errors are only determined up to the arbitrary multiplicative factor λ ̸= 0.
The specific value for λ that is reached during the optimization procedure depends on the
given starting point of the lattice parameters. If the gains of BPMs and steerers are not
known, they must be included in the fitting process as so-called nuisance parameters (i.e.,
parameters which are not of primary interest but, nevertheless, must be added in order to
represent the observed data). During fitting, the Jacobian including BPM and steerer gain
errors has thus a rank deficiency of degree 1 or degree 2 for, respectively, coupled and uncoupled
optics. This is because for uncoupled optics, the horizontal and vertical block of the response
matrix, as indicated in equation 2.130, are independent of each other. For coupled optics,
however, a scaling of gain errors not only scales the horizontal or vertical blocks but also
the coupling blocks and, therefore, only the entire response matrix possesses such a scale
invariance. Therefore, the chosen optimizer must be able to deal with the rank deficiency that
is present in the Jacobian (e.g., via SVD cutoff [66] or Tikhonov regularization [67]).

The ambiguity in terms of the horizontal gain errors can be eliminated by including the
dispersion as an additional column to the ORM, if the measurement of dispersion does not
introduce an additional calibration error from the perspective of the RF-system:

R →


D1

R
...

Dnb

 (2.145)

Instead of adding the dispersion as a correctly calibrated column to the ORM (i.e., no
calibration error for the RF-system), one can define that any other row or column of the ORM
is correctly calibrated and exclude the corresponding gain parameter from the fitting. This
will similarly eliminate the ambiguity of gain errors. However, it requires accurate knowledge
about the gain for at least one of the BPMs or steerers in order to yield correct results.

Nevertheless, even in the presence of the ambiguity λ, the ratios of strengths of BPMs or
steerers, i.e., gb,i1

gb,i2
or gs,j1

gs,j2
, are uniquely determined since these ratios eliminate the ambiguous

factor λ. This information can be used to determine if individual BPMs or steerers have gains
which significantly deviate from those of other devices.
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2. Linear optics in synchrotrons and beam transfer lines

2.5.5 Dispersion

The dispersion describes the dependency of the position of a particle on its momentum error
(see section 2.3.2). Thus, the dispersion can be measured by inducing an artificial coherent
momentum error on the beam and by observing the resulting position shift at the Beam
Position Monitors. One option for inducing a momentum error is to change the RF-frequency
fRF by an amount ∆fRF ≪ fRF [68]:

∆p
p

= − 1
αc − 1

γ2

∆fRF

fRF
(2.146)

where αc is the momentum compaction factor and γ is the relativistic factor of the beam. For
this method to work, the energy aperture of the accelerator must be large enough to allow for
the induced momentum error in order to prevent beam losses.

2.6 Beam extraction from synchrotrons and transport in beam
transfer lines

Once the beams are accelerated to the desired energy, if the synchrotron itself is not the
destination, they need to be extracted from the synchrotron in order for them to be transported
to their destination. In the case of the SIS18 synchrotron, the possible destinations are the
various fixed-target experimental areas such as the High Acceptance Di-Electron Spectrometer
(HADES) or one of the two downstream storage rings, Experimental Storage Ring (ESR) or
CRYRING. In the context of the FAIR accelerator complex, SIS18 will act as a booster for the
downstream SIS100 synchrotron. Each of these scenarios may impose different requirements
on the properties of the extracted beam particles, for example on the resulting beam current.
Different methods for extracting beams from a synchrotron exist and they can be used to
address the varying requirements of the downstream parts of an accelerator facility. The
different extraction methods can be categorized as fast extraction and slow extraction methods.
As the names suggest, for fast extraction the entire beam in the synchrotron is extracted in a
short period of time, ideally within a single revolution in the synchrotron and, thus, producing
a high beam current. This requires the usage of a fast kicker magnet with magnetic field rise
time significantly shorter than the duration of a single revolution in the synchrotron. Slow
extraction, on the other hand, extracts only a small portion of the beam particles during
each revolution in the synchrotron and the duration until the entire beam is extracted may
last from milliseconds to even hours, depending on the used slow extraction setting. Slow
extraction is typically required by fixed target experiments in order to avoid saturation of
the experimental detectors. For slow extraction, an important requirement is to provide a
constant particle rate that is being extracted from the synchrotron. Also, for slow extraction
the resulting beam properties in terms of momentum spread and beam emittance vary between
the different methods.
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2.6 Beam extraction from synchrotrons and transport in beam transfer lines

2.6.1 Resonant slow extraction of beams in synchrotrons

In the following, different methods for third-order resonant slow extraction are introduced. A
third-order resonance is used to increase the betatron oscillation amplitudes of particles in the
plane of extraction (typically horizontal; see section 2.4.3) such that they move into the strong
field of a septum which causes the particles to exit the synchrotron and move into a beam
transfer line. The tune of the synchrotron is moved close to the resonance 3Qh = integer prior
to extraction. The resonance is then excited via sextupole magnets.

For a particle with tune equal to Qh = m ± 1
3 + δQ with m = integer and δQ ≪ 1, the

one-turn transfer matrix for normalized coordinates (ζ̃, ζ̃ ′) from equation 2.74 is given by:
(︄

cos(2π(m± 1
3 + δQ)) sin(2π(m± 1

3 + δQ))
− sin(2π(m± 1

3 + δQ)) cos(2π(m± 1
3 + δQ))

)︄
(2.147)

Because of equation 2.70, the transfer matrix for n turns is obtained by replacing 2π → 2πn
in the above one-turn transfer matrix.

The second order contributions of a thin sextupole from equation 2.40 are given in
normalized coordinates:

∆x̃′ = 1
2β

3
2
x (K2L)

(︃
x̃2 − βy

βx
ỹ2
)︃

∆ỹ′ = −1
2β

3
2
x (K2L)βy

βx
2x̃ỹ

(2.148)

Because of the resonance in the extraction plane, the amplitude in x̃ increases to much larger
values than the amplitude in ỹ. For that reason, the contribution ỹ2 in equation 2.148 can be
neglected and the transformation of x̃′ is given by:

∆x̃′ = Sx̃2 (2.149)

where S = 1
2β

3
2
x (K2L).

Since after three turns, the contribution of the 1
3 term of the tune to the betatron motion

vanishes, the effect of the sextupole is described as a perturbation after the first, second and
third turn [69]:

(︄
x̃3

x̃′
3

)︄
=

3∑︂
i=1

[︃
M̃ i

(︄
x̃0

x̃′
0

)︄
⏞ ⏟⏟ ⏞(︄

x̃i

x̃′
i

)︄
→

(︄
x̃i

x̃′
i + Sx̃2

i

)︄
⏞ ⏟⏟ ⏞(︄
x̃i+sextupole

x̃′
i+sextupole

)︄
→ M̃3−i

(︄
x̃i+sextupole

x̃′
i+sextupole

)︄]︃
(2.150)

where M̃ is the one-turn transfer matrix from equation 2.147 and M̃ i is calculated by taking
into account δQ≪ 1. Up to linear terms in δQ, the transfer map for three turns under the
influence of the thin sextupole is given by:(︄

x̃3

x̃′
3

)︄
−
(︄
x̃0

x̃′
0

)︄
=
(︄

ϵx̃′
0 + 3

2Sx̃0x̃
′
0

−ϵx̃0 + 3
4S
(︁
x̃2

0 − x̃′2
0
)︁)︄ (2.151)
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2. Linear optics in synchrotrons and beam transfer lines

where ϵ ≡ 6πδQ. The Hamiltonian that corresponds to the equations of motion 2.151 is the
so-called Kobayashi Hamiltonian [70] 14:

H = ϵ

2
(︂
x̃2 + x̃′2

)︂
+ S

4
(︂
3x̃x̃′2 − x̃3

)︂
(2.152)

Figure 2.9 shows various stable trajectories corresponding to the Kobayashi Hamiltonian 15.
For H = 8

27
ϵ3

S2 , equation 2.152 can be factorized into three straight lines, which represent the
separatrix of the motion. Particles outside the separatrix will undergo unbounded motion
and are therefore unstable. The separatrix is approximated by the outermost trajectory in
Figure 2.9. (︃

S

4 x̃+ ϵ

6

)︃(︃√
3x̃′ + x̃− 4

3
ϵ

S

)︃(︃√
3x̃′ − x̃+ 4

3
ϵ

S

)︃
= 0 (2.153)

Figure 2.9: Phase-space trajectories near a third-order resonance under the influence of sextupole
contributions. The outermost trajectory with a triangular shape approximates the separatrix.
Particles outside the separatrix will undergo unbounded motion and, thus, be unstable (not shown).
ϵ/S = 1 for this plot.

In order to extract particles from the synchrotron, they need to be moved from the stable
to the unstable region in the (x̃, x̃′) phase-space in a controlled way. There exist different ways
to accomplish this.

2.6.1.1 Stochastic extraction

The longitudinal distribution of particles is blown up by applying stochastic noise via the
RF-system [71]. This leads to an increase of the momentum error of particles and together with
a nonzero chromaticity it causes the particles to move into the resonance. A large horizontal
emittance implies that the amplitude and momentum error of extracted particles varies during
the spill. The optics of the machine remain constant during the extraction.

14The independent variable of this Hamiltonian represents the number of turns and one unit corresponds to
three turns.

15This is the phase-space distribution at the at the location of the sextupole. The phase-space distribution at
any other location is obtained by rotating the original distribution by ∆µ in (x̃, x̃′) phase-space where ∆µ is
the phase advance difference between the other location and the location of the sextupole.
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2.6 Beam extraction from synchrotrons and transport in beam transfer lines

2.6.1.2 RF-knockout extraction

The beam is transversely excited via the RF-system at the revolution frequency [72]. This leads
to an increase of the betatron amplitude of particles which subsequently causes the particles
to become unstable. This method works at zero chromaticity which causes the amplitude and
momentum spread of extracted particles to be constant during the spill. The optics of the
machine remain constant during the extraction.

2.6.1.3 Quadrupole-driven extraction

For quadrupole-driven extraction, contrary to the above methods, the phase-space distribution
of the beam remains unaltered. Instead, a quadrupole is used to slowly change the optics
and, thus, the tune of the lattice in such a way that it moves the resonance across the beam
distribution [72]. Depending on the horizontal emittance and the momentum spread of the
beam, the size and average momentum of the extracted particles may vary during the spill.
The optics of the machine change, albeit slightly, during the extraction.

2.6.2 Quadrupole scan for emittance measurement in beam transfer lines

Once the beam is extracted from the synchrotron, it must be transported through the
downstream beam transfer line leading to the desired destination. In order to prevent the
beam particles from hitting the aperture of the beamline, quadrupole magnets are used to
focus the beam in the transverse dimensions. If necessary, bending magnets are used to guide
the beam on a curved trajectory. For example, the HEST beamline leading to the HADES
experiment uses two bending magnets to transport the beam to the experimental area which
is slightly elevated with respect to the SIS18 synchrotron. Similarly to inside the synchrotron,
the beam properties along the transfer line are determined by the optics that emerges from
the setting of quadrupole strengths. The beamline optics can be similarly described by the
Twiss parameters (β, α, γ). The Twiss parameters at the beginning of the beamline, where it
connects to the synchrotron, are then transformed by the various beamline elements according
to equation 2.88.

Besides the optics of the beamline, the emittance of the beam determines the resulting
size of the beam inside the transfer line. A so-called quadrupole scan can be used to measure
the emittance of the beam in a beamline with the help of a quadrupole magnet and a beam
profile monitor downstream of the quadrupole [47, 68]. The principle is based on the following
relationships. In one dimension, the beam distribution can be described by the beam matrix
from equation 2.94:

Σ =
(︄
⟨ζ2⟩ ⟨ζζ ′⟩
⟨ζζ ′⟩ ⟨ζ ′2⟩

)︄
=
(︄
ϵβ −ϵα
−ϵα ϵγ

)︄
(2.154)

and it transforms according to equation 2.98

Σm = MΣqMT (2.155)

from position sq (quadrupole) to position sm (monitor) where sm > sq. If the focal length
1/(K1L) of the quadrupole is significantly larger than its length, the quadrupole can be
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2. Linear optics in synchrotrons and beam transfer lines

approximated with a thin lens transfer matrix (see equation 2.110) and the compound transfer
matrix M from the quadrupole to the profile monitor is given by:

M =
(︄

1 d

0 1

)︄(︄
1 0

−(K1L) 1

)︄
=
(︄

1− (K1L)d d

−(K1L) 1

)︄
(2.156)

where d ≡ sm − sq. The beam matrix element Σm
11 at the monitor is therefore given by the

following equation:

Σm
11 =

(︂
d2Σq

11

)︂
⏞ ⏟⏟ ⏞

≡A

(K1L)2 −
(︂
2dΣq

11 + 2d2Σq
12

)︂
⏞ ⏟⏟ ⏞

≡B

(K1L) +
(︂
Σq

11 + 2dΣq
12 + d2Σq

22

)︂
⏞ ⏟⏟ ⏞

≡C

(2.157)

This represents a second order equation in (K1L) and, thus, the beam profile data Σm
11 = ⟨ζ2⟩

obtained by varying the strength of the quadrupole (K1L) can be fitted to a parabola in order
to obtain the coefficients from equation 2.157. The definition of the three coefficients A,B,C
represents a linear system of equations in terms of the beam matrix elements Σq

11,Σ
q
12,Σ

q
22

which can be solved in order to obtain the beam matrix elements from the coefficients of the
fit:

Σq
11 = A

d2

Σq
12 = B − 2dΣq

11
2d2

Σq
22 = C − Σq

11 − 2dΣq
12

d2

(2.158)

Since βγ − α2 = 1 according to equation 2.67, the emittance is then given by 16:

ϵ =
√︂

det(Σq) =
√︂

Σq
11Σq

22 − Σq
12Σq

12 (2.159)

16This relationship holds only for a dispersion-free region. However, the measured data obtained from a
dispersive region can be reduced to the betatronic part by using ⟨ζ2⟩ −

(︁∆p
p

D
)︁2 for the fit, if the momentum

spread ∆p
p

and dispersion D are known.
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3
Estimating quadrupole errors in the

presence of degeneracy for the SIS18
synchrotron

Extracting linear optics and model errors from closed orbit measurements is a typical method
for estimating the quadrupole errors in a lattice (see section 2.5). The goal of this inverse
modeling process is to adjust the accelerator model in such a way that it accurately reproduces
the measured data such as the orbit response matrix. However, even when such convergence in
terms of the observed data is achieved, the lattice element parameters in the adjusted model
may not necessarily converge to the corresponding actual physics properties in the real machine
due to various contributing factors such as the errors of beam position monitors (BPMs) which
cast an uncertainty on the measured ORM. This uncertainty then propagates through the
inverse modeling process and influences the precision of derived parameters. Depending on
the lattice and the optics, the effect of BPM errors can be more or less problematic for the
accuracy of inverse modeling results. In some cases, the influence of BPM errors can even
hinder the successful reconstruction of quadrupole errors. Also, some of the modeled lattice
parameters might be affected by the measurement uncertainty much more than others, leading
to significantly increased uncertainties for those parameters and, thus, decreasing the efficiency
of those estimates. This is referred to as quasi-degeneracy. An improvement of the efficiency
of quadrupole error estimates was introduced in [73] by adding specific constraints for the fit
parameters. A related approach for improving the efficiency was introduced in [74] by limiting
the magnitude of parameter updates during each step of the minimization. The underlying
property of the lattice that is responsible for the propagation of measurement uncertainty
during the inverse modeling process strongly depends on the availability and location of BPMs
and steerers in the lattice as these devices produce and determine the measured data. In the
following chapter, the limitations and properties of the inverse modeling process with regard
to the placement of BPMs and steerers are investigated in detail.
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3. Estimating quadrupole errors in the presence of degeneracy for the SIS18 synchrotron

Parts of this chapter have previously been published in Phys. Rev. Accel. Beams. Specifically
sections 3.2, 3.3 (excluding 3.3.1) and 3.4.7. Details are given in [75].

3.1 The SIS18 synchrotron

SIS18 is a rapid cycling synchrotron at GSI Helmholtz Centre for Heavy Ion Research,
Darmstadt which can accelerate ions of various energies and species, ranging from Hydrogen
to Uranium. Operation has started in 1990 and it has been part of many important discoveries
throughout the decades. In the future, SIS18 will serve as the injector for the SIS100
synchrotron which is part of the FAIR project [40]. This booster operation at very high
intensities puts stringent requirements on the optics and, thus, a thorough understanding
of the linear optics builds the foundation for any further improvements [39]. The lattice of
SIS18 consists of 12 sections. An overview is presented in Figure 3.1. Each section contains
three quadrupoles, labeled F (focusing), D (defocusing) and T (triplet), and the placement
and strength of these quadrupoles is identical in each of the sections. This triplet structure
is utilized to increase the transverse acceptance during beam injection. The strength of
T-quadrupoles is gradually decreased by one order of magnitude during the ramp, resulting in
a small strength during extraction optics. The 36 quadrupoles are connected with five distinct
power supplies, separating the quadrupoles into the following families:

• 6 F-quads from odd numbered sections,

• 6 F-quads from even numbered sections,

• 6 D-quads from odd numbered sections,

• 6 D-quads from even numbered sections,

• 12 T-quads from all sections.

Each section contains two bending magnets next to each other. The horizontal steerers are
placed on the first bending magnet, except in sections 4 and 6 where they are placed on the
second bending magnet. The vertical steerers are placed between the F- and the D-quadrupole
identically in each of the sections. The vertical and horizontal BPMs are placed downstream
of the T-quadrupole, identically in each of the sections.

3.1.1 Beam position monitors

Each individual electrode of the shoebox-type capacitive pick-up structure is terminated with
50 Ω amplifiers which is followed by direct digitization at 125 million samples per second. The
orbit is calculated by least squares fitting the opposite electrode signals on a user defined time
window. A detailed discussion on the orbit measurement scheme along with measurement
uncertainty estimates can be found in [77].

3.1.2 Orbit response matrix

The nominal ORM of SIS18, shown in Figure 3.2, has a circulant structure in the vertical
block due to the symmetric placement of quadrupoles, vertical steerers and BPMs within
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3.1 The SIS18 synchrotron

(a) Full lattice including all 12 sections.

(b) View of the first section. [75]

Figure 3.1: Schematic of SIS18 lattice together with optics functions. In terms of the quadrupoles,
BPMs and steerers the twelve sections are identical except that in sections 4 and 6 the horizontal
steerer is located on the second bending magnet rather than the first. Blue (raised): focusing
quadrupoles, red (lowered): defocusing quadrupoles, yellow (centered): bending magnets; the
horizontal steerer is shown as a black line on top of the first bending magnet (in sections 4 and 6
it is located on the second bending magnet); the vertical steerer is shown as a white box with gray
boundary between the focusing and defocusing quadrupole; the vertical and horizontal BPMs (in
that order) are shown as gray solid boxes downstream of the third quadrupole (since they are right
next to each other, they might appear as a single gray box). The first white box, downstream
of the second bending magnet, is a bumper magnet. The plot has been created with the DiPAS
program [76].
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3. Estimating quadrupole errors in the presence of degeneracy for the SIS18 synchrotron

each section. Here, circulant means that each column of the matrix is shifted by one element
compared to the previous column. Thus, the entire information of a circulant matrix is encoded
in a single column and in the fact that the matrix is circulant, of course [78]. In the horizontal
block, the circulant structure is broken in the two lattice sections 4 and 6 because in those
sections the horizontal steerer is placed on the second bending magnet rather than the first.
This is reflected in Figure 3.2 by the fact that columns 4 and 6 of the response matrix contain
values that don’t fit with those of surrounding columns.
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T

he
SIS18

synchrotron

Figure 3.2: Simulated ORM for nominal extraction optics of SIS18. The coupling blocks of the ORM are zero because no coupling is presence in the model
lattice. The horizontal and vertical blocks show a circulant structure except for columns 4 and 6 of the horizontal block because the location of horizontal steerers
is different in these sections. The circulant structure is reflected by the fact that each column can be obtained from the previous column shifted by one element
downward (or, similarly, shifting the previous row by one element to the right).
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3. Estimating quadrupole errors in the presence of degeneracy for the SIS18 synchrotron

3.2 Degeneracy for estimated quadrupole strengths

Any procedure with the goal of predicting a set of model parameters P which minimize
the discrepancy between simulated and observed data is referred to as an estimator 1. The
efficiency of an estimator can be quantified by the spread of its predictions around the true
parameter values. Thus, the mean squared error (mse) criterion serves as a measure for
estimator efficiency:

mse[P ] = E
[︂
(P − θ)2

]︂
= Var[P ] + (E [P ]− θ)2 (3.1)

Here, P denotes the predicted parameter values by the estimator, θ are the true parameter
values and E[·] and Var[·] denote, respectively, the expectation value and the variance of its
argument. The second term in equation 3.1 corresponds to the bias of the estimator. Thus,
regarding the efficiency of an estimator, there is a trade-off between its variance and bias and
an increase of the estimator’s bias might result in an overall more efficient estimator (reducing
the mean squared error of its predictions).

The first mention of quasi-degeneracy for linear optics from closed orbits was made in
[73]. The proposed solution was to switch from an unbiased to a biased estimator in order to
improve the overall efficiency of the estimates. This was done by augmenting the cost function
with terms that correspond to the various specific quasi-degeneracy patterns of the lattice
parameters. A related approach [74] limited the change of lattice parameters during each
iteration of the optimization by using a dedicated set of weights in the cost function.

Regarding the terminology, a distinction between (pure) degeneracy and quasi-degeneracy
is made in the following. A purely degenerate case is one for which there exist multiple
distinct solutions that yield the same values for the chosen set of observables in the absence of
measurement uncertainty. This is the case if, for example, there are too few BPMs available
compared to the number of quadrupoles. A quasi-degenerate case, on the other hand, is one
where there exist multiple solutions that are plausible in view of the measurement uncertainty,
i.e., which can be plausibly explained by the measured data, and some (combinations of)
parameters are noticeably more susceptible to the effect of measurement uncertainty than
others. The presence of measurement uncertainty doesn’t change the nature of the optimization
problem though, as there is still a unique global minimum, depending on the specific data used
for fitting. Rather, the quasi-degeneracy is a property of the modeled system. Depending on
the lattice and optics, some directions in parameter space cause less increase in the cost function
than others and, thus, are more susceptible to measurement uncertainty. This is sketched
in Figure 3.3 where the orbit response of a single BPM/steerer pair is shown in dependence
on the three different types of quadrupoles of the SIS18 lattice, F-, D- and T-quadrupoles.
Clearly, the change in orbit response is more flat for the T-quadrupole than for the other two.
This example shows only a single ORM element, so for the actual optimization problem the
situation is more complex but the principle is the same: flat directions in the parameter space
are more susceptible to measurement uncertainty. These directions are determined by the
underlying model, i.e., the lattice and optics.

1An optimization algorithm (see section 2.5.3) with a defined set of hyperparameters and a designated
starting point for the parameter estimates represents an estimator.
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3.2 Degeneracy for estimated quadrupole strengths

Figure 3.3: Example for the orbit response change of a single BPM/steerer pair when varying
a single quadrupole. The horizontal orange area indicates an orbit response uncertainty of
10 µm/mrad and is the same for all quadrupoles. The vertical orange area indicates the
corresponding plausible region of the quadrupoles’ K1L strengths. Clearly, the plausible K1L
region is different for the various quadrupoles and it depends on the steepness of the orbit response
change with K1L for each quadrupole. [75]

3.2.1 Analytical derivative of orbit response

In order to explain the degeneracy properties for a given lattice, one can consider the orbit
response formula rbs for a single dipolar kick and calculate the derivative rkbs with respect to
a change in the k-th quadrupole’s strength. In the following it is assumed that operation is
not close to transition energy and, thus, the energy-dependent term in equation 2.126 can be
neglected.

rbs =
√
βsβb

2 sin(πQ) cos(πQ− |µs − µb|) (3.2)

where the subscripts b, s indicate, respectively, the BPM and steerer index. Taking the
derivative with respect to the integrated strength (K1L)k of the k-th quadrupole, one obtains:

r′
kbs ≡

drbs

d(K1L)k
= −rbs

βk

2

{︄
1

2 tan(πQ) + tan(πQ− |µb − µs|)
2

+ cos(2πQ− 2|µb − µk|) + cos(2πQ− 2|µs − µk|)
2 sin(2πQ)

− tan(πQ− |µb − µs|)
sin(2πQ)

∫︂ max(µb,µs)

min(µb,µs)
cos(2πQ− 2|µk − u|)du

}︄
(3.3)

where βk, µk are, respectively, the beta function and phase advance at the k-th quadrupole.
The full derivation is given in appendix A.4. In [79, 80] a similar result is independently
derived based on the resonance driving terms f2000, f0020.

3.2.2 Pure degeneracy

A pure degeneracy exists if there is a set of quadrupoles which can assume different strengths
and this is not reflected in the selected observables. Using the ORM as observable, this is
the case if there are specific lattice segments of quadrupoles without BPMs nor steerers in
between.
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3. Estimating quadrupole errors in the presence of degeneracy for the SIS18 synchrotron

3.2.2.1 Local degeneracy

By considering equation 3.3 together with the solution for the integral term given by
equation A.32, one can expand the various cosine terms which contain µk contributions
by using the trigonometric identity cos(x± y) = cos(x) cos(y)∓ sin(x) sin(y). For the Jacobian
elements corresponding to cases µb, µs < µk (labeled (A)) or µk < µb, µs (labeled (C)), both
the cosine terms and the integral term expand into sin(2µk) and cos(2µk) terms. For the
third case µb,s < µk < µs,b (labeled (B)), the cosine terms still expand into sin(2µk), cos(2µk)
while the integral term expands into sin(µk)2, cos(µk)2, sin(µk) cos(µk) terms. By using the
trigonometric identities sin(2µk) = 2 sin(µk) cos(µk) and cos(2µk) = cos(µk)2 − sin(µk)2, as
well as the trigonometric identity 1 = cos(µk)2 + sin(µk)2 for the terms that are independent of
µk, one can rewrite the whole equation 3.3 in terms of sin(µk)2, cos(µk)2, sin(µk) cos(µk) where
the coefficients for these terms only depend on µb, µs and Q. The spelled out version
of this expanded form of the Jacobian is not presented here because it is lengthy and
it varies across the three distinct cases (A, B, C). However, an overview of the grouped
coefficients is given in the appendix (Table A.1). The following more general observations
can be used to describe the properties of the Jacobian. Given that the Jacobian for each
BPM/steerer/quadrupole triple can be written as the sum of three expressions involving
µk (namely, sin(µk)2, cos(µk)2, sin(µk) cos(µk)) together with their coefficients which depend
solely on µb, µs, Q, each column of the Jacobian can be written as a linear combination of
v1 sin(µk)2 + v2 cos(µk)2 + v3 sin(µk) cos(µk) where the column vectors v1,2,3 contain the row-
wise constant coefficients depending only on µb, µs, Q. The expressions for these coefficients
are the same for each group of quadrupoles that is not interleaved by BPMs nor steerers.
Thus, the column span of the Jacobian is given by the three column vectors v1,2,3 for each
group of quadrupoles and thus, for a lattice with N sections and 3 or more non-interleaved
quadrupoles per section, the rank of the Jacobian is at most 3N . It should be emphasized
that this holds only if all the involved quadrupoles in each section are consecutive, i.e., not
interleaved by BPMs nor steerers, since otherwise their coefficients would change according
to the cases (A, B, C). This implies that 4 or more consecutive quadrupoles per section will
cause a pure degeneracy since their contributions to the Jacobian can still be described by
only three column vectors. This result holds for one dimension (horizontal or vertical) but
for uncoupled optics it is easily extended to both dimensions by considering that there are
sin(µk)2, cos(µk)2, sin(µk) cos(µk) terms for both dimensions separately, i.e., six independent
coefficient vectors v1,2,3,4,5,6. Thus, the dimension of the column span of the Jacobian involving
both dimensions is bounded by 6N and, therefore, 7 or more consecutive quadrupoles will
cause a pure degeneracy.

This is in agreement with the result derived in [81] which is that for uncoupled transverse
optics, a set of 7 or more consecutive quadrupoles in both dimensions (or, 4 or more quadrupoles
in one dimension) can produce locally confined optics variations in between their segment.
Since the orbit response is a specific combination of the lattice optics, and it depends only on
the optics at the BPM and steerer locations as well as the tune, if there exist such segments of
quadrupoles not interleaved with BPMs nor steerers, the optics within such segments cannot
be resolved by observing the ORM. This can be seen from Figure 3.4 which shows simulated
inverse modeling results for the SIS18 lattice for all 36 quadrupoles, without any simulated
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3.2 Degeneracy for estimated quadrupole strengths

measurement uncertainty, while leaving out the BPMs and steerers from an increasing number
of consecutive sections. As can be seen, for the cases where none of the sections or only the first
section is skipped, the quadrupole strengths can be reliably recovered down to the numerical
precision of the estimator. When three or four consecutive sections are skipped, the estimates
clearly become ambiguous which is reflected by the large increase in their standard deviation.
This is because each section contains three distinct quadrupoles and hence, when skipping
three or more sections, the corresponding segment contains more than 7 quadrupoles required
to exhibit a degeneracy. For the case where two sections are skipped, i.e., six quadrupoles,
there is a slight increase in standard deviation, similar to the amount that’s visible for the
neighboring sections in the skip-3 and skip-4 cases. This is because when the degenerate
segment is extended with its neighboring sections, the variations induced by those quadrupoles
at the boundaries of the segment are on the level of the numerical precision of the estimator and,
hence, won’t be distinguished. Nevertheless, it should be noted that the order of magnitude is
much smaller. The saw-tooth pattern that can observed between D- and T-quadrupoles will
be explained as quasi-degeneracy below.

Figure 3.4: K1L residuals when running Levenberg-Marquardt optimization for the nominal
optics, starting from 1 % random quadrupole errors, and gradually leaving out BPMs and steerers
from consecutive sections in order to cause a pure degeneracy of the inverse problem. Each tick
marker on the horizontal axis indicates a quadrupole (F-, D-, T-quadrupole per section). [75]

3.2.2.2 Global degeneracy

Besides the intra-section degeneracy discussed above, which is caused by isolated groups of
consecutive quadrupoles, there can be another, global degeneracy whose existence also depends
on the BPM/steerer placement. In the following, the notation S,Qn+,B is used which means
that one dimension (horizontal or vertical) is considered and the placement of lattice elements
within a section is the following: steerer, followed by n quadrupoles (n+ means n or more),
followed by a BPM. In terms of the results this is similar to B,Qn+,S. This pattern describes
the placement for one section and is repeated on a section-to-section basis. It should be
emphasized that this only describes in what order BPM, steerer and quadrupoles are placed
but it doesn’t restrict the specific locations in terms of phase advance within each section. In
fact, these specific locations may be different from section to section. For both dimensions,
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3. Estimating quadrupole errors in the presence of degeneracy for the SIS18 synchrotron

horizontal and vertical, the notation Sh,Sv,Qn+,Bh,Bv is used, where h refers to horizontal
and v refers to vertical. In terms of the results this is similar to any other pattern that swaps
any steerer with any BPM. This is because the Jacobian only depends on |µb − µs| and it
separates horizontal from vertical contributions.

It is shown that the following placements exhibit a global degeneracy: S,Q3+,B and
Sh,Sv,Q5+,Bh,Bv. It is worth noting that Sh,Sv,Q5,Bh,Bv causes a rank deficiency of degree
1 in the Jacobian while Sh,Sv,Q6,Bh,Bv causes a degree 2 rank deficiency. For the presented
case, the Sh,Sv,Q5,Bh,Bv rank deficiency is due to the difference in tunes being an integer
number since Qh = 4.29, Qv = 3.29 for SIS18. If the tune difference does not equal an integer,
this rank deficiency will disappear. The Sh,Sv,Q6,Bh,Bv rank deficiency, however, remains
regardless of the tunes according to the above arguments. For Sh,Sv,Q7+,Bh,Bv intra-section
degeneracy will appear and the rank of the Jacobian is the same as for Sh,Sv,Q6,Bh,Bv.
The argument for this is similar to the one for S,Q4+,B above, since exactly three column
vectors are needed for each dimension in order to generate the Jacobian columns for a group of
consecutive quadrupoles in that dimension. In the appendix, a proof for the rank deficiency for
the S,Q3+,B (appendix A.6) and Sh,Sv,Q6+,Bh,Bv (appendix A.7) placements is presented.
The rank deficiency for the Sh,Sv,Q5,Bh,Bv pattern for an integer tune difference is found
from simulation results. Table 3.1 gives an overview of the various Jacobians’ ranks obtained
via simulations, in agreement with the analytical derivations.

Table 3.1: This table presents an overview of the Jacobian properties in terms of rank deficiency
for the various BPM/steerer placements around groups of consecutive quadrupoles. N denotes
the number of sections in the lattice (N ≥ 3 is assumed). It should be emphasized that the only
deciding factor is the placement pattern, i.e., how many quadrupoles form a consecutive group,
not where exactly these quadrupoles or the BPMs/steerers are located in each of the sections. The
specific locations may vary from section to section and as long as the overall placement pattern is
satisfied, the rank will be the same. For verification with simulations, the Jacobians were obtained
from simulations using the mpmath [82] library to avoid numerical issues (dps set to 100). The
rank is then computed as the number of singular values that are larger than or equal to ϵN2smax
where smax is the largest singular value and ϵ = 2−52 is the machine epsilon for double precision
floating point numbers.

Jacobian
# rows # columns rank

S,Q2,B N2 2N 2N
S,Q3,B N2 3N 3N − 1
S,Q4+,B N2 4+N 3N − 1

Sh,Sv,Q4,Bh,Bv 2N2 4N 4N

Sh,Sv,Q5,Bh,Bv 2N2 5N
{︄

5N − 1 , if Qx −Qy = integer
5N , otherwise

Sh,Sv,Q6,Bh,Bv 2N2 6N 6N − 2
Sh,Sv,Q7+,Bh,Bv 2N2 7+N 6N − 2

Appendix A.5 includes a similar derivation for beamlines, i.e., non-circular lattices.

3.2.3 Quasi-degeneracy

Even though groups of, for example, two consecutive quadrupoles do not exhibit a pure
degeneracy, they can exhibit a quasi-degeneracy which means that their estimated strengths
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3.2 Degeneracy for estimated quadrupole strengths

are much more susceptible to measurement uncertainty than the ones of other quadrupoles.
This type of quasi-degeneracy is explained in the following section.

The covariance of parameter estimates under linear least squares is given by σ2(JTJ)−1

where σ2 is the variance of observables and J is the Jacobian (if the various BPMs have
different measurement uncertainties, it is (JT ΣJ)−1 with Σ being the covariance matrix of
observables). This is closely related to the matrix JTJ . The eigenvectors of a matrix and
its inverse are similar and the eigenvalues are reciprocal, so studying the matrix JTJ reveals
important information about the error propagation. Also, in Gauss-Newton minimization,
JTJ is used as an approximation of the Hessian H and, thus, a lower bound for the estimated
parameter variance is given by σ2H−1. This is, of course, in agreement since at the minimum
of the cost function, the gradient is assumed to vanish, so the flatness of the cost function
depends on how quickly that zero gradient changes in the neighborhood of the estimate which
is indicated by the Hessian matrix.

Figure 3.5 shows the JTJ matrices emerging from horizontal and vertical ORMs, together
with their eigenvalue spectra. There are a few things to be noted. First of all, for the vertical
JTJ plot it can be seen that it indicates higher variance for the D-T-quadrupole pairs than for
the F-D- or F-T-pairs. This is because of the scaling of the Jacobian with the beta function
which, in vertical, is larger at D- and T-quadrupoles than at F-quadrupoles (see Figure 3.1).
Secondly, it can be observed that in both dimensions there is one eigenvalue that is much
smaller than others. Small eigenvalues of JTJ correspond to large eigenvalues of (JTJ)−1, i.e.,
of the covariance estimate for model parameters. However, for the horizontal JTJ matrix, the
smallest eigenvalue in this plot is only nonzero due to limited numerical precision, since in
horizontal dimension the lattice features a S,Q3,B steerer/BPM placement which causes a pure
degeneracy (see section 3.2.2.2). A zero eigenvalue for JTJ implies a pure degeneracy since the
system JTJ∆p = JT r (∆p parameter update, r residuals) is under-determined. That is, the
null space of JTJ is nonzero and, hence, there exists a parameter update ∆p that will leave
the r.h.s. of the equation unchanged at zero. In general, a small eigenvalue for JTJ implies
a direction of quasi-degeneracy which is given by the corresponding eigenvector. It means
that the parameter update emerging from JTJ∆p = JT r will be susceptible to measurement
uncertainty in the direction of the corresponding eigenvector. This is what is observed for the
vertical Jacobian where the vertical lattice features a B,Q2,S BPM/steerer placement.

Figure 3.6 shows the two eigenvectors, in horizontal and vertical dimension, that correspond
to the smallest eigenvalue of the corresponding JTJ matrix. Since the eigenvectors of a matrix
and its inverse are similar, these indicate the direction of (quasi-)degeneracy in both dimensions
separately. It can be observed that this is a global degeneracy in both cases, since all quadrupoles
participate; hence, there is only one eigenvalue that is significantly smaller than all others.
This is due to the symmetry of the lattice with respect to the BPM/steerer placement pattern.
In horizontal, for the two sections 4 and 6 where the ORM’s circulant structure is broken, it
can be observed that a corresponding change in the quadrupole’s degeneracy pattern reflects
this. In vertical, it can be observed that the quasi-degeneracy is driven by the (non-interleaved)
D-T-quadrupole pairs.

Figure 3.7 shows the scaling of the covariance estimate for model parameters, i.e., (JTJ)−1;
for horizontal, since it is rank deficient, (JTJ + αI)−1 is plotted (with α = 1 × 10−8, i.e.,
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3. Estimating quadrupole errors in the presence of degeneracy for the SIS18 synchrotron

Figure 3.5: Top row: Horizontal dimension, bottom row: vertical dimension. Left column: The
36×36 matrix JTJ . The axes numbering indicates the 12 sections of SIS18 in hexadecimal notation
and there are 3 rows/columns per section, corresponding to the F-, D- and T-quadrupoles (in that
order) of each section. Right column: The eigenvalues of corresponding JTJ matrices. The color
bars and eigenvalue magnitude indicate the magnitude of JTJ in units of m4/rad2. The values
of the color bar correspond to those of the eigenvalue plots shown on the vertical axes. For the
horizontal dimension, the smallest eigenvalue λ35 is nonzero only due to limited floating point
precision. When inspecting the 12 smallest horizontal eigenvalues, it can be observed that the
λ24, λ25 eigenvalues have a slightly greater magnitude than the remaining 9 eigenvalues (neglecting
λ35). These two eigenvalues correspond to the sections 4 and 6 where the horizontal steerer is
shifted by a few meters compared to the other sections. [75]

Figure 3.6: Eigenvectors that correspond to the smallest eigenvalue of the JTJ matrices in
horizontal (top) and vertical (bottom) dimension. Each tick marker on the horizontal axis indicates
a quadrupole (F-, D-, T-quadrupole per section). [75]
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Tikhonov regularized, which is also used by, for example, the Levenberg-Marquardt optimizer,
though it uses a flexible regularization parameter α). Clearly, the global nature of the
degeneracy is reflected in the eigenvectors Figure 3.6. From Figure 3.5 it can be observed that
pairwise cancellation is mostly confined to nearby sections and decreases when moving further
away in terms of the phase advance. However, the final covariance of quadrupole estimates is
dominated by a strong global component which is symmetric for the vertical ORM.

Figure 3.7: (JTJ + αI)−1 for the horizontal (α = 1× 10−8; left), vertical (α = 0; middle) and
combined (α = 0; right) dimensions. The axes numbering indicates the 12 sections of SIS18 in
hexadecimal notation and there are 3 rows/columns per section, corresponding to the F-, D- and
T-quadrupoles (in that order) of each section. The unit of the color bars, indicating the magnitude
of the matrices, is rad2/m4. The quasi-degeneracy pattern looks very symmetric in vertical because
the BPM/steerer placement is fully symmetric from section to section. This, however, is not a
requirement as shown by the horizontal data. The degeneracy pattern reflects the differently placed
steerers in section 4 and 6. In fact, no symmetry whatsoever in terms of the exact phase advances
of BPMs or steerers is required for a degeneracy pattern to occur; only the placement pattern in
terms of upstream or downstream of quadrupoles is deciding. For the combined dimensions it can
be observed that the resulting pattern is not fully symmetric but features local correlations slightly
more than ones with other sections. This is because the magnitude of the smallest eigenvalue
for the combined dimensions is closer to the magnitude of other eigenvalues and thus does not
dominate the pattern alone. [75]

For the vertical ORM, the corresponding JTJ matrix is a block circulant matrix by the
argument of section-to-section symmetry of the vertical lattice. The eigenvectors of a block
circulant matrix B = bcirc(b0, b1, . . . , bn−1) ∈ BCn,k (where n is the number of blocks and k

the size of a k × k block; n = 12, k = 3 for the vertical ORM) are derived in [83]. They are
given by: 

v

ρmv

ρ2
mv
...

ρn−1
m v


(3.4)

where v is a nonzero column vector of length k, which is given below, and ρm is one of the n
complex roots of unity: ρm = exp(2πim

n ). For each ρm there are k distinct vectors v given by
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the eigenvector equation [83]:

(b0 + ρb1 + ρ2b2 + · · ·+ ρn−1bn−1)v = λv (3.5)

where λ is the corresponding eigenvalue.
Since the first of the n roots of unity is ρ0 = 1, from equation 3.4 it becomes apparent that

every block circulant matrix B ∈ BCn,k has exactly k distinct globally symmetric eigenmodes
which repeat on a block-to-block basis. This is the case for the vertical JTJ matrix.

Because JTJ is real and symmetric, its eigenvalues are guaranteed to be real, too.
Furthermore, since JTJ is a Gram matrix, it is positive semidefinite and its eigenvalues
are guaranteed to be greater than or equal to zero. This is observed for the vertical JTJ matrix
and it happens that one of the globally symmetric eigenmodes is associated with the smallest
eigenvalue λ35. Figure 3.8 shows the three globally symmetric eigenmodes corresponding to
the ρ0 = 1 eigenvalues.

Figure 3.8: Globally symmetric eigenmodes of JTJ in vertical dimension which arise due to
the fact that the vertical lattice is symmetric from section to section. Each tick marker on the
horizontal axis of the eigenvector plots indicates a quadrupole (F-, D-, T-quadrupole per section).
[75]

Because for the horizontal lattice, the circulant structure of the ORM and thus of JTJ

is broken in the two sections 4 and 6, it can’t have a globally symmetric eigenmode, i.e., a
mode that repeats on a section-to-section basis. However, as becomes apparent from the
eigenvector Figure 3.6, the global mode still affects all sections at once and reflects the breaking
of symmetry in the sections 4 and 6.

3.2.4 Exemplification using the SIS18 lattice

In the absence of BPM errors, inverse modeling with an optimizer such as Levenberg-Marquardt
will always converge to the ground truth solution (within the boundaries of numerical precision),
given that the there is no additional model bias present and the initial guess is not too far
from the ground truth (so that the optimizer won’t cross any instabilities, for example).
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Figure 3.9 shows the covariance of the various solutions obtained with Levenberg-Marquardt
optimizer when no quadrupole errors are applied to the lattice and only BPM errors are present
in the ORM simulation. That is, each of the inverse modeling instances is given a distinct noisy
ORM emerging from the same orbit response uncertainty of 7 µm/mrad. The initial guess is the
ground truth solution, i.e., no quadrupole errors, but from the perspective of the optimizer this
is not the minimum of the cost function due to the noise in the ORM; hence, it will converge
to a different solution, the K1L residuals. The structure of these solutions is determined by
the underlying simulation model including the lattice optics. It can be seen that the quasi-
degeneracy is mainly driven by the D-T-quadrupole pairs where much larger excursions in K1L

residuals happen. This is in agreement with Figure 3.7 which shows the predicted uncertainty
from the Jacobian. For 7 µm/mrad orbit response uncertainty, the expected covariance of D-
and T-quadrupole strengths is approximately (7× 10−3)2 · 0.002 1/m2 ≈ 1× 10−7/m2. This is
the amount that can be observed from the simulations with Levenberg-Marquardt optimizer
in Figure 3.9. Also, the observed covariance pattern matches the one from Figure 3.7.

Figure 3.9: Covariance of K1L residuals obtained with Levenberg-Marquardt optimizer for
7 µm/mrad orbit response uncertainty when including both horizontal and vertical ORM. The axes
numbering indicates the 12 sections of SIS18 in hexadecimal notation and there are 3 rows/columns
per section, corresponding to the F-, D- and T-quadrupoles (in that order) of each section. No
quadrupole errors were applied to the lattice and optimization started at the nominal quadrupole
strengths. Thus, the K1L residuals emerge purely as a result of the simulated ORM uncertainty.
All 36 quadrupoles have been included in the optimization. [75]

3.2.5 Counteracting quasi-degeneracy

At different stages, different options for counteracting quasi-degeneracy are feasible. During
the design phase of the accelerator, the placement of steerers and BPMs can be investigated
in order to find a placement that reduces the amount of quasi-degeneracy compared to other
placement candidates. For the SIS18 lattice, this would be achieved by positioning the BPMs
between the D- and T-quadrupoles. At the stage of data analysis, the choice of optimizer
allows for different strategies to counteract the quasi-degeneracy. Examples include introducing
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a cutoff during Singular Value Decomposition (SVD) or adding additional constraints to the
cost function.

3.2.5.1 Placement of BPMs and steerer magnets

At a stage where this is still possible, the careful planning of BPM and steerer locations can
help to avoid or mitigate quasi-degeneracy. The following three scenarios are compared to the
results for the nominal lattice: moving either the horizontal or vertical BPM or both BPMs
between the D- and T-quadrupole. Figure 3.10 shows the JTJ eigenvalue spectra for these
three cases as well as for the nominal case. It can be observed that the different placements of
BPMs have different effects on the amount of quasi-degeneracy. Specifically, the versions where
the vertical BPMs are shifted between the D- and T-quadrupole yield significantly smaller
uncertainty in the estimated parameters while the version with only horizontal BPMs shifted
has a negligible effect. Thus, it is of importance to explore the different options for BPM
placement in order to allow for more precise inverse modeling results for future accelerators.

Figure 3.10: Eigenvalues of JTJ for different BPM placements. nominal refers to the original
lattice, h-shifted refers to the lattice where the horizontal BPM has been shifted from its original
position (downstream of the T-quadrupole) to in between the D- and T-quadrupole. v-shifted
means the same for the vertical BPM and h-v-shifted refers to both BPMs being shifted between
the D- and T-quadrupole. The different placement strategies vary in their smallest eigenvalue
which is the one that drives the propagation of uncertainty. [75]

3.3 Fitting the orbit response matrix

The Levenberg-Marquardt optimizer uses the Jacobian at every iteration. Typically, this
Jacobian is computed numerically via finite-difference approximation, with an appropriate step
size ∆ for each parameter. In the following, the analytically derived Jacobian (see equation 3.3)
is used for the optimization procedure 2. This analytical Jacobian is obtained from the
Twiss data of the lattice. While there is a mismatch between the numerical (real) and the

2It is noted that the analytical formula equation 3.3 has been derived under the assumption of uncoupled
optics. In the presence of coupling, the analytical Jacobian needs to be re-derived with the coupling terms
included. Once obtained, the analytical Jacobian approach can then be applied for inverse modeling of coupled
optics.
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analytical Jacobian, if this mismatch is manageable then the fitting will still converge. This has
similarities to how Closed Orbit Feedback (COFB) correction with model mismatch works [84].
In the context of COFB, the system is assumed to be linear and there exists a true response
matrix R and a model response matrix RΘ. In an iterative scheme, the COFB converges
if all eigenvalues λi of 1 − RR+

Θ fulfill −1 < λi ≤ 1 (where the superscript + denotes the
pseudo-inverse). If R and RΘ are square matrices, the relationship has to be a strict inequality
to achieve convergence, i.e., −1 < λi < 1. Otherwise, if R and RΘ are m× n matrices with
m > n, then 1− RR+

Θ must have largest eigenvalue 1 with multiplicity m− n and all other
eigenvalues must fulfill −1 < λi < 1. In the context of linear optics from closed orbits, the
matrices R and RΘ denote, respectively, the true and analytical Jacobian. Also, the system is
not entirely linear, so the lattice model reacts differently to a parameter update than the linear
transformation given by R. However, if the magnitude of updates is constrained, a locally
linear version can be assumed at every iteration. This implies a varying true matrix R ≡ R(x)
where x is the current guess of model parameters. For an iterative scheme to converge, the
eigenvalues of the sequence of matrix multiplications(︂

1−RR+
Θ

)︂
k−1

. . .
(︂
1−RR+

Θ

)︂
0

(3.6)

must tend to zero as k →∞ (where k denotes the iteration count; except the m− n excess
eigenvalues for rectangular R,RΘ remain at 1). This is provided if the eigenvalues of the
individual matrices (1−RR+

Θ)i, for guess xi during the i-th iteration, fulfill −1 < λi ≤ 1, i.e.,
if the model mismatch is manageable for each relevant optics setting during the fitting. If the
model errors are small, it might even suffice to use a single Jacobian RΘ for the entire fitting
procedure; that is, the same Jacobian can be reused during each iteration.

The analytical Jacobian is computed via equation 3.3 from Twiss data which is obtained
from the accelerator model evaluated at the current parameter guess. Due to sign convention
for quadrupoles, for the vertical dimension the Jacobian needs to be multiplied by −1.

Using the analytical Jacobian from Twiss data is more efficient than computing the
numerical Jacobian since Twiss data is computed only once for the entire Jacobian while the
numerical approach computes one ORM per quadrupole, that is, one closed orbit per steerer
per quadrupole. Thus, the speed-up factor in terms of the scaling with the number of relevant
lattice elements is Nsteerers ·Nquadrupoles. For the BPM and steerer gain parts of the ORM,
the analytical equation for the orbit response equation 2.126 is similarly used with Twiss data
in order to generate the corresponding columns of the analytical Jacobian.

Various tests with simulation data have been performed. The tests include random
quadrupole and gain errors as well as different levels of simulated orbit response uncertainty.
The Levenberg-Marquardt algorithm has been used for the fitting. The results are shown
in Figure 3.11. It can be observed that the results obtained with the analytical Jacobian
match closely with those obtained with the numerical Jacobian. For the simulation case which
limits quadrupole errors by 3 % and gain errors by 10 %, the feedback-like approach using only
the analytical Jacobian obtained for the nominal optics converges in 67 % of the instances
and it reaches unstable lattice configurations for the remaining instances. This is due to the
discrepancy of the real Jacobian with respect to the employed Jacobian obtained from nominal
optics being too large to allow convergence according to equation 3.6. The convergence rate is,
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however, independent of the simulated ORM uncertainty. For simulated quadrupole errors
below 2 %, the feedback-like approach converges in more than 98 % of instances. Thus, this
approach can be used to correct a lattice that exhibits only small quadrupole drifts over time.
For cases with larger deviations, it is sufficient to recompute the Jacobian during each iteration
of the fitting procedure. When the analytical Jacobian is recomputed this way, it converges
and yields good results also for larger simulated model errors as shown in Figure 3.11.

The software used for fitting, including the analytical Jacobian approach, has been
implemented as a Python package and made publicly available [1].

Figure 3.11: Comparison of simulation results for various cases. (A) and (N) denote, respectively,
the usage of analytical or numerical Jacobian. Q and G denote, respectively, the percentage level of
random quadrupole and gain errors, uniformly sampled within these bounds. All simulations used
Levenberg-Marquardt optimizer except the ones with suffix (fb) which used a purely feedback-like
approach using only the analytical or numerical Jacobian obtained for the error-free model optics
setting. The feedback-like approach converged for 67 % of the simulated Q=3%, G=10% instances
for both, the analytical and numerical Jacobian method. For larger quadrupole or gain errors
the rate of convergence decreases further and, hence, these results are not reported. However,
simulating quadrupole errors below 2 % (not shown) results in more than 98 % convergence rate
for the feedback-like approach. The convergence rate does not depend on the simulated ORM
uncertainty. All other approaches converge reliably also for the larger error levels shown in the plot.
The simulations have been performed for five different ORM uncertainties which are plotted on
the horizontal axis: 0.1 µm/mrad, 0.32 µm/mrad, 1.0 µm/mrad, 3.2 µm/mrad and 10.0 µm/mrad.
For each uncertainty level, the eight different cases are shifted horizontally for better visibility
(their order from left to right matches the order in the legend from top to bottom); however, each
case used the same ORM uncertainty for simulations (the leftmost one). Each uncertainty level
contains 100 random simulations per case. [75]

3.3.1 Improving the accuracy of the analytical Jacobian

Whether the analytical Jacobian according to section 3.3 can be used for the fitting procedure
depends on the agreement of the analytical Jacobian and the true (numerical) Jacobian.
Equation 3.6 represents a necessary condition for the fitting to converge. However, for some
lattices, the thin lens approximation used during the derivation of the analytical Jacobian
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from equation 3.3 might not be accurate enough in order allow for fitting with the analytical
Jacobian. Nevertheless, the accuracy of the analytical Jacobian can be improved by using
multiple thin slices for each quadrupole. This is achieved by computing the Twiss parameters
and phase advance directly upstream of each quadrupole (β1, α1, µ1) and then computing the
values at each thin slice (β2, α2, µ2) by tracking them through the sequence of sub-elements of
the sliced quadrupole. The new values can be obtained with the help of equation A.1 and the
auxiliary quantities (u, v): (︄

u

v

)︄
= M

(︄
β1

−α1

)︄
(3.7)

Then β2, α2, µ2 are given by:
β2 = 1

β1

(︂
u2 +M2

12

)︂
α2 = − 1

β1
(uv +M12M22)

µ2 = µ1 + arctan M12
u

(3.8)

The locations of thin quadrupole slices are computed according to the Teapot slicing method
(see section 2.2.3.9). The beta function βk and phase advance µk at each quadrupole slice
are inserted in equation 3.3 in order to compute the contribution for that slice. Then
the contributions of all slices are averaged in order to obtain the Jacobian column for the
corresponding quadrupole 3. Figure 3.12 shows the agreement of the analytical Jacobian with
respect to the numerical Jacobian for the SIS18 lattice for a varying number of thin quadrupole
slices. It can be observed that the agreement of the analytical Jacobian is improved already by
using a small number of slices compared to the analytical Jacobian that is obtained by using
the twiss, centre command from MADX or by using a single slice.

3.4 Experiment at the SIS18 synchrotron

3.4.1 Preparation

The following experimental data is collected to benchmark the theoretical findings and the
simulation results. ORM, dispersion and tune measurements are conducted for two different
optics at SIS18: nominal extraction optics and a modified version thereof by adjusting the
K1L value of the GS01QS1F quadrupole family (this quadrupole family includes the focusing
quadrupoles from the odd numbered sections).

3.4.1.1 Accelerator setting

At SIS18, the control system uses a program called ParamModi to expose the various accelerator
parameters to the user in form of a Graphical User Interface (GUI). Inside this program, one
can create so-called patterns and each pattern corresponds to a specific accelerator setting.
These patterns can be saved for later reuse since the program also allows loading of previously
saved patterns. The pattern also defines the extraction process to be used, i.e., whether fast

3The averaging is explained intuitively since the thin quadrupole slices enter the computation as a sequence
of matrix multiplications and the derivative of a sequence of multiplications is additive in the derivatives of the
multiplicands.
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Figure 3.12: Improvement of the analytical Jacobian by using multiple thin slices for each
quadrupole for the SIS18 lattice. Ja represents the analytical Jacobian obtained by using the
indicated number of quadrupole slices and Jn represents the numerical Jacobian. The dashed line
labeled twiss, centre represents the analytical Jacobian that is obtained from MADX by using
the centre option for the twiss command. The max norm is computed as maxij |(Ja − Jn)ij |.

or slow extraction should be used as well as the extraction parameters. Behind the GUI, the
control of the accelerator is realized via LHC Software Architecture (LSA) which takes care
of loading the parameter settings into the machine. SIS18 can replay multiple patterns in
turn by dedicating one cycle to each pattern. This allows to provide beam to multiple target
locations in an alternating fashion. A cycle comprises the full sequence of actions that are
taken to inject, accelerate and extract the beam.

The measurement is performed with 16O8+ ions at an energy of 500 MeV per nucleon.
The intensity is 1 × 109 to 5 × 109 particles. The harmonic number is 5 with 5 bunches in
the machine. A fast extraction pattern is prepared in ParamModi with the additional beam
process RF_MANIPULATION. Despite its name, this beam process is left empty and will only
serve as the time window for the measurement of the orbit response to a single steerer. The
length of that beam process determines the number of data points that can be measured
for each steerer and also the resolution of the orbit at the BPMs. The goal is to acquire
5 independent measurements of orbit responses per steerer for estimation of measurement
uncertainty. Each measurement takes place on a distinct cycle. When changing from one
steerer to the next, the trim of the previous steerer must be reverted and an additional, unused
cycle might slip in after the trim for the steerer has been reverted. Therefore, 5 to 6 cycles
per steerer will be used. In order to measure all 24 steerers (12 horizontal and 12 vertical),
this requires a total of (5 + 1) · 24 = 144 cycles. During each cycle a specific steerer will
be set by applying a dedicated trim via the LSA API. This trim covers the following kick
values: −1 mrad, −0.5 mrad, 0 mrad, 0.5 mrad and 1 mrad. This allows to determine the orbit
response from a 5-point fit. The length of the RF_MANIPULATION beam process is chosen to be
11.037 s. This covers the following aspects, which are also based on experience from previous
tests:
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• 2 s are reserved for the beginning of the beam process since the horizontal orbit still
moves during that time 4.

• 256 ms are reserved for the steerer to ramp to each of the five magnetic field strengths
during the trim pattern. Since for extraction the steerer kick must be back to its nominal
value, an additional ramp back to 0 mrad is required at the end of the trim pattern.
Thus, this requires a total of (5 + 1) · 256 ms = 1.536 s.

• 500 ms are reserved for allowing the steerer to settle its magnetic field strength after
ramping to a new value during the trim pattern. Previous experience has shown that
the orbit still moves in that time window. This settling time is not necessary at the end
of the beam process and, thus, 5 · 500 ms = 2.5 s are required.

• 1 s are reserved for the orbit measurement of each steerer kick value during the trim
pattern (i.e., after the settling time of 500 ms). This allows for orbit resolution on the
order of 1 µm.

• 1 ms is added at the end of the beam process to allow the trim pattern to settle back to
0 mrad.

In ParamModi, the value of the Dauer RF_MANIPULATION parameter is therefore set to 11.037 s.
During the measurement it has been realized that the horizontal orbit was moving longer than
expected at the beginning of flattop and, therefore, the Dauer RF_MANIPULATION parameter
has been increased to 13.037 s allowing for a total of 4 s margin at the beginning of the beam
process. The different time windows are also visualized in Figure 3.13.

3.4.1.2 Trims of LSA parameters

Steerers The steerer trims are prepared as a CSV file with two columns,
time_in_beam_process and trim_value. The resolution of time_in_beam_process is
1 ms. This is the time step with which LSA will interpolate two consecutive trim values if the
difference between their timestamps is greater than 1 ms. The ramp from one steerer kick
value to the next must not be too steep because otherwise ParamModi will reject the trim,
based on the maximal allowable ramp setting for that magnet. Thus, 256 ms are used for the
ramp which is a safe value. The ramp has been realized by using the half-period of a cosine
function in order to ensure the smoothness of the ramp (this is required by the horizontal
steerers). Figure 3.13 shows the trim pattern which is used for the steerers.

The LSA parameters for applying the trims where <NAME-OF-STEERER>/HKICK_COC for the
horizontal steerers and <NAME-OF-STEERER>/VKICK_COC for the vertical steerers. The trim is
performed on Correction (not Target). The corresponding measured orbit response allows
to determine the dispersion.

RF-system In order to measure the dispersion, the LSA parameter SIS18BEAM/DPFREV is
trimmed in a similar fashion as the steerer kick values described in section 3.4.1.2. This parame-
ter corresponds to the desired momentum error ∆p

p and the control system computes and applies
the required frequency shift. The trim values are ∆p

p = −0.002, −0.001, 0.0, 0.001 and 0.002.
4This is because likely the bending magnets take time to attain their final magnetic field strength on flattop.
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Figure 3.13: Steerer trim pattern that is used for trimming the steerer’s kick value via the LSA
API during the measurement.

3.4.1.3 Java application for automatizing the measurement

To automate the measurement, a dedicated Java App has been created which applies and
reverts the various trims via the LSA Java API. The app loads the previously generated
CSV file and creates a cern.accsoft.commons.value.DiscreteFunction from it. This
function is then submitted as a cern.lsa.domain.settings.TrimRequest, applied to the
GsiBeamProcessPurpose.RING_RF_MANIPULATION beam process. The app cycles through
each of the 24 steerers and waits for an appropriate time that covers the 5 desired cycles per
steerer before reverting the trim and applying it to the next steerer. The timestamps for each
trim are saved in a log file. The Java App is available as a repository on the GSI Gitlab
instance [2].

3.4.1.4 Orbit measurement via TOPOS

The TOPOS app is used to collect BPM data. The start and stop triggers are set to, respectively,
45 Flattop 5 and 52 Flattop End with both offset set to zero. The gain is initially set to
40 dB and will be adjusted during the measurement by inspecting the signal intensity. The
signal intensity must remain below 45 dB at all times to prevent saturation of the BPM signal.
The raw BPM data (signal on the plates) is checked in TOPOS in order to verify that no
saturation is present. The BPMs are set to asynchronous mode for the orbit measurement.
This mode computes a single orbit value from the data points of 1024 consecutive bunch
passages. This mode also greatly reduces the storage requirements for the BPM data. The
data is saved in a dedicated binary format which provides information about timestamps, orbit
values and signal intensity.

3.4.1.5 Tune measurement via TOPOX

For the tune measurement, BPMs are set to bunch-by-bunch mode (double threshold detection).
The TOPOX app is used for the measurement. This app allows to perform a frequency scan

5There is a 20 µs offset between the trigger signal and the RF_MANIPULATION beam process; the signal arrives
first.
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around the nominal tunes by exciting the beam. The Q parameter is set to the fractional part
of the nominal tune in ParamModi, the dQ parameter is set to 0.1 and the trigger is set to
external (controlled by Genesys).

3.4.1.6 Modification of optics

The nominal extraction optics are modified by applying a trim to the GS01QS1F quadrupole
family which includes all focusing quadrupoles from odd section numbers. The corresponding
LSA parameter is GS01QS1F/KL. The trim value is chosen to be ∆K1L = −1.2×10−3 m−1. The
model tunes for this updated setting are Qx = 4.272 and Qy = 3.296. Since it is known that the
horizontal tune of the real machine is ≈ 4.31, it is expected that this ∆K1L update will cause the
machine tunes to be in the vicinity of the nominal model tunes Qx = 4.29, Qy = 3.29. According
to the simulation results from Figure 3.11, for an orbit uncertainty of order 3 µm a change in the
quadrupole strength of |∆K1L| > 1× 10−3 m−1 should be resolvable. Also, it should be noted
that the residuals in Figure 3.11 are obtained without mitigation of quasi-degeneracy and, thus,
are mainly driven by the D-T-quadrupole pairs. With proper mitigation of quasi-degeneracy
the residuals are expected to be much smaller. Hence, ∆K1L = −1.2× 10−3 m−1 is expected
to be a safe value for the fitting of linear optics and, also, it corresponds to a tune change that
is of similar magnitude than observed in the real machine.

3.4.1.7 Influence of position errors of BPMs

The position of the various lattice elements of SIS18 are known with accuracy ⪅ 1 mm due
to regular survey measurements. However, the two BPMs are mounted inside a so called
"Diagnosekammer" (diagnostic chamber) and while the position of that chamber is known, the
position of BPMs inside that chamber is known only within a 5 mm accuracy. Therefore, it
must be checked to what extent this inaccuracy might affect the results 6. Figure 3.14 shows
the expected variation in the orbit response and it is well below the expected measurement
uncertainty. Therefore, the influence of potential BPM shifts can be neglected.

3.4.2 Summary of measurement

The ORM measurements were performed with 5 settings per steerer, −1.0 mrad, −0.5 mrad,
0.0 mrad, 0.5 mrad and 1.0 mrad, during a long flattop of 11.037 s. Position data from one of
the horizontal BPMs is shown in Figure 3.15. The first 2 s are skipped because the horizontal
orbit still drifted during that time window; this is likely because of the bending magnets taking
long time to attain their nominal strength. However, during the measurement it has been
observed that the horizontal orbit was still drifting at the end of the 2 s window and, therefore,
the margin has been increased to 4 s resulting in a total flattop length of 13.037 s. The long
flattop duration allowed for long data integration windows of up to 1 s for each steerer setting
in order to reduce the measurement uncertainty. From that 1 s window, the first 950 ms are
used for data analysis. Also, sufficient time, 256 ms, was allocated for transitioning between
two steerer settings plus an additional 500 ms to allow the steerers to attain the new values.

6If the inaccuracy was too large, it could also be included as a separate fit parameter
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Figure 3.14: Maximal variation of the orbit response for the horizontal and vertical ORM block
due to a shift of the position of, respectively, the horizontal and vertical BPMs.

The ORM, dispersion and tunes have been measured for two optics, the nominal extraction
optics and a modified version thereof with the GS01QS1F quadrupole family adjusted by
∆K1L = −1.2 × 10−3 m−1. Due to the limited experimental time available (1 shift, i.e.,
8 hours), the beta beating could not be measured, unfortunately. Nevertheless, the tune
measurements serve as a verification for the derived quadrupole errors. For the measurement of
modified optics, the horizontal BPM in section 8 malfunctioned and, thus, had to be removed
from the subsequent analysis.

3.4.3 Orbit measurement

Figure 3.15 shows example position data obtained from the horizontal BPM in section 1
in response to the horizontal steerer in section 5. The steerer kick values are overlaid for
comparison. Figure 3.16 shows example position data in response to the vertical steerer in
section 1 together with the frequency spectrum obtained via Fast Fourier Transform (FFT).
Various noise lines are visible, for example the 50 Hz line due to the operating frequency of the
electrical grid.

3.4.3.1 Orbit drift at beginning of flattop

The orbit drift at beginning of flattop was most pronounced for the horizontal BPMs and it
varied from BPM to BPM. Also, for the vertical BPMs an orbit drift could be observed, albeit
of much smaller magnitude. Figure 3.17 shows the drift for different BPMs when no steerer
was trimmed. In the vertical data, the drifts are up to 20 µm and for an orbit response of
similar magnitude this will introduce a small yet noticeable bias (≈ 10 µm/mrad).

3.4.3.2 Orbit stability during flattop

From Figure 3.17 it becomes already apparent that the orbit stability during the foreseen
measurement window, which starts 2 s (nominal optics) and 4 s (modified optics) respectively
after the beginning of the beam process, is influenced by orbit drifts but also by the fluctuation
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Figure 3.15: Position data from the horizontal BPM in section 1 during measurement of the
horizontal steerer in section 5. The steerer setting is overlaid as the dashed curve (the curve is
inverted for better visibility). The two vertical axes are not aligned, i.e., there is no meaning in
the vertical position of the steerer relative to the position data. The red shaded areas indicate the
time windows available for orbit computation. The light shaded area (500 ms) has been excluded
because the orbit was still slightly drifting during those time windows. The solid shaded area
(950 ms) is used for orbit computation. The white area between two shaded areas is the allocated
transition time for the steerer magnets which is 256 ms. An additional 2 s are skipped at the
beginning of flattop because the horizontal orbit was still drifting during that time window. This
margin was later during the measurement increased to 4 s. [75]

Figure 3.16: Left: Position data from the horizontal and vertical BPM in section 1 during
measurement of the the vertical steerer GS01KM2DV also in section 1. Right: The corresponding
frequency spectrum obtained via FFT. For example, the line at 50 Hz due to the power supply
being connected to the electrical grid is clearly visible.
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(a) BPM in section 1.

(b) BPM in section 2

Figure 3.17: Position data from the horizontal BPMs in sections 1 and 2. The BPM data has
been averaged over 1000 consecutive data points, i.e., each data point in the plot corresponds to
about 8 ms.
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of BPM data. The stability of the orbit measurement is assessed by computing orbit estimates
from the remaining time window divided into sub-windows such that each sub-window has the
foreseen length of 950 ms. This is achieved by selecting a window from 2.000 ms to 10.550 ms
and dividing it into 9 intervals or by selecting a window from 4.000 ms to 10.650 ms and
dividing it into 7 intervals as shown in Figure 3.18.

(a) 2 s margin at beginning of flattop.

(b) 4 s margin at beginning of flattop.

Figure 3.18: Left: Position data from the horizontal and vertical BPM in section 6 during flattop.
The red dashed lines show the 9 intervals of length 950 ms for which the orbit has been computed.
Right: The corresponding orbit estimates from the 9 intervals. The shaded area indicates the
standard deviation, i.e., the ±1σ range.

3.4.4 ORM measurement

Due to the significant orbit drift at the beginning of flattop beyond the initial 2 s margin (see
Figures 3.17 and 3.18), the first steerer kick value must be dropped for the measurement data
for nominal extraction optics. This will add an additional 0.256 s + 0.5 s + 1 s = 1.756 s margin
and, thus, reduce the influence of the orbit drift. For the modified optics the margin had been
increased to 4 s, so all 5 steerer kick values can be used.

For each machine cycle, the orbit response rc is computed from a least squares fit of the 4
or 5 corresponding steerer kick values. The final response r is computed as the average over
the 5 consecutive cycles which were allocated for each steerer. The orbit response from each
cycle is inversely weighted with its squared standard error σc from the least squares fit of the
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respective response rc:
r = 1∑︁

c
1

σ2
c

∑︂
c

rc

σ2
c

(3.9)

A measurement uncertainty of ⪅ 4 µm/mrad has been achieved for the orbit response, with
minor variations among the different BPMs. The measurement uncertainty is dominated by
the cycle-to-cycle variation as a BPM resolution of ⪅ 1 µm has been achieved. Figure 3.19
shows the measured ORM for nominal extraction optics. Compared to the simulated ORM
from Figure 3.2, it can be observed that the general structure of the ORM is represented by
the measured data. The section-to-section symmetry of the horizontal (except for sections 4
and 6) and vertical dimension is reflected and the indicated coupling is weak.
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3.4.5 Dispersion measurement

Figure 3.20 shows the measured dispersion as well as the model dispersion before and after
fitting the ORM. The dispersion has not been included in the fitting.

(a) Horizontal dispersion. For the gain setting 40 dB the horizontal BPM
in section 8 malfunctioned and is thus not shown in the plot.

(b) Vertical dispersion. The nominal dispersion is zero because the model
is free of coupling.

Figure 3.20: Comparison of measured dispersion and model dispersion. The data has been
recorded at 30 dB and 40 dB gain setting in TOPOS. The measurement error is on the order of
1× 10−3 m and, thus, not visible in the plot.

3.4.6 Tune measurement

The measured tunes are shown in Figure 3.21. The following values have been measured:

1. Nominal extraction optics:

• qh = 0.3099± 0.0014
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• qv = 0.2820± 0.0011

2. Modified extraction optics:

• qh = 0.2914± 0.0008

• qv = 0.2871± 0.0007

(a) Nominal extraction optics. The model tunes are Qh = 4.290 and Qv = 3.290.

(b) Modified extraction optics. The model tunes are Qh = 4.273 and Qv = 3.295.
The measurement for modified optics was performed on a reduced time scale of 6 s
to limit the amount of position data generated.

Figure 3.21: Measurement of tunes for the two different optics. [75]

3.4.7 Fitting of quadrupole errors

Since linear coupling at SIS18 is generally corrected well, the analytical expression for the
Jacobian can be used for fitting. The results are compared to those obtained by using the
numerical Jacobian based on finite-difference approximation. The quadrupole errors are
estimated with Levenberg-Marquardt optimizer. Different approaches for mitigating the
quasi-degeneracy are tested in conjunction with the analytical Jacobian approach.

To obtain meaningful results that can be compared, it is important to mitigate the quasi-
degeneracy which is mainly driven by the D-T-quadrupole pairs. The methods SVD cutoff,
adding ∆K1L constraints to the Jacobian, and leaving out T-quadrupoles from the fitting are
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compared in terms of their results. The removal of T-quadrupoles is justified since they attain
small strengths during extraction optics and, thus, much smaller errors are expected for this
quadrupole family. For comparison, the results obtained without any method for counteracting
quasi-degeneracy are referred to as baseline method.

For each of the methods, the difference in estimates between the two optics for the F-
quadrupoles is presented; that is, the estimates obtained for modified optics subtracted by
the estimates obtained for nominal optics. Both estimates are obtained by starting the fitting
procedure from the nominal optics model. Ideally, this difference of estimates should be a
zigzag pattern between −1.2× 10−3 m−1 and 0 m−1 since the GS01QS1F family contains every
second F-quadrupole (i.e., the ones from odd section numbers).

Figure 3.22 shows the quadrupole error estimates when fitting all quadrupoles together
without mitigating quasi-degeneracy. Figure 3.23 shows the quadrupole error estimates when
fitting without T-quadrupoles. This removes the quasi-degeneracy from the system.

Figure 3.22: Estimated quadrupole errors when all quadrupoles are included in the fit. The
quasi-degeneracy between D- and T-quadrupoles is clearly visible. The shaded areas indicate the
uncertainty of the estimated quadrupole errors.

3.4.7.1 SVD cutoff

This is performed as a two stage process. The first stage uses Levenberg-Marquardt to find
a (quasi-degenerate) solution for all the involved parameters: quadrupole errors and gain
errors. The second stage freezes the thus found gain errors and restarts fitting of quadrupole
errors. During each update step, the system JTJ∆p = JT r (where ∆p is the parameter
update and r the residual vector) is solved by computing (JTJ)−1 via SVD and truncating a
predefined number of smallest singular values to zero. If the SVD spectrum shows a clear drop
in the magnitude of singular values then cutting the small singular values will be very efficient.
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Figure 3.23: Estimated quadrupole errors when the T-quadrupoles are not fitted. This eliminates
the quasi-degeneracy between D- and T-quadrupoles. The shaded areas indicate the uncertainty of
the estimated quadrupole errors. Since the uncertainty of the estimated quadrupole errors is small
in this case, it is only slightly visible.

Figure 3.24: Mean squared error of the diagonal and coupling blocks of the simulated ORM with
respect to the measured ORM before (left) and after (right) fitting. The convergence of the fitting
is clearly visible by the reduction of the mean squared error.
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However, for a more flat spectrum the number of singular values to cut is not obvious and
also the resulting estimate might suffer from the truncation. This strongly depends on the
use case and the investigated lattice. The optimal cutoff value can be found from simulations,
where random orbit uncertainties are cast on the nominal ORM and then inverse modeling
with different cutoff values is performed. The one that yields the smallest error in terms of the
quadrupole error estimates is then chosen. For the present use case, it has been found that
the best results are obtained when the number of cut values is set to 11.

3.4.7.2 ∆K1L weights

This approach adds weights to the Jacobian as described in [74]. The purpose of the weights
is to limit the amount of change in the ∆K1L parameters during each iteration of the fitting
process. The pattern of weights w is determined at every iteration by the following relationship:

w =
N∑︂

i=1

1
λi

vi (3.10)

where λi and vi are, respectively, the i-th eigenvalue and eigenvector of the ĴT Ĵ matrix
originating from the Jacobian Ĵ that represents only the ∆K1L parameters and which is
evaluated at zero gain errors. Then wk is the weight for the k-th quadrupole. The magnitude
of w is chosen a priori by a scan over different possible values and then fixed for every iteration.
It should be emphasized that for this approach, the nominal gain Jacobian Ĵ has been used
not only for the computation of the weights but it also replaced the ∆K1L part of the actual
Jacobian J which is evaluated at the current gain error estimate during each iteration. This is
done because when using J , the estimated gain errors would obfuscate the degeneracy pattern
of the quadrupoles at every iteration. Using Ĵ , on the other hand, allows to directly access
the quasi-degeneracy patterns and, thus, limit them by adding corresponding weights. Using
Ĵ in place of J does not hinder convergence as their agreement is sufficiently close.

3.4.7.3 Leaving out T-quadrupoles

Since the magnitude of T-quadrupole strengths is one order of magnitude smaller than the
one of other quadrupoles, their errors are expected to be similarly smaller. Hence, leaving
out T-quadrupoles from the fitting will alter the estimates of other quadrupoles (mainly
D-quadrupoles) only by a relatively small amount.

3.4.7.4 Comparison

Figure 3.25 shows a comparison between the three abovementioned strategies for counteracting
quasi-degeneracy. Since the quasi-degeneracy is mainly driven by the D-T-quadrupole pairs,
and T-quadrupoles have a one order of magnitude smaller nominal strength, leaving out the T-
quadrupoles from the fit is expected to effectively eliminate the quasi-degeneracy while yielding
accurate results (i.e., close to the actual errors). The method of adding ∆K1L constraints to
the cost function proves similarly efficient as it yields very similar results. The SVD cutoff
method shows a slight deviation, mainly because the singular value spectrum is rather flat and
removing too many singular values also removes too much information from the Jacobian. The

82



3.4 Experiment at the SIS18 synchrotron

same figure also shows the results obtained with the numerically computed Jacobian. It can
be seen that these results closely match the results obtained with the analytical Jacobian. The
SVD cutoff method shows a slight deviation between the two methods because the singular
value spectrum of the two Jacobian versions is slightly different.

(a) Results obtained by using the analytical Jacobian.

(b) Results obtained by using the numerical Jacobian.

Figure 3.25: Comparison of inverse modeling results for the F-quadrupoles when using different
methods for counteracting quasi-degeneracy. The plots show the difference in estimates for
the modified optics and the nominal optics. The two optics differ by the manual adjustment
of odd section number F-quadrupoles by ∆K1L = −1.2 × 10−3 m−1. All other quadrupoles,
including the F-quadrupoles from even section numbers, have not been modified. The dashed lines
indicate the expected (ideal) estimates for the quadrupole errors. The label Baseline refers to
the results obtained from Levenberg-Marquardt fitting without any countermeasure against the
quasi-degeneracy. The error bars due to ORM uncertainty are on the order of 1× 10−5 m−1 and,
thus, are not visible in the plot. [75]

Table 3.2 and Figure 3.26 show an overview of the measured tunes as well as the tunes
obtained from the inverse modeling results with the different methods. It can be observed that
for all methods except SVD cutoff, the predicted model tunes after fitting match the measured
tunes within the measurement uncertainty. The predicted horizontal tune from the SVD cutoff
method has a deviation of up to ≈ 3σ from the measured horizontal tune. This is due to the
rather flat singular value spectrum. The agreement of predicted with measured tunes confirms
that the fitted models capture the global optics of the real machine. It also emphasizes the
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effect of quasi-degeneracy, since also the baseline method reproduces the measured tunes
closely albeit the ∆K1L predictions deviate significantly as can be seen from Figure 3.25.

3.4.8 Fitting of gain errors

For the nominal optics measurement, the gain errors obtained from fitting the orbit response
matrix (see Figure 3.19) are shown in Figure 3.27. There are three things to be noted. First,
the BPMs consistently show a positive gain error, i.e., the observed response is too strong
compared to the model. The sensitivity of the 50 Ω terminated system which is used for
the BPMs depends on the beam frequency spectrum as explained in [85]. The frequency
dependency of the SIS18 BPMs is shown in Figure 3.28 [86]. The relevant frequency is about
20 MHz 7 and, thus, the sensitivity of the BPMs is about Sreal = (140 mm)−1. The set
sensitivity values have been derived during the calibration of the old high-impedance-based
system and for that reason they deviate from the sensitivity of the 50 Ω system which has been
installed in February 2021. The set sensitivity values of the BPMs are Sset = (170 mm)−1 [88].
The following relationship describes the dependency of the measured BPM signal ∆V/ΣV on
the position sensitivity Sreal of the system and on the transverse beam position xbeam [87]:

∆V
ΣV = Srealxbeam (3.11)

The beam position is thus inferred as the measured signal divided by the assumed sensitivity
Sset which is set in the BPM system:

xinferred = 1
Sset

∆V
ΣV = Sreal

Sset
xbeam (3.12)

Thus, the gain error eb of the BPMs is determined by:

eb = Sreal

Sset
− 1 (3.13)

For the above values of the sensitivity, the gain error evaluates to about 0.21. This is larger
than the estimated gain error but, nevertheless, the tendency is correctly reflected.

In addition, it can be observed that the horizontal steerers consistently show a noticeable
positive gain error, i.e., the applied kicks appear too strong when compared to the model.
Also, it can be observed that the vertical steerer in section 11 has a gain which is significantly
lower than those of other vertical steerers; this has been observed in [38, Fig. 3.16(b)] as well.

3.4.9 Fitting with dispersion

When the dispersion is included in the fitting process, the resulting predicted dispersion from
the fitted model agrees better to the measured dispersion as can be seen from Figure 3.29.
Some deviation however remains which suggest that additional, albeit small, model bias is
present in the real machine as compared to the model, possibly resulting from field errors of
the bending magnets. The resulting quadrupole error estimates change only to a small degree
when the dispersion is included in the fitting (compare Figures 3.23 and 3.30).

7The relevant frequency range depends on the longitudinal charge distribution, i.e., the bunch length for a
Gaussian distribution [87].
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Table 3.2: Resulting tunes from the various fitting methods compared to measured tunes.

Nominal optics Modified optics
qh qv qh qv

Measured value 0.3099 0.2820 0.2914 0.2871
uncertainty 0.0014 0.0011 0.0008 0.0007

Analytical Jacobian

Baseline 0.3098 0.2819 0.2920 0.2876
SVD cutoff 0.3129 0.2822 0.2949 0.2879

∆K1L weights 0.3095 0.2819 0.2918 0.2876
Without T-quads 0.3094 0.2819 0.2917 0.2876

Numerical Jacobian

Baseline 0.3100 0.2824 0.2917 0.2876
SVD cutoff 0.3128 0.2822 0.2948 0.2879

∆K1L weights 0.3095 0.2819 0.2918 0.2876
Without T-quads 0.3094 0.2819 0.2917 0.2876

Figure 3.26: Difference between predicted and measured tunes for the various optics and inverse
modeling methods. Top: ∆Qh,∆Qv for nominal extraction optics. Bottom: ∆Qh,∆Qv for the
modified optics. The different methods are indicated on the horizontal axis and are the same for
each subplot. (A) and (N) denote, respectively, the usage of analytical and numerical Jacobian.
The vertical bars indicate the measurement uncertainty. [75]
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Figure 3.27: Estimated BPM and steerer gain errors from fitting the ORM for nominal extraction
optics. The horizontal gain errors have been obtained from fitting the ORM with and without
including the dispersion. The vertical gain errors have been normalized such that the steerer
in section 1 has nominal gain. A similar normalization has been applied for the non-dispersion
estimated horizontal gain errors.

(a) Inverse sensitivity 1/Sx for the horizontal SIS18
BPMs.

(b) Inverse sensitivity 1/Sy for the vertical SIS18
BPMs.

Figure 3.28: The inverse sensitivity 1/S for the horizontal and vertical SIS18 BPMs [86, Courtesy
of T. Reichert]. The values have been obtained from simulations while the dashed curve shows the
theory values according to [85].
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Figure 3.29: Measured and estimated dispersion after fitting the ORM with and without the
dispersion.

Figure 3.30: Estimated quadrupole errors when the T-quadrupoles are not fitted. This eliminates
the quasi-degeneracy between D- and T-quadrupoles. The dispersion is included in the fit.
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4
Mitigating the effect of quadrupole

errors on beam transfer lines with
robust optimization

Multipurpose beamlines are used to provide beams to multiple target stations within the beam
transport system downstream of a synchrotron. For example, at GSI the beam transport system
comprises a complex network of bifurcating beamlines which share multiple common segments
and, thus, share a common set of quadrupoles for delivering the beam in an alternating fashion.
Figure 4.1 shows a schematic of the GSI High Energy Beam Transport (HEST) system including
the various experimental targets and the beamlines that connect them. Such beamlines are
usually underconstrained in terms of the feasible quadrupole settings. This means that a
beamline has more degrees of freedom — the quadrupoles’ strengths — than necessary to
achieve the desired beam parameters at its end as well as to minimize beam losses. Because
of this underconstrained property, there are many solutions for the quadrupoles’ strengths
which can be used to satisfy the constraints imposed by the desired beamline performance
and the desired beam parameters. Even though the set of constraints may strongly limit
the available space of quadrupole configurations, usually, there are still many configurations
which can satisfy the constraints. This means that there is no single optimal way in terms
of the quadrupoles’ strengths to operate such a beamline. Rather, the beamline may be
operated with a variety of configurations for the quadrupoles’ strengths. However, these
specific configurations are non-obvious and, typically, are found by a rather manual procedure
and by relying on the experience of accelerator physicists and operators.

Besides the need for a functional quadrupole configuration to successfully operate the
beamline, there are additional aspects which may influence the performance of a beamline.
These are described in the following. During operation, multipurpose beamlines must regularly
change their quadrupole configuration in order to allow beam transfer to different target
stations. Therefore, the magnetic hysteresis, if not canceled, will affect the actual strengths
of quadrupoles. Also, other effects like thermal drifts of power converters may influence the
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Figure 4.1: Schematic of the HEST network of beamlines together with SIS18, ESR and
CRYRING [89, Bildrechte: GSI Helmholtzzentrum für Schwerionenforschung GmbH]. The pion
production target is part of the HADES beamline which runs along the top of the schematic and it
is marked in yellow with "Pi". The TH2DFA screen is located right before the two quadrupoles at
the upstream bifurcation point.

effective strength of quadrupoles. These effects result in beamline optics of the real machine
which are different from the design values and, typically, it will lead to a degradation of the
desired beam properties, especially at the experimental target. This means that even if the
used quadrupole configuration has yielded good results during simulations of the beamline,
the results obtained on the real beamline may be very different. This is because of the errors
or deviations that are present in the quadrupoles as compared to their design parameters.
Removing those unwanted effects requires the operators to fine-tune the beamline setting of
the real machine which requires additional effort and consumes time that is, as a consequence,
not available for other purposes, e.g., running the experiments. Even when a beamline setting
is identical to a setting that has been successfully used in the past, it might require fine-tuning
by the operators to achieve the same beamline performance as before. This additional effort
required from machine operators is a common problem.

Therefore, it would be advantageous if the performance of a chosen beamline configuration
is only weakly influenced by the presence of possible quadrupole errors. This increases the
probability that the given configuration still satisfies the requirements on the beam parameters
and beam losses even under the influence of small quadrupole errors. Such a beamline
configuration which is robust against possible quadrupole errors will reduce the time that
operators must spend on fine-tuning the optics and, hence, increase the beam-on-target time
for experiments.

Beamline quadrupole configurations are usually computed with the help of computer
programs, specifically beam optics tools such as MADX. These tools offer so-called matching
capabilities which allow one to find solutions in terms of the quadrupoles’ strengths that satisfy
the desired beamline performance. In this context, the beamline performance is characterized
by a set of constraints on the beam parameters that are allowed during passage of the beamline
as well as at the experimental target. However, such solutions for the quadrupoles’ strengths
are found by satisfying the given constraints only and do not take into account the limited
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precision of the actual strengths of quadrupoles in the real beamline. It is therefore desirable
to develop and investigate methods for incorporating the aspect of robustness against possible
quadrupole errors into the process of computing beamline configurations.

Similar to how beamline configurations are found via tools like MADX, which solve an
optimization problem in the background, also the robust beamline configurations are to be
found with the help of optimization algorithms. Hence, this process is referred to as robust
optimization. The idea of robust optimization has been applied to various other scientific
disciplines, too [90, 91].

The goal of this chapter is to present a concrete concept for the robustness of beamline
quadrupole configurations which allows one to compare different configurations to each other but
also to allow for optimization algorithms to reliably identify those configurations with the help
of computer programs. In this context, the computation aspects of evaluating the robustness
of configurations are presented as well. Also, the robustness property is approximated with the
help of an analytical expression. This allows not only for an interpretation of the robustness in
terms of common accelerator physics concepts, but also allows for more efficient computation of
such robust configurations. In general, finding robust beamline configurations with computer
simulations is very compute intensive. For that reason, it is investigated how the computational
efficiency of finding such robust configurations can be improved. In this context, three different
approaches are presented and compared with each other. Each approach is compared in
terms of its efficiency with the basic computation procedure in order to show the respective
improvements. Eventually, the combination of these approaches allows to significantly improve
the computation of robust configurations. An efficient computation procedure is desirable
since it allows the identification of robust beamline configurations for a variety of beamlines
without much overhead.

To verify the presented methods, this chapter presents the experimental results for two
distinct beamlines. Sections 4.1 to 4.4 presents a detailed investigation on the beamline
robustness using the example of the HEST beamline leading to the TH2DFA fluorescence
screen upstream of the pion production target which is shown in Figure 4.2. The pion
production target can be moved into the beamline with the help of a dedicated stepper motor.
Its purpose is to produce pions during the interaction with the primary ion beam and these
pions are then further used by the downstream High Acceptance Di-Electron Spectrometer
(HADES) experiment. Besides working with the secondary pion beam, HADES can also work
with a low intensity primary ion beam (i.e., when the pion production target is moved out
of the beam passage). For pion production it is required to have high numbers of primary
beam particles and also to maintain a good focus at the pion production target in order to
produce sufficient numbers of pions. A loss of focus at the target decreases the pion yield
and causes HADES to collect less data during experimental runs. For primary ion operation,
a good beam focus at the HADES experimental target is required. It is necessary that the
beam spot size does not increase beyond the size of the target since otherwise the primary
beam particles might damage the surrounding equipment. Thus, the stability of the beamline
performance is very important. In addition, a stable beamline operation is required to keep
the beam losses constantly at a low value. Any increase in beam loss may lead to an increase

91



4. Mitigating the effect of quadrupole errors on beam transfer lines with robust
optimization

in the radiation levels by activating surrounding material and, therefore, leads to subsequent
issues with radiation protection.

Figure 4.2: Photo of the pion production target in the lab [92, Courtesy of C. Dorn]. The
different target bars are made of Beryllium and have different lengths. At the bottom, there is a
scintillating screen which can be used for basic beam alignment on the target.

The findings which are gathered from the analysis of the HEST beamline are then applied
to another beamline from Forschungszentrum Jülich (FZJ) in section 4.5. This beamline serves
the so-called BIGKARL experimental area and is located behind the Cooler Synchrotron
(COSY). While the polarity of quadrupoles on the HEST beamline network is fixed, the polarity
of quadrupoles on the BIGKARL beamline can be changed. Also, some of the BIGKARL
quadrupoles share a common power supply while the HEST quadrupoles are individually
powered. Thus, the two beamlines vary in the properties of their quadrupole magnets and,
therefore, allow to test the presented methods under these different conditions.

A previous analysis of the configuration space for the HADES beamline at GSI is presented
in [93].

4.1 Configurations of quadrupole strengths for beam transfer
lines

Setting up a beamline optics needs to respect various requirements. Typically, the beam should
be transported with maximum transmission and it should be focused on the experimental
target. The goal of finding a configuration for the quadrupoles of the beamline is to satisfy
these requirements. Often, the requirements can be satisfied by multiple distinct configurations
of the quadrupoles. That means, there is no single best way to satisfy the requirements, but
there is a variety of options.

The part of the HEST beamline leading to the TH2DFA fluorescence screen has an overall
length of about 90 m and consists of 9 quadrupoles with fixed polarity. These quadrupoles
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are grouped into three doublets and one triplet structure as can be seen from Figure 4.3.
Nevertheless, each quadrupole has an individual power supply.

Typically, a satisfying quadrupole configuration for operating the beamline under the
given requirements is found via domain knowledge, operator experience and/or with the help
of computer programs such as the LMDIF matching functionality from MADX [94]. This
functionality allows the user to enter a set of constraints for the beamline properties in terms
of the Twiss parameters 1 and the program then varies the quadrupole strengths in a dedicated
way such that the final quadrupole strengths lead to beamline properties which meet the
previously given constraints. The LMDIF function represents an efficient way to obtain a set
of quadrupole strengths which satisfy the constraints because it uses a dedicated optimization
algorithm as described in section 2.5.3.3. Therefore, it is advantageous to further reuse the
LMDIF function also in the context of finding robust quadrupole configurations, in order to
use its computational efficiency. The constraints of the beamlines are chosen such that no
losses along the beamlines are expected to occur and that the beam spot size at the target
locations is focused. In the case of the HEST beamline, the target location is the TH2DFA
fluorescence screen and in the case of the BIGKARL beamline at FZJ, the target location
is the MWPC45 profile grid directly upstream of the experimental area. The beam focus at
the target locations is realized by constraining the beta functions to appropriate values in
the MADX model. Similarly, the beta functions along the beamlines are constrained in order
to limit the beam size along the beamline and, thus, to prevent beam losses. Therefore, the
optimization constraints for the beamlines are expressed entirely in terms of the beamline
optics. This is a useful property, since LMDIF can handle such optics constraints during the
optimization procedure. Hence, by expressing the constraints in terms of the beamline optics,
full compatibility with LMDIF is achieved.

In the following, a configuration is said to be satisfying if it satisfies all optimization
constraints which correspond to the beamline requirements. The optimization domain, that
is, the space of all possible quadrupole configurations, is denoted with D. The sub-space of
all satisfying quadrupole configurations is denoted with S ⊂ D. The shape of this sub-space
is not obvious due to the nonlinear nature of the optimization problem (the dependency of
Twiss parameters along the beamline is nonlinear with respect to the quadrupoles’ strengths).
Figure 4.3 shows an example for a satisfying configuration of the TH2DFA beamline. An
important requirement is the beam focus at the target location, i.e., at the TH2DFA fluorescence
screen. Figure 4.4 shows the beta function at the target in the neighborhood of the example
beamline configuration from Figure 4.3; here, neighborhood refers to small quadrupole variations
around the original quadrupole strengths. As long as the beta functions remain below the
indicated threshold values, the neighboring configurations are also satisfying. However, those
configurations for which the beta function exceeds the threshold are not satisfying. It can be
observed that the influence of the various quadrupoles on the beta function at the target is
different for each quadrupole and that the K1L-region containing satisfying configurations is
of varying size for each quadrupole.

1While Twiss parameters originate from the description of synchrotron optics, they can also be used to
describe the optics at non-closed beamlines. This requires the knowledge of the Twiss parameters at the
beginning of the beamline which can then be propagated downstream with the help of equation 3.8.

93



4. Mitigating the effect of quadrupole errors on beam transfer lines with robust
optimization

Figure 4.3: Beta function along the TH2DFA beamline for an example quadrupole configuration.
The TH2DFA fluorescence screen is located at the end of the curves. The blue solid curve shows
βx and the orange dashed curve shows βy. The vertical lines indicate the positions of the nine
quadrupoles along the beamline.

4.2 Robustness with respect to quadrupole errors

The robustness of a beamline configuration refers to whether that configuration still satisfies
the beamline requirements under the influence of variations of the strengths of the quadrupoles
along the beamline. Thus, in the following a configuration is said to be robust if, for any
variation of quadrupole strengths within predefined boundaries, the losses along the beamline
and the beam spot size at the target do not increase beyond their limits imposed by the
beamline requirements 2. It is said to be non-robust otherwise, that is, if there exists a subset of
all feasible quadrupole variations for which these observables do exceed their limits. However,
such a binary classification of beamline configurations does not capture all the nuances that
make up a robust configuration. Hence, it is more convenient to work with a continuous
robustness score which indicates the degree to which variations of a beamline configuration
still obey the beamline requirements.

4.2.1 Definition of robustness

For the ith beamline configuration, the space of possible variations is denoted as Vi ⊂ D
where Vi could be, for example, a box or ball 3 of a fixed size or radius around the original
configuration in terms of the quadrupole strengths. In the following, the robustness score of
the ith beamline configuration is defined as the fraction of the volume of Vi that contains only
satisfying configurations, divided by the total volume of Vi:

robustness = |Vi ∩ S|
|Vi|

(4.1)

2One might also choose the invariance of the beam spot size under the influence of quadrupole errors as
an indicator for the robustness. This is analogous by adding an additional constraint that bounds the beta
function at the target from below.

3Here, the terms box and ball are used in a mathematical sense and denote the n-dimensional counterparts
of, respectively, a rectangular cuboid and a sphere in three dimensions.
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(a) Horizontal beta function.

(b) Vertical beta function.

Figure 4.4: Beta functions at the target screen for different quadrupole variations. The nine
subplots, from top to bottom and left to right, correspond to the nine quadrupoles of the TH2DFA
beamline. The horizontal and vertical axes are the same for each subplot. The horizontal
axis indicates a ∆K1L variation for each of the quadrupoles and the vertical axis indicates the
corresponding change of the beta function at the target screen. ∆K1L = 0 corresponds to the
example configuration from Figure 4.3 in each of the subplots. The dashed lines at βx,y = 1.8 m
indicate the beamline constraint at the target that must not be exceeded. It can be observed that
the various quadrupoles have a different influence on the resulting beta function. All variations
that lie under the dashed line are still satisfying but those that lie above are not.
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where | · | denotes the volume of the argument. Thus, the robustness score is bounded by
the interval [0, 1] where a value of 1 implies robustness against all feasible quadrupole errors
defined by Vi. In the following, the robustness score is simply referred to as robustness.

For numerical purposes, the robustness can be evaluated via Monte Carlo simulations
which generate random variations within the sub-space Vi and check whether these are still
satisfying the requirements. More details on the Monte Carlo evaluation of robustness are
presented in section 4.2.3.

However, before one can start with evaluating the robustness of a configuration, it is
important to make sure that the given configuration can be expected to not yield a low
robustness score in the first place because that would lead to wasted compute power. When
using LMDIF to produce candidate configuration for robustness evaluation, there is one more
aspect that needs to considered which affects the robustness that can be expected from the
produced configurations. This is presented in detail in the next section.

4.2.2 Improving robustness of quadrupole configurations obtained via
matching of beta functions

When beamline configurations are obtained via optimization routines such as LMDIF from
MADX, they may not be robust by default. This is because LMDIF stops as soon as it
manages to get the cost function of the optimization below the user-defined tolerance. If
the beta at target is specified to be βx,y ≤ βT

4, then the optimization will stop as soon as
this condition is met (for the purpose of illustration, other constraints and stopping criteria
are neglected at this point). As a result, one ends up with βx,y ⪅ βT , which is expected to
have low robustness since it resides very close to the threshold βT . In that case, even small
variations of the quadrupoles’ strengths can cause the beta functions to cross the threshold
βT . Hence, the configurations that are thus found by LMDIF should be fine-tuned in order
to improve their robustness. An effective and straightforward option is to perform a second
LMDIF matching run which attempts to bring the beta functions at the target towards zero.
It takes the previous solution as a starting point and replaces the constraints βx,y ≤ βT with
βx,y = 0 5. Since the new constraints can, most likely, not be satisfied, a compromise between
the new constraints at the target and the constraints for the beta functions along the beamline
will be reached. Typically, this leads to an increase of the beta functions along the beamline
and, hence, it is important to keep an extra margin for the beta functions along the beamline
during the first LMDIF run, in order to not invalidate configurations during the second LMDIF
run. Also, since LMDIF minimizes both beta functions at the target, horizontal and vertical,
it is possible that the optimizer trades one dimension for the other, for example, decreasing βx

while increasing βy, but still reducing the overall cost function. The same can happen when
the optimizer trades a smaller beta at target for larger values of the beta functions along the
beamline. This can lead to final configurations which do not satisfy the original constraints
because their β-functions have increased above the original threshold. The robustness of such

4If invariability of the beam size is desired, additional constraints βx,y ≥ βL may be added.
5While it would be possible to use βx,y = 0 directly from the beginning, a two-stage approach allows to add

dedicated matching constraints during the first LMDIF run which help to improve the robustness of produced
configurations as will be described in section 4.3.1. These additional constraints are then removed during the
second LMDIF run.
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configurations can, however, be nonzero (typically in the lower percent regime), because the
β-variations produced by the quadrupole errors reach back into the valid region, i.e., below
βT , even though the β-value of the original configuration lies outside of it. However, because
such configurations already infringe the original constraints without applying any quadrupole
errors, they can be easily rejected and excluded from the further analysis.

The overall procedure for computing robust configurations is visualized in Figure 4.5. The
final step refers to the evaluation of the robustness via Monte Carlo simulations. This step is
detailed in the next section.

4.2.3 Evaluating robustness of quadrupole configurations

Evaluating the robustness of a configuration requires probing the relevant volume Vi which
contains the possible quadrupole errors. Since this volume increases exponentially with the
number of involved quadrupoles, the systematic probing of the configuration space is not
feasible to obtain accurate results. Instead, one can use random Monte Carlo sampling.

In most cases, large numbers of samples are required for the Monte Carlo simulation to yield
accurate results and, hence, evaluating the robustness is expensive in terms of compute time.
Compute clusters such as the Green IT Cube at GSI allow for a high degree of parallelism,
yet the overall elapsed time can be large if scanning through thousands of possible beamline
configurations in terms of their robustness.

For the evaluation of robustness, a magnitude of combined quadrupole errors of ∆(K1L) =
1×10−3 m−1 is chosen. This choice is motivated by the fact that the presented methods shall be
tested during a dedicated and controlled beamline experiment. Such an experiment will apply
artificial quadrupole errors to the beamline and observe the effect of the errors on the beam
behavior. Besides the artificially applied quadrupole errors, the beamline quadrupoles will
contain already some natural quadrupole errors which are present before any artificial errors
are applied. In order to allow for controlled experimental conditions, i.e., a situation where it
can be expected that the artificial quadrupole errors are not obfuscated by the presence of the
natural errors, the magnitude of artificial errors must be significantly larger than the one of
natural errors. The HEST power supplies have an accuracy of approximately 100 ppm and a
precision of approximately 200 ppm. Therefore, the total relative uncertainty of the magnets’
current setting is about δ = ∆I/I = 3× 10−4 which also applies to the relative uncertainty of
the magnets’ K1 values. The limit for the strength of HEST quadrupoles is approximately
(K1L)max = 0.6 m−1 and, thus, the maximum combined error of the 9 quadrupoles is of the
order

√
9δ(K1L)max = 0.54× 10−3 m−1. Therefore, an artificial error of combined magnitude

∆(K1L) = 1 × 10−3 m−1 is sufficiently large to be distinguished from natural errors. The
magnitude of the artificial combined error is the magnitude or length of the corresponding
vector of individual quadrupole errors. It is noted that for small strengths of individual
quadrupoles, this likely overestimates the actual quadrupole error, however, if a configuration
is robust with respect to the overestimated errors, it will also be robust with respect to the
real errors.

For the following simulation study, a dataset of 10 000 quadrupole configurations for the
TH2DFA beamline has been created. These were obtained by randomly sampling an initial
setting for the quadrupoles in D which was then given as a starting point to the LMDIF
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Figure 4.5: Left: Flow chart showing the procedure for computing robust beamline configurations.
The sequence of steps refers to the computation of a single beamline configuration. The starting
point for the procedure are the randomly sampled K1L values of quadrupoles. This random
sampling ensures the variance when computing multiple configurations by executing the sequence
of steps multiple times. The random K1L values form the starting point for the LMDIF matching
routine from MADX. This matching produces a set of new K1L values which satisfy the desired
beam parameters. In order to increase the distance of beta functions to their thresholds, another
LMDIF matching is performed with β = 0 as the constraint for the target location (this causes the
configuration to move away from the original threshold β ⪅ βT ). Finally, the robustness of the
configuration is evaluated via Monte Carlo simulations. This involves the random generation of K1L
variations with relevant magnitude and applying them to the previously found configuration. For
each random variation, it is checked whether the new configuration, which contains the variation,
still yields the desired beam parameters, i.e., whether it is still satisfying. The number of varied
configurations which are still satisfying divided by the total number of variations which have been
applied is then the computed value for the robustness, similar to equation 4.1.
Right: The same computation procedure is shown in terms of the beta functions at the target
location. In the top plot, the beta functions at the very beginning of the procedure, i.e., emerging
from the random starting point of K1L values, are shown together with the beta functions obtained
after the first and second LMDIF steps. In the bottom plot, the beta functions emerging from
random quadruple variations during Monte Carlo are shown as well. Only those variations are
satisfying which remain below the red dashed threshold line at βT = 1.8 m; in the plot, these are
surrounded by a green dotted rectangle.
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matching. As described in section 4.2.2, the LMDIF matching was performed as a two stage
process. The first stage, LMDIF-1.8, attempts to bring the beta functions at the target below
the desired threshold of 1.8 m while using a set of more-than-necessary strict constraints for the
beta functions along the beamline to prevent beam loss. The second stage, LMDIF-0, continues
from the first stage’s solution and tries to minimize the beta functions at the target towards
β = 0 m while using a set of constraints for the beta functions along the beamline that is relaxed
by 5 % with respect to the first stage. Only a small fraction of the random starting points
resulted in a successful LMDIF-1.8 matching result (≈ 2.53 %). Thus, the generation of this
dataset required to scan through about 400 000 possible beamline configurations, performing
LMDIF matching for each, which has been realized with the help of the Green Cube computing
cluster. For the final 10 000 configurations, the robustness according to definition 4.1 has
been computed using 200 000 random quadrupole variations per configuration. The variations
of the nine quadrupoles were uniformly distributed inside a 9-ball of radius 1 × 10−3 m−1

in K1L-space around each configuration, corresponding to the nine quadrupoles along the
beamline. Figure 4.6 shows a histogram of the robustness scores of all configurations in
the dataset. It can be observed that most configurations have low robustness while a few
configurations have high robustness. Nevertheless, it is noted that while a robustness of, e.g.,
0.8 resides on the high end of the interval [0, 1] of possible robustness scores, it still implies a
20 % chance that the given configuration will fail the beamline requirements which might not
be acceptable from the view of the operators or for an experiment which is served by that
beamline. The large number of configurations with zero robustness emerge as a result of the
LMDIF-0 stage which pushed the beta function at some location, either the target or along
the beamline, beyond the allowable threshold in order to further minimize the beta functions
at the target (see section 4.2.2). These configurations are not satisfying and, thus, will be
excluded from the further analysis. It is easy to reject these configurations as non-robust since
they infringe the original constraints of the optimization problem. This dataset is referred to as
baseline in the following. This is because several improvements of the computation procedure
will be presented and are compared to this baseline dataset.

Since a Monte Carlo estimate is always subject to statistical errors emerging from the finite
number of randomly sampled configurations, also the thus estimated robustness of beamline
configurations has an associated Monte Carlo error. Therefore, to assess the quality of a given
robustness estimate, it must be described not only by the estimated value but also by its
Monte Carlo error. In order to obtain reliable estimates, it is important to investigate the
details of the Monte Carlo simulation process and how the results should be interpreted to
ensure their reliability. An important parameter in this context is the number of random
Monte Carlo samples that are used to derive the estimate. Larger number of samples imply a
smaller Monte Carlo error but also impose a larger computation effort. Thus, it is important
to investigate how the right balance in terms of the number of Monte Carlo samples can be
identified. These details are presented in the next sections.

4.2.3.1 Monte Carlo simulations

The definition of robustness from equation 4.1 refers to an entire sub-space Vi of the problem
domain D. Since the systematic evaluation of that entire sub-space is infeasible, it can be
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Figure 4.6: Histogram plot of the robustness scores for the 10 000 configurations of the baseline
dataset. The robustness has been evaluated according to equation 4.1 via Monte Carlo simulations.
To do so, for each configuration 200 000 random quadrupole variations have been generated inside
the 9-ball of radius 1 × 10−3 m−1 in K1L-space, centered around that configuration. The thus
obtained robustness scores of the 10 000 individual configurations are summarized in the histogram.

approximated by randomly sampling variations of the original configuration inside Vi and
then evaluating the properties of these variations. In the following, the original beamline
configuration whose robustness is to be evaluated, is referred to as root configuration.
The randomly generated variations of this root configuration in Vi are referred to as leaf
configurations. The Monte Carlo simulation takes a root configuration as input and generates a
number of leaf configurations from it for which it computes the beta functions to compare them
against the original constraints of the root configuration. The robustness is then estimated as
the number of leaf configurations which still satisfy the original constraints divided by the
total number of generated leaf configurations, according to equation 4.1.

4.2.3.2 Statistical error analysis

Estimating robustness via Monte Carlo simulations is a statistical process which leads to
corresponding errors of the estimates. This statistical error, which is introduced by the usage
of Monte Carlo simulations, must be accounted for when interpreting the obtained results.

Estimating the fraction of satisfying configurations inside the volume Vi is similar to
integrating a function f over the domain Vi where f(x) ≡ 1 if x represents a satisfying
configuration and f(x) ≡ 0 otherwise, for x ∈ Vi. For N Monte Carlo samples, the estimate is
given as:

⟨f⟩ = 1
N

N∑︂
i=1

f(xi) (4.2)
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The standard deviation σN of the Monte Carlo samples is given by (writing fi ≡ f(xi) and
using f2

i = fi):

σ2
N = 1

N − 1

N∑︂
i=1

[fi − ⟨f⟩]2

= 1
N − 1

[︄∑︂
i

f2
i − 2N⟨f⟩2 +N⟨f⟩2

]︄

= 1
N − 1

[︄∑︂
i

f2
i −N⟨f⟩2

]︄

= N

N − 1
[︂
⟨f⟩ − ⟨f⟩2

]︂
(4.3)

Thus, the standard error of the estimate ⟨f⟩ is given by:

standard error of ⟨f⟩ ≡ σN√
N

=
√︄
⟨f⟩ − ⟨f⟩2
N − 1 (4.4)

The standard error has a maximum at ⟨f⟩ = 1
2 and in order to decrease it to less than or equal

to 0.01 the Monte Carlo simulation requires at least 2501 samples.
Alternatively, it can be tested if the robustness ρ of a given configuration is no less than a

desired predefined threshold τ , that is, ρ ≥ τ . This comprises a statistical test with a one-sided
alternative. This statistical test has associated Type-I and Type-II errors which are defined in
terms of a null hypothesis. In the present context, the null hypothesis is that the robustness
of the given configuration is less than τ , that is, ρ < τ ; this is the complementary statement
to the one being tested.

• A type-I error, also known as "false positive", occurs when the null hypothesis is mistakenly
rejected despite it’s actually true. That is, the configuration is assumed to have a
robustness greater than or equal to τ when it actually does not.

• A type-II error, also known as "false negative", occurs when the null hypothesis is not
rejected despite it’s actually false. That is, the configuration is assumed to have a
robustness less than τ when it actually does not.

Thus, when testing for the robustness via Monte Carlo simulations in this way, one must
specify acceptable bounds for the Type-I and Type-II errors. This determines the minimum
number of samples needed to satisfy these bounds. In general, a small Type-I error is desirable
since this type of error implies trusting an invalid result. The consequence would be to accept a
beamline configuration under the assumption that it has a robustness no less than the required
threshold τ but in reality its robustness is less than the threshold. The Type-II error bound
does not have to be that stringent since that type of error only implies that an opportunity to
accept a robust configuration is missed and, thus, it will only prolong the computation time to
find those configurations. Thus, a suitable choice for the Type-I error is α = 1× 10−3 and for
the Type-II error is β = 1× 10−1.
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The following relationship can be used to determine the required minimum number of
samples to satisfy the error bounds [95]:

N =
τ(1− τ)

(︃
z1−α + z1−β

√︃
ρ(1−ρ)
τ(1−τ)

)︃2

(ρ− τ)2 (4.5)

where α and β are, respectively, the Type-I and Type-II error rates and ρ is the expected
robustness of a configuration. The minimum difference to be distinguished between the actual
and estimated robustness is 0.01 and, thus, the denominator evaluates to 1× 10−4. In [95] it
is shown that the normalized test statistic z

z = ρ− τ√︂
τ(1−τ)

N

(4.6)

follows the Student’s t-distribution under the normal approximation of the binomial distribution.
This allows to approximate the percentiles of this distribution by the corresponding percentiles
of the normal distribution N(0, 1). These percentiles are denoted by z1−α and z1−β. This
approximation is valid if N ⪆ 200 holds [95].

Table 4.1 shows the minimum number of required samples for various thresholds τ according
to equation 4.5.

Table 4.1: Minimum number of Monte Carlo samples to test whether the robustness ρ of a given
configuration is no less than the threshold τ for different values of τ according to equation 4.5.
The bounds for the Type-I and Type-II error rates are, respectively, 1× 10−3 and 1× 10−1. The
minimum difference in terms of the robustness that should be distinguished is 0.01.

Threshold Number of samples
0.99 946
0.98 3138
0.97 4993
0.96 6793
0.95 8550

4.2.4 Approximating robustness from Twiss data

While Monte Carlo simulations allow for obtaining accurate estimates of a configuration’s
robustness, they are also expensive to compute since it requires to compute the Twiss parameters
of the beamline optics for each of the leaf configurations. Especially if the configuration turns
out to have low robustness, it would have been advantageous to if this property could be assessed
before starting the Monte Carlo evaluation. Hence, it is desirable to have a way to assess the
robustness of a configuration without directly using Monte Carlo simulations but using a quick
approximation method instead. This allows to reject non-promising configurations without
much computation effort and, thus, saves great amounts of compute time. In the following, an
approach is presented which allows to approximate the robustness of a configuration from only
its own Twiss parameters. Three different methods for computing the robustness approximation
are compared in terms of their accuracy and their required computation effort.
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The transformation of Twiss parameters through a beamline element is described by
equation 2.88: 

β

α

γ

 =


C2 −2SC S2

−CC ′ SC ′ + S′C −SS′

C ′2 −2S′C ′ S′2



β0

α0

γ0

 (4.7)

where
(︄
C S

C ′ S′

)︄
is the 2× 2 transfer matrix of the beamline element for either the horizontal

or the vertical dimension and (β0, α0, γ0) are the Twiss parameters for that dimension directly
upstream of the beamline element. This transformation applies to uncoupled optics, but can
be extended to coupled optics, too. Thus, the Twiss parameters at a downstream location are
given by a sequence of matrix multiplications.

The thin lens approximation represents a quadrupole with integrated strength K1L by the
following transfer matrix: (︄

1 0
±K1L 1

)︄
(4.8)

where a negative sign represents a focusing quadrupole. The transfer matrix of a drift space of
length L is given by: (︄

1 L

0 1

)︄
(4.9)

For the following derivation, the last quadrupole of the beamline is described by the
thin lens approximation. This allows to derive an expression of the Twiss parameters at the
target in terms of that quadrupole’s strength. The subscript {β, α, γ}0 is used to denote the
Twiss parameters directly upstream of the last quadrupole and {β, α, γ}q to denote the Twiss
parameters at the exit of the quadrupole. {β, α, γ}t denotes the Twiss parameters at the target
location which is downstream of the quadrupole. Using equation 4.7, the beta at target is
given by the following equation:

βt = βq − 2Lαq + L2γq (4.10)

where L is the length of the drift space between the last quadrupole and the target.
In the following, K denotes the last quadrupole’s integrated strength K1L in order to

prevent confusion with the length L from the drift space. Also, the sign from the focusing
transfer matrix is absorbed into K, i.e., K ≡ −K1L. Thus, K < 0 represents a thin focusing
quadrupole with the following transfer matrix for either the horizontal or vertical dimension:(︄

1 0
K 1

)︄
(4.11)
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Finally, ∆≪ K denotes an error of the quadrupole’s strength, i.e., K → K + ∆. This error
modifies the Twiss parameters at the exit of the quadrupole in the following way:

β̃q = βq

α̃q = αq − β0∆

γ̃q = γq + 2β0K∆− 2α0∆ + β0∆2

= γq − 2αq∆ + β0∆2

(4.12)

where β̃q, α̃q, γ̃q denote the modified Twiss parameters. This, in turn, leads to a change of the
beta function at target, β̃t:

β̃t = βt + 2L (β0 − Lαq) ∆ + L2β0∆2 (4.13)

This implies that the first order contribution of the error ∆ is eliminated if αq = β0
L holds.

Since αq = α0 −Kβ0 this further implies:

K = α0
β0
− 1
L

(4.14)

which represents a condition for the strength of the last quadrupole to exhibit robust behavior
with respect to the beta at target.

However, if the beta function at the quadrupole, β0, is large then the second order
contribution in equation 4.13 becomes effective and, thus, will influence the robustness, too.
This can be seen from Figure 4.4 and Figure 4.3. Those quadrupoles where the beta function
is large show a nonlinear dependency for the beta function at the target. Thus, the quantity
that combines the linear and quadratic terms may serve as an indicator for the variation of
the beta function at the target location:

beta variation ∝ arg max
∆

|2L (β0 − Lαq) ∆ + L2β0∆2| (4.15)

where ∆ can assume any value within the relevant bounds.
While the above derivation only addressed the last quadrupole of the beamline, it can be

extended to any other quadrupole of the beamline as well. The only aspect which changes is
the length of the drift space downstream of the quadrupole. Instead, the drift space between
two consecutive quadrupoles can be used for this purpose. If the change of Twiss parameters
at the next downstream quadrupole is small, the overall effect on the beta functions at the
target can be expected to be small, too, and vice versa.

Besides the variation of the beta function at the target or, in short, beta variation, another
important aspect for a configuration’s robustness is the margin of the beta functions to their
corresponding threshold values. If this margin is large then also larger beta variations will not
cross the threshold and, thus, the configuration is more robust. In the following, this margin
is referred to as beta margin.

To obtain an estimate for the robustness, equation 4.15 is computed for each quadrupole
and for both K1L → K1L±∆ in each of the dimensions, horizontal and vertical. For each
dimension, the maximum absolute value of the beta variation is chosen. Then, the resulting
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quantities are divided by their corresponding beta margin and the two dimensions are combined
in quadrature. Finally, the resulting values for each quadrupole are combined in quadrature
and the inverse of this quantity serves as an indicator for the robustness of the configuration.
This procedure is illustrated by the pseudocode shown in Program 1.

Program 1 Pseudocode to compute a robustness estimate for a given beamline configuration.
compute_beta_variation is the selected method for computing the beta variation at the
target and must be chosen by the user, e.g., equation 4.15.
beta_margin(X) ← beta_threshold(X) - beta_at_target(X)
beta_margin(Y) ← beta_threshold(Y) - beta_at_target(Y)
for each quadrupole in Quadrupoles do

for each dimension in {X,Y} do
beta_variation(quadrupole, dimension) ← compute_beta_variation(...)

effect(quadrupole) ← sqrt(
(beta_variation(quadrupole, X) / beta_margin(X))^2

+ (beta_variation(quadrupole, Y) / beta_margin(Y))^2
)

estimate = 1/sqrt(sum(effect^2))

Another option for computing the beta variation is to focus only on the linear term in
equation 4.13 and use its magnitude as an indicator. The main difference to the previous
approach with equation 4.15 is that when only the linear term is considered, the specific
value for ∆ merely serves as a scaling factor and is the same for each set of Twiss parameters
corresponding to a configuration. Thus, ∆ may be neglected altogether when computing
the estimate for robustness. Also, if ∆ is small a locally linear approximation is suitable.
Again, the length of the drift space between two consecutive quadrupoles, or, between the last
quadrupole and the target location, is used for the value of L:

beta variation ∝ |β0 − Lαq| (4.16)

The above considerations were done with the help of the thin lens approximation for
quadrupoles in order to obtain an analytical expression for the variation of the beta function in
terms of the quadrupole errors. This introduces an error due to the approximation with thin
transfer matrices compared to the thick transfer matrices of the quadrupoles. Nevertheless,
also the thick transfer matrices of quadrupoles can be used to obtain estimates for the beta
variation at the target. This, however, requires to compute the entire Twiss transformation
matrix along the beamline for each of the considered quadrupole errors and, thus, introduces a
much greater computational effort than simply using equation 4.16 or even equation 4.15. The
beta variation is then computed by considering K1L→ K1L±∆ for each of the quadrupoles,
computing the Twiss parameters at the end of the beamline and choosing the maximum
beta variation given by either +∆ or −∆. Thus, this method acts as a third option for
compute_beta_variation in Program 1, besides equation 4.16 and equation 4.15.

A comparison of the three approaches is shown in Figure 4.7. It can be observed that the
method of using only the linear contribution via equation 4.16 yields a dependency which is
close to the method of using thick quadrupole transfer matrices. While the latter method is
more accurate in terms of the Twiss computation via transfer matrices, it is also significantly

105



4. Mitigating the effect of quadrupole errors on beam transfer lines with robust
optimization

more expensive to compute. Since the method of using equation 4.16 yields very similar
results, it can serve as the method for computing robustness approximations to either accept
or reject certain configurations in a computationally cheap way before computing the accurate
robustness estimate via Monte Carlo simulations. This is done by first collecting the Monte
Carlo robustness estimates together with their robustness approximations for a number of
configurations during the robust optimization procedure. Then, for any new configuration, it
is checked whether the robustness approximation of that configuration lies in the top 10 % of
robustness approximations of already collected configurations. If it does, its actual robustness
is computed via Monte Carlo simulation. Otherwise, the configuration is discarded without
the need for computing the Monte Carlo estimate.

4.3 Robust optimization

The entire procedure for finding robust beamline configurations is referred to as robust
optimization. It follows the steps which have been discussed in the previous sections, including
two-stage LMDIF matching via MADX (β ≤ βt followed by β = 0), Monte Carlo simulations
for robustness computation, and it may use robustness approximation from Twiss parameters
in order to speed up the computation. Besides these steps, the baseline procedure, further
improvements of the robust optimization procedure are possible in order to increase the
efficiency with which high robustness configurations are found. In the following, three further
improvements are presented and compared to the baseline procedure. The various improvements
can be used together in order to surpass the efficiency of the baseline procedure by a great
margin.

First, the baseline procedure for finding robust configurations is reviewed using the example
of the TH2DFA beamline. This procedure is also visualized in Figure 4.5. The first step
randomly samples configurations within the entire problem domain D which comprises the
possible K1L values of all quadrupoles of the beamline. These random configurations are then
given as a starting point to the LMDIF-1.8 matching which uses the constraints βx,y ≤ 1.8 m
at the target screen. The next step is to take the resulting K1L values from LMDIF-1.8
matching and use them as a starting point for the subsequent LMDIF-0 matching which uses
the constraints βx,y = 0 at the target screen. As discussed in section 4.2.2, the additional
LMDIF-0 step improves the robustness that can be expected from the configuration. Finally,
the robustness of the configuration is computed via Monte Carlo simulations.

The goal of the robust optimization procedure is to find a configuration which satisfies
the beamline requirements and, in addition, has high robustness against possible quadrupole
errors. The desired robustness is denoted by τ and, thus, the robustness ρ of a configuration
must satisfy ρ ≥ τ in order to meet the desired robustness. While it is possible to use the
above baseline procedure (Random → LMDIF-1.8 → LMDIF-0) until a configuration is found
which satisfies ρ ≥ τ , this might require large amounts of compute time or, for high values
of τ , might not even return a result in an acceptable amount of time. For example, in the
dataset for the TH2DFA beamline which contains 10 000 configurations that were generated
according to this baseline procedure, there is not a single configuration which satisfies ρ ≥ 0.99
and there are only 5 configurations which satisfy ρ ≥ 0.98. Since the success rate of the
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(a) Approximating the robustness of configurations
when beta variations are computed via equa-
tion 4.15.

(b) Approximating the robustness of configu-
rations when beta variations are computed via
equation 4.16.

(c) Approximating the robustness of configurations
when beta variations are computed by using the
thick quadrupole transfer matrices along the entire
beamline and the maximum variation is obtained
by two-point-probing for the relevant errors ±∆ of
each quadrupole. That is, (K1L)i → (K1L)i ±∆ is
applied ∀i where i refers to the ith quadrupole. For
each (K1L)i ± ∆ the variation of the beta function
at the target with respect to the case where no
error is applied is computed.

Figure 4.7: Comparison of different methods for approximating the robustness of beamline
configurations with methods based on Twiss parameters. These methods are computationally
cheap compared to the computation that is required by Monte Carlo simulations. In each of the
plots, the horizontal axis indicates the robustness computed via Monte Carlo simulations which
serves as a reference value. The vertical axis indicates the robustness approximation corresponding
to the respective subplot. These robustness approximations are obtained from Program 1 and each
subplot uses a different method for computing the beta variation via compute_beta_variation
as indicated in Program 1. The caption of each subplot contains information about what method
has been used for compute_beta_variation for the respective subplot.
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LMDIF-1.8 matching step was only about 2.5 %, i.e., only 2.5 % of the random starting points
could be successfully matched against the beamline constraints, finding a configuration with
ρ ≥ 0.98 takes about 80 000 LMDIF matching runs (counting LMDIF-1.8 followed by LMDIF-0
as a single LMDIF run) and about 1800 Monte Carlo robustness evaluations (taking into
account the LMDIF-0 success rate). The combined LMDIF step takes on average 6.5 s± 0.2 s
and robustness evaluation with 3138 leaf configurations (according to Table 4.1) takes about
26.6 s± 0.4 s. Thus, the average total compute time to find one configuration which satisfies
ρ ≥ 0.98 amounts to about 158 ± 4 hours (on a single computer). Therefore, finding a
configuration which high robustness is hardly feasible without access to a computing cluster.
Also, for the TH2DFA beamline, by using this procedure the highest robustness that was
found is ρ ≈ 0.98 and not a single configuration with ρ ≥ 0.99 was found. Here it should be
noted that ρ = 0.98 implies a chance that the beamline will fail to meet its requirements that
is twice as large as for ρ = 0.99 6.

In the following, a number of improvements of the baseline robust optimization procedure
are presented which allow to decrease the required compute time for finding configurations
with high robustness and even allow to find configurations which satisfy ρ ≥ 0.99.

4.3.1 Improved matching criteria by limiting the beta functions in the
upstream part of the beamline

The initial LMDIF matching step, which transforms the random starting point for K1L values
into a set of meaningful values which can be used to satisfy the beamline requirements, is of
great importance for the overall optimization procedure. As a gradient-descent algorithm, it is
effective in finding a local minimum in its neighborhood (for details about the algorithm, see
section 2.5.3.3). An effective measure to increase the robustness of candidate configurations
that are produced by the LMDIF step is to add other appropriate matching criteria to this
step. These criteria should be chosen in such a way that the robustness which can be expected
from the produced configurations is increased.

Such a criterion can be derived from the observation that quadrupoles where the beta
functions are large may have a great influence on the variation of the beta functions at the
target. This can be seen from equation 4.13 which describes the beta variation at the target as
a function of the quadrupole error, as well as from Figure 4.3 in conjunction with Figure 4.4
which show the beta functions of an example configuration at the various quadrupoles as well
as the effect of errors of those quadrupoles on the beta function at the target. Thus, it is
desirable to limit extreme excursions of the beta functions along the beamline. Typically, the
beta functions at the last quadrupole doublet before the target need to attain large values
in order to reach the desired focus at the target. However, upstream of the last quadrupole
doublet the beta functions can be kept at a moderate level. This is achieved with the help of
additional constraints for the LMDIF matching for the beta functions at the upstream part
of the beamline. Specifically, for the TH2DFA beamline the beta functions until the fifth
quadrupole, i.e., about one third of the total beamline length, has been limited to 20 % of the
maximum allowable beta function. While this explicitly limits the beta functions at the first
five quadrupoles of the beamline, it also tends to reduce the extent of the beta functions at

6Comparing different robustness values can be done on a logarithmic scale to reveal these implications.
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the downstream quadrupoles. This is because when the beta functions assume already large
values at the beginning of the beamline, the beta functions tend to assume a pattern of strong
focusing already at upstream quadrupoles which also causes the beta functions to attain large
values at those quadrupoles. This is visualized in Figure 4.8 which compares the beta functions
from a configuration obtained with the baseline procedure and a configuration obtained when
additionally limiting excursions of the beta functions at the first five quadrupoles. It can
be observed that due to the additional constraint, the beta functions are smoother in the
upstream part of the beamline which causes the effect of those quadrupoles that are located in
that part on the beta function at the target to be weaker.

Figure 4.8: Comparison of beta functions for a configuration obtained with the baseline procedure
and a configuration obtained when additionally limiting excursions of the beta function at the
first five quadrupoles of the beamline. The dashed vertical lines indicate the positions of the
nine quadrupoles as well as of the target screen (the last vertical line). While the vertical beta
function of the baseline configuration has a large excursion in the quadrupole triplet at 20 m,
this is prevented with the additional constraint on the beta function for the low-β configuration.
Nevertheless, this configuration eventually achieves the same beam focus at the target at the end
of the beamline.

Figure 4.9 shows a histogram plot which summarizes the robustness scores of many
configurations that are obtained with the help of the additional beta function constraint at the
beginning of the beamline. Comparing with Figure 4.6, it can be observed that the robustness
of produced configurations tends to be higher when the additional constraints on the beta
functions are in place.

4.3.2 Application of an additional global optimizer

A further improvement of the robust optimization procedure is to exchange the random
search, which produces the K1L starting points for the initial LMDIF step, with a dedicated
optimization algorithm. Since the overall problem domain D is vast due to the number of
quadrupoles and their K1L limits, and since the regions of satisfying configurations in that
domain follow a highly nonlinear dependency without any obvious global structure, it is best
to use a derivative-free optimizer in order to avoid getting stuck in local minima. The local
optimization is already covered by the LMDIF step which is based on a gradient-descent
method. Figure 4.10 shows the distance in K1L-space that is traveled by the LMDIF steps
as a fraction of the maximum possible distance in D. The maximum possible distance in D
is given by the distance between the minimal and maximal K1L values of all quadrupoles,
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Figure 4.9: Histogram plot of the robustness scores of 4500 configurations that are obtained
by using additional constraints for the beta functions in the upstream part of the beamline.
These additional constraints prevent large excursions of the beta functions at the beginning of
the beamline. Such large excursions make the beta function at the target more susceptible to
quadrupole errors. By preventing such excursions, the robustness of produced configurations is
improved in comparison to the baseline procedure (see Figure 4.6).

i.e., |((K1L)1,min, . . . , (K1L)9,min)− ((K1L)1,max, . . . , (K1L)9,max)| ≈ 1.72 m−1. The distance
that is traveled by LMDIF is given by the difference between the initial starting point for the
K1L values and the final K1L values that it produced. It can be observed that the distance
traveled by LMDIF is very small compared to the dimension of the full space D and, thus,
using a global optimizer helps in efficiently covering the problem domain on a global scale.
The purpose of the optimizer is to generate the starting points for the initial LMDIF-1.8 step.
The reward returned to the optimizer is the robustness score that is evaluated at the end of
the sequence of steps, i.e., after LMDIF-0. The optimizer then attempts to maximize this
reward, i.e., the robustness of produced configurations.

Differential evolution [96] is used as a global optimization algorithm. The implementation
is from SciPy [97] using a population size of 50 and the best1bin strategy. Due to the vast
number of possibilities and high computational demand, no exhaustive hyperparameter search
has been conducted. However, the results obtained for the various strategy options have been
compared and they have been found to exhibit only small differences between their results.

Figure 4.11 shows the robustness scores for configurations obtained with the help of the
differential evolution optimizer. Compared to the baseline procedure, which is shown in
Figure 4.6, the usage of the global optimizer greatly improves the robustness of the produced
configurations. Also, the success rate of the LMDIF matching step is increased by the usage
of the global optimizer to 3.00 %. When the LMDIF fails, e.g., because it gets stuck in a local
minimum or it reaches the limits of the K1L values, the optimizer is given a reward of zero,
i.e., as if it had produced a configuration with robustness equal to 0.
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Figure 4.10: Distance traveled within the problem domain D during the LMDIF matching
steps. The distance is measured as the Euclidean distance between the starting point for the
LMDIF matching and the final configuration that it produced. It is reported as a fraction of the
maximum possible distance in D, that is, the diagonal emerging from the boundaries of K1L values:
|((K1L)1,min, . . . , (K1L)9,min) − ((K1L)1,max, . . . , (K1L)9,max)| ≈ 1.72 m−1. It can be observed
that the majority of LMDIF runs change the K1L values of the initial configuration by less than
2 % of the maximum distance. Taking into account that the volume of the corresponding region
scales with power equal to the number of quadrupoles, the volume covered by a single LMDIF run
is extremely small compared to the entire volume of D.

Figure 4.11: Histogram plot of the robustness scores of 4375 configurations that are obtained
by using a differential evolution optimizer instead of random search to produce the initial K1L
staring points for the LMDIF step. By using such a global optimizer, the robustness of produced
configurations is improved in comparison to the baseline procedure (see Figure 4.6). This dataset
contains slightly fewer configurations than the one shown in Figure 4.9. This is because the
generation of each dataset ran for a fixed amount of time. Using the differential evolution optimizer
rather than random search requires additional compute time and, thus, the number of configurations
that could be produced in the available amount of time is slightly smaller for the case which uses
the optimizer.
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4.3.3 Surrogate model for evaluating robustness and for deriving important
Twiss parameters

Evaluating the robustness of a configuration via Monte Carlo simulations is costly since it
requires to compute the Twiss parameters for thousands of leaf configurations. Section 4.2.4
presented a method for using the Twiss parameters of a configuration to approximate its
robustness. These approximations are based on analytical considerations on how the beta
functions evolve under the influence of the quadrupoles, represented by thin quadruple transfer
matrices. In a more general sense, the problem of predicting the robustness of a configuration
based on its Twiss parameters can be solved by fitting a nonlinear relationship between the
Twiss parameters and the robustness for many configurations. This fitting step can be solved
with the help of machine learning models.

The machine learning model could then serve as a surrogate model for predicting the
robustness of configurations that are produced by the LMDIF step similar to how robustness
is approximated based on Program 1 in section 4.2.4. However, another useful property of
the surrogate model is that it can be inspected for the importance of the various features
that have been used to fit it. These features are the K1L values and the Twiss parameters of
the various configurations that are produced during the robust optimization procedure. This
is allows to identify those parameters which are especially influential for the robustness of
configurations, namely, those features that are revealed to have high importance in the context
of the predictions of the surrogate model. The advantage of this method is that all features, the
K1L values and the Twiss parameters, can be directly included and constrained in the context
of the LMDIF matching step. This allows to derive a set of additional dedicated constraints for
the LMDIF step which can then be used to improve the further production of high robustness
configurations during the robust optimization procedure. In order to derive the constraints,
first a set of configurations together with their robustness needs to be collected. The fitting of
the surrogate model is then performed with these configurations and the important features are
derived. In order to be usable early during the robust optimization procedure, the surrogate
model should work with a few hundred configurations. Random Forest models have this
property and, typically, require only small training datasets for fitting.

Following the example of the TH2DFA beamline, a Random Forest regression model [98]
has been trained on 250 configurations. Figure 4.12 shows the robustness predictions of the
Random Forest model on a test dataset comprised of configurations which have not been used
for fitting. It can be observed that the Random Forest model successfully reproduces the
robustness scores of configurations.

The method of permutation feature importance is used to assess the importance of each
individual feature on the robustness predictions. Permutation feature importance considers one
feature at a time and randomly permutes the values of that feature among all configurations
in a dedicated test dataset. It then measures by how much the predictions of the model
deviate when feature values are permuted compared to when they are not permuted; this is
measured via the mean squared error among all configurations in the test dataset. When the
prediction of the model changes only by a small degree, this implies that the feature had no
great influence on the prediction. If, on the other hand, the predictions change by a large
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Figure 4.12: Robustness predictions from a Random Forest regression model. The model has
been trained on the K1L values and Twiss parameters of 250 configurations from the baseline
dataset and their corresponding robustness scores which range from 0 to 0.975. The remaining
configurations, which were not used for fitting, have been used as test data and their robustness
predictions are shown in this plot. The implementation of the model is taken from [98] and the
model was configured with 200 estimators, a maximum depth of 25 and maximum number of
features per split set to 7. The features used for training and predictions are the K1L values of
the quadrupoles, the beta and alpha functions upstream and downstream of quadrupoles, at the
bending magnets as well as at the target. Among these features, some had very high Pearson
correlation coefficients. For each group of features that showed correlation coefficients greater than
0.95 only a single feature has been retained and the others have been removed, leaving a total of 53
features. The surrogate model performs poorly when presented with configurations that have zero
robustness. This is because only 4 configurations with zero robustness were part of the training set.
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degree, it means the feature was critical for making accurate predictions and is thus assigned
a high feature importance.

For the TH2DFA dataset, it is found that the features βx,gth2qd12, i.e., the horizontal beta
function at the GTH2QD12 quadrupole (the ninth quadrupole), and αy,gth1qd12, the vertical alpha
function at the GTH1QD12 quadrupole (the seventh quadrupole), are particularly important.
Figure 4.13 shows an overview of the top five most important features as emerging from the
feature importance method.

Figure 4.13: Feature importance for the fitted random forest surrogate model obtained via
the permutation feature importance method. This method considers one feature at a time and
randomly permutes the values of that feature among all configurations in a dedicated test dataset.
It then measures by how much the predictions of the model deviate when feature values are
permuted compared to when they are not permuted; this is measured via the mean squared error
among all configurations in the test dataset. When the prediction of the model changes only by
a small degree, this implies that the feature had no great influence on the prediction. If, on the
other hand, the predictions change by a large degree, it means the feature was critical for making
accurate predictions and is thus assigned a high feature importance. The top five most important
features are shown in the plot.

Figure 4.14 shows the two most important Twiss parameters, βx,gth2qd12 and αy,gth1qd12,
which turned out to be particularly influential for the robustness predictions of the surrogate
model. From the plots it can be observed that these Twiss parameters show a clear relationship
to the robustness scores of their corresponding configurations. Thus, these Twiss parameters
can be used to derive additional constraints for the LMDIF matching step. The appropriate
threshold values are deduced from the data as shown in Figure 4.14. The following constraints
are then added to the LMDIF matching step:

αy,gth1qd12 < 2

βx,gth2qd12 > 200 m
(4.17)

Figure 4.15 shows the robustness scores that obtained for the TH2DFA beamline when
the additional fitting constraints from equation 4.17 are added to the LMDIF matching step.
It can be observed that the additional fitting constraints clearly improve the robustness of
the obtained configurations. Since the LMDIF matching step is already used as part of the
baseline procedure, adding these constraints does not impose any overhead on the optimization
procedure and is straightforward to integrate. The additional constraints also improve the
success rate of the LMDIF matching step. The fraction of random starting points which can
successfully be matched to the beamline requirements by LMDIF is increased to 3.89 %.
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(a) αy at the seventh quadrupole (GTH1QD12). (b) βx at the ninth quadrupole (GTH2QD12).

Figure 4.14: Robustness of the configurations of the TH2DFA beamline in dependency on the
two most important Twiss parameters as identified from Figure 4.13. These Twiss parameters have
turned out to be particularly influential for the predictions of the surrogate model. The Twiss
parameters for a large number of 1200 configurations are shown in the plots in order to make the
dependency clearly visible. However, the features show to be influential already when a smaller
number of 250 configurations is used.

Figure 4.15: Histogram plot of the robustness scores of 4500 configurations that are obtained by
using additional constraints for the LMDIF matching step. The constraints have been derived from
the surrogate model feature importance and are shown in equation 4.17. By using these additional
constraints, the robustness of produced configurations is improved in comparison to the baseline
procedure (see Figure 4.6).
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4.3.4 Comparison of methods

Using a global optimizer as described in section 4.3.2 together with the additional constraints
for the LMDIF matching step which have been derived in sections 4.3.1 and 4.3.3, achieves
a LMDIF success rate of 4.43 % which is higher than the success rates for any of the
individual improvement methods. Also, the results in terms of the robustness of the produced
configurations are greatly improved when all three methods are combined. The resulting
robustness scores are shown in Figure 4.16. From that plot, it can also be observed that, in
addition, the maximal achieved robustness has increased, too. Specifically, this dataset contains
4.15 % configurations with robustness greater than 0.99. The only other improvement method
which achieved a robustness greater than 0.99 is the method of adding LMDIF constraints
to limit the beta function excursions in the upstream part of the beamline. However, this
approach only yielded a fraction of 0.18 % of configurations with robustness greater than
0.99. Also, the fraction of configurations which have a robustness greater than or equal to
0.98 is increased from 0.87 % to 16.3 %. So, to find a single configuration with robustness
no less than 0.98, by using the improvements from the previous sections it would require to
compute only (0.0443 · 0.163)−1 ≈ 138 LMDIF matching runs and 0.163−1 ≈ 6 robustness
evaluations which are very accessible numbers. To find a configuration with robustness greater
than or equal to 0.99, it is 549 LMDIF evaluations and 24 robustness evaluations which is
feasible on a single processor machine. However, in order to identify the additional constraints
via surrogate model feature importance, a previous dataset is needed that only uses the
global optimizer and limits beta functions at the beginning of beamline, in order to collect
a number of configurations which can be used to fit the surrogate model and to derive the
important features. By using the global optimizer and the low-beta constraints, a set of 100
configurations 7 together with their Monte Carlo robustness evaluations has been found to
be sufficient to achieve a good fit of the surrogate model and, thus, to derive the important
features. The computation effort to collect this initial dataset of configurations which satisfy
the requirements and, thus, have a nonzero robustness depends on the success rate of the
LMDIF matching step for this case. This success rate is 2.89 % and, thus, collecting the
initial dataset requires an additional 0.0289−1 · 100 ≈ 3460 LMDIF matching steps and 100
robustness evaluations. Therefore, it is rather the collection of the initial dataset which is
used for feature importance that drives the computation cost of the optimization procedure.
Thus, the average total compute time which is required to find a configuration with robustness
ρ ≥ 0.98 is about 7.3± 0.2 hours. Finding a configuration with robustness ρ ≥ 0.99 increases
the compute time only slightly to 8.2± 0.2 hours due to the constant overhead from collecting
the initial feature importance dataset. Compared with the datasets that are obtained without
feature importance, the fraction of produced configurations with robustness ρ ≥ 0.98 and
ρ ≥ 0.99 is increased by a factor of at least 19 and 23, respectively. Hence, it would take
about 4033 LMDIF evaluations and 117 robustness evaluations, totaling to 8.1± 0.2 hours,
to find a configuration with robustness ρ ≥ 0.98 without using feature importance, but, at
the same time, it would require 19 177 LMDIF evaluations and 554 robustness evaluations,

7It is noted that for Figure 4.12 250 configurations have been used to fit the model, but these configurations
were taken from the baseline dataset, i.e., obtained without usage of a global optimizer or the additional low-beta
constraints for LMDIF. When these two improvements are used, the robustness of produced configurations is
increased such that already 100 configurations are sufficient to achieve a good fit.
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totaling to 39± 1 hours, to find a configuration with robustness ρ ≥ 0.99. Also, it is noted
that a configuration with ρ = 0.99 is twice as robust as a configuration with τ = 0.98 since the
volume of invalidating quadrupole errors is reduced by factor of two. Or, in other words, a
configuration with τ = 0.98 has a chance of failing the beamline requirements that is twice
as large as for a configuration with τ = 0.99. Furthermore, in most cases it will be desirable
to find not only one but many configurations which meet the desired robustness in order to
compare them for other properties such as minimal power consumption, for example. The
presented improvements allow for generating high robustness configurations in a fast manner,
once the initial warm-up phase of collecting the feature importance dataset is surpassed. After
the additional LMDIF constraints from derived from the feature importance method are
in place, it takes about 17.6 ± 0.5 minutes to generate a configuration with ρ ≥ 0.98 and
70.1±1.8 minutes to generate a configuration with ρ ≥ 0.99. Compared to the scenario without
using feature importance this reduces the required compute time by a factor of, respectively,
27.76± 0.04 and 33.13± 0.05. Due to the small LMDIF success rate in all cases, the majority
of the compute time is contributed by the LMDIF matching step 8 while robustness evaluation
contributes to a smaller degree.

Figure 4.16: Histogram plot of the robustness scores of 4480 configurations that are obtained by
combining all three improvement methods, i.e., using a global optimizer as well as the low-beta and
feature importance constraints for LMDIF. By using these three improvement methods together,
the robustness of produced configurations is greatly improved compared to the baseline procedure
(see Figure 4.6). This dataset contains slightly fewer configurations than the one shown in Figure 4.9.
This is because the generation of each dataset ran for a fixed amount of time. Using the differential
evolution optimizer rather than random search requires additional compute time and, thus, the
number of configurations that could be produced in the available amount of time is slightly smaller
for the case which uses the optimizer.

Table 4.2 compares the LMDIF success rates for the various cases, using the different
improvement methods, as well as indicates the fraction of high robustness configurations that
is produced for each case.

8The total LMDIF compute time is influenced by the LMDIF "call limit" setting. A smaller call limit
may cause LMDIF to spend less compute time searching for satisfying configurations in situations where it is
infeasible given the random starting point but, on the other hand, it might also discard configurations which,
otherwise, would turn out as satisfying when more compute time was allowed.
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Table 4.2: LMDIF success rates and fraction of high robustness configurations for the different
stages and cases. The LMDIF success rate is the percentage of random K1L starting points in a
dataset that resulted in a successful optimization via the LMDIF matching routine from MADX,
i.e., where the K1L produced by LMDIF comprised a beamline configuration that satisfied the
beamline requirements. There are different reasons why the matching for a given K1L starting
point might not be successful, e.g., because the matching routine reached the limits for the K1L
values or because a local minimum is reached which, however, may not satisfy the beamline
requirements. ρ ≥ τ indicates the percentage of configurations in a dataset that have robustness
greater than or equal to τ ; "—" means that no such configurations were contained in the respective
dataset. N denotes the size of each dataset. The datasets have slightly different sizes, because
generation of each ran for a fixed amount of time, capped at 4500 configurations (except for the
baseline). The optimizer requires additional compute time and, thus, the number of configurations
is slightly smaller for the cases which use the optimizer. LB refers to the case where only the
additional LMDIF constraints are used which limit the excursions of the beta function in the
upstream part of the beamline ("low-beta"; see section 4.3.1). OPT-LB refers to the case where
additionally a differential evolution algorithm is used as a global optimizer to produce initial K1L
starting points for LMDIF instead of the random search (see section 4.3.2). LB-FI refers to the
case where, in addition to the low-beta constraints, the dedicated LMDIF constraints obtained via
feature importance are used (see section 4.3.3). Finally, OPT-LB-FI refers to the case where all
three improvement methods are combined, i.e., using a global optimizer as well as the low-beta
and feature importance constraints for LMDIF.

N LMDIF-1.8 LMDIF-0 Combined ρ ≥ 0.98 ρ ≥ 0.99
Baseline 10000 2.53 % 89.7 % 2.27 % 0.05 % —

LB 4500 2.42 % 93.4 % 2.26 % 0.02 % —
OPT-LB 4375 3.00 % 96.2 % 2.89 % 0.87 % 0.18 %
LB-FI 4500 3.97 % 98.1 % 3.89 % 0.02 % —

OPT-LB-FI 4480 4.43 % 99.8 % 4.43 % 16.3 % 4.15 %

While the above described improvement methods allow to find robust beamline configura-
tions in a compute efficient manner, the procedure assumes an error-free beamline description
except for the considered quadrupole errors. In reality, however, different errors such as
uncertainty of the location of quadrupoles along the beamline or uncertainty of the Twiss
parameters at the beginning of the beamline might play a role. While these types of errors
could be included by extending the definition of beamline robustness also to these other
errors sources, it is still possible to obtain robust configuration even when these errors are
not included. Most notably, these types of errors are expected to be static while quadrupole
errors might change over time or assume different values due to, e.g., thermal drifts of the
power converters or magnetic hysteresis when serving multiple target stations in an alternating
fashion. The effect of these types of errors is discussed in the following sections.

4.3.5 Error analysis

In the following, the influence of model bias on the results obtained for robustness is studied.
Model bias includes any error of the model which is not captured by the definition of
robustness. While the deviations in quadrupole strength are considered as possible errors for
the computation of robustness, deviations of other lattice parameters are possible, too. In the
following, the effect of Twiss parameter errors and deviations of the longitudinal positions of
the quadrupoles on the robustness of the selected configurations is studied. It is noted that
instead of assessing these types of errors as a post-computational step, they could be included
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directly in the definition of the robustness. However, as will be shown below, the effect of this
model bias is manageable.

4.3.5.1 Deviation of Twiss parameters at beginning of beamline

The Twiss transformation along a beamline is a linear transformation in the Twiss parameters:
β

α

γ


target

= M ·


β

α

γ


start

(4.18)

where M is the Twiss transfer matrix of the beamline from start to target according to
equation 4.7. M is a function of the various quadrupole strengths and, thus, the quadrupole
errors cause a change of the matrix M . Therefore, when the initial Twiss parameter (β, α, γ)start

have an associated error, then this error will propagate linearly to the beta function at the
target. Thus, the Twiss error is expected to change the beta margin at the target, but the
effect on the beta variations is expected to be small, since the matrix M remains unchanged.

4.3.5.2 Deviation of quadrupole positions

A change ∆s in the position of a quadrupole leads to a local variation of the following form:(︄
1 Ld + ∆s

0 1

)︄
·Q ·

(︄
1 Lu −∆s

0 1

)︄
(4.19)

where Lu and Ld are, respectively, the drift length upstream and downstream of the quadrupole
which is represented by its transfer matrix Q. This change is translated to the Twiss transfer
matrix according to equation 4.7 and, thus, the influence on the beta function at the target is
a nonlinear function in ∆s with lengthy coefficients though for ∆s ≪ 1 a linear approximation
is justified.

To estimate the effect of such model bias, the robustness scores of Figure 4.16 are reevaluated
via Monte Carlo simulations by adding random Twiss parameter variations in the range −5 %
to 5 % and random longitudinal position errors for the quadrupoles in the range −10 mm
to 10 mm for each leaf configuration. Adding a different random model bias to each leaf
configuration, rather than a bias which is fixed for all leaf configurations, provides a statistical
estimate for the upper boundary of the expected robustness decline. Figure 4.17 shows the
reevaluated robustness scores under the random model bias variations. It can be observed
that these decline significantly and leave no high robust configurations. However, it should
be emphasized that in reality, the model bias is fixed for a given configuration, so the actual
possible variation in all leaf configurations is smaller. Also, such model bias will also lead to a
degradation of the root configuration which would be fine tuned in reality, e.g., increasing the
beta margin.

Figure 4.18 shows the variations of beta functions at the target for a configuration with
robustness 0.9949. These variations represent the various new root configurations that may
emerge from the model bias. The quadrupole variations are not shown in this Figure but
they induce a spread of beam sizes on top of the spread induced by model bias which leads
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Figure 4.17: Reevaluated robustness scores from Figure 4.16 under additional random Twiss
parameter variations and longitudinal position errors for the quadrupoles. The ranges for the
model bias were, respectively, −5 % to 5 % (Twiss parameters) and −10 mm to 10 mm (quadrupole
positions).

to a further decrease of robustness. As can be observed in the Figure, some model biases
also result in beta function which yield a larger beta margin (the left lower quadrant), but
all other variations decrease the beta margin in at least one dimension and thus decrease the
expected robustness. Since the beta margin in vertical dimension is large, the model bias
mostly affects the horizontal dimension and, thus, approximately half of the variations decrease
the robustness, so on average it should be 0.5. And indeed, it turns out to be 0.6458.

4.4 Experiment at GSI Helmholtzzentrum für Schwerionen-
forschung

This section compares the measurement of quadrupole configurations with various degrees
of beam size variations at the target fluorescence screen TH2DFA against the corresponding
findings from simulations. The TH2DFA screen is chosen because the corresponding camera
allows to run in triggered mode and can be read out with the help of a Java application and,
thus, allows to fully automatize the measurement. Also, the camera is calibrated and directly
computes one-dimensional beam profiles from the measured images. Four configurations are
tested, one of which shows particularly small beam size variations in the simulated data, i.e.,
representing a robust configuration. The simulated beta functions of the four configurations
are shown in Figure 4.20.

4.4.1 Preparation

A fast extraction pattern to the HTP experimental area 9 is used with 40Ar18+ at an energy
of 300 MeV per nucleon. Fast extraction ensures that the optics and, thus, the Twiss
parameters remain constant during the spill as opposed to quadrupole-driven slow extraction
(see section 2.6.1.3). No other pattern is running in parallel in order to minimize the effect of

9The beam is dumped at the end of the beamline.
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(a) Influence of Twiss parameter errors and longitudi-
nal positions errors of quadrupoles.

(b) Influence of random quadrupole strength errors.

Figure 4.18: Left: Variations of the beta function at the target screen under the influence
of various model errors for a configuration with robustness 0.9949. Errors in the initial Twiss
parameters at the beginning of the beamline as well as errors of the longitudinal positions of
quadrupoles are considered to be model bias and, thus, cause a shift of the original configuration
in terms of the beta functions at the target. The ranges for the model bias are, respectively, −5 %
to 5 % (Twiss parameters) and −10 mm to 10 mm (quadrupole positions).
Right: Variations of the beta function at the target screen for the same original beamline
configuration but now under the influence of quadrupole errors. For a real beamline, there
will be a combination of both, i.e., a set of model bias errors as in the left plot and a set of
quadrupole errors as in the right plot.
In both plots, the red cross indicates the beta functions of the original root configuration without
model bias and without quadrupole errors.

Figure 4.19: Reevaluated robustness scores from Figure 4.16 under additional random Twiss
parameter variations and longitudinal position errors for the quadrupoles. The ranges for the
model bias were, respectively, −5 % to 5 % (Twiss parameters) and −10 mm to 10 mm (quadrupole
positions). Before adding the random quadrupole errors which are used to estimate of the
configuration via Monte Carlo sampling, the beamline configuration containing the Twiss errors
and quadrupole position errors has been fine tuned with an additional LMDIF-0 step. This step is
to emulate the fine-tuning that would be done for a real beamline by e.g., the operating crew.
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Figure 4.20: Beta functions for the four TH2DFA beamline configurations which have been
tested during the measurement. The labels (a)-(d) coincide with the four subplots in Figure 4.26.
Configuration (d) is the robust configuration.

magnetic hysteresis in the quadrupoles. The experiment uses the beamline until the TH2DFA
fluorescence screen, as described in section 4.1. The corresponding UEye-camera can be
controlled via the Cupid application and allows for setting a trigger for data taking. The
trigger SIS18:CMD_BEAM_EXTRACTION is used, i.e., data is taken once per spill. The TH2DFA
camera is calibrated and the camera software readily computes one-dimensional beam profiles
from the obtained images.

4.4.1.1 Emittance measurement

The bending magnets along the beamline have a narrow vertical aperture and, hence, scraping
might occur if the beam size is too large. Therefore, the vertical emittance for each tested
beamline configuration is measured via a quadrupole scan (see section 2.6.2), using the
GTH2QD12 quadrupole and the TH2DFA fluorescence screen. This allows for estimating the effect
of scraping by comparing to a reference measurement for the emittance in the synchrotron
which is performed with the SIS18 Ionization Profile Monitor (IPM). Because the beamline is
not dispersion-free, measuring the horizontal emittance would need additional information
about the momentum spread and dispersion. However, the horizontal aperture of magnets
along the beamline is much larger than the vertical aperture, so the vertical dimension is
critical with regard to scraping.

4.4.1.2 Java application for automatizing the measurement

A Java App has been created to automatically control the quadrupoles during the measurement
via the LSA API. The TH2DFA camera is controlled via FESA and it can be connected to via
the Java API for Parameter Control (JAPC). The same Java App is used for both, applying
artificial random quadrupole errors and performing the quadrupole scan. From the perspective
of the Java App, the only difference between the artificial quadrupole errors and the quadrupole
scan is the specific sequence of updates of quadrupoles’ strengths that it has to process during
the measurement:

• In case of artificial quadrupole errors, the updates are random updates of the strengths
of all quadrupoles along the beamline.
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• In case of the quadrupole scan, the updates are sequential updates of the strength of a
single quadrupole.

Thus, only that part of the software that is responsible for generating these updates needs to be
exchanged between the two measurements; the remainder of the software stays the same. The
Java App uses the de.gsi.lo.bi.cam.device.CameraConnections class to add a callback
to the imageDataProperty. This callback is invoked every time the camera is triggered by the
control system (trigger SIS18:CMD_BEAM_EXTRACTION). The callback function then saves the
camera data (image and profiles) and subsequently generates a new update for the quadrupoles’
strengths which is submitted via the LSA API. The quadrupole updates and camera data are
saved with timestamps, so they can be assigned later during data analysis. Figure 4.21 shows
a diagram of the various steps that are performed by the Java App. The Java App is available
on the GSI Gitlab server [3]; the main classes are BeamlineRobustness (quadrupole errors)
and BeamlineRobustnessLinear (quadrupole scan).

Figure 4.21: Diagram for the various steps in the Java App for automated quadrupole control
to measure beamline robustness. For the quadrupole scan, the step New random quadrupole
variation is replaced by a dedicated update of the strength of the quadrupole used for the scan.
For a given quadrupole setting, the measurement is performed N times (e.g., N = 5) in order to
obtain an estimate for the measurement uncertainty of the recorded beam sizes.

4.4.2 Results

In the past, significant losses at the bending magnet GTH3MU1 have been observed and these
losses, registered by a nearby Beam Loss Monitor (BLM), might result in an interlock which
prevents further accelerator operation. Thus, the setup of each new beamline configuration is
started at reduced beam intensity to make sure that the steering is correct and only then the
intensity is increased to its nominal value. Saturation at the target screen must be avoided
though. Beam steering was performed by the operator crew and good beam focus at the target
screen has been achieved. However, during data analysis it has been observed that beam
scraping has occurred nevertheless, as shown exemplary in Figure 4.22 for a vertical beam
profile. This scraping influences the beam size estimates from the measured beam profiles
which are obtained by applying a Gaussian fit to the inner part of the profiles. Because
scraping has occurred upstream of the target screen, most likely at one of the bending magnets,
the recorded beam profiles may result in distorted beam sizes also for the inner part of the
profiles.
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Figure 4.22: Example for beam scraping in vertical dimension which might result in a poor fit
the of the beam profile. Also, since the scraping has occurred upstream, the resulting profiles at
the screen are altered, too.

4.4.2.1 Quadrupole scan

The quadrupole scan has been performed as described in section 4.4.1.1 using the GTH2QD12
quadrupole which is located upstream of the TH2DFA screen. Figure 4.23a shows the quadrupole
scan for the robust configuration while Figure 4.23b shows the quadrupole scan for one of the
non-robust configurations. It can be observed that the estimated emittance for the non-robust
configuration is smaller than for the robust configuration which suggests the presence of beam
scraping during the measurement.

(a) Quadrupole scan for the robust configuration. (b) Quadrupole scan for a non-robust configuration.

Figure 4.23: Quadrupole scan measurement for different beamline configurations. The GTH2QD12
quadrupole has been used for the measurement which is the quadrupole directly upstream of the
target fluorescence screen TH2DFA.

124



4.4 Experiment at GSI Helmholtzzentrum für Schwerionenforschung

4.4.2.2 IPM measurement

The SIS18 IPMs are used to measure beam profiles in the synchrotron. The values for the
emittance are estimated by using the nominal beta functions and dispersion from the MADX
model at the location of the IPMs. A momentum spread of ∆p

p = 1 × 10−3 is assumed.
Figures 4.24a and 4.24b show the IPM measurement for horizontal and vertical dimension. The
resulting values for the emittance are ϵx = 3.40± 0.40 mm mrad and ϵy = 1.84± 0.30 mm mrad.

(a) Horizontal beam profile in SIS18. The resulting
emittance is ϵx = 3.40 ± 0.40 mm mrad.

(b) Vertical beam profile in SIS18. The resulting
emittance is ϵy = 1.84 ± 0.30 mm mrad.

Figure 4.24: Measured beam profiles obtained with the IPMs at SIS18 during flattop.

4.4.2.3 Measurement of beam size variations

The variations of beam size at the target screen TH2DFA have been measured by applying
artificial random quadrupole errors of similar magnitude as the ones that have been applied in
the simulations (see section 4.2.3). The simulations produce values for the beta functions and
dispersion at the target screen and these are converted to corresponding beam size estimates
by taking into account the measured vertical emittance from the quadrupole scan for each
tested configuration and the measured horizontal emittance from the IPM measurement; since
the horizontal aperture along the beamline, and especially at the bending magnets, is much
larger than the vertical aperture, it is expected that the horizontal emittance is preserved
throughout the beamline and, thus, the value obtained from the IPM measurement remains
valid. The dispersion is obtained from simulations and a momentum spread of ∆p

p = 1× 10−3

is assumed. The beam size is then computed as

σx,y =
√︄
ϵx,yβx,y +

(︃∆p
p
Dx,y

)︃2
(4.20)

where ϵx,y is the measured emittance, βx,y and Dx,y are, respectively, the beta function and
dispersion obtained from simulations and ∆p

p is the momentum spread. The robustness of
configurations is computed by assuming the ±250 µm interval around the nominal beam sizes
to be satisfying. In order to differentiate the effect of the artificial quadrupole errors on
the beam size from the effect of natural fluctuations which are present in the accelerator,
a so-called baseline measurement has been performed. During this baseline measurement,
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no artificial quadrupole errors have been applied and the beam size has been recorded over
multiple spills. Therefore, the beam size variations from this baseline measurement represent
the natural fluctuations of the beam size which are present in the accelerator. Figure 4.26 shows
the measured beam size variations together with the variations obtained from the simulated
data. The configuration in Figure 4.26d shows particularly small beam size variations which
is reflected by the measured data as well. While the variations of beam size agree well for
the configurations in Figure 4.26b and Figure 4.26d, the configurations in Figure 4.26a and
Figure 4.26c show reduced beam size variations in the measured data as compared to the
simulated data. A possible reason is that the larger beam size variations induced by the
quadrupole errors also modified the beam size along the beamline in a way that caused scraping
of the beam by hitting the aperture. For large variations, this might occur in the horizontal
dimension as well. Along the beamline only a few beam loss monitors are installed and so
beam loss could not be measured directly, however, it is visible from the beam profiles such
as in Figure 4.22. Also, because the beam is not centered in the quadrupoles, the artificial
quadrupole errors cause additional steering of the beam which might provoke scraping. This
additional steering is visible from the variations of beam position on the target screen during
the measurement, as shown in Figure 4.25.

Figure 4.25: Variations of beam position at the target screen TH2DFA under the influence of
artificial quadrupole errors. It can be observed that the changes in quadrupole strengths provoke
significant beam movement, especially in the horizontal dimension. This is a result of the fact that
the beam is not fully centered inside the quadrupoles and, hence, the quadrupoles cause additional
steering of the beam.

The offset of simulated versus measured beam size variations is likely a result of the
imprecise knowledge of the initial Twiss parameters at the beginning of the HEST beamlines
that were available for simulations 10. This is similar to the effect shown in Figure 4.18.

4.5 Application to BIGKARL beamline at Forschungszentrum
Jülich

The other beamline, BIGKARL, is located at Cooler Synchrotron (COSY) at Forschungszen-
trum Jülich. This beamline transports the beam from COSY to the BIGKARL experimental

10The precise measurement of the initial Twiss parameters is planned by the HEST team for the engineering
run 2023/2024.
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(a) Measured beam size variations for a non-
robust configuration. The beam size variations
resulting from the artificial quadrupole errors
have a large magnitude which becomes also
clear when comparing them to the beam size
variations from the baseline measurement. The
robustness of this configuration is 0.11.

(b) Measured beam size variations for a non-
robust configuration. The beam size variations
resulting from the artificial quadrupole errors
have a large magnitude. The robustness of this
configuration is 0.29.

(c) Measured beam size variations for a non-
robust configuration. The beam size variations
resulting from the artificial quadrupole errors
have a large magnitude. The robustness of this
configuration is 0.13.

(d) Measured beam size variations for a ro-
bust configuration. The beam size variations
resulting from the artificial quadrupole errors
have a small magnitude, also when compared
to the beam size variations from the baseline
measurement. While the variations along the
y-axis might appear large, in fact, the extent
of the y-axis is very small and so the beam size
variations are small as well. The robustness of
this configuration is 0.98.

Figure 4.26: Measured beam size variations for the configurations of the TH2DFA beamline. The
subplots show four distinct beamline configurations where (a)-(c) are non-robust and (d) is a robust
configuration. For configurations (a) and (d) also a baseline measurement has been conducted
(shown as purple squares). This means that the beam size has been continuously recorded without
applying any modifications to the accelerator or the beamline. Thus, all beam size variations in
the baseline measurement are the result of the natural uncertainties present in the accelerator
chain. On top of the baseline measurement, the dedicated beam size variations are shown as orange
points. These beam size variations are the result of the artificial quadrupole errors that have
been applied over the course of the experiment. Each orange point corresponds to different set of
random errors that have been applied to the quadrupoles’ strengths. In addition to the measured
data, also the beam size variations from the simulated MADX model are shown. The difference
between the simulated and measured data is likely a result of the limited precision with which the
Twiss parameters at the beginning of the beamline are known and which have been used during
simulations. Also, beam scraping during the experiment likely affects the measured beam profiles.
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area. The beamline consists of a common part which is located upstream of the BIGKARL-
specific part. From the common part various other beamlines branch off as can be seen in
Figure 4.27. The optics of the common upstream part must remain fixed during the experiment
and, therefore, only the downstream part of the beamline which exclusively leads to the
BIGKARL experiment is considered. In the following, this downstream part is simply referred
to as "BIGKARL beamline". The BIGKARL beamline, i.e., the BIGKARL specific part, has
an overall length of about 40 m and it consists of twelve quadrupoles with arbitrary polarity.
The first four quadrupoles have individual power supplies and among the remaining eight
quadrupoles there are four pairs distributed in two bracketing patterns (Q45,Q46 and Q48,Q49)
as can be seen from the labels of Figure 4.28 which shows the beta functions of an example
beamline configuration. Thus, there are eight degrees of freedom in terms of the quadrupoles’
power supplies.

Figure 4.27: Schematic of COSY and the beamlines leading to the experimental areas including
BIGKARL [99, Courtesy of Forschungszentrum Jülich]. The BIGKARL experimental area is
marked with "Ext3" in the schematic. Bending magnets are depicted with red and quadrupoles are
depicted with yellow color.

When comparing the description of the BIGKARL beamline to the description of the
TH2DFA beamline in section 4.1, it can be seen that the two beamlines are quite different
with respect to the installed quadrupoles. Nevertheless, the same methods for identifying
robust configurations can be used for both beamlines. This emphasizes the general nature of
the methods as well as emphasizes that they can be applied to a variety of beamlines.
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Figure 4.28: Beta functions for an example configuration of the BIGKARL beamline. Each
vertical line indicates a quadrupole. The labels on the horizontal axis indicate the power supplies
of the various quadrupoles. It can be seen that among the eight downstream quadrupoles there
are four pairs of quadrupoles where each pair shares a power supply.

4.5.1 Simulations

The simulations of the BIGKARL beamline are realized with the help of MADX which is
accessed through the cpymad program [100] for increased efficiency. The MADX file contains
the beamline definition as line definitions and the shared power supplies of quadrupoles are
realized by placing the same quadrupole instance twice in a line (or, once, for the individual
quadrupoles). The LMDIF matching step constrains the beta functions at the target profile
grid to be less than 2 m in both dimensions. The beta functions cannot be chosen much smaller
than these values since during the measurement, the resolution of the profile grid must be
respected by the resulting beam size. However, since the corresponding optimization problem
with 2 m as the threshold for beta functions is easily solvable 11, an additional constraint on
the dispersion is added, specifically −0.1 m < Dx < 0.1 m. The purpose of this additional
constraint is to increase the difficulty of the underlying optimization problem, also in terms of
the robustness. The beta functions are limited to βx,y < 750 m along the entire beamline and
an additional constraint is added to limit the beta function to βx < 300 m and βy < 600 m
on the first 52 m (≈ 77 %) of the beamline in order to limit extreme excursions of the beta
functions as discussed in section 4.3.1. The flexibility in terms of quadrupole polarity is
respected by adjusting the lower and upper boundaries of the K1 values for LMDIF matching
accordingly.

First, a set of 250 satisfying configurations is collected by using the low beta limit at the
beginning of the beamline. These configurations are then inspected for their robustness and
a random forest surrogate model is built to predict the robustness scores from K1L values
and corresponding Twiss data, as discussed in section 4.3.3. This allowed to derive additional
constraints on the following variables. The strength of the final quadrupole’s power supply Q49
is limited to be negative and the alpha function at the upstream Q48 quadrupoles is limited,
too. These additional constraints are then used in a subsequent optimization run which also
uses a global differential evolution optimizer as discussed in section 4.3.2. Using the additional

11Easy, in this context, means that the LMDIF success rate is very high and, therefore, the constraints are
too weak to pose a challenging optimization problem also in terms of the robustness with respect to quadrupole
errors.
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constraints obtained from feature importance as well as the global optimizer significantly
improves the identified configurations in terms of their robustness.

4.5.2 Experimental setup and results

The experiment compares configurations with different robustness scores which are identified
from previously simulated data. The stability of the resulting beam sizes at the target screen
is used as robustness. This quantity is reliable also in the presence of, e.g., possible Twiss
errors at the beginning of the beamline, and is expected to be influenced only very little by
model bias errors, as discussed in section 4.3.5. Two configurations with high robustness in
terms of their beam size stability are selected and one configuration with low robustness is
selected. The goal of the experiment is to verify that the property of beam size stability is
reflected by the measured beam size variations when artificial quadrupole errors are introduced
to the real beamline.

4.5.2.1 Preparation

The MWPC profile grid with label "4.5" is used as the target where the beam size variations are
measured. This profile grid is located directly upstream of the experimental target. The wire
spacing of this profile grid is 1 mm. The typical emittance from COSY is ϵx ≈ 0.5 mm mrad
and ϵy ≈ 3.0 mm mrad. This must be taken into account for the selection of the beamline
configurations in order to ensure that the resulting beam size is not substantially smaller than
the resolution of the profile grid.

The control system allows to set the quadrupoles’ strengths via a dedicated Tcl/Tk
Graphical User Interface (GUI). This GUI communicates with the quadrupole device controllers
over sockets. The same communication channel can be used from other software as well. Thus,
a Python application has been created for automatically generating random quadrupole updates
and for applying them via the socket connection. Figure 4.29 shows a flow diagram of the
application logic. The code is available at [4].

All data is saved via the EPICS Archiver. Quadrupole strengths are logged via
PVs EXBL:BIGKARL:<device>:K1L and EXBL:BIGKARL:<device>:PERCENT. The profile
grid also saves its data via EPICS. The beam size at the profile grid is computed
via a Gaussian fit by recording the fitted standard deviation (the EPICS PVs are
EXBL:MWPC:45:Profile:[XY]:Fit:Sigma). A real-time subscription to the profile grid
PVs has been established via PyEPICS [101] by adding custom callback functions. This
allowed for monitoring the collected data in real-time in order to watch for potential problems
with the data acquisition, e.g., if too few data points are collected by the profile grid. The
Python application is synced with the COSY cycle via the PV CTRL:CYCLE:T:10HZ by waiting
for the value that corresponds to the time during the cycle where extraction starts (15 s in
cycle). The extraction is set to last 40 s in total. 10 s are allowed for the quadrupoles to
assume their new strengths after they have been updated via the socket connection 13. The
time window for data acquisition for each new quadrupole setting was 7 s. The profile grid

12 See footnote 13.
13A large waiting time was chosen to be on the safe side; sometimes the quadrupoles showed a lag of a few

seconds.
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Figure 4.29: Flow diagram for the Python application for automatizing the BIGKARL
measurement. After K1L updates have been sent to the quadrupoles 10 s are allowed for the
quadrupoles to assume their new strengths 12. The time window for data acquisition for a given
quadrupole setting is 7 s.

generates 3 profiles per second. In total, this allows to measure two quadrupole settings
per extraction, i.e., per COSY cycle. Stochastic slow extraction is used which works by
increasing the momentum distribution of the beam by imposing noise via the RF-system (see
section 2.6.1.1). Particles then move into the resonance due to the nonzero chromaticity of
the lattice. The optics of the synchrotron do not change during the spill and the momentum
spread of extracted particles is small (≈ 5× 10−4).

4.5.2.2 Results

Three different beamline configurations have been measured under the influence of artificially
applied quadrupole errors. Two of the configurations are selected as robust configurations from
the simulated data and, hence, are expected to yield only small beam size variations under the
influence of the artificial quadrupole errors. For comparison, one non-robust configuration is
selected as well which is expected to yield large beam size variations under the influence of
the artificial quadrupole errors. The beta functions of the three configurations are shown in
Figure 4.30.

For each of the three configurations, a dedicated baseline measurement has been performed
in addition. During these baseline measurements, no artificial quadrupole errors have been
applied and the beam sizes at the target grid have been recorded over some period of time.
Therefore, this baseline measurement can be used to assess the natural fluctuations of the
beam size at the target grid which originate from e.g., the upstream accelerator infrastructure
such as the synchrotron. Following each baseline measurement, the artificial random variations
have been applied to the quadrupoles’ strengths and the beam size at the target profile grid
has been continuously recorded. The measured beam size variations are shown in Figure 4.31
together with the natural beam size variations which have been recorded during the baseline
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Figure 4.30: Beta functions of the configurations used for the measurement at the BIGKARL
beamline. The labels (a)-(c) corresponds to the three sub-figures in Figure 4.31. The part of the
beamline up to 30 m is the common part downstream of COSY from which the BIGKARL specific
part of the beamline branches off. The common part of the beamline used the standard optics
and, thus, is the same for each of the configurations. The vertical bars show the positions of the
quadrupoles of the BIGKARL specific part of the beamline which have been varied during the
experiment. The rightmost vertical bar shows the position of the target profile grid.

measurement. The robustness of configurations is computed by assuming the ±100 µm interval
around the nominal beam sizes to be satisfying. The measurement was done with a long slow
extraction process of 40 s which allowed to test two random quadrupole variations per spill.
One measurement was toward the beginning of the spill and the other towards the end of
the spill. The beam size did change slightly during the spill and, for that reason, there are
two islands in the measured beam size data visible. They correspond to the two different
points in time during the spill. As can be seen from Figures 4.31a and 4.31b, for the two
robust configurations the applied quadrupole errors result in beam size variations which are
comparable to the natural fluctuations recorded during the baseline measurement. That is,
the applied quadrupole errors changed the beam size at the target only to a small degree.
Complementary to that, the measurement of the non-robust configuration in Figure 4.31c
shows substantially larger beam size variations for the same range of quadrupole errors as
compared to the variations of the baseline measurement. Therefore, the quadrupole variations
have a much larger impact on the resulting target beam size for the non-robust configuration
as compared to the two robust configurations.
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(a) Beam size measurement for a beamline config-
uration with high robustness. The recorded beam
size variations under artificial quadrupole errors are
comparable to the natural baseline fluctuations, i.e.,
the artificial errors affect the beam size only to a small
degree. The robustness of this configuration is 0.85.

(b) Beam size measurement for a beamline config-
uration with high robustness. The recorded beam
size variations under artificial quadrupole errors are
comparable to the natural baseline fluctuations, i.e.,
the artificial errors affect the beam size only to a small
degree. The robustness of this configuration is 0.97.

(c) Beam size measurement for a beamline configu-
ration with low robustness. The recorded beam size
variations under artificial quadrupole errors are signif-
icantly larger than the natural baseline fluctuations,
i.e., the artificial errors greatly affect the beam size,
especially in the vertical dimension. The robustness
of this configuration is 0.32.

Figure 4.31: Measured beam size variations for the three different beamline configurations tested
on the BIGKARL beamline. The blue points, labeled "baseline", represented a measurement of
the beam size when nothing has been changed on the beamline or on the accelerator in general.
That is, the blue baseline measurement represents the natural beam size fluctuations at the target
profile grid that are present from the accelerator infrastructure. On top of that are the orange
points, labeled "variations", which represent the measurement of beam size during when artificial
quadrupole errors have been applied to the beamline. Each orange beam size variation corresponds
to a different artificial random set of quadrupole errors that have been applied. For each spill from
COSY, which lasted 40 s, two sets of artificial random quadrupole errors could be applied and
recorded in terms of the beam size measurement. One measurement was toward the beginning of
the spill and the other towards its end. The beam size coming from COSY did change slightly
during the spill and, for that reason, there are two islands of blue and orange points in the measured
beam size data visible. They correspond to the two different points in time during the spill.

133





5
Conclusions & Outlook

This thesis studied the dependency of quasi-degeneracy on the placement of BPMs and steerers
for extracting linear optics and model errors from closed orbit measurements. It has been found
that different BPM and steerer placements can noticeably affect the degree of quasi-degeneracy
and, thus, influence the quality of the lattice information that is extracted from the measured
orbit response matrix. These findings emphasize the importance of studying the effect of BPM
and steerer placements during the design phase of new accelerators.

In order to investigate the influence of BPM and steerer placements, an analytical expression
for the Jacobian matrix has been derived, relating quadrupole errors along with BPM and
steerer gain errors to the orbit response matrix. This analytical Jacobian has been used to
show which BPM and steerer placements cause the Jacobian to be rank deficient and, thus,
cause the inverse problem to be ill-defined which outlines the theoretical limitations of the
method. In a lattice, the consecutive placement of quadrupoles with neither BPM nor steerer
in between can cause a rank deficiency in the Jacobian. When fitting either the horizontal or
vertical ORM alone, segments of three or more consecutive quadrupoles cause a rank deficiency.
When fitting the horizontal and vertical ORM together, segments of six or more quadrupoles
cause a rank deficiency (or, for Qx −Qy = integer, segments of five or more quadrupoles). A
rank deficiency in the Jacobian implies that the corresponding quadrupole strengths cannot
be determined uniquely from the measured ORM data, even in the absence of BPM errors.

It has further been demonstrated that the analytical expression for the Jacobian can be
used during the fitting procedure in place of the conventional numerical Jacobian which is
computed via finite-difference approximation. A single Twiss computation is sufficient to
construct the analytical Jacobian, which allows for substantially reduced computation time
compared to the numerical Jacobian approach. The scaling of the computation in terms of the
number of relevant lattice elements is improved by a factor Nsteerers×Nquadrupoles by using the
analytical Jacobian approach. The inverse modeling process by using the analytical Jacobian
approach has been tested with large scale simulations and also with dedicated measurements
conducted at the heavy-ion synchrotron SIS18 at GSI. The fitting procedure has been tested
in conjunction with various methods for mitigating quasi-degeneracy. The results obtained
with the analytical Jacobian agree well with those obtained with the numerical Jacobian.
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The developed fitting method, including the computation of the analytical Jacobian, has
been implemented as a Python package and has been made available on the Python Package
Index [1].

The measurement campaign at SIS18 has been prepared with a dedicated focus on reaching
high precision for the measurement results. The measurements achieved an orbit uncertainty of
⪅ 1 µm and an orbit response uncertainty of ⪅ 5 µm/mrad. A dedicated Java application has
been developed in order to fully automatize the measurement of the Orbit Response Matrix
including the measurement of the dispersion. This Java application is available on the GSI
Gitlab server [2]. The experimental setup as well as the Java application are extensible and,
thus, form the basis for high precision ORM measurements also at other accelerators of the
GSI and future FAIR campus.

In summary, chapter 3 of this thesis explored the dependency of quasi-degeneracy on the
placement of BPMs and steerers and, thus, provides insight into how adequate numbers and
locations for these devices can be chosen for newly designed lattices in order to allow for a
tractable and well conditioned inverse problem. For large scale machines, such as LHC, with a
large number of BPMs and steerers, the size of the corresponding Jacobian matrix may be too
big to be fully utilizable. A practical solution is to select a subset of all ORM elements for
the fitting procedure. A profound understanding of the impact of resulting BPM and steerer
placements on the (quasi-)degeneracy can help in guiding the selection. In addition, using the
analytical Jacobian during fitting can provide a more computationally efficient solution for
inverse modeling by circumventing the method of computing the Jacobian via finite-difference
approximation.

The second part of this thesis, chapter 4, studied the influence of quadrupole gradient
errors on the performance of beam transfer lines with respect to the experimental requirements.
In general, it is possible to estimate such quadrupole errors in a transfer line with methods
similar to the ones presented in chapter 3, however, this requires dedicated beam time which is
then not available for running the experiments. Therefore, chapter 4 studied a complementary,
preventative approach with the goal to reduce the influence of possible quadrupole gradient
errors on the performance of the beam transfer line. This has been achieved by identifying
dedicated configurations for the strengths of quadrupoles in a transfer line which distinguish
themselves by an increased robustness against possible quadrupole errors in terms of the
resulting performance of the transfer line. Such robust quadrupole configurations allow for
an increased stability of the beamline performance and, thus, guarantee stable experimental
conditions while also reducing the time that operators must spend for re-tuning the transfer
lines.

First, the concept of beamline robustness has been introduced in terms of the feasible
quadrupole configurations. This allowed to assess and compare different quadrupole
configurations in terms of their robustness with respect to quadrupole errors. Further, the
beamline robustness has been assessed with the help of an analytical expression which has
been derived from the propagation of Twiss parameters along the beamline. The analytically
obtained results have then been verified by large-scale simulations which systematically explored
the relevant quadrupole configuration space of the TH2DFA beamline. The simulations were
based on MADX with the LMDIF optimization routine and, thus, allow for a high degree
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of compatibility with existing lattice descriptions. With the help of this simulation data,
further characteristic properties of robust quadrupole configurations have been identified. It
has been found that the magnitude of the beta functions in the upstream part of the transfer
line significantly affects the resulting robustness at the experimental target. Also, it has been
found that by using a differential evolution optimization routine on top of the MADX internal
LMDIF routine, the robustness of produced quadrupole configurations could be significantly
enhanced. As a third improvement, the usage of a surrogate model for predicting robustness
scores which has been fitted on Twiss data and K1L strengths of the individual quadrupole
configurations has been explored. It has been found that by applying a feature importance
method to the fitted surrogate model, additional deciding parameters for the transfer line
could be extracted. By inserting the extracted parameters and their boundaries as constraints
into the original LMDIF routine, the robustness scores of produced quadrupole configurations
could be significantly enhanced. Finally, the three improvement methods have been used in
conjunction to significantly increase the computation efficiency for finding robust quadrupole
configurations via dedicated simulations and optimization routines. This computation process
is referred to as robust optimization.

Two beamlines have been used to present and experimentally verify the studied
methods, one located at GSI Helmholtzzentrum für Schwerionenforschung and the other
at Forschungszentrum Jülich (FZJ). While the polarity of quadrupoles of the GSI beamline is
fixed, the polarity of those of the FZJ beamline is variable. In addition, some of the quadrupoles
of the FZJ beamline share a common power supply. For that reason, the two beamlines represent
quite different conditions, however, it has been shown that the presented methods can be used
equally well for both beamlines. The theoretical findings and simulations results have been
verified by dedicated experiments for both beamlines, at GSI and Forschungszentrum Jülich.
The measurement data confirm the properties of quadrupole configurations in terms of the
robustness of the beam size variation at the target profile monitors, as previously identified
from simulation data. Dedicated software has been developed for both measurements in order
to fully automatize the data taking and the artificial quadrupole variations. The software is
available as Java and Python applications on the Gitlab servers of GSI and FZJ [3, 4]. These
results form the basis for dedicated robust optimization for a wide variety of beamlines of
the GSI HEST infrastructure as well as provide the tools for experimentally verifying the
robustness property of employed quadrupole configurations. Also for the future transfer lines
of the FAIR accelerator complex these results will be helpful and the developed methods can
be reused.
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A
Appendix

A.1 Transfer matrix between two lattice positions

The transfer matrix between two lattice positions s1 and s2 is given in terms of the corresponding
Twiss parameters (β1, α1) and (β2, α2) and the phase advance difference ∆µ ≡ µ(s2)−µ(s1) > 0
by the following expression [48]:

M(s2|s1) =


√︂

β2
β1

(cos ∆µ+ α1 sin ∆µ)
√
β1β2 sin ∆µ

−1+α1α2√
β1β2

sin ∆µ+ α1−α2√
β1β2

cos ∆µ
√︂

β1
β2

(cos ∆µ− α2 sin ∆µ)

 (A.1)

A.2 One-turn transfer matrix in exponential form

The following relationship is shown:

exp(Jµ) = I cos(µ) + J sin(µ) (A.2)

where J2 = −I.
The Taylor series of the exponential function is given by:

exp(Jµ) =
∞∑︂

k=0

(Jµ)k

k! (A.3)

Separating the even and odd terms and using J2 = −I leads to the following expression:

exp(Jµ) =
∞∑︂

k=0

(Jµ)2k

(2k)! +
∞∑︂

k=0

(Jµ)2k+1

(2k + 1)!

=
∞∑︂

k=0

(︂
J2
)︂k µ2k

(2k)! +
∞∑︂

k=0
J
(︂
J2
)︂k µ2k+1

(2k + 1)!

= I
∞∑︂

k=0
(−1)k µ2k

(2k)! + J
∞∑︂

k=0
(−1)k µ2k+1

(2k + 1)!

(A.4)
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The first term in the above equation is the Taylor series for cos(µ) and the second term is the
Taylor series for sin(µ). Thus, the expression evaluates to I cos(µ) + J sin(µ).

A.3 Slicing of thick BPMs and steerers for linear closed orbits

In a real machine, BPMs and steerers are devices with a finite length along the beamline. In
simulations, however, the steerers must be sliced in order to apply their kicks to the beam
coordinates 1. Likewise, the orbit must be recorded at a number of specified locations. In the
following it is shown that for a steerer, it does not matter how many slices are used and where
they are placed, so as long as the slices and their associated kicks are distributed symmetrically
around the center of the steerer. For a BPM, the orbit evolves linearly and, thus, can be
linearly sampled. In both cases, a single slice at the center of the device suffices.

A.3.1 Slicing of steerer

Let L be the length of the steerer and δ the total kick that the beam receives after having
passed the kicker. The basic case is placing a single slice in the center of the steerer:

. . . | . . . (A.5)

where . . . indicates a drift space and | indicates a thin steerer slice. Each of the drifts has
length L

2 and the entire kick δ is applied in the center of the steerer. The resulting transfer
map is:

η⃗1 = R 1
2

(︂
R 1

2
η⃗ + δ⃗

)︂
= Rη⃗ +R 1

2
δ⃗

= Rη⃗ + δ⃗ +
(︄

Lδ
2
0

)︄ (A.6)

where η⃗ =
(︄
η

η′

)︄
and δ⃗ =

(︄
0
δ

)︄
and R 1

2
indicates the transfer matrix for a drift space with half

the length of the steerer and R corresponds to a drift with the entire length.
The general solution is to use N + 1 slices with N drift spaces between them. Each drift

has individual length Li (i = 1 . . . N), resulting in transfer matrix Ri, and each slice applies
an individual kick δi (i = 0 . . . N) to the beam 2.

| . . . | . . . | . . . | . . . |
δ0 L1 δ1 L2 δ2 L3 δ3 LN δN

(A.7)

This implies that ∑︁N
i=0 δi = δ and ∑︁N

i=1 Li = L. In the following, it is assumed that the slices
and drifts are placed symmetrically around the steerer center, i.e. δi = δN−i and Li = LN+1−i.

1MADX uses "edge" slicing for Twiss computation, i.e. each thick KICKER is represented by two thin slices,
one at the entrance and the other at the exit of the kicker, separated by a drift space equal to the length of the
kicker.

2This slicing pattern does not exclude the possibility to start and end with a drift space since one may
choose δ0 = δN = 0
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The transfer map is given by:

RN

(︂
. . . R3

(︂
R2
(︂
R1
(︂
η⃗ + δ⃗0

)︂
+ δ⃗1

)︂
+ δ⃗2

)︂
+ δ⃗3 . . .

)︂
+ δ⃗N

=Rη⃗ + δ⃗N +
N−1∑︂
i=0

 N∏︂
k=i+1

Rk

 δ⃗i

(A.8)

The above expression can be simplified by using the fact that the product of individual drift
transfer matrices Rk is a transfer matrix that corresponds to the combined length of individual
drifts. The product ∏︁N

k=i+1Rk involves all drift spaces downstream of the slice δi all the way
to the exit of the steerer. Hence, the product spans the corresponding fractional length of the
steerer. By defining λi = ∑︁i

k=1 Lk, the product can be expressed as:

N∏︂
k=i+1

Rk =
(︄

1 L− λi

0 1

)︄
(A.9)

In equation A.8 one can ignore the terms Rx and δN since they do not affect the change in
position which is induced by the steerer (δN only contributes to the change in divergence).
The only relevant term is

N−1∑︂
i=0

 N∏︂
k=i+1

Rk

 δi =
N−1∑︂
i=0

(︄
1 L− λi

0 1

)︄(︄
0
δi

)︄
(A.10)

The contribution to the divergence of this term sums up to δ − δN and together with the term
δ⃗N from equation A.8 this yields the total kick δ⃗ similar to equation A.6. The contribution to
the position is

N−1∑︂
i=0

(Lδi − λiδi) = L (δ − δN )−
N−1∑︂
i=0

λiδi

= L (δ − δN )−
N−1∑︂
i=1

λiδi

(A.11)

The last equality holds because λ0 = 0 by definition. By using δi = δN−i (i.e. slices are placed
symmetrically around the center of the steerer), the sum can be rewritten as (assuming N is
odd; for N is even, see below):

N−1∑︂
i=1

λiδi =
(N−1)/2∑︂

i=1
(λi + λN−i) δi (A.12)

Similarly, Li = LN+1−i and, therefore, λi + λN−i = L. Because N is odd, summing δi from
i = 0 to (N − 1)/2 yields δ

2 and, thus:

(N−1)/2∑︂
i=1

(λi + λN−i) δi = L
δ

2 − Lδ0 (A.13)

Therefore, equation A.11 evaluates to

L (δ − δN )− Lδ2 + Lδ0 = Lδ

2 (A.14)

149



A. Appendix

If N is even, equation A.12 is slightly modified:

N−1∑︂
i=1

λiδi =
(N−2)/2∑︂

i=1
(λi + λN−i) δi + λN

2
δN

2

= L
δ − δN

2

2 − Lδ0 + λN
2
δN

2

= L
δ − δN

2

2 − Lδ0 + L

2 δN
2

= L
δ

2 − Lδ0

(A.15)

The result is, however, the same as for equation A.13.
Therefore, it does not matter how steerers are sliced in simulations, so as long as the slices

are placed symmetrically around the center of the steerer. Using a single slice at the center of
the steerer fulfills this purpose 3.

A.3.2 Slicing of BPM

The closed orbit at the location of a BPM is given by equation 2.109. Under linear optics, the
Twiss parameters evolve inside a drift space, i.e. inside the BPM, in the following way:

β(s) = β0 − 2α0s+ γ0s
2

α(s) = α0 − γ0s

γ(s) = γ0

(A.16)

where β0, α0, γ0 are the Twiss parameters at the beginning of the element and s is the path
length along the lattice. With the help of equation 2.67, the phase advance µ(s) is given by:

µ(s) =
∫︂ s

0

1
β(s̃)ds̃ = arctan(γ0s− α0) + arctan(α0) (A.17)

Hence, the cos term in equation 2.109 can be rewritten as:

cos(πQ− |µ(s)− µ(si)|) = 1√︁
γ0β(s)

[cosϕ∓ (α0 − γ0s) sinϕ] (A.18)

where ϕ = πQ± µ(si)∓ arctan(α0); the upper and lower signs refer to, respectively, the case
where the absolute value argument is positive or negative. The factor 1√

β(s)
cancels the

√︁
β(s)

dependence from equation 2.109. Therefore, inside a drift space, the expression for the closed
orbit is a linear function in s inside a drift space.

A.4 Derivative of orbit response with respect to quadrupole
strength

This section has previously been published in Phys. Rev. Accel. Beams. Details are given in [75].
3For other beamline elements, e.g., quadrupoles, the slicing pattern and number of slices are, however, very

important. Among all possible slicing patterns, the TEAPOT slicing pattern gives an optimal approximation of
the R21 matrix element of the thick quadrupole transfer matrix [55] (see section 2.2.3.9).
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Starting with the orbit response rbs induced by steerer s and measured by BPM b:

rbs =
√︁
βbβs⏞ ⏟⏟ ⏞
A

1
2 sin(πQ)⏞ ⏟⏟ ⏞

B

cos(πQ− |µb − µs|)⏞ ⏟⏟ ⏞
C

(A.19)

The derivative d
d(K1L)k

rbs ≡ r′
kbs is:

r′
kbs = A′BC +AB′C +ABC ′ (A.20)

In the following the individual derivatives A′, B′, C ′ are derived.

A′ = 1
2
√
βbβs

[︁
β′

bβs + βbβ
′
s

]︁
≈ −βk

2
√︁
βbβs [Ψks + Ψkb] = −Aβk

2 [Ψks + Ψkb] (A.21)

where we have used the formula for the beta beating from equation 2.123:

β′
s ≈ −βsβk

cos(2πQ− 2|µk − µs|)
2 sin(2πQ)⏞ ⏟⏟ ⏞

Ψks

(A.22)

and similarly for β′
b,Ψkb.

B′ = −1
2

cos(πQ)
sin(πQ)2πQ

′ ≈ −Bβk

2
1

2 tan(πQ) (A.23)

where we have used the formula for the tune change induced by a quadrupolar error from
equation 2.116:

Q′ ≈ βk

4π (A.24)

C ′ = −C tan(πQ− |µb − µs|)
[︃
βk

4 −
µmax − µmin
|µmax − µmin|

(︁
µ′

max − µ′
min
)︁]︃

(A.25)

where we have assumed cos(πQ − |µb − µs|) ̸= 0 (i.e. rbs ̸= 0) and reordered the terms
µb, µs inside cos(πQ− |µb − µs|) such that the argument of the absolute value is positive, i.e.
|µb − µs| = |max(µb, µs)−min(µb, µs)| and µmax ≡ max(µb, µs), µmin ≡ min(µb, µs). In that
case µmax−µmin

|µmax−µmin| = 1 and we are only left with the derivative µ′
max − µ′

min = (µmax − µmin)′. To
compute this derivative we consider the change in local phase advance ∆µi induced by a small
quadrupolar error ∆(K1L)k [102]:

µi = µ0,i + ∆µi

µi =
∫︂ si

s0

1
β(τ)dτ + µs=s0

=
∫︂ si

s0

1
β0(τ) + ∆β(τ)dτ + µs=s0

=
∫︂ si

s0

1
β0(τ) ·

1
1 + ∆β(τ)

β0(τ)

dτ + µs=s0

≈
∫︂ si

s0

1
β0(τ)dτ −

∫︂ si

s0

∆β(τ)
β0(τ)2 dτ + µs=s0

(A.26)

151



A. Appendix

where the subscript 0 indicates the unperturbed optics functions, i.e. without quadrupole error,
and we have used the fact that Taylor series are multiplicative. Considering the difference
µmax − µmin we thus obtain:

µmax − µmin =
∫︂ smax

smin

1
β0(τ)dτ −

∫︂ smax

smin

∆β(τ)
β0(τ)2 dτ (A.27)

where smin, smax denote the corresponding longitudinal lattice positions. Since µmax − µmin =
µ0,max + ∆µmax − µ0,min −∆µmin = (µ0,max − µ0,min) + ∆(µmax − µmin) we obtain:

∆(µmax − µmin) = −
∫︂ smax

smin

∆β(τ)
β0(τ)2 dτ (A.28)

By using the expression for the beta beating this can be rewritten as:

∆(µmax − µmin) = ∆(K1L)k
β0,k

2 sin(2πQ0)

∫︂ smax

smin

cos(2πQ0 − 2|µ0,k − µ0(τ)|)
β0(τ) dτ (A.29)

Approximating the derivative with (µmax − µmin)′ ≈ ∆(µmax−µmin)
∆(K1L)k

and using d
dτ µ0(τ) = 1

β0(τ)
with integration by substitution we obtain:

µ′
max − µ′

min = β0,k

2 sin(2πQ0)

∫︂ µ0,max

µ0,min
cos(2πQ0 − 2|µ0,k − u|)du (A.30)

In the following we drop the subscript 0 for nominal values, as there is no further ambiguity.
Hence, all derivatives {A,B,C}′ can be written as −{A,B,C}βk

2 f{A,B,C}, i.e the derivative
r′

kbs can be written as a product of rbs, the beta function at the respective quadrupole and a
sum of the factors f{A,B,C}:

drbs

d(KL)k
= −rbs

βk

2

{︃ 1
2 tan(πQ) + tan(πQ− |µb − µs|)

2
+ Ψks + Ψkb

− tan(πQ− |µb − µs|)
sin(2πQ)

∫︂ max(µb,µs)

min(µb,µs)
cos(2πQ− 2|µk − u|)du

}︄ (A.31)

The integral in equation A.31 can be solved by taking into account the absolute value
function that is part of the integrand. Therefore, we need to divide the integration domain in
order to resolve it. For any quadrupole k, there are three distinct cases: (A) µmin < µmax < µk,
(B) µmin < µk < µmax, (C) µk < µmin < µmax. For cases (A) and (C) the argument of the
absolute value assumes the same sign on the entire integration domain and, hence, there is
no need to split the integration domain. For case (B) it needs to be split in [µmin, µk] and
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[µk, µmax]. The solutions are:∫︂ µmax

µmin
cos(2πQ− 2|µk − u|)du =

=


(A) sin(µmax − µmin) cos(2πQ− |µk − µmax| − |µk − µmin|)

(B) sin(|µk − µmin|) cos(2πQ− |µk − µmin|) + sin(|µk − µmax|) cos(2πQ− |µk − µmax|)

(C) sin(µmax − µmin) cos(2πQ− |µk − µmax| − |µk − µmin|)
(A.32)

Hence, the result for cases (A) and (C) is similar and a distinction has to be made between the
two different cases (A,C) for which both µmin, µmax are either upstream or downstream of the
quadrupole and (B) for which µmin is upstream and µmax is downstream of the quadrupole.

A.5 Derivative of orbit response with respect to quadrupole
strength for beamlines

This section has previously been published in Phys. Rev. Accel. Beams. Details are given in [75].

For beamlines, or more generally, non-closed lattices, we have the following formula for the
orbit response at BPM b induced by steerer s [103]:

rbs =


√
βbβs sin(µb − µs) , µb > µs

0 , otherwise
(A.33)

The relation for ∆β
β for non-closed lattices to first order is given by [104]:

∆βx

∆(K1L)k
= −βkβx sin(2µx − 2µk) (A.34)

where the subscript x refers to the point of measurement and k refers to the quadrupole;
µx > µk is assumed since only downstream regions are affected.

Taking the derivative of rbs with respect to ∆(K1L)k one obtains the following:

rkbs ≡
drbs

d∆(K1L)k
=

0 , µk < µs

−rbsβk
sin(µb−µk) sin(µk−µs)

sin(µb−µs) , µk > µs

(A.35)

This can be expanded into cos(µk)2, sin(µk)2 and cos(µk) sin(µk) terms with their respective
coefficient vectors.

Compared with the Jacobian for a circular lattice, the beamline Jacobian additionally has
some of its elements zeroed. Thus, the rank of the beamline Jacobian for a given BPM/steerer
placement must be less than or equal to the rank of the corresponding circular lattice Jacobian.
Simulations show that it is rank deficient for the cases Sh,Sv,Q5+,Bh,Bv but has full rank for
Sh,Sv,Q4,Bh,Bv.
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A.6 Proof: S,Q3,B Jacobian is rank deficient

This section has previously been published in Phys. Rev. Accel. Beams. Details are given in [75].

The trigonometric expressions in the Jacobian equation 3.3 can be expanded in terms of µk

by using the identities cos(x± y) = cos(x) cos(y)∓ sin(x) sin(y), sin(x± y) = sin(x) cos(y)±
cos(x) sin(y), sin(2x) = 2 sin(x) cos(x), cos(2x) = cos(x)2 − sin(x)2, 1 = cos(x)2 + sin(x)2.
The resulting expression can be grouped by terms containing cos(µk)2, − sin(µk)2 and
2 cos(µk) sin(µk). This allows to represent each column of the Jacobian by a set of three
coefficient vectors, one for each of the trigonometric terms. These coefficient vectors contain
the phase advances of BPMs/steerers and their structure only depends on whether the
BPM/steerer placement is of type A (µmin < µmax < µk), type B (µmin < µk < µmax) or
type C (µk < µmin < µmax), where µmin ≡ min(µb, µs) and µmax ≡ max(µb, µs). Since the
quadrupole triplets of S,Q3,B are not interleaved by BPMs/steerers, the structure of coefficient
vectors is the same for each quadrupole in a triplet. In fact, these three coefficient vectors can
be used for more than three consecutive quadrupoles as well since the coefficient vectors only
need to be multiplied by the three trigonometric factors containing µk for a given quadrupole
in order to generate the corresponding column of the Jacobian. Hence, this proof applies to
S,Q3+,B BPM/steerer placements as well. Thus, one set of three coefficient vectors is sufficient
to generate the Jacobian columns for a full quadrupole n-tuplet with n ≥ 3. This means that
there are a total of 3N coefficient vectors, one 3-tuple per quadrupole n-tuplet in each of the
N sections. These column vectors form the column span of any S,Qn+,B Jacobian for n ≥ 3.
The structure of these coefficient vectors, in terms of the phase advance types A, B, C, is
shown exemplary for N = 4, n = 3 in program 2.

We use the following set of abbreviations to simplify the notation:

u ≡ µmax + µmin

v ≡ µmax − µmin

T ≡ tan(πQ− |µmax − µmin|) = tan(πQ− v)

T̃ ≡ 1
2 tan(πQ) + T

2

(A.36)

Further, (1) is used to represent cos(µk)2, (2) for − sin(µk)2 and (3) for 2 cos(µk) sin(µk). The
specific expressions for the coefficient vectors, in dependence on the trigonometric factor (1,2,3)
and type (A,B,C), are shown in table A.1.

The expressions in table A.1 can be further simplified by noting the following relationships:

cos(v)− T sin(v) = cos(πQ)
cos(πQ− v)

cos(2πQ− v) + T sin(2πQ− v) = cos(πQ)
cos(πQ− v)

T̃ = cos(πQ)
cos(πQ− v)

cos(v)
2 sin(πQ) cos(πQ)

(A.37)
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Program 2 This schematic shows the Jacobian elements’ types A,B,C for N = 4 sections
and n = 3 quadrupoles forming a triplet in each of the sections. The quadrupoles in a triplet
are labeled F,D,T. [i] stands for the ith BPM and <i> stands for the the ith steerer. As can
be seen, the quadrupoles within a triplet all share the same type for each BPM/steerer pair.
section: 1 2 3 4

quad: FDT FDT FDT FDT
------------- --- --- ---
[1]<1> BBB AAA AAA AAA
[1]<2> CCC AAA AAA AAA
[1]<3> CCC BBB AAA AAA
[1]<4> CCC BBB BBB AAA
[2]<1> BBB BBB AAA AAA
[2]<2> CCC BBB AAA AAA
[2]<3> CCC CCC AAA AAA
[2]<4> CCC CCC BBB AAA
[3]<1> BBB BBB BBB AAA
[3]<2> CCC BBB BBB AAA
[3]<3> CCC CCC BBB AAA
[3]<4> CCC CCC CCC AAA
[4]<1> BBB BBB BBB BBB
[4]<2> CCC BBB BBB BBB
[4]<3> CCC CCC BBB BBB
[4]<4> CCC CCC CCC BBB

Thus, 2 cos(πQ)
cos(πQ−v) is a common factor for all expression in table A.1 and removing this factor

does not alter the rank of the matrix. We therefore obtain the simplified expressions shown in
table A.2.

Let J̃ be the column-wise stack of the 3N coefficient vectors emerging from the simplified
expressions in table A.2. Since all the used simplifications preserved the column span of the
Jacobian (up to constant factors), the nullspace and thus the rank of J̃ is similar to that
of the original Jacobian J . Thus, it is sufficient to show that J̃ is rank deficient, i.e. that
there exists a vector v⃗ such that J̃ · v⃗ = 0⃗. This matrix multiplication involves the row-wise
summation of the various coefficient vectors that make up the matrix J̃ . Each row contains at
most the three distinct types A,B,C (see schematic 2). Thus, each row-wise sum is of the form

Table A.1: Expressions for the coefficient vectors for the different types A,B,C. The relationship
cos(x) + cos(y) = 2 cos( x+y

2 ) cos( x−y
2 ) has been used to combine the cos terms originating from the

Ψks and Ψkb terms. Note that for each (A,B,C), the only difference in the (1) and (2) expressions
is the sign of the trailing terms.

(1)
A 2 cos(2πQ+ u) [cos(v)− T sin(v)] + T̃

B 2 cos(u) [cos(2πQ− v) + T sin(2πQ− v)]− 2T sin(2πQ) + T̃

C 2 cos(2πQ− u) [cos(v)− T sin(v)] + T̃

(2)
A 2 cos(2πQ+ u) [cos(v)− T sin(v)]− T̃
B 2 cos(u) [cos(2πQ− v) + T sin(2πQ− v)] + 2T sin(2πQ)− T̃
C 2 cos(2πQ− u) [cos(v)− T sin(v)]− T̃

(3)
A 2 sin(2πQ+ u) [cos(v)− T sin(v)]
B 2 sin(u) [cos(2πQ− v) + T sin(2πQ− v)]
C −2 sin(2πQ− u) [cos(v)− T sin(v)]
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Table A.2: Simplified expressions for the coefficient vectors for the different types A,B,C. The
common factor 2 cos(πQ)

cos(πQ−v) has been removed from the expressions in table A.1.

(1)
A cos(2πQ+ u) + cos(v)

4 sin(πQ) cos(πQ)
B cos(u) +

[︂
cos(v)

4 sin(πQ) cos(πQ) −
sin(2πQ) sin(πQ−v)

cos(πQ)

]︂
C cos(2πQ− u) + cos(v)

4 sin(πQ) cos(πQ)

(2)
A cos(2πQ+ u)− cos(v)

4 sin(πQ) cos(πQ)
B cos(u)−

[︂
cos(v)

4 sin(πQ) cos(πQ) −
sin(2πQ) sin(πQ−v)

cos(πQ)

]︂
C cos(2πQ− u)− cos(v)

4 sin(πQ) cos(πQ)

(3)
A sin(2πQ+ u)
B sin(u)
C − sin(2πQ− u)

∑︁
X∈{A,B,C} ρX · {(1), X} + ∑︁

X∈{A,B,C} σX · {(2), X} + ∑︁
X∈{A,B,C} τX · {(3), X} where ρX

stands for the sum of entries in v⃗ corresponding to type {(1), X} in the coefficient matrix and
similarly σ refers to type (2) and τ to type (3). If we require ∑︁X∈{A,B,C}(ρX − σX) = 0 then
the terms involving cos(v)

4 sin(πQ) cos(πQ) in table A.2 vanish. Thus, we can create a further simplified
matrix that consists of the expressions in table A.2 with these terms removed and augmented
by an additional row which enforces the condition ∑︁X∈{A,B,C}(ρX − σX) = 0 which allowed
the removal of those terms. The new version is shown in table A.3. It should be noted that
this is not an equivalence transformation, but the nullspace of the new matrix is contained
in the nullspace of the original matrix. Hence, it is sufficient to show that the new matrix
represented by table A.3 is rank deficient.

Table A.3: Further simplified expressions for the coefficient vectors for the different types A,B,C.
The additional requirement

∑︁
X∈{A,B,C}(ρX − σX) = 0 has to be satisfied.

(1)
A cos(2πQ+ u)
B cos(u)− sin(2πQ)

cos(πQ) sin(πQ− v)
C cos(2πQ− u)

(2)
A cos(2πQ+ u)
B cos(u) + sin(2πQ)

cos(πQ) sin(πQ− v)
C cos(2πQ− u)

(3)
A sin(2πQ+ u)
B sin(u)
C − sin(2πQ− u)

We can reorder the various terms of J̃ to construct a new matrix M̃ such that the columns
of M̃ correspond to ρi + σi, τi and ρi − σi (in that order) where i refers to the i-th column of
the three matrices containing all type-(1,2,3) terms. This reordering preserves the dot product
J̃ · v⃗ = M̃ · v⃗. Only the ρi − σi terms depend on v while the other terms depend on u. The
overall matrix thus consists of a column-wise stack of three sub-matrices corresponding to
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ρi + σi, τi and ρi − σi and has the following form:

M̃ =


Mρ+σ M τ Mρ−σ

0 . . . 0 0 . . . 0 1 . . . 1

 (A.38)

The additional last row enforces the condition ∑︁X∈{A,B,C}(ρX − σX) = 0. While the original
Jacobian J has shape N2 × 3N (for N sections), the new matrix M̃ has shape (N2 + 1)× 3N .
By the above derivation, there exists a vector from the nullspace of M̃ (given that the nullspace
is not empty) that is contained in the nullspace of J . That is, if M̃ is rank deficient it follows
that J is rank deficient. Thus, it is sufficient to show that M̃ is rank deficient. Because the
rank of a matrix does not change under row- or column-wise multiplication with a nonzero
constant, the common factor sin(2πQ)

cos(πQ) can be removed from the Mρ−σ matrix leaving it with
only sin(πQ− v) terms.

Since the Gram matrix ATA of any m × n matrix A (m ≥ n) has the same rank as the
original matrix A, it is sufficient to show that the Gram matrix of M̃ is rank deficient. Since
the Gram matrix is a square matrix, its determinant can be computed from the original matrix
via the Cauchy-Binet formula [105]:

det(M̃T M̃) =
∑︂

α∈INC(m,n)
det

(︂
M̃ [α|

¯
n]
)︂2

= 0 (A.39)

where
¯
n denotes the set of numbers {1, 2, . . . , n} and INC(m,n) denotes the set of all strictly

increasing functions from
¯
m to

¯
n; M̃ [α|

¯
n] denotes the sub-matrix of M̃ that emerges from

selecting the rows with indices given by α and column indices given by
¯
n.

Equation A.39 implies that the determinants of all individual sub-matrices M̃ [α|
¯
n] need

to be zero.
To further simplify the involved expressions, we make use of the identities cos(x) =

1
2
(︁
eix + e−ix

)︁
and sin(x) = 1

2i

(︁
eix − e−ix

)︁
which allow to replace the various cos, sin terms

with the following expressions:

cos(µmax + µmin) = p2q2 + 1
2pq

cos(2πQ+ µmax + µmin) = p2q2g4 + 1
2pqg2

cos(2πQ− µmax − µmin) = p2q2 + g4

2pqg2

sin(µmax + µmin) = p2q2 − 1
2ipq

sin(2πQ+ µmax + µmin) = p2q2g4 − 1
2ipqg2

sin(2πQ− µmax − µmin) = p2q2 − c4

2ipqg2

sin(πQ− µmax + µmin) = q2g2 − p2

2ipqg

(A.40)
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where p ≡ eiµmax , q ≡ eiµmin , g ≡ eiπQ for the given values of µmax, µmin in each row.
It is sufficient to show the rank deficiency for the N = 3, n = 3 (i.e. 3 sections containing

quadrupole triplets) case; the general case N > 3 follows from the symmetric placement of
lattice elements from one section to another and n > 3 follows from the fact that the same set
of three coefficient vectors is sufficient to generate the Jacobian columns of any quadrupole
n-tuplet, i.e. M̃ is a (N2 + 1)× 3N matrix independent of n.

The expressions in equation A.40 can be further simplified by multiplying columns 1,2,3
of M̃ (containing only cos terms) by 2g2, columns 4,5,6 (containing only sin terms) by 2ig2

and columns 7,8,9 (containing only sin terms) by 2ig. Then the first row can be multiplied by
(2ig)−1 and each other row can be multiplied by their respective pq whose inverse occurs in
every element across a row. Note that these elementary row/column operations preserve the
rank of the matrix. This yields the further simplified expressions given by:

cos(µmax + µmin)→ p2q2g2 + g2

cos(2πQ+ µmax + µmin)→ p2q2g4 + 1

cos(2πQ− µmax − µmin)→ p2q2 + g4

sin(µmax + µmin)→ p2q2g2 − g2

sin(2πQ+ µmax + µmin)→ p2q2g4 − 1

sin(2πQ− µmax − µmin)→ p2q2 − g4

sin(πQ− µmax + µmin)→ q2g2 − p2

(A.41)

Thus, the resulting matrix, with cos, sin terms being replaced by equation A.41, contains only
various polynomial terms as elements. With the help of a computer algebra system such as
PARI/GP [106] it can be shown that the determinants of all 9×9 sub-matrices of the simplified
10× 9 matrix M̃ are identical to zero. From this follows that M̃ is rank deficient, according to
equation A.39. An example program is given by program 3.

It is worth noting that the proof does not make any assumptions on the values of µb,j , µs,j , Q.
Thus, the rank deficiency holds for arbitrary values of µb,j , µs,j , Q and does not restrict the
optics nor the specific placement of BPMs or steerers in terms of their phase advance.
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Program 3 PARI/GP program for verifying that the determinant of every 9× 9 sub-matrix of the 10× 9 M̃ matrix for the N = 3 case is identical
to zero. The simplifications from A.41 have been applied. The following abbreviations are used: {a, b, c} ≡ eiµb,{1,2,3} , {d, e, f} ≡ eiµs,{1,2,3} , g ≡ eiπQ.
PARI/GP version 2.13.4 has been used. The program can be run by copying it into a file main.gp and then running path/to/gp2c-run main.gp
followed by typing compute().
compute() =
{
M = [0,0,0,0,0,0,1,1,1;
a^2*d^2*g^2+g^2,a^2*d^2*g^4+1,a^2*d^2*g^4+1,a^2*d^2*g^2-g^2,a^2*d^2*g^4-1,a^2*d^2*g^4-1,a^2*g^2-d^2,0,0;
a^2*e^2*g^2+g^2,a^2*e^2*g^2+g^2,a^2*e^2*g^4+1,a^2*e^2*g^2-g^2,a^2*e^2*g^2-g^2,a^2*e^2*g^4-1,a^2*g^2-e^2,a^2*g^2-e^2,0;
a^2*f^2*g^2+g^2,a^2*f^2*g^2+g^2,a^2*f^2*g^2+g^2,a^2*f^2*g^2-g^2,a^2*f^2*g^2-g^2,a^2*f^2*g^2-g^2,a^2*g^2-f^2,a^2*g^2-f^2,a^2*g^2-f^2;
d^2*b^2+g^4,d^2*b^2*g^4+1,d^2*b^2*g^4+1,d^2*b^2-g^4,d^2*b^2*g^4-1,d^2*b^2*g^4-1,0,0,0;
d^2*c^2+g^4,d^2*c^2*g^2+g^2,d^2*c^2*g^4+1,d^2*c^2-g^4,d^2*c^2*g^2-g^2,d^2*c^2*g^4-1,0,d^2*g^2-c^2,0;
b^2*e^2+g^4,b^2*e^2*g^2+g^2,b^2*e^2*g^4+1,b^2*e^2-g^4,b^2*e^2*g^2-g^2,b^2*e^2*g^4-1,0,b^2*g^2-e^2,0;
b^2*f^2+g^4,b^2*f^2*g^2+g^2,b^2*f^2*g^2+g^2,b^2*f^2-g^4,b^2*f^2*g^2-g^2,b^2*f^2*g^2-g^2,0,b^2*g^2-f^2,b^2*g^2-f^2;
e^2*c^2+g^4,e^2*c^2+g^4,e^2*c^2*g^4+1,e^2*c^2-g^4,e^2*c^2-g^4,e^2*c^2*g^4-1,0,0,0;
c^2*f^2+g^4,c^2*f^2+g^4,c^2*f^2*g^2+g^2,c^2*f^2-g^4,c^2*f^2-g^4,c^2*f^2*g^2-g^2,0,0,c^2*g^2-f^2];
for (row = 1, 10, print(matdet(M[^row,])));
}
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A.7 Proof: Sh,Sv,Q6,Bh,Bv Jacobian is rank deficient

This section has previously been published in Phys. Rev. Accel. Beams. Details are given in [75].

The proof for the Sh,Sv,Q6,Bh,Bv placement is analogous to the one obtained for S,Q3,B
(appendix A.6). Instead of three coefficient vectors there are six coefficient vectors, three
for each dimension. These coefficient vectors are orthogonal since the horizontal coefficient
vectors only have nonzero entries in the horizontal part of the Jacobian while the vertical
coefficient vectors only have nonzero entries in the vertical part of the Jacobian and the two
parts of the Jacobian are entirely separate. Hence, we can construct a matrix similar to M̃
in equation A.38 but now the matrix is a block diagonal of shape (2N2 + 2)× 6N where the
upper-left block is the M̃ for the horizontal dimension and the lower-right block is the M̃ for
the vertical dimension. Both blocks independently induce a rank deficiency as shown in A.6.
Thus, the rank deficiency for the Sh,Sv,Q6,Bh,Bv Jacobian is twice the one for S,Q3,B.

160













































































































	Title Page
	Zusammenfassung
	Table of Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	2 Linear optics in synchrotrons and beam transfer lines
	2.1 Conventions
	2.1.1 Terminology
	2.1.2 Coordinate systems

	2.2 Equations of motion
	2.2.1 Hamiltonian formalism
	2.2.2 Electromagnetic field configurations
	2.2.3 Transfer maps

	2.3 Synchrotron optics
	2.3.1 Transverse optics
	2.3.2 Dispersion function

	2.4 Deviations from the ideal lattice
	2.4.1 Steering contributions
	2.4.2 Quadrupole errors
	2.4.3 Effect of multipole errors

	2.5 Closed orbit based measurements of linear optics
	2.5.1 Orbit response matrix (ORM)
	2.5.2 Jacobian matrix
	2.5.3 Optimization algorithms
	2.5.4 Gain errors
	2.5.5 Dispersion

	2.6 Beam extraction from synchrotrons and transport in beam transfer lines
	2.6.1 Resonant slow extraction of beams in synchrotrons
	2.6.2 Quadrupole scan for emittance measurement in beam transfer lines


	3 Estimating quadrupole errors in the presence of degeneracy for the SIS18 synchrotron
	3.1 The SIS18 synchrotron
	3.1.1 Beam position monitors
	3.1.2 Orbit response matrix

	3.2 Degeneracy for estimated quadrupole strengths
	3.2.1 Analytical derivative of orbit response
	3.2.2 Pure degeneracy
	3.2.3 Quasi-degeneracy
	3.2.4 Exemplification using the SIS18 lattice
	3.2.5 Counteracting quasi-degeneracy

	3.3 Fitting the orbit response matrix
	3.3.1 Improving the accuracy of the analytical Jacobian

	3.4 Experiment at the SIS18 synchrotron
	3.4.1 Preparation
	3.4.2 Summary of measurement
	3.4.3 Orbit measurement
	3.4.4 ORM measurement
	3.4.5 Dispersion measurement
	3.4.6 Tune measurement
	3.4.7 Fitting of quadrupole errors
	3.4.8 Fitting of gain errors
	3.4.9 Fitting with dispersion


	4 Mitigating the effect of quadrupole errors on beam transfer lines with robust optimization
	4.1 Configurations of quadrupole strengths for beam transfer lines
	4.2 Robustness with respect to quadrupole errors
	4.2.1 Definition of robustness
	4.2.2 Improving robustness of quadrupole configurations obtained via matching of beta functions
	4.2.3 Evaluating robustness of quadrupole configurations
	4.2.4 Approximating robustness from Twiss data

	4.3 Robust optimization
	4.3.1 Improved matching criteria by limiting the beta functions in the upstream part of the beamline
	4.3.2 Application of an additional global optimizer
	4.3.3 Surrogate model for evaluating robustness and for deriving important Twiss parameters
	4.3.4 Comparison of methods
	4.3.5 Error analysis

	4.4 Experiment at GSI Helmholtzzentrum für Schwerionenforschung
	4.4.1 Preparation
	4.4.2 Results

	4.5 Application to BIGKARL beamline at Forschungszentrum Jülich
	4.5.1 Simulations
	4.5.2 Experimental setup and results


	5 Conclusions & Outlook
	References
	Appendix A Appendix
	A.1 Transfer matrix between two lattice positions
	A.2 One-turn transfer matrix in exponential form
	A.3 Slicing of thick BPMs and steerers for linear closed orbits
	A.3.1 Slicing of steerer
	A.3.2 Slicing of BPM

	A.4 Derivative of orbit response with respect to quadrupole strength
	A.5 Derivative of orbit response with respect to quadrupole strength for beamlines
	A.6 Proof: S,Q3,B Jacobian is rank deficient
	A.7 Proof: Sh,Sv,Q6,Bh,Bv Jacobian is rank deficient


