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Die Fluoreszenzmikroskopie hat unser Verstandnis der Zellbiologie erheblich beeinflusst.
Die Erweiterung der beugungsunbegrenzten, superauflosenden Mikroskopie eroffnete ein
Beobachtungsfenster, das die Untersuchung der zellularen Organisation auf molekularer
Ebene ermoglicht. Die nicht-invasive Natur des sichtbaren Lichts macht die Methode
geeignet fiir Beobachtungen in lebenden Zellen und Organismen (Lakowicz, 2006).
Aufbauend auf diesen Fortschritten wird eine vielversprechende Synergie zwischen super-
auflosender Fluoreszenzmikroskopie und deep learning deutlich, die die Moglichkeiten der
Bildgebungsmethoden erweitert. Aufgaben wie Transformation von Bildmodalitaten, Ver-
besserung des Signal-zu-Rausch-Verhaltnisses, Einzelmolekiillokalisation, virtuelle Markie-
rung, spektrale Separation und die Molekiilquantifizierung werden mit hoher Prazision er-
moglicht (Belthangady et al., 2019).

Die in dieser Arbeit untersuchten Techniken befassen sich mit drei kritischen Aspekten der
fortgeschrittenen Mikroskopie: der Verringerung der Bildaufnahmezeit, der Einsparung des

Photonenbudgets wahrend der Messung und der Erhohung der Multiplexing-Fahigkeit.

In einem ersten Projekt wurde die Aufnahmezeit von superauflésenden DNA points accumu-
lation for imaging in nanoscale topography (DNA-PAINT) (Jungmann et al., 2010) Messun-
gen mithilfe eines neuronalen Netzwerks stark reduziert, was eine schnelle Bildgebung mit
hohem Durchsatz ermoglichte. DNA-PAINT gehort zu den Techniken der Einzelmolekiil-
Lokalisierungsmikroskopie, die auf der Lokalisierung isolierter Emitterpositionen iiber die
Zeit basieren. Diese lokalisierten Emitter werden zusammengefasst, um ein superaufgelostes
Bild zu erzeugen. Da eine groBe Anzahl von Bildern erforderlich ist, um die Struktur voll-
standig zu erfassen, ist der Durchsatz gering. Eine Erhohung der Emitterdichte pro Bild
wiirde die Bildgebung beschleunigen, da die zugrunde liegende Struktur mit weniger Bildern
erfasst werden kann. Dies erfordert jedoch robuste Lokalisierungsmethoden, um das Signal
von Uberlappenden Punktspreizungsfunktionen (PSFs) in beugungsbegrenzten Bildern zu
entkoppeln.

In dieser Arbeit wird DeepSTORM (Nehme et al., 2018) zur Rekonstruktion superaufgeloster
Bilder aus DNA-PAINT Messungen verwendet (Narayanasamy et al., 2022). Bei Deep-
STORM handelt es sich ein neuronalen Netzwerk, das sich fiir die Generierung super-
aufgeloster Bilder aus stochastic optical reconstruction microscopy (STORM) (Rust et
al., 2006) Messungen unter der schwierigen Bedingung einer hohen Emitterdichte bewahrt
hat. Im Vergleich zu STORM, bei dem die Emitterdichte wahrend der Messung exponen-
tiell abnimmt, haben DNA-PAINT Daten den Vorteil, dass die Emitterdichte aufgrund des
kontinuierlichen Austauschs von Fluorophoren konstant bleibt. Die resultierenden Emit-
terdichten von DNA-PAINT passen in das optimale Leistungsfenster eines trainierten neu-
ronalen Netzes. In einem ersten Schritt wurde die Fahigkeit der Software DeepSTORM
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erprobt, superaufgeloste Bilder aus DNA-PAINT-Messungen mit konventioneller Dichte zu
rekonstruieren. Es wurde ein Arbeitsablauf zur Erzeugung von DNA-PAINT-Trainings- und
Testdaten mit hoher Dichte aus experimentellen Messungen etabliert, was eine Alterna-
tive zum simulationsbasierten Training darstellt. Fiir den Trainingsdatensatz wurden Filme
mit geringer Emitterdichte aufgenommen, die auf herkdmmliche Weise lokalisiert wurden,
und dann kiinstlich Daten mit hoher Dichte erzeugt, indem Bildausschnitte mit beugungs-
begrenzten Emittern zusammen mit ihren Lokalisierungslisten summiert wurden. Fiir den
Testdatensatz wurden Referenzdaten durch Aufnahmen mit geringer Emitterdichte gewon-
nen und ein superaufldsendes Bild durch Einzelmolekiil-Lokalisierungen erzeugt. Im gleichen
Bildausschnitt wurde anschlieBend mit hoher Emitterdichte gemessen und die Bildern mit
DeepSTORM verarbeitet. Sowohl Messungen mit niedriger als auch mit hoher Dichte er-
gaben hochaufgeloste Bilder derselben Struktur. Emitterlokalisierungen wurden durch einen
Nachbearbeitungsschritt in DeepSTORM extrahiert, fiir den mehrere Parameter optimiert
wurden, um eine ahnliche Anzahl von Lokalisierungen zu erhalten wie bei den Referenz-
daten. Die Ergebnisse wurden mit verschiedenen Metriken zur Qualitatskontrolle Gberprift,
darunter MS-SSIM (Wang et al., 2003), SQUIRREL (Culley et al., 2018) und HAWK-
MAN (Marsh et al., 2021). Der Einsatz von DeepSTORM bei DNA-PAINT Messungen
mit hoher Dichte erméglichte die Bildgebung von o-Tubulin und TOM20 im Gehirngewebe
von Mausen innerhalb einer Minute pro Zielprotein anstelle von 25 Minuten. Obwohl bei
den vorhergesagten Bildern eine leichte Verringerung der Aufldsung zu verzeichnen war (44
nm Vorhersage gegeniiber 32 nm Referenz), blieb die Auflésung im akzeptablen Bereich.
Das trainierte Modell ist strukturunabhangig, was bedeutet, dass es auf verschiedene Ziele
anwendbar ist, da es sich auf lokale Bildausschnitte der Einzelmolekilmessung stiitzt, die
beugungsbegrenzte Emitter ohne offensichtliche Struktur enthalten. Dariber hinaus er-
moglicht DNA-PAINT die Verwendung desselben Fluorophors fiir mehrere Zielproteine, was
bedeutet, dass nur ein einziges trainiertes neuronales Netzwerk als digitale Erweiterung fir
ein Mikroskop erforderlich ist. Einzelmolekiil-Lokalisationsmikroskopie in lebenden Zellen
profitiert ebenfalls von der hohen Emitterdichte, da somit weniger Bilder nétig sind, um
ein hochaufgelostes Bild zu erzeugen, was die zeitliche Auflésung verbessert. Durch die
Méglichkeit des Trainings neuronaler Netze anhand experimenteller Daten mit geringem
Erfassungsaufwand, einer benutzerfreundlichen Pipeline zur Erzeugung von Trainingsdaten
mit hoher Dichte und einem etablierten Arbeitsablauf fiir die Qualitatskontrolle wird DNA-
PAINT mit deep learning ein leistungsstarkes Werkzeug fiir die biologische Forschung sein.

In einem zweiten Projekt wurde ein neuronales Netz zur Entrauschung von stimulated emis-
sion depletion (STED) (Hell et al., 1994) Bildern verwendet, um die kontinuierliche Auf-
nahme einzelner lebender Zellen (iber Stunden mit einer zeitlichen Auflésung von Sekunden
zu ermoglichen. Die STED-Mikroskopie ist eine weitere leistungsstarke superauflosende
Technik, die mit hohen Laserleistungen arbeitet, die Photobleaching und Phototoxizitat

verursachen, was die Bildgebung von lebenden Zellen und deren Dynamik einschrankt.
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Mit Ansatzen wie stabilen Fluorophoren oder transienten Markierungsstrategien konnen se-
quenzielle STED-Bilder bis zu einigen Minuten lang aufgenommen werden (Glogger et al.,
2022; Liu et al., 2022b; Spahn et al., 2019). In diesem Projekt wurden STED-Bilder
des endoplasmatischen Retikulums (ER) mit einem UNet-RCAN-Netzwerk (Ebrahimi et al.,
2023) entrauscht, was bedeutet, dass Bilder mit geringer Intensitat aufgenommen und ihr
Signal-Rausch-Verhaltnis wiederhergestellt wurden (Rahm et al., 2024). Das UNet-RCAN-
Netzwerk (Ebrahimi et al., 2023) ist darauf ausgelegt, Hochfrequenzmerkmale in Bildern
zu erhalten. Ein Aspekt des Netzes sind sogenannte channel attention layers (Zhang et
al.,, 2018b), die die Wichtigkeit von feature maps adaptiv kalibrieren. Dadurch werden
Hochfrequenzinformationen durchgelassen, die fiir die Rekonstruktion der feinen Details
eines STED-Bildes erforderlich sind. Automatisches Screening von Hyperparameterkombi-
nationen fiir das Netzwerktraining wurde ermoglicht, um eine optimale Konfiguration zu
ermitteln (Rahm et al., 2024). Die Leistung des Netzwerks wurde durch den Vergleich der
vorhergesagten Bilder mit den Referenzbildern anhand von Bildahnlichkeitsmetriken bew-
ertet. Das endgiiltige Netzwerk war in der Lage, Bilder wiederherzustellen, die mit einer
Pixelverweildauer von 0,5 ps aufgenommen wurden unter Beibehaltung einer raumlichen
Auflésung von 90 nm.

Die Bedeutung der Hyperparameter des Netzwerks wurde mit Hilfe eines Random-Forest-
Regressors untersucht, wobei die Wichtigkeit einer geeigneten Lernrate und EingabegroBe
fir eine hohe Prazision in der Vorhersage hervorgehoben wurde. Es wurden Strategien
entwickelt, um strukturelle Signale von Halluzinationen zu unterscheiden, wobei die Ahn-
lichkeit benachbarter Bilder genutzt wurde, um zwischen rauschbedingten Fluktuationen
und strukturellen Veranderungen zu unterscheiden. Aufgrund der Zufalligkeit des Rauschens
kam es zu einer geringen Ahnlichkeit zwischen den Bildern. Dies kénnte ein Hinweis da-
rauf sein, dass die Fluorophore ausgeblichen sind oder die Struktur sich aus dem Sichtfeld
bewegt hat, ein Mogliches Signal an das Mikroskop, die Messung zu beenden. Dariiber
hinaus ermoglichte die Einteilung von Pixeln basierend auf ihren lokalen Intensitaten eine
Kategorisierung der Pixel in Hintergrund-, unsichere und Signalpixel, wodurch die Aufmerk-
samkeit auf Regionen mit erhéhter Unsicherheit gelenkt werden kann.

Das Modell konnte auf 3D-Bilder angewendet werden, die mit einer top-hat depletion Laser
PSF aufgenommen wurden, was die Fahigkeit des Netzwerks zur Entrauschung von schnell
aufgenommenen 3D-Bildern beweist. Darliber hinaus lieB sich das Modell auf Bilder mit
veranderter Morphologie aufgrund einer Behandlung mit Torinl und Bafilomycin A1 anwen-
den. Torinl induziert Stress und Autophagie (Kim et al., 2015), wahrend Bafilomycin Al
den Autophagieprozess bei der Autophagosomenbildung stoppt (Mauvezin et al., 2015). Zur
Visualisierung der ER-Struktur wurde Calreticulin-KDEL mehrere Stunden lang abgebildet
und mit ERnet (Lu et al., 2023) segmentiert. ERnet ist ein auf einem neuronalen Netz
basierendes Segmentierungswerkzeug, das die Pixel eines Bildes als Hintergrund, planare

Strukturen, Réhren und Rohren in planaren Strukturen klassifiziert. Dariiber hinaus bietet es
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eine Beschreibung des Rohrennetzes auf Basis der Graphentheorie. ERnet wurde mit SIM-
Bildern demonstriert und konnte in diesem Projekt direkt auf die STED-Bilder angewendet
werden. Es wurden weitere Deskriptoren entwickelt, um die strukturellen Verdnderungen
zu beschreiben. Strukturelle Veranderungen, einschlieBlich der Anhaufung von planaren
Strukturen und einer allgemeinen Abnahme der Strukturdichte, waren offensichtlich, ins-
besondere innerhalb der ersten Stunde nach der Behandlung mit Torinl und Bafilomycin
Al.

In einem dritten Projekt wurden markierungsfreie Bilder virtuell gefarbt, um die Fluo-
reszenz des Zellkerns und der Membran zu generieren. Dies ermoglichte die gleichzeitige
Visualisierung mehrerer zellularer Komponenten und halt die zeitliche und spektrale Band-
breite fiir weitere Fluorophore und ihre Zielproteine frei. Es wurde ein Modell trainiert,
das unter verschiedenen Versuchsbedingungen robuste Fahigkeiten aufweist (Liu et al.,
2023). Der Schlisselaspekt dieser Robustheit war eine Datenerweiterung basierend auf
Bildtransformationen, die den Probenraum abdeckte. Es wurden verschiedene Eingabe-
und Zielmodalitdten und deren Einfluss auf die Modellleistung verglichen. Alle Eingabe-
und Zielkombinationen fiihrten zu erfolgreichen Fluoreszenzbildvorhersagen. Entfaltete Flu-
oreszenzkanale verbesserte die nachgelagerte Analyseaufgabe der Segmentierung des Zellk-
erns erheblich. Die Zellkerne wurden mit cellpose (Stringer et al., 2021) segmentiert. Da
Segmentierungsnetzwerke oft nicht mit quantitativen Phasenbildern kompatibel sind, wird
durch den indirekten Weg der Ubersetzung des Kanals in Fluoreszenz und der anschlieBen-
den Segmentierung des Bildes die Notwendigkeit vermieden, ein Segmentierungsmodell von
Grund auf zu trainieren, fiir das groBe Mengen von handannotierten Bildern erforderlich
gewesen waren, um eine Instanzsegmentierung zu erreichen. Die Segmentierung des Zellk-
erns und der Membran ermoglicht die automatische Identifizierung von Zellinstanzen und

die Quantifizierung ihrer Eigenschaften in Hochdurchsatz-Experimenten.

In einem vierten Projekt wurde eine Software entwickelt, um die Effizienz der Analyse von
single-particle tracking (SPT) zu verbessern, und eine neue Analysemethode eingefiihrt.
SPT ist ein leistungsfahiges Verfahren zur Untersuchung der Mobilitat von Biomolekiilen
in lebenden Zellen mit einer raumlichen Auflésung im Nanometer- und einer zeitlichen
Auflésung im Millisekundenbereich. Mit der Analyse der mittleren quadratischen Ver-
schiebung wurden die Diffusionskoeffizienten der einzelnen Molekiile bestimmt und zwischen
immobilen, raumlich beschrankten und frei diffundierenden Molekiilen unterschieden. Das
Auftreten von Ubergingen zwischen verschiedenen Diffusionszustanden innerhalb einzelner
Trajektorien wurde mit einer neuartigen Analyse, dem sogenannten transition counting,
charakterisiert und mit einem hidden MARKOV Modell weiter analysiert. Die Methodik
wurde auf Einzelmolekiil-Trajektorien der Rezeptortyrosinkinasen MET (Rahm et al., 2021)
und HER2 (Catapano et al., 2023) angewandt, um deren Reaktionen auf Liganden in Hela-

Zellen zu untersuchen.
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Die aus der mittleren quadratischen Verschiebung abgeleitete Analyse ergab, dass ligande-
naktivierte MET-Rezeptoren, die durch InIB induziert wurden, im Vergleich zu ruhenden
MET-Rezeptoren eine langsamere und eingeschranktere Bewegung aufwieBen, wobei sich
ein groBerer Anteil der Rezeptoren in einem immobilen Zustand befand. Die Uberginge
zwischen den Diffusionszustanden innerhalb einzelner Trajektorien wurden durch Zahlung
der Ubergange quantifiziert, wobei die Wahrscheinlichkeit, dass Partikel den raumlich ein /-
ge/-schrank/-ten Zustand verlieBen, hoher war als bei frei diffundierenden und immobilen
Partikeln. Nach einer Ligandenbehandlung mit InIB nahm die allgemeine Tendenz zum
Ubergang in den immobilen Zustand zu. Das gleiche Muster spiegelte sich in dem hidden
MARKOV Modell wider, bei dem die Daten durch ein Drei-Zustands-Modell mit einem
immobilen, einem langsamen und einem schnellen Diffusionszustand charakterisiert wur-
den. Ahnlich wie der raumlich eingeschrinkte Zustand aus der Analyse der mittleren
quadratischen Verschiebung wies der mittlere, langsame Zustand hohere Ubergangswahr-
scheinlichkeiten in Richtung immobiler oder schneller Diffusion auf. Dies charakterisierte
die raumlich eingeschrankte Diffusion als einen Zwischenzustand. Es ist wahrscheinlich,
dass Rezeptoren, die in den intermediaren Diffusionszustand libergehen, dazu neigen, en-
tweder immobilisiert zu werden, was eine Vorstufe zur Endozytose darstellt, oder in einen
mobilen Zustand zuriickzukehren, was moglicherweise die Interaktion mit anderen Proteinen
erleichtert. Die Auswirkungen verschiedener Liganden aus der ErbB-Unterfamilie wurden
an HER2 untersucht, einem Rezeptor, fir den kein eigener Ligand bekannt ist. Seine Ak-
tivierung erfolgt durch Stimulation anderer Rezeptoren und die Bildung von Heterodimeren.
Von den getesteten Liganden wurde der Rezeptor am starksten durch die Behandlung mit
EGF aktiviert, was sich in einer erhohten immobilen Diffusion mit einem Hochpunkt nach

5 Minuten nach Ligandenbehandlung zeigte.

In einem fiinften Projekt wurde die raumliche Organisation von Membranrezeptoren un-
tersucht und eine Datenpipeline eingerichtet, die die Extraktion von Rezeptordichten und
-verteilungen in Einzelmolekdil-Lokalisationsmikroskopie Bildern mit mehreren Zielproteinen
ermoglichte. Verschiedene abstandsbasierte Analysen und Vergleiche mit zufallig verteil-
ten Emittern wurden leicht anwendbar gemacht. Die raumliche Anordnung des FGFR-
Netzwerks auf der Zellmembran unter dem Einfluss von FGF1 und Heparin wurde unter-
sucht (Schroder et al., 2021). Nach 5 Minuten Ligandenbehandlung nahm die Dichte der
FGFR1-4-Rezeptoren ab und ihre Abstande zueinander zu. Trotz der geringeren Anzahl
von Rezeptoren auf der Zelloberflache, die moglicherweise auf eine schnelle Internalisierung
der aktivierten Rezeptoren zuriickzufiihren ist, blieben die Abstande zwischen FGFR1 und
FGFR1 und FGFR3 im Vergleich zum Ruhezustand dhnlich. Mit der k-nearest neighbor
Analyse wurden die Rezeptorverteilungen vom Mikro- bis zum Makrometerberich analysiert.
Diese Analyse ergab, dass sowohl in ruhenden als auch in FGF1- und Heparin-stimulierten
Zellen Rezeptoranhaufungen vorwiegend in einem Bereich von 200 nm auftreten. Dies kon-

nte auf die potenzielle Akkumulierung von Rezeptoren entlang zelluldrer Strukturen wie
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Heparansulfat-Proteoglykanen, die als Kofaktor fiir die Bildung von Rezeptorkomplexen di-
enen (Ori et al., 2008; Sarrazin et al., 2011), oder mit Clathrin beschichteten Pits, die die
Endozytose vermitteln (Li et al., 2016), zuriickgefiihrt werden, da die raumlichen Abmes-
sungen mit den bekannten Abmessungen dieser Strukturen tbereinstimmen.

Zusammenfassend berichtet diese Arbeit iiber die Anwendung von deep learning zur Beschle-
unigung von Einzelmolekiil-Lokalisationsexperimenten, zur Erméglichung STED-Messungen
mit hoher Zeitaufldsung liber mehrere Stunden, zur Verbesserung der Multiplexing-Fahigkeit
der Fluoreszenzmikroskopie durch virtuelles Farben und (lber die Beschreibung der Rezep-
tordynamik und -organisation. Die Synergie, die sich aus der superauflésenden Mikroskopie
und neuronalen Netzen ergibt, wird neue Potenziale der superauflésenden Mikroskopie er-
schlieBen, indem sie unter anderem den Durchsatz beschleunigt und Zugang zu neuen
Kombinationen von Messparametern bietet, die ein tieferes Verstandnis der Zellbiologie

ermoglichen.
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Fluorescence microscopy has significantly impacted our understanding of cell biology. The
extension of diffraction-unlimited super-resolution microscopy opened an observation win-
dow that allows for the scrutiny of cellular organization at a molecular level. The non-
invasive nature of visible light in super-resolution microscopy methods renders them suitable
for observations in living cells and organisms (Lakowicz, 2006).

Building upon these advancements, a promising synergy between super-resolution fluores-
cence microscopy and deep learning becomes evident, extending the capabilities of the
imaging methods. Tasks such as image modality translation, restoration, single-molecule
fitting, virtual labeling, spectral demixing, and molecular counting, are enabled with high
precision (Belthangady et al., 2019).

The techniques explored in this thesis address three critical facets in advanced microscopy,
namely the reduction in image acquisition time, saving photon budget during measurement,

and increasing the multiplexing capability.

In a first project, the acquisition time in super-resolution DNA points accumulation for imag-
ing in nanoscale topography (DNA-PAINT) (Jungmann et al., 2010) was strongly reduced
using a neural network, enabling fast and high-throughput imaging. DNA-PAINT belongs
to the single-molecule localization microscopy (SMLM) techniques, that are based on the
localization of isolated emitter positions over time. These localized emitters are merged to
generate a super-resolved image. The inherent requirement for a large number of imaged
frames to completely capture the structure results in low throughput. Increasing the emitter
density per frame would expedite imaging, as the underlying structure is captured with less
frames. However, this necessitates robust localization methods to disentangle the signal
from overlapping point spread functions (PSFs) in diffraction-limited images.

In this work, DeepSTORM (Nehme et al., 2018), a neural network based approach that has
been demonstrated to obtain super-resolved images from stochastic optical reconstruction
microscopy (STORM) (Rust et al., 2006) measurements under the challenging condition
of high emitter density, is used to reconstruct super-resolved images from DNA-PAINT
measurements (Narayanasamy et al., 2022). Compared to STORM with an exponential
decrease in emitter density during measurement, DNA-PAINT data has the advantage of
constant emitter densities due to the continuous exchange of labels. The resulting emit-
ter densities of DNA-PAINT fit to the optimal performance window of a trained neural
network. In a first step, the capability of DeepSTORM was probed to reconstruct super-
resolved images from DNA-PAINT measurements with conventional density. A workflow
for generating high density DNA-PAINT training and test data from experimental measure-
ments was established, providing an alternative route to simulation-based training. The

training dataset involved acquiring movies with low imager strand concentration, local-
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ized conventionally, and then artificially creating high density data by summing patches of
diffraction-limited emitters along with their localization lists. For the test dataset, ground
truth data was obtained by imaging with low emitter densities, and a super-resolution image
was generated through single-molecule localizations. The imager strand concentration was
increased in the same field of view (FOV), and high density images were processed using
DeepSTORM. Both low and high density measurements yielded super-resolved images of
the same structure. Emitter localizations were extracted through a post-processing step,
for which multiple parameters were optimized to retrieve a similar number of localizations
compared to the ground truth data. The results were scrutinized with various quality con-
trol metrics, including MS-SSIM (Wang et al., 2003), SQUIRREL (Culley et al., 2018), and
HAWKMAN (Marsh et al., 2021). Leveraging DeepSTORM in high density DNA-PAINT
measurements enabled imaging of a-tubulin and TOM20 in mouse brain tissue within one
minute per target protein instead of 25 minutes. Although a slight reduction in resolution
was noted in the predicted images (44 nm prediction versus 32 nm ground truth), the reso-
lution remained in acceptable range. The trained model is structure-independent, meaning
that it is applicable to various targets, given its reliance on single patches from images of
SMLM measurement, that contain diffraction-limited emitters without apparent structural
positions. Furthermore, DNA-PAINT allows the usage of the same fluorophore for multiple
targets, meaning that only one trained neural network is required as a digital add-on to a
microscope. Live-cell SMLM also benefits from the high emitter density, as fewer imaged
frames are required to generate a super-resolved image, enhancing the temporal resolu-
tion. Enabling neural network training using experimental data with low barrier acquisition
efforts, a user-friendly pipeline to generate high density training data, and an established
workflow for quality control, deep learning enabled DNA-PAINT will be a powerful tool for
biological discovery.

In a second project, neural network assisted denoising was implemented into stimulated
emission depletion (STED) microscopy (Hell et al., 1994) to facilitate continuous imaging
of single live cells for hours with a temporal resolution of seconds. STED microscopy is
another powerful super-resolution technique, which operates with high laser powers that
cause photobleaching and phototoxicity, constraining the imaging of living cells and their
dynamics. With approaches such as stable fluorophores or transient labeling strategies, se-
quential STED images can be acquired for up to a couple of minutes (Glogger et al., 2022;
Liu et al., 2022b; Spahn et al., 2019). Here, STED images of the endoplasmic reticulum
(ER) were denoised with a UNet-RCAN network (Ebrahimi et al., 2023), meaning that
low-intensity images were captured and their signal-to-noise ratio (SNR) restored (Rahm
et al., 2024). The UNet-RCAN network (Ebrahimi et al., 2023) is tailored to preserve high
frequency features of the images. One aspect of the network are channel attention layers
(Zhang et al., 2018b), designed to adaptively recalibrate the importance of the feature
maps. This allows high frequency information to pass, necessary to reconstruct the fine

viii
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details of an STED image. A workflow was established for the automated screening of hy-
perparameter combinations for network training to discern an optimal configuration (Rahm
et al.,, 2024). The performance of the network was assessed by comparing the predicted
images to ground truth images with image similarity metrics. The final network was able
to restore images acquired with 0.5 ps pixel dwell time, maintaining a spatial resolution of
90 nm.

The importance of network hyperparameters was scrutinized using a random forest regres-
sor, underscoring the role of an appropriate learning rate and input size in achieving high
predictive performance. Strategies were devised to discern structural signal from hallucina-
tion, leveraging adjacent frame similarity to distinguish between noise-induced fluctuations
and structural changes. Due to the randomness of noise, low similarity occurred between
the frames. This could potentially serve as an indication that the fluorophores are bleached
or the structure moved out of the field of view, triggering a response to the microscope to
stop measuring. Furthermore, thresholding the local intensities of the low intensity movie
allowed to categorize the pixels into background, uncertain, and signal pixels, gearing the
attention to regions with heightened uncertainty.

The model was able to generalize to 3D images acquired with a top-hat depletion laser PSF,
demonstrating the ability of the network to denoise rapidly acquired 3D stacks. Further-
more, the model generalized to images with changed morphology due to drug treatment
with torinl and bafilomycin Al. Torinl induces stress and autophagy (Kim et al., 2015),
while bafilomycin Al halts the autophagy process at autophagosome formation (Mauvezin
et al., 2015). To visualize the ER structure, calreticulin-KDEL was imaged for several hours
and segmented using ERnet (Lu et al., 2023). ERnet is a neural network based segmenta-
tion tool, classifying the pixels of an image as background, sheets, tubes, and sheet-based
tubes. It furthermore offers a graph based description of the tube network. ERnet has been
demonstrated with SIM images and could be directly applied to the STED images in this
project. Further descriptors were developed to describe the structural changes. Structural
changes, including sheet accumulation and an overall decrease in structure density, were

evident, particularly within the first hour post-drug treatment.

In a third project, label-free images were virtually stained to predict the nucleus and mem-
brane fluorescence. This allowed the visualization of multiple cellular landmarks at once,
keeping temporal and spectral bandwidth free for more fluorophores and their targets. A
model was trained with robust capabilities across various experimental conditions (Liu et
al., 2023). The key aspect of this generalizability was data augmentation that covered the
sample space. Different input and target modalities and their influence on model perfor-
mance were compared. All input and target combinations led to successful fluorescence
image predictions. Targeting deconvolved fluorescence channels significantly improved the

downstream analysis task of segmenting the nucleus. The nuclei were instance segmented
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with cellpose (Stringer et al., 2021). As segmentation networks are often not compati-
ble with quantitative phase images, taking an indirect route of translating the channel to
fluorescence and then segmenting the image prevents the necessity of training a segmen-
tation model from scratch, where vast amounts of hand-labeled annotations would have
been required to achieve instance segmentation. Segmenting the nucleus and membrane
will enable the automated identification of cell instances and the quantification of their

properties in high throughput experiments.

In a fourth project, a comprehensive framework was developed to enhance the efficiency of
analyzing single-particle tracking (SPT) data and a new method of analysis was introduced.
SPT is powerful for investigating biomolecule mobility in living cells, with nanometer spa-
tial and millisecond temporal resolution. With mean-squared displacement (MSD) analysis,
diffusion coefficients of the single molecules were determined and immobile, confined, and
freely diffusing molecules were distinguished. Occurrences of transitions between different
diffusion states within single trajectories were characterized with a novel analysis termed
transition counting and further analyzed with hidden MARKOV modeling. The methodol-
ogy was applied to single-molecule trajectories of the receptor tyrosine kinases MET (Rahm
et al., 2021) and HER2 (Catapano et al., 2023) to study their responses to ligands in Hela
cells.

Analysis derived from mean-squared displacement revealed that ligand-activated MET re-
ceptors, induced by InIB, exhibited a slower and more confined motion with an increased
amount of receptors being in an immobile state, compared to resting MET receptors. Dif-
fusion state transitions within single trajectories were quantified by transition counting,
highlighting a higher probability of particles leaving the confined state compared to freely
diffusing and immobile particles. Upon ligand treatment with InIB, the overall tendency
to transfer to the immobile state increased. The same pattern was reflected in hidden
MARKOV modeling, where the data was characterized with a three state model with an
immobile, slow, and fast diffusion state. Similarly to the confined state from MSD analysis,
the intermediate, slow state had higher transition probabilities towards immobile or fast
diffusion. This characterized confined diffusion as an intermediate state. It is likely that
receptors transitioning to the intermediate diffusion state are prone to either undergoing
immobilization as a preliminary phase preceding endocytosis or returning to a mobile state,
possibly facilitating interactions with other proteins. The effects of different ligands from
the ErbB sub-family were studied on HER2, which is an orphan receptor with no known
ligand. Its activation occurs through stimulation of other receptors and the formation of
heterodimers. The receptor exhibited strongest activation with EGF treatment among the
tested ligands, marked in enhanced immobile diffusion, with a peak after 5 minutes post

ligand treatment.
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In a fifth project, the spatial organization of membrane receptors were investigated and a
data pipeline was established, facilitating the extraction of receptor densities and distribu-
tions in multi-target SMLM images. Various distance based analyses and comparisons to
randomly distributed emitters were made readily applicable. The spatial arrangement of the
FGFR network on the cell membrane under influence of the FGF1 and heparin was stud-
ied (Schroder et al., 2021). After 5 minutes of ligand treatment, the density of FGFR1-4
receptors decreased, and their distances from each other increased. Despite less receptors
on the cell surface, potentially due to rapid internalization of the activated receptors, the
distances between FGFR1 to FGFR1 and FGFR3 remained similar compared to the rest-
ing condition. With k-nearest neighbor analysis, receptor distributions were analyzed from
a micro to macro level. This analysis unveiled that both in resting as well as in FGF1
and heparin stimulated cells, receptor accumulations appear predominantly within a range
of 200 nm. This could be attributed to the potential clustering of receptors along cellu-
lar structures like heparan sulfate proteoglycans, which serves as a co-factor for receptor
complex formation (Ori et al., 2008; Sarrazin et al., 2011), or clathrin-coated pits, which
mediate endocytosis (Li et al., 2016), as the spatial dimensions align with the know dimen-

sions of these structures.

In summary, this thesis reports on the application of deep learning to accelerate SMLM ex-
periments, enable fast and long-time STED imaging, enhancing the multiplexing capability
of fluorescence microscopy through virtual staining, and frameworks for describing receptor
dynamics and organization. In particular, the synergy that emerges from super-resolution
imaging and neural networks will open up new exciting potentials of super-resolution mi-
croscopy by, among other things, accelerating throughput and providing access to new

combinations of measurement parameters that enable a deeper understanding of cell biol-

ogy.

Xi
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3 Introduction

3 Introduction

Fluorescence microscopy revolutionized our understanding of cell biology. The extension of
diffraction-unlimited super-resolution microscopy opened an observation window that allows
to visualize organization in cells on a molecular level. Moreover, the non-invasiveness of
visible light makes super-resolution microscopy methods suitable for measurements in living
cells and organisms (Lakowicz, 2006).

A clever experimental strategy followed by image reconstruction and analysis enables the
relation of observed patterns to function and provides a mechanistic understanding of the
biological sample (Belthangady et al.,, 2019). Data extraction and evaluation from mi-
croscopy images is strongly computer-aided due to its quantity and complexity. Recent
advances show great potential of applying deep learning techniques in this field to per-
form tasks such as image modality translation, restoration, single-molecule fitting, artificial

labeling, spectral demixing, and molecular counting, with high precision (fig. 1).

< GS r fi Op

Figure 1: Examples of deep learning enabled tasks for super-resolution microscopy. Modality trans-
lation transfers one microscopy modality to another, for example confocal to STED. Image
restoration recovers the signal of low signal-to-noise ratio images and generates high signal-to-
noise ratio images. Deep learning can be used in single-molecule localization microscopy to fit
the point spread functions in high emitter density images. All examples accelerate the imaging
process.

Deep learning methods have demonstrated superior performance compared to state-of-the-
art classical and machine learning techniques in several fields, with computer vision (the
task of interpreting visual data), standing out prominently (Voulodimos et al., 2018). Deep
learning allows computational models to learn and represent data with multiple levels of
abstraction, resembling the perceptual mechanisms of the brain. Situated in the realm
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of machine learning methods, deep learning involves the training of computational models
on datasets to autonomously discern complex representations and patterns, enabling the
model to make predictions or classifications without the need for explicit programming.
The terms “learning” and “training” underscore the capability of acquiring knowledge and
improving performance over time through the exposure to data. A model architecture can
be employed across various types of data and used for different tasks, due to its inherent
flexibility.

3.1 A concise history: From perceptrons to convolutional neural

networks

One of the first works of artificial neural networks was from the neurophysiologist Warren
McCulluch and mathematician Walter Pitts (McCulloch et al., 1943). They introduced
networks that utilize basic elements resembling binary devices with predetermined thresh-
olds. This logic function was characterized by an "all-or-none" nature similar to neuron
activity. The perceptron is a more complex neural network model capable of learning from
data through a process known as supervised learning (Rosenblatt, 1957). In a perceptron,
multiple binary inputs are processed and weights applied to produce a single binary output.
However, the perceptrons has limitations, particularly in handling non-linearly separable
problems, leading to a period of reduced interest in neural networks. The backpropagation
algorithm, a method for training multi-layer neural networks, sparked the interest again
(Rumelhart et al., 1986). In this algorithm, the weights in a network are adjusted by prop-
agating errors backward from the output layer to the input layer. With this approach, deep
neural networks can effectively learn complex and non-linear relationships.

The name convolutional neural network, a design specifically developed for spatial data,
originated with the LeNet neural network, tasked to recognize handwritten digits from
images provided by the U.S. Postal Service (LeCun et al., 1998). Convolutional neural
network gained further popularity through the ImageNet large scale visual recognition chal-
lenge (ILSVRC), where approaches for image classification are benchmarked on a common
dataset. In 2012, the CNN network AlexNet reduced the error rate by a margin. In 2015,
He et al., 2015 introduced the idea of residual connections and the error rate dropped below
human performance.

The popularity of deep learning can be furthermore attributed to the broad availability in
data and GPU computing, which enabled a significant acceleration in the training. Frame-
works like TensorFlow (Abadi et al., 2016) and PyTorch (Paszke et al., 2019) made deep
learning widely applicable.
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3.2 Drawbacks and challenges of neural networks

While deep learning methods have shown remarkable success in various domains, they also
come with certain drawbacks and challenges when compared to classical approaches.

A considerable quantity of data is necessary for effectively training deep learning models
(Belthangady et al., 2019). Large amounts of (labeled) data can be expensive and time-
consuming to collect and annotate. Overfitting occurs when a model memorizes the training
data but fails to generalize to new data, often due to insufficient data or an excessive
number of trainable weights. Despite efforts like regularization and dropout, overfitting
may remain a challenge, particularly with large models. Moreover, the performance of
deep learning models heavily depends on the quality and representativeness of the training
data. While models excel at learning patterns from the data they are trained on, they may
struggle to generalize to new, unseen data, for instance different imaging conditions and
microscopes. Furthermore, deep learning models have a “black box" nature. Unlike classical
algorithms that are based on explicit rules, the complexity of the deep learning models make
it challenging to interpret how they arrive at specific decisions or predictions. Training deep
learning models is time- and energy-consuming and requires specific computational resources
like graphics processing units (GPUs). However, once a model has been trained, inference
is usually executed quickly.

In conclusion, while deep learning has revolutionized various fields, its drawbacks should be
carefully considered. Balancing these drawbacks with the remarkable capabilities of deep
learning models is crucial for making informed decisions about whether and when to apply
this technique.

3.3 Applications of neural networks in super-resolution microscopy

The scope of successful applications of neural networks in super-resolution microscopy is
extensive. Neural networks have for instance been successfully applied for spectral demixing.
Hershko et al., 2019 were able to separate the point spread functions (PSFs) from two
quantum dots of different wavelengths. With wavelength-dependent aberration, four colors
could be distinguished. Additional advancements include the demixing of signals from two
dyes in STORM imaging (Kim et al., 2019b) and the demixing of four dyes without the
necessity for PSF engineering (Jiang et al., 2023).

Long short-term memory (LSTM) networks, specialized for time-series data (Hochreiter
et al., 1997), have proven instrumental in deciphering the stoichiometry of fluorescently
labeled protein complexes (Xu et al., 2019). Bleaching curves of protein complexes are
analyzed to assign stoichiometries, even under challenging conditions such as low signal-to-
noise ratios, substantial sample variability, and brief bleaching intervals (Wills et al., 2023).

Temporal resolution enhancement is achieved through various approaches, for instance
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with content-aware frame interpolation (CAFI), which interpolates frames in a time-course
dataset (Priessner et al., 2024). The network ANNA-PALM reconstructs super-resolution
views from sparse, rapidly acquired localization images and/or widefield images (Ouyang et
al., 2018). Super-resolved videos with continuous structure are reconstructed from single-
molecule localization images with DBlink (Saguy et al., 2023).

Cross-modality image translation uses one microscopy technique as an input and another
microscopy technique as an output. Structured illumination microscopy (SIM) images can
be predicted from wide-field fluorescence microscopy (Zhuge et al., 2021) or STED images
from confocal images (Bouchard et al., 2023; Zhang et al., 2018b). Switching between
different stains is also possible, for example from actin to nucleus staining (Chamier et al.,
2021).

As this work concentrates on fast single-molecule localization microscopy with a neural net-
work based fitting approach, denoising of STED images, and virtual staining of quantitative

phase images (QPI), these topics are further elaborated in subsequent sections.

3.3.1 Fast single-molecule localization microscopy

Single-molecule localization microscopy (SMLM) is a super-resolution microscopy method
enabling the visualization of structure with nanometer accuracy. In this method, fluorescent
labels are attached to the target structure. Large number of images are acquired, each
containing a fraction of labels that emit fluorescent signals, so that the emitted signals do
not overlap. This allows precise localization of the emitters per imaged frame. Merging
the localizations of all imaged frames generates a super-resolved image of the biological
structure the labels are attached to.

The need for large amounts of images in a SMLM measurement results in low throughput
and poor time resolution, especially critical when imaging live cells. The process can be sped
up by activating more emitters per image. A higher density of emitters can be processed
per image and the whole target is captured quicker. This requires sophisticated localization
algorithms termed “multi-emitter” fitting algorithms, which are able to entangle overlapping
PSF signals (Gazagnes et al., 2017; Huang et al., 2011; Ovesny et al., 2014). Maximum
likelihood estimation (MLE) is a classical approach that assigns the intensity in a region to

n emitters with close spatial proximity (Huang et al., 2011).

Deep learning approaches typically use the diffraction limited images of the SMLM mea-
surement as input, which is mapped to a super-resolved image of the emitters. With a
post-processing step, localizations are retrieved from the super-resolved image. This ap-
proach outperforms classical methods by a margin in terms of accuracy. Once a model
is established, localization is additionally less time consuming, as classical approaches are

computationally demanding.
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Boyd et al., 2018 demonstrated fitting in 2D and 3D on datasets of the SMLM challenge
(Sage et al., 2019), a collection of SMLM datasets of different imaging conditions, to probe
and compare localization algorithms, and was orders of magnitudes faster than classical
approaches with comparable accuracy.

Kim et al., 2019b demonstrated the potential of extracting the axial position of emitters
in STORM images without PSF engineering, solely based on the increased width of a PSF
when being out of focus.

Nehme et al., 2018 focused on 2D images and outperformed classical approaches with
DeepSTORM in high density conditions. A encoder-decoder architecture maps diffraction
limited images of emitters to super-resolved images. This approach was extended to dense
3D data, where the PSF design to capture 3D information was optimized along with the
localization model (Nehme et al., 2020).

The deep context dependent (DECODE) method (Speiser et al., 2021) is a 3D localization
tool that uses a calibration measurement, for instance with an astigmatism lens, along with
a model of the microscope to simulate emitters, that serve as training data. Instead of using

one image as input, a sequence of multiple frames is used to enhance the performance.

3.3.2 Denoising of fluorescence microscopy images

In fluorescence microscopy, trade-offs must be made between spatial resolution, light ex-
posure, and imaging speed (Weigert et al., 2018). Live cell imaging is especially tricky, as
the sample is dynamic and requires appropriate temporal resolution and suffers from the
phototoxicity of light. This compromises photon collection, crucial for spatial resolution,
leading to increased image noise and a discrepancy between the imaged signal and the true
signal (Laine et al., 2021).

Image noise in fluorescence microscopy is mainly caused by shot noise and detector noise.
The shot noise arises from the random nature of photon arrival, which follows a PoissonN
distribution. The distribution describes the probability of a given number of photon arrivals
occurring in a fixed time interval. This causes fluctuations in the number of photons de-
tected within a certain time frame. When the average number of photons is large, shot
noise becomes less significant compared to the recorded signal. However, at low photon
counts, shot noise introduces strong variability into the measured signal. The detector noise
typically follows a GAUSSIAN distribution independent of the underlying signal. Depending
on the detector, signal-dependent noise plays a role and more complex noise models are
required.

Noise has two interesting properties. Noise occurs independently for each pixel. Addition-
ally, the noise is centered around the true signal, sometimes yielding higher and sometimes
lower values. This means that the result converges towards the true signal by averaging

many acquisitions.
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The task of denoising is to take the noisy input and return an approximation of the true
signal. This enables imaging with conditions that generate noisy images, which undergo
reconstruction to attain a high signal-to-noise ratio. Different denoising strategies have
been developed from classical denoising algorithms to neural network based approaches.
Classical approaches include GAUSSIAN filtering, where a (GAUSSIAN kernel is convolved
with an image. High-frequency features are removed, but at the same time this causes the
loss of fine-details and the image appears blurry. Median filters replaces the value of each
pixel with the median value of its neighborhood. This method is effective for removing
salt-and-pepper noise, which appears as isolated bright and dark pixels. Methods such as
non-local means (NLM) (Boulanger et al., 2010; Buades et al., 2005) and block matching
and 3D (BM3D) filtering (Hasan et al., 2018) have enhanced structural preservation ca-
pabilities. They identify similar patches in an image and group them together. In NLM,
the patches are averaged to reduce noise. BM3D filtering applies a row of transformations,
thresholding, and filters to remove the noise.

Deep learning has shown great potential for denoising fluorescence images (Chamier et al.,
2021; Weigert et al., 2018; Zhang et al., 2018b). These methods learn to discern how an
image is expected to appear within the context of the particular dataset used for training
(Weigert et al., 2018). As a result, these methods tend to yield optimal outcomes for
datasets that closely resemble the training data. Deep learning denoising methods can
be divided into supervised and self-supervised techniques. Supervised techniques require
matching noisy and clear image pairs. These can either be experimentally recorded or sim-
ulated, if the simulation resembles the experiments well enough. Self-supervised techniques
only require the noisy input. This has the advantage that no clear image is required, which
can be challenging and time consuming to obtain. However, supervised methods outperform
self-supervised methods, as they have more information available (Chamier et al., 2021).
Noise2Noise (N2N) is a self-supervised denoiser that requires the training on image pairs
with independent noise (Lehtinen et al., 2018). Two versions of noisy images, which con-
tain same signal but different versions of noise, are mapped with a neural network. As the
network can not learn to perfectly predict the noise due to its randomness, it converges to a
denoised image. Noise to void (N2V) eliminates the need of requiring image pairs and uses
a masking approach to predict the masked pixels in patches of the image based on local
information of the neighboring pixels (Krull et al., 2018). N2V has been used to denoise
confocal images of F-actin in ovarian carcinoma cells (Chamier et al., 2021). Furthermore,
it has been applied to denoise STED images of the nucleus (Hajiabadi et al., 2022). There
are also approaches focusing on reducing the amount of training data and only requiring
one noisy image, called blind zero-shot denoisers (Lequyer et al., 2022). If the results from
a self-supervised method are satisfying, they shine due to not requiring ground truth data
for training and the reduced amount of training instances required.
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Weigert et al., 2018 demonstrated the potential of supervised denoising on different mi-
croscopy techniques including laser scanning microscopy, light sheet microscopy, and super-
resolution radial fluctuations (SRRF). The method, termed content aware image restoration
(CARE), uses a U-Net architecture (Ronneberger et al., 2015) and outperformed classical
approaches for denoising fluorescence images enabling 60x reduced light exposure. SIM
images have been successfully denoised using various supervised architectures (Jin et al.,
2020; Shah et al., 2021; Zhang et al., 2018b). An RCAN network (Zhang et al., 2018b)
is utilized in Chen et al., 2021 for mapping mitochondria SIM images acquired at low il-
lumination (4.2 W cm™) to high illuminated images (457 W cm™). The network has also
been used to translate the microscopy modality from confocal to STED. Ebrahimi et al.,
2023 combined the RCAN architecture with a U-Net to denoise STED images while main-
taining high frequency information. Tubulin and mitochondria were imaged in Hela cells
for multiple minutes with a pixel dwell time of 1 ps instead of 90 ps. Furthermore, they
demonstrated that their approach outperforms cross-modality image translation (confocal
to STED) and deconvolution.

3.3.3 Translation between label-free and fluorescence images

The process of generating fluorescence images from label-free images is termed “virtual
staining” (Chamier et al., 2021). Label-free methods, such as bright-field, phase, and
differential interference contrast (DIC) imaging, contain information about cellular orga-
nization, but lack the clear contrast and specificity of fluorescence microscopy. However,
label-free imaging is less phototoxic and photobleaching is not an issue. Generating fluores-
cence images from label-free images allows to detect fluorescence signal over long periods
of time. Furthermore, stains for different organelles can be predicted at once, increasing
the multiplexing capability.

Studies have used the bright-field channel or qualitative phase information with phase con-
trast or DIC to predict fluorescence (Chamier et al., 2021; Christiansen et al., 2018; Ounko-
mol et al., 2018). For instance, Ounkomol et al., 2018 trained several models to predict the
fluorescence targets from DIC images of more than 10 organelles, including nucleus, cell
membrane, mitochondria, golgi apparatus, and the endoplasmic reticulum. The level of de-
tail captured in the predictions varied based on the extent to which information about the or-
ganelles was encoded in the label-free image. Jo et al., 2021 showed that three-dimensional
refractive index tomograms acquired with a holographic microscope significantly improved
the predictions for multiple organelles and cell types compared to bright-field and qualitative
phase imaging, rendering quantitative phase imaging as a more informative input channel

for cross-modality inference.
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3.4 Aims of this thesis

This thesis focuses on applying deep learning techniques to enable accelerated SMLM exper-
iments, fast and long-time STED imaging, and automated fluorescence staining of wide-field
images with ensured image quality. Furthermore, the study extends the analytical toolbox
for characterizing mobility patterns and the spatial organizations of membrane receptors.
Each objective is addressed in a dedicated chapter, with the overarching goals outlined in

the subsequent paragraphs.

In single-molecule localization microscopy, a movie of stochastically blinking emitters is
recorded and the emitters localized to generate a super-resolved image. This method is
time consuming, as the emitters must be sparse per acquired image. An increased emitter
density per imaged frame requires advanced methods of entangling the overlapping PSF
signals. DeepSTORM, a deep learning based “multi-emitter” fitting approach, has been
demonstrated to be a powerful localizer on STORM data. Here, the tool was applied to
DNA-PAINT data of tubulin and mitochondria in mouse brain tissue in chapter 5. Ac-
quisition time was reduced from 1 hour to 1 minute while maintaining comparable image
quality. A comprehensive workflow of acquiring the training data based on experimental
measurements and the test data, which contains both the high emitter density images and
the ground truth, is introduced. This concept furthermore enabled live-cell SMLM of struc-
tural dynamics.

Fast and long-time STED imaging of living cells was enabled with a deep learning based
denoising approach in chapter 6. The focus was on the endoplasmic reticulum dynamics
in the context of induced autophagy. Torinl, a drug that induces stress and autophagy in
mammalian cells was simultaneously added with bafilomycin Al, a substance that inhibits
the lysosome machinery responsible for breaking down cellular components. This allowed
to activate the ER-phagy process and the observation of autophagosomes as they increased
in size over time. This process was imaged for multiple hours with high spatiotemporal
resolution. The sheets and tubes of the ER were segmented and morphological changes

quantified over time.

Furthermore, a pipeline for robust virtual staining of the membrane and nucleus in high-
throughput experiments on a wide-field microscope with a neural network is introduced in
chapter 7. The model robustness was tested across varying experimental conditions. The
predicted fluorescence images were segmented, which is a step towards single-cell charac-

terization in high-throughput experiments.
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The intricate and time-consuming analysis of single-particle tracking data of receptor move-
ments on cell membranes was simplified by introducing a pipeline that encompasses mean-
squared displacement analysis and diffusion state classification in chapter 8. A novel analysis
termed “transition counting” was developed that focused on transitions between different
diffusion states of receptors. Hidden MARKOV modeling, which also focuses on state
transitions, was seamlessly integrated into this framework. The pipeline was applied to
single-particle tracking (SPT) data of the hepatocyte growth factor receptor (MET) and
human epidermal growth factor receptor 2 (HER2) in living HelLa cells, to reveal informa-

tion on receptor functional states.

Chapter 9 introduces methodologies for describing the spatial relationships of multiple mem-
brane receptors in SMLM experiments. The pipeline was employed to study the fibroblast
growth factor receptor (FGFR) network, which is involved in numerous intracellular path-
ways, including cell growth, differentiation, and survival. Effects of FGF1 ligand treatment
on the spatial arrangement were investigated.
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4 Theory

This chapter gives a comprehensive overview of the fundamental concept of fluorescence
and its utilization in the field of microscopy. The constraint of conventional light microscopy
regarding its limit of spatial resolution is explained, followed by super-resolution microscopy
methods that overcome this limitation. Methods used within the scope of this study are
highlighted and techniques for data analysis explained. Furthermore, the chapter introduces
the foundational principles of neural networks, placing a particular emphasis on convolutional
neural networks and diverse network architectures. Lastly, principles of network performance

assessments are explained.

4.1 Absorption and fluorescence

Light can be described as an electromagnetic wave that interacts with matter in different
ways such as reflection, scattering, refraction, and absorption (Lakowicz, 2006). Absorption
is a process in which the photon energy of the electromagnetic wave is taken in by matter
and is converted into internal energy. A relationship between the energy E of a photon
and its frequency v or wavelength \ is provided by PLANCK's constant h (eq. 1) (Planck,
1901). The prerequisite for for the photon to be absorbed is that the energy of the photon
must fit the energy difference AE between an electronic ground state and an excited state
of the absorber and must correspond to a multiple of 2 multiplied by the frequency of the
wave.
h-c

AE:EI_EOZh'V:T (1)

The effectiveness of absorption is given by the LAMBERT-BEER law that describes a linear
dependence of absorption with the molar extinction coefficient €, the concentration c,
and the path length d of a sample (eq. 2) (Beer, 1852; Lambert, 1852). In absorption
spectroscopy, the sample is irradiated with light of intensity I. The intensity of the light
I after passing through the sample is measured to determine the attenuation of intensity,
which is termed extinction F. Absorption, scattering, diffraction, and reflection effects
contribute to the extinction. Scattering and diffraction are often negligible and reference
measurements allow the determination of reflection contributions. This provides a way to

access information about the absorption properties of a sample.

E:lg<IIO>:e-c-d (2)

The possible relaxation paths of absorbed energy are shown in a JABLONSKI diagram
with corresponding time scales (fig. 2) (Lakowicz, 2006). The diagram showcases various

electronic states of a molecule, including the electronic ground state .Sy, excited state 57,
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and a triplet state 77, each comprising multiple vibrational levels denoted as v;. Upon
absorption, the electron undergoes a transition to an excited state and can relax to the
ground state via several pathways. Relaxation to the lowest vibrational level within an
electronic state is called vibrational relaxation. The transition to lower electronic states
is termed internal conversion. Relaxation from the lowest vibrational state of S; back
to the electronic ground state can be accompanied by emission of a photon and is called
fluorescence. Emission of fluorescence requires vibrational relaxation and internal conversion
to the lowest vibrational level of S;. An alternative pathway back to the electronic ground
state is the transition to a triplet state 7;, called intersystem crossing. Relaxation to
the ground state with radiation is called phosphorescence. Since the transition between a
triplet and singlet state is spin-forbidden, the conversion exhibits smaller transition rates.
Alternatively, an electron can return from the S; or T} state to the ground state by non-

radiative internal conversion or intersystem crossing.
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fluorescence phosphorescence

Figure 2: Jablonski diagram. A molecule is excited from the electronic ground state Sy to higher elec-
tronic states S; by the absorption of a photon. Within an electronic state the molecule can
relax to lower vibrational levels via energy exchange with the surroundings called vibrational
relaxation. It can relax to a lower electronic state via internal conversion. The transition is
called intersystem crossing if the states differ in multiplicity (S; — T;, T; — S;). Radiative
relaxation from T} to Sy is termed phosphorescence and from Sy to Sy fluorescence.

The occupation of the states is temperature-dependent and given by the BOLTZMANN
distribution (eq. 3), which is an exponential function dependent on the energy difference
between two states AE, the BOLTZMANN constant kp, and the temperature T' (Banwell,
1983). N is the number of particles in a state. The indices j and i specify the state,
whereas the state j is energetically higher. Higher energy differences between the states or
small temperatures render lower occupancy of the upper state.

= ey (‘AE) )

kT
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The probability of transitions between different vibrational states is further described by the
FRANCK-CONDON principle (Condon, 1926; Franck et al., 1926). A vertical transition is
more likely if the wave functions of two vibrational states overlap more significantly. The
intensity of transition is proportional to the square of the overlap integral I between two
vibrational wavefunctions ¥ and U"" (eq. 4) (Dunbrack, 1986). Fig. 3 A depicts the
FRANCK-CONDON principle in a molecule with MORSE-like potential energy functions
of an electronic ground state Sy and excited state S;. The transition probabilities and
occupations according to BOLTZMANN render the shape of the absorption and fluorescence

spectrum (fig. 3 B).

2
M { [v \Iﬂ”dr} 4)

According to KASHA's rule, photon emission occurs from the lowest vibrational state of
S1 (Kasha, 1950). This induces a bathochromic shift of the emitted light relative to the
absorbed light, called STOKES shift (Stokes, 1852). The similarity of vibrational energy
functions between the electronic states induces symmetry in the absorption and emission
spectra (Lakowicz, 2006).
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Figure 3: Franck-Condon principle. A The intensity of state transition between the electronic ground
state Sy and excited state .S; depend on the overlap of the vibrational wave functions. Radiative
relaxation occurs from the lowest vibrational state of S to the electronic ground state. B The
relaxation to the lowest vibrational state of S7 induces a red shift in emission and the similarity
of vibrational energy functions of the electronic states symmetry in the absorption and emission
spectra.
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4.2 Fluorophore labeling

Fluorescence microscopy is a powerful tool for studying the properties of biomolecules, as
the non-invasiveness of light allows the examination of living samples. Most biomolecules
contain intrinsic fluorescence in form of aromatic amino acids. However, to create a high
contrast image of a specific target, a labeling strategy is needed. This requires binding
of a fluorescent probe to a target molecule. Desirable properties of a fluorescent probe
are specificity, brightness, photostability, a small size, non-toxicity to the cell and live-cell
compatibility. A broad toolbox of labels and ways to attach them to the target structure

exist; both must be selected appropriately for the use case.

4.2.1 Fluorescent labels

Organic fluorophores absorb and emit light due to their conjugated m-electron system.
This can be approximated with the quantum mechanics model of a particle in a box (Kuhn,
1949). The energy levels are described with eq. 5, with n being the number of energy levels,
h the Planck constant, m the mass of the electron, and L the length of the box. Upon
absorbing light, a molecule transitions from the highest occupied molecular orbital (HOMO)
to the lowest unoccupied molecular orbital (LUMO). The required energy difference AE
is described in eq. 6, with the number of 7 electrons N in the box. The energy can be
expressed as a wavelength (eq. 1). The wavelength of the absorbed and emitted light
depends on the length of the conjugated system.

nh?
Fn = Smr2 ©)
h2

Organic fluorophores exhibit high brightness and photostability, resulting in strong and long-
lasting fluorescence signal (Requejo-Isidro, 2013; Resch-Genger et al., 2008). With ~1 nm
in size they are comparably small labels. Near-infrared-emitting fluorophores are particularly
biocompatible due to their lower phototoxicity (Waldchen et al., 2015). Commonly used
organic fluorophore classes are oxazines, carbocyanines, carbopyronines, and rhodamines
(fig. 4) (Requejo-Isidro, 2013). Other labels are quantum dots (Resch-Genger et al., 2008)
and fluorescent proteins (FP) (Odell et al., 2013).

The first discovered FP is the green fluorescent protein (GFP), which was originally iso-
lated from the jellyfish Aequorea victoria (Shimomura et al., 1962) (fig. 5). GFP has a
chromophore composed of three amino acids, which is encased within a B-barrel structure.
A variety of FPs are available covering the range of visible light (Matz et al., 1999; Shaner
et al., 2004). Compared to organic dyes they are less photostable and bright, but allow for
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stoichiometric labeling and are live-cell compatible (Toseland, 2013).

A

Figure 4: Exemplary structures of organic fluorophores. A Cy3B is a yellow-absorbing dimethine
cyanine. B ATTO 647N is a red-absorbing carbopyronine. C Alexa Fluor 532 is a green-
absoring rhodamine. D ATTO 655 is a red-absoring oxazines.

¥ ik V‘;’\

Figure 5: Crystal structure of GFP from the jellyfish Aequorea victoria. The B-barrel of the protein
shields the chromophore, which is built by the three amino acids S65, Y66, and G67 (from the
protein databank, PDB: 4KW4) (Barnard et al., 2014).

4.2.2 Labeling strategies

Genetic engineering allows the fusion of a fluorescent protein to a target biomolecule.
Typically to the N- or C-terminus of a target protein the fluorescent protein is fused. This
facilitates stoichiometric labeling and is live-cell compatible (fig. 6 A). The introduction
of fusion proteins into cells is achieved through plasmid transfection, but often results in
variable expression levels. This variability represents a significant drawback, given that

overexpression has been demonstrated to impact both protein organization and cellular
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function (Gibson et al., 2013). Genomic engineering techniques like CRISPR/Cas allow for
direct insertion of fluorescent protein DNA into the genomic DNA, maintaining natural and

consistent protein expression levels controlled by native promoters (Ran et al., 2013).

799

Figure 6: Fluorescence labeling strategies. A A FP is fused to the protein of interest. B The protein
of interest is fused to a HaloTag, which covalently binds an organic flurophore. C The cystein
residue of the protein of interest reacts with a maleimide-coupled organic dye. D An AB carries
an organic dye and is attaches to the protein of interest.

Labeling with organic fluorophores is possible with a range of strategies, including protein
tags, site-specific labeling through chemical reactions, and immunofluorescence.

Protein tags, such as SNAP (Keppler et al., 2004), HaloTag (Los et al., 2008), and CLIP
(Gautier et al., 2008), are genetically encoded with the protein of interest. They typically
form a covalent connection between the protein of interest and an organic dye (fig. 6 B).
This allows for stoichiometric labeling. Furthermore, these tags have orthogonal substrate
specificity and are compatible with live-cell imaging. The HaloTag is derived from a bacte-
rial hydrolase enzyme and with 33 kDa in size it is comparable to the size of a fluorescent
protein (Los et al., 2008). Fluorescent dyes that are bound to a chloroalkane linker can
be fused to the tag as it carries an activate site that reacts with the linker. The reaction
is fast and irreversible under physiological conditions. Transiently binding HaloTags have
been recently developed and their suitability for single-molecule localization microscopy is
discussed in chapter 4.5.2 (Kompa et al., 2023). A method for directly labeling proteins
with fluorescent organic dyes uses N-hydroxysuccinimide (NHS) ester-modified dyes (Zhang
et al., 2018c). These NHS esters form covalent bonds with primary amines, such as those
found in lysine residues or N-terminal amino groups of proteins. As primary amines are
numerous, multiple fluorophores might be attached to the protein of interest, which in-
creases the brightness and therefore the signal-to-noise ratio. At the same time this causes
lack in specificity and results in non-stoichiometric and site-unspecific labeling (Dempsey
et al., 2018). An alternative approach is the reaction of cysteine residues with maleimide-
coupled fluorophores (Zhang et al., 2018c) (fig. 6 C). Cysteine residues are comparatively
less abundant within proteins and their presence or absence in the amino acid sequence of

the protein can be manipulated to provide site-specific labeling. Furthermore, an unnatural
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amino acid can be introduced in the protein of interest and connected to the organic fluo-
rophore via click-chemistry, for example with azid-alkin cycloaddition (Kolb et al., 2001).

Immunofluorescence uses antibodies (AB) to attach organic dyes to a target molecule
(Coons et al., 1941) (fig. 6 D). In indirect immunofluorescence, a primary antibody binds
to the target and a secondary antibody, which carries a fluorophore, binds to the primary an-
tibody. This provides versatility and cost-effectiveness due to the diverse array of secondary
antibodies that can be combined (Odell et al., 2013). As antibodies are substantially larger
in size (10-15 nm), they cause an offset between the target of interest and the fluorophore
(Klein et al., 2009). This can be reduced with direct immunofluorescence, which uses only
a primary antibody modified with a fluorophore (Odell et al., 2013). The labeling offset can
be further reduced by using antibody fragments such as the Fab fragment with a size of
7 nm (Klein et al., 2009) or nanobodies with a size of around 4 nm (Chames et al., 2020).

4.3 lllumination schemes

Different illumination schemes are common for fluorescence microscopy (Sanderson et al.,
2014). With widefield illumination, the laser light is focused on the back of the focal plane
of the objective to illuminate the entire FOV (fig. 7 A). In an epifluorescence microscope,
the light emitted by the sample is collected by the same objective for illumination. The
fluorescence light is split from the excitation light with a dichroic beamsplitter and directed
to an electron-multiplying charge-coupled device (EMCCD) camera. Since the entire sample
is illuminated, fluorescence signal is collected from multiple planes, which reduces the signal-
to-noise-ratio due to signal from out-of-focus planes. The background can be reduced by
axially limiting the illumination using total internal reflection fluorescence (TIRF) (fig. 7 C)
(Ambrose, 1956) or a highly inclined laminated optical sheet (HILO) (fig. 7 B) (Tokunaga
et al., 2008).

A B Cc D

o

widefield HILO TIRF confocal
Figure 7: lllumination schemes. A Widefield, B HILO, C TIRF, and D confocal illumination.
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To achieve total internal reflection for TIRF microscopy, the incident beam is shifted even
further to the periphery of the objective. When a critical angle 6..; at the interface
between coverglass and sample is surpassed, total internal reflection occurs, with n; being
the refractive index of the coverslip and ny of the sample (eq. 7). Approximately ~200
nm from the interface between the coverglass and the sample are illuminated (Ambrose,
1956). This effectively diminishes fluorescence signals originating above the excited region.
The illuminated area is characterized by an exponential intensity decay, commonly referred
to as the evanescent field (Axelrod, 1981) (eq. 8). The intensity of light along the z-axis
I(z) is dependent on the intensity of the incident beam I(0) at the glass-water surface.
The penetration depth d is the point in z direction where the initial intensity decreased to
1/e. TIRF microscopy is well suited to, for example, study the cell membrane but is limited
to the study of samples at their surfaces (Axelrod, 1981; Tonzani, 2009).

Oupis = sin~! (Zf) (7)
I(z) = I1(0) - e=#/4 (8)

To achieve HILO illumination, the incident beam is focused on the back focal plane of the
objective, but spatially shifted to the periphery of the objective (Tokunaga et al., 2008). A
thin optical sheet is illuminated through the sample. The thickness of the sheet dz depends

on the illumination angle s and illumination diameter R (eq. 9).

R
tan(s)

dz = (9)

With confocal illumination, a laser beam excites only a small, diffraction-limited volume of
the specimen and the image is generated by scanning the spot over the FOV (fig. 7 D)
(Heilker et al., 2005; Sanderson et al., 2014). Only fluorophores within a tightly confined
volume of ~one femtoliter are excited, effectively reducing background signal. Emitted
light from the sample is directed through a pinhole, which diminishes signal from out of
focus planes, thereby improving the signal-to-noise ratio. The emitted photons are detected
by a photomultiplier. This approach attains a lateral resolution of ~200 nm and an axial
resolution of ~500 nm. The temporal resolution of confocal laser scanning microscopy is

inherently constrained by the scanning process.

4.4 Diffraction limit

The spatial resolution of an optical microscope is limited by diffraction. ABBE postulated
that the minimal resolvable distance between two structures d,,,;,, depends on the wavelength

of light A\ traveling trough a medium with refractive index n and the half-angle of the
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objective v (eq. 10) (Abbe, 1873). The term n - sina can be summarized to the numerical

aperture NA. A resolution up to 200 nm can be reached with a classical optical microscope.

A A
- - 1
i 2n - sinae 2NA (10)

When light is emitted from a point source, it passes through the optics of the microscope.
Due to diffraction, AIRY discs are created with a central intensity peak surrounded by rings
of decreasing intensity (Airy, 1895). The image of the point source, when observed through
the microscope, is characterized by a point spread function (PSF). The PSF describes how
a point source of light transforms into a finite-sized spot or pattern. RAYLEIGH proposed a
resolution criterion based on the separation between two point sources. The point sources
are resolved if the maximum of one PSF falls on the first minimum of the other PSF,

described by minimal distance d,;, in eq. 11 (Rayleigh, 1896).

061

» 11

4.5 Super-resolution microscopy

Super-resolution microscopy (SRM) techniques improve the resolution by more than an or-
der of magnitude compared to diffraction-limited fluorescence microscopy and close the gap
of resolution towards electron microscopy (Liu et al., 2022a). Because biological structures
are less than 200 nm in size at the molecular level, SRM is widely used in biomedical re-
search. Recognized with the NOBEL prize in 2014, numerous SRM methods have evolved,
with their respective advantages and hindrances (Mockl et al., 2014).

In general, SRM methods can be categorized as deterministic and stochastic approaches.
Among the deterministic approaches is stimulated emission depletion (STED), which de-
pletes fluorophores with stimulated emission around an excitation beam in a confocal laser
scanning microscopy (Hell et al., 1994). Another approach is structured illumination mi-
croscopy (SIM), in which the sample is illuminated with a periodic pattern (Gustafsson,
2000). From images recorded by translating and rotating the pattern on the sample, a
super-resolved image is reconstructed.

Stochastic super-resolution approaches are based on the idea of exciting fluorophores to
emit light at separate time and spatial coordinates. This enables the discrimination of
dense emitters over multiple camera frames, resulting in a super-resolved image. Super-
resolution optical fluctuation imaging (SOFI) utilizes the analysis of fluorescent intensity
fluctuations and their temporal correlations to achieve higher resolution (Dertinger et al.,
2009). Single-molecule localization microscopy (SMLM) detects the positions of sparse

emitters across many camera images to generate a super-resolved image (Heilemann, 2010;
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Liu et al., 2022a). Exemplary methods are photoactivated localization microscopy (PALM)
(Betzig et al., 2006), stochastic optical reconstruction microscopy (STORM) (Rust et al.,
2006), direct STORM (dSTORM) (Heilemann et al., 2008), and DNA-points accumulation
for imaging in nanoscale topography (DNA-PAINT) (Jungmann et al., 2010).

Recent advances achieve resolution even below a nanometer. Maximally informative lumi-
nescence excitation (MINFLUX) combines the idea of single-molecule localization and a
donut-shaped illumination scheme to improve resolution (Balzarotti et al., 2016). Resolu-
tion enhancement by sequential imaging (RESI), which is a concept based on Exchange-
PAINT (Jungmann et al., 2014), repeatedly images the same target with multiple orthogonal
labeling sequences and achieves resolutions in the Angstrém scale (Reinhardt et al., 2023).
The remainder of this chapter focuses on STED microscopy and SMLM techniques used
for this work.

4.5.1 Stimulated emission depletion microscopy

Stimulated emission depletion (STED) microscopy is a confocal technology that operates
on a dual-beam principle, where a STED beam deactivates fluorophores in a donut-shaped
ring that is overlayed on an GAUSSIAN-shaped excitation beam (Hell et al., 1994) (fig. 8).
The excitation beam elevates fluorophores to higher-energy states, while the STED beam
depletes fluorophores through stimulated emission. Only fluorophores close to the center of
the excitation beam, where the STED beam has zero intensity, remain in the excited state
and fluoresce. This creates a small effective PSF, allowing features below the diffraction
limit to be visualized. The coaligned beams are scanned across the sample to generate a

super-resolved image.

The resolution Ar of a STED image can be approximated with eq. 12, where X is the
wavelength of the excitation laser, N A the numerical aperture of the objective, Isrgp the
intensity of the STED beam and Ig the saturation intensity (Hell, 2007). The saturation
intensity is the intensity of the STED beam where 50% of the molecules are depleted
(Harke et al., 2013). This depends mainly on the cross-section for stimulated emission
at a specific wavelength and is fluorophore-characteristic. To improve the resolution, the
intensity of the STED beam can be increased, or the selection of dye and STED beam
wavelength optimized. Theoretically, the attainable spatial resolution is unlimited (Hell,
2007; Tortarolo et al., 2018).

A
Ar =

 ONAYL + Isrpn/Is

In practice, the resolution is limited by the signal-to-noise ratio, meaning the highest fre-

(12)

quency of the sample that emerges from the noise dictates the resolution (Tortarolo et al.,
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Figure 8: Stimulated emission depletion microscopy concept. A A fluorophore is excited to the
first excited state S;. By relaxation into the ground state Sy, fluorescence light is emitted.
Alternatively, the STED beam depopulates the excited state by inducing stimulated emission. B
Fluorophores are excited within the diffraction-limited excitation beam and their fluorescence is
suppressed at the periphery of the excitation beam with the STED beam, resulting in a narrow
effective PSF. C Exemplary excitation and emission spectrum of a fluorophore, wavelengths of
the excitation and STED lasers and the detection window. D Confocal and E STED image of
a-tubulin, scale bars 2 pm.

2018). Therefore, a sufficient number of photons must be recorded while scanning the sam-
ple. Additionally, it is crucial to scan the sample in sufficiently small steps in accordance
with the NYQUIST-SHANNON sampling criterion (Vicidomini et al., 2018). Furthermore,
the excitation and depletion beams must overlap perfectly in space, otherwise the imaging
quality will degrade. The STED beam itself might cause unwanted effects that corrupt
the quality of the STED image. The wavelength must be chosen to overlap well with
the emission spectrum of the fluorophore for optimal depletion. However, if the STED
beam is overlapping with the excitation spectrum of the fluorophore, this might lead to
an increased probability of exciting the fluorophores with the STED beam. Additionally,
the STED beam can excite fluorophores to higher electronic states that shows increased
rates of photobleaching (Hotta et al., 2010). It is essential to maximize the depletion
of the fluorophore with the STED beam and minimize photobleaching to obtain a good
SNR. Examining the interplay between these parameters is essential to optimize STED

microscopy.
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To deactivate fluorophores with the STED beam, stimulated emission must win the com-
petition of spontaneous emission of the excited flurophore, which typically happens within
a few nanoseconds after excitation (Vicidomini et al., 2018). This short temporal win-
dow requires a high flux of stimulating photons and therefore, high STED laser powers
were required in the earlier days with multiple MW /cm? up to GW/cm? (Heilemann, 2010;
Vicidomini et al., 2018). The development of more stable fluorophores and an improved
understanding of the photophysical processes lifted the constraints of STED and made
it compatible with live-cell and long-term measurements. Furthermore, the experimental
complexity of the setup has been reduced by the use of continuous instead of pulsed lasers
(Willig et al., 2007). STED has been successfully applied in living cells (Hein et al., 2008;
Liu et al., 2022b) and in in vivo imaging (Berning et al., 2012; Steffens et al., 2020). The
extension to 3D-STED is possible by using two superimposed, incoherent STED beams that
confine the fluorescence both laterally and axially (Klar et al., 2000). Exchangeable labels
have been combined with STED that extend the acquisition time and allow multi-color
imaging based on the concept of Exchange-PAINT (Glogger et al., 2022; Spahn et al.,
2019) (see chapter 4.5.2).

4.5.2 Single-molecule localization microscopy

In SMLM the emitter density is actively controlled utilizing concepts from photochemistry
or transiently binding labels (fig. 9 A). The control allows spatiotemporal separation of the
PSFs that would otherwise overlap and would not be distinguishable due to the diffraction
limit. The positions of the emitters can be determined from the separated PSFs, typically
using a GAUSSIAN fit to approximate its shape (fig. 9 B). This yields localizations with an
accuracy of a few nanometers (Sauer et al., 2017). By accumulating images of separated
PSFs, a super-resolution image can be reconstructed consisting of thousands to millions of
individual localizations (fig. 9 C).

The localization uncertainty depends on the number of photons N collected, the background
level b, the pixel size of the detector a, and the standard deviation of the (FAUSSIAN fit
0. Depending on the regression method, the localization uncertainty is described with eq.
13 and 14, where 7 is a normalized dimensionless background parameter, for least squares
(LS) or with eq. 14 and 15 (Mortensen et al., 2010; Thompson et al., 2002) for maximum
likelihood estimation (MLE) (Mortensen et al., 2010; Stallinga et al., 2012).

o?+a*/12 (16
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Figure 9: Principle of single-molecule localization microscopy. A The PSFs of isolated emitters are
recorded over time. Spatiotemporal separation of the emitters can be provided by reversibly
switching the fluorophores between a dark and bright state. B The PSFs are fitted with a
GAUSSIAN function. The orange cross visualizes the determined position of the emitter by the
fit and the green cross depicts the true position of the emitter. A localization list is curated
that stores information of all emitters positions, time, intensity, localization uncertainty, etc,
scale bar 500 nm. C Widefield (bottom right) and super-resolution (top left) image recorded
with the DNA-PAINT principle. The image shows alpha-tubulin in a tissue section of the medial
nucleus of the trapezoid body (MNTB) of a mouse brain (Narayanasamy et al., 2022). The
super-resolution image was rendered based on the localization list. Scale bar 5 pm.
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Furthermore, the localization uncertainty can be experimentally determined via nearest
neighbor analysis (NeNA) (Endesfelder et al., 2014), based on the distance distribution
of nearest neighbor positions in adjacent frames. The distribution is fitted with eq. 16
to obtain the experimental localization uncertainty. The first term describes the distances
d of localizations from the same molecule and the other terms are correction factors for
distances arising from different molecules (false nearest neighbors).
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Prominent examples of SMLM techniques grounded on the concept of photoswitching
are STORM (Rust et al., 2006), dSTORM (Heilemann et al., 2008), and photoactivated
localization microscopy (PALM) (Betzig et al., 2006).

In STORM, fluorophores undergo transitions into long-lived dark states, ensuring that only
a subset of fluorophores contributes to signal emission (Heilemann et al., 2005; Rust et
al.,, 2006). This is facilitated with buffers containing reducing reagents and an oxygen
scavenger system. The dSTORM approach has simplified this concept by demonstrating
photoswitching with a singular dye, eliminating the necessity for an additional activating
dye (Heilemann et al., 2008).

23



4 Theory

PALM utilizes photoactivatable and photoconvertible fluorescent proteins (FPs), which can
be stochastically turned on (activated) and off (deactivated) with light (Betzig et al.,
2006). Fluorescent proteins can be genetically encoded, allowing them to be fused to
specific proteins of interest, which renders PALM to be minimally invasive. This also
enables stoichiometric labeling and allows for the quantification of molecules (Fricke et al.,
2015).

Alternative to photoswitching, blinking (the appearance and disappearance of emitters) can
be generated through transient binding of freely diffusing fluorophores to the target protein.
This concept (Sharonov et al., 2006) was combined with oligonucleotides (DNA-PAINT)
(Jungmann et al., 2010) and is explained in more detail in the following chapter. Another
approach is HaloTag-PAINT (Kompa et al., 2023), where the HaloTag ligand mentioned in
chapter 4.2.2 is chemically modified for transient binding to the target. Further analysis of
SMLM data is highlighted in chapter 4.5.2.2.

4.5.2.1 DNA-PAINT

Points accumulation for imaging in nanoscale topography (PAINT) utilizes fluorescent
probes that repetitively bind and unbind to a specimen (Sharonov et al., 2006). The
initial PAINT concept was demonstrated using the lipophilic dye Nile Red that binds to
lipid membranes. The PAINT concept was extended by combining it with short, fluores-
cently labeled oligonucleotides and termed DNA-PAINT (Jungmann et al., 2010).

In DNA-PAINT, single-stranded fluorophore-labeled oligonucleotides (imager strands) of
7-10 nucleotide length transiently bind to their complementary labeled targets (docking
strands), effectively splitting the fluorescence signal both spatially and temporally (fig. 10).
The binding kinetics are highly tunable by adjusting the DNA sequence (Schueder et al.,
2019; Strauss et al., 2020), strand length, concentration, temperature, and buffer condi-
tions (Civitci et al., 2020; Schueder et al., 2019).

Ideally, the number of localization events should be dense but spatially separated to al-
low single-molecule detection (Schueder et al., 2019). At the same time, the duration
of the binding events should match the speed of image acquisition to effectively visualize
the complete structure of interest in a short measurement period. Simply increasing the
concentration of imager strands and therefore the number of binding events would lead to
an increase in background fluorescence and hamper the imaging quality. This is why the
number of binding events was optimized through the strand sequence. A combination of
A and G or T and C bases within a DNA-strand prevent self-interaction. Multiple over-
lapping binding sites in the strand sequence increase the rate of binding events (Strauss
et al., 2020). Higher binding frequencies are also achieved with the addition of MgCl, that
stabilizes the DNA duplex formed between imaging and docking strand (Schueder et al.,
2019). Addition of ethylene carbonate accelerates the dehybridization of the DNA duplex
and results in shorter binding times (Civitci et al., 2020).
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Compared to other SMLM techniques, DNA-PAINT omits the principle of photoswitching.
It allows for continuous imaging without photobleaching, as fluorophores are constantly
exchanged. No reducing buffers and near-UV irradiation are required as in STORM and
PALM experiments, which makes this method very suitable for biological samples. In com-
bination with TIRF illumination, which reduces background signal, this method is suitable
for studying cell membrane receptor distributions and dynamics (Harwardt et al., 2020;
Niederauer et al., 2023; Schroder et al., 2021; Stehr et al., 2021).
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Figure 10: DNA-PAINT concept. A Single-stranded oligonucleotides labeled with fluorescent markers
(imager strands) are present in solution and are complementary to the docking strand sequence.
When the imager strand and docking strand undergo reversible hybridization, a fluorescence
signal becomes observable. Subsequent dissociation of the imager strands results in a reduction
in fluorescence intensity. B The docking strand is attached to a probe, for example an antibody,
that binds to the biomolecule of interest. Transient binding of the imager to the docking strand
reveals the position of the biomolecule.

Exchange DNA-PAINT extends the DNA-PAINT concept and enables multi-target imaging.
Different targets within the sample are imaged sequentially (Jungmann et al., 2014). In
each imaging round, a specific imager strand is introduced, binding temporarily to its
complementary docking strand (fig. 11). After capturing data for the first target, the
sample is washed to remove the initial imager strand, and a new imager strand, specific
to the next target, is added. This process is repeated for multiple targets, resulting in
individual super-resolution images for each target, which are then combined to create a

multi-target super-resolution image.

This approach offers numerous advantages, including the ability to use the same fluorophore
for all targets, eliminating chromatic aberrations and channel crosstalk. Moreover, the num-
ber of targets is not restricted by the capability of separating fluorescence signal based on
the wavelength, as is the case with PALM or STORM. The number of targets is restricted
by the number of orthogonal strand pairs. By disentangling the binding kinetics of strand
pairs, multiple targets can be imaged at once, as demonstrated in \Wade et al., 2019, where

the authors recorded a 124-plex super-resolution image.
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Figure 11: Exchange DNA-PAINT concept. A The scheme exemplary depicts three membrane recep-
tors, which are labeled with primary antibodies that carry different docking strand sequences.
In the first round of imaging, a buffer is added that contains matching imager strand to the
docking strand of the first receptor and a SMLM-movie is recorded. The imaging buffer is
exchanged to an imaging buffer containing the imager strand matching the docking strand of
the second receptor. This procedure can be repeated several times to image multiple targets
in the same sample with the same dye. B Super-resolved images of the individual targets are
merged into one multiplex image.

Exchange DNA-PAINT has been demonstrated to visualize different organelles (Agasti et al.,
2017), membrane receptors (Schroder et al., 2021), and synaptic proteins (Narayanasamy
et al., 2021). The concept was combined with nanobodies to reduce the displacement error

between target and fluorescent dye (Agasti et al., 2017; Sograte-Idrissi et al., 2019).

4.5.2.2 Analysis of SMLM data

Protein interactions often lead to the formation of heterogeneous and dynamic multi-
molecular protein assemblies. Investigating the arrangement and assembly of these protein
clusters is vital for unraveling their roles within cellular processes. To gain insights into the
spatial distribution of molecules, specialized distribution and clustering algorithms come

into play, which will be elucidated in the following sections.

SMLM data are point clouds in 2D or 3D space in which fluorophore positions are stored
as a point list P = P, P, ...Py, where N is the total number of recorded fluorophore
positions (Khater et al., 2020). Each event stores information about the coordinates (x;
and y; for 2D and z;, y;, and z; for 3D) along with other information about the time of de-
tection, localization uncertainty, fluorescence intensity, background, etc. Some fluorophores
might be detected multiple times due to the stochastic blinking. In order to group these
repeated localizations, cluster analysis algorithms aim to use mathematical descriptions to
identify patterns, for example a dense group of molecule localizations. These localizations
are pooled into clusters representing individual molecules or protein complexes.

Popular cluster analysis methods for SMLM data are VORONOI-Tesselation (Andronov et
al., 2016; Levet et al., 2015; Okabe et al., 2000), and density-based algorithms such as
density-based spatial clustering of applications with noise (DBSCAN) (Ester et al., 1996;
Harwardt et al., 2020; Mollazade et al., 2017; Zhang et al., 2017). VORONOI diagrams par-
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tition the space between localizations and create VORONOI cells, where each cell contains
one localization. This allows to describe clustering based on the VORONOI cell volume and
shape and highlights clustering at different scales. Furthermore, cells can be combined to
segment regions of interest. DBSCAN distinguishes between core, boundary, and isolated
points (fig. 12). Core and boundary points are grouped together, while isolated points
do not belong to a cluster. This method is particularly effective in identifying clusters of
arbitrary shapes and excludes noise from clustering. The determination of critical cluster
parameters, namely the minimum neighbor count and the radius, can be achieved through
established methodologies (Verzelli et al., 2022).
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Figure 12: Clustering with DBSCAN. A defined radius  and a minimum number of points ¢ is used
to determine core, boundary and outlier points. Core points have > ¢ neighbors within their
radius. Boundary points are within radius distance to a core point but have < ¢ neighbors. All
core and boundary points build a cluster. The cluster can only grow from core points.

The distribution of localizations and protein clusters can be further analyzed. RIPLEY's
functions are descriptive statistics to compare the spatial distribution of a point pattern to
a random distribution (Lopes et al., 2017; Pereira et al., 2012; Ripley, 1977). This set of
functions examines if a dataset is clustered or dispersed.

The colocalization of two proteins can be characterized with coordinate-based colocalization
(CBCQ), that describes the degree of colocalization between the proteins within a defined
radius based on SPEARMAN correlation (Malkusch et al., 2012). The concept was extended
to work with a single color (Diez et al., 2014) and combined with DBSCAN to distinguish
colocalized and non-colocalized clusters (Pageon et al., 2016). Multicolor VORONOI tes-
sellation allows the study of co-localization based on the ratio of superposed cells in both
channels (Andronov et al., 2016).

Nearest neighbor distances describe the distribution of distances between localizations or
protein clusters directly (Chapman et al., 2023; Chou et al., 2013; Fischer et al., 2021;
Knuth, 1968). For each localization or protein cluster, the nearest neighbor is found and
the distance determined. The distances from all molecules form a distance distribution.
This concept can be extended to k-nearest neighbors to reveal clustering at different scales
(fig. 13) (Barth et al., 2020).
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Figure 13: k-nearest neighbor distances. A The distances for the first, second, and third nearest
neighbors are determined for each localization. B The distances from all molecules form a
distance frequency distribution.

4.6 Single-particle tracking

Single-particle tracking (SPT) enables the analysis of biomolecule mobilities in living cells
with nanometer spatial and millisecond temporal resolution (Dietz et al., 2019a; Stone
et al., 2017). It is based on the concept of single-molecule localization microscopy and
captures the positions of a target over time. Targets to study are membrane receptors,
as they often build the starting point for cell signaling cascades by forming oligomers and
interacting with intracellular signaling proteins and their cell environment (Harwardt et al.,
2017). This may lead to changes in diffusion behavior that are measurable by SPT and can
be linked to biological interactions (Harwardt et al., 2017; Manzo et al., 2015; Shen et al.,
2017). SPT resolves the heterogeneous movement of individual fluorophore-labeled proteins
over time and space that would otherwise remain hidden in ensemble measurements.

In the following chapter, diffusion with a focus on membrane receptors is explained (chapter
4.6.1). Labeling strategies specifically designed for SPT are highlighted in chapter 4.6.2.
The concept of localization and tracking is introduced in chapter 4.6.3. The last chapter
focuses on different SPT data analysis strategies, which were used in this work (chapter
4.6.4).

4.6.1 Diffusion

Diffusion refers to the movement of particles along a gradient of decreasing concentration.
FicKk's law of diffusion describes the diffusion coefficient D as a proportional constant
between the particle flux J and the concentration gradient % with respect to a length x
(eq. 17) (Fick, 1855). The particle flux signifies the quantity of particles passing through
a specified area over a given time.
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Oc
J = —D% (17)

The diffusion coefficient was further defined by EINSTEIN (eq. 18), with kp being the
BOLTZMANN constant, T' the temperature, 1 the viscosity of the medium, and Ry the
hydrodynamic radius of the diffusing particle — a concept that highlights that the diffusion
of a particle in solution depends on its size including the solvate shell surrounding the
particle (Einstein, 1905).

~ kgT
~ 6mRy

(18)

The cell membrane contains a multitude of biomolecules, including lipids and proteins, that
build a complex and dynamic system of interaction (Singer et al., 1972). Biomolecules
are heterogeneously distributed on the membrane, yielding local variations of viscosity and
therefore diffusion. The diffusion of membrane receptors may be influenced by the lipid
composition of the membrane, interactions with other receptors, signaling molecules or or-
ganelles such as the actin cytoskeleton or membrane nanodomains (Harwardt et al., 2017,
Rossier et al., 2012). Receptor uptake in the cell is typically prefaced by immobiliza-
tion. This leads to a heterogeneous spectrum of receptor velocities and diffusion patterns.
The cell membrane can be approximated as a two-dimensional surface and descriptors of
movement such as the diffusion coefficient per detected biomolecule can be computed, for
example with the Saffman-Delbriick model (Saffman et al., 1975).

4.6.2 Labeling and imaging strategies for single-particle tracking

SPT requires low labeling density to enable single-molecule detection. For high endogeneous
protein densities, this can be achieved by sub-stoichiometric labeling strategies, such as
introducing a photoactivatable fluorophore (Manley et al., 2008) or by using transiently
binding labels (Giannone et al., 2010; Stehr et al., 2021). Universal PAINT (uPAINT)
utilizes probes that weakly interact with membrane molecules and label a constant fraction
of them by transient binding of the target protein (Giannone et al., 2010) (fig. 14). The
probe carries an organic fluorophore that allows localization of the position of the membrane
molecules. The labeling density is influenced by the affinity of the probe to the target
and the concentration of the probe. As the labels cannot penetrate the cell membrane,
the method typically targets the extracellular domain of membrane proteins. For single-
molecule imaging, TIRF or HILO illumination is used to reduce the background signal from
unbound markers in solution. DNA-PAINT has also been utilized as a labeling strategy for
SPT, in which a fluorescently marked oligonucleotide reversibly binds to a single-stranded
DNA attached to a target molecule (Stehr et al., 2021).
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Figure 14: uPAINT concept. Probes that carry a fluorescent dye are added to the imaging solution.
The probes have an affinity to transiently bind to the target probe, for example a membrane
receptor, and build a complex. A fraction of the membrane receptors is labeled based on
binding and unbinding kinetics. The surface of the cell is illuminated with the evanescent field
from TIRF microscopy. Only receptors on the cell surface that carry a probe with a dye are
detected.

4.6.3 Localization and tracking

Each molecule carrying a fluorescent label creates a diffraction-limited spot in the imaging
plane that can be localized. The localizations are linked over time to form single-particle
trajectories (fig. 15). Events of particle merging, splitting, death or birth are possible
(fig. 16) (Jagaman et al., 2008; Racine et al., 2006). The events are treated as a global
combinatorial optimization problem, with the goal of finding the overall most likely set
of trajectories across the movie. Each connection is evaluated with a cost function that
determines the likelihood of a connection based on, for example, the distance and intensity
of the localizations. Starting with a coarse solution that is fine-tuned (Jagaman et al.,
2008), with for example a simulated annealing approach (Racine et al., 2006), an optimum

can be found.
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Figure 15: Principle of trajectory computation. Single-molecule signal is localized with sub-pixel accu-
racy and joined over time to trajectories. Each trajectory has its own properties like a diffusion
state.
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Figure 16: Events occurring in single-particle tracking. Three different event types are possible be-
tween two consecutive time steps t and t+1.

4.6.4 Single-particle tracking data analysis

Various models have been developed to describe the motion characteristics of single-particle
trajectories. Approaches include the mean squared displacement (MSD), the mean jump
distance (MJD), and hidden MARKOV modeling (HMM).

4.6.4.1 Mean squared displacement analysis

The MSD of a trajectory is calculated across different time steps At (eq. 19, fig. 17 A),
with = and y being the spatial coordinates at the respective time points (Saxton et al.,
1997; Sibarita, 2014). By computing the average displacement per time step, a MSD curve
is generated, which describes the MSDs against their respective time steps.

MSD(At) = ((zerar — )* + (Yerar — Ye)°) (19)

Different motion states can be extracted from the shape of the MSD curve (fig. 17 B).
For each time interval, the MSD is computed and plotted against the time interval. One
way of motion state characterization is sorting the trajectories into motion models based
on their « values derived by eq. 20 (Saxton et al., 1997), which influences the curvature
of the MSD plot. The diffusion coefficient D can be calculated with eq. 21 with dof = 4
for 2D and dof = 6 for 3D BROWNIAN motion.

MSD(At) = 4ADAt® (20)
~ MSD(At)
b= dofAt (21)
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Figure 17: MSD calculation and curves of different diffusion states. A MSD values are calculated
for different time steps. B Different diffusion states show characteristic MSD curves. Freely
diffusion particles show a linear dependency, directed motion a rising curve, confined motion a
saturated curve, and immobile trajectories a slope equal to zero.

4.6.4.2 Hidden Markov modeling

Receptor dynamics are complex and switching between diffusion states within a single re-
ceptor trajectory is possible. Hidden MARKOV modeling allows the analysis of transitions
between diffusion states (Chung et al., 2010; Liu et al., 2019; Low-Nam et al., 2011; Ott
et al., 2013; Persson et al., 2013; Sungkaworn et al., 2017).

A hidden MARKOV model is generally defined by a number n of hidden states S =
{51, Ss, ... Sp}, which are obscured by noise (Yoon, 2009). The model takes a sequence
of observations * = x1,x2,... x;, ¥; € O, drawn from an observation alphabet O =
{01, O, ... O, }, and links them to a sequence of hidden states y = y1, 9o, ... Y1, ¥; € S.
Each hidden state has an emission probability distribution e, that describes the probability
of an observed value being generated from a hidden state, p{z; = x|y = i} = e,(z]i).
Some hidden states might be more likely than others and their probabilities of occur-
rence is described by the equilibrium matrix 7. For example, 7 for a two-state model
equals to [ma,mp] and 31", m; = 1. The transition matrix ¢p of shape n x n describes
the probability of staying or switching between hidden states for an adjacent time step
(eq. 22, example for n = 2 states). The transition probability is constant over time
{yn1 = Jlyy, = i} = p{y,o1 = jly,, = i} 4,5 € S and the row entries sum up to
1, tpasp + tpasa = 1. Two simplifying assumptions are made in a hidden MARKOV
model. First, the future value of the hidden state depends only on the value of the present
state, p{uys, 11|y, }. Second, the value of the currently observed state depends only on the
value of the present hidden state, p{z; = x|y, =i} = e,(z|i) i € S.
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Figure 18: Hidden Markov modeling of single-particle tracking data. A Exemplary trajectory with
dots marking localizations and lines marking the jump distances between them. B Jump
distances of the trajectory. C A diffusion state is assigned to each jump distance. D Emission
probabilities of the two diffusion states. E State-transition-diagram of an exemplary two state
model (states are highlighted with color) with distinct diffusion coefficients (0.2 pm? /s and
0.01 pm? /s) and populations (60% and 40%). The transition probability tp to switch between
the diffusion states is 0.1 for both directions.

In the context of single-particle tracking, a trajectory consists of a sequence of observations,
which are the jump distances based on the displacement between two consecutive recorded
time points (Ott et al., 2013) (fig. 18 A, B). The hidden states are discrete diffusion
coefficients, which are assigned to the jump distances of the trajectory (fig. 18 C). The
probability that a jump distance r belongs to a hidden state is described by the emission
probability e, (fig. 18 D), eq. 23). The hidden states are connected with transition
probabilities ¢p, describing how likely it is that diffusion state switching occurs within a
trajectory. The optimal number of states, their diffusion coefficients, occupation, and

transition probabilities are found (fig. 18 E).

ep(r,t|D) = — - ¢~ i (23)
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4.7 Quantitative phase microscopy

This section provides an overview of quantitative phase imaging (QPI), a technique that
enables the measurement of optical path length delays and refractive index (RI) changes in
transparent samples. The concept of phase and qualitative as well as quantitative phase
imaging methods are presented. A comparison to fluorescence microscopy is drawn and
some current applications are highlighted.

A light wave is composed of an amplitude A and a phase component 6, which form a
complex amplitude U (eq. 24) (Zuo et al., 2020). The squared amplitude is called the
intensity and describes the energy of light (eq. 25). The phase describes in which part of
an oscillation cycle the light wave is. While human eyes or imaging sensors can detect the

intensity, they cannot directly access the phase information.

U(z,y) = Az, y) - &7 (24)

I(z,y) = A(z,y)” (25)

In light microscopy, optically thin samples such as cells absorb and scatter light weakly
and therefore appear transparent in the FOV (Popescu, 2011; Zuo et al., 2020). However,
they induce phase changes due to different structural regions of nonuniform optical density
(fig. 19 A). A phase shift is caused by light passing through material with a different

refractive index than water and can be expressed as

2m [h
g ="
)\ z=0

where 6 is the phase shift of light contributed by all elements in the sample of varying

n(z)dz (26)

refractive index n through sample height % in the z direction (Nguyen et al., 2022).

The phase can not be measured directly and must be mixed with another reference field to
retrieve the inference pattern (Popescu, 2011) (fig. 19 B). Methods such as ZERNIKE's
phase contrast microscopy (Zernike, 1955) and differential inference contrast (Nomarski,
1955) convert phase changes into intensity changes that can be detected by a camera (Guo
et al., 2020; Zuo et al., 2020). Here, the measured intensity modulations have a non-linear

relationship to the phase of the sample and phase changes can only be reported qualitatively.

Quantitative phase imaging reports on refractive index changes of the sample (Guo et al.,
2020; Park et al., 2018; Popescu, 2011). A way to achieve this is to use interferome-
try, where a sample beam that passes the structure of interest and a reference beam that

bypasses the structure of interest from a laser source are interfered to access the quantita-
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Figure 19: Phase shift and interference. A Light passes through a dense medium, which causes a
shift in phase compared to an unperturbed reference beam. When the two beams collide, for
example through a convex lens, they cause interference. B Interference patterns of different
phase shifts. The amplitudes are added with a phase shift of zero, canceled out with a phase
shift of A/2, and diminished with a phase shift of 5)\/8.

convex lens

tive phase information (Nguyen et al., 2022). The integration into microscopy with the aid
of digital methods for image processing is called digital holographic interference microscopy.
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Figure 20: Kohler illumination. The light from a light source with uneven illumination is passed ho-
mogeneously through the sample by adjusting the alignment and opening of the condenser
aperture, field aperture, and objective lens.

Soto et al. introduced a method, where only slight adjustments must be made to a com-
mercial bright-field microscope to record quantitative phase images (Soto et al., 2017).
The setup is operated in Kohler illumination (Kohler, 1893) (fig. 20), where the sample is
evenly illuminated by adjusting the positions and openings of the condenser aperture, field
aperture, and objective lens in the illumination path. Using this method, the 3-dimensional
refractive index distribution of so called weak objects (objects with low refractive index vari-
ation, such as cells and micro-organisms) can be reconstructed with a stack of bright-field
images. This method belong to partially coherent optical diffraction tomography (PC-ODT)
as a standard light source, such as a LED or a halogen lamp of a bright-field microscope

is sufficient. Assuming a central wavelength of \,, = 450 nm and a high numerical aper-
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ture of the objective lens (N A, = 1.4) operating with immersion oil (n,; = 1.518) and
a condenser lenses with VA, = 0.95, results in a lateral resolution of 200 nm and axial
resolution of 500 nm (eq. 27 and 28).

Am

Apy——m
YT NA + NA,

~ 200 nm (27)
Am

Az =
RI,; — (RIZ, — NA2)

~ 500 nm (28)

SIS

QPI focuses on the physical properties of the sample such as the refractive index. The
measured phase shift is directly proportional to the dry mass of the sample (Barer, 1952;
Guo et al., 2020). Compared to fluorescence microscopy, phase shift measurements do not
require exogenous labels and do not alter the sample behavior (Guo et al., 2020). They
allow for long-term imaging, as photobleaching and -toxicity are not an issue. Fluorescence
microscopy on the other hand offers molecular specificity and highlights the targets of in-
terest with fluorescence light.

Some applications of QPI in the field of biomedicine are the determination of cancerous cell
mass decrease by cytotoxic T lymphocyte attacks (Zangle et al., 2013), quantification of
red blood cell membrane properties and potential influences on oxygen delivery (Park et al.,
2010), and mass redistribution rates for multiple cell lines during epithelial-to-mesenchymal
cell state transition (Nguyen et al., 2020). With its ability to capture quantitative and
dynamic information, QPI continues to contribute to the understanding of biological systems

and holds promise for further advancements in biomedical research.

36



4 Theory

4.8 Basic concept of neural networks

Neural networks are a fundamental concept in the field of machine learning, inspired by the
structure and functioning of the human brain (Livingstone, 2010). In the following, the basis
of neural networks is explained, starting with the multi-layer perceptron (chapter 4.8.1),
one of the simplest network architectures. Convolutional neural networks are introduced, a
design especially appropriate for spatial data such as images (chapter 4.8.2). Neural network
training is explained in chapter 4.8.3, highlighting different loss functions (chapter 4.8.3.4)
and optimization techniques (chapter 4.8.3.1).

4.8.1 Multi-layer perceptron

Neural networks are thought to be universal function approximators that learn a mapping
from an input vector to a desired output vector, provided sufficient and suitable data is
available and the architecture of the network is matching the task (Hornik et al., 1989).
Among the simplest neural network architectures is the multi-layer perceptron (MLP), which
utilizes perceptrons as fundamental building units, introduced by Rosenblatt, 1957. These
units, often referred to as nodes or neurons, are interconnected with trainable weights
(Livingstone, 2010). The MLP consists of an input layer, one or more hidden layers, and

an output layer (fig. 21 A).

In each node, information from the previous layer is processed through a series of weighted
connections, followed by a non-linear transformation (fig. 21 B). This is expressed in
eq. 29, where the weighted inputs w; - ; are summed with an optional bias term b. A non-
linear activation function f(z) is applied to generate the final output of the node (eq. 30).
The weights are adjusted or “learned” during the training process (see chapter 4.8.3 for

more details).
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Figure 21: Architecture of a multi-layer perceptron. A The network contains an input layer, one or
multiple hidden layers, and an output layer. Each layer consists of nodes, which are connected
through weights, depicted as lines. B In an individual node, inputs are received from the
previous layers, which are processed by calculating a sum of weighted inputs, adding a bias
term and applying an activation function to produce the output of the node.
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z = Z:(wZ ~xz) + b (29)

§=1[(z)= f(;(wi -x;) +b) (30)
1=

Activation functions introduce non-linearity to the network, which is crucial for learning
complex relationships within the data (Dubey et al., 2021). Common activation functions
are the sigmoid function, the tanh function, and rectified linear units (ReLU) (Nair et al.,
2010) (fig. 22 A). These functions play a pivotal role in enabling the approximation of
complex and non-linear problems. A non-linear problem is a relationship between input and
output variable that cannot be approximated with linear combinations of the input features.
Conversely, for a linear problem, such linear combinations are adequate. For instance, in a
linear classification task, a linear decision boundary can separate instances from different
classes (fig. 22 B). In a non-linear classification task, a linear decision boundary would not
be sufficient to separate instances from different classes (fig. 22 C). Omitting activation
functions would render a linear model incapable of addressing non-linear complexities. This
also translates to regression problems, where a continuous numerical output is predicted
instead of classes.
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Figure 22: Activation function and a linear vs a non-linear classification problem. A Commonly
used activation functions. B The dots have two features which are plotted on the x- and y-axis
and stem from two classes highlighted in color. Since the dots can be separated with a line,
this is a linear classification problem. C The dots from the two classes cannot be separated by
a line, rendering this a non-linear classification problem.

4.8.2 Convolutional neural networks

Convolutional neural networks (CNNs) have emerged as a powerful class of artificial neural
networks, particularly suited for spatial data and images. In comparison to traditional multi-
layer perceptrons, CNNs exhibit distinct advantages that make them more effective for tasks

where spatial relationships and hierarchical features play a crucial role.
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CNNs leverage localized receptive fields, allowing them to focus on specific regions of input
data (fig. 23 A) (Fukushima, 1980; LeCun et al.,, 1998). This design captures spatial
hierarchies and helps detect features at different scales, which is challenging for MLPs
with a fully connected architecture (Dumoulin et al., 2016; LeCun et al., 2015). CNNs
use parameter sharing, meaning the same set of weights is applied to different parts of
the input. This reduces the number of learnable parameters, making CNNs more effective
for learning hierarchical features compared to MLPs. Furthermore, CNNs are translation
invariant, meaning that features are recognized independent on their position in the image.
This property is especially valuable for tasks such as image recognition, where the position
of a feature in the input should not affect its detection. Unlike MLPs, CNNs can handle

variable input sizes.

input jayer | laye' ?

Figure 23: Receptive field and the convolutional operation. A The convolutional operation involves
the multiplication of filter weights with the input, followed by summation to yield the output.
The filter is slided over the input to create a feature map.B The receptive field is the region
in the input space of a convolutional layer from which the layer extracts information. The
receptive field is marked in green for the first and in yellow for the second convolutional layer.

At the core of a CNN is the convolutional operation (fig. 23 B). The convolution involves
sliding a filter (also known as a kernel) over the input, performing element-wise multiplica-
tions, summation, and aggregating the results to create a feature map, which is the output
of the convolutional operation. Multiple filters are applied in a convolutional layer to cap-
ture different features within the images. The filter weights are adapted during training and
optimized for the problem at hand. The first convolutional layers in a neural network are
known to capture lower-level features, while convolutional layers deeper in the architecture
capture more complex features. The size of the feature map O is determined by the input
size I, the kernel size K, padding P, and the stride S of the sliding operation (eq. 31).
Padding is a technique of adding extra pixels as a border around an image. In the context
of CNNs, it is used to control the output size of a convolutional operation and can help to

reduce boundary artifacts and preserve the spatial dimension of the image.

I-K+2P

“ S

+1 (31)
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Other layer types often used in CNNs are pooling layers (LeCun et al., 1998). They reduce
the spatial dimensions of the input by downsampling. Common pooling operations include
max pooling and average pooling (fig. 24 A). Pooling helps in creating a spatial hierarchy
of information and reduces computation while retaining essential information (Yu et al.,
2014).

Up-sampling layers increase the spatial dimensions of the input. Techniques like nearest-
neighbor interpolation (fig. 24 B) or transposed convolutions (fig. 24 C) (Zeiler et al.,
2011) are employed for up-sampling. Up-sampling layers regain resolution after downsam-

pling and are handy for tasks where high-resolution outputs are required.
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Figure 24: Different types of down- and upsampling layers. A Average and max pooling layers down-
sample the input by determining the maximum or average value in a defined region. B In
nearest neighbor upsampling, each pixel in the output image is assigned the value of its near-
est neighbor in the input image, replicating pixel values to achieve an enlarged image D A
transposed convolution also enlarges the input image, but learns a mapping through training
weights of a convolutional kernel.

Dense layers, also known as fully connected layers, are typically used in the final layers of a
CNN for classification tasks. They take the high-level features extracted by convolutional
and pooling layers and map them to the output classes.

A few practical applications are considered in the following. An example of a binary classi-
fication task would be to distinguish cells from two cell lines. Each cell has features such
as the cell size, nucleus size, and growth rate. The input to the network are the features of
the cells. The output is the probability of the cell belonging to cell line A or cell line B. The
network is trained on numerous feature-class pairs to learn a mapping that discriminates
between these classes. The size of the input vector is equivalent to the number of cell
features. The number and size of hidden layers must be optimized. The size of the output
vector refers to the number of cell lines. In the special case of two classes, one output node
is sufficient with values between 0-0.5 referring to cell line A and values between 0.5-1
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referring to cell line B.

Another example is the translation of one image to another, for example a bright-field image
to a fluorescence image. The input are the pixels of the bright-field image and the output
the pixels of the fluorescence image. Here, a CNN is an appropriate network choice, as it

maintains the spatial relation of the pixels.

4.8.3 Training process

In this chapter the concepts of loss functions (chapter 4.8.3.1), train-validation-test splits
(chapter 4.8.3.2), gradient descent (chapter 4.8.3.3), optimizers (chapter 4.8.3.4), and
(chapter 4.8.3.5) are introduced.

4.8.3.1 Loss functions
The loss function measures the difference between the predicted output and the actual
target values. It is minimized during the training process by adjusting the weights of the

model. The choice of the loss function depends on the nature of the task.

For regression models, the mean absolute error (MAE) (eq. 32), or mean squared error
(MSE) (eq. 33) are common choices as loss functions. The loss is expressed as an average

across n data instances, while y refers to the ground truth and § to the prediction.

1 n
Larap = — Z Yi — Ui (32)
nis
1 R
Liyise = n Z(yz - yi)2 (33)
i=1

The CHARBONNIER loss is defined as the square root of the MSE loss plus a small constant
€, typically set to 0.001 (eq. 34) (Charbonnier et al., 1994). Compared to the MSE loss
it is less sensitive to outliers. The edge loss applies a LAPLACE filter A to the images to

enhance the focus on edges during loss penalization (eq. 35) (Zamir et al., 2021).

1 & -
»CC’harbonnier = ﬁ Z \/Hyz - y2||2 + €2 (34)

1 R
Lot = S \l120 = Agil + € (35)
i=1

LPIPS (Zhang et al., 2018a) and (MS)-SSIM (Wang et al., 2004; 2003), which are intro-
duced as quality control metrics in chapter 4.10.1, are also suitable loss functions. Further-
more, mixing of multiple loss functions is an acknowledged possibility (eq. 36) (Zhao et al.,
2015).
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,Cmix:O!'LA+(1—OZ)'LB (36)

For a classification model, the cross-entropy loss (eq. 37) is a common option.

1 & N
Ecross = _ﬁ Z %109(%) (37)

=1

4.8.3.2 Train-validation-test split

The train-validation-test split partitions the available dataset into three distinct subsets: the
training set, the validation set, and the test set (Livingstone, 2010). The training dataset
constitutes the largest portion of the dataset. The model learns patterns, relationships, and
features within this set and its weights are adjusted accordingly during the training process
to minimize the loss function. During the training process, the performance of the model is
evaluated on the validation set, typically by calculating the loss on the validation data. This
assessment helps in examining the generalization of the model ability to unseen data and
identifying potential issues such as overfitting or underfitting (see chapter 4.8.3.5 for more
details). The performance of the model is further benchmarked by applying suitable quality
control metrics to a separate set of input-target pairs known as the test dataset, which were
not involved in the training and validation process. Various quality control metrics tailored
to different problem types are described in chapter 4.10.

Additionally to the trainable parameters (weights), there are so called hyperparameters
that define aspects of the network architecture and training process, but are fixed and not
adjusted during training. They typically include the learning rate, number of nodes, hidden
layers, etc. They are preselected and different sets of hyperparameters are tried out to find

an optimal setting for the network and data combination.

4.8.3.3 Gradient descent

In neural networks, the adjustment of the model weights w is the fundamental process to
minimize the difference between predicted outputs and actual target values (Ruder, 2016).
The iterative nature of this adjustment allows the model to adapt to complex patterns
within the data. This is guided by an optimization algorithm, which tunes the weights so
that the predictions of the model are in concordance to the ground truth. The difference
between the predicted outputs and ground truth is described by a loss function and the
weights are adapted in a way that minimizes the loss.

One of the basic optimization algorithms is gradient descent, which aims to minimize a
loss function £(w) parametrized by the weights w of the model by iteratively adjusting the
weights in the direction opposite to the gradient of loss function V,,L(w) (Curry, 1944;
Robbins et al., 1951; Ruder, 2016; Rumelhart et al., 1986; Werbos, 1974). The update
rule for the weight adjustments during one iteration t is given by eq. 38, where « is the
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learning rate, determining the step size in the weight space to reach a (local) minimum. In

other words, the slope of the surface is followed until a valley is reached.

i

5wt

(38)

Wiyl = W — Q-

Backpropagation is a crucial algorithm for efficiently computing gradients of the loss func-
tion with respect to the weights in a neural network (Rumelhart et al., 1986; Werbos, 1974).
The algorithm begins with a forward pass, during which input data is fed into the neural
network to produce output. The forward pass involves computing the weighted sum of in-
puts at each node, applying activation functions, and passing the information through the
network layer by layer until the final output is obtained. The output of the neural network
is compared to the actual target values, and a loss (error) is calculated. The loss function
quantifies the difference between the predicted and actual outputs. The next step is the
backward pass in which the gradient of the loss with respect to the weights of the network
are computed. The chain rule is employed to calculate the gradient of the loss with respect
to each weight. This allows the algorithm to calculate how changes in the weights at one
layer affect the overall loss. The gradient indicates how much the loss would increase or
decrease if the weights were adjusted. For a particular weight w; in layer [, the gradient is

calculated as

l
0L L b2l (39)
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where 2! is the weighted sum at node i in layer [. The term st is obtained from the
i

subsequent layer in the backward pass.

The gradients calculated in the backward pass are used to update the weights of the network
in the direction that minimizes the loss (eq. 38). These steps are repeated multiple times.
Each iteration involves a forward pass to generate predictions, a computation of the loss, a
backward pass to calculate gradients, and an update of the weights using an optimization
algorithm like gradient descent. The process continues until the model converges to a set
of weights that minimize the loss function.

4.8.3.4 Optimizers

Optimizers are optimization algorithms that enhance the efficiency and speed of the gradient
descent computation and weight updates during training (Ruder, 2016). Several optimizers
have been developed to address challenges such as slow convergence and overcoming saddle
points.

Gradient descent variants

There are different variants of the gradient descent algorithm, which differ in the specific

point at which the weight updates occur during training. In case of batch gradient descent,
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the gradient of the loss function is calculated for the entire dataset. This is computationally
demanding and can pose challenges if the dataset exceeds memory capacity. Stochastic
gradient descent (SGD) executes a weight update after each training instance, introducing
high variance that leads to substantial fluctuations in the loss function during training
(Robbins et al., 1951; Rosenblatt, 1958). While the volatility of SGD allows for exploration
of new and potentially superior local minima, it simultaneously complicates the path to exact
convergence. However, with SGD no memory issues occur. Mini-batch gradient descent
strikes a balance between both strategies and takes a defined mini-batch of training data
to perform the weight updates on (Bilmes et al., 1997; Shalev-Shwartz et al., 2010). This
approach diminishes variance in the loss function while preserving computational efficiency,
making it the preferred choice in neural network training. Typical batch sizes (the number
of training examples utilized in one iteration) range from 32 to 256 and the choice of batch
size is a hyperparameter (Ruder, 2016).

Momentum

SGD is known to encounter challenges in effectively navigating and surpassing saddle points
during the optimization process (Dauphin et al., 2014; Sutton, 1986). Momentum is a
method, in which SGD is accelerated in the direction of interest by introducing a momentum
term v, based on a momentum constant v (usually set to 0.9) and a moving average of
past gradients (Qian, 1999) (eq. 40). This approach reduces oscillations in non-optimal
directions and accelerates convergence. NESTEROV accelerated gradient (NAG) also adds
the ability to slow down momentum, preventing overshooting of the minimum (eq. 41)
(Nesterov, 1983). The weights are updated for both approaches following eq. 42.

Vir1 = Y0 + oV, L(w) (40)
Vi1 = Y0 + aVy, L(w — yvy) (41)
Wiyi = Wy — Vi (42)

Adaptive learning rate

Another effective technique to find an optimum are adaptive learning rates. The adaptive
gradient algorithm (AdaGrad) adjusts the learning rate for individual parameters by con-
sidering their past gradients (Duchi et al., 2011). The learning rate is tailored in AdaGrad
to assign a smaller rate to parameters updated frequently (those with large past gradients)
and a larger rate to parameters updated infrequently. This adaptability can be particularly
advantageous in scenarios where certain parameters may require more cautious updates,
preventing overshooting, while others may benefit from more substantial adjustments to

expedite convergence. However, the algorithm suffers from radically diminishing learning
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rates (Ruder, 2016). Adadelta builds on this concept, but uses the root mean square (RMS)
of a running average of gradients, which alleviate the issue of overly small learning rates
for frequently updated parameters (Zeiler, 2012). RMSprop, which was introduced in a
lecture by Geoff Hinton” and remains unpublished, uses an exponentially decaying average

of squared gradients in a sliding window.

Adaptive moment estimation (Adam) combines adaptive learning rates and momentum
(Kingma et al., 2014). Adam with decoupled weight decay (AdamW) extends this concept
by incorporating the regularization method weight decay in the update rule (Loshchilov
et al., 2017). Further optimizers that combine these aspects are AdaMax (Kingma et al.,
2014) and NESTEROV momentum Adam (Nadam) (Dozat, 2016).

Learning rate schedules

Learning rate schedules influence the model convergence. Instead of using a fixed learning
rate throughout training, learning rate schedules adjust the learning rate dynamically at
different stages. A learning rate schedule may be defined independently from the optimizer.
Commonly, a high learning rate is employed at the beginning to facilitate rapid convergence,
followed by gradual reductions to fine-tune the model as it approaches a minimum.
Examples of learning rate schedules include step decay, where the learning rate is decreased
by a fixed factor after a predefined number of epochs, and exponential decay, where the
learning rate diminishes exponentially over time (You et al., 2019). A cyclic learning rate
schedule periodically varies between a minimum and maximum value during training, allow-
ing the model to escape local minima for improved convergence and generalization (Smith,
2017). Reduction of learning rates on plateau is a concept that diminishes the learning rate
when the validation loss fails to improve for a set number of epochs. These schedules help
strike a balance between rapid initial progress and refined optimization towards the end of

training, contributing to improved model generalization and performance.

Convergence is achieved when the model reaches a point where further adjustments to
the weights do not significantly reduce the loss. To determine if the model converged,
it is helpful to display the loss function against the number of epochs, with each epoch
signifying a complete iteration through all data instances. During training, a subset of the
training data, termed the validation dataset, is set aside and not used for training purposes.
Following each iteration, the performance of the model is evaluated on the validation data

by computing the loss.

4.8.3.5 Variance and bias
Variance and bias play a crucial role in determining the performance and generalization
capability of a neural network (Geman et al., 1992; Livingstone, 2010). Generalization

refers to the ability of a model to perform well on data it hasn't been explicitly trained on.

Ahttp://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.png
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Bias is the error introduced by approximating a problem by a simplified model (fig. 25 A).
High bias can lead to underfitting, where the model is too simplistic and fails to capture the
underlying patterns in the data. Variance is the error introduced by the sensitivity of the
model to small fluctuations or noise in the training data (fig. 25 B). A high-variance model
is overly complex and captures noise in the training data as if it were a real pattern. High
variance can lead to overfitting, where the model performs well on the training data but
fails to generalize to new, unseen data. With increasing model capacity, the bias decreases
while the variance increases, known as the bias-variance tradeoff (fig. 25 C). Achieving a
good balance between bias and variance is essential for building models that generalize well
to new, unseen data (fig. 25 D).
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Figure 25: Bias and variance tradeoff. A A too simplistic model is fit to the data, which fails to describe
the data properly. The model is underfitting the data and has a high bias. B A too complex
model is fit to the data, learning the noise. The model is overfitting the data and has a high
variance. C Bias-variance tradeoff. With increasing model complexity the bias decreases while
the variance increases, with an optimal model complexity in the valley of the U-shaped error
curve. D A model with optimal complexity is fit to the data, which reflects the trend of the
data well.

To detect bias and variance, the discrepancies between the training and validation loss can
be studied. Underfitting occurs when the model is too simplistic to capture the underlying
patterns in the data, leading to poor generalization. The loss curves are relatively high and
flat, suggesting that the model is incapable of learning the pattern in the data (fig. 26 A).
Underfitting may arise from a model that lacks complexity or has not been trained for a

sufficient number of epochs. In contrast, overfitting manifests when the training data is

46



4 Theory

too small. The model might also be too complex with a larger tendency to overfit. A large
gap between the training and validation curve is an indication for overfitting (fig. 26 B).
This might also happen if the model is trained for too many epochs and start to learn the
noise at a later stage of training.

Besides adjusting the number of training instances and the model complexity, early stop-
ping is a technique to prevent overfitting. This strategy monitors the performance of the
model on the validation data, halting the training process if no improvement is observed
over a predefined number of epochs. Early stopping not only prevents overfitting but also
optimizes computational resources by avoiding unnecessary training time. Early stopping
belongs to a toolbox of regularization techniques that prevent overfitting, such as L1 and
L2 regularization (Krogh et al., 1991; Weigend et al., 1990), dropout (Hinton et al., 2012;
Tompson et al., 2015), data augmentation (Balestriero et al., 2022; Shorten et al., 2019),
gradient clipping (Mikolov, 2012), and batch normalization (loffe et al., 2015), which will
not be discussed here in detail.
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Figure 26: Learning curve examination to detect bias and varianc. A The loss function of the
training and validation data is displayed per epoch. An underfitted model exhibits relatively
high and flat loss values. B An overfitted model displays discrepancies between the training
and validation loss. The model starts to overfit if trained for too many epochs. A method to
prevent overfitting is early stopping, which interrupts the training process if the validation loss
has not improved over a predefined number of epochs.
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4.9 Network architectures

In this chapter, two pivotal neural network architectures for computer vision are introduced:
the U-Net architecture (Ronneberger et al., 2015) and the residual channel attention net-
work (RCAN) (Zhang et al., 2018b).

4.9.1 U-Net architecture

The U-Net architecture by Ronneberger et al., 2015 is based on convolutional layers and was
originally demonstrated for segmentation of EM and light microscopy images (fig. 27). The
architecture translates input images to desired output images and consists of an encoder
and decoder path (fig. 27).
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Figure 27: U-Net architecture. An input image is translated to a target image. The network consists
of an encoder and decoder path, connected through skip connections. Other building blocks
are convolutional layers, activation functions, max pooling layers, and a 1x1 convolution. The
number of feature maps and the width and height of the input in the layers is denoted with
numbers. Adapted from Ronneberger et al., 2015.

The encoder path of the network downsamples the images in their width and height. It
consists of a series of convolutional layers followed by an ReLU activation function and a
max-pooling operation. The max-pooling layers reduce spatial resolution to extract features
with the convolutional layers at different scales. For each reduction in spatial dimension, the
number of filters is increased. This process is repeated until the desired width and height
of the images at the bottleneck is reached. The bottleneck serves as a bridge between the
encoder and decoder paths. It is constructed of a convolutional layer with a large receptive

field, capturing global context information. Due to the compact representation of the input
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image, this facilitates the extraction of essential features. The decoder upsamples the
images by using up-convolutional layers back to the original input size. Furthermore, the
feature maps of the encoder and decoder are combined through residual (skip) connections
(He et al., 2015) at multiple levels of the network. Residual connections involve the addition
of the original input to the output of a neural network layer (fig. 28), facilitating the flow of
information through the network and mitigating issues such as vanishing gradients during
training. This approach effectively combines low-level and high-level features, facilitating
accurate image prediction at multiple scales. The final layer uses a 1x1 convolution to
produce output images.

The U-Net architecture has been widely applied and adapted in the field of (super-resolution)
light microscopy, such as image denoising (Buchholz et al., 2020; Ebrahimi et al., 2023;
Goncharova et al., 2020; Krull et al., 2018; Weigert et al., 2018), segmentation (Buchholz
et al., 2020; Schmidt et al., 2020; Stringer et al., 2021), image translation (Chen et al.,
2021; Guo et al., 2020; Ounkomol et al., 2018; Wang et al., 2019), and multi-emitter fitting
(Nehme et al., 2018; Speiser et al., 2021).
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Figure 28: Residual connection. A Traditional feed forward connection. B Feed forward connection
with residual connection. The identity of the input x is added to the feed forward output F(x)
(He et al., 2015).

4.9.2 Residual channel attention network

The residual channel attention network (RCAN) was developed by Zhang et al., 2018b and
popularized for super-resolution microscopy by Chen et al., 2021. It is specifically designed
to map a low-resolution (LR) input to a super-resolution (SR) output (Zhang et al., 2018b).
In the field of computer vision, super-resolution means enhancing the resolution or details
of an image beyond its original size or quality. In the LR input, low-frequency information
is abundant with the goal to recover high-frequency information. Key features of this
architecture are residual connections and channel attention layers (fig. 29). The residual
connections allow for deep neural network training and provide a large receptive field with
information being investigated more globally. Conventional CNN-based approaches often
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treat the feature maps in a convolutional layer equally, potentially resulting in a deficiency
to emphasize relevant information across various feature channels. These two key designs
allow the abundant low-frequency information to be bypassed, emphasizing on the more
relevant high-frequency features of the images.
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Figure 29: RCAN architecture. A The residual in residual block is built from multiple residual groups
and is framed by a long skip connection. B The residual groups are build from multiple residual
channel attention blocks and frames by a short skip connection. C Channel attention blocks
are trained to yield weights for feature map importances. Adapted from Zhang et al., 2018b.

The RCAN architecture is constructed of four parts: A shallow feature extraction, residual
in residual (RIR) deep feature extraction, an upscale module, and a reconstruction part. To
extract shallow features, referring to basic features of an image, such as edge, color, or basic
shapes, a convolutional layer is used. The RIR consists of G residual groups (RGs) with a
long skip connection to allow flow of information across the RGs (fig. 29A). Each RG con-
sists of a residual channel attention block (RCAB) with short skip connections (fig. 29B).
Channel attention is designed to adaptively recalibrate the importance of different chan-
nels in the feature maps (fig. 29C). By assigning different attention weights to channels,
the network can focus on relevant information and suppress irrelevant features, enhancing
its ability to capture important details. The mechanism applies global average pooling to
the channels to aggregate their values into a single number (GP). This is followed by a
convolutional layer (Wp), which downscales the number of channels based on a reduction
ratio r. A non-linear function is applied to capture complex channel interdependencies.

The low-dimensional signal is upsampled by the ratio r with another convolutional layer
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(Wy). The output passes a sigmoid-gate, scaling each number to a range between 0-1,
generating a scaling factor s. The factor is multiplied with the original channel weights, to
give the channels individual importances. With channel attention, the residual component
in the RCAB is rescaled. The upscale module is realized with a transpose convolution.
The module can be deactivated if LR and SR should have same dimensions. The image is

reconstructed with one final convolutional layer.

The residual learning and channel attention mechanisms contribute to the ability of the
network to reconstruct finer details in the high-resolution output. Ebrahimi et al., 2023
combined the RCAN architecture with a U-Net to denoise STED images while maintaining
high frequency information.

4.10 Quality control metrics

The evaluation of the performance of a network relies on test data, comprising input and
corresponding ground truth pairs that were not part of the training process. Compared to
the evaluation based on the loss curves, quality control metrics allow an in depth evaluation
of the network performance. Various quality control metrics exist to quantify the disparity
between the output of the network and the ground truth in the test data. The choice
of metrics depends on the nature of the task. An in depth review of metric choices and
potential pitfalls has been recently published (Maier-Hein et al., 2024; Reinke et al., 2024).
This chapter introduces metrics for assessing image similarity (chapter 4.10.1), highlights
metrics which were specifically developed for super-resolution microscopy (chapter 4.10.2),
and gives an overview of measures for resolution (chapter 4.10.3) as well as metrics for
classification tasks (chapter 4.10.4).

4.10.1 Image similarity metrics

Image similarity metrics describe the difference between two images. In the context of
neural networks, the difference of a ground truth image, for example a segmentation or the

super-resolution image, and a predicted image are calculated.

4.10.1.1 Pixel-independent metrics

Pixel-independent comparison metrics calculate the difference between the predicted image
7 and ground truth image y per pixel. They are termed pixel-independent metrics, as they
solely compare pixels at the same position between two images and neglect broader context
information. The overall score is then given by averaging over all pixel values. Typical
pixel-independent metrics include the MAE (eq. 43), MSE (eq. 44), and the root mean
squared error (RMSE) (eq. 45). In eq. 43-45, ij denotes the pixel position in a 2D image
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and N refers to the total number of pixels. The lower the score the more similar the images,

where a score of zero means that the compared images are exactly the same.

N

1 N
MAE = + Z(yij — Jij) (43)
ij
1 X )
MSE = — > (i — §i)° (44)
i
1 X .
RMSE = N Z(yzj — Uij)? (45)

ij
The peak signal-to-noise ratio (PSNR) is mainly applied to quantify the loss in compression
algorithms (eq. 46), but has gained popularity in the microscopy community (Chamier et al.,
2021; Chen et al., 2021; Lequyer et al., 2022). It evaluates the quality of a reconstructed or
compressed signal, such as an image, by comparing it to the original, uncompressed signal.
It utilizes the decibel scale, where L is the maximum possible pixel value, for example 255
for an 8-bit image, and MSE is the mean squared error as described in eq. 44. Low PSNR

values indicate compromised image quality, while elevated PSNR values mean less impact
of noise.

The PEARSON correlation coefficient r describes the linear relationship of two variables
(eq. 47) (Pearson, 1895). In the context of comparing two images, it evaluates the rela-
tionship of pixel intensities. The individual pixel values are y;; and §;; and the averages
across all pixels are (y) and (7). A PEARSON correlation coefficient of 1 means perfect
linear relationship between the images, a coefficient of 0 means no linear relationship, and
a coefficient of -1 means perfect negative linear relationship. If two images are exactly the
same, they yield a PEARSON correlation coefficient of 1.

r— Zz]'}[(yij — W) (Wi — (1))
VN s — )7 SN (s — ))?

(47)

4.10.1.2 Pixel-dependent metrics

Pixel-independent metrics tend to not correlate well with the human perception of image
similarity, as they focus on pixel-wise differences without considering the structural infor-
mation in an image (Wang et al., 2004; Zhang et al., 2018a). A perceptually motivated
measure is the structural similarity metric (SSIM), designed to capture perceived similarities
in images (Wang et al., 2004). Differences in luminance [, contrast ¢, and structure s are

52



4 Theory

taken into account and weighted by the factors «, 3, and 7 (eq. 48). Terms for the three
contributions are derived based on the average pixel intensities p, and ji;, the standard
deviations o, and oy, and correlation coefficient r, ; within a sliding window. With assump-
tions such as equal weighting of the three contributions, the SSIM is expressed with eq. 49.
The constants '} and Cy prevent denomination by zero and are based on a small constant
K; < 1 and the dynamic range of the pixel values L (eq. 50) (for example 255 for a 8-bit
image). The overall SSIM is the average across all sliding windows. SSIM ranges from 0
(no similarity) to 1 (maximum similarity). Multi-scale SSIM (MS-SSIM) is an extension
of SSIM and determines the metric on different down-scaled versions of the original image
(Wang et al., 2003).

SSIM (y,9) = Uy, 9)* - c(y,9)" - s(y,9)" (48)

o Cuypy + C1) (20,5 + Cy)
SSIM(y.9) = (12 + 2+ C1)(02 + 02 + C) (49)
C; = (K;-L)? (50)

Blur is a disturbing component in a super-resolution image. Blurring causes large perceptual
distances, but small discrepancies in pixel-wise metrics (Zhang et al., 2018a). Also SSIM
has the tendency to be less sensitive to blur compared to other metrics (Abdullah-Al-
Mamun et al., 2021; Zhang et al., 2018a). A metric that punishes blur more strongly is
the learned perceptual image patch similarity (LPIPS) (Zhang et al., 2018a). This metric
utilizes deep neural networks such as AlexNet (Krizhevsky et al., 2012) or VGG (Simonyan
et al., 2014), which were trained for an image classification task. Feature maps from the
first convolutional layers are extracted for the ground truth and predicted image, further
processed, and compared with EUCLIDEAN distance.

4.10.2 Super-resolution microscopy specific metrics

A metric specifically designed for super-resolution microscopy images is the HAAR wavelet
kernel analysis method for the assessment of nanoscopy (HAWKMAN) metric, which eval-
uates differences between two SMLM images (Marsh et al., 2021). HAWKMAN disregards
intensity information and focuses exclusively on structural disparities. The evaluation in-
volves comparing a ground truth image, often approximated with a low emitter density
image, with a test image to determine its quality. HAWKMAN entails several steps, such
as flattening, binarization, GAUSSIAN blurring, and skeletonization, to generate various
representations of the data that highlight different aspects. One special feature of this
evaluation metric is that the images are blurred with varying widths of (GAUSSIANS, rang-
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ing from a pixel size up to the PSF of the instrument. This allows the determination of
image quality at different length scales. The sharpening map, which incorporates informa-
tion about localization precision, approximates the full width at half maximum (FWHM) of
the structure. It reveals biases in dense emitter regions, particularly mislocalizations toward
overlapping areas, which are especially present in crowded areas, such as cross sections
of tubular structure (Costello et al., 2021; Marsh et al., 2021; Wolter et al., 2011). The
structure map, which depicts skeletonized peak positions, exposes instances where struc-
tures have merged due to the inability to resolve nearby emitters. For the sharpening and
structure map the PEARSON correlation coefficient between the maps of the ground truth
and test image is provided for all length scales. The confidence map, derived from the
local correlation of sharpening and structure maps, serves as a confidence metric for the
reliability of specific regions in the test dataset. Finally, the artifact scale map highlights

the minimal scale length without artifacts per pixel.

Another metric specifically designed to evaluate super-resolved images is super-resolution
quantitative image rating and reporting of error locations (SQUIRREL), which downscales
the super-resolved image I to compare it with a diffraction-limited image Ip of the same
FOV (Culley et al., 2018). This makes the metric sensitive to disappearing and false positive
structures in the super-resolved image, to bright aggregates, and structure merging on the
PSF scale. The downscaling is either achieved by determining a resolution scaling function
(RSF) in an iterative optimization process, or by using the PSF of the instrument (measured
or simulated). The RSF is then convolved with the super-resolved reconstruction to match
the resolution of the wide-field image. The resolution scaled error (RSE) (eq. 51) and
PEARSON correlation coefficient (eq. 47 are computed between the RSF-convolved super-
resolution and the wide-field image, with N being the total number of pixels and I and
I the average values of the images. Spatial discrepancies are displayed by mapping out
the pixel-wise absolute difference between these images. A RSE of 0 and a PEARSON
correlation coefficient of 1 means that the compared images are equivalent.

N

While SQUIRREL proves highly useful in quantifying artifacts at the PSF scale, it is impor-
tant to note that its capabilities are limited to assessing errors occurring at or beyond this
specific scale (Costello et al., 2021). Instead of a super-resolved image I and a diffraction-
limited image Ip, a ground truth image y and a predicted image ¢ can be used. As no
diffraction-limited image is used, this allows comparisons also below the PSF scale. Com-
pared to SQUIRREL, HAWKMAN neglects intensity information and focuses solely on the
structure and provides artifact quantification on several scales.
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4.10.3 Image resolution

The resolution serves as another metric to determine the success of an image prediction,

as the prediction should maintain the resolution of the ground truth.

The FWHM of the intensity line profile serves as an estimate for the resolution. However,
this approach is laborious as the lines must be inserted by hand and error-prone as the

selected lines might be narrowed by noise (Tortarolo et al., 2018).

A more robust measure for the resolution is the FOURIER ring correlation (FRC), which
was originally introduced for electron microscopy (Heel et al., 1982; Saxton et al., 1982).
To determine the resolution, two images of the same target are required with independent
noise. The images are FOURIER transformed and their frequencies cross correlated within
concentric rings of increasing radius, where F| and F; are the FOURIER transforms of the
two images and r; refers to the frequency bins (eq. 52). Noise manifests as high-frequency
components in the FOURIER space and does not correlate, as it is random. Therefore, by
increasing the radius of the concentric rings, noise plays an increasing role and diminishes the
cross correlation value. The resolution is the inverse of the frequency, where the correlation
drops below a set threshold (typically 1/7). When comparing the resolution of a predicted
and ground truth image, an image pair of the input is required, to generate two predicted
images of the same signal. The determination of the resolution of the ground truth also
requires an image pair. ldeally, ground truth and prediction should have similar resolutions.

Srier F1(1) - Fo(r)

FRC =
\/Zréri F12 (T) : ZTZE'I’ F22 (T)

(52)

Decorrelation analysis also determines the resolution based on FRC, but only requires one
image of ground truth and prediction, as it compares the cross correlation curve of a
normalized FOURIER transformed image to a low-pass filtered version (Descloux et al.,
2019). Rolling FRC (rFRC) uses a sliding window to inform about the resolution locally
instead of the entire image (Zhao et al., 2023).

4.10.4 Metrics for classification tasks

In this chapter, metrics are discussed which are commonly used in classification tasks, where
it is relevant to quantify how many instances have been detected in the prediction compared
to the ground truth. The chapter starts by introducing the basic metrics true positives
(TP), false positives (FP), false negatives (FN), and true negatives (TN). Furthermore, the
confusion matrix and accuracy, recall, precision, and the F1 score are explained. Finally,

the intersection over union (iou) is introduced.
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4.10.4.1 Basic metrics

True positives (TP) represent the instances correctly classified as positive by the model,
while false positives (FP) are instances incorrectly classified as positive and missing in
the ground truth (Sokolova et al., 2006). False negatives (FN) are instances incorrectly
classified as negative, meaning that ground truth instances are missing in the prediction.
True negatives (TN) represent instances correctly classified as negative. These metrics are
fundamental for understanding the ability of the model to correctly identify positive and
negative cases.

The confusion matrix is a comprehensive table that summarizes a classification performance
of the model (eq. 53). For a classification problem with a positive and a negative class it
summarizes the four different cases of TP being instances correctly predicted as belonging
to the positive class, FP being instances that are incorrectly predicted as belonging to the
positive class (actual class is negative), TN being instances that are correctly predicted as
belonging to the negative class, and FN being instances incorrectly predicted as belonging

to the negative class (actual class is positive).

ground truth positive ground truth negative
predicted positive TP rp

. : (53)
predicted negative FN TN

This can be extended to N multiple classes with an NxN matrix (eq. 54). The diagonal of
the matrix refers to the TP counts. All other entries are either FP, FN, or TN. To clarify
this, the basic metrics are listed for class 1 (TP =9, FN =1+0=1, FP =441 =5 TN
= 5424346 = 16). This can be repeated for all classes.

ground truth class 1 ground truth class 2 ground truth class 3

predicted class 1 9 4 1
predicted class 2 1 ) 2
predicted class 3 0 3 6

(54)

4.10.4.2 Performance metrics
A variety of performance metrics exist, that are based on the above introduced basic metrics.
Dependent on what should be emphasized when evaluating a classification task, different

performance metrics can be used.

The accuracy measures the overall correctness of a classification model (eq. 55). It is the

ratio of correctly predicted instances to the total instances in the dataset.
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TP+TN
TP+ FP+FN+TN

Accuracy =

(55)

The false positive rate quantifies falsely detected instances, as the denominator describes

the total number of true negatives (eq. 56).

FP
FPR=pp 75 (56)

Recall, also known as sensitivity or true positive rate, is a measure of how well the model

identifies positive instances (eq. 57).

TP
RGCCL” = m (57)

Precision quantifies the accuracy of positive predictions made by the model, calculated with

the proportion of true positives among all positive predictions (eq. 58).

TP
Precision = m (58)

The F1 score is the harmonic mean of precision and recall, providing a balanced metric that

considers both false positives and false negatives (eq. 59).

Fl= 2 (59)

recall=! + precision=!

An extension is the FBscore, where the weighting between precision and recall can be chosen.

All the mentioned performance metrics range from 0 to 1, with a score of 0 indicating the

poorest performance and a score of 1 representing the best performance.

4.10.4.3 Spatial metrics
Various metrics offer insights into the spatial accuracy and overlap between predicted and
ground truth binary images.

The iou measures the overlap between predicted and ground truth bounding boxes, providing
insights into the spatial accuracy of a model (Jaccard, 1912). The score is calculated by
taking the ratio between the intersection |yN7| and the union |yUg| (eq. 60). Let's consider
the case where segmentations of cells are compared in a ground truth and predicted image.
The iou quantifies the overlap of cell segmentations in the images and therefore gives further
insights into model performance. The iou can also be expressed with the basic metrics and
ranges from O (=no overlap) to 1 (perfect overlap).

_lynagl _ TP
lyuy| TP+ FP+FN

(60)
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The SORRESNEN-DICE coefficient is a similar score with higher emphasis on the intersec-
tion between y and § compared to the iou (eq. 61) (Dice, 1945; Sgrensen, 1948).

2-lyngl 2TP

Dice = =
ly| + |9 2TP+FP+ FN

(61)
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5 Accelerated DNA-PAINT imaging with a neural

network

Single-molecule localization microscopy is a super-resolution imaging technique based on
the localization of isolated emitter positions over many images. The detected localizations
are merged to produce a super-resolved image that enables the visualization of biological
structures at the nanoscale. The need for large amounts of frames in an SMLM mea-
surement results in low throughput and poor time resolution, which is particularly critical
when imaging living cells. Accelerating acquisition by increasing the emitter density per im-
age requires advanced “emitter” fitting algorithms capable of deciphering overlapping PSF
signals. Deep learning approaches have proven to be powerful in restoring super-resolved
images for challenging data sets with high density (Nehme et al., 2020; 2018; Speiser et al.,
2021).

DeepSTORM is a neural network based approach for obtaining super-resolution images and
was demonstrated with STORM data (Nehme et al., 2018). However, DeepSTORM relies
on suitable emitter densities and STORM inherently suffers from photobleaching during
image acquisition, resulting in emitter densities possibly not longer being in the optimal
performance window of the trained neural network.

Here, the potential of applying DeepSTORM to DNA-PAINT data is demonstrated. DNA-
PAINT offers a constant emitter density due to the continuous exchange of labels. A
comprehensive workflow to acquire the training data based on experimental measurements
and the test data containing both the high emitter density images and the ground truth is
presented. By combining DNA-PAINT with neural network based image reconstruction, a
rapid image acquisition of multi-color super-resolution images of semi-thin neuronal tissue
is enabled within minutes.
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5.1 Results and discussion
5.1.1 Training and testing of DeepSTORM with DNA-PAINT imaging

To facilitate the training of DeepSTORM using experimental data, high density DNA-
PAINT images along with a matching list of emitter positions must be retrieved experimen-
tally (fig. 30A) (Narayanasamy et al., 2022). As the precise localization of high density
movies is not possible, low density DNA-PAINT measurements were acquired and emitter
positions determined. The summation of patches and merging of the localization lists from
these images resulted in high density patches, grounded in experimental data, which served
as the training data for DeepSTORM.

F.20 pM

summed patch NN training

frame X [nm 1
113 23108 36363
3103 34381 38933

trained network

+¥ ground truth

i
‘.

low emitter B
density [

image similarity metrics

Figure 30: DeepSTORM workflow with experimental DNA-PAINT data. A Low density patches
are summed to generate high density patches along with their emitter positions based on
experimental data, which serves as training data for the DeepSTORM model. B High emitter
density data is acquired and used as input for the trained model, which predicts a super-
resolved image. C A low emitter density DNA-PAINT movie at the same FOV as the high
emitter density measurements serves as the ground truth and is compared to the DeepSTORM
prediction to evaluate the model performance. Scale bars 0.5 pm in A and 2 pm in B and C.
Adapted from Narayanasamy et al., 2022, CC-BY-4.0.
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Leveraging an encoder-decoder architecture, DeepSTORM transforms diffraction-limited
input images into super-resolved output images. To generate the super-resolved output
image, the emitter positions from the list are rendered into a super-resolved image. The
output of DeepSTORM consists of a stack of super-resolved images per input frame and
one super-resolved image comprising all emitters across the movie. Coordinates can be
retrieved in a postprocessing step from the super-resolved stack within the DeepSTORM
framework.

To quantify the performance of the network, DeepSTORM was applied to experimental high
density data at varying imager strand concentrations (5 nM, 10 nM, 20 nM) (fig. 30B).
To establish a ground truth for the performance evaluation, low density data (0.5 nM
imager strand concentration) were acquired from the same field of view to generate a
super-resolved image with single-molecule DNA-PAINT reconstructed using the software
Picasso (fig. 30C). The similarity of the ground truth Picasso image and the predicted
super-resolved image produced by DeepSTORM was assessed by various image similarity

metrics.

Acquiring appropriate high emitter density test dataset entails addressing two key consider-
ations: firstly, the imager strand concentration of the test dataset must generate a density
that aligns with the training data, and secondly, the required number of frames to fully
capture the underlying structure must be ascertained.

As the training data is built from sparse emitters successfully detected by a conventional
localization algorithm, its density is known. The sparse emitters are summed into higher
density patches along with their corresponding localization lists, resulting in a distribution
of emitter densities across the patches. This makes the model resilient to density variations
around this distribution. Deviating from these densities could lead to a decline in model per-
formance. Consequently, the optimal imager strand concentration of the test dataset must
be systematically explored. Extrapolating the emitter density from low density measure-
ments aids in estimating the density of the high imager strand concentrations (fig. 31A),
considering that conventional algorithms are reliantly detecting emitters at low concentra-
tions but falter in high density environments. Furthermore, testing different imager strand
concentrations is advisable, as densities might differ depending on the target structure. For
instance, in a tubular structure, emitters may exhibit strong overlap due to the thin tubular
structure. However, if the tubular structure itself is sparsely distributed across the field of

view, the overall density of the image might appear low.

Besides the density optimization, the question of determining the requisite number of high
density frames to fully capture the target structure arises. Excessive framesin a DNA-PAINT
movie may redundantly image the same position multiple times, yielding no additional
information. To ascertain the optimal number of frames, the high density movie is cropped
to varying frame counts and processed with DeepSTORM. The resulting predicted super-
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resolved images are then compared to the ground truth with image similarity metrics.
The saturation of these metrics with the addition of redundant frames indicates the point
at which an adequate number of frames is achieved to completely capture the structure
(fig. 31B).
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Figure 31: Optimization of the high density movie. A Different imager strand concentrations are
measured and their resulting emitter densities determined in a concentration range, where con-
ventional algorithms reliably detect emitters. The density of high concentrated measurements
is extrapolated. B The number of required frames in a high density movie is determined as
the saturation point, where more frames do not improve the image similarity between ground
truth and prediction.

Table 1: Image similarity metrics for the comparison of ground truth and DeepSTORM predicted images
of a-tubulin (red) and TOM20 (red) in MNTB tissue.

target | MS-SSIM | RSP | RSE | resolution / nm | resolution / nm
prediction ground truth

Tubulin 0.785 0.839 | 5707 44 32

TOM20 0.750 0.754 | 2350 41 33

5.1.2 Single-emitter fitting with DeepSTORM

To probe the capacity of DeepSTORM in handling DNA-PAINT movies, a-tubulin and
TOM20 was imaged in MNTB tissue with exchange DNA-PAINT (Jungmann et al., 2014)
at imager strand concentrations compatible with single-emitter fitting routines (o-tubulin:
P1, 500 pM, 8000 frames, TOM20: P5, 500 pM, 8000 frames). The movies were processed
with Picasso to generate a ground truth (fig. 32A). A DeepSTORM model was trained
on patches with the same density acquired on a separate measurement (fig. 32B). The
resulting super-resolved images from both methods were compared and yielded satisfying
image similarity, meaning that DeepSTORM is capable of reconstructing DNA-PAINT data
and produces similar results compared to Picasso (table 1). The resolution was slightly

decreased, but still within acceptable range.
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Figure 32: DeepSTORM performance on a low density DNA-PAINT movie. The ground truth A
and DeepSTORM prediction B of o-tubulin (red, P1 imager strand) and TOM20 (blue, P5
imager strand) in MNTB tissue. Scale bar 5 pm.

5.1.3 DeepSTORM reconstruction of DNA-PAINT movies in high density tissue

Next, a DeepSTORM model was trained to handle images with high emitter density
(~2 emitters/um?) and applied to exchange DNA-PAINT movies of a-tubulin and TOM20
in MNTB tissue (fig. 33A).

For a-tubulin 5 nM P1 imager strand concentration with 400 frames and for TOM20 10 nM
P5 imager strand concentration with 400 frames provided the highest similarity with the
ground truth (fig. 34 and 35). The tested 20 nM imager strand concentration contained
more background, which was disadvantageous for the predicted DeepSTORM image. Again,
a slight decrease in resolution was observed, but within acceptable range. A low density
movie was acquired in the same field of view for both targets, which served as the ground
truth (fig. 33B). This acquisition of the ground truth data took 25 minutes per target
protein, whereas the acquisition of the high density data only required 1 minute. Comparing
the ground truth and predicted super-resolution images revealed an overall agreement in
faithfully reconstructed structural features of the five cells in the tissue section, highlighted
with dotted circles in fig. 33. The neural network effectively predicted TOM20 structures
(fig. 33C, D) and 1D filamentous structures of a-tubulin (fig. 33 C, D i, ii). Despite slightly
reduced performance in capturing the density of complex 2D arrangements of a-tubulin
(fig. 33C, D iii~vi), the trained DeepSTORM model exhibited good quality in predicting
the labeled targets in the tissue section.
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DeepSTORM *

Figure 33: DeepSTORM performance on a high density exchange DNA-PAINT movie. Comparison
between DNA-PAINT super-resolved image of A DeepSTORM and B ground truth image
generated from low density acquisiton with Picasso. o-tubulin (red, P1 imager strand) and
TOM20 (blue, P5 imager strand) were imaged. The shown MNTB tissue contains 5 cells,
highlighted with dotted circles. Scale bars 5 pm. Magnified regions are shown in C and D.
Scale bars 1 pm. Adapted from Narayanasamy et al., 2022, CC-BY-4.0.
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Figure 34: Number of frame optimization for complete image reconstruction with DeepSTORM.
High density movies with 5 nM, 10 nM, or 20 nM imager strand concentrations were pre-
dicted with varying frame numbers. The predicted super-resolved image by DeepSTORM was
compared to the ground truth per frame number by calculating HAWKMAN to determine the
optimal frame number, which is sufficient to reconstruct all content in the image. Dashed lines
indicate the optimal frame length at 400. N = 3, error bars = SD, adapted from Narayanasamy
et al., 2022, CC-BY-4.0.
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Figure 35: DeepSTORM predicted image of high density DNA-PAINT quality assessment against
the ground truth. The similarity metrics include A SQUIRREL RSP, B SQUIRREL RSE, C
MS-SSIM, D HAWKMAN structure, E HAWKMAN sharpening, and the F resolution. Asterisks
indicate statistical significance at p < 0.05 using one-way ANOVA, N = 5 Adapted from
Narayanasamy et al., 2022, CC-BY-4.0.
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5.1.4 Retrieving emitter positions in postprocessing

In the case where emitter positions are additionally required besides the super-resolved
image, DeepSTORM offers a postprocessing step where emitter positions are obtained
based on the predicted stack of super-resolved images. In this algorithm, the brightness
of a point needs to surpass a certain threshold and be of maximum intensity in a local
neighborhood to qualify as a localization. Three parameters must be adapted: “threshold”,
“neighborhood size”, and “local averaging”. With local averaging activated, a center of
gravity estimator is applied to the neighborhood, to potentially refine the emitter positions.
The threshold was set to ensure a roughly equivalent number of localizations as the ground
truth. The neighborhood size and local averaging were set to maximize image similarity
when comparing the rendered DeepSTORM localization image to the ground truth. This
resulted in a neighborhood size of 3 and local averaging being activated. The DeepSTORM
super-resolved image and rendered image produced nearly the same image similarity metrics,
suggesting that the method on how to determine the algorithms parameters works robustly
on DNA-PAINT images (fig. 36).
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Figure 36: Comparison between DeepSTORM'’s super-resolved image and rendered image from
Picasso. A TOM20-labeled MNTB section was imaged with A low emitter density (0.5 nM,
P5, 10,000 frames), from which B ground truth image was reconstructed using Picasso. C High
density acquisition with 10 nM imager strand, which was used to D generate a super-resolved
image with DeepSTORM. E With DeepSTORM's postprocessing method, emitter positions
were retrieved, which were rendered in Picasso. HAWKMAN and MS-SSIM were computed
to determine image similarity between the ground truth image, DeepSTORM predicted image,
and DeepSTORM postprocessed image. Scale bar 1 pm. Adapted from Narayanasamy et al.,
2022, CC-BY-4.0.
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In conclusion, DeepSTORM has been demonstrated on STORM data to obtain super-
resolved images under the challenging condition of high emitter density (Nehme et al.,
2018), outperforming other methods such as ThunderSTORM (Ovesny et al., 2014), FAL-
CON (Min et al., 2015) and CELO (Gazagnes et al., 2017). The here demonstrated
application of DeepSTORM to DNA-PAINT measurements enhances its versatility. The
constant emitter density in DNA-PAINT, contrary to STORM measurements, keeps the
data in the optimal density performance window of the network. Moreover, DNA-PAINT
enables the utilization of a single fluorophore across multiple targets, necessitating just one
trained neural network as a digital enhancement to a microscope.

The workflow presented herein is rooted in experimental data, offering an alternative to sim-
ulation based training. With this work, DeepSTORM within the ZeroCostDL4Mic frame-
work (Chamier et al., 2021) was extended to accept experimental data in a user friendly
way. Both approaches, simulation and experiment, have their merits and drawbacks. High
density movies based on experimental data closely resemble images obtained on the micro-
scope, but might be more tedious to generate. Conversely, simulated data can be generated
extensively, but may lack specific behaviors of the experimental setup. Adjusting the pa-
rameters of a simulation might be challenging and the direct acquisition of training data
on the microscope might be the straight forward route. Furthermore, generating a dataset
with many instances is easily achievable in this case, as small patches from large FOVs are
randomly summed together, resulting in nearly endless patch combinations with only a few
acquired frames.

For training data acquisition, choices must be made regarding the PAINT-strand, target,
fluorophore, and setup. As it has been demonstrated here, the type of PAINT-strand and
target does not affect the generalization capability of the network. The target structure
is not visible in one patch of a single frame and the emitters appear to be randomly dis-
tributed, independently which structure is underneath. Furthermore, in one frame, the
different kinetics of the PAINT-strand are not relevant, as signal must solely be emitted by
some strands being bound. However, the fluorophore and setup influence the appearance
of the PSF. If a model is trained with a different fluorophore or PSF, careful attention
must be paid to quality control metrics, and retraining may be necessary if predictions are
unsatisfactory.

Optimal imager strand concentration varies with structure type. Dense structures need
lower concentrations than less dense ones. This has been shown that for a-tubulin 5 nM
imager strand concentration was optimal and for TOM20 10 nM. DeepSTORM handles
a range of emitter densities (5-10 nM) but deteriorates at 20 nM due to lower SNR and
emitter overlap. Increasing the imager strand concentration will eventually cause a satura-
tion of the binding sites, beyond which only background fluorescence rises. Furthermore,
DeepSTORM predicted 2D shapes with lower precision than 1D structures. A next step
in improving the capability of DeepSTORM in dealing with different structures and local
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densities could be to estimate the local density and then choose a model that was trained
on this density.

Moreover, the efficiency enhancement of deep-learning assisted imaging of only 1 minute
per target protein compared to 25 minutes with conventional DNA-PAINT allows for im-
proved statistical robustness, as more instances can be measured within a certain time.
Fast imaging offers an additional advantage in capturing large views with super resolution
as demonstrated in Narayanasamy et al., 2022. For this, smaller super-resolution views of

a-tubulin in MNTB tissue were stitched together to create a 55x55 pm?

super-resolved
image within only 16 minutes. This facilitates information spanning from the microscale
down to the nanoscale.

The user-friendly ZeroCostDL4Mic environment aims to make neural networks accessi-
ble without the need for substantial computational resources or programming skills. This
environment offers simplicity, documentation, support, sample data, and access to decen-
tralized computing resources through Google Colab. The here demonstrated workflow uses
only freely available tools and the custom code offers a user interface and is well docu-
mented. Access to the trained model and data is given to allow reproducibility and reuse of
the model. This lowers the barrier of using high-speed DNA-PAINT and SMLM in everyday
super-resolution microscopy.

While DeepSTORM is designed for 2D data, adaptation to 3D is feasible using neural net-
works such as DeepSTORM3D (Nehme et al., 2020) and DECODE (Speiser et al., 2021).
In DeepSTORMB3D a phase mask is added to the optical path in the microscope, that alters
the shape of the PSF depending on the z-depth. Using a CNN, a 3D volume is generated,
from which 3D localizations can be retrieved. In DECODE, emitters are simulated based on
a calibration measurement of a z-stack with beads and an astigmatism length in the light
path encoding the z-information. Based on that measurement, training data is simulated
and the network learns to localize 3D emitters.

The here demonstrated workflow was successfully applied to measurements using exchange-
able HaloTag ligands (xHTLs) (Kompa et al., 2023), further extending the application ca-
pability of DeepSTORM. Jang et al., 2023 demonstrated a reduced acquisition time by ~25
fold using xHTLs in high density movies of vimentin, TOM20, and calreticulin-KDEL, which
were processed with DeepSTORM. The combination with DBlink (Saguy et al., 2023), a
neural network generating continuous structures from patchy SMLM movies, enabled the
observation of the endoplasmic reticulum in a live cell for 12 minutes with a temporal
resolution of 1 second (Jang et al., 2023). This underscores the potential of synergisti-
cally combining different neural network tools to push the boundaries of super-resolution

microscopy even further.
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5.2 Methods

For a more detailed description of the methods refer to Narayanasamy et al., 2022.

5.2.1 Sample preparation

All animal experiments adhered to the applicable laws and institutional guidelines of Baden-
Wiirttemberg, Germany (protocol G-214/20), and received approval from the Regierungspra-
sidium Karlsruhe. Sprague-Dawley rats obtained from Charles River were anesthetized and
transcardially perfused with PBS at postnatal day 13, followed by 4% paraformaldehyde
(PFA) in PBS (Sigma-Aldrich). The brains were dissected and further fixed in 4% PFA
overnight at 4 °C. 200 pm thick sections of the brainstem, containing the medial nucleus
of the trapezoid body (MNTB), were prepared using a vibratome (SLICER HR2, Sigmann-
Elektronik, Germany). The MNTB regions were excised, infiltrated with 2.1 M sucrose
(Sigma-Aldrich) in 0.1 M cacodylate buffer at pH 7.4, and left overnight at 4 °C. The
tissue was then mounted on a holder, plunge-frozen in liquid nitrogen in 2.1 M sucrose,
and 350 nm semi-thin sections were cut using a cryo ultramicrotome (UC6, Leica). These
sections were transferred to 35 mm glass bottom dishes (MatTek, USA) pre-coated with
30 pg/ml of fibronectin from human plasma (Sigma-Aldrich). Nanodiamonds (100 nm;
Adamas Nanotechnologies, USA) were added as fiducials. The dishes containing sections
were stored at 4 °C before use. For tissue staining, the thawed tissue sections were washed

three times with PBS, with each incubation lasting 15 minutes, to remove sucrose droplets.

5.2.2 Labeling

Secondary antibodies of donkey anti-mouse (715-005-151), donkey anti-rabbit (711-005-
152), and donkey anti-chicken (703-005-155), were purchased from Jackson ImmunoRe-
search. DNA strands with thiol or azide modifications on the 5’ end for docking strands
and a Cy3B dye on the 3' end for imager strands were used (Metabion). Conjugation
of antibodies to thiol-DNA docking strands was prepared using a maleimide linker, while
azide-DNA conjugation utilized the DBCO-sulfo-NHS ester linker (CLK-A124-10; Jena Bio-
science). The antibody-DNA solutions were stored at 4 °C.

For tissue labeling, primary antibodies against a-tubulin-mouse (T6199, Sigma-Aldrich;
clone DM1A; dilution 1:500) and TOM20-rabbit (sc-11415, Santa Cruz Biotechnology; di-
lution 1:80) were used. Tissue samples in dishes underwent a three-time, 10-minute wash
with PBS to remove the sucrose-methylcellulose layer, followed by blocking with 5% foetal
calf serum (FCS; Gibco) for 30 minutes. The primary antibodies, diluted in 0.5% FCS, were
applied to the tissue section for 1 hour at room temperature and washed off three times
with PBS. Subsequently, the secondary antibody-DNA docking strand (5.8 mg/mL stock;
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dilution 1:100) in 0.5% FCS was applied onto the tissue for 1 hour at room temperature,
followed by three washes with PBS.

5.2.3 Setup

DNA-PAINT microscopy was conducted using a home-built SMLM setup featuring an Olym-
pus |X81 inverted microscope frame and an Olympus 150x TIRF oil immersion objective
(UIS2, 1.49NA). lllumination was carried out in HILO mode with a 561 nm laser line (Co-
herent Sapphire LP) at 0.88 kW/cm2, using a 4 L TIRF filter (TRF89902-EM, Chroma
Technology) and an ET605/70 M bandpass filter (Chroma Technology). An Andor iXon
EM+ DU-897 EMCCD camera (Andor, Ireland) collected signal with a pixel size of 107 nm.

5.2.4 DNA-PAINT imaging

DNA-PAINT imaging was performed in Buffer C (2.5 M NaCl; S7653, Sigma-Aldrich
in 5x PBS; 14200-059, Gibco Fisher Scientific) supplemented with 1 mM ethylenedi-
aminetetraacetic acid (EDTA; E6758, Sigma-Aldrich), 2.5 mM 3,4-dihydroxybenzoic acid
(PCA; 03930590, Sigma-Aldrich), 10 nM protocatechuate 3,4-dioxygenase pseudomonas
(PCD; P8279, Sigma-Aldrich), and 1 mM (=)-6-hydroxy-2,5,7,8-tetramethylchromane-2-
carboxylic acid (Trolox; 238813-5G, Sigma-Aldrich). Oxygen scavenging buffers PCA and
PCD were used to reduce site-loss labeling due to DNA docking strand damage by ROS42.
To acquire training data, 20 pM P5 imager strands were imaged in TOM20-labeled tissue
samples for 5,000 frames with an acquisition rate of 150 ms. For imaging the ground
truth, P1 (a-tubulin) and P5 (TOM20) strands were recorded with a concentration of
0.5 nM for 10,000 frames with an acquisition rate of 150 ms. High density emitter DNA-
PAINT datasets for DeepSTORM prediction were obtained by imaging with concentrations
of 5 nM, 10 nM, and 20 nM for 400 frames. Exchange-PAINT was performed manually by
washing five times with 1x PBS. Five different FOVs were imaged.

Ground truth DNA-PAINT movies were processed with Picasso (v0.2.8) (Schnitzbauer et
al., 2017). Events in each frame were localized with integrated Gaussian and maximum like-
lihood estimation. The localizations were drift corrected and rendered using ‘one pixel blur’.
Localizations were linked to merge localisations appearing in multiple consecutive frames.
Movies from the same FOV with different concentrations were aligned by a linear trans-
formation using nanodiamonds as a registration reference. Super-resolution large-sample
imaging on a-tubulin was performed using DNA-PAINT imaging with 10 nM P1 imager
strands. For the large-scale imaging of a-tubulin (10 nM, P1), a grid-like acquisition strat-
egy of 4x4 was employed for each imaging area for 400 frames, with imately 10% overlap
between adjacent images. Image stiching was performed using Inkscape based on structural

similarity.
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5.2.5 Generating training patches

For DeepSTORM model training, high density emitter images with matching emitter posi-
tion are required. Due to the challenging nature of achieving precise localizations at high
concentrations, low density emitter frames were summed to artificially generate high den-
sity emitter frames, along with a list of emitter positions. This process was executed using
a custom script (ImageSumming version 220306, https://github.com/HeilemannLab/
ImageSumming). For the low density data, 5000 sparse emitter frames (20 pM, P5, TOM20)
were acquired with a density of 0.028 emitters/pm? and a size of 512x512 px®. Picasso
was used for localizing emitters. The imaged frames were randomly cropped to 17x17 px®
and summed, resulting in a high density movie of 1.9 emitters/pm? with 30,000 frames and
matching localization list. Patches devoid of emitters were excluded from the summation
process. As the summing of n patches induces n camera offsets, the offset was corrected
by subtracting its value n-1 times. The camera offset was estimated through the average

pixel value in a measurement conducted with a closed shutter.

5.2.6 DeepSTORM training and prediction

DeepSTORM model training was performed in Google Colab using the ZeroCostDL4Mic
(Chamier et al., 2021) notebook (v1.12). The assigned resources entailed a Tesla V100
GPU with CUDA version 11.0 and Tensorflow version 2.5.0. Training for the SEM model
took 17 min on 1782 instances and for the MEM model 35 min on 30,000 instances. To
directly use the summed image patches as input, some parameters must be adjusted, as
the notebook is constructed to expect images, which are patched within the notebook
(number of patches per frame = 1, patch size = 16 px, maximum number of patches =
30,000, minimum number of emitters per patch = 1). The parameters for training were
set to number of epochs = 100, batch size = 256, percentage of validation = 15 %, initial
learning rate = 1E-5. Default values were used if not stated otherwise. One DeepSTORM
model was trained on the P5 TOM20 dataset and used for all high density emitter images.
The trained model and data is available at https://zenodo.org/records/6966132. For
prediction, 400 frames with a size of 512x512 px? were processed, which took 7-25 minutes.
DeepSTORM outputs images, which must be localized with a built in postprocessing step
to obtain emitter positions. This entails the adaption of three parameters, which were
set per imaged target to achieve high image similarity between ground truth and rendered
image from predicted localizations. The neighborhood size was always set to 3 and local

averaging was activated. The threshold was adapted per target.
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5.2.7 Image analysis

Picasso-rendered ground truth and DeepSTORM predicted super-resolution images were
compared using different control metrics in Fiji. The resolution was determined using
decorrelation analysis (Descloux et al., 2019) with default values. For MS-SSIM analysis
(Wang et al., 2003), the images were intensity-normalized. For the SQUIRREL analysis
(Culley et al., 2018), the magnification factor was set to 1. For the HAWKMAN analysis
(Marsh et al., 2021), the images were converted to 8 bit depth. The PSF FWHM in super-
resolution pixels was set to 23 nm, the PSF of the instrument to 300 nm, the reconstruction
magnification factor to 8, and 10 scales were analyzed. A pixel scale of 69 nm was finally
chosen, corresponding to the resolution of the predicted images.

To determine a sufficient number of frames of the high density movies, movie lengths of
50, 100, 200, 400, 600, 1000, and 2000 frames predicted with DeepSTORM to generate a
super-resolution image. Per frame length, this image was compared to the ground truth.
With increasing number of frames, the similarity improved, but saturates for large numbers
of frames. The number of frames before saturation was chosen. This analysis was conducted

per measured target.
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6 Fast and long-time STED imaging of ER

nano-structural dynamics in living cells

Live cell imaging is essential for investigating dynamic biological processes by providing
valuable insights into the spatiotemporal behavior of cellular events. STED microscopy
has served as a powerful tool to study processes with high resolution, including dynamic
processes in living cells (Stockhammer et al., 2021). However, the high laser intensities of
this technique lead to fluorophore photobleaching and sample phototoxicity, which limits
the number of recordable fluorescence images for a given sample.

There are various approaches to tackle these challenges. Stable fluorophores extend the
STED measurement window to several minutes (Liu et al., 2022b). Additionally, transient
fluorophores prevent photobleaching, allowing for longer measurements (Glogger et al.,
2022; Liu et al., 2024; Spahn et al., 2019). Although stable and transient fluorophores
can circumvent photobleaching, the high laser power remains the same. Event-triggered
STED microscopy monitors subcellular events in less photodamaging imaging modes, such
as wide-field microscopy, and switches to STED once the event of interest is detected
(Alvelid et al., 2022). This is applicable for investigating short scenarios with the high res-
olution of STED and the photon budget is reduced. Monitoring long-term scenarios with
high resolution remains a challenge.

Further efforts to mitigate photobleaching and phototoxicity encompass denoising, which
has been vastly applied to several fluorescence microscopy techniques (Jin et al., 2020;
Krull et al., 2018; Weigert et al., 2018). When denoising super-resolved images, main-
taining the resolution can be challenging, as convolutional neural networks (CNNs) often
introduce blurring due to the commonly employed pixel-level loss function (Kim et al.,
2019a). Switching to a perceptual loss or an adversarial loss might improve the denoising
performance. The introduction of attention layers to the network also prevents blurring,
as the flow of high-frequency information is enhanced (Vaswani et al., 2017; Zhang et al.,
2018b).

Ebrahimi et al., 2023 demonstrated improved performance in denoising STED images while
maintaining the resolution, by combining a U-Net (Ronneberger et al., 2015) and RCAN
(Zhang et al., 2018b) architecture with attention layers. Different cell organelles were im-
aged with a pixel dwell time of 1 ps for minutes and imaging quality restored with the
network.

In this work, the UNet-RCAN network (Ebrahimi et al., 2023) is utilized to denoise STED
images of the endoplasmic reticulum (ER) recorded with ultra-low irradiation intensity. This
enables the observation of the ER for several hours with high spatiotemporal resolution.
Drug treatment with torinl (Kim et al., 2015) and bafilomycin Al (Mauvezin et al., 2015)
initiate early ER autophagy in cells, leading to morphological changes in the ER. So far,
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ER-phagy has only been studied with super-resolution in fixed cells (Berkane et al., 2023;
Gonzalez et al., 2023). To quantify the dynamical changes, sheets and tubes were seg-
mented using ERnet (Lu et al., 2023). ERnet is a neural network based segmentation
tool of the ER, which has been applied to SIM images. lIts translation to STED images
is demonstrated here without the need for model re-training. Additional descriptors were

applied to the segmented structures, providing a quantitative analysis of the drug effects.

74



6 Fast and long-time STED imaging of ER nano-structural dynamics in living cells

6.1 Results and discussion
6.1.1 Denoising pipeline for live cell ER STED images

For denoising, the UNet-RCAN network was chosen, as it preserves most of the resolution
of the ground truth STED images compared to other methods (Ebrahimi et al., 2023; Rahm
et al., 2024). UNet-RCAN is a supervised neural network, thereby requiring matching pairs
of low-intensity (noisy) and high-intensity (ground truth) images. The noisy-ground truth
image pairs were acquired with the acquisition switching between lines of the noisy and
ground truth image to mitigate any spatial offset between the image pairs, which would
dampen the quality of predictions. The rapid acquisition of noisy images at exceptionally
high speeds (0.5 ps dwell time per pixel) minimized discernible spatial shifts, while any
residual offsets were drift corrected using the registration method of NanoJ (Laine et al.,
2019) (fig. 37A). The acquired noisy-ground truth image pairs were then cropped into
smaller patches (1282, 2562 or 304 px?) and served as training data for the network (fig.
37B). Cropping has the advantage of generating numerous training instances with only a
few measurements. Furthermore, processing the entire recorded image is not possible due
to limited RAM size on the GPU. To enhance the resilience of the network to potential
variations in samples across measurement days, inputs stemmed from at least three mea-
surement days.

Initial attempts to train the UNet-RCAN model using default parameters proved unsuccess-
ful. The model did not converge and a large loss was observed, indicating gradient explosion
and rendering the model not useful. Despite adjustments of hyperparameters, this issue
persisted, necessitating the introduction of additional hyperparameters which were included
in the code base of UNet-RCAN. An exploration of more than a hundred parameter com-
binations ensured the identification of a model that converged (fig. S1) and performed
adequately (fig. 37C).

Model performance was probed with a test dataset, which was acquired on a separate mea-
surement day (fig. 37D). The generated predictions exhibited normalized pixel intensities,
which were rescaled to match the pixel distribution of the ground truth data (fig. 37E).
The rescaling procedure exclusively leveraged information from the training data, prevent-
ing any influence from the test dataset. Finally, quality control metrics were computed on
the rescaled predictions and ground truth data, facilitating the identification of an optimal
model within the screened parameter space (fig. 37F).

The importance of the hyperparameters was investigated with a random forest regressor,
that ranks the effects of the hyperparameters to model performance (fig. S2). The two
most important hyperparameters for model training were an appropriate learning rate and
the size of the input. A patch size of 304x304 px? was the optimal choice for this dataset
(the size must be divisible by 8 due to the three down-sampling layers in the U-Net),
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Figure 37: STED denoising workflow. A Ground truth and the corresponding noisy images are aligned
in the xy plane, B from which small patches are generated. C A UNet-RCAN model is trained,
wherein the patches from noisy images function as input and the rest of the patches serve
as the ground truth. An exploration of various hyperparameters is undertaken to identify a
suitable model. D The trained model is employed for prediction. E The normalized predictions
rescaled to align with the pixel distribution of the ground truth. F Quality control metrics are
then computed on a designated test dataset. Scale bar 1 pm, N = 15 (Rahm et al., 2024).

while larger patch sizes were limited by memory restrictions. Given the pivotal role of this
parameter, its optimization is recommended in conjunction with considerations of image
content size, filter size, and downsampling extent. The importance of different parameter
values within a parameter group are listed in Sl table S1 and S2. This approach gives an
overall indication of appropriate parameters. However, the best performing models across
the hyperparameter search had slightly different combinations (SI table S3).
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6.1.2 Quality control of STED image restoration

To visualize the ER in living cells, U2-OS cells expressing calreticulin-KDEL as an ER marker
were used. The fluorophore SiR, which was attached to the target structure using a covalent
HaloTag, was used as a label. The ground truth is imaged in a small region (12x12 pum?)
to prevent movement artifacts between the subsequent line acquisitions (fig. 38A). The

noisy images appear spotted and contain only a few different low pixel intensity (fig. 38B).
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Figure 38: STED denoising of ER in living cells. A Ground truth STED image of the ER of a U2-
OS cell. B Noisy STED image of the ER acquired in parallel with the ground truth in line
acquisition mode. C Predicted image of B with a trained UNet-RCAN network. D rFRC
resolution map of the predicted image. E SSIM, F MAE, G PEARSON correlation, H PSNR,
and | LPIPS quality control metrics comparing ground truth and predicted images. J Mean
resolution of ground truth, noisy, and predicted image calculated using rFRC. K Intensity line
profiles of ground truth, noisy and predicted image, the intensities were normalized globally.
Scale bar 1 pm, N = 15 (Rahm et al., 2024).
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The resultant prediction of neural network restoration recovers the structural details (fig.
38C). A rolling FOURIER ring correlation (rFRC) map (Zhao et al., 2023) of the predicted
image shows how the resolution varies spatially, with resolutions up to 42 nm and an average
resolution of 89 nm (fig. 38D). The corresponding ground truth image has an average
resolution of 82 nm. The average resolutions were 90 = 6 nm for the predicted and 80
+ 6 nm for the ground truth images. All predicted images were further scrutinized using
various quality control metrics (fig. 38E-l). The MAE focuses on the pixel-wise absolute
difference between two images. The PSNR evaluates the quality of a reconstructed signal,
by comparing it to the original, uncompressed signal. The PEARSON correlation evaluates
the relationship of pixel intensities. Contrary to these metrics, SSIM (Wang et al., 2004)
and LPIPS (Zhang et al., 2018a) consider spatial pixel dependencies. SSIM evaluates the
similarity of the images in the aspects of structure, contrast, and luminescence. In LPIPS,
feature representations extracted from pretrained neural networks are compared between
prediction and ground truth images. This mix of metrics, along with the resolution, is a
robust toolbox for comprehensive image quality assessment.

The QC metrics showed that the predictions recover the structural details of the ground
truth image. In addition, the predictions maintained the resolution although not to full
extend compared to the ground truth images (fig. 38J). Intensity profiles across the image
also indicate that the prediction retained the underlying details of the ground truth image
and the relative intensities (fig. 38K).

6.1.3 Effects of morphological changes on model robustness

To study ER-phagy dynamics, cells were treated with torinl and bafilomycin Al. Torinl
induces stress and autophagy in cells (Kim et al., 2015). The cell degrades its organelles
and proteins through the enclosure in autophagosomes, a spherical structure with a double
layered membrane (Vinod et al., 2015). For further degradation, the autophagosome fuses
with lysosomes. By adding bafilomycin Al, the fusion is blocked and the autophagy process
stopped at autophagosome formation (Mauvezin et al., 2015).

As the induction of ER-phagy causes morphological changes in the ER structure, the perfor-
mance of a model trained with images from both resting and induced cells (mixed model)
was compared with a model solely trained on resting cells. The mixed model performed
well with the matching test data from autophagy induced cells and the resting model with
the resting cell test data. The performance was probed in terms of structure recovery (fig.
39A-C), resolution (fig. 39D), intensity fluctuations (fig. 39E) and QC metrics (fig. S3
and S4). Furthermore, test data of resting cells were predicted with the mixed model and
test data of autophagy-induced cells with the resting model. The resting model performed
slightly better im terms of QC metrics compared to the mixed model for the resting cell

test dataset. For the autophagy dataset, no significant improvement was observed when
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using the mixed model compared to the resting model. This shows that the data from

both conditions was within the generalization capability of the resting model. For further

analysis, the resting model was applied.
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Figure 39: STED denoising of living cells induced for stress. A Representative ground truth and B
noisy STED image of the ER in a stress-induced live cell and C its corresponding prediction.
D rFRC resolution map of the predicted image pair. E Intensity line profiles of ground truth,
noisy and predicted image at two highlighted regions of interest. The intensities of all three
datasets were normalized together as a single group. Scale bar 1 ym (Rahm et al., 2024).

B xz

Figure 40: Prediction of a 3D stack. Prediction of the resting model for an input containing low-
intensity volumetric STED images of the ER (calreticulin-KDEL). An exemplary xy plane is
visualized and the yz and xz planes corresponding to the yellow dotted lines are shown on the
left and bottom respectively. Scale bar 1 ym (Rahm et al., 2024).
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As an additional query for the robustness, the resting model was used to predict noisy
images of 3D stacks acquired from living resting cells. A top-hat PSF pattern was used
for the depletion laser to gain axial resolution. Fig. 40 shows a predicted 3D stack of an
exemplary cell visualized as xy, yz and xz planes. Since only noisy images were measured in
the 3D stack, additional single plane noisy and ground truth images were acquired with the
same settings including a top-hat depletion laser PSF. The 3D test dataset was evaluated
and showed that the resting model does indeed denoise images acquired with a top-hat
depletion laser PSF (fig. S5).

6.1.4 Strategies to discern structural signals from hallucinations

To ensure the quality of predictions, it is crucial that the low-intensity input contains signal
that is not completely bleached away. In the absence of signal in the FOV, hallucinations
occur (fig. 41A, B). To distinguish hallucinated predictions from those stemming from
structure, the similarity of adjacent frames in a movie can be probed. Moving organelles
exhibit a degree of similarity between adjacent frames, resulting in higher structural sim-
ilarity when compared to adjacent predictions derived from empty FOVs (fig. 41C). By
tracking the similarity over time, the authenticity of predictions can be validated.

Areas of uncertain predictions might not only arise temporally, but also spatially; for in-
stance, when a minute signal was collected from an out of focus plane, which is not
sufficient for a robust prediction (fig. 41D, E). By thresholding the pixel intensities of the
low-intensity image, the pixels can be roughly grouped into background, uncertain, and
signal pixels. The grouping is not perfect, but enough to gear the attention to areas with
potential artifacts. Fig. 41F contains a hallucinated structure and an area with dim signal
predicted from areas labeled as “uncertain” in the low-intensity image. This method is also
an alternative for tracking the similarity over time, in cases where large structural changes

occur frame to frame due to the acquisition time or mobility of the structure.

6.1.5 Denoising and segmentation to describe fast and long-term ER dynamics

The ER-dynamics under drug treated condition (torinl and bafilomycin A1) was imaged for
four hours with a temporal resolution of 4.6 seconds per image. Imaging time was restricted
by the cell moving out of focus. The low-intensity signal remained constant during that
time and would have allowed for even longer imaging. To quantify morphological changes,
the denoising pipeline was coupled to a neural network based segmentation pipeline, ERnet,
which segments the structure and distinguishes between sheets and tubes (Lu et al., 2023)
(fig. 42). The intensity of the input images had to be unified as a preprocessing step to
enhance the continuity of the segmentation. With torinl and bafilomycin Al treatment, the

aggregation of ER fragments in autophagosomes is expected. The ER structure changed
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Figure 41: Hallucination artifacts. A Predictions of a time series of background signals, which contain
hallucinations. B Predicted images of a time series of ER in living cells. C To distinguish
both cases, the SSIM for adjacent frames is calculated. The hallucinated structures appear
randomly due to the random nature of noise and have a lower SSIM than a movie containing
signal of interest. D Low-intensity input from treated movie condition. E Classified pixels
as background, uncertain, and signal. F Predicted image, partly predicting structure, where
hardly any signal was collected in the low-intensity image. The arrows highlight two areas of
uncertainty. Scale bar 2 pm (Rahm et al., 2024).

the most within the first hour, where the density of the ER decreased and small sheet
regions accumulated to larger regions.

Besides the segmentation, ERnet additionally provides descriptors of the segmented struc-
ture, including the quantification of pixels belonging to tubes or sheets per image and a
description of the tube network via graph theory. For the treated movie, the fraction of
tubes decreased within the first hour, with the amount of pixels segmented as sheets sur-
passing the number of pixels segmented as tubes. An exception occured at approximately
two hours, where sheets move out of the field of view, predominantly revealing tubes.

The degree of nodes, representing the number of connections per node, was predominantly
1 followed by 3. A degree of 1 corresponds to the ends of tubular connections, while a de-
gree of 3 indicates nodes within the network structure. Interestingly, the number of degree
1 nodes rose within the first hour, reflecting an increased discontinuity of the network.

Clustering denotes grouping of nodes and edges, with values ranging from 0 indicating no
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Figure 42: Development of ER structure after drug treatment. Input and segmentation results of
ERnet. Tubes are depicted in blue and sheets in yellow. Scale bar 3 pm (Rahm et al., 2024).

clustering to 1 indicating complete clustering. The clustering decreased within the first
hour and stays at very low numbers, suggesting that clustering is not a prominent feature
of the ER network. The assortativity, which is the tendency of nodes to connect with nodes
of the same degree, fluctuated around 0, meaning that no clear tendency to connect to
similar or dissimilar nodes is observed. Clustering and assortativity values around zero are

in alignment with the values reported in Lu et al., 2023.

Additional descriptors were explored for further quantification. The iou of segmented ad-
jacent frames informs about the similarity of the segmentation and therefore the speed of
rearrangement (fig. 44A). The iou fluctuated, but had an apparent increase in similarity
within the first hour. This is reflected in the segmented images, where small sheet areas
aggregated within this time window. Compared to a cell measured in resting condition
(fig. 41C), the iou was smaller, meaning that drug treatment induces more pronounced
morphological changes.

The overall density of ER structure decreased, evident from the reduction in the number
of foreground pixels (fig. 44B). Additionally, sheet instances were quantified by connecting
regions with the same pixel values. This allowed the counting of sheets per frame, revealing
a decrease in sheets (fig. 44C). The observations are in alignment with the expected ag-
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Figure 43: ERnet structure quantification. A Fraction of tubes and sheets. B Fraction of the node

connectivity degree. C Clustering of the tube network. D Assortativity of the tube network
(Rahm et al., 2024).

gregation of ER fragments in autophagosomes, with most effects of the drug taking place
within the first hour.
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Figure 44: Additional descriptors for dynamic ER structure quantification. A Intersection over union

between adjacent segmented frames. B Foreground pixel ratio. C Number of sheets per frame
(Rahm et al., 2024).

The here demonstrated pipeline shows the potential of denoising STED images to record
live cell organelle dynamics with high spatiotemporal resolution for a long period of time.
The observation of the ER structure for several hours with a resolution of 90 nm and 0.5
ps pixel dwell time pushes STED to previously unknown limits. Other studies that denoised

STED images used a pixel dwell time of 1 ps pixel dwell for imaging for several minutes
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(Ebrahimi et al., 2023). Hajiabadi et al., 2022 denoised RNA polymerase Il clusters in
live zebrafish embryos and acquired 3D stacks within seconds. As the biological process
of interest is on the scale of a few seconds, no long-time measurements were explored.
Furthermore, the nucleus does not contain apparent high frequency features and it remains
unclear how well the used N2V network (Krull et al., 2018) restores the resolution. The ER
as a study object requires both fast and long-time measurements, as the structure is highly
dynamic and drug effects take place on a larger time scale (Gonzalez et al., 2023). The
here achieved spatiotemporal resolution with an observation window of hours fulfills these
demands.

As calreticulin-KDEL is assosiated with ER-phagy, functioning as a quality control chap-
erone for protein folding and known to stimulate the formation of autophagosomes (Yang
et al., 2018), the macro level effects during ER-stress were of interest. Sheet accumulation
and and overall decrease in structure density was mostly apparent within the first hour, al-
though it should be stated that more measurements and comparisons to a mock condition
would be required to draw conclusions. The decrease of structure density is in alignment
with other known responses to torinl and bafilomycin Al treatment. An increased cluster
size of FAM134B, a protein involved in ER reshaping among others, was observed after
6 hours of ligand treatment in fixed U2-OS cells measured with DNA-PAINT (Berkane et
al., 2023).

Imaging live cell data with high quality is challenging due to the phototoxicity of light
and the movement of the organelle (Waldchen et al., 2015). Organelle movement induces
movement artifacts, visible as horizontal lines in the images. As the ER dynamics are sur-
prisingly fast, movement artifacts could not be fully avoided when acquiring the training
and test ground truth data. Mapping low-intensity live cell images to high-intensity fixed
cell images could mitigate this issue. The fixed cell images should be cautiously evaluated
with regards to fixation artifacts. The same marker compatible for both the live cell and
fixed cell condition could be used. To further improve the quality of the target image,
deconvolution could be applied as a preprocessing step to sharpen the ground truth images.
The elimination of background signal and non-specific binding could be achieved through
a neural network based technique known as label2label (Kolln et al., 2022). This method
involves training a network to convert images with two distinct labels that target the same
cellular structure. Fluorescence signals that exhibit variation in the images are excluded,
thereby restoring correlated structural signals.

To enhance predictive accuracy and mitigate the risk of structural hallucination, multiple
frames could be employed as input to improve the accuracy of the model. Using temporal
resolution to improve prediction quality has been exemplified by other works, for example
in the multi-emitter fitting model DECODE, where adjacent frames are incorporated as
input to derive localizations for the central frame (Speiser et al., 2021). It is imperative
to fine-tune the quantity of added frames, as the inclusion of frames exhibiting significant

structural alterations may not assist in improving results.
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The translation of images from confocal to STED microscopy offers an alternative method
for facilitating rapid and long time observations of live cell structure. However, Ebrahimi et
al., 2023 demonstrated superior prediction quality of denoising compared to cross-modality
translation, particularly in terms of regained resolution. Bouchard et al., 2023 show that
the accuracy of confocal to STED translation can be improved by adding a specific task
during training, for example the segmentation of structure. However, this approach re-
quires manually annotated data for the additional task. Cross-modality translation is an
interesting choice for extending the capabilities of conventional light microscopes. If a
STED microscope is available, denoising will likely preserve the resolution more effectively,
as the low-intensity input contains more information about the high-frequency features of
the structure compared to a diffraction limited image.

All in all, this work demonstrates a neural network based workflow accessing the fast ER
dynamics with long time observation at high resolution. This robust framework could be fur-
ther applied to different scenarios, where fast organelle dynamics with super-resolution are
of interest. Future work might include the extension of describing other cellular structures
along the ER, for example studying the contact sites between the ER and mitochondria
(Sassano et al., 2022). This would draw a more holistic understanding of organelle dynamics

and interactions in living cells.
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6.2 Methods

6.2.1 Sample preparation

U2-0OS cells that stably express calreticulin-KDEL-HaloTag7 were seeded onto 8-well cham-
bered coverglass at an amount of 1 - 10* cells per well. The cells were incubated overnight
at 37 °C and 5% CO, and were induced the next day with 250-500 pg/mL doxycycline
(Sigma Aldrich, Germany) in culture media. Two days post-induction, the cells were in-
cubated for 15-20 min with 300 nM of HaloTag ligand conjugated to the fluorophore SiR
diluted in culture media followed by 3x washing with culture media. The cells were incubated
in culture media at 37 °C with 5% CO, until taken out for imaging, using live-cell media
(reduced culture media with HEPES, Thermo Fisher Scientific, Germany) as an imaging
buffer. 250 nM torinl and 250 nM bafilomycin Al were added to the live-cell media prior

imaging for the treated condition.

6.2.2 Image acquisition

STED imaging was performed on an Abberior expert line microscope (Abberior Instruments,
Germany) with an Olympus IX83 body (Olympus Deutschland GmbH, Germany). Imaging
was conducted with a UPLXAPO 60x NA 1.42 oil immersion objective (Olympus Deutsch-
land GmbH, Germany). An excitation laser of 640 nm and a depletion laser of 775 nm
laser was used. The PSF shape was either a donut (for planar and long-term imaging)
or a top-hat (for volumetric imaging). Fluorescence was collected in the spectral range
of 650 nm to 760 nm using an avalanche photo diode (APD). For ground truth imaging,
the excitation laser power was set to 56.35 pW with 6 line accumulations. Low-intensity
images were conducted with 4.83 pW excitation laser power and 1 line accumulation. The
depletion laser power was 166.02 mW, the pinhole diameter 0.81 a.u., the pixel dwell time

0.5 ps, and the pixel size 20 nm for all conditions.

6.2.3 Image processing and dataset generation

High-intensity and low-intensity images were aligned with the registration method by NanoJ-
Core (Laine et al., 2019). For the resting condition, training images were acquired from
3 measurement days. To generate a dataset suitable for both the treated and resting
condition, 26% of images were added from the treated condition. The same amount
of data was used for training to allow comparison between the resting and mixed model
performance. Images were cropped into patches of 128x128 px2, 200x200 px?, 256x256 px?,
and 304x304 px? to determine an optimal patch size of the training data. A training and
validation split of 90%-10% was made. Per condition, 15 test images of size 600x600 px?
were acquired at a different measurement day.
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6.2.4 Network training

UNet-RCAN networks (Ebrahimi et al., 2023) were trained on a NVIDIA RTX 3090 24 GB
GPU. As the default hyper parameters led to exploding gradients, some additional options
were added to the published codebase, and the parameter space was explored to find a
robustly working model. This included different loss functions (leaky ReLU, tanh), ker-
nel initialization strategies (glorot uniform, lecun uniform, orthogonal), gradient clipping
(0.1, 0.01, 0.001), and I2 regularization (0, 0.01, 0.001). Different learning rates were
also tested during the search (0.001, 0.0001, 0.00001 for the resting and 0.001, 0.0001,
0.0005, 0.00005, 0.00001, 0.000001 for the mixed condition), along with different patch
sizes (128x128 pixels, 200x200 pixels, 256x256 pixels, and 304x304 pixels). The batch size
was chosen as the maximum possible number per patch size before an out-of-memory error
occurred on the GPU (patch size: batch size, 128: 36, 200: 16, 256: 10, 304: 6).

A parameter space search was executed to identify possible parameter combinations for
models that perform well on the test dataset. To diminish the search time, 1000 data
instances were included and training was interrupted after 10 epochs or if the loss exceeded
a value of 1000. 147 models were evaluated for the resting condition and 393 models for
the mixed condition. Quality control metrics were calculated on a test dataset after every
model run to determine the model performance. The metrics SSIM (Wang et al., 2004),
MAE, and the spatial resolution (determined with decorrelation analysis (Descloux et al.,
2019) in NanoPyx v0.2.2 (Saraiva et al., 2023)) were each linearly transformed between
0-1 across all model runs per condition. A “total score” was computed by summing the
transformed scores and dividing them by three to assess performance across multiple met-
rics. The top 5 models, based on the highest total score, were trained until convergence
on the full dataset with 1764 instances.

For the final calculation of quality control metrics, the pixel intensities of the predicted test
images must be rescaled, as the model outputs normalized intensities. A scale and offset
were calculated based on the pixel values of predicted training instances and their ground
truth images. The test dataset is deliberately excluded from this process. A linear scaling
operation was applied to the pixel values of the predicted images. Values above the 99th
quantile and below the 1st quantile were clipped. The scale and offset values were deter-
mined per model and applied to the test data before calculating quality control metrics.

The final model was selected based on the highest total score, with parameters detailed in
S| table S3.

6.2.5 Quality control metrics

The MAE was calculated using the mean absolute difference of pixel values. SSIM (Wang
et al., 2004) and PSNR were computed with the scikit-image library v0.19.3 (Walt et al.,
2014). PEARSON correlation was determined with SciPy v1.9.3 (Virtanen et al., 2020). The
learned perceptual image patch similarity (LPIPS) (Zhang et al., 2018a) was ascertained
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with a VGG model. Resolution during model training was determined with decorrelation
analysis (Descloux et al., 2019) in NanoPyx v0.2.2 (Saraiva et al., 2023). Resolution for
the test data was determined using rolling FOURIER ring correlation v0.2.5 (Zhao et al.,
2023) with a 1/7-threshold and a background intensity of 20.

To discern predictions stemming from FOVs with signal and FOVs containing only noise, the
SSIM was calculated between adjacent predicted frames of the treated movie and a movie
recorded of only dark noise of the detector (in an empty image plane without sample).
To spatially group pixels into the categories background, uncertain, and signal, a sliding
window of size 10x10 px? was used to sum the pixel intensities within this window per pixel.
Borders of the image were padded with reflected pixels to maintain the input size. A pixel
was labeled as background, if the sum was equal or below 5, as uncertain if in between 6
and 25, and as signal if above 25. The window size and thresholds must be adapted per

use case.

6.2.6 Hyperparameter importance

The RandomForestRegressor from scikit-learn v1.0.2 (Pedregosa et al. 2012) was used to
determine hyperparameter importance based on the 147 model runs for the resting and 393
model runs for the mixed condition. The approach ranks the hyperparameters based on
their importance in achieving a high “total score”. Furthermore, suitabilities are assigned

to the different parameter options within a parameter group.

6.2.7 ERnet

The intensity of the images were unified by clipping values below 30 to 0 and above 40 to 40
prior to ERnet processing. The pretrained 20220306_ER_4class_swinir_nchl.pth ERnet
v2.0 model was used in Google Colab (Lu et al., 2023). The segmentation outputs the
structures tubules, sheets, and sheet-based tubules (SBTs). As the latter was not visible
in the movies and ERnet just segmented some minor spots as SBTs, these spots were
merged into the sheet segmentation. To segment sheet instances, regions with the same

pixel values were connected by assuming 8-neighborhood connectivity.

6.2.8 Statistics

As some distributions rejected the test for normality (SHAPIRO-WILK test, a= 0.05),
MANN-WHITNEY-U tests were used to compare the metrics of ground truth and predicted
images. Levels of significance were defined as: p > 0.05 no significant difference (n.s.),
p < 0.05 significant difference (*), p < 0.01 very significant difference (**), p < 0.001
highly significant difference (***). Datasets of all treatment groups were probed for nor-
mality by applying SHAPIRO-WILK tests (o= 0.05). All tests were performed in Origin
Pro 2018b.
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7 Virtual staining of cellular landmarks

The artificial generation of fluorescent labels based on the information of a label-free chan-
nel is termed “virtual staining” and is typically achieved using deep learning approaches.
Compared to traditional fluorescent staining, artificial staining can be observed over a long
period of time, as no photobleaching occurs. Multiple cellular landmarks can be detected at
once and temporal and spectral bandwidth is saved for other fluorophores and their targets
of interest.

Previous studies have used the bright-field channel or qualitative phase information as model
inputs for fluorescence prediction (Christiansen et al., 2018; Ounkomol et al., 2018). How-
ever, cells absorb light weakly and therefore produce little contrast in the bright-field images
(Zuo et al., 2020). In addition, the contrast in the focal plane is minimal, reducing avail-
able information for the model to learn a transformation between label-free and fluorescence
channel. Jo et al. showed that three-dimensional refractive index tomograms acquired with
a holographic microscope, a quantitative phase imaging (QPI) method, improved the pre-
dictions for multiple organelles and cell types compared to using bright-field or qualitative
phase images as model inputs (Jo et al., 2021). QPI therefore serves as a better contrast

mechanism for cross-modality inference.

In the first chapter, a deep learning model is trained to virtually stain the nucleus and mem-
brane. The inputs are label-free quantitative phase images, reconstructed from a stack of
defocused bright-field images, acquired with a commercial bright-field microscope (Soto
et al., 2017). The robustness of the model performance for the nucleus channel is probed
under different experimental conditions, a step towards a generalist model that is applicable
for different microscopes and cell types. The nucleus and membrane were chosen as tar-
gets, as the analysis of high throughput imaging often commences by identifying nuclei and
cell boundaries (Liu et al., 2023). Furthermore, segmentation of nucleus in the predicted
fluorescence images is demonstrated using cellpose (Stringer et al., 2021).

The second chapter probes the application of virtual staining to recover the structure of the
endoplasmic reticulum and draws a comparison to denoising (see chapter 6), which uses
low-intensity fluorescence instead of the label-free images as input.
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7.1 Robust virtual staining for cell instance segmentation
7.1.1 Results and discussion

7.1.1.1 Virtual staining and nucleus segmentation workflow

The workflow of image processing for phase reconstruction and deconvolution with wave-
Order (Yeh et al., 2021), model training for virtual staining with VisCy (Guo et al., 2020),
and instance segmentation of the nucleus channel with cellpose (Stringer et al., 2021) is
visualized in fig. 45.

Before using the bright-field images and matching nucleus and membrane fluorescence im-
ages as model inputs, several preprocessing steps must be applied. These include parameter
optimization for the phase conversion and fluorescence channel deconvolution, registration
of the label-free and fluorescence channels in x, y and z, and tiling of the images to make
them suitable training inputs (SI chapter 13.2.1). For retrieving the quantitative phase
information, a 3D stack of bright-field images must be acquired. The following results
concentrate on the focal plane of the stack and use a 2D U-Net neural network architecture

(Ronneberger et al., 2015) for virtual staining.
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Figure 45: Virtual staining and segmentation workflow. The bright-field channel is converted to phase
and the fluorescence membrane and nucleus channels are deconvolved using waveOrder. The
phase and deconvolved fluorescence channels serve as input-target pairs for training a model for
virtual staining with VisCy. Masks of the predicted nuclei are segmented using cellpose. Ground
truth masks of the nuclei are created by applying cellpose to the ground truth fluorescence
image and manually refining the mask (yellow regions in the ground truth mask image). The
predicted and refined ground truth masks are compared to determine segmentation quality and
virtual staining model performance.
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Virtually stained images show are more homogeneous fluorescence signal compared to their
ground truth images (fig. 46A, B vs E, F). Signals that are weak or absent in the ground
truth fluorescence images due to the polyclonal labeling are recovered in the predictions.
The phase images and their refractive indices may not contain information about the fluores-
cence intensity, yielding an averaged intensity across all observed organelles. This averaged
prediction is beneficial for the task of segmentation, as otherwise cell instances would have
been missed.

Most segmentation models specialize in specific cell types and experimental conditions
(lvanov et al., 2023). Recently, generalist models for segmenting diverse cell types have
been developed, but adapting them to label-free datasets demands extensive human anno-
tation. With virtual staining, cell segmentation models like cellpose (Stringer et al., 2021)
are readily applicable to the predicted fluorescence images and the necessity for human

annotations is eliminated.

Figure 46: Predictions of fluorescence signal of cell membrane and nucleus with nucleus seg-
mentation. A Deconvolved membrane fluorescence. B Deconvolved nucleus fluorescence. C

Ground truth nucleus masks based on segmentations of the deconvolved nucleus fluorescence
image with cellpose plus manual annotation. E Predicted membrane fluorescence. F Pre-
dicted nucleus fluorescence (yellow arrows show regions of recovered fluorescence signal). G
Predicted nucleus segmentation with cellpose. H Overlay of ground truth mask (cyan) and
predicted mask (magenta) with white showing overlap of the masks. Scale bars 20 pm.

The property of averaged fluorescence in the predictions leads to a hurdle in evaluating the
model performance. The ground truth and predicted images can not be directly compared
with image similarity metrics because some signal is missing in the ground truth images.
Therefore, nucleus segmentation masks were created with cellpose based on the ground
truth fluorescence channel and missing nuclei were drawn in by hand based on information
from the phase image (fig. 46C, D). Even though parts of the labeling had to be done
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manually, the utilization of the ground truth fluorescence channel for segmentation lowered

the |

abor of creating ground truth masks drastically. The virtually stained images were

segmented using cellpose with minor retraining of the nucleus segmentation model and

quali

ty control metrics were calculated based on the segmented masks (fig. 46G, H).

7.1.1.2 Generalizability towards different experimental conditions

The trained model for virtual staining was applied to validation data of the same experiment

and to test data from a different measurement day, where the robustness was examined
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rds different experimental conditions and data augmentation strategies (Liu et al.,
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different magnifications (training data: 63x, test data: 40x or 100x)

different condenser apertures (training data: opening of 17, test data: opening of 12
or 6)

different bright-field exposure times (training data: 10 ms, test data: 5 ms)
different cell densities

imaging at the border of the well

different levels of augmentation
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Figure 47: Generalizability towards different experimental conditions. A Intersection over union and

B fl-score of different regularizations parameters for the phase (1-1072, 1-1073, 1-107%,
5-1073, 5-107%), different magnifications (100x, 40x), condenser aperture openings (12, 6),
imaging at the border of the well, half exposure time, FOVs with dense cells, FOVs with less
dense cells, and the validation data. The model was trained with MSE loss, a z-range of 12-74,
“moderate augmentation”, and membrane and nucleus as target channels, N = 12.
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Fig. 47 illustrates the model performance across the different experimental conditions of
the test dataset as well as the validation dataset as a reference. The iou and the fl-score
were chosen as metrics. The reported scores are calculated based on the similarity of
ground truth and predicted nucleus segmentations. The iou measures the overlap between
predicted and ground truth segmented pixels. The fl-score reports on the capability of
detecting segmented instances. If nucleus segmentations are completely missed or falsely
appear in the predicted image without a matching instance in the ground truth, the score
drops.

The model generalizes robustly towards varying regularization parameters for phase re-
construction and cell densities. The model also generalizes towards different magnifica-
tions, but performs worse compared to the validation dataset (iou(40x) = 0.68 + 0.15,
iou(100x) = 0.71 + 0.08, iou(val) = 0.76 + 0.12). The robustness towards varying mag-
nifications could be improved by rescaling the test images to the known magnification of
the training dataset, instead of covering for varying magnifications by augmentation. Other
critical conditions were an extreme aperture closing of 6 (iou(aps) = 0.65 + 0.14) and
measuring at the border of the well (iou(border) = 0.43 4+ 0.16). These conditions may
have affected the image intensities beyond the range of the augmentation process. As cell
confluency is not covered by augmentation, the robustness towards different confluence
levels could be further enhanced by pooling data from multiple experiments with varying
cell densities.

Figure 48: Prediction results of different augmentation strengths. Predictions of the apeture 6 test
dataset with A "light augmentation”, B “moderate augmentation”, and C “strong augmenta-
tion”. Scale bars 20 pm.

To evaluate the impact of data augmentation, three different levels of augmentation were
tested: “light”, “moderate”, and “strong” augmentation, with a ~linear increase in aug-
mentation strength (tab. 2, fig. S9). The model with “strong augmentation” slightly out-
performed “moderate augmentation”, followed by “light augmentation”, particularly for
the aperture of 6 and the border of the well test images. Fig. 48 shows examples of pre-

dictions from the aperture of 6 test dataset with different augmentation levels. “Light
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augmentation” generates incomplete nucleus shapes, whereas “moderate augmentation”
and “strong augmentation” recover the nucleus shapes more completely. The decreased
metrics primarily result from inaccurate predictions and are not due to the cellpose segmen-
tation performance. These results suggest that increased augmentation strength benefits
generalization. However, the performance gap between “moderate augmentation” and
“strong augmentation” is smaller than between “moderate augmentation” and “light aug-
mentation”, indicating that the benefit may saturate if the augmentations cover the sample

space.

Disabled augmentation of intensity and zoom

Intensity augmentation is crucial for the model generalization capability as many experi-
mental conditions alter the recorded intensity, such as the exposure time of the bright-field
image, different openings of the condenser aperture, and imaging at the border of the well
(fig. 49). In addition, a model should be robust across different magnifications so that it
does not have to be retrained for each individual magnification setting. The model should
be invariant to intensity alterations (same goes for different noise levels). Therefore, the
augmentation is solely applied to the input images. In the case of magnification, the model
should be equivariant to size and the augmentation is applied to both the input and target

image pairs.

intensity X zoom v/

halved exposure

100x magnification

Figure 49: Prediction results of augmentation without intensity or zoom. Predictions of a FOV with
halved bright-field exposure time of a model with A “moderate augmentation” with disabled
intensity augmentation, B “moderate augmentation” with disabled zoom augmentation, C
“moderate augmentation”. Predictions of an 100x FOV of a model with D "moderate aug-
mentation” with disabled intensity augmentation, E “moderate augmentation” with disabled
zoom augmentation, F “moderate augmentation”. Scale bars 20 pm.
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A model with disabled intensity augmentation does not recover the fluorescence signal of
images with halved exposure time (fig. S10A). With activated intensity augmentation the
nucleus fluorescence is recovered, regardless of whether augmentation of zoom is applied or
not (fig. S10B, C). Images with deviating magnification are recovered by a model with dis-
abled intensity and enabled zoom augmentation (fig. S10D). Augmentation without zoom
prevents generalization towards different magnifications (fig. S10E). Hence, it is crucial to
incorporate augmentation techniques that cover the range of intensities and other deviations
present in the datasets to which the model will be applied to (Mockl et al., 2020).

7.1.1.3 Changed input and output modalities

A series of experiments involving different combinations of input and target modalities were
conducted, including bright-field to deconvolved fluorescence, phase to non-deconvolved
fluorescence, bright-field to non-deconvolved fluorescence, and phase to deconvolved flu-
orescence (fig. 50, fig. S12). The performance of nucleus segmentation was notably en-
hanced when using the deconvolved fluorescence channel as the target modality. Using
phase images as the input did not yield significant improvement. The nucleus is an or-
ganelle which is well visible in the bright-field channel. The phase and other descriptors
like the retardance (optical anisotropy) (Guo et al., 2020) might be more beneficial for
organelles that are less visible in the bright-field channel, such as the membrane.

Figure 50: Predictions of different imaging modalities. A Bright-field, B phase, C non-deconvolved
nucleus fluorescence, D deconvolved nucleus fluorescence, E prediction of bright-field — de-
convolved fluorescence, F prediction of phase — non-deconvolved fluorescence, G predic-
tion of bright-field — non-deconvolved fluorescence, H phase — deconvolved fluorescence.
Scale bars 20 pm.
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In summary, investigations have been conducted to evaluate the performance of virtual
staining under various experimental conditions. Augmentation that coverages the sample
space is a key element for recovering the fluorescence signal. Furthermore, predicting
deconvolved instead of raw fluorescence images is advantageous for the down streaming
task of segmentation.

Recently, a model has been trained on the same dataset with a 2.5D U-Net (Guo et al.,
2020) instead of the here used 2D U-Net, improving virtual staining quality of the nucleus
and membrane fluorescence, as information of neighboring planes in the 3D image stack are
utilized during training. Furthermore, instead of a MSE loss, a mixed loss function (MAE
and MS-SSIM) has been used. This model has been successfully applied to virtually stain the
nucleus and membrane of images of the same cell line acquired on a Mantis microscope, a
custom designed microscope with label-free and oblique light-sheet fluorescence microscopy
(lvanov et al., 2023; Liu et al., 2023). Compared to the quantitative phase images of the
training data, which were generated using unpolarized illumination of a 3D bright-field
stack, quantitative label-free imaging with phase and polarization is used on Mantis. This
demonstrates that the model is applicable to different microscopes.

As virtual staining is not occupying fluorescence channels, the multiplexing capabilities
are enhanced. The segmentation of cell nuclei and membranes facilitates the extraction
of cell properties such as the volume and shape. The ability to accurately quantify cell
properties becomes particularly significant when studying virus-infected cells. Understanding
the effects of viral infections on cellular structures and dynamics is of importance in virology
and immunology research. For this, the model generalizability towards confluency and
infection must be further tested, and could potentially be improved by pooling data from

different experimental conditions.
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7.1.2 Methods

7.1.2.1 Sample preparation

Sample preparation details can be found in the OpenCell study (Cho et al., 2022). In
brief, HEK293T cells (ATCC CRL-3216) were cultivated using DMEM high-glucose medium
(Gibco, cat. #11965118) containing 10% fetal bovine serum (Omega Scientific, cat. #FB-
1), supplemented with 2 mM glutamine (Gibco, cat. #25030081), penicillin and strepto-
mycin (Gibco, cat. #15140163). All cell lines were kept at 37 °C and 5% CO,. HEK293T
cells were genetically tagged with split-fluorescent proteins using CRISPR/Cas9-based tech-
niques. The nucleus was tagged with H2B-mIFP and the membrane with m-Scarlet-I-Caax
(construct number pML442). Cells were transferred from a 10 cm plate to a 24 well plate
coated with 50 pg/mL fibronectin (Corning, cat. #356008) one day before measurement
with a density of 39K cells per well.

7.1.2.2 Setup and data acquisition

Brightfield and fluorescence images were acquired using a widefield DMi8 automated mi-
croscope by Leica in Kohler illumination (Kohler, 1893). For the training dataset, the
bright-field channel was illuminated with an LED with an exposure time of 10 ms. The
membrane channel was illuminated with an exposure time of 250 ms. The emitted light
had a peak at 695 nm and passed a TRITC 554-595 filter. The nucleus channel was il-
luminated with an exposure time of 250 ms. The emitted light had a peak at 704 nm
and was filtered with a Cy5 635-730 nm filter. The 63x magnifying objective (Leica HC
PL APO 63x/1,30 GLYC CORR CS) with a numerical aperture of 1.3 was used with im-
mersion oil with a refractive index of 1.47. The camera (Teledyne Photometrics Prime
BSI Express Scientific CMOS camera) had a pixel area of 6.5 x 6.5 ym?. The image size
was 2048 x 2048 px? with a pixel size of 103.2 nm. The condenser aperture was set to an
opening of 17 and the field aperture to 4. An incubation chamber by Oktolab was used,
which kept the CO, concentration at 5% and the temperature at 37 °C.

Per well a 4x4 grid of 16 images was recorded resulting in 336 positions. Per position an
axial range of £12 pm around the focal plane with increments of 0.25 pm was measured re-
sulting in 97 images per position. With pManager (Edelstein et al., 2010) (v2.0.0-gammal
20201112) and an automated stage the xyz-positions could be defined prior to the mea-
surements and then recorded automatically.

For the test dataset, different experimental settings were altered. A well was chosen per
change in experimental condition and 12 positions imaged per well. Images were recorded
100x magnification with a numerical aperture of 1.47 (Leica, HC PL APO 100x/1,47 OIL
CORR TIRF) and a pixel size of 65 nm, operating with an immersion oil with a refractive
index of 1.518 or with 40x magnification with a numerical aperture of 1.10 (Leica, HC PL
IRAPO 40x/1,10 W CORR) with a pixel size of 162.5 nm, used with water. The condenser
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aperture was reduced to 12 (medium closed condenser aperture) or 6 (extreme closed

condenser aperture). The bright-field exposure time was reduced to 5 ms.

7.1.2.3 Data preprocessing

Phase reconstruction and fluorescence deconvolution

The phase was reconstructed and the fluorescence channels deconvolved using waveOrder
(v1.0.0, commit 683bcea) (Yeh et al., 2021). 3D phase deconvolution with TIKHONOV
regularization of 1 - 1072 and z-padding of 15 slices at the volume borders was applied to the
bright-field stacks. For fluorescence deconvolution, a 3D deconvolution with TIKHONOV
regularization of 8 - 10~* and z-padding of 15 slices at the volume borders was applied to

the fluorescence-stacks.

Registration

Registration offsets of the label-free and fluorescence channels along z-axis were determined
using the BRENNER gradient (eq. 62) (Yazdanfar et al., 2008). The BRENNER gradient
is an edge detector that measures the difference of the pixels in the image between their
neighbors, which are two pixels away in horizontal and vertical direction. The FOV in
a z-stack that had the highest BRENNER gradient was chosen as the focus FOV for the
fluorescence and phase channels. Theoretically, the FOV with the lowest BRENNER gradient
could be chosen as the focus for the bright-field channel, since bright-field images have
minimal contrast in the focal plane. However, this led to unstable results and the bright-

field images were assigned the same focal planes as the corresponding phase images.

M
B=> Y [s(i,j) — s(i+m,j) (62)
i=1j=1
The focus of the label-free and membrane fluorescence channel was aligned and the focus
distance between the membrane and nucleus fluorescence channel was maintained. Posi-
tions with a z-focus index in the membrane channel of < 25 and > 60 were filtered out, as
the whole cell volume was not captured for these positions.

98



7 Virtual staining of cellular landmarks

Tiling and normalization

OTSU's thresholding was applied to the membrane and nucleus fluorescence channels to dis-
tinguish between background and foreground pixels with VisCy, formerly known as microDL
(v1.0.0, commit b9d6045 - 1a4218e) (Guo et al., 2020). In case of multiple fluorescence
targets, the masks were merged across channels. The images were tiled into 256 x 256 px?
patches with a sliding window of 126 x 126 px?. Patches with a foreground fraction in the
mask channel above 5% were kept as training data. The intensities of the images were
normalized across the dataset.

7.1.2.4 Neural network architecture

A 2D U-Net was chosen as the neural network architecture (Guo et al., 2020; Ronneberger
et al., 2015). Each convolution block in the encoding and decoding path consisted of two
repeats of a convolution layer, a non-linear activation function ReLU, a batch normalization
layer, and a dropout layer set to 20%. In the encoding path, 2x2 downsampling after each
block was achieved by 2x2 convolutions with a stride of two. The filter size was 3 x 3 px?.
The number of filters per block was 16, 32, 64, 128, and 256, meaning that the size of
the input was downsampled from 256 x 256 px? to 16 x 16 px? in total. In the decoding
path, upsampling was achieved with bilinear interpolation. Feature maps of the encoding
and decoding paths were concatenated at every level. The final output block only had a
convolutional layer and a linear activation function.

A residual connection was added from the input of a convolution block to its output, which
is known to promote faster convergence of the model (Drozdzal et al., 2016; Guo et al.,
2020; Milletari et al., 2016). In the downsampling path, if downsampling followed after the
convolution block, the input of the convolution block was 2x2 downsampled with average
pooling and added to the input of the next convolution layer. If another convolution block
follows instead, the input was simply added to the next convolution block’s input. In the
upsampling path, no resizing was applied to the residual connection, as all inputs were

added within a layer level.
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7.1.2.5 Model training

Model training was performed with VisCy (v1.0.0, commit b9d6045-1a4218e), (Guo et al.,
2020). Phase or bright-field images were used as the input and either fluorescent nucleus,
membrane, or both as target(s). The fluorescence channels were either deconvolved or used
directly.

The images were split into a training and validation set in a 80/20 ratio. The batch size
was set to 64 patches. The MSE was used as the loss functions. The optimizer was
Adam (Kingma et al., 2014). A learning rate scheduler was chosen (Guo et al., 2020;
Smith, 2017). The learning rate varied between a minimum and maximum bound and
decayed with an exponential factor of gamma s after every cycle (min_learning_rate
= 5-107°, max_learning_rate = 0.006, scale_mode = cycle (learning rate is scaled after
every cycle), step_size = 2 (number of epochs per cycle), gamma = 0.5) . Early stopping
was defined based on the minimum validation loss with a patience of 10 epochs. The max-
imum number of epoch was set to 70. The model trained between 12 and 70 epochs with
a training time of 20-60 hours on an NVIDIA A40 GPU with 48 GB of memory.

7.1.2.6 Augmentation

Different augmentations were applied to each patch sampled in the training process includ-
ing zoom, rotation, shear, blur, intensity variation, and noise. The magnitude of augmenta-
tion was sampled uniformly from a defined range per augmentation type (tab. 2). Gaussian
blur was added to the image, where the sampled value defined the kernel standard devia-
tion. Noise was added per pixel and sampled from a Gaussian distribution with mean = 0,
where the drawn value defined the standard deviation of the distribution. The intensity of
a normalized patch was shifted to a new mean and standard deviation. Intensity variation,

noise and blur were only applied to the input.

Table 2: Uniform sampling ranges of augmentation parameters.

Augmentation blur int. mean int. std noise rotation shear zoom
heavy augmentation 0-10 =+0.5 +0.5 0-0.5 +£180 +10 0.6-1.6
heavy augmentation x2 0-20 +1 +1 0-1 4180 +20 0.6-1.6
light augmentation 0-5 £0.2 +0.2 0-02 4+£180 O 0.8-1.2
no intensity 0-10 O 0 0-0.5 +£180 +10 0.6-1.6
no zoom 0-10 +0.5 +0.5 0-0.5 +£180 +10 O
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7.1.2.7 Segmentation with cellpose

The nucleus channel was segmented using cellpose (v2.2.1, commit b709064) (Stringer
et al., 2021). The cellpose nucleus model was used as a basis and fine-tuned by re-
training with 10 FOVs from the training dataset. Cellpose created one mask per nucleus
instance and a FOV contained multiple individual nucleus masks. Masks were created for the
predicted nucleus fluorescence images and ground truth images. Some nuclei in the ground
truth fluorescence images did not emit a fluorescence signal due to labeling heterogeneity.
Therefore, the ground truth masks were refined by adding missing nuclei using information

from the label-free channel.

7.1.2.8 Evaluation metrics

The similarity of ground truth and predicted images was determined based on the nucleus
mask channels. Masks were compared on an object-based level by creating matches of nu-
cleus mask instances from the ground truth and predicted images with a linear assignment
problem solver, and on a pixel-based level by distinguishing only between background (=not
in a mask) and foreground (=in a mask) pixels in a FOV.

For object-based comparison nucleus masks were matched between ground truth and pre-
diction using a linear assignment problem solver (lapsolver v1.1.0, commit 69f6e55). Masks
that were matched but exceeded a distance threshold equal to the average long-axis length
divided by 2 (corresponds to the radius for a perfectly round object) were not regarded
as successful matches. True positive were mask instances that were present in the ground
truth and had a match in the prediction. False positive were masks that were only present
in the prediction and had no match in the ground truth. False negative were masks that
were only present in the ground truth with no match in the prediction. On this basis the
fl-score was calculated, with 0 being the worst and 1 the best possible value.

The intersection over union was calculated on a pixel-based level and describes how well
the pixels of a ground truth mask and a predicted mask overlap, where 0 means no and 1

complete overlap.

7.1.2.9 Statistics

Mean values are listed with their respective standard deviation. Datasets were tested for
normality by applying the SHAPIRO-WILK test (o« = 0.05). As most datasets rejected the
hypothesis of being normally distributed, the unpaired non-parametric MANN-WHITNEY-
U-test (o« = 0.05) was used to determine significant differences between evaluation scores
of different model runs. Levels of significance were classified as: p > 0.05 no significance,
p < 0.05 significant difference (*), p < 0.01 very significant difference (**), p < 0.001

highly significant difference (***). Tests were performed using scipy version 1.10.1.
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7.2 Virtual staining and denoising of the endoplasmic reticulum
7.2.1 Results and discussion

This section explores the potential of utilizing VisCy for generating fluorescence images of
the endoplasmic reticulum (ER), as well as leveraging the intrinsic augmentation provided
by the reorganization of organelles in living cells. A dataset of transmitted-light images as
well as matching low-intensity and high-intensity fluorescence images of the ER in living
cells imaged on a confocal microscope was used (fig. 51A-C). Inputs to the model are
either transmitted-light, low-intensity fluorescence, or both types of images. The target is

the high-intensity fluorescence channel.

When the model is trained with transmitted-light images as input, the predicted images
roughly show the cell volume, but lose the fine structure of the ER (fig. 51D). This happens
due to the fact that the ER structure is not clearly visible in the transmitted-light image
and is similar to results reported in literature (Ounkomol et al., 2018).

When using the low-intensity fluorescence image as input, the fine structure of the ER is
recovered. The resolution, which was determined with decorrelation analysis (Descloux
et al., 2019), is 380 4+ 10 nm for the high-intensity ground truth fluorescence images
and 390 + 14 nm for the predicted fluorescence images. Using both low-intensity and
transmitted-light images does lead to a significant difference (p = 0.158) in SSIM values
(fig. 52A). This renders low-intensity images as the appropriate input for predicting ER

fluorescence.

Figure 51: Prediction of the ER with different input modalities. A Transmitted-light image, B ground
truth low-intensity fluorescence image, C ground truth high-intensity fluorescence image, D
prediction with transmitted-light image as input. E Prediction with transmitted-light image
and low-intensity fluorescence image as input. I-J Zoom-ins of A-E. The white arrows highlight
spots of dye accumulation visible in the transmitted-light and low-intensity fluorescence image.
These spots are amplified in the prediction in | and J. Scale bars 10 pm in A-E and 5 pm in
F-J.

102



7 Virtual staining of cellular landmarks

The organelle reorganization in living cells could be used as an intrinsic augmentation of
the structure and potentially reduce the amount of FOVs that must be recorded to curate
a training dataset. To explore this possibility, a movie with 30 frames (dt = 5 s) was
acquired at each FOV. When comparing the SSIM values between using all time steps and
only the first time step in a FOV the gain in performance is improved by 6% (SSIM(t.y)
= 0.86 £+ 0.06, SSIM(to) = 0.81 + 0.02) (fig. 52A). The ER structure probably did not
change enough over the observed time window of 140 seconds and the images within a
time series maintain a high level of similarity (fig. 52). The potential of recording movies

of reorganizing organelles could be further explored with larger time steps.
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Figure 52: SSIM of the ER of different input modalities and over time. A SSIM (prediction and
ground truth comparison) of predictions with transmitted-light (tl), low fluorescence intensity
(low), and transmitted-light and low fluorescence intensity (tl+low). to indicates that only the
first image of the time series was used. N = 600 for t,; and N = X for to. B SSIM between
different time points in a time series (tg — t,), N = 20, error bars = SD.

Reconstructing high-intensity fluorescence images from low-intensity fluorescence images
using a U-Net has been demonstrated by Weigert et al., 2018. The approach is termed de-
noising, as the signal-to-noise ratio is improved by translating low-intensity to high-intensity
fluorescence images. Compared to virtual staining, denoising maintains the different levels
of intensity as heterogenic brightness information is available in the low-intensity fluores-
cence channel. However, denoising requires the usage of fluorescent labels which elevates
experimental complexity. Fluorescence microscopy additionally suffers from photobleaching
and -toxicity. It should be emphasized that these effects are strongly attenuated because
denoising diminishes the required photons for imaging. Denoising is a vital alternative for
targets that are not visible in the label-free channel and denoising of STED images of the
endoplasmic reticulum is discussed in detail in chapter 6.
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7.2.2 Methods

7.2.2.1 Cell preparation and imaging

U-2 OS cells (CLS Cell Lines Service GmbH) were treated with 1 pM ER-tracker Red stain
(Thermo-Fisher #E34250), which is compatible with living cell and binds to the sulfonylurea
receptors on the endoplasmic reticulum (ER). Cells were incubated for 15 min at 37 °C
with 5% CO2 in LCIS (Sigma Aldrich), washed 2x with LCIS, and tempered (10 min)
before image acquisition. Transmitted-light, high-intensity fluorescence, and low-intensity
fluorescence images were acquired on a Leica SP8 confocal microscope. The fluorescence
images were excited with a 561 nm diode laser (low-intensity: 0.1%, high-intensity: 0.5-
1%). The transmitted-light image was created with the remaining light of the laser. The
emission light was detected in a range of 570-700 nm. The images were recorded with a
hybrid PMT (HyD3, Leica) with 10% gain in line accumulation mode and had a size of
1024 x 1024 px? with a pixel size of 92 nm. The dataset consists of 20 positions with 30

time points 5 s apart.

7.2.2.2 Data preprocessing

Foreground masks were created with unimodal thresholding with the VisCy pipeline (Guo
et al., 2020). A 128 x 128 px? sliding window with stride 64 tiled the images and patches
with >5% foreground pixels were kept. The intensity was normalized across the dataset.

7.2.2.3 Neural network architecture and model training

The inputs to the model were either transmitted light images, low-intensity fluorescence
images, or both. The target images were the high-intensity fluorescence images. For
training, all time positions or only the first time position of a FOV was used. The data
was split into a 80% training and 20% validation set. The training and validation split
was made across the spatial positions, meaning that different time points of a position
were all either in the training or in the validation set. A 2D U-Net (Ronneberger et al.,
2015) was used as the model architecture. The number of filters per block was 16, 32,
and 128. The batch size was set to 128 and MAE was used as a loss function. Heavy
augmentation with deactivated zoom was applied. The maximum allowed epochs was set
to 50 with a patience based on the minimum validation loss of 20 epochs. Besides that, all
model configurations were equal to the settings described in chapter 7.1.2.5. Training was
executed on an NVIDIA 2080 Ti GPU with 12 of GB memory and took 1-2 hours for the
complete dataset and around 5 minutes with the first time position only.

7.2.2.4 Evaluation
The SSIM was used to compare the similarity between ground truth and predicted images
as well as the similarity between images within a time series (Wang et al., 2004). The

resolution was determined using decorrelation analysis (v1.1.8, commit db536a3) (Descloux
et al., 2019).
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8 A pipeline for the analysis of single-particle tracking
data

Single-particle tracking is a powerful method for investigating biomolecule mobility in living
cells, with nanometer spatial and millisecond temporal resolution. This technique generates
single-particle trajectories, from which valuable descriptors such as the diffusion coefficient
and diffusion state can be extracted. This can serve as a proxy to report on protein activity in
cells. Segmentation of a trajectory into parts of uniform diffusion behavior further aids in the
analysis of changes in particle mobility within these trajectories, shedding light on transitions
between distinct functional states of biomolecules. However, conducting such analyses
is intricate and time-consuming. To streamline this process, a comprehensive pipeline
named SPTAnalyser was developed. It comprises mean-squared displacement analysis to
calculate diffusion coefficients of the single molecules and allows distinguishing between
immobile, confined, and freely diffusing molecules. Occurrences of transitions between
different diffusion modes are characterized with transition counting and hidden MARKOV
modeling.

The methodology was applied to single-molecule trajectories of the hepatocyte growth factor
receptor, also known as the MET receptor and human epidermal growth factor receptor 2
(HER2) in living Hela cells. Both receptors are members of the receptor tyrosine kinase
family and play a crucial role in neurodegenerative diseases and cancer (Lemmon et al.,
2010; Majumder et al., 2019). The changes in mobility of receptors treated with different
ligands were studied, demonstrating that this analytical pipeline facilitates rapid access to
information regarding receptor functional states.
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8.1 Results and discussion
8.1.1 Analysis pipeline for single-particle tracking data

Large amounts of SPT data need to be acquired and processed in order to make a mean-
ingful biological statement. This is why the pipeline SPTAnalyser was built to assist in
particle localization, tracking, and post-hoc analyses (fig. 53) (Rahm et al., 2021; 2022).
SPTAnalyser is compatible with the localization softwares ThunderSTORM (Ovesny et al.,
2014) and RapidSTORM (Wolter et al., 2012) and creates batch processing scripts for au-
tomated analysis. The localizations are connected to trajectories with the global BAYESIAN
tracking software swift (Endesfelder et al., n.d.), and SPTAnalyser estimates the a priori
tracking parameters. This is a crucial step, as the performance of swift is highly dependent
on meaningful initial parameters (Martens et al., 2024). Swift splits individual trajectories
into segments of uniform motion. Further data analysis in SPTAnalyser are applied to either
trajectories or segments. MSD-based analysis determines diffusion coefficients and discerns
between immobile, confined diffusing and freely diffusing molecules. Analysis over time
is furthermore possible to find time-dependent trends. Transition counting quantifies the
number of diffusion state changes within trajectories. Hidden MARKOV modeling reveals

underlying states of diffusion coefficients and transition probabilities between them.

The pipeline was applied to single-particle tracking data of the membrane receptors MET
(Harwardt et al., 2017; Rahm et al., 2021; 2022) and HER2 (Catapano et al., 2023) in live
Hela cells. MET was either labeled with a monoclonal Fab fragment that binds but does
not activate or with the bacterial ligand InIB that binds and activates the receptor. HER2
is an orphan receptor without own ligand. It was labeled with a nanobody and treated with
the ligands EGF, TGFa, EREG, and NRGB1 that interact with different receptors of the
ErbB sub-family.
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Figure 53: Workflow of the analysis of single-particle tracking data with SPTAnalyser. Single
molecules are localized with either ThunderSTORM or RapidSTORM. Swift connects the lo-
calizations to trajectories and segments. Several input parameters of swift can be determined
with SPTAnalyser such as the expected displacement of the particle and the bleaching proba-
bility of the fluorophore. Based on MSD-analysis, SPTAnalyser extracts diffusion coefficients
and diffusion states (immobile = i, confined = ¢, free = f) and can display these properties
over time. Transition counting quantifies the transitions of diffusion states between segments
within a trajectory. Hidden MARKOV modeling can be applied to further analyze transitions
between different mobility states (Rahm et al., 2021; 2022).
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8.1.2 MSD-based analysis of diffusion states from trajectory segments of the
MET receptor

Diffusion coefficients were calculated for the segments of single-molecule trajectories and
the segments were classified as immobile, confined diffusing molecules or freely diffusing
molecules (Rahm et al., 2021; 2022). InlB-bound receptors move slower than receptors
in the resting state (fig. 54C) (confined diffusing molecules, Fab: 0.094 + 0.007 um?/s,
InIB: 0.051 4= 0.003 pm?/s; free diffusing molecules Fab: 0.134 & 0.004 um?/s, InIB: 0.084
+ 0.003 ym?/s). They exhibit more confined motion (fig. 54D) with a smaller confine-
ment radius (Fab: 0.18 4+ 0.02 pm, InIB: 0.131 + 0.009 pm) (fig. 54E). Interestingly,
the confinement radii of the freely diffusing molecules are in the order of magnitude of the
cell sizes. For both labels, the segment lengths of the confined state is shorter than those
of the immobile and freely diffusing molecules. For InIB-labeled receptors, the segments
classified as confined diffusing molecules last for 0.64 4+ 0.02 s on average compared to
1.13 4+ 0.03 s for immobile and 1.00 + 0.04 s for freely diffusing molecules.
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Figure 54: Analysis pipeline and MSD-based results of single-particle tracking data of the MET
membrane receptor. A Diffraction-limited signals of membrane-bound fluorescently labeled
receptors are localized and connected over time to trajectories (scale bar 1 pm) (left). Changes
in diffusion behavior within a trajectory generate segments (schematic scale bar 100 nm) (mid-
dle). Segments are assigned to the diffusion states free (orange), confined (green), and im-
mobile (blue) (right). B The transmembrane receptor MET is extracellularly labeled with a
monoclonal ATTO 647N-Fab fragment that binds but does not activate the receptor and with
ATTO 647N-InIB that binds and activates the receptor. The movement of bound labels is
recorded and analyzed. The segment properties C diffusion coefficient, D population of diffu-
sion states, E segment length, and F confinement radius are displayed as violin plots; dashed
lines mark the quartiles; for each condition, Fab (blue) and InIB (gray), the average segment
values of 60 cells are displayed; MANN-WHITNEY U test, p > 0.05 = n.s., p < 0.05=*, p <
0.001 = *** (Rahm et al., 2021; 2022, CC-BY).

To probe the accuracy of diffusion state classification, trajectories of varying length of freely
diffusing molecules were simulated and classified (fig. 55). Parts of the trajectories were
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falsely classified as confined motion. The false negative rate, which describes the percentage
of freely diffusing molecules that were falsely classified as confined, drops with increasing
trajectory length. In addition, trajectories of freely diffusing molecules were simulated with
trajectory lengths corresponding to the distribution in the Fab experiments, resulting in an
error rate of 15%. This suggests that trajectories of freely diffusing molecules contribute
partly to the confined population and reduce the average trajectory length, as a misclassifi-
cation is more likely with shorter trajectories. Misclassification of other trajectory types are
also possible, but have not been investigated further. The short trajectory lengths of the
confined population (fig. 54F) may also hint at the possibility that the confined state acts
as an intermediate state between free and immobile molecules (see chapter 8.1.3 for more
details).
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Figure 55: False negative rate of freely diffusing receptors that were classified as confined. Per
defined trajectory length 1000 simulated trajectories of freely diffusing particles were classified
into the diffusion states confined or free. The false negative rate of falsely assigned confined
movement is depicted per trajectory length. The averages of five simulations per trajectory
length are visualized as dots with the shaded areas denoting the 95% confidence interval (Rahm
et al., 2021, CC-BY).

The results of the MSD-based analysis are in alignment with previous analyses of this dataset
(Harwardt et al., 2017). In their work an MSD-based analysis based on the trajectories was
executed and reported similar diffusion coefficients. Furthermore, the diffusion coefficients
found for MET are within range of reported diffusion coefficients for other RTKs (Bag
et al., 2015; Catapano et al., 2023; Chung et al., 2010; Harwardt et al., 2017; Marchetti
et al., 2013). Addition of the InIB ligand activates the MET receptors and they are slowed
down possibly due to receptor oligomerization and interaction with signaling proteins, which
increases the molecular weight of the diffusing species and therefore decreases diffusion. An

increase of MET dimers after InIB treatment was shown in Dietz et al., 2013. Analogously,
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ligand activation of EGFR (Chung et al., 2010; Low-Nam et al., 2011) were reported to
show slower diffusion. Particle confinement can stem from nanodomains, which are 0.01-
0.2 pm (Pike, 2006) in size, such as clathrin-coated pits that have been shown to be the
main endocytosis pathway of MET (Harwardt et al.,, 2017; Li et al., 2005). The actin
cytoskeleton may also play a role in confinement (Harwardt et al., 2017) and has a mesh
size of 0.2-0.6 pm (Kusimi et al., 1996). The observed confinement radii of MET are in
the range of both the domain size of actin and nanodomains.

8.1.3 Transition counts reveal differences in diffusion state transitions for
activated MET receptors

The transition counts analysis focuses on diffusion state changes within trajectories (Rahm
et al., 2021). The occurrence of diffusion state transitions between segments within a
trajectory are counted. Exemplary cells with color-coded segments are shown in fig. 56A
and B. The zoom-ins show trajectories that consist of at least two segments and therefore
exhibit transitions.

For comparison, the transition counts were normalized to sum to one across all transition
types per cell (fig. 56C). The probability of a particle remaining in the freely diffusing state
is higher for Fab-bound receptors compared to InIB-bound receptors (Fab: 31 + 2%, InIB:
13.2 + 0.8%). The probability that a receptor remains immobile in the following segment is
higher for InIB-bound receptors compared to unactivated cells (Fab: 22 + 1%, InIB: 42 +
2%) (fig. 56C). Homogeneous transitions of the confined diffusion state are less probable
in both cases (Fab: 2.2 + 0.3%, InIB: 2.6 4+ 0.2%). Among heterogeneous transitions,
transitions from free to immobile (Fab: 11.4 + 0.4%, InIB: 9.8 & 0.3%) and immobile to
free (Fab: 8.9 + 0.4%, InIB: 9.1 £+ 0.3%) are most probable. Frequencies were further
normalized per diffusion state and cell to compare the transitions outgoing from a diffusion
state in more detail (fig. 56D). For both conditions, the predominant homogeneous tran-
sition is from immobile to immobile followed by free to free. The confined state appears
as an intermediate state, with transitions from one confined state to another being less
likely than heterogeneous transitions outgoing from the confined state to an immobile or
free state. Moreover, for receptors bound by InIB, the probability of transitioning to the
immobile state is more likely, while the population of the free state is less pronounced when

compared to resting cells.
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Figure 56: Single-molecule trajectories and quantification of transitions within trajectories. Single-
molecule trajectories of A Fab-bound and B InIB-bound MET receptors within exemplary cells.
Diffusion states of segments are highlighted in colors (free: orange, confined: green, immobile:
blue; gray segments are below the necessary length to be classified and have no diffusion state
label). Highlighted regions in the overview images are shown as zoom-ins (right). In the zoom-
ins only trajectories showing at least one transition are displayed. Scale bars 5 pm, zoom-ins
1 ym. C Comparison of normalized transition counts per cell between Fab- and InIB-bound
MET receptors (i = immobile, c = confined, f = free). D Comparison of normalized transition
counts per diffusion state between Fab- and InIB-bound MET receptors. For each condition
60 cells were analyzed (Rahm et al., 2021).

On average 184 + 11 switching events in all trajectories of a cell were observed. In contrast
to the average number of 1440 + 90 trajectories per cell, this number appears relatively
small, showing that switching events rarely occur within the observed time window of a
trajectory (1.36 & 0.06 s) and the measurement time per cell (20 s). Longer trajectories
contain more transitions (fig. S13A). However, it is notable that 70%, of trajectories remain
static in their diffusion mode and consist of only one segment (fig. S13B).

The number of transition events can be increased by up to 30% by masking unclassified
segments, as segments with a length below the threshold of 20 frames were not classified due
to the small amount of data points (fig. S13C). In the masking approach, the transitions of
adjoining segments with a defined diffusion state around the short, unclassified segment are
counted. If multiple unclassified segments followed in a row, no transitions were counted, as
the unclassified segments span over a too large time window of unknown diffusion behavior.
Without masking, 22.2 4+ 0.6% of transitions only contain segments with a defined diffusion
state. With masking, this value increased to 71.6 4 0.7%. Some unclassified transitions

still remain in the case where multiple short segments are adjacent. Except for the free to
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immobile transitions, masking does not significantly influence the relative frequency counts
of diffusion state transitions (fig. S13D, E).

8.1.4 Hidden Markov modeling of single-particle trajectories of MET receptors

Hidden MARKOV modeling was applied to single-particle tracking data of the MET re-
ceptor as an alternative analysis to examine diffusion state transitions within trajectories
(Malkusch et al., 2022; Rahm et al., 2022). The number of states for the model was
selected based on the Bayesian information criterion (BIC). For both InIB- and Fab-bound
receptors, a three-state model was found to be most appropriate. The three-state model
consists of an immobile state (Dg.p 0.0 pm?/s, Diyg 0.0 pm?/s), a slow state (Dgap, 0.065
4+ 0.002 pm? /s, Dy, 0.029 + 0.002 pm?/s), and a fast diffusing state (Dg.p, 0.234 + 0.004
um?/s, Dy 0.199 £ 0.004 um?/s) (fig. 57A, B). InIB-bound receptors exhibit a higher
population of the slow and immobile state (mobile: Fab 52.8 + 0.5%, InIB 36.8 + 0.05%;
slow: Fab 30.8 + 0.6%, InIB 38.5 + 0.4%; immobile: Fab 16.3 & 0.4%, InIB 24.8 + 0.5%)
and have elevated transition probabilities between the states. The proportion of transitions
towards slower diffusion states compared to faster diffusion states increases for InIB-treated
cells. The majority of heterogeneous transitions involve the slow state.

As the hidden MARKOV model is based on a BROWNIAN diffusion model, a discrimina-
tion between different diffusion types is not directly possible. Further investigation was
conducted to ascertain whether the decreased diffusion coefficients of the states could be
correlated with confined motion. The jump angles of trajectories within diffusion states
were calculated fast: Fab 89.4 4+ 0.3°, InIB 86.0 £ 0.3° slow: Fab 85.4 &+ 0.4°, InIB
82.1 £+ 0.3°% immobile: Fab 79.9 + 0.6° InIB 79.3 + 0.3°) (fig. 57C, D). Trajectories
belonging to slower diffusion states have smaller angles, meaning a more confined motion.
Additionally, activated receptors exhibited slightly smaller jump angles compared to their

unactivated counterparts.

The slow state, which is linked to confined motion based on the jump distance analysis, is
involved in most heterogeneous state transitions and could be regarded as an intermediate
state between the mobile and immobile state. Similarly, the transition counts analysis
showed a high chance of switching the diffusion state outgoing from the confined state
(chapter 8.1.3). Receptor activation results in slower diffusion and an increased population
in the immobile state, both shown with hidden MARKOV modeling and MSD-based analysis.
These findings align with other observations of receptor tyrosine kinase activation and
internalization (Bag et al., 2015; Catapano et al., 2023; Harwardt et al., 2017; Marchetti
et al., 2013). Receptor dimerization is enhanced with activation, which leads to slower
diffusion (Varadi et al., 2019). It is likely that receptors entering an intermediate diffusion
state either become immobilized, a preliminary step before endocytosis, or revert to a mobile

state, potentially for interaction with other proteins.
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Figure 57: State transition diagrams of MET receptor trajectories from hidden Markov modeling.
Average state population, transition probabilities, and diffusion coefficients of the three different
states of A Fab-bound and B InIB-bound MET receptor trajectories. Jump angles of the C
Fab-bound and D InIB-bound MET receptor trajectories of the three different states. For each
condition 60 cells were analyzed (Rahm et al., 2022).

8.1.5 Temporal response of HER2 in ligand treated cells

SPT is limited by photobleaching, allowing to observe molecules only for a few seconds, but
ErbB receptor signaling initiation is on a minute-scale (Hass et al., 2017). To bridge this
gap, sequential measurements of HER2 mobility in various cells within the same coverslip
were conducted (Catapano et al., 2023), following a strategy shown for VEGFR-2 (Rocha-
azevedo et al., 2020). This allows monitoring of receptor activation after ligand stimulation
for longer time periods. The analysis was integrated in SPTAnalyser to facilitate rapid data
processing.

HER2 has no known ligand and activation occurs through stimulation of other receptors
and the formation of heterodimers. Studied ligands include epidermal growth factor (EGF)
and transforming growth factor o (TGFa), which activate EGFR exclusively; Epiregulin
(EREG), which activates HER4 and EGFR; and neuregulin (NRGB1), which activates HER3
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and HERA4. Cells were analyzed before ligand treatment to obtain the “dynamic fingerprint”
of the resting state. The different activating ligands were added after 5 min and cells were
pooled in 5 min intervals to study the response over 20 min. The fraction of immobile
receptors (dot plots in fig. 58) and the level of phosphorylated HER2 (boxplots in fig. 58)
was determined. The maximum immobile fraction occurred after 5 min for EGF, TGFa,
and EREG. NRGB1 showed a maximum after 10 min of stimulation. The activation strength
can be correlated to the increase of the immobile population and was strongest for EGF,
followed by TGFa, EREG, and NRGB1. The maximum population of phosphorylated HER2

was after 2-5 min and correlates to the maximum percentage of immobile molecules.

The observed temporal diffusion patterns of HER2 closely align with the phosphorylation
strength from western blots and reported kinetics of signaling activation (Hass et al., 2017).
This suggests that diffusion characteristics are indicative of HER2 activation within het-
eromeric receptor complexes. The analysis furthermore enables the characterization of
ligand-specific activation profiles associated with various heteromeric receptor complex for-
mations, each showcasing distinct activation kinetics, strength, and diffusion patterns.
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Figure 58: HER2 temporal responses to ligand treatment. Relative change of the percentage of
immobile molecules are displayed as dot plots over time with error bars being the standard
error of the difference (SED) (N = 200). WILCOXON signed-rank tests probed the differences
of stimulated vs. untreated cells. Barplots show HER2 phosphorylation levels from western
blots (N = 3) with error bars depicting the SEM (Catapano et al., 2023, CC-BY).
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The analysis of temporal diffusion patterns and diffusion state transitions is crucial for
understanding receptor dynamics. SPTAnalyser is a straightforward applicable toolbox
incorporating these aspects, which allows the rapid analysis of single-particle tracking data of
different molecules. Information on protein mobility can then be correlated with functional
states. This expands the existing analyses that focus on transitions in molecular motion
(Hubicka et al., 2020; Karslake et al., 2021; Requena et al., 2023; Vink et al., 2020; Weron
et al., 2017). Future developments may concentrate on extending trajectory lengths to
enhance the observation frequency of transitions between distinct mobility states. This
could be achieved by using more photostable fluorophores, transiently binding labels based
on the DNA-PAINT approach (Stehr et al., 2021), or by denoising SPT movies recorded
at lower laser intensities (Kefer et al., 2021). These techniques could also be utilized to
extend the observation window of protein mobility in a single cell, eliminating the need for
measuring multiple cells at various time points to capture time-dependent effects. Requena
et al., 2023 demonstrated the characterization of diffusion properties at every time step of
the trajectory with a neural network. Another exciting extension is dual-color SPT (Subach
et al., 2010; You et al., 2016), which can potentially relate changes in diffusion states to
molecular interactions such as the formation of temporary complexes between two receptors.
The analyses of spatiotemporal hotspots are further exciting developments that might point

to dynamic protein interactions as nanoclusters on the cell membrane (Wallis et al., 2023).
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8.2 Methods
8.2.1 A pipeline for the analysis of single-particle tracking data

8.2.1.1 Data acquisition

The dataset analyzed in this study was previously published by Harwardt et al., 2017 and can
be found on the EMBL/EBI BioStudies server (https://www.ebi.ac.uk/biostudies/
studies/SBSST712). In brief, MET receptors were labeled with the uPAINT technique
in HeLa cells. The non-activating anti-MET antibody fragment Fab and the bacterial
protein InIBsy; (named InIB in the following), which is fully functional (Dietz et al., 2013;
2019b), were labeled with ATTO 674N. Serum-free imaging medium containing high glucose
Dulbecco’s modified Eagle medium (DMEM) (Gibco, Life Technologies, Waltham, MA,
USA) with 50 nM HEPES buffer and 1% GlutaMAX (Gibco, Life Technologies) was used.
Imaging was executed at 23 °C in TIRF mode with an N-STORM microscope (Nikon,
Disseldorf, Germany). Fluorophores were excited with a 647 nm laser with an intensity of
0.1 kW/cm?. The image size was 256 x 256 px* with a pixel size of 158 nm. SPT movies
of 1000 frames were recorded with an EMCCD and a camera integration time of 20 ms.
60 cells on three different measurement days were imaged for Fab- and InIB-bound MET

receptors respectively.

8.2.1.2 Single-molecule localization

Single-molecule localization was performed by fitting the fluorescence signal with a normal
distribution and maximum likelihood estimation using the ThunderSTORM (Ovesny et al.,
2014) plugin (version dev-2016-09-10-b1) of the imaging software Fiji (Schindelin et al.,
2012). “Multi-emitter fitting analysis” was enabled with a maximum of 3 emitters and
an intensity range of 73 to 1225 photons per emitter. The “remove duplicates filter” was

applied.

8.2.1.3 Single-particle tracking

The localizations were connected to trajectories using the swift tracking software (ver-
sion 0.4.2) (Endesfelder et al., n.d.). Parameters for swift were estimated using the
SPTAnalyser software (Rahm et al., 2021). The parameters “diffraction_limit" = 14
nm, “exp_displacement” = 85 nm (Fab) / 75 nm (InIB), “p_bleach” = 0.01 (Fab)
/ 0.014 (InIB), and “p_switch” = 0.01 were set globally for all cells. The parame-
ters “exp_noise_rate” and “precision” were calculated individually per cell. Remaining
parameters were kept as default. More details on parameter definition and determina-
tion can be found in the SPTAnalyser manual at https://github.com/HeilemannLab/
SPTAnalyser. Swift divides trajectories into segments if the diffusion behavior of the

particle changes.
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8.2.1.4 Diffusion coefficient and diffusion state determination

MSD-based analysis was performed in SPTAnalyser and diffusion coefficients and diffusion
states were determined per segment. Diffusion coefficients were calculated with eq. (63),
with dof = degrees of freedom (4 for 2D dynamics) and At = time step between mea-
surements or camera integration time (At = 0.02 s). Solely the first four time steps were
taken into account for the calculation of the diffusion coefficient. Segments with a diffusion
coefficient below 0 were discarded.

_ MSD(At)

D= At (63)

Segments with a minimum length of 20 frames (400 ms) were classified in the diffusion
states immobile, confined or free (Catapano et al., 2023; Harwardt et al., 2017; Orré et al.,
2021; Rossier et al., 2012). In a first step, the segments were separated into immobile
and mobile diffusion. A threshold was derived from the dynamic localization error (eq. 65)
calculated per cell. The third quartile of the dynamic localization errors of the cells was
used for the calculation of D,,;,. The parameter n was set to four, as four points were
regarded in the calculation of the diffusion coefficients. The result was a D,,;, threshold
of 0.0028 ym?/s. Segments with a diffusion coefficient < D,,;, were labeled as immobile

and with a diffusion coefficient > D,,;,, as mobile.

2

04
dof -n- At (64)

o J (MSD(0)) + %L (D) - At (65)

dof

Mobile segments were classified as confined or freely diffusing molecules by fitting 60% of
the MSD values with eq. 66, where r, is the radius of confined diffusion and 7 is a time
constant. The 7 values of the segments were compared to a Typ esnolq Value (eq. 67), with
a = 0.6 being the fraction of MSD values used for the fit in eq. 66, l,,;, = 20 frames of
the minimum length of segments to be classified into diffusion states, and a factor of 0.5.
Segments with 7 > Typresnora are classified as freely diffusing molecules, and segments with

lower values as confined diffusing molecules.

MSD(At) = iri (l—e BTy 5 = (66)

Tthreshold = At-a- lmin -0.5 (67)
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8.2.1.5 Transition counts

The transition count analysis was conducted using SPTAnalyser and applied to trajectories
with a minimum of two segments. Within this analysis, three distinct diffusion states were
discerned: immobile (i), confined (c), and free (f). Consequently, nine distinct transition
types were identified: i-i, i-c, i-f, c-i, c-c, c-f, f-i, f-c, and f-f. Transitions occurring between
a segment characterized by a diffusion state and a segment lacking such characterization
were excluded. Segments with a duration less than 20 frames were masked, and transitions
around the masked segment counted. The mask value was synchronized with the threshold
for the MSD-based classification of diffusion states. To facilitate comparisons of transitions
across cells, the transition counts were normalized to sum to one per cell. Alternatively, for
the purpose of comparing the transitions outgoing from the three different diffusion states,

transition counts were normalized per diffusion state within each cell.

8.2.1.6 Hidden Markov modeling

Hidden Markov modeling was conducted using SPTAnalyser using the pyErmine library
(https://github.com/HeilemannLab/pyErmine) (Malkusch et al., 2022). The model
requires initial parameters, including the number of states, their respective diffusion coef-
ficients, the initial probabilities associated with each state, and the transition probabilities
between these states. These initial parameters were determined by fitting a jump distance
mixture model to the jump distance distribution of the cells. The resulting mixture model
provided weights and diffusion coefficients that served as initial estimates. For the initial
transition probabilities, a probability of 0.9 was assigned to remain in the same state. Mul-
tiple models were generated with different numbers of states, ranging from 1 to 5. The
Bayesian information criterion (BIC) consistently pointed to a three-state model as the
most suitable choice for all cells and experimental conditions. To check if a diffusion state
may be regarded as immobile, a limit of detection (LOD) was defined based on the average
localization error o of the localizations (eq. 68). All states with a diffusion coefficient
below the limit of detection were categorized as immobile and their diffusion coefficients
were set to 0.0 pm?/s. To account for static and dynamic errors, the apparent diffusion
coefficients of the mobile states were corrected with eq. 69, where ¢ corresponds to the

static localization error.

LOD = 40? (68)
r? — 4¢>
D=—— (69)
Sat
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8.2.1.7 Statistical analysis

Average values and standard errors of the mean (SEMs) were calculated per cell and glob-
ally averaged. Nonparametric tests were chosen to test the significance as tests for normal
distributions were partly rejected (tested with the SHAPIRO-WILK test for normality, signif-
icance level 0.05). MANN-WHITNEY U tests were used to compare distributions from two
treatment groups. Levels of significance were classified as follows: p > 0.05 no significant
difference (n.s.), p < 0.05 significant difference (*), p < 0.01 very significant difference
(**), p < 0.001 highly significant difference (***).

8.2.2 Temporal response of HER2 in ligand treated cells

8.2.2.1 Data acquisition

The HER2 dataset was recorded in the study of Catapano et al., 2023 and made pub-
licly available, where more experimental details can be found (https://www.ebi.ac.uk/
biostudies/bioimages/studies/S-BIAD597).

Essentially, the azide-modified 2Rs15d nanobody targeting HER2 that carried a Cy3B-
PEG6-DBCO label (Teodori et al., 2022) was added with 2 nM concentration 10 min prior
to SPT measurements. Measurements were conducted between 21 and 23 °C in fresh Live
Cell Imaging Solution (Invitrogen, Waltham, MA, USA). The SPT movies were recorded
in TIRF mode on a commercial widefield microscope (N-STORM; Nikon, Disseldorf, Ger-
many) with an oil-immersion objective (100x Apo TIRF oil; NA 1.49) and a 1.5x magni-
fication lens in the detection beam path. A 561-nm laser with an intensity of 6.3 W /cm?
was used to excite the fluorophores. SPT movies with 256 x 256 px® were acquired with a
pixel size of 105 nm. One movie consisted of 1000 frames with a camera integration time
of 20 ms.

8.2.2.2 Time-series analysis

For the time-series analysis, five HelLa cells were recorded in resting condition. 20 nM
ligand solution of either epidermal growth factor (EGF) (#AF-100-15), transforming growth
factor alpha (TGFa) (#100-16A), neuregulin beta 1 (NRGP1) (#100-03), or epiregulin
(EREG) (#100-04) (all from PeproTech, Waltham, MA, USA) was added 5 min after
measurement start and SPT movies were continued to be acquired for 30 min per coverslip.
Per ligand condition, 8 coverslips with 25 cells from at least 6 different measurement days
were recorded. Localization and tracking analysis was executed analogously to the MET
dataset. Diffusion states were calculated, averaged per cell and pooled into 5 min time
intervals.
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8.2.2.3 Statistical analysis

WILCOXON signed-rank tests were used to validate data from the different time intervals
compared to the cells in the resting condition (p > 0.05 no significant difference (not
labeled), p < 0.05 significant difference (*), p < 0.01 very significant difference (**),
p < 0.001 highly significant difference (***)). Most populations did not conform to the
assumption of normal distribution (SHAPIRO-WILK test, « = 0.05), which is why non-
parametric tests were chosen.
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9 Spatial organization of membrane receptors

Cellular proteins constitute a highly intricate machinery that governs vital biological pro-
cesses. Membrane receptors and their ligands play a central role, as their interactions initiate
complex signaling cascades regulating diverse cellular activities. The spatial proximity of
the involved proteins is determinant in understanding how multiple proteins organize into
functional assemblies. Single-molecule localization microscopy (SMLM) offers the required
resolution to examine the spatial organization of protein assemblies. Moreover, it enables
simultaneous multi-color imaging, facilitating the study of multiple targets in a cell.

To investigate the spatial organization of proteins, a data pipeline was established which
extracts the density and distribution in multi-target SMLM images. The pipeline was em-
ployed to study the fibroblast growth factor receptor (FGFR) network, which comprises four
receptors (FGFR1-4), various isoforms, and 22 ligands (FGF1-14 and FGF 16-23) (Raju et
al., 2014). The FGFR network is involved in numerous intracellular pathways, including
cell growth, differentiation, and survival. Despite their significance in cellular processes and
medical contexts, the molecular underpinning of these mechanisms remain incompletely
understood. The focus of the study was on how the universal ligand FGF1 influences the

spatial arrangement of the FGFR network on the cell membrane (Schroder et al., 2021).
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9.1 Results and discussion
9.1.1 Analysis pipeline to unravel the spatial organization of proteins

In a single-molecule localization experiment a movie of spatially separated fluorescent events
is recorded and the events are localized with high precision. In a post-processing step, the
super-resolved signals are combined to a single image and rendered. Positions of emitters
that are bound to a molecular target can be combined to form molecule clusters, as their
localization coordinates are very close to each other. The centroid of such a cluster serves

as a representative location of a protein assembly in a cell.
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Figure 59: Distance distribution analysis. A The number of neighbors is counted within increasing
circle increments around a center coordinate. This is repeated for all center coordinates and the
number of counts displayed per circle radius. B Nearest neighbor distances analysis between two
receptor types C k-nearest neighbor distance analysis. D The distributions can be compared to
randomly distributed emitters within the cell area. E For multiple targets, centers and neighbors
can be selected. In the left case, the red receptor is the center and being compared to only
red receptors as neighbors. In the right case, the red receptor is the center and compared to
all other receptors (Schroder et al., 2021).

k-nearest neighbor distance

The here presented analysis facilitates the characterization of spatial short- and long-ranged
distance distributions of receptor clusters using various methodologies (fig. 59). To explore
potential clustering, an area around a cluster coordinate is segmented with circles (fig. 59A).
The number of neighbors is counted within the circle increments and the analysis is repeated
for all cluster coordinates. This allows to observe patterns of clustering at different spatial
scales. K-nearest neighbor distances provide further information on how FGFR1-4 acts as
a protein network in response to ligand stimulation (fig. 59B, C). The obtained distribu-
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tions can be compared to distributions of randomly distributed clusters within the cell area

(fig. 59D). For multi-target experiments, the pipeline offers flexibility in designating which

channels serve as center and which as neighbor coordinates (fig. 59E).
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Figure 60: Distance analysis of FGFR1-4 within untreated and FGF1-treated U-2 OS cells. A
Nearest neighbor distances are displayed between FGFR1 and FGFR1-4 for untreated cells
(blue) and treated cells (red). The boxplots display the 1st, 2nd and 3rd quartile, as well
as the mean values. The whiskers depict standard deviations. B Median nearest neighbor
distances of the receptors in resting and FGF1-treated condition. C Fractions of receptors
within a short-range distance of < 50 nm. The nearest neighbor distances of FGFR1 (top)
and FGFR2 (bottom) to FGFR1-4 is shown, N = 7 (resting), N = 5 (stimulated), n.s.: no
significant, **: very significant, ***: highly significant difference, (Schroder et al., 2021).
© 2020 Elsevier Inc. All rights reserved.

9.1.2 Spatial organization of the FGFR network

The four receptors FGFR1-4 were analyzed and receptor densities and distributions com-
pared between untreated and treated U-2 OS bone osteosarcoma cells. For treatment, FGF1
and heparin were added for 5 min prior to fixation. FGF1 is known to interact with all four
FGFRs and induces receptor dimerization and signal transduction (Wheeler et al., 2015).
Heparin is a co-factor required for ligand-receptor complex formation (Yayon et al., 1991).
In order to extract how FGFR1-4 rearrange upon stimulation, nearest neighbor distances
were calculated between FGFR1 and FGFR1-4 for both conditions (fig. 60A) (Schroder et
al., 2021). Median distances are shown for all receptor combinations (fig. 60B). Upon lig-
and treatment, the receptor densities of FGFR1, FGFR3, and FGFR4 decreased, while there
was no significant change in receptor densities for FGFR2 (fig. S14). The FGFR1 distance
to neighboring FGFR2 and FGFR4 increased. Minute changes were observed for distances
between FGFR1 to FGFR1 and FGFR3. To specifically look at short-distance interactions,
the fraction of nearest neighbor distances < 50 nm were quantified (fig. 60C). From that
analysis it was found that FGFR1-3 in relation to neighboring FGFR4 revealed a significant
reduction in the relative fraction of nearest neighbors within a 50 nm radius upon ligand
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9 Spatial organization of membrane receptors

stimulation. Conversely, other receptor combinations exhibited minor decreases.

The overall increasing distances after ligand treatment can be explained by the decreasing
number of receptors on the cell surface (fig. S14). To reduce FGFR signaling, the cell in-
ternalizes the activated receptors and either degrades them or recycles them as monomers
back to the cell membrane (Aucilleo et al., 2013). The distance distributions of FGFR1 to
FGFR1 and FGFR3 exhibit minimal shifts toward higher distances upon ligand stimulation,
despite a significant reduction in their receptor densities (Schroder et al., 2021). This might
be due to increased interactions between the receptors, which counteracts the impact of
decreased receptor densities induced by ligand treatment. The reduced number of short-
ranged FGFR4 neighbors hints at fast activity regulation of FGFR4 via internalization. It is
known that FGFR1 is degraded in cells, whereas FGFR4 is recycled to the cell surface and
replaced by monomers when stimulated (Haugsten et al., 2005).

RTKs are internalized via a clathrin-mediated pathway or through caveolae. It is established
that FGFRs are recycled primarily through clathrin-mediated endocytosis (Aucilleo et al.,
2013). To investigate alterations in receptor density within membrane regions where clathrin
is present, circular count analysis was conducted. FGFR1 clusters were regarded as neighbors
and clathrin clusters as centers. FGF1-treated and untreated conditions were compared to
check how the receptor density changes after ligand treatment in membrane areas where
clathrin is present (fig. 61). More receptors were near clathrin clusters upon activation.
However, no significant difference was observed and more experiments might be required
to analyze the FGFR1 distribution along clathrin.
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Figure 61: Circular counts of clathrin and FGFR1 in untreated and FGF1-treated U-2 OS cells.
The unstimulated condition is shown in blue (N = 10) and the stimulated condition in red (N
= 9). The error bars depict the SEM.
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9 Spatial organization of membrane receptors

To investigate possible co-organization over larger distances up to 1 pm, k-nearest neigh-
bor distances of the first 15 neighbors were determined (Schroder, 2021). The distances
between FGFR1 to FGFR1-4 were calculated for experimental data and compared to simu-
lated random cluster distributions. Especially for the first four neighbors, the experimental
data exhibited higher frequencies, suggesting the possibility of non-random co-organization
at short distances. Thereafter the curve is similar to simulations and decreases faster for
long-ranged distances. This behavior was most pronounced for FGFR1-FGFR1, followed by
FGFR1-FGFR2 and FGFR1-FGFR3. For FGFR1-FGFR4, the experimental curve runs above
the simulated curve over a distance up to ~800 nm.

The higher receptor count at close proximity up to 200 nm could be attributed to the
potential clustering of receptors along cellular structures like heparan sulfate proteoglycans
(HSPGs) (Ori et al., 2008; Sarrazin et al., 2011) or clathrin-coated pits (Li et al., 2016), as
the spatial dimensions align with the know dimensions of these structures. To investigate
this, additional experiments of simultaneous labeling of these cellular structures and the

receptor network would be necessary.
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Figure 62: k-nearest neighbor distances of FGFR1 to FGFR1-4 within untreated and FGF1-treated
U-2 OS cells. A-H the first 15 nearest neighbor distributions are shown for untreated cells
(blue) and treated cells (red) with the error bars depicting SEMs. The hull curve marks
the maxima of the nearest neighbor distributions. The inserts show the differences of the
experimental to a simulated distribution, which assumes randomly distributed emitters, N = 7
(resting), N = 5 (stimulated), (Schréder, 2021).

The here demonstrated analyses describe the FGFR network with molecular resolution on
the membrane of U-2 OS cells. The co-organization from a nanometer to a micrometer
scale was revealed and is a step towards understanding protein interactions. The analysis
package can be applied straight forward to other protein networks. The comparison to
randomly placed coordinates within the cell areas emphasizes the non-random effects in the
distributions, also shown in other studies (Barth et al., 2020). Here, the authors described

125



9 Spatial organization of membrane receptors

the k-nearest neighbor distances between segmented blobs of chromatin, revealing multiple
weak maxima in the distance analysis compared to the simulated distribution. This hints
towards higher degrees of spatial organization within the chromatin. The analysis of the
FGFR network extends this to multiple targets. An alternative approach in describing pro-
tein assemblies is the extraction of cluster features, such as the density, overlap and distance
to other protein clusters, followed by dimensionality reduction and clustering. Unterauer
et al., 2024 demonstrated that approach on 30 labeled proteins in the synapse and were
able to distinguish between inhibitory, mixed and excitatory synapses in the dimensionality
reduced space. This is useful if different protein assemblies are expected within a condition.
As the membrane is a heterogeneous surface, studying the organization in context of mem-
brane constitution is highly relevant (Aucilleo et al., 2013; Haugsten et al., 2016). Different
proteins of interest could be labeled, for example the HSPGs as mentioned above. Another
approach of visualizing the constitution is electron microscopy, which allows segmentation
of specific regions within cells or tissues. Simultaneous super-resolution microscopy of the
same region allows the determination of receptor cluster densities across various cellular
domains (Alfonzo-Méndez et al., 2022; Boer et al., 2015).
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9 Spatial organization of membrane receptors

9.2 Methods

The spatial organization of the receptor tyrosin kinases FGFR1-4 were studied in U-2 OS
cells using DNA-PAINT. A detailed description of the methods of the FGFR1-4 measure-
ments can be found in Schroder et al., 2021. The FGFR1 and clathrin dataset was prepared

analogously. Differences are highlighted in the respective sections.

9.2.1 Cell preparation and labeling

FGFR1-4

FGFR1-4 were labeled via direct immunofluorescence. In brief, primary antibodies against
FGFR1-4 were conjugated to DNA-docking strands (anti-FGFR1 antibody (Abcam, Ger-
many, #ab829) with the docking strand P9 (5" TTTAATAAGGT 3'), anti-FGFR2 (Ab-
nova, Taiwan, #PAB3041) with P3* (5° GAAGTAATG 3'), anti-FGFR3 (Atlas antibod-
ies AB, Sweden, #HPA067204) with P5 (5" TTTCAATGTAT 3'), and anti-FGFR4 (Ab-
cam, #ab5481) with P1 (5" TTATACATCTA 3')). U-2 OS cells (CLS Cell Lines Service
GmbH, Germany) were fixed with 4% methanol-free formaldehyde (Sigma-Aldrich), 0.1%
glutaraldehyde (Sigma-Aldrich), and 0.4 M sucrose in 1x PBS. For receptor activation,
100 nM FGF1 (PeproTech, Germany, #AF-100-17A) and 15 uM heparin (Sigma-Aldrich,
#H3149) were added for 5 min prior to fixation. 100 pg/mL anti-FGFR1-P9, 50 pg/mL
anti-FGFR2-P3*, 12 pg/mL anti-FGFR3-P5, and 20 pg/mL anti-FGFR4-P1 were incubated
for 2 hours in blocking buffer (2.5% IgG free bovine serum albumin (BSA) (Sigma-Aldrich)
in PBS). The samples were post-fixated with 4% formaldehyde in PBS for 10 min. The
samples were supplemented with 125 nm gold beads (Nanopartz, USA) serving as fiducial
markers. Shortly before the DNA-PAINT measurements, the imager strands P1, P3*, P5,
or P9, labeled with the organic fluorophore ATTO 655, were diluted to a final concentra-
tion of 4 nM in an imaging buffer composed of 500 mM NaCl (Sigma-Aldrich) and 75 mM
MgCl, (Sigma-Aldrich) in PBS.

FGFRI1 and clathrin

For imaging the spatial organization of FGFR1 and clathrin, clathrin was transfected as
fusion protein with mEos2. PALM measurements were executed with a 568 nm and 405 nm
laser. Mouse anti-FGFR1 primary antibody (Abcam, Germany, #ab829) and goat anti-
mouse-P1 secondary antibody was used for FGFR1 labeling. 3 nM imager strand (P1-
ATTO 655) was added for the DNA-PAINT measurements as described above, as well as
the fixation protocol and stimulation with FGF1 and heparin.
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9.2.2 DNA-PAINT data acquisition

FGFR1-4

The measurements were conducted using an N-STORM microscope (Nikon, Japan). ATTO
655, conjugated to imager strands, was excited with a 647 nm laser with an intensity of
0.6 KW/cm?. The microscope was operated with an oil immersion objective (Apo, 100x,
NA 1.49) in TIRF mode. Images of 256x256 px? with a pixel size of 158 nm were recorded.
Movies were captured with an EMCCD camera (DU-897U-CS0-#BV, Andor Technology,
Ireland) using an EM gain of 150. The camera integration time was set to 150 ms and
20,000 frames per movie were acquired. All four FGF receptors were sequentially recorded
for the same cell. Between each measurement, the chamber underwent ten washing steps
with PBS to ensure the complete removal of previously used imager strands. 7 cells were
recorded for the resting and 5 cells for the stimulated condition.

FGFRI1 and clathrin

30,000 frames were recorded for the PALM measurements of clathrin with a camera in-
tegration time of 100 ms, an EM gain of 200. The DNA-PAINT imaging of FGFR1 was
analogous to the FGFR1-4 measurements. 10 cells were acquired for the resting and 9 cells
for the stimulated condition. The mEos fluorophore was excited with a 561 nm and 405 nm
laser.

9.2.3 Localization and clustering

FGFR1-4

DNA-PAINT movies were processed using Picasso (Schnitzbauer et al., 2017). Single-
molecule localizations were extracted with the following settings: baseline = 175 photons,
sensitivity = 4.78, quantum efficiency = 0.9, and integrated Gaussian MLE fit. The min-
imum net gradient was set to 53,000, 50,000, 53,000, and 52,000 for FGFR1, FGFR2,
FGFR3, and FGFR4, respectively. The movies were drift corrected and channels aligned.
Signal outside the cell was excluded. Localizations were filtered, only keeping localizations
with a standard deviation of 0.6 to 1.2 pixels, to reduce signal from other planes. Local-
izations were linked within a radius of four times NeNA (Endesfelder et al., 2014) with a
maximum of 20 dark frames. Subsequently, DBSCAN (Ester et al., 1996) was applied with
a radius set to two times the NeNA value and a minimum density of 7 localizations. To
minimize artifacts and background signals, clusters were filtered based on their mean frame
time (between 1500 frames and 8000 frames and within £2-std).

FGFRI and clathrin

The minimum net gradient was set to 50,000 for FGFR1 and 30,000 for clathrin. DBSCAN

parameters were analogous to FGFR1-4 for FGFR1. The minimum density was set to 15

localizations for clathrin.
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9.2.4 Distance analysis

Distance analysis was executed with SpOmKit® (Schroder et al., 2021). The x- and y-
coordinates of the clusters from DBSCAN analysis in Picasso (Schnitzbauer et al., 2017)
were used as positions in the distance analysis. The relative frequencies of nearest neighbor
distances between FGFR1-4 as central points and FGFR1-4 as neighboring points were
calculated, resulting in 16 distance distributions per measurement. The relative fractions
of nearest neighbor distances between centers and neighbors that are less than or equal to
50 nm were determined. k-nearest neighbor analysis was applied with up to 15 neighbors.
A difference plot between experimental and simulated curves was generated by subtracting
the experimental from the simulated curve. Circular counts were executed with a maximum
radius of 2000 nm and intervals of 50 nm. All analysis were repeated with simulated random
cluster distributions, using the same number of clusters and cell shapes as the experimental

data. 10 simulations were averaged to generate one simulated curve.

9.2.5 Statistical analysis

The distributions were tested against a normal distribution using the KOLMOGOROV-
SMIRNOV test (a= 0.05), and all were found to be normally distributed. Differences
in distributions between untreated and treated cells were tested with two-sampled t-tests
in OriginPro (Origin Lab) with levels of significance were classified as: p > 0.05 no sig-
nificance, p < 0.05 significant difference (*), p < 0.01 very significant difference (*¥*),
p < 0.001 highly significant difference (***).

Bhttps://github.com/HeilemannLab/SpOmKit
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10 Conclusion and outlook

In this study the application of deep learning to accelerate SMLM experiments, enable fast
and long-time STED imaging, and automated fluorescence staining of wide-field images was
demonstrated. Furthermore, methods for characterizing mobility patterns and the spatial
organizations of membrane receptors were extended and demonstrated on various targets.
The following section briefly summarizes the key goals of each project and gives an outlook.
A global conclusion is drawn with regards to deep learning in the field of super-resolution

microscopy.

10.1 Accelerated DNA-PAINT imaging with a neural network

DNA-PAINT imaging (Jungmann et al., 2010) has been substantially accelerated with
DeepSTORM (Nehme et al., 2018), a neural network based approach that obtains super-
resolved images under the challenging condition of high emitter density (Narayanasamy et
al., 2022). A workflow for acquiring DNA-PAINT training and test data from experimental
measurements was established. Emitter localizations were retrieved with a post-processing
step. The results were scrutinized with various quality control metrics. This enabled imaging
of a-tubulin and TOM20 in MNTB tissue within one minute instead of 25 minutes per target
protein.

The model exhibited enhanced accuracy in predicting 1D structures compared to 2D struc-
tures. Even though DNA-PAINT offers a constant labeling density due to the exchange of
labels on the target structure, local density variations due to the structure of the object may
occur. The capability of the network in handling different local densities could be improved
by including a larger variety of densities within the training data. A more complex approach
would entail the training of multiple models for specific densities and applying them to
local patches based on the expected density of the patch. A summation of intensities in
the diffraction-limited patch through time could estimate the density of emitters within the
patch. Depending on the biological question, 3D information might be required, which
would necessitate the use of 3D capable models such as DeepSTORM3D (Nehme et al.,
2020) or DECODE (Speiser et al., 2021).

The here demonstrated workflow was successfully applied to measurements using exchange-
able HaloTag ligands (xHTLs) (Kompa et al., 2023), further extending the application ca-
pability of DeepSTORM. Jang et al., 2023 processed high density SMLM measurements
with DeepSTORM (Nehme et al., 2018) followed by DBlink (Saguy et al., 2023), a neural
network generating continuous structures from patchy localization movies. This enabled
the observation of the endoplasmic reticulum in a living cell for 12 minutes with a temporal
resolution of 1 second. To further increase the temporal resolution, SMLM movies with

rapid camera integration could be acquired, which would result in low SNR images. Local-
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ization of emitters with low SNRs is challenging, also for deep learning based approaches
(Speiser et al., 2021). As a step prior to localization, the signals could be recovered by a de-
noising approach and then processed by DeepSTORM and DBlink to generate a movie with
continuous structure. This would increase the temporal resolution, crucial for capturing the

dynamics in living cells.

10.2 Fast and long-time STED imaging of ER nano-structural

dynamics in living cells

In this project, STED images of the ER were denoised with a UNet-RCAN network (Ebrahimi
et al., 2023), an approach especially suitable for preserving the high frequency features
of the images. This enabled the observation of the ER for several hours with a high
spatiotemporal resolution of 90 nm and a pixel dwell time of 0.5 ps. The segmentation of
ER structures utilizing ERnet (Lu et al., 2023), as well as additional descriptors, allowed
for the characterization of drug-induced effects influencing the ER-phagy machinery (Rahm
et al., 2024).

Although the quality of the predicted images suffices for quantifying the drug effects, fur-
ther quality enhancements of the predictions might be required for other research inquiries.
Incorporating more information for the denoising task, such as the inclusion of adjacent
frames in a live cell movie to denoise the central frame, would potentially boost the per-
formance. Employing perceptual based loss functions can further improve the denoising
capability (Liu et al., 2023; Zhao et al., 2015). Additionally, refining the training target
through deconvolution can sharpen STED images.

To draw a more holistic picture of the cell, simultaneous imaging of multiple organelles
at high spatiotemporal resolutions over long periods of time would enable the observation
of dynamic interactions and interdependencies between cellular compartments. For this,
the organelles would be recorded in parallel with orthogonal dyes and low laser intensity.
The channels would be denoised with models trained for the specific organelle, similarly
as in Weigert et al., 2018. To increase the multiplexing capability, organelles that are dis-
cernible in a bright-field image could be virtually stained, by models trained to translate
label-free images to fluorescence images. Given the rapid acquisition of bright-field images,
virtual staining ensures the preservation of high temporal resolution. Organelles like the
nucleus, cell membrane, and potentially mitochondria could be suitable targets for virtual
staining. Visualizing multiple organelles would allow to study inter-organelle contact sites
that have diverse functions. One prominent example are contact sites between the ER and
mitochondria (Sassano et al., 2022) that serve as hotspots for fission and fusion events of
mitochondria (Abrisch et al., 2020).
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10.3 Virtual staining of cellular landmarks

A model has been trained with robust capabilities for virtually staining the nucleus and
membrane (label-free to fluorescence) across various experimental conditions (Liu et al.,
2023). The key aspect of this generalizability was data augmentation that covered the
sample space. Furthermore, the nuclei were instance segmented with cellpose (Stringer et
al., 2021). As segmentation networks are often not compatible with quantitative phase im-
ages, taking an indirect route of translating the channel to fluorescence and then segmenting
the image prevents the necessity of training a model from scratch, where vast amounts of

hand-labeled annotations would have been required to achieve instance segmentation.

As virtual staining is not occupying fluorescence channels, the multiplexing capabilities
are enhanced. Furthermore, the segmentation of cell nuclei and membranes facilitates
the extraction of cell properties such as the volume and shape, enabling quantification of
organelle properties in high-throughput experiments.

In further work, the model performance has been optimized by incorporating 3D information
and using a hybrid loss function of an MAE mixed with the perceptually based MS-SSIM
(Liu et al., 2023). The model demonstrated transferability to a different type of microscope
and was utilized to virtually label the membrane and nucleus (still remaining in the same cell
line) (lvanov et al., 2023). Jo et al., 2021 demonstrated virtual labeling of various organelles
across different cell types and the segmentation tool cellpose also generalizes well regarding
cell types and microscopes. An essential factor contributing to such generalization besides
data augmentation is the pooling of vast amounts of images. In the case of cellpose, training
data was pooled from diverse sources, even including segmented images of stones and shells.
Robustly segmenting the nucleus and membrane will enable the automated identification
of cell instances and the quantification of their properties across various microscopes and
conditions.

10.4 A pipeline for the analysis of single-particle tracking data

A comprehensive framework was developed to enhance the efficiency of analyzing SPT data
and a new method of analysis was introduced. It comprises mean-squared displacement
analysis to calculate diffusion coefficients of the single molecules and allows distinguishing
between immobile, confined, and freely diffusing molecules. Occurrences of transitions be-
tween different diffusion modes within a trajectory are characterized with transition counting
and hidden MARKOV modeling. The methodology was applied to single-molecule trajecto-
ries of the receptor tyrosine kinases MET (Rahm et al., 2021) and HER2 (Catapano et al.,
2023) to study their responses to ligands in Hela cells.

Extending the pipeline to multi-color SPT (Subach et al., 2010; You et al., 2016) would
allow the detection of receptor complexes, as RTKs are known to dimerize and heterodimer-
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ize (Harwardt et al., 2020; Paul et al., 2019). These formations could relate to changes in
diffusion characteristics.

Furthermore, tracking the target(s) over an extended window of time would allow to observe
ligand responses or effects of drug treatments within a single cell. Typical response times of
RTKs upon ligand treatment are several minutes (Catapano et al., 2023). Denoising could
easily extend the measurable duration of a SPT movie while preventing photobleaching of
the label and preventing phototoxicity for the cell. The analysis of spatiotemporal hotspots
are a further exciting development that might point to dynamic protein interactions as

nanoclusters on the cell membrane (Wallis et al., 2023).

10.5 Spatial organization of membrane receptors

To investigate the spatial organization of membrane receptors, a data pipeline was es-
tablished, facilitating the extraction of receptor densities and distributions in multi-target
SMLM images. The pipeline was employed to study the FGFR network. Influences of the
FGF1 ligand on the spatial arrangement of the FGFR network on the cell membrane were
studied (Schroder et al., 2021).

Given the inherent heterogeneity of the cell membrane, studying the organization in context
of membrane constitution is highly relevant (Aucilleo et al., 2013; Haugsten et al., 2016).
Clustering of receptors could be related to structures such as the HSPGs, which modulates
FGF-FGFR complex formation (Ori et al., 2008; Sarrazin et al., 2011), and could be visual-
ized along the FGF receptors. Another approach of visualizing the constitution is electron
microscopy, which allows segmentation of specific regions within cells or tissues. Simulta-
neous super-resolution microscopy of the same region allows the determination of receptor
cluster densities across various cellular domains (Alfonzo-Méndez et al., 2022; Boer et al.,
2015).

The acquisition time of the experiments could be sped up by increasing the density and us-
ing deep learning based localization approaches (Narayanasamy et al., 2022; Nehme et al.,
2018). This is especially relevant, if many targets should be imaged as they all add to the

duration of the experiment.

10.6 Deep learning for super-resolution microscopy in the future

The techniques explored herein address three critical facets in advanced microscopy, namely
the reduction in image acquisition time, saving photon budget during measurements, and
increasing the multiplexing capability. Beyond the solutions presented, a multitude of al-
ternative approaches are available. Reducing the photon budget can be achieved through
cross-modality translation (Bouchard et al., 2023; Chen et al., 2021), by interpolating imag-
ing frames (Priessner et al., 2024), or event triggered microscopy (Alvelid et al., 2022). The
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multiplexing capability can be enlarged with spectral demixing (Jiang et al., 2023; Kim et
al., 2019b) or potentially by classifying the intensity-time traces stemming from different
imager strands in DNA-PAINT measurements. Choosing the appropriate tools is contingent
upon on the available data and the specific biological question at hand. Potential relies
in synergistically combining multiple neural network tools to further advance the frontiers
of super-resolution microscopy, all while establishing reliable methods for quality control
checks.

To generate robust models across various experimental conditions, microscopes, and sam-
ples, substantial data availability is needed. Moreover, the publication of trained models is
imperative to ensure the reproducibility of experiments (Editorial, 2021). Platforms such as
https://zenodo.org/ and https://bioimage.io/ (Ouyang et al., 2022) simplify the
sharing and finding of both data and models. Additionally, pre-trained models may suffice
for specific tasks or require minimal retraining, thus mitigating the demands on data and
computational resources.

The energy-intensive nature of neural network training raises concerns about its environ-
mental impact (Strubell et al., 2023; Verdecchia et al., 2023). Techniques such as net-
work pruning, which removes non-essential parameters without significantly affecting per-
formance, are an active field of research in the computer science community (Frankle et al.,
2019; Li et al., 2017), warranting increased attention for bioimage analysis (Zhou et al.,
2024).

The realization of a smart microscope, capable of autonomous decision-making regarding
when, where, what, and how to image, was never that tangible (Daetwyler et al., 2023).
Current efforts incorporate event-based detections for switching imaging modes and the
automated optimization of imaging parameters (Alvelid et al., 2022; Mahecic et al., 2022;
McDole et al., 2018). With the emergence of large language models (LLMs), the ability to
issue voice commands to the microscope, such as the instruction “N measurements under

a specific condition”, could be just around the corner.
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Except where stated otherwise by reference or acknowledgment, the work presented was
generated by myself under the supervision of my advisors during my doctoral studies. All
contributions from colleagues are explicitly referenced in the thesis. The sections below

clarify the collaborative research.

Accelerated DNA-PAINT imaging with a neural network

DNA-PAINT data was acquired by K. K. Narayanasamy. The workflow of how to process
experimental DNA-PAINT data for DeepSTORM and generating appropriate training and
test data was proposed by me, along with the code ImageSumming, which was executed by
K. K. Narayanasamy. Models were trained by me, K. K. Narayanasamy and S. Tourani. The
final SEM model was trained by me and the final MEM model by S. Tourani. Postprocessing
and parameter optimization was executed by me. Model performance was evaluated by
both K. K. Narayanasamy and me. Figure 30, 33, 35, 34, and 36 were created by K. K.
Narayanasamy and adapted by me. Exchangeable HaloTag data acquisition and analysis

was executed by S. Jang.

Fast and long-time STED imaging of ER nano-structural dynamics in living cells
STED images were acquired by A. Balakrishnan and drugs proposed to investigate ER-
phagy. Data preprocessing was executed by A. Balakrishnan and me. UNet-RCAN code
adjustments and the grid search was enabled by me, as well as the hyperparameter impor-
tances and detection of hallucination events. ERNet results were gathered by me. Fig. 38,
39, 40, S3, S4, and S5 were created by A. Balakrishnan and adapted by me.

Virtual staining of cellular landmarks

The image acquisition, data preprocessing, model training, and evaluation was were per-
formed by me in the robust virtual staining project. The endoplasmic reticulum data was
measured by M. Glogger and analyzed by me.

A pipeline for the analysis of single-particle tracking data

The MET dataset was acquired by M.-L. |. E. Harwardt and the HER2 dataset by C.
Catapano. The analysis pipeline was established by me. S. Malkusch wrote the hidden
MARKOV modeling code, which was integrated into SPTAnalyser by me. All MET analyses
were conduced by me. Figures about the MET receptor were created by M. S. Dietz and
me. C. Catapano executed the analysis for HER2 and created figure 58.

Spatial organization of membrane receptors

The FGFR dataset was acquired by M. Schroder. The analysis pipeline was realized by me
and execute by M. Schroder. Fig. 60, S14, and 62 were created by M. Schroder.

137






12 References

12 References

Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, et al. (2016). “TensorFlow: Large-scale machine
learning on heterogeneous distributed systems”. In: arXiv. DOI: 10.48550/arXiv.1603.04467.

Abbe, E. (1873). “Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung”. In: Archiv
f. mikrosk. Anatomie 9, pp. 413-418. DOI: 10.1007/BF02956173.

Abdullah-Al-Mamun, M., V. Tyagi, and H. Zhao (2021). “A New Full-Reference Image Quality Metric for
Motion Blur Profile Characterization”. In: [EEE Access 9, pp. 156361-156371. DOI: 10.1109/ACCESS.
2021.3130177.

Abrisch, R. G., S. C. Gumbin, B. T. Wisniewski, L. L. Lackner, and G. K. Voeltz (2020). “Fission and
fusion machineries converge at ER contact sites to regulate mitochondrial morphology”. In: J. Cell. Biol.
4, e201911122. por: 10.1083/jcb.201911122.

Agasti, S. S, Y. Wang, F. Schueder, A. Sukumar, R. Jungmann, et al. (2017). “DNA-barcoded labeling
probes for highly multiplexed Exchange-PAINT imaging”. In: Chem. Sci. 8, p. 3080. por: 10.1039/
C6SC05420J.

Airy, G. B. (1895). “On the Diffraction of an Object-glass with Circular Aperture ". In: Trans. Cambridge
Philos. Soc 5, p. 283.

Alfonzo-Méndez, M. A., K. A. Sochacki, M.-P. Strub, and J. W. Taraska (2022). “Dual clathrin and
integrin signaling systems regulate growth factor receptor activation”. In: Nat. Comm. 13, p. 905. DOI:
10.1038/s41467-022-28373-X.

Alvelid, J., M. Damenti, C. Sgattoni, and |. Testa (2022). “Event-triggered STED imaging”. In: Nat.
Methods 19, pp. 1268-1275. DOI: 10.1038/s41592-022-01588-7.

Ambrose, E. J. (1956). “A Surface Contact Microscope for the study of Cell Movements”. In: Nature 178,
p. 1194. por: 10.1038/1781194a0.

Andronov, L., I. Orlov, Y. Lutz, J.-L. Vonesch, and B. P. Klaholz (2016). “ClusterViSu, a method for
clustering of protein complexes by Voronoi tessellation in super-resolution microscopy”. In: Sci. Reports
6, p. 24084. DOI: 10.1038/srep24084.

Aucilleo, G., D. L. Cunningham, T. Tatar, J. K. Heath, and J. Z. Rappoport (2013). “Regulation of fibroblast
growth factor receptor signalling and trafficking by Src and Eps8”. In: J. Cell Sci. 126, pp. 613-624.
DOI: 110.1242/jcs.116228.

Axelrod, D. (1981). “Cell-substrate contacts illuminated by total internal reflection fluorescence”. In: J.
Cell Biol. 89, pp. 141-145. DOT: 10.1083/jcb.89.1.141.

Bag, N., S. Huang, and T. Wohland (2015). “Plasma Membrane Organization of Epidermal Growth Factor
Receptor in Resting and Ligand-Bound States”. In: Biophys. J. 109, pp. 1925-1936. pDo1: 10.1016/j.
bpj . 2015.09.007.

Balestriero, B., L. Bottou, and Y. LeCun (2022). “The Effects of Regularization and Data Augmentation
are Class Dependent”. In: arXiv. DOI: 10.48550/arXiv.2204.03632.

Balzarotti, F., Y. Eilers, K. C. Gwosch, A. H. Gynn&, V. Westphal, et al. (2016). “Nanometer resolution
imaging and tracking of fluorescent molecules with minimal photon fluxes”. In: Science 355, pp. 606—
612. DOI: 10.1126/science.aak991.

Banwell, C. N. (1983). Fundamentals of Molecular Spectroscopy. 4th ed. Berkshire: McGraw-Hill Interna-
tional. DOI: 10.1002/ange . 19901020643.

Barer, R. (1952). “Interference microscopy and mass determination”. In: Nature 169, pp. 366-367. DOI:
10.1038/169366b0.

Barnard, T. J., X. Yu, N. Noinaj, and J. W. Taraska (2014). “Crystal Structure of Green Fluorescent

Protein”. In: available online.

139



12 References

Barth, R., K. Bystricky, and H. A. Shaban (2020). “Coupling chromatin structure and dynamics by live
super-resolution imaging”. In: Sci. Adv. 6, eaaz2196. DOI: 10.1126/sciadv.aaz2196.

Beer, A. (1852). “Bestimmung der Absorption des rothen Lichts in farbigen Flissigkeiten”. In: Annalen der
Physik 162, pp. 78-88. DOL: 10.1002/andp. 18521620505.

Belthangady, C. and L. A. Royer (2019). “Applications, promises, and pitfalls of deep learning for fluores-
cence image reconstruction”. In: Nat. Methods 16, pp. 1215-1255. DOI: 10.1038/s41592-019-0458~
z.

Berkane, R., H. Ho-Xuan, M. Glogger, P. Sanz-Marinez, L. Brunello, et al. (2023). “The function of
ER-phagy receptors is regulated through phosphorylation-dependent ubiquitination pathways”. In: Nat.
Comm. 14, p. 8364. DOI: 10.1038/s41467-023-44101-5.

Berning, S., K. I. Willig, H. Steffens, P. Dibaj, and S. W. Hell (2012). “Nanoscopy in a Living Mouse
Brain”. In: Science 335, p. 551. DOI: 10.1126/science.1215369.

Betzig, E., G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, et al. (2006). “Imaging Intracel-
lular Fluorescent Proteins at Nanometer Resolution”. In: Science 313, pp. 1642-1645. por: 10.1126/
science.1127344.

Bilmes, J., K. Asanovic, C.-W. Chin, and J. Demmel (1997). “Using PHiPAC to speed error back-
propagation learning”. In: Proc. IEEE Int. Conf. Acoust. Speech Signal Process 5, pp. 4153-4156.
DOI: 10.1109/ICASSP.1997.604861.

Boer, P. de, J. P. Hoogenboom, and B. N. G. Giepmans (2015). “Correlated light and electron microscopy:
ultrastructure lights up!” In: Nat. Methods 12, pp. 503-513. DOI: 10.1038/nMeth.3400.

Bouchard, C., T. Wiesner, A. Deschénes, A. Bilodeau, B. Turcotte, et al. (2023). “Resolution enhancement
with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition”. In: Na. Mach.
Intell. 5, pp. 830—844. DOI: 10.1038/542256-023-00689-3.

Boulanger, J., C. Kervrann, P. Bouthemy, P. Elbau, J.-B. Sibarita, et al. (2010). “Patch-Based Nonlocal
Functional for Denoising Fluorescence Microscopy Image Sequences”. In: IEEE Trans. Med. Imaging 29,
pp. 442-454. poI1: 10.1109/TMI.2009.2033991.

Boyd, N., E. Jonas, H. Babcockl, and B. Recht (2018). “DeepLoco: Fast 3D Localization Microscopy Using
Neural Networks”. In: bioRxiv. DO1: 10.1101/267096.

Buades, A., B. Coll, and J.-M. Morel (2005). “A non-local algorithm for image denoising”. In: CVPR 2,
pp. 60-65. pDo1: 10.1109/CVPR.2005.38.

Buchholz, T.-O., M. Prakash, A. Krull, and F. Jug (2020). “DenoiSeg: Joint Denoising and Segmentation”.
In: arXiv. DOL: 10.48550/arXiv.2005.02987.

Catapano, C., J. V. Rahm, M. Omer, L. Teodori, J. Kjems, et al. (2023). “Biased activation of the receptor
tyrosine kinase HER2". In: Cell Mol. Life Sci. 80, p. 158. DOI: 10.1007/s00018-023-04806-8.

Chames, P. and U. Rothbauer (2020). “Special Issue: Nanobody”. In: Antibodies 9, p. 6. DOI: 10.3390/
antib9010006.

Chamier, L. von, R. F. Laine, J. Jukkala, C. Spahn, D. Krentzel, et al. (2021). “Democratising deep
learning for microscopy with ZeroCostDL4Mic". In: Nat. Comm. 12, p. 2276. DOI: 10.1038/s41467~
021-22518-0.

Chapman, K. B., F. Filipsky, N. Peschke, M. Gelléri, V. Weinhardt, et al. (2023). “A comprehensive
method to study the DNA's association with lamin and chromatin compaction in intact cell nuclei at
super resolution”. In: Nanoscale 15, pp. 742-756. DOI: 10.1039/d2nr02684h.

Charbonnier, P., L. Blanc-Feraud, G. Aubert, and M. Barlaud (1994). “Two deterministic half-quadratic
regularization algorithms for computed imaging”. In: ICIP.

Chen, J., H. Sasaki, H. Lai, Y. Su, J. Liu, et al. (2021). "Three-dimensional residual channel attention
networks denoise and sharpen fluorescence microscopy image volumes”. In: Nat. Methods 18, pp. 678—
687. DOI: 10.1038/s41592-021-01155-x.

140



12 References

Cho, Nathan H., Keith C. Cheveralls, Andreas-David Brunner, Kibeom Kim, André C. Michaelis, et al.
(2022). “OpenCell: Endogenous tagging for the cartography of human cellular organization”. In: Science
375, eabi6983. DOI: 10.1126/science.abif983.

Chou, Y.-Y., N. S. Heaton, Q. Gao, P. Palese, R. Singer, et al. (2013). “Colocalization of Different Influenza
Viral RNA Segments in the Cytoplasm before Viral Budding as Shown by Single-molecule Sensitivity
FISH Analysis”. In: PLOS Pathog. 9, pp. 226-231. pOI: 10.1371/journal.ppat.1003358.

Christiansen, E. M., S. J. Yang, D. M. Ando, A. Javaherian, G. Skibinski, et al. (2018). “In Silico Labeling:
Predicting Fluorescent Labels in Unlabeled Images”. In: Cell 173, pp. 792-803. DO1: 10.1016/j.cell.
2018.03.040.

Chung, ., R. Akita, R. Vandlen, D. Toomre, J. Schlessinger, et al. (2010). “Spatial control of EGF receptor
activation by reversible dimerization on living cells”. In: Nature 464, pp. 783-787. DOI: 10.1038/
nature08827.

Civitci, F., J. Shangguan, T. Zheng, K. Tao, M. Rames, et al. (2020). “Fast and multiplexed superresolution
imaging with DNA-PAINT-ERS". In: Nat. Comm. 11, p. 4339. DOI: 10.1038/s41467-020-18181-6.

Condon, E. (1926). “A Theory of Intensity Distribution in Band Systems”. In: Phys. Rev. 28, pp. 1182—
1201. por: 10.1103/PhysRev.28.1182.

Coons, A. H., H. J. Creech, and R. N. Jones (1941). “Immunological Properties of an Antibody Containing
a Fluorescent Group". In: Proc. Soc. Exp. Biol. Med. 47, pp. 200-202. DOT: 10.3181/00379727-47~
13084p.

Costello, 1. and S. Cox (2021). "Analysing errors in single-molecule localisation microscopy”. In: Int. J.
Biochem. Cell Biol. 134, p. 105931. poI: 10.1016/j.biocel.2021.105931.

Culley, S., D. Albrecht, C. Jacobs, P. Matso Pereira, C. Leterrier, et al. (2018). “Quantitative mapping
and minimization of super-resolution optical imaging artifacts”. In: Nat. Methods 15, pp. 263-266. DOTI:
10.1038/nmeth.4605.

Curry, H. B. (1944). “The Method of Steepest Descent for Non-linear Minimization Problems”. In: Quart.
Appl. Math. 2, pp. 258-261. DOI: 10.1090/qam/10667.

Daetwyler, S. and R. P. Fiolka (2023). "Light-sheets and smart microscopy, an exciting future is dawning”.
In: Commun. Biol. 6, p. 502. DOI: 10.1038/s42003-023-04857-4.

Dauphin, Y. N., R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, et al. (2014). “Identifying and attacking the
saddle point problem in high-dimensional non-convex optimization”. In: arXiv. DOI: 10.48550/arXiv.
1406.2572.

Dempsey, D. R., H. Jiang, J. H. Kalin, Z. Chen, and P. A. Cole (2018). “Site-Specific Protein Labeling
with N-Hydroxysuccinimide-Esters and the Analysis of Ubiquitin Ligase Mechanisms". In: J. Am. Chem.
Soc. 140, pp. 9374-9378. DOI: 10.1021/jacs.8b05098.

Dertinger, T., R. Colyer, G. lyer, S. Weiss, and J. Enderlein (2009). “Fast, background-free, 3D super-
resolution optical fluctuation imaging (SOFI)". In: Proc. Natl. Acad. Sci. USA 106, pp. 22287-22292.
DOI: 10.1073/pnas.0907866106.

Descloux, A., K. S. GruBmayer, and A. Radenovic (2019). “Parameter-free image resolution estimation
based on decorrelation analysis”. In: Nat. Methods 16, pp. 918-924. por: 10.1038/s41592-019~
0515-7.

Dice, L. R. (1945). “Measures of the Amount of Ecologic Association Between Species”. In: Ecology 26,
pp. 297-302. DOL: 10.2307/1932409.

Dietz, M. S., D. HaBe, D. M. Ferraris, A. Gohler, H. H. Niemann, et al. (2013). “Single-molecule photo-
bleaching reveals increased MET receptor dimerization upon ligand binding in intact cells”. In: BMC
Biophys. 6, p. 6. DOI: 10.1186/2046-1682-6-6.

141



12 References

Dietz, M. S. and M. Heilemann (2019a). “Optical super-resolution microscopy unravels the molecular
composition of functional protein complexes”. In: Nanoscale 11, pp. 17981-17991. po1: 10. 1039/
c9nr06364a.

Dietz, M. S., S. S. Wehrheim, M.-L. I. E. Harwardt, H. Niemann, and M. Heilemann (2019b). “Competitive
Binding Study Revealing the Influence of Fluorophore Labels on Biomolecular Interactions ". In: 19,
pp. 8245-8249. DOI: 10.1021/acs.nanolett.9b03736.

Diez, L. T., C. Boénsch, S. Malkusch, Z. Truan, M. Munteanu, et al. (2014). “Coordinate-based co-
localization-mediated analysis of arrestin clustering upon stimulation of the C-C chemokine receptor
5 with RANTES/CCL5 analogues”. In: Histochem. Cell Biol. 1, p. 142. pOI: 10.1007/s00418-014~
1206-1.

Dozat, T. (2016). “Incorporating Nesterov Momentum into Adam”. In: ICLR Workshop 1, pp. 2013-2016.

Drozdzal, M., E. Vorontsov, G. Chartrand, S. Kadoury, and C. Pal (2016). “The Importance of Skip
Connections in Biomedical Image Segmentation”. In: arXiv. DOI: 10.48550/arXiv.1608.04117.

Dubey, S. R., S. K. Singh, and B. B. Chaudhuri (2021). “Activation Functions in Deep Learning: A
Comprehensive Survey and Benchmark”. In: arXiv. DOI: 10.48550/arXiv.2109.14545.

Duchi, J., E. Hazan, and Y. Singer (2011). “Adaptive Subgradient Methods for Online Learning and
Stochastic Optimization”. In: J. Mach. Learn. Res. 12, pp. 2121-2159. pDOI: 10 . 5555/ 1953048 .
2021068.

Dumoulin, V. and F. Visin (2016). “A guide to convolution arithmetic for deep learning”. In: arXiv. DOI:
10.48550/arXiv.1603.07285.

Dunbrack, R. L. (1986). “Calculation of Franck-Condon factors for undergraduate quantum chemistry”.
In: 63, p. 953. DOI: 10.1021/ed063p953.

Ebrahimi, V., T. Stephan, J. Kim, P. Carravilla, C. Eggeling, et al. (2023). “Deep learning enables fast,
gentle STED microscopy”. In: Commun. Biol. 6, p. 674. DOT: 10.1038/s42003-023-05054~z.

Edelstein, Arthur, Nenad Amodaj, Karl Hoover, Ron Vale, and Nico Stuurman (2010). “Computer Control
of Microscopes Using uManager”. In: Curr. Protoc. Mol. Biol 92, pp. 14.20.1-14.20.17. DOI: 10.1002/
0471142727 .mb1420s92.

Editorial, E. (2021). “Moving towards reproducible machine learning”. In: Nat. Comput. Sci. 1, p. 1608.08710.
DOI: 10.1038/s43588-021-00152-6.

Einstein, A. (1905). “Investigations on the Theory of the Brownian Movement”. In: New York: Dover
Publications. DO1: 10.1088/0031-9112/7/10/012.

Endesfelder, M., C. SchieBl, B. Turkowyd, T. Lechner, and U. Endesfelder (n.d.). “swift — fast, probabilistic
tracking for dense, highly dynamic single-molecule data”. In: Manuscript in preparation ().

Endesfelder, U., S. Malkusch, F. Fricke, and M. Heilemann (2014). “A simple method to estimate the
average localization precision of a single-molecule localization microscopy experiment”. In: Histochem
Cell Biol. 141, pp. 629-638. DOI: 10.1007/s00418-014-1192-3.

Ester, M., H. P. Kriegel, J. Sander, and X. Xu (1996). “A density-based algorithm for discovering clusters
in large spatial databases with noise”. In: KDD-96 Proceedings, pp. 226—231. DOI: 10.5555/3001460.
3001507.

Fick, A. (1855). “Ueber Diffusion”. In: Annalen der Physik 94, pp. 59-86. DOI: 10 . 1002 / andp .
18551700105.

Fischer, L. S., C. Klingner, T. Schlichthaerle, M. T. Strauss, R. Boéttcher, et al. (2021). “Quantitative
single-protein imaging reveals molecular complex formation of integrin, talin, and kindlin during cell
adhesion”. In: Nat. Comm. 12, p. 2919. DOI: 10.1038/s41467-021-21142-2.

Franck, J. and E. G. Dymond (1926). “Elementary processes of photochemical reactions”. In: Trans. Faraday
Soc. 21, pp. 536-542. DOI: 10.1039/TF9262100536.

142



12 References

Frankle, J. and M. Carbin (2019). “The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural
Networks". In: arXiv. DOI: 10.48550/arXiv.1803.03635.

Fricke, F., J. Beaudouin, R. Eils, and M. Heilemann (2015). “One, two or three? Probing the stoichiometry
of membrane proteins by single-molecule localization microscopy”. In: Sci Rep. 11, p. 14072. DOTI:
10.1038/srep14072.

Fukushima, K. (1980). “Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern
Recognition Unaffected by Shift in Position”. In: Biol. Cybernetics 36, pp. 193-202. por: 10.1007/
BF00344251.

Gautier, A., A. Juillerat, C. Heinis, |. R. Corréa, M. Kindermann, et al. (2008). “An Engineered Protein
Tag for Multiprotein Labeling in Living Cells”. In: Chem. Biol. 15, pp. 128-136. po1: 10.1016/7 .
chembiol.2008.01.007.

Gazagnes, S., E. Soubies, and L. Blanc-Feraud (2017). “High density molecule localization for super-
resolution microscopy using CELO based sparse approximation”. In: [EEE Int. Symp. Biomed. Imaging.
DOI: 10.1109/ISBI.2017.7950460.

Geman, S., E. Bienenstock, and R. Doursat (1992). “Neural networks and the bias/variance dilemma”. In:
Neural Comput. 4, pp. 1-58. DOI: 10.1162/neco.1992.4.1.1.

Giannone, G., E. Hosy, F. Levet, A. Constals, K. Schulze, et al. (2010). “Dynamic Superresolution Imaging
of Endogenous Proteins on Living Cells at Ultra-high Density”. In: Biophys. J. 99, pp. 1303-1310. DOTI:
10.1016/3.bpj.2010.06.005.

Gibson, T. J., M. Seiler, and R. A. Veitia (2013). "The transience of transient overexpression”. In: Nat.
Methods 10, pp. 715-721. DOI: 10.1038/nmeth.2534.

Glogger, M., D. Wang, J. Kompa, A. Balakrishnan, J. Hiblot, et al. (2022). “Synergizing Exchangeable
Fluorophore Labels for Multitarget STED Microscopy”. In: ACS Nano 16, pp. 17991-17997. pDoTI: 10.
1021/acsnano.2c07212.

Goncharova, A. S., A. Honigmann, F. jug, and A. Krull (2020). “Improving Blind Spot Denoising for
Microscopy”. In: arXiv. DOI: 10.48550/arXiv.2008.08414.

Gonzélez, A., A. Covarrubias-Pinto, R. M. Bhaskara, M. Glogger, S. K. Kuncha, et al. (2023). “Ubiqui-
tination regulates ER-phagy and remodelling of endoplasmic reticulum”. In: Nature 681, pp. 394-401.
DOI: 10.1038/s41586-023-06089-2.

Guo, S.-M., L.-H. Yeh, J. Folkesson, I. E. Ivanov, A. P. Krishnan, et al. (2020). “Revealing architectural
order with quantitative label-free imaging and deep learning”. In: eLife 9, e55502. DOI: 10 . 7554/
eLife.55502.

Gustafsson, M. G. (2000). “Surpassing the lateral resolution limit by a factor of two using structured
illumination microscopy”. In: J. Microsc. 198, pp. 82-87. DOI: 10.1046/j.1365-2818.2000.00710.x.

Hajiabadi, H., I. Mamontova, R. Prizak, A. Pancholi, A. Koziolek, et al. (2022). “Deep-learning microscopy
image reconstruction with quality control reveals second-scale rearrangements in RNA polymerase Il
clusters”. In: PNAS Nexus 1, pp. 1-11. DOI: 10.1093/pnasnexus/pgac065.

Harke, B., P. Bianchini, G. Vicidomini, S. Galiani, and A. Diaspro (2013). “Stimulated Emission Depletion
(STED) Microscopy”. In: Encyclopedia of Biophysics, Springer Berlin Heidelberg. po1: 10.1007/978-
3-642-16712-6_835.

Harwardt, M.-L. |. E., M. S. Schréder, Y. Li, S. Malkusch, P. Freund, et al. (2020). “Single-Molecule Super-
Resolution Microscopy Reveals Heteromeric Complexes of MET and EGFR upon Ligand Activation "
In: Int. J. Mol. Sci 21, p. 2803. DOI: 10.3390/1jms21082803.

Harwardt, M.-L. I. E., P. Young, W. M. Bleymiiller, T. Meyer, C. Karathanasis, et al. (2017). “Membrane
dynamics of resting and internalin B-bound MET receptor tyrosine kinase studied by single-molecule
tracking”. In: FEBS Open Bio 7, pp. 1422-1440. po1: 10.1002/2211-5463.12285.

143



12 References

Hasan, M. and M. R. El-Sakka (2018). “Improved BM3D image denoising using SSIM-optimized Wiener
filter”. In: EURASIP J. Img. Vid. Proc. 25. DOI: 10.1186/s13640-018-0264~-z.

Hass, H., K. Masson an dS. Wohlgemuth, V. Paragas, J. E. Allen, M. Sevecka, et al. (2017). “Predicting
ligand-dependent tumors from multi-dimensional signaling features”. In: NPJ Syst. Biol. Appl. 3, p. 27.
DOI: 10.1038/s41540-017-0030-3.

Haugsten, E. M., V. Sgrensen, M. K. Bosakova, G. A. de Souza, P. Krejci, et al. (2016). “Proximity
Labeling Reveals Molecular Determinants of FGFR4 Endosomal Transport”. In: J. Proteome Res. 15,
pp. 3841-3855. DOI: 10.1021/acs. jproteome.6b00652.

Haugsten, E. M., V. Sgrensen, A. Brech, S. Olsnen, and J. Wesche (2005). “Different intracellular trafficking
of FGF1 endocytosed by the four homologous FGF receptors”. In: J. Cell Sci. 118, p. 17. bO1: 10.1242/
jcs.02509.

He, K., X. Zhang, S. Ren, and J. Sun (2015). “Deep Residual Learning for Image Recognition”. In: IEEE
CVPR. DOI1: 10.1109/CVPR.2016.906.

Heel, M. van, W. Keegstra, W. Schutter, and E. F. J. van Bruggen (1982). “Arthropod hemocyanin studies
by image analysis”. In: Life Chem. Rep. Suppl. 1, pp. 69-73.

Heilemann, M. (2010). “Fluorescence microscopy beyond the diffraction limit". In: J. Biotechnol. 149,
pp. 243-251. por1: 10.1016/j.jbiotec.2010.03.012.

Heilemann, M., S. van de Linde, M. Schiittpelz, R. Kasper, B. Seefeldt, et al. (2008). “Subdiffraction-
Resolution Fluorescence Imaging with Conventional Fluorescent Probes”. In: Angew. Chem. Int. Ed. 47,
pp. 6172-6176. DOI: 10.1002/anie.200802376.

Heilemann, M., E. Margeat, R. Kasper, M. Sauer, and P. Tinnefeld (2005). “Carbocyanine Dyes as Efficient
Reversible Single-Molecule Optical Switch”. In: J. Am. Chem. Soc. 127, pp. 3801-3806. DOT: 10.1021/
j2044686x.

Heilker, R., L. Zemanova, M. J. Valler, and G. U. Nienhaus (2005). "“Confocal fluorescence microscopy for
high-throughput screening of G-protein coupled receptors”. In: Curr. Med. Chem. 12, pp. 2551-2559.
DOI: 10.2174/092986705774370637.

Hein, B., K. I. Willig, and S. W. Hell (2008). “Stimulated emission depletion (STED) nanoscopy of a
fluorescent protein-labeled organelle inside a living cell”. In: Proc. Natl. Acad. Sci. 105, pp. 14271-
14276. por: 10.1073/pnas.0807705105.

Hell, S. W. (2007). “Far-Field Optical Nanoscopy”. In: Science 316, pp. 1153-1158. por: 10. 1126/
science.1137395.

Hell, S. W. and J. Wichmann (1994). “Breaking the diffraction resolution limit by stimulated emission:
stimulated-emission-depletion fluorescence microscopy”. In: Opt. Lett. 19, pp. 780-782. DOI: 10.1364/
0L.19.000780.

Hershko, E., L. E. Weiss, T. Michaeli, and Y. Shechtman (2019). “Multicolor localization microscopy and
point-spread-function engineering by deep learning”. In: Opt. Express 27, p. 6158. DOI: 10.1364/0E.
27.006158.

Hinton, G., N. Srivastava, A. Krizhevsky, |. Sutskever, and R. Salakhutdinov (2012). “Improving neural
networks by preventing co-adaptation of feature detectors”. In: arXiv. DOI: 10.48550/arXiv. 1207 .
0580.

Hochreiter, S. and J. Schmidhuber (1997). “Long short-term memory". In: Neural Comput. 9, pp. 1735-
1780. por: 10.1162/neco.1997.9.8.1735.

Hornik, K., M. Stinchcombe, and H. White (1989). “Multilayer Feedforward Networks are Universal Ap-
proximators”. In: Neural netw. 2, pp. 359-366. DOI: 10.1016/0893-6080(89) 90020-8.

Hotta, J.-I., E. Fron, P. Dedecker, K. P. F. Janssen, C. Li, et al. (2010). “Spectroscopic Rationale for Effi-
cient Stimulated-Emission Depletion Microscopy Fluorophores”. In: J. Am. Chem. Soc. 132, pp. 5021-
5023. por: 10.1021/3ja100079w.

144



12 References

Huang, F., S. L. Schwartz, J. M. Byras, and K. A. Lidke (2011). “Simultaneous multiple-emitter fitting for
single molecule super-resolution imaging”. In: Biomed. Opt. Express 2, pp. 1377-1393. DOI: 10.1364/
BOE.2.001377.

Hubicka, K. and J. Janczura (2020). “Time-dependent classification of protein diffusion types: A statistical
detection of mean-squared-displacement exponent transitions”. In: Phys. Rev. 101, p. 022107. pot:
10.1103/PhysRevE. 101.022107.

loffe, S. and C. Szegedy (2015). “Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift”. In: arXiv. DOI: 10.48550/arXiv.1502.03167.

Ivanov, I. E., E. Hirata-Miyasaki, T. Chandler, R. C. Kovilakam, Z. Liu, et al. (2023). “Mantis: high-
throughput 4D imaging and analysis of the molecular and physical architecture of cells”. In: bioRxiv.
DOI: 10.1101/2023.12.19.572435.

Jaccard, P. (1912). “The Distribution of the Flora in the Alpine Zone". In: New Phytol. 11, pp. 37-50.
DOI: 10.1111/5.1469-8137.1912.tb05611 .x.

Jang, S., K. N. Narayanasamy, J. V. Rahm, A. Saguy, J. Kompa, et al. (2023). “Neural network-assisted
single-molecule localization microscopy with a weak-affinity protein tag”. In: Biophys. Reports 3, p. 100123.
DOI: 10.1016/j.bpr.2023.100123.

Jagaman, K., D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, et al. (2008). “Robust single-particle tracking
in live-cell time-lapse sequences”. In: Nat. Methods 5, pp. 695-702. DOI: 10.1038/NMETH. 1237.

Jiang, Y., H. Sha, S. Liu, P. Qin, and Y. Zhang (2023). “AutoUnmix: an autoencoder-based spectral
unmixing method for multi-color fluorescence microscopy imaging”. In: bioRxiv. DOI: 10.1101/2023.
05.30.542836.

Jin, L., B. Liu, F. Zhao, S. Hahn, B. Dong, et al. (2020). “Deep learning enables structured illumination
microscopy with low light levels and enhanced speed”. In: Nat. Comm. 11, p. 1934. por: 10.1038/
s41467-020-15784-x.

Jo, Y., H. Cho, W. S. Park, G. Kim, D. Ryu, et al. (2021). “Label-free multiplexed microtomography of
endogenous subcellular dynamics using generalizable deep learning”. In: Nat. Cell Biol. 23, pp. 1329-
1337. por: 10.1038/s41556-021-00802-x.

Jungmann, R., M. S. Avendafio, J. B. Woehrstein, M. Dai, W. M. Shih, et al. (2014). “Multiplexed
3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT". In: Nat. Methods 11,
pp. 313-317. DOI: 10.1038/nmeth.2835.

Jungmann, R., C. Steinhauer, M. Scheible, A. Kuzyk, P. Tinnefeld, et al. (2010). “Single-Molecule Kinetics
andSuper-Resolution Microscopy by Fluorescencelmaging of Transient Binding on DNA Origami”. In:
Nano Lett. 10, pp. 4756-4761. pDOI: 10.1021/n1103427w.

Karslake, J. D., E. D. Donarski, S. A. Shelby, L. M. Demey, V. J. RiRita, et al. (2021). “SMAUG:
Analyzing single-molecule tracks with nonparametric Bayesian statistics”. In: Methods 193, pp. 16-26.
DOI: 10.1016/j.ymeth.2020.03.008.

Kasha, M. (1950). “Characterization of electronic transitions in complex molecules”. In: Discuss. Faraday
Soc. 9, p. 14. DOI: 10.1039/DF9500900014.

Kefer, P., F. Igbal, M. Locatelli, J. Lawrimore, M. Zhang, et al. (2021). “Performance of deep learning
restoration methods for the extraction of particle dynamics in noisy microscopy image sequences”. In:
Mol. Biol. Cell 32, pp. 903-914. DOT: 10.1091/mbc.E20-11-06809.

Keppler, A., M. Kindermann, S. Gendreizig, H. Pick, H. Vogel, et al. (2004). “Labeling of fusion proteins
of 06 -alkylguanine-DNA alkyltransferase with small molecules in vivo and in vitro". In: Methods 32,
pp. 437-444. Do1: 10.1016/j.ymeth.2003.10.007.

Khater, I. M., I. R. Nabi, and G. Hamarneh (2020). “A Review of Super-Resolution Single-Molecule Lo-
calization Microscopy Cluster Analysis and Quantification Method”. In: Patterns 1, p. 100038. DOT:
10.1016/j.patter.2020.100038.

145



12 References

Kim, B., M. Han, H. Shim, and J. Baek (2019a). “A performance comparison of convolutional neural
network-based image denoising methods: The effect of loss functions on low-dose CT images”. In: Med.
Phys. 46, pp. 3906-3923. DOI: 10.1002/mp. 13713.

Kim, T., S. Moon, and K. Xu (2019b). “Information-rich localization microscopy through machine learning”.
In: Nat. Comm. 10, p. 1996. DOI: 10.1038/s41467-019-10036-z.

Kim, Y. C. and K.-L. Guan (2015). “mTOR: a pharmacologic target for autophagy regulation”. In: J. Clin.
Invest. 125, pp. 25—-32. DOI: 10.1172/JCI73939.

Kingma, D. P. and J. Ba (2014). “Adam: A Method for Stochastic Optimization”. In: arXiv. DOL: 10.
48550/arXiv.1412.6980.

Klar, T. A., S. Jakobs, M. Dyba, A. Egner, and S. W. Hell (2000). “Fluorescence microscopy with diffraction
resolution barrier broken by stimulated emission”. In: Proc. Natl. Acad. Sci. 97, pp. 8206-8210. DOI:
10.1073/pnas.97.15.8206.

Klein, J. S., P. N. P. Gnanapragasam, R. P. Galimidi, C. P. Foglesong, A. P. West, et al. (2009). “Examina-
tion of the contributions of size and avidityto the neutralization mechanisms of the anti-HIV antibodies
b12 and 4E10". In: Proc. Soc. Exp. Biol. Med. 106, pp. 7385-7390. DOI: 10.1073/pnas.0811427106.

Knuth, D. E. (1968). The Art of Computer Programming. 1st ed. available online. Boston: Addison-Wesley.

Kéhler, A. (1893). “Ein neues Beleuchtungsverfahren fiir mikrophotographische Zwecke". In: Z. Wiss.
Mikrosk. 10, pp. 433-440.

Kolb, H. C., M. G. Finn, and K. B. Sharpless (2001). “Click Chemistry: Diverse Chemical Function from
a Few Good Reactions”. In: Angew. Chem. Int. Ed. Engl. 40, pp. 2004-2021. poI: 10.1002/1521~
3773(20010601)40:11<2004: : AID-ANIE2004>3.0.C0;2-5.

Koélln, L. S., O. Salem, J. Valli, C. G. Hansen, and G. McConnell (2022). “Label2label: Training a neu-
ral network to selectively restore cellular structures in fluorescence microscopy”. In: J. Cell Sci. 135,
j€s258994. por: 10.1242/jcs.258994.

Kompa, J., J. Bruins, M. Glogger, J. Wilhelm, M. S. Frei, et al. (2023). “Exchangeable HaloTag Ligands
for Super-Resolution Fluorescence Microscopy”. In: J. Am. Chem. Soc. 145, pp. 3075-3083. DOI: 10.
1021/jacs.2c11969.

Krizhevsky, A., |. Sutskever, and G. E. Hinton (2012). ImageNet Classification with Deep Convolutional
Neural Networks. Red Hook: Curran Associates, Inc.

Krogh, A. and J. A. Hertz (1991). “A simple weight decay can improve generalization". In: NeurlPS 8,
pp. 950-957. DOI: 10.5555/2986916.2987033.

Krull, A., T.-O. Buchholz, and F. Jug (2018). “Noise2Void - Learning Denoising from Single Noisy Images”.
In: arXiv. DOI: 10.48550/arXiv.1811.10980.

Kuhn, H. (1949). “A Quantum-Mechanical Theory of Light Absorption of Organic Dyes and Similar Com-
pounds”. In: J. Chem. Phys. 17, pp. 1192-1212. DOI: 10.1063/1.1747143.

Kusimi, A. and Y. Sako (1996). “Cell surface organization by the membrane skeleton”. In: Curr. Opin. Cell
Biol. 8, pp. 566-574. DOI: 10.1016/s0955-0674(96)80036-6.

Laine, R. F., G. Jacquemet, and A. Krull (2021). “Imaging in focus: An introduction to denoising bioimages
in the era of deep learning”. In: Int. J. Biochem. Cell Bio. 140, p. 106077. DOI: 10.1016/j.biocel.
2021.106077.

Laine, R. F., K. L. Tosheva, N. Gustafsson, R. D. M. Gray, P. Almada, et al. (2019). “NanoJ: a high-
performance open-source super-resolution microscopy toolbox”. In: J. Phys. D: Appl. Phys. 52, p. 163001.
DOI: 10.1088/1361-6463/ab0261.

Lakowicz, J. (2006). Principles of fluorescence spectroscopy. 3rd ed. New York: Springer. DOI: 10.1007/
978-0-387-46312-4.

Lambert, J. H. (1852). Photometria, sive de mensura et gradibus luminis, colorum et umbrae. Augsburg:
Klett. DOI: 10.3931/e-rara-9488.

146



12 References

LeCun, Y., Y. Bengio, and G. Hinton (2015). “Deep learning”. In: Nature 521, pp. 436-444. poI: 10.
1038/nature14539.

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner (1998). “Gradient-Based Learning Applied to Document
Recognition”. In: Proc. IEEE 86, pp. 2278-2324. DOI: 10.1109/5.726791.

Lehtinen, J., J. Munkberg, J. Hasselgren, S. Laine, T. Karras, et al. (2018). “Noise2Noise: Learning Image
Restoration without Clean Data”. In: arXiv. DOT: 10.48550/arXiv.1803.04189.

Lemmon, M. A. and J. Schlessinger (2010). “Cell signaling by receptor-tyrosine kinases”. In: Cell 141,
pp. 1117-1134. pot: 10.1016/j.¢cel1.2010.06.011.

Lequyer, J., R. Philip, A. Sharma, W.-H. Hsu, and L. Pelletier (2022). “A fast blind zero-shot denoiser”.
In: Nat. Mach. Intell. 4, pp. 953-963. DOI: 10.1038/s42256-022-00547-8.

Levet, F., E. Hosy, A. Kechkar, C. Butler, A. Beghin, et al. (2015). “SR-Tesseler: a method to segment
and quantify localization-based super-resolution microscopy data”. In: Nat. Methods 12, pp. 1065-1071.
DOI: 10.1038/nmeth.3579.

Li, H., A. Kadav, |. Durdanovic, H. Samet, and H. P. Graf (2017). “Pruning Filters for Efficient ConvNets".
In: arXiv. DOI: 10.48550/arXiv.1608.08710.

Li, N., G.-S. Xiang, H. Dokainish, K. Ireton, and L. A. Elferink (2005). “The Listeria Protein Internalin
B Mimics Hepatocyte Growth Factor-Induced Receptor Trafficking”. In: Traffic 6, pp. 459-473. DOI:
10.1111/3.1600-0854.2005.00290. x.

Li, Y., L. Shang, and G. U. Nienhaus (2016). “Super-resolution imaging-based single particle tracking
reveals dynamics of nanoparticle internalization by live cells”. In: Nanoscale 8, p. 7423. pDOI: 10.1039/
c6nr01495.

Liu, S., P. Hoess, and J. Ries (2022a). “Super-Resolution Microscopy for Structural Cell Biology". In: Annu.
Rev. Biophys. 51, pp. 301-326. DOI: 10.1146/annurev-biophys-102521-112912.

Liu, T., J. Kompa, J. Ling, N. Lardon, Y. Zhang, et al. (2024). “Gentle rhodamines for live-cell fluorescence
microscopy”. In: bioRxiv. DOI: 10.1101/2024.02.06.579089.

Liu, T., T. Stephan, P. Chen, J. Keller-Findeisen, J. Chen, et al. (2022b). “Multi-color live-cell STED
nanoscopy of mitochondria with a gentle inner membrane stain”. In: Proc. Natl. Acad. Sci. USA 119,
€2215799119. pot1: 10.1073/pnas.2215799119.

Liu, Y.-L., C.-K. Chou, M. Kim, R. Vasiht, Y.-A. Kuo, et al. (2019). "“Assessing metastatic potential of
breast cancer cells based on EGFR dynamics”. In: Sci. Rep. 9, p. 3395. DOI: 10.1038/s41598-018~
37625-0.

Liu, Z., E. Hirata-Miyasaki, C. Foley, J. Rahm, S. Pradeep, et al. (2023). “Robust virtual staining of cellular
landmarks in high-throughput correlative microscopy”. In: ASCB.

Livingstone, D. J. (2010). Artificial Neural Networks Methods and Applications. Totowa: Humana Press.
DOI: 10.1007/978-1-60327-101-1.

Lopes, F. B., S. Ballint, S. Valvo, J. H. Felce, E. M. Hessel, et al. (2017). “Membrane nanoclusters of
FcyRI segregate from inhibitory SIRPa upon activation of human macrophages”. In: J. Cell. Biol. 4,
pp. 1123-1141. por: 10.1083/jcb.201608094.

Los, G. V., L. P. Encell, M. G. McDougall, D. D. Hartzell, N. Karassina, et al. (2008). “HaloTag: A Novel
Protein Labeling Technology for Cell Imaging and Protein Analysis”. In: ACS Chem. Biol. 3, pp. 373-
382. poOI: 10.1021/cb800025k.

Loshchilov, I. and F. Hutter (2017). “Decoupled Weight Decay Regularization”. In: arXiv. DOI: 10.48550/
arXiv.1711.05101.

Low-Nam, S. T., K. A. Lidke, P. J. Cutler, R. C. Roovers, P. M. P. van Bergen en Henegouwen, et al.
(2011). “Single-Particle Tracking Reveals Switching of the HIV Fusion Peptide between Two Diffusive
Modes in Membranes”. In: Na. Struct. Mol. Biol. 18, pp. 1244-1249. pOI: 10.1038/nsmb.2135.

147



12 References

Lu, M., C. N. Christensen, J. M. Weber, T. Konno, N. F. Laubli, et al. (2023). “ERnet: a tool for the
semantic segmentation and quantitative analysis of endoplasmic reticulum topology”. In: Nat. Methods
20, pp. 569-579. DOI: 10.1038/s41592-023-01815-0.

Mahecic, D., W. L. Stepp, C. Zhang, J. Griffié, M. Weigert, et al. (2022). “Event-driven acquisition for
content-enriched microscopy”. In: Nat. Methods 19, pp. 1262-1267. DOI: 10.1038/s41592- 022~
01589-x.

Maier-Hein, L., A. Reinke, R. Godau, M. D. Tizabi, F. Buettner, et al. (2024). “Metrics reloaded: recom-
mendations for image analysis validation”. In: Nat. Methods 21, pp. 195-212. DOI: 10.1038/s41592~
023-02151-z.

Majumder, P., K. Roy, S. Bagh, and D. Mukhopadhyay (2019). “Receptor tyrosine kinases (RTKs) conso-
ciate in regulatory clusters in Alzheimer’s disease and type 2 diabetes”. In: Mol. Cell. Biochem. 459,
pp. 171-182. por: 10.1007/s11010-019-03560-5.

Malkusch, S., U. Endesfelder, J. Mondry, M. Gelléri, P. J. Verveer, et al. (2012). “Coordinate-based
colocalization analysis of single-molecule localization microscopy data”. In: Histochem. Cell Biol. 137,
pp. 1-10. por: 10.1007/s00418-011-0880-5.

Malkusch, S., J. V. Rahm, M. S. Dietz, M. Heilemann, J.-B. Sibarita, et al. (2022). “Receptor tyrosine
kinase MET ligand-interaction classified via machine learning from single-particle tracking data”. In:
Mol. Biol. Cell 33, 33(6):ar60. DOI: 10.1091/mbc.E21-10-0496.

Manley, S., J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, et al. (2008). “ High-density Mapping
of Single-Molecule Trajectories with Photoactivated Localization Microscopy”. In: Nat. Methods 5,
pp. 155-157. DOI: 10.1038/nmeth.1176.

Manzo, C. and M. F. Garcia-Parajo (2015). “A review of progress in single particle tracking: from methods
to biophysical insights”. In: Rep. Prog. Phys. 78, p. 124601. DOI: 10.1088/0034-4885/78/12/124601.

Marchetti, L., A. Callegari, S. Luin, G. Signore, A. Viegi, et al. (2013). “Ligand signature in the membrane
dynamics of single TrkA receptor molecules”. In: J. Cell Sci. 126, pp. 4445-4456. DOI: 10.1242/jcs.
129916.

Marsh, R. J., |. Costello, M.-A. Gorey, D. Ma, F. Huang, et al. (2021). “Sub-diffraction error mapping for
localisation microscopy images”. In: Nat. Comm. 12, p. 5611. DOI: 10.1038/s41467-021-25812~z.
Martens, K. J. A., B. Turkowdy, J. Hohlbein, and U. Endesfelder (2024). “Temporal analysis of relative
distances (TARDIS) is a robust, parameter-free alternative to single-particle tracking”. In: Nat. Methods.

DOI: 10.1038/s41592-023-02149-7.

Matz, M. V., A. F. Fradkov, Y. A. Labas, A. P. Savitsky, A. G. Zaraisky, et al. (1999). “Fluorescent proteins
from nonbioluminescent Anthozoa species”. In: Nat. Biotechnol. 17, pp. 969-973. DOI: 10.1038/13657.

Mauvezin, C., P. Nagy, G. Juhdsz, and T. P. Neufeld (2015). “Autophagosome-lysosome fusion is inde-
pendent of V-ATPase-mediated acidification”. In: Nat. Comm. 6, p. 7007. DOI: 10.1038/ncomms8007.

McCulloch, W. S. and W. Pitts (1943). “A logical calculus of the ideas immanent in nervous activity”. In:
Bull. Math. Biol. 5, pp. 115-133. por: 10.1007/BF02478259.

McDole, K., L. Guignard, F. Amata nd A. Berger, G. Malandain, L. A. Royer, et al. (2018). “In Toto
Imaging and Reconstruction of Post-Implantation Mouse Development at the Single-Cell Level”. In: Cell
175, pp. 859-976. DOI: 10.1016/3.cell.2018.09.031.

Mikolov, T. (2012). “Statistical Language Models based on Neural Networks". In: Brno University of
Technology.

Milletari, F., N. Navab, and S.-A. Ahmadi (2016). “V-Net: Fully Convolutional Neural Networks for Volu-
metric Medical Image Segmentation”. In: arXiv. DOT: 10.48550/arXiv.1606.04797.

Min, J., C. Vonesch, H. Kirshner, L. Carlini, N. Olivier, et al. (2015). “FALCON: fast and unbiased
reconstruction of high-density super-resolution microscopy data”. In: Sci. Rep. 4, p. 4577. DOIL: 10.
1038/srep04577.

148



12 References

Méckl, L., D. C. Lamb, and C. Briuchle (2014). “Super-resolved Fluorescence Microscopy: Nobel Prize in
Chemistry 2014 for Eric Betzig, Stefan Hell, and William E. Moerner”. In: Angew. Chem. Int. Ed. 53,
pp. 13972-13977. pDo1: 10.1002/anie.201410265.

Maockl, L., A. R. Roy, and W. E. Moerner (2020). “Deep learning in single-molecule microscopy: fun-
damentals, caveats, and recent developments”. In: Biomed. Opt. Express 11, pp. 1633-1661. DOTI:
10.1038/s41467-021-22518-0.

Mollazade, M., T. Tabarin, P. R. Nicovich, A. Soeriyadi, D. J. Nieves, et al. (2017). “Can single molecule lo-
calization microscopy be used to map closely spaced RGD nanodomains?” In: PLOS ONE 12, e0180871.
DOI: 10.1371/journal.pone.0180871.

Mortensen, K. I, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg (2010). “Optimized localization analysis
for single-molecule tracking and super-resolution microscopy”. In: Nat. Methods 7, pp. 337-381. DOLI:
10.1038/nmeth. 1447.

Nair, V. and G. E. Hinton (2010). “Rectified Linear Units Improve Restricted Boltzmann Machines”. In:
ICML, pp. 807-814.

Narayanasamy, K. K., J. V. Rahm, S. Tourani, and M. Heilemann (2022). “Fast DNA-PAINT imaging
using a deep neural network”. In: Nat. Commun. 13, p. 5047. DOI: 10.1038/841467-022-32626-0.
Narayanasamy, K. K., A. Stojic, Y. Li, S. Sass, M. R. Hesse, et al. (2021). “Visualizing Synaptic Multi-
Protein Patterns of Neuronal Tissue With DNA-Assisted Single-Molecule Localization Microscopy”. In:

Front. Synaptic Neurosci. 13, p. 671288. DOT: 10.3389/fnsyn.2021.671288.

Nehme, E., D. Freedman, R. Gordon, B. Ferdman, L. E. Weiss, et al. (2020). “DeepSTORM3D: dense
3D localization microscopy and PSF design by deep learning”. In: Nat. Methods 17, pp. 734-740. DOT:
10.1038/s41592-020-0853-5.

Nehme, E., L. E. Weiss, T. Michaeli, and Y. Shechtman (2018). “Deep-STORM: super-resolution single-
molecule microscopy by deep learning”. In: Optica 5, pp. 458—464. DOT: 10.1364/0PTICA.5.000458.

Nesterov, Y. (1983). “A method for unconstrained convex minimization problem with the rate of conver-
gence o(1/k?)". In: Doklady ANSSSR (translated as Soviet. Math. Docl.) 269, pp. 543-547.

Nguyen, T. L., E. R. Polanco, A. N. Patananan, T. A. Zangle, and M. A. Teitell (2020). "Cell viscoelasticity
is linked to fluctuations in cell biomass distributions”. In: Sci. Reports 10, p. 7403. por: 10.1038/
541598-020-64259-y.

Nguyen, T. L., S. Pradeep, R. L. Judson-Torres, J. Reed, M. A. Teitell, et al. (2022). “Quantitative Phase
Imaging: Recent Advances and Expanding Potential in Biomedicine”. In: ACS Nano 16, pp. 11516-
11544, por: 10.1021/acsnano.1c11507.

Niederauer, C., C. nguyen, M. Wang-Henders, J. Stein, S. Strauss, et al. (2023). “Dual-color DNA-PAINT
single-particle tracking enables extended studies of membrane protein interactions”. In: Nat. Comm. 14,
p. 4345. DOIL: 10.1038/s41467-023-40065-8.

Nomarski, G. M. (1955). "Differential microinterferometer with polarized waves”. In: J. Phys. Radium 16,
9S.

Odell, I. D. and D. Cook (2013). “Immunofluorescence Techniques”. In: Proc. Soc. Exp. Biol. Med. 133,
e4. DOI: 10.1038/jid.2012.455.

Okabe, A., B. Boots, K. Sugihara, and S. N. Chiu (2000). Spatial Tessellations: Concepts and Applications
of Voronoi Diagrams. 2nd ed. Chichester: Wiley.

Ori, A., M. C. Wilkinson, and D. G. Fernig (2008). “The heparanome and regulation of cell function:
structures, functions and challenges”. In: Front. Biosci. 13, pp. 4309-4338. DOI: 10.2741/3007.

Orré, T., A. Joly, Z. Karatas, B. Kastberger, C. Cabriel, et al. (2021). “Molecular motion and tridimensional
nanoscale localization of kindlin control integrin activation in focal adhesions”. In: Nat. Comm. 12,
p. 3104. por: 10.1038/s41467-021-23372-w.

149



12 References

Ott, M., Y. Shai, and G. Haran (2013). “Single-Particle Tracking Reveals Switching of the HIV Fusion
Peptide between Two Diffusive Modes in Membranes”. In: J. Phys. Chem. 117, pp. 13308-13321. DOI:
10.1021/jp4039418.

Ounkomol, C., S. Seshamani, M. M. Maleckar, F. Collman, and G. R. Johnson (2018). “Label-free prediction
of three-dimensional fluorescence images from transmitted-light microscopy”. In: Nat. Methods 15,
pp. 917-920. DOI: 10.1038/541592-018-0111-2.

Ouyang, W., A. Aristov, M. Lelek, X. Hao, and C. Zimmer (2018). “Deep learning massively accelerates
super-resolution localization microscopy”. In: Nat. Biotechnol. 36, pp. 460-468. DOI: 10.1038/nbt .
4106.

Ouyang, W., F. Beuttenmueller, E. G6mez-de-Mariscal, C. Pape, T. Burke, et al. (2022). “Biolmage Model
Zoo: A Community-Driven Resource for Accessible Deep Learning in Biolmage Analysis". In: bioRxiv.
DOI: 10.1101/2022.06.07.495102.

Ovesny, M., P. Krizek, J. Borkovec, Z. Svindrych, and G. M. Hagen (2014). “ThunderSTORM: a com-
prehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging ".
Bioinformatics 30, pp. 2389-2390. pDOI: 10.1093/bioinformatics/btu202.

Pageon, S. V., P. R. Nicovich, M. Mollazade, T. Tabarin, and K. Gaus (2016). “Clus-DoC: a combined
cluster detection and colocalization analysis for single-molecule localization microscopy data”. In: Mol.
Biol. Cell 27, pp. 3627-3636. DOI: 10.1091/mbc.E16-07-0478.

Park, Y., C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, et al. (2010). “Measurement of red blood
cell mechanics during morphological changes”. In: Proc. Natl. Acad. Sci. USA 107, pp. 6731-6736. DOI:
10.1073/pnas.0909533107.

Park, Y., C. Depeursinge, and G. Popescu (2018). “Quantitative phase imaging in biomedicine”. In: Nat.
Photonics 12, pp. 578-589. DOI: 10.1038/s41566-018-0253-x.

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, et al. (2019). “PyTorch: An Imperative Style,
High-Performance Deep Learning Library”. In: Adv. Neural. Inf. Process. Syst. 32, pp. 8024-8035. DOI:
10.5555/3454287 .3455008.

Paul, M. D. and K. Hristova (2019). “The RTK Interactome: Overview and Perspective on RTK Hetero-
Interactions”. In: Chem Rev. 119, pp. 5881-5921. DOI: 10.1021/acs.chemrev.8b00467.

Pearson, K. (1895). “Notes on regression and inheritance in the case of two parents”. In: Proc. R. Soc.
Lond. 58, pp. 240-242.

Pereira, C. F., J. Rossy, D. M. Owen, J. Mak, and K. Gaus (2012). “HIV taken by STORM: Super-resolution
fluorescence microscopy of a viral infection”. In: Virol. J. 9, p. 84. DOI: 10.1186/1743-422X-9-84.
Persson, F., M. Lindén, C. Unoson, and J. EIf (2013). "Extracting intracellular diffusive states and transition
rates from single-molecule tracking data”. In: Nat. Methods 10, pp. 265-269. DOI: 10.1038/nmeth.

2367.

Pike, L. J. (2006). “Rafts defined: a report on the Keystone symposium on lipid rafts and cell function”.
In: J. Lipid. Res. 47, pp. 1597-1598. DOI: 10.1194/j1r.E600002-JLR200.

Planck, M. (1901). “Uber das Gesetz der Energieverteilung im Normalspectrum”. In: Annalen der Physik
309 (3), pp. 553-563. DOI: 10.1002/andp.19013090310.

Popescu, G. (2011). Quantitative Phase Imaging of Cells and Tissues. 1st ed. available online. New York:
McGraw-Hill.

Priessner, M., D. C. A. Gaboriau, A. Sheridan, T. Lenn, C. Garzon-Coral, et al. (2024). “Content-aware
frame interpolation (CAFI): deep learning-based temporal super-resolution for fast bioimaging”. In: Nat.
Methods 21, pp. 322-330. DOI: 10.1038/s41592-023-02138-w.

Qian, N. (1999). “On the momentum term in gradient descent learning algorithms”. In: Neural Netw. 12,
pp. 145-151. DOI: 10.1016/50893-6080(98)00116-6.

In:

150



12 References

Racine, V., A. Hertzog, J. Jouanneau, J. Salamero, C. Kervrann, et al. (2006). “Multiple-target tracking of
3D fluorescent objects based on simulated annealing”. In: IEEE Int. Symp. Biomed. Imaging, pp. 1020—
1023. por: 10.1109/ISBI.2006.1625094.

Rahm, J. V., A. Balakrishnan, M. Wehrheim, M. Glogger, M. Kaschube, et al. (2024). “Fast and long-time
tracking of ER nano-structural dynamics in living cells”. In: Manuscript in preparation.

Rahm, J. V., S. Malkusch, U. Endesfelder, M. S. Dietz, and M. Heilemann (2021). “Diffusion State
Transitions in Single-Particle Trajectories of MET Receptor Tyrosine Kinase Measured in Live Cells”. In:
Front. Comput. Sci. 3, p. 757653. DOT: 10.3389/fcomp.2021.757653.

— (2022). “Extraction of diffusion state transitions in single-particle tracking data of membrane receptors”.
In: SPIE BiOS 11967, p. 1196705. poI: 10.1117/12.2609681.

Raju, R., S. M. Palapetta, V. K. Sandhya, A. Sahu, A. Alipoor, et al. (2014). “A Network Map of FGF-
1/FGFR Signaling System”. In: J. Signal Transduct. 2014, p. 962962. DOI: 10.1155/2014/962962.
Ran, F. A., P. D. Hsu, J. Wright, V. Agarwala, D. A. Scott, et al. (2013). “Genome engineering using the

CRISPR-Cas9 system ". In: Nat. Protoc. 8, pp. 2281-2308. DOI: 10.1038/nprot.2013.143.

Rayleigh (1896). “On the theory of optical images, with special reference to the microscope”. In: Lond.
Edinb. Dublin philos. mag. 42, pp. 167-195. DOI: 10.1080/14786449608620902.

Reinhardt, S. C. M., L. A. Masullo, |. Baudrexel, P. R. Steen, R. Kowalewski, et al. (2023). “Angstrém-
resolution fluorescence microscopy”. In: Nature 617, pp. 711-716. DOI: 10.1038/s41586-023-05925~
9.

Reinke, A., M. D. Tizabi, M. Baumgartner, M. Eisenmann, D. Heckmann-Nétzel, et al. (2024). “Under-
standing metric-related pitfalls in image analysis validation”. In: Nat. Methods 21, pp. 182-194. DOLI:
10.1038/s41592-023-02150-0.

Requejo-Isidro, J. (2013). “Fluorescence nanoscopy. Methods and applications”. In: J. Chem. Biol. 6,
pp. 97-120. DOI: 10.1007/512154-013-0096-3.

Requena, B., S. Mas6, J. Bertran, M. Lewenstein, C. Manzo, et al. (2023). “Inferring pointwise diffusion
properties of single trajectories with deep learning”. In: Biophys. J. DOI: 10.1016/j.bpj.2023.10.015.

Resch-Genger, U., M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann (2008). “Quantum dots
versus organic dyes as fluorescent labels”. In: Nat. Methods 5, pp. 763—775. DOI: 10.1038/NMEtH. 1248.

Ripley, B. D. (1977). “Modelling Spatial Patterns”. In: J. R. Stat. Soc. Series B Methodol. 39, pp. 172-192.
DOIL: 10.1111/3j.2517-6161.1977.tb01615.x.

Robbins, H. and S. Monro (1951). “A Stochastic Approximation Method”. In: Ann. Math. Stat. 22, p. 400.
DOI: 10.1214/a0ms/1177729586.

Rocha-azevedo, B. da, S. Lee, A. Dasgupta, A. R. Vega, L. R. de Oliveria, et al. (2020). “Heterogeneity in
VEGF Receptor-2 Mobility and Organization on the Endothelial Cell Surface Leads to Diverse Models
of Activation by VEGF". In: Cell Rep. 32, p. 108187. DOI: 10.1016/j.celrep.2020.108187.

Ronneberger, O., P. Fischer, and T. Brox (2015). “U-Net: Convolutional Networks for Biomedical Image
Segmentation”. In: arXiv. DOI: 10.48550/arXiv.1505.04597.

Rosenblatt, F. (1957). “The perceptron — A perceiving and recognizing automaton”. In: CAL, pp. 85-60-1.
DOI: 10.1037/h0042519.

— (1958). “The perceptron: A probabilistic model for information storage and organization in the brain".
In: Physiol. Rev. 65, pp. 386—408. DOI: 10.1037/h0042519.

Rossier, O., V. Octeau, J.-B. Sibarita, C. Leduc, B. Tessier, et al. (2012). “Integrins 81 and (33 exhibit
distinct dynamic nanoscale organizations inside focal adhesions"”. In: Nat. Cell Biol. 14, pp. 1057-1067.
DOI: 10.1038/ncb2588..

Ruder, S. (2016). “An overview of gradient descent optimization algorithms”. In: arXiv. DOI: 10.48550/
arXiv.1609.04747.

151



12 References

Rumelhart, D. E., G. E. Hinton, and R. J. Wiliams (1986). “Learning representations by back-propagating
errors”. In: Nature 323, pp. 533-536. DOI: 10.1038/323533a0.

Rust, M. J., M. Bates, and X. Zhuang (2006). “Sub-diffraction-limit imaging by stochastic optical recon-
struction microscopy (STORM)". In: Nat. Methods 3, pp. 793-796. DOIL: 10.1038/nmeth929.

Saffman, P. G. and M. Delbriick (1975). “Brownian motion in biological membranes”. In: Proc. Nat. Acad.
Sci. USA 72, pp. 3111-3113. por: 10.1073/pnas.72.8.3111.

Sage, D., T.-A. Pham, H. Babcock, T. Lukes, T. Pengo, et al. (2019). “Neural network-assisted single-
molecule localization microscopy with a weak-affinity protein tag”. In: Nat. Methods 16, pp. 387-395.
DOI: 10.1038/s41592-019-0364-4.

Saguy, A., O. Alalouf, N. Opatovski, S. Jang, M. Heilemann, et al. (2023). “DBlink: dynamic localization
microscopy in super spatiotemporal resolution via deep learning”. In: Nat. Methods 20, pp. 1939-1948.
DOI: 10.1038/s41592-023-01966-0.

Sanderson, M. J., |. Smith, I. Parker, and M. D. Bootman (2014). “Fluorescence Microscopy". In: Cold
Spring Harb. Protoc. 10, pp. 1042-1065. DOI: 10.1101/pdb.top071795.

Saraiva, B. M., I. M. Cunha, A. D. Brito, G. Follain, R. Portela, et al. (2023). “NanoPyx: super-fast bioimage
analysis powered by adaptive machine learning”. In: bioRxiv. boI: 10.1101/2023.08.13.553080.

Sarrazin, S., W. C. Lamanna, and J. D. Esko (2011). “Heparan Sulfate Proteoglycans”. In: Cold Spring
Harb. Perspect. Biol. 3, a004952. DOI: 10.1101/cshperspect.a004952.

Sassano, M. L., B. Felipe-Abrio, and P. Agostinis (2022). “ER-mitochondria contact sites; a multifaceted
factory for Ca2+ signaling and lipid transport”. In: Front. Cell Dev. Biol. 10. DOI: 10.3389/fcell.
2022.988014.

Sauer, M. and M. Heilemann (2017). “Single-Molecule Localization Microscopy in Eukaryotes”. In: Chem.
Rev. 117, pp. 7478-7509. DOI: 10.1021/acs.chemrev.6b00667.

Saxton, M. J. and K. Jacobson (1997). “SINGLE-PARTICLE TRACKING: Applications to Membrane Dy-
namics”. In: Annu. Rev. Biophys. Biomol. Struct. 26, pp. 373-399. DOI: 10.1146/annurev.biophys.
26.1.373.

Saxton, W. O. and W. Baumeister (1982). “The correlation averaging of a regularly arranged bacterial cell
envelope protein”. In: J. Microsc. 127, pp. 127-138. poI: 10.1111/j.1365-2818.1982.tb00405. x.
Schindelin, J., |. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, et al. (2012). “Fiji: an open-source

platform for biological-image analysis”. In: Nat. Methods 9, pp. 676—682. DOI: 10.1038/nmeth.20109.

Schmidt, U., M. Weigert, C. Broaddus, and G. Myers (2020). “Cell Detection with Star-convex Polygons”.
In: arXiv. DOI: 10.48550/arXiv.1806.03535.

Schnitzbauer, J., M. T. Strauss, T. Schlichthaerle, F. Schueder, and R. Jungmann (2017). “Super-resolution
microscopy with DNA-PAINT". In: Nat. Protoc. 12, pp. 1198-1228. DOI: 10.1038/nprot.2017.024.

Schréder, M. (2021). “Thesis: Spatial organization of fibroblast growth factor receptors in the plasma
membrane of cells investigated by DNA-assisted single-molecule super-resolution microscopy”. In: Goethe
University Frankfurt.

Schréder, M., M.-L. I. E. Harwardt, J. V. Rahm, Y. Li, P. Freund, et al. (2021). “Imaging the fibroblast
growth factor receptor network on the plasma membrane with DNA-assisted single-molecule super-
resolution microscopy”. In: Methods 193, pp. 49-54. DOI: 10.1016/j.ymeth.2020.05.004.

Schueder, F., J. Stein, F. Stehr, A. Auer, B. Sperl, et al. (2019). “An order of magnitude faster DNA-PAINT
imaging by optimized sequence design and buffer conditions”. In: Nat. Methods 16, pp. 1101-1104. DOT:
10.1038/s41592-019-0584-7.

Shah, Z. H., M. Miiller, T.-C. Wang, P. M. Scheidig, A. Schneider, et al. (2021). “Deep-learning based
denoising and reconstruction of super-resolution structured illumination microscopy images”. In: Photon.
Res. 9, B168-B181. por: 10.1364/PRJ.416437.

152



12 References

Shalev-Shwartz, S., Y. Singer, N. Srebro, and A. Cottor (2010). “Pegasos: Primal Estimated sub-GrAdient
SOlver for SVM". In: Math. Program. 127, pp. 3-30. DOI: 10.1007/s10107-010-0420-4.

Shaner, N. C., R. E. Campbell, P. A. Steinbach, B. N. G. Giepmans, A. E. Palmer, et al. (2004). “Improved
monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent
protein”. In: Nat. Biotechnol. 22, pp. 1567-1572. DOI: 10.1038/nbt1037.

Sharonov, A. and R. M. Hochstrasser (2006). “Wide-field subdiffraction imaging by accumulated binding of
diffusing probes”. In: Proc. Natl. Acad. Sci. 103, pp. 18911-18916. DOI: 10.1073/pnas.0609643104.

Shen, H., L. J. Tauzin, R. Baiyasi, W. Wang, N. Moringo, et al. (2017). “Single Particle Tracking: From
Theory to Biophysical Applications”. In: Chem. Rev. 117, pp. 7331-7376. DOIL: 10.1021/acs.chemrev.
6b00815.

Shimomura, O., F. H. Johnson, and Y. Saiga (1962). “Extraction, purification and properties of aequorin,
a bioluminescent protein from the luminous hydromedusan”. In: J. Cell Comp. Physiol. 59, pp. 223-239.
DOIL: 10.1002/jcp.1030590302.

Shorten, C. and T. M. Khoshgoftaar (2019). “A survey on Image Data Augmentation for Deep Learning”.
In: J. Big Data 6, p. 60. DOI: 10.1186/s40537-019-0197-0.

Sibarita, J.-B. (2014). “High-density single-particle tracking: quantifying molecule organization and dy-
namics at the nanoscale”. In: Histonchem. Cell. Biol. 141, pp. 587-595. DOI: 10.1007/s00418-014~
1214-1.

Simonyan, K. and A. Zisserman (2014). “Very Deep Convolutional Networks for Large-Scale Image Recog-
nition”. In: arXiv. DOI: 10.48550/arXiv.1409.1556.

Singer, S. J. and G. L. Nicolson (1972). “The fluid mosaic model of the structure of cell membranes”. In:
Science 175, pp. 720-731. DO1: 10.1126/science.175.4023.720.

Smith, L. N. (2017). “Cyclical Learning Rates for Training Neural Networks". In: arXiv. DOI: 10.48550/
arXiv.1506.01186.

Sograte-Idrissi, S., N. Oleksiievets, S. Isbaner, M. Eggert-Martinez, J. Enderlein, et al. (2019). “Nanobody
Detection of Standard Fluorescent Proteins Enables Multi-Target DNA-PAINT with High Resolution
and Minimal Displacement Errors”. In: Cells 8, p. 48. DOI: 10.3390/cel1s8010048.

Sokolova, M., N. Japkowicz, and S. Szpakowicz (2006). “Beyond Accuracy, F-Score and ROC: A Family of
Discriminant Measures for Performance Evaluation”. In: Adv. in Art. Intell. 4304, pp. 1015-1021. DOI:
10.1007/11941439_114.

Sgrensen, T. (1948). “A method of establishing groups of equal amplitude in plant sociology based on
similarity of species and its application to analyses of the vegetation on Danish commons”. In: K.
Dansk. Vidensk. Selsk. Skr. 5, pp. 1-34.

Soto, J. M., J. A. Rodrigo, and T. Alieva (2017). “Label-free quantitative 3D tomographic imaging for
partially coherent light microscopy”. In: Opt. Express 25, pp. 15699-15712. por: 10.1364/0E.25.
015699.

Spahn, C., J. B. Grimm, L. D. Lavis, M. Lampe, and M. Heilemann (2019). “Whole-Cell, 3D, and Multicolor
STED Imaging with Exchangeable Fluorophores”. In: Nano Lett. 19, pp. 500-505. DOI: 10.1021/acs.
nanolett.8b04385.

Speiser, A., L.-R. Miiller, P. Hoess, U. Matti, C. J. Obara, et al. (2021). “Deep learning enables fast
and dense single-molecule localization with high accuracy”. In: Nat. Methods 18, pp. 1082-1090. DOTI:
10.1038/s41592-021-01236-x.

Stallinga, S. and B. Rieger (2012). “The effect of background on localization uncertainty in single emitter
imaging". In: IEEE Int. Symp. Biomed. Imaging, pp. 988-991. DOI: 10.1109/ISBI.2012.6235723.
Steffens, H., W. Wegner, and K. |. Willig (2020). “In vivo STED microscopy: A roadmap to nanoscale
imaging in the living mouse”. In: Methods 174, pp. 42-48. DOIL: 10.1016/j.ymeth.2019.05.020.

153



12 References

Stehr, F., J. Stein, J. Bauer, C. Niederauer, R. Jungmann, et al. (2021). “Tracking single particles for
hours via continuous DNA-mediated fluorophore exchange”. In: Nat. Comm. 12, p. 4432. DOI: 10.
1038/841467-021-24223-4.

Stockhammer, A. and F. Bottanelli (2021). “Appreciating the small things in life: STED microscopy in
living cells”. In: J. Phys. D: Appl. Phys. 54, p. 033001. Do1: 10.1088/1361-6463/abac81.

Stokes, G. G. (1852). “On the change of refrangibility of light”. In: Phil. Trans. R. Soc. 142, pp. 463-562.
DOI: 10.1098/rst1.1852.0022.

Stone, M. B., S. A. Shelby, and S. L. Veatch (2017). “Super-Resolution Microscopy: Shedding Light on
the Cellular Plasma Membrane”. In: Chem. Rev. 117, pp. 7457-7477. DOIL: 10.1021/acs . chemrev.
6b00716.

Strauss, S. and R. Jungmann (2020). “Up to 100-fold speed-up and multiplexing in optimized DNA-
PAINT”. In: Nat. Methods 17, pp. 789-791. DOI: 10.1038/s41592-020-0869~-x.

Stringer, C., T. Wang, M. Michaelos, and M. Pachitariu (2021). “Cellpose: a generalist algorithm for
cellular segmentation”. In: Nat. Methods 18, pp. 100-106. DOI: 10.1038/s41592-020-01018~x.
Strubell, E., A. Ganesh, and A. McCallum (2023). “Energy and Policy Considerations for Deep Learning

in NLP". In: arXiv. DOI: 10.48550/arXiv.1906.02243.

Subach, F. V., G. H. Patterson, M. Renz, J. Lippincott-Schwartz, and V. V. Verkhusha (2010). “Bright
Monomeric Photoactivatable Red Fluorescent Protein for Two-Color Super-Resolution sptPALM of Live
Cells”". In: J. Am. Chem. Soc. 132, pp. 6481-6491. DOIL: 10.1021/ja100906g.

Sungkaworn, T., M.-L. Jobin, K. Burnecki, A. Weron, M. J. Lohse, et al. (2017). “Single-molecule imaging
reveals receptor—G protein interactions at cell surface hot spots”. In: Nature 550, pp. 543-547. DOI:
10.1038/nature24264.

Sutton, R. S. (1986). “Two problems with backpropagation and other steepest-descent learning procedures
for networks”. In: Proceedings of the Eighth Annual Meeting of the Cognitive Science Society.

Teodori, L., M. Omer, A. Marcher, M. K. Skaanning, V. L. Andersen, et al. (2022). “Site-specific nanobody-
oligonucleotide conjugation for super-resolution imaging”. In: J. Biol. Methods 9, e159. DOI: 10.14440/
jbm.2022.381.

Thompson, R. E., D. R. Larson, and W. W. Webb (2002). “Precise nanometer localization analysis for
individual fluorescent probes”. In: Biophys. J. 82, pp. 2775-2783. DOIL: 10.1016/S0006-3495(02)
75618-X.

Tokunaga, M., N Imamoto, and K. Sakata-Sogawa (2008). “Highly inclined thin illumination enables clear
single-molecule imaging in cells”. In: Nat. Methods 5, pp. 159-161. DOI: 10.1038/nmeth1171.

Tompson, J., R. Goroshin, A. Jain, Y. LeCun, and C. Bregler (2015). “Efficient Object Localization Using
Convolutional Networks". In: arXiv. DOI: 10.48550/arXiv.1411.4280.

Tonzani, S. (2009). “TIRF: imaging at the cellular edge”. In: Nat. Cell. Biol. 11, p. 16. DOI: 10.1038/
ncb1933.

Tortarolo, G., M. Castello, A. Diaspro, S. Koho, and G. Vicidomini (2018). “Evaluating image resolution in
stimulated emission depletion microscopy”. In: Optica 5, pp. 32-35. DOI: 10.1364/0PTICA.5.000032.

Toseland, C. P. (2013). “Fluorescent labeling and modification of proteins”. In: J. Chem. Biol. 6, pp. 85-95.
DOI: 10.1007/s12154-013-0094-5.

Unterauer, E. M., S. S. Boushehri, K. Jevdokimenko, L. A. Masullo, M. Ganji, et al. (2024). “Spatial
proteomics in neurons at single-protein resolution”. In: Cell 187, pp. 1785-1800. por: 10.1016/j.
cell.2024.02.045.

Varadi, T., M. Schneider, E. Sevcisk, D. Kiesenhofer, F. Baumgart, et al. (2019). “Homo- and Heteroasso-
ciations Drive Activation of ErbB3". In: Biophys. J. 117, pp. 1935-1947. po1: 10.1016/j.bpj.2019.
10.001.

154



12 References

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, et al. (2017). “Attention Is All You Need". In:
arXiv. DOI: 10.48550/arXiv.1706.03762.

Verdecchia, R., J. Sallou, and L. Cruz (2023). “A Systematic Review of Green Al". In: arXiv. DOL: 10.
48550/arXiv.2301.11047.

Verzelli, P., A. Nold, C. Sun, M. Heilemann, E. S. Schuman, et al. (2022). “Unbiased choice of global
clustering parameters for single-molecule localization microscopy”. In: Sci. Reports, p. 22561. DOTI:
10.1038/s41598-022-27074-1.

Vicidomini, G., P. Bianchini, and A. Diaspro (2018). “STED super-resolved microscopy”. In: Nat. Methods
15, pp. 173-182. pOI: 10.1038/nmeth.4593.

Vink, J. N. A., S. J. J. Brouns, and J. Hohlbein (2020). “Extracting Transition Rates in Particle Tracking
Using Analytical Diffusion Distribution Analysis”. In: Biophys. J. 119, pp. 1970-1983. pO1: 10.1016/
j.bpj.2020.09.033.

Vinod, V., C. J. Padmakrishnan, B. Vijayan, and S. Gopala (2015). “'How can | halt thee?' The puzzles
involved in autophagic inhibition”. In: Pharmacol. Res. 82, pp. 1-8. DOI: 10.1016/j.phrs.2014.03.
005.

Virtanen, P., R. Gommers, T. E. Oliphant, m. Haberland, T. Reddy, et al. (2020). “SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python”. In: Nat. Methods 17, pp. 261-272. por: 10.1038/
s41592-019-0686-2.

Voulodimos, A., N. Doulamis, A. Doulamis, and E. Protopapadakis (2018). “Deep Learning for Computer
Vision: A Brief Review". In: Comput. Intell. Neurosci. DOI: 10.1155/2018/7068349.

Wade, O. K., J. B. Woehrstein, P. C. Nickels, S. Strauss, F. Stehr, et al. (2019). “124-Color Super-
resolution Imaging by Engineering DNA-PAINT Blinking Kinetics”. In: Nano Lett. 19, pp. 2641-2646.
DOI: 10.1021/acs.nanolett.9b00508.

Waldchen, S., J. Lehmann, T. Klein, S. van de Linde, and M. Sauer (2015). “Light-induced cell damage
in live-cell super-resolution microscopy”. In: Sci. Reports 5, p. 15348. DOI: 10.1038/srep15348.

Wallis, T. P., A. Jiang, K. Young, H. Hou, K. Kudo, et al. (2023). “Super-resolved trajectory-derived
nanoclustering analysis using spatiotemporal indexing”. In: Nat. Comm. 14, p. 3353. po1: 10.1038/
s41467-023-38866-y.

Walt, S. van der, J. L. Schénberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, et al. (2014). “Scikit-
image: image processing in Python". In: PeerJ 2, €453. DOIL: 10.7717/peerj.453.

Wang, H., Y. Rivenson, Y. Jin, Z. Wei, R. Gao, et al. (2019). “Deep learning enables cross-modality super-
resolution in fluorescence microscopy”. In: Nat. Methods 16, pp. 103-110. por: 10.1038/s41592~
018-0239-0.

Wang, Z., A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli (2004). “Image quality assessment: from error
visibility to structural similarity”. In: /EEE Trans. Image Process. 12, pp. 600-612. DOI: 10.1109/TIP.
2003.819861.

Wang, Z., E. P. Simoncelli, and A. C. Bovik (2003). “Multiscale structural similarity for image quality
assessment". In: The Thrity-Seventh Asilomar Conference on Signals, Systems Computers 2, pp. 1398—
1402. por: 10.1109/ACSSC.2003.1292216.

Weigend, A. S., D. E. Rumelhart, and B. A. Huberman (1990). “Generalization by Weight-Elimination with
Application to Forecasting”. In: NeurlPS 3, pp. 875-882. DOI: 10.5555/2986766.2986885.

Weigert, M., U. Schmidt, T. Boothe, A. Miiller, A. Dibrov, et al. (2018). “Content-aware image restoration:
pushing the limits of fluorescence microscopy”. In: Nat. Methods 15, pp. 1090-1097. por: 10.1038/
s41592-018-0216-7.

Werbos, P. J. (1974). “Thesis: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral

Sciences”. In: Harvard University.

155



12 References

Weron, A., K. Burnecki, E. J. Akin, L. Solé, M. Balcerek, et al. (2017). “Ergodicity breaking on the
neuronal surface emerges from random switching between diffusive states”. In: Sci. Rep. 7, p. 5404.
DOI: 10.1016/j.bpj.2023.10.015.

Wheeler, D. L. and Y. Yarden (2015). Receptor Tyrosine Kinases: Family and Subfamilies. 1st ed. Basel:
Springer Cham. DOI: 10.1007/978-3-319-11888-8.

Willig, K. 1., B. Harke, R. Medda, and S. W. Hell (2007). “"STED microscopy with continuous wave beams”.
In: Nat. Methods 4, pp. 915-918. DOI: 10.1038/nmeth1108.

Wills, M. F. K., C. B. Alejo, N. Hundt, A. J. Hudson, and |. C. Eperon (2023). “FluoroTensor: identification
and tracking of colocalised molecules and their stoichiometries in multi-colour single molecule imaging
via deep learning”. In: bioRxiv. DOI: 10.1101/2023.11.21.567874.

Wolter, S., U. Endesfelder, S. van de Linde, M. Heilemann, and M. Sauer (2011). “Measuring localization
performance of super-resolution algorithms on very active samples”. In: Opt. Express 19, pp. 7020-7033.
DOI: 10.1364/0E.19.007020.

Wolter, S., A. Léschberger, T. Holm, S. Aufmkolk, M.-C. Dabauvalle, et al. (2012). “rapidSTORM: accu-
rate, fast open-source software for localization microscopy”. In: Nat. Methods 9, pp. 1040-1041. DOT:
10.1038/nmeth.2224.

Xu, J., G. Qin, F. Luo, L. Wang, R. Zhao, et al. (2019). “Automated Stoichiometry Analysis of Single-
Molecule Fluorescence Imaging Traces via Deep Learning”. In: J. Am. Chem. Soc. 141, pp. 6976-6985.
DOI: 10.1021/jacs.9b00688.

Yang, Y., F. Ma, Z. Liu, Q. Su, Y. Liu, et al. (2018). “The ER-localized Ca2+-binding protein calreticulin
couples ER stress to autophagy by associating with microtubule-associated protein 1A/1B light chain
3". In: Cell. Biol. 294, pp. 772-782. DOIL: 10.1074/jbc.RA118.005166.

Yayon, A., M. Klagsbrun, J. D. Esko, P. Leder, and D. M. Ornitz (1991). “Cell surface, heparin-like
molecules are required for binding of basic fibroblast growth factor to its high affinity receptor”. In: Cell
64, pp. 841-848. DOI: 10.1016/0092-8674(91)90512-W.

Yazdanfar, S., K. B. Kenny, K. Tasimi, A. D. Corwin, E. L. Dixon, et al. (2008). “Simple and robust
image-based autofocusing for digital microscopy”. In: Opt. Express 16, pp. 8670-8677. DOI: 10.1364/
0E.16.008670.

Yeh, Li-Hao, Ivan E. Ivanov, Janie R. Byrum, Bryant B. Chhun, Syuan-Ming Guo, et al. (2021). “uPTI:
uniaxial permittivity tensor imaging of intrinsic density and anisotropy”. In: bioRxiv. DOI: 10.1101/
2020.12.15.422951.

Yoon, B.-J. (2009). “Hidden Markov Models and their Applications in Biological Sequence Analysis”. In:
Curr. Genomics 10, pp. 402—415. por: 10.2174/138920209789177575.

You, C., T. T. Marquez-Lago, C. P. Richter, S. Wilmes, I. Moraga, et al. (2016). “Receptor dimer sta-
bilization by hierarchical plasma membrane microcompartments regulates cytokine signaling”. In: Sci.
Adv. 2, e1600452. DOI: 0.1126/sciadv.1600452.

You, K., J. Wang, M. Long, and M. I. Jordan (2019). “How Does Learning Rate Decay Help Modern
Neural Networks?” In: arXiv. DOI: 10.48550/arXiv.1908.01878.

Yu, D., H. Wang, P. Chen, and Z. Wei (2014). “Mixed Pooling for Convolutional Neural Networks". In:
8818, pp. 364-375. DOI: 10.1007/978-3-319-11740-9_34.

Zamir, S. W., A. Arora, S. Khan, M. Hayat, F. S. Khan, et al. (2021). “Multi-Stage Progressive Image
Restoration”. In: arXiv. DOI: 10.48550/arXiv.2102.02808.

Zangle, T. A., D. Burnes, C. Mathis, O. N. Witte, and M. A. Teitell (2013). “Quantifying Biomass
Changes of Single CD8+ T Cells during Antigen Specific Cytotoxicity”. In: PLOS ONE 9, e68916. DOT:
10.1371/journal . pone.0068916.

Zeiler, M. D. (2012). "ADADELTA: An Adaptive Learning Rate Method". In: arXiv. DOI: 10 .48550/
arXiv.1212.5701.

156



12 References

Zeiler, M. D., G. W. Taylor, and R. Fergus (2011). "Adaptive Deconvolutional Networks for Mid and High
Level Feature Learning”. In: ICCV, pp. 2018-2025. DOI: 10.1109/ICCV.2011.6126474.

Zernike, F. (1955). “How | discovered phase contrast”. In: Science 121, pp. 345-349. por: 10.1126/
science.121.3141.345.

Zhang, R., P. Isola, A. A. Efros, E. Shechtman, and O. Wang (2018a). “The Unreasonable Effectiveness
of Deep Features as a Perceptual Metric”. In: arXiv. DOIL: 10.48550/arXiv.1801.03924.

Zhang, Y., M. Lara-tejero, J. Bewersdorf, and J. E. Galan (2017). “Visualization and characterization of
individual type Il protein secretion machines in live bacteria”. In: Proc. Natl. Acad. Sci. 114, pp. 6098—
6103. DOI: 10.1073/pnas. 1705823114,

Zhang, Y., K. Li, K. Li, L. Wang, B. Zhong, et al. (2018b). “Image super-resolution using very deep residual
channel attention networks”. In: ECCV, pp. 286-301. DOI: 10.48550/arXiv.1807.02758.

Zhang, Y., K.-Y. Park, K. F. Suazo, and M. D. Distefano (2018c). “Recent progress in enzymatic protein
labelling techniques and their applications”. In: Chem. Soc. Rev. 47, pp. 9106-9136. por: 10.1039/
c8cs00537k.

Zhao, H., O. Gallo, I. Frosio, and J. Kautz (2015). “Loss Functions for Image Restoration with Neural
Networks”. In: arXiv. DOI: 10.48550/arXiv.1511.08861.

Zhao, W., Z. Huang, J. Yang, G. Qiu, L. Qu, et al. (2023). “Quantitatively mapping local quality of super-
resolution microscopy by rolling Fourier ring correlation”. In: Light Sci. Appl., p. 298. DOI: 10.1038/
s41377-023-01321-0.

Zhou, Y., J. Cao, J. Sonneck, S. Banerjee, S. Dérr, et al. (2024). “EfficientBioAl: making bioimaging Al
models efficient in energy and latency”. In: Nat. Methods. DOI: 10.1038/s41592-024-02167~z.

Zhuge, H., B. Summa, J. Hamm, and J. Q. Brown (2021). “Deep learning 2D and 3D optical section-
ing microscopy using cross-modality Pix2Pix cGAN image translation”. In: Biomed. Opt. Express 12,
pp. 7526-7543. DOI: 10.1364/B0OE.439894.

Zuo, C., J. Li, J. Sun, Y. Fan, J. Zhang, et al. (2020). “Transport of intensity equation: a tutorial”. In:
Science 135, p. 106187. pDoI: 10.1016/j.optlaseng.2020.106187.

157






13 Appendix

13 Appendix

13.1 Fast and long-time STED imaging of ER nano-structural

dynamics in living cells
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Figure S1: Loss curves and learning rates of the training process. Training-, validation -loss curves
and the learning rates for the two models (A Resting model; B Mixed model) used in this study,
which were reduced through LearningRateOnPlateau during training. The training process
stopped if the validation loss did not improve for 6 epochs (Rahm et al., 2024).
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Figure S2: Hyperparameter importance. For both the models (resting model and mixed model) used in
this study, the patch size and learning rate are the most important hyperparameters influencing
model performance, followed by kernel initialization, 12 regularization, and gradient clip value
in the middle field, and lastly the type of activation function (Rahm et al., 2024).
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Figure S3: Quality control metrics of prediction from autophagy-induced cell dataset.
control metrics A SSIM, B PEARSON correlation, C MAE, D PSNR, E LPIPS, and F mean
resolution from rFRC of datasets acquired from stress-induced cells predicted using either the
mixed model (light blue) or the resting model (blue), dark gray: mean resolution of ground

truth image, N = 15 (Rahm et al., 2024).
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Figure S4: Quality control metrics of prediction from the resting cell dataset.

Quality control

metrics A SSIM, B PEARSON correlation, C MAE, D PSNR, E LPIPS, and F mean resolution
from rFRC of datasets acquired from resting cells predicted using either the resting model
(blue) or the mixed model (light blue), dark gray: mean resolution of ground truth image, N

= 15 (Rahm et al., 2024).
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Figure S5: Quality control metrics of 3D controls.

to F mean resolution from rFRC, N = 101 (Rahm et al., 2024).

Table S1: Hyperparameter importance of the resting condition. The optimal parameter choices are

highlighted in bold.

QC metrics of predictions from planar images
acquired with the same settings as the volumetric imaging including a top-hat PSF for the
depletion laser beam ranging from A SSIM B PEARSON correlation C MAE D PSNR E LPIPS

learning rate score patch size score L2 score
13.00 304 28.28 0 35.39
47.97 259 20.44 0.01 30.65
39.03 200 25.75 0.001 33.96

128 25.52
activation score kernel init. score | clip value score
leaky relu 48.79 | Glorot uniform 45.25 0.1 32.23
tanh 51.21 | Lecun uniform  29.74 0.01 30.59
orthogonal 25.01 0.001 37.18
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Table S2: Hyperparameter importance of the mixed condition. The optimal parameter choices are

highlighted in bold.

learning rate score patch size score L2 score
5E-4 4.56 304 25.95 0 32.73
1E-4 11.81 256 23.26 0.01 35.72
5E-5 28.29 200 24.98 0.001 31.54

1E-5 31.08 128 25.81

1E-5 24.27

activation score kernel init. score | clip value score
leaky relu 47.93 | Glorot uniform 37.51 0.1 32.69
tanh 52.07 | Lecun uniform  35.66 0.01 35.29
orthogonal 26.83 0.001 32.02

Table S3: Resting and mixed model parameters. Unstated parameters are set as default values.

learning rate | patch size | batch size 12 activation kernel init. clip value | epochs
resting model

1E-5 304 6 0 leaky relu | Glorot uniform 0.001 32
mixed model

1E-5 304 6 0.001 | leaky relu | Lecun uniform 0.1 313
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13.2 Robust virtual staining for cell instance segmentation
13.2.1 Data preprocessing

Before the 3D-stack of bright-field images and matching nucleus and membrane fluores-
cence images can be used as training data, several preprocessing steps must be applied.
These include the determination of appropriate regularization parameters for bright-field to
phase conversion and fluorescence channel deconvolution, registration of the label-free and
fluorescence channels in x, y and z, and tiling of the images to make them suitable training

inputs.

13.2.1.1 Phase reconstruction and fluorescence deconvolution

The 3D stack of bright-field images was converted to phase images and the fluorescence
channels were deconvolved with waveOrder (Yeh et al., 2021). Compared to bright-field
images, the phase images have a more uniform background, higher contrast, and greater
depth of field (fig. S6 A, B). The fluorescence signal is sharper after deconvolution because
the blur around the fluorescent regions stemming from out of focus planes is reduced
(fig. S6 C-F).

Figure S6: Phase reconstruction and fluorescence deconvolution. A Bright-field, B phase, C mem-
brane fluorescence, D deconvolved membrane fluorescence, E nucleus fluorescence, and F
deconvolved nucleus fluorescence image. Deconvolved fluorescence and phase images are over-
layed in G for the nucleus and H for the membrane. White arrows indicate cells without
nucleus and membrane stain. Yellow arrows highlight areas with low-intensity fluorescence
signal. Scale bars 20 pm.
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For both the bright-field to phase conversion and deconvolution, values for TIKHONOV reg-
ularization must be chosen. Too small regularization values generate artifacts in the phase
image and make the output look overly sharp and incomplete. Too large regularization
values make the output look blurry. There was not much of a difference between values of
1-1073 to 1- 107! for phase reconstruction, but 1-1072 had the slightly higher contrast
and was therefore chosen. For fluorescence deconvolution, a value of 8 - 10~* proofed most
suitable. Due to the polyclonal labeling, the intensities in the fluorescence images are het-
erogeneous. Fig. S6 G and H highlight parts with weak fluorescence (yellow arrows) and
absent fluorescence (white arrows) although there are cells present in the corresponding

phase image.

Figure S7: Channel registration. A The nucleus channel in blue and B the membrane channel in red are
aligned with the phase channel. The yellow lines highlight the position of the XZ sectioning.
Scale bars in XY view 10 pm and in XZ view 2 pm.

13.2.1.2 Registration

Images were registered along the z-axis by determining the focus with the BRENNER gra-
dient (Yazdanfar et al., 2008) for each channel and aligning the focal planes across the
channels. The focal planes of the phase channel and the membrane channel were aligned
and the registration offset applied to the nucleus channel. This is done because the phase
channel appeared to be in focus when the membrane edges were displayed sharply. Due
to the egg-shaped form of a cell, the focal plane of the nucleus lies above the bright-field
and membrane fluorescence focal planes and that offset was maintained during registration.
Some positions had very high or low z-focus indices, possibly due to unstable positioning

of the microscope in z-direction during acquisition. Positions with a z-focus index in the
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membrane channel of < 25 and > 60 were filtered out, as they do not contain enough
information for correct phase reconstruction. Registration along x and y was not necessary.

The phase and fluorescence channels appear to be registered after z-alignment (fig. S7).

13.2.1.3 Tiling

Images were tiled and kept as training instances if they contained a minimum of 5% fore-
ground pixels. Different thresholding approaches were compared to distinguish between
foreground and background pixels (fig. S8). Unimodal thresholding marked fluorescent re-
gions in the central FOV (z = 25), but incorrectly marked large amounts of background in
FOVs at the border of the z-volume (z = 65). OTSU's thresholding was more conserva-
tive in marking fluorescence regions but was stable across z-positions. Therefore, OTSU's
thresholding was chosen as the masking approach, and tiles with fluorescent regions were
selected by adjusting the minimum foreground fraction to a small value of 5%. In the case
of models with multiple targets, the masks were merged across different channels before
selecting training instances.

A Unimodal B Otsu

Figure S8: Binary mask parameters. A Unimodal thresholding and B OTSU's thresholding of the
membrane fluorescence channel at different z-depths. Scale bars 20 pm.
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Figure S9: Metric comparison of different augmentation strengths. A, C, and E show the intersec-
tion over union and B, D, and F the fl-score for different regularizations parameters for the

phase (1-1072, 1-1073, 1-10%, 5-1073, 51074

). different magnifications (100x, 40x),

condenser aperture openings (12, 6), imaging at the border of the well, half exposure time,
FOVs with dense cells, FOVs with less dense cells, and the validation data. Strong augmenta-

tion (blue), moderate augmentation (orange), light augmentation (green).
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Figure S10: Metric comparison of augmentation without intensity or zoom. A, C, and E show the

intersection over union and B, D, and F the fl-score for different regularizations parameters

for the phase (1-1072,1-1073, 1-10~%,5-1073, 5 10~

4), different magnifications (100x,

40x), condenser aperture openings (12, 6), imaging at the border of the well, half exposure
time, FOVs with dense cells, FOVs with less dense cells, and the validation data. No intensity
(blue), no zoom (orange), moderate augmentation (green).
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Figure S11: Metric comparison of nucleus as target channel vs nucleus and membrane as target
channels. A, C, and E show the intersection over union and B, D, and F the fl-score
for different regularizations parameters for the phase (1-1072, 1-1073, 1-107%, 5- 1073,
5-107%), different magnifications (100x, 40x), condenser aperture openings (12, 6), imaging
at the border of the well, half exposure time, FOVs with dense cells, FOVs with less dense
cells, and the validation data. Nucleus target channel (blue), nucleus and membrane target
channels (orange).
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Figure S12: Metric comparison of different imaging modalities. A Intersection over union and B
fl-score of the validation data. Bright-field — deconvolved fluorescence (blue), phase — non-
deconvolved fluorescence, bright-field — non-deconvolved fluorescence, phase — deconvolved
fluorescence.
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13.3 A pipeline for the analysis of single-particle tracking data
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Figure S13: Reasons for low numbers in transition counts and masking effect. A dependency of
trajectory length and number of segments. Lengths were averaged per cell. 120 cells per
violinplot. B Number of segments per trajectory. All trajectories of the 120 analyzed cells
(60 Fab, 60 InIB) that contain at least one classified segment are included. Error bars depict
the SEMs. C Violin plot of the relative occurrence of transitions between classified segments
without and with masking. Masking of segments below the classification threshold of 20
frames increases the occurrence of transitions between classified segments for trajectories
consisting of at least three segments. N = 120 cells per distribution. Violin plots of the nine
different transition types between segments within trajectories in D Fab- and E InIB-treated
cells (N per distribution = 60 cells, i = immobile, ¢ = confined, f = free). Left and right sides
of the violin plots compare normalized counts without and with masking (masking value = 20
frames). Counts are normalized to one per cell. Transitions between not classified segments
are neglected (Rahm et al., 2021, CC-BY).
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13 Appendix

13.4 Spatial organization of membrane receptors
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Figure S14: FGFR cluster densities. DBSCAN cluster analysis of DNA-PAINT images was used to
assess the membrane receptor cluster density of FGFR1-4 in both unstimulated (blue) and
FGF1-stimulated (red) U-2 OS cells, N = 7 (resting), N = 5 (stimulated), (Schroder et al.,
2021). © 2020 Elsevier Inc. All rights reserved.
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AB
AdaGrad
Adam
AdamW
APD
BM3D
CAFI
CBC
CNN
DBSCAN
DECODE
DIC
DNA-PAINT
dSTORM
EMCCD
EGF
ETL
EREG
ExM
FGFR
FN

FOV

FP

FP

FRC
FWHM
GPU
HAWKMAN
HER2
HILO
HMM
HOMO
ILSVRC
loU

ISBI
LLM
LOD

antibody

adaptive gradient algorithm

adaptive moment estimation

Adam with decoupled weight decay

avalanche photo diode

block matching and 3D

content-aware frame interpolation
coordinate-based colocalization
convolutional neural network

density-based spatial clustering of applications with noise
deep context dependent

differential inference contrast

DNA points accumulation for imaging in nanoscale topography
direct stochastic optical reconstruction microscopy
electron-multiplying charge-coupled device
epidermal growth factor

electrically tunable lens

epiregulin

expansion microscopy

fibroblast growth factor receptor

false negative

field of view

false positive

fluorescent protein

FOURIER ring correlation

full width half maximum

graphics processing units

HAAR wavelet kernel analysis method for the assessment of nanoscopy
human epidermal growth factor receptor 2

highly inclined and laminated optical sheet

hidden Markov modeling

highest occupied molecular orbital
ImageNet large scale visual recognition challenge
intersection over union

internatonal symposium on biomedical imaging
large language mode

limit of detection
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LR

LS
LSTM
LUMO
LPIPS
MAE
MEA
MINFLUX
MJD
MLE
MLP
MNTB
MSD
MSE
MS-SSIM
Nadam
NAG
NeNA
NRGB1
NLM
NRMSE
PAINT
PALM
PC-ODT
PSF
PSNR
QPI
RCAB
RCAN
RelLU
RESI
RG

RIR
rFRC

RI

RMS
RSE
RSF
SBT

low-resolution

least squares

long short-term memory

lowest occupied molecular orbital

learned perceptual image patch similarity
mean absolute error

B-mercaptoethylamin

maximally informative luminescence excitation
mean jump distance

maximum likelihood estimation

multi-layer perceptron

medial nucleus of the trapezoid body (MNTB)
mean squared displacement

mean squared error

multi-scale structural similarity metric
NESTEROV momentum Adam

Nesterov accelerated gradient

nearest neighbor analysis

neuregulin

non-local means

normalized root mean squared error

points accumulation for imaging in nanoscale topograph

photoactivated localization microscopy
partially coherent optical diffraction tomography
point spread function

peak signal to noise ratio

quantitative phase imaging

residual channel attention block

residual channel attention network

rectified linear units

resolution enhancement by sequential imaging
residual group

residual in residual

rolling FOURIER ring correlation

refractive index

root mean square

resolution scaled error

resolution scaling function

sheet based tubes
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14 Acronyms

SD
SED
SEM
SGD
SIM
SMLM
SNR
SOF
SPT
SR
SRRF
SRM
SSIM
STED
STORM
TGFo
TIRF
N
TP
UMAP
uPAINT

standard deviation

standard error of the difference

standard error of the mean

stochastic gradient descent

structured illumination microscopy
single-molecule localization microscopy
signal-to-noise ratio

super-resolution optical fluctuation imaging
single-particle tracking

super-resolution

super-resolution radial fluctuations
super-resolution microscopy

structural similarity metric

stimulated emission depletion

stochastic optical reconstruction microscopy
transforming growth factor o

total internal reflection fluorescence

true negative

true positive

uniform manifold approximation and projection

universal points accumulation for imaging in nanoscale topograph

175






15 List of Figures

15 List of Figures

© 0O ~N & O & W NN =

W W W N N N NN N DN N DNDDN B 2 =2 2R == =
N B O © 0 N O G & W N H O © 00 N O o & W N P O

Examples of deep learning enabled tasks for super-resolution microscopy . .

JABLONSKI diagram . . . . . . . . . .. .. ... .. .....

FRANCK-CONDON principle . . . . . . . ... ... ... ...

Exemplary structures of organic fluorophore. . . . . . . . . ..

Crystal structure of GFP from the jellyfish Aequorea victoria . .

Fluorescence labeling strategies . . . . . . . ... ... . ...
[llumination schemes . . . . . . . .. . ... ... .......
Stimulated emission depletion microscopy concept. . . . . . . .

Principle of single-molecule localization microscopy . . . . . . .

DNA-PAINT concept . . . . . . . . ... ... ... .....
Exchange DNA-PAINT concept . . . . . . . .. .. ... ...
Clustering with DBSCAN . . . . . . . . .. ... ... ....

k-nearest neighbor distances . . . . . . . .. ... ... .. ..

uPAINT concept . . . . . . . . . . ... ...
Principle of trajectory computation . . . . . .. ... ... ..
Events occurring in single-particle tracking . . . . . . . . ...

MSD calculation and curves of different diffusion states. . . . .

Hidden MARKOV modeling of single-particle tracking data . . .
Phase shift and interference . . . . . . . . . . .. ... . ...

Koéhler illumination . . . . . . . . . . . ...

Architecture of a multi-layer perceptron . . . . . . . .. .. ..

Activation function and a linear vs a non-linear classification problem

Receptive field and the convolutional operation . . . . . . . ..

Different types of down- and upsampling layers . . . . . . . ..

Bias and variance tradeoff. . . . . . .. ... ...
Learning curve examination to detect bias and variance . . . . .

U-Net architecture . . . . . . . . . . . ...

Residual connection . . . . . . . . . . . ... .. ... .. ..

RCAN architecture . . . . . . . . . .. ... ...
DeepSTORM workflow with experimental DNA-PAINT data . .

Optimization of the high density movie . . . . . . . ... ...
DeepSTORM performance on a low density DNA-PAINT movie

12
13
15
15
16
17
21
23
25
26
27
28
30
30
31
32
33
35
35
37
38
39
40
46
47
48
49
50
60
62
63

177



15 List of Figures

33
34

35

36

37
38
39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
54

55
56

57

58
59

DeepSTORM performance on a high density exchange DNA-PAINT movie 64

Number of frame optimization for complete image reconstruction with Deep-

STORM . . . . . 65
DeepSTORM predicted image of high density DNA-PAINT quality assess-

ment against the ground truth . . . . . . .. .00 65
Comparison between DeepSTORM's super-resolved image and rendered im-

age from single-molecule localization . . . . . . . ... ... ... 66
STED denoising workflow . . . . . . .. .. .. ... ... .. ... 76
STED denoising of ER in living cells. . . . . . ... ... ... ... ... 77
STED denoising of living cells induced for stress . . . . . ... ... ... 79
Predictionof a3D stack . . . . . . . .. ... 79
Hallucination artifacts . . . . . . . . . . . . ... ... .. ... .. ... 81
Development of ER structure after drug treatment . . . . . . . . . . . .. 82
ERnet structure quantification . . . . . . .. ..o L 83
Additional descriptors for dynamic ER structure quantification . . . . . . . 83
Virtual staining and segmentation workflow . . . . . . . .. ... ... .. 90

Predictions of fluorescence signal of cell membrane and nucleus with nucleus

segmentation . . . . ... L L 91
Generalizability towards different experimental conditions . . . . . . . . .. 92
Prediction results of different augmentation strengths . . . . . . . . . .. 93
Prediction results of augmentation without intensity or zoom . . . . . .. 94
Predictions of different imaging modalities . . . . . ... ... ... ... 95
Prediction of the ER with different input modalities . . . . . .. .. . .. 102
SSIM of the ER of different input modalities and over time. . . . . . . . . 103

Workflow of the analysis of single-particle tracking data with SPTAnalyser. 107

Analysis pipeline and MSD-based results of single-particle tracking data of
the MET membrane receptor. . . . . . . . . . .. .. ... ... ... 108

False negative rate of freely diffusing receptors that were classified as confined.109

Single-molecule trajectories and quantification of transitions within trajec-
tories. . . L e 111

State transition diagrams of MET receptor trajectories from hidden MARKOV

modeling. . . . . . . L 113
HER?2 temporal responses to ligand treatment . . . . . . . . . ... ... 114
Distance distribution analysis . . . . . . . ... .. ... L. 122

178



15 List of Figures

60

61

62

S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11

S12
S13
S14

Distance analysis of FGFR1-4 within untreated and FGF1-treated U-2 OS

cells . . 123
Circular counts of clathrin and FGFR1 in untreated and FGF1-treated U-2

OScells . . . . . . 124
k-nearest neighbor distances of FGFR1 to FGFR1-4 within untreated and

FGF1-treated U-2 OScells . . . . . . .. ... . ... ... ... ..... 125
Loss curves and learning rates of the training process . . . . . . . . . . .. 159
Hyperparameter importance . . . . . . . . . . .. ... ... ... ... 159

Quality control metrics of prediction from autophagy-induced cell dataset . 160

Quality control metrics of prediction from the resting cell dataset . . . . . 161
Prediction output from different model . . . . . . . . . . ... ... ... 162
Phase reconstruction and fluorescence deconvolution . . . . . . . . . . .. 164
Channel registration . . . . . . . . . ... 165
Binary mask parameters . . . . ... ..o 166
Metric comparison of different augmentation strengths . . . . . . . . . .. 167
Metric comparison of augmentation without intensity or zoom . . . . . . . 168

Metric comparison of nucleus as target channel vs nucleus and membrane

as target channels . . . . . . ..o 169
Metric comparison of different imaging modalities . . . . . . . . . . . .. 170
Reasons for low numbers in transition counts and masking effect. . . . . . 171
FGFR cluster densities . . . . . . . . . . . . ... ... .. ... ... 172

179



17 Publications

17 Publications

A. N. Birtasu, K. Wieland, U. H. Ermel, J. V. Rahm, M. P. Scheffer, B. Flottmann, M.
Heilemann, F. Grahammer, A. S. Frangakis, “The molecular architecture of the kidney slit
diaphragm”, bioRxiv, 2023.10.27.564405, 2023.

S. Jang, K. K. Narayanasamy, J. V. Rahm, A. Saguy, J. Kompa, M. S. Dietz, K. Johns-
son, Y. Shechtman, M. Heilemann, “Neural network-assisted single-molecule localization

microscopy with a weak-affinity protein tag”, Biophys. Rep., 3, 100123, 2023.

C. Catapano, J. V. Rahm, M. Omer, L. Teodori, J. Kjems, M. S. Dietz, M. Heilemann,
“Biased activation of the receptor tyrosine kinase HER2", Cell. Mol. Life Sci., 80, 158,
2023.

K. K. Narayanasamy, J. V. Rahm, S. Tourani, M. Heilemann, “Fast DNA-PAINT imaging
using a deep neural network”, Nat. Comm., 13, 5047, 2022.

J. V. Rahm, S. Malkusch, U. Endesfelder, M. S. Dietz, M. Heilemann, “Extraction of
diffusion state transitions in single-particle tracking data of membrane receptors”, Proc.
SPIE, 11967, 1196705, 2022.

S. Malkusch, J. V. Rahm, M. S. Dietz, M. Heilemann, J.-B. Sibarita, J. Létsch, “Receptor
tyrosine kinase MET ligand-interaction classified via machine learning from single-particle
tracking data”, Mol. Biol. Cell, 33, 6, 33(6):ar60, 2022.

J. V. Rahm, S. Malkusch, U. Endesfelder, M. S. Dietz, M. Heilemann, “Diffusion State
Transitions in Single-Particle Trajectories of MET Receptor Tyrosine Kinase Measured in
Live Cells”, Front. Comput. Sci., 3, 757643, 2021.

T. N. Baldering, C. Karathanasis, M.-L. |. E. Harwardt, P. Freund, M. Meurer, J. V. Rahm,
M. Knop, M. S. Dietz, M. Heilemann, “"CRISPR/Cas12a-mediated labeling of MET recep-
tor enables quantitative single-molecule imaging of endogenous protein organization and
dynamics”, iScience, 24, 101895, 2021.

M. Schréder, M.-L. I. E. Harwardt, J. V. Rahm, Y. Li, P. Freund, M. S. Dietz, M. Heile-
mann, “Imaging the fibroblast growth factor receptor network on the plasma membrane with

DNA-assisted single-molecule super-resolution microscopy”, Methods, 193, 38-45, 2021.

183



I~

o’y

GOETHE 47
UNIVERSITAT

FRANKFURT AM MAIN

(©MOM

Publiziert unter der Creative Commons-Lizenz Namensnennung (CC BY) 4.0 International.
Published under a Creative Commons Attribution (CC BY) 4.0 International License.
https://creativecommons.org/licenses/by/4.0/



