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Abstract
Chern numbers can be calculated within a frame of vortex fields related to phase
conventions of a wave function. In a band protected by gaps the Chern number
is equivalent to the total number of flux carrying vortices. In the presence of
topological defects like Dirac cones this method becomes problematic, in par-
ticular if they lack a well-defined winding number. We develop a scheme to
include topological defects into the vortex field frame. A winding number is
determined by the behavior of the phase in reciprocal space when encircling
the defect’s contact point. To address the possible lack of a winding number
we utilize a more general concept of winding vectors. We demonstrate the use-
fulness of this ansatz on Dirac cones generated from bands of the Hofstadter
model.
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1. Introduction

Chern numbers characterize topologically invariant properties of two-dimensional insulators
[1]. They are computed within the Berry formalism [2]. In the case of gapped bands the
problem reduces to computing the Berry curvature and integrating it over a suitable closed
manifold such as the Brillouin zone. Instead of analyzing the Berry curvature one can also use a
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frame of vortex fields of the complex wave functions [3–5]: the manifold is divided into
patches, in which the wave function has to be defined uniquely according to an appropri-
ate phase convention. One then rewrites the integral over the Berry curvature using Stokes’
theorem as a line integral along the edges of these patches. This results in determining the
winding number of the phase of the transition function eiχ(k), which relates the phases of
the wave functions in adjacent patches with phase difference χ(k). Extending χ(k) over the
entire manifold generates a field of vortices, the number of which can readily be counted
and is equal to the Chern number. This method has been successfully applied to calculate
the Chern numbers of free electrons in a magnetic field [6], electrons in a periodic potential
[3, 7, 8] or fractional Chern insulators [9, 10] and other systems with degenerate ground state
multiplets [5, 11].

Problems arise, once Bloch bands become gapless due to Dirac cones. In that case it remains
to compute the Chern number for the connected bands jointly. The Berry formalism then
has to be modified. One has to work with a non-Abelian Berry holonomy instead of a mere
phase factor [12]. The determinant of this unitary matrix still allows the definition of a gauge
invariant total Berry phase, so a Chern number can be assigned. Introducing multiband vortex
fields in this case is possible [5], but providing a simpler solution without major modifications
seems desirable.

In this paper, we want to develop a scheme to determine the joint Chern number of bands
that are connected by Dirac cones using single-band vortex fields. Our testing ground will
be the Hofstadter model, which can exhibit Dirac cones. Chern numbers of the Hofstadter
band structure can be calculated with the Berry formalism of non-degenerate states [7, 13],
however the bands connected by Dirac cones can only be analyzed implicitly with this
approach. The Dirac cones of the Hofstadter model lack a winding number which imposes an
additional challenge. The winding in a two-level system is commonly defined by the change
of the phase difference of the two components of an eigenstate in reciprocal space around the
crossing point (compare e.g. reference [14]). Dirac cones with missing winding number have
to be described with winding vectors instead, originally proposed in reference [15]. We will
calculate the Chern numbers of bands in the Hofstadter model connected by Dirac cones
through a rotation of the winding vectors in pseudospin space. This gives their Dirac cones
the same form as in the common toy Hamiltonian [16]

Ĥ±(k) = h̄vF(±kxσx + kyσy) (1)

for Dirac fermions with a well-defined winding number of ±1 [14]. Here, vF is the Fermi
velocity and σx/y are Pauli matrices in pseudospin space.

This paper is structured as follows. In section 2 we recapitulate the vortex field formalism
for the determination of Chern numbers (section 2.1), then we consider the issue of topological
defects with well-defined winding numbers (section 2.2) and finally we apply it exemplarily to
the Qi–Wu–Zhang (QWZ) model (section 2.3). Section 3 is devoted to the Hofstadter model.
We show how to treat Dirac cones with non-trivial winding vectors for the Hofstadter model
with half a flux quantum per lattice site (section 3.1). Then a scheme for the computation
of the Chern numbers for any flux threading of the Hofstadter model, including those with
Dirac cones, will be presented (section 3.2). In appendix A we portray the algebra of magnetic
translation operators of the Hofstadter model, the results of which will be used to give
some details on calculations concerning the weak coupling limit of the Hofstadter model in
appendices B and C. In appendix D we explain how the presence of topological defects gives
rise to a Z2 invariant which manifests itself in a discontinuity of the vortex fields.
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2. Vortex fields

2.1. Patches and vortex fields

The Chern number of the nth band on the torus T2 comprising the first Brillouin zone is defined
as [2]

Cn =
1

2π

∫
T2

dS ·∇k × An(k). (2)

Here dS denotes the differential surface vector of the torus and An(k) is the Berry connection

An(k) = i〈Ψn(k)|∇k|Ψn(k)〉 (3)

of the nth band with normalized eigenstates |Ψn(k)〉 of a Hamiltonian Ĥ(k). Experimentally,
Cn manifests itself in its relation to the quantum Hall conductance σxy = −e2Cn/h [3, 13].
We shall have a total of q bands, so Ĥ is a q × q matrix. The Berry connection requires
eigenstates in reciprocal space to have a well-defined derivative. This is guaranteed by ‘fixing
the gauge’ locally in T2 [5]. If we found a suitable continuous ‘gauge convention’ over the
entire torus, then the Chern number would be equal to zero. This is a consequence of Stokes’
theorem, according to which we could rewrite equation (2) as a line integral over the bound-
ary of the Brillouin zone. On account of periodic boundary conditions in reciprocal space the
contributions from opposite edges would necessarily cancel each other. This implies that for
every non-trivial Chern insulator ‘singular points’ exist: in gapped q-band models it is always
possible to locally pick smooth normalized eigenstates using a suitable phase convention of the
wave function in reciprocal space3. ‘Singularities’, points where the Berry connection diverges,
must then originate from the phase convention resulting in a discontinuity of the wave function
at some points. With a different phase convention those phases can be made well-defined in
the neighborhoods of these points, not on the entire torus.

How do we ‘fix the gauge’ and where are the singular points of a given phase convention?
Let |ΦI〉 be some normalized state in the Hilbert space. For convenience, we choose |ΦI〉 to
be constant, although it is only required to be smooth. Let SI be the set of points k j (which
we assume to be discrete [18]), where 〈Ψn(k)|ΦI〉 = 0. Then we identify smooth eigenstates in
T2\SI with a fixed phase convention by projecting |ΦI〉 onto |Ψn(k)〉 with the gauge invariant
eigenstate projector P̂n

Ψ = |Ψn〉〈Ψn|:

|Ψn
I 〉 =

P̂n
Ψ(k)|ΦI〉

|〈Ψn(k)|ΦI〉|
= eiϕI(k)|Ψn(k)〉. (4)

If a band has a non-trivial Chern number (Cn �= 0) then SI �= ∅. At k j ∈ SI we need a second
phase convention, where corresponding eigenstates |Ψn

II(k)〉 are smooth at k j. A neighborhood
of k j is denoted as a patch Pj. Within the patches P =

⋃
j P j a different phase convention is set

up with some other normalized state |ΦII〉

|Ψn
II(k)〉 = P̂n

Ψ(k)|ΦII〉
|〈Ψn(k)|ΦII〉|

= eiϕII |Ψn(k)〉, (5)

3 This is because the projector of eigenstates is smooth, which follows from equation (D1) in [17] and the fact that
Ĥ(k) is only supposed to have analytic functions as matrix elements. This also ensures that the line bundle of the nth
band is smooth.
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where {P j} and |ΦII〉 are chosen such that the condition 〈Ψn(k)|ΦII〉 �= 0 is fulfilled for all
k ∈ P. In turn there must be a set of points SII ⊂ T2\P, where 〈Ψn(k)|ΦII〉 = 0.

For k ∈ P\SI the wave functions |Ψn
I (k)〉 and |Ψn

II(k)〉 can be related by the transition
function eiχ(k):

|Ψn
I (k)〉 = |Ψn

II(k)〉ei(ϕI−ϕII) = |Ψn
II(k)〉eiχ(k) (6)

and as a result their Berry connections are related like

An
I = An

II + ie−iχ∇k eiχ. (7)

Note that we can vary the size of patches P, so we can define χ(k) everywhere except at
k ∈ SI ∪ SII.

Now Stokes’ theorem can be applied and results in line integrals along the oriented boundary
of the patches ∂P (provided ∂P ∩ SII = ∅)4

Cn =
1

2π

∮
∂P

dk
(
An

II − An
I

)
=

1
2π

∮
∂P

dArg(eiχ). (8)

We have to extract from equation (8) how many times the phase χ winds around each patch in
which direction. This can be facilitated with the introduction of vortex fields: we plot a vector
field in polar coordinates with

Arg(eiχ) = Arg(〈ΦII|Ψn
I 〉) (9)

as the azimuth and |〈ΦII|Ψn
I 〉| as the radius (see e.g. figure 2; to make vortices easier to spot,

the azimuth is further represented by the color of the vector field). Then calculating Cn is
equivalent to counting all the vortices, where the radius does not vanish and where the vor-
tex field is not continuously differentiable. These vortices are associated with flux tubes of
monopole charges (see section 2.2), so we call them ‘flux carrying vortices’5. There are also
vortices where 〈ΦII|Ψn

I 〉 does vanish. These ‘trivial vortices’ must not be summed up to calcu-
late the Chern number as the field is smooth at the vortex centers.

What is a convenient choice for the phase convention? If |ΦI〉 and |ΦII〉 are the first and
second Cartesian unit vectors of the q-dimensional Hilbert space of the parameterized Hamil-
tonian matrix, then the vortex field is equivalent to the second component of the eigenstates
|Ψn

I 〉 whose first component is non-negative real if SI ∩ SII = ∅. In the following we will use
this phase convention unless stated otherwise.

2.2. Topological defects

It is instructive to include certain two-dimensional topological defects—Dirac cones—into
the analysis. They correspond to Weyl points, topological defects that exist in three dimen-
sions. They are responsible for the emergence of flux carrying vortices. It is well known that

4 In mathematical terms the function eiχ is a transition function, which connects the two locally defined sections
|Ψn

I 〉 and |Ψn
II〉 of the line bundle of the nth band. The transition function contains the information how ‘twisted’ the

line bundle is, i.e. the Chern number. Usually this transformation is called ‘gauge transformation’ in the literature,
even though ie−iχ deiχ is not an exact differential form. It does however leave the equations of motion invariant, as,
analogously to Dirac’s magnetic monopole argument [19], the Aharonov–Bohm phase of this transformation must
not be measurable (which in turn explains, why Cn has to be an integer).
5 We want to add that there is an interesting relation between the origin of these discontinuities in the vortex field and
the fact [20] that one can also determine the Chern number by calculating the algebraic sum of zeros of a smooth,
holomorphic section of the line bundle in question: it is the restraint of having normalized wave functions that leads
to discontinuities— flux carrying vortices—at these former zero points.
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Chern numbers can be related to monopole charges in a solid torus parametrization of the
Hamiltonian matrix [2]. Let {L1, . . . ,Lq} be the eigenspaces of a q × q Hamiltonian of which
all eigenvalues are gapped for any k. In mathematical terms, these eigenspaces correspond to
line bundles, so that their direct sum makes up the entire Bloch bundle of the Hamiltonian
[21]. Let kx , ky, r be a parametrization of the solid torus, where r is a new radial parameter
of the Hamiltonian. The original problem is then given for a fixed r = R. Then eigenstates
Ψ j

r(k) belonging to the eigenspace L j can locally be defined uniquely, except at certain points
(k j, r j), r j �= R inside the torus, where the jth band is degenerate either with the ( j + 1)th or
( j − 1)th band. These are the points, where the monopole charges are located. The presence of
monopole charges implies the existence of flux tubes for the same reason as in the magnetic
monopole geometry [19]. Flux tubes manifest themselves as the flux carrying vortices in the
vortex field frame. This can be shown by calculating their Aharonov–Bohm phase. Assuming
that at some point of the Brillouin zone there is a flux carrying vortex, we can identify, using
equation (7) ∮

Cε

An
I dk=

∮
Cε

(An
II + ie−iχ∇k eiχ)dk

= −
∮

Cε

dArg(eiχ), (10)

where Cε is an infinitesimal contour around the vortex. The last step of equation (10) follows,
because inside Cε AII has no singularity. We see that the flux is the negative of the winding
number, because the flux of the flux tube flows from outside the torus to the monopole, from
where flux then flows through the surface of the torus, or vice versa for negative monopole
charges.

A monopole located at the surface of the torus manifests itself as a Dirac point that connects
two bands via an eigenenergy degeneracy. We cannot define a Chern number for any of the two
connected bands individually, only for both bands jointly. The eigenenergies and eigenstates
of Ĥ+ of equation (1) are given by [22]

Es = s
√

k2
x + k2

y + M2

|Ψs
I(k)〉 = 1√

2

( √
1 + suz

s eiφ
√

1 − suz

)
,

(11)

with uz = M/E+ and tanφ = ky/kx . The index s = ± denotes the band. Ĥ+ describes a Dirac
cone with positive winding number. This is evident because the phase difference φ between
the first and second component changes by +2π when moving counterclockwise around the
contact point at k = 0. Remark that in the chosen phase conventions for the vortex field this
phase difference equals the phase of the vortex field. Also note that {k} is supposed to cover
the Brillouin zone, which is a compact manifold; it appears to be unbound in equation (11), as
there we only consider the vicinity of a Dirac point.

We can break the Dirac cone up and move the monopole charge inside or outside the torus
with a ‘mass’ Mσz as illustrated in figure 1. In the gauge choice of equation (11) we get a
flux carrying vortex in the lower band when M > 0 and we get a flux carrying vortex in the
upper band for M < 0. Note that for the states of equation (11) we address only the vicinity
of the point k0 in figure 1. We assume |M| to be sufficiently small, so that the change of the
eigenstates at k away from the Dirac point is negligible. The change of the number of flux
carrying vortices in each of the two vortex fields corresponds to a change of the number of
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Figure 1. Monopoles in a torus geometry for the eigenspaces L1 and L2 for (a) M < 0,
(b) M = 0 and (c) M > 0. The flux tubes are represented by the solid line with arrows.
They pierce the surface of the torus at k0 and k′0 and at these points there will be flux car-
rying (anti)vortices as a consequence; otherwise there will be trivial vortices identified
by yellow lines piercing the surface.

associated flux tubes and therefore the number of monopoles in the tori of the two eigenspaces
L1 and L2. Upon breaking up the Dirac cone of equation (11), characterized by a positive
winding number, a flux carrying vortex is generated in both cases, M < 0 or M > 0, in one of
the bands. Hence, in this phase convention its contribution to the total Chern number of the
two bands is always +1. We can therefore still work with single-band vortex fields: we plot
the vortex fields of both bands in this gauge, count all flux carrying vortices away from the
Dirac points, then add the contributions from the Dirac cones and find the joint Chern number
of both bands. Note that this is not a contradiction to the result of reference [2], which states
that a monopole resulting from the degeneracy of two bands will not yield any contribution
to the overall Chern number of both bands. In contrast, we determine the Chern number by
counting flux tubes in a distinct phase convention, which is a different concept than that used in
reference [2].

2.3. Qi–Wu–Zhang model

As an example for the determination of the Chern number C from the vortex field we study the
QWZ model [23, 24]. The Hamiltonian reads

ĤQWZ = sin kxσx + sin kyσy + (u + cos kx + cos ky)σz. (12)

The general solution of the eigenvectors of a Hamiltonian Ĥ = fσ with Pauli matrices σ =

(σx , σy, σz)T and eigenenergies E± = ±
√∑

j f 2
j is

|Ψ±
I 〉 =

1√
2

1√
E2
+ ± fzE+

(
E+ ± fz

±( f x + i fy)

)
, (13)

so vortices can only emerge at f x = fy = 0. Therefore, for the QWZ model only the time
reversal invariant momentum (TRIM) points are relevant for our purposes. For example in
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Figure 2. QWZ model for u = 0. (a) Energy spectrum, (b) vortex field of the upper
band and (c) vortex field of the lower band. Vortices are marked as oriented arrows,
Dirac cones as dotted oriented arrows.

linear approximation around (π, 0) and (0, π) the effective Hamiltonians are

Ĥ(π,0)
QWZ ≈ −(kx − π)σx + kyσy + uσz

Ĥ(0,π)
QWZ ≈ kxσx − (ky − π)σy + uσz,

(14)

which both yield a flux carrying antivortex in the upper band for u < 0, otherwise a flux
carrying vortex in the lower band for u > 0 as presented in section 2.1. For u = 0 we find
Dirac cones each with a contribution of −1 to the total Chern number of both bands, see
figure 2. Similar analyses can be carried out for other TRIM points. Adding the contributions
together we can determine the Chern number of the upper band depending on u (similar to
reference [24]):

C = 0 : u < −2

C = −1 : −2 < u < 0

C = 1 : 0 < u < 2

C = 0 : 2 < u.

(15)

At u = −2, 0, 2 the band gap vanishes due to Dirac cones. If the band gap closes, it appears
as if there were a flux carrying vortex in both vortex fields at the same point. Figure 2 shows
energy spectrum and vortex fields for u = 0. Dirac cones emerge at (0,π) and (π, 0). They have
counterclockwise winding and therefore contribute−2 to the Chern number. Together with the
vortex at (π, π) in the upper band and the vortex at (0, 0) in the lower band we get a total Chern
number C = 0 as it should be for the total Chern number of a multiband system. This is a result
of the fact that we can write the sum of the line bundles of a Hermitian q × q Hamiltonian as
T2 × Cq, which is trivial [2, 21].

3. Hofstadter model

The Hofstadter Hamiltonian exhibits Dirac cones that break the usual division of having clock-
wise or counterclockwise winding. The Hofstadter Hamiltonian is a tight-binding model on a
square lattice in an external magnetic field [25]:

Ĥ = −ta
∑
m,n

q∑
μ=1

(cμ+1
m,n )†cμm,n − tb

∑
m,n

q∑
μ=1

(cμm,n+1)†cμm,n e−2πiϕμ + h.c., (16)

7
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where (m, n) is the position of the (magnetic) unit cell, μ a sublattice index, ta and tb are hopping
parameters, and ϕ = p/q. The additional phase factors (in comparison to the field free case)
break the translation symmetry of the square lattice, requiring the unit cells to consist of q
lattice sites. They are the Peierls phases [25, 26] and can be conceptualized as Aharonov–Bohm
phases originating from a flux piercing through each plaquette of the square lattice. They can
be calculated by replacing the field-free hopping terms

c†R+ex/y
cR → c†R+ex/y

cR e−i e
h̄c

∫ R+ex/y
R A(r′)dr′ (17)

and depend on the choice of A. We picked A = Bxey. The flux per lattice site is ϕ = p/q =
B/Φ0 in units of the flux quantumΦ0, and B is the external magnetic field (the lattice constants
are set equal to one). The explicit inclusion of a sublattice is chosen to avoid the unusual
Fourier transformation sometimes applied by authors, e.g. in [6, 7, 27]. There, a Brillouin
zone of dimensions −π � kx , ky � π is defined and then split up into q sections that serve as
degrees of freedom instead of working with proper sublattice indices. We block diagonalize
equation (16) with

cμkx ,ky
=

√
1
N

∑
m,n

e−ikxqm e−ikyncμm,n, (18)

where N is the number of unit cells. For convenience, we introduce the abbreviation cμ = cμkx ,ky
.

Note the continuation condition cμ+q = eikxqcμ obtained from cμ+q
m,n = cμm+1,n. The Hamiltonian

then becomes

Ĥ =

π/q∑
kx=−π/q

π∑
ky=−π

ĥkx ,ky , (19)

with

ĥkx ,ky =

q∑
μ=1

− tac†μ+1cμ − tac†μcμ+1 − 2tb cos(ky + 2πϕμ)c†μcμ (20)

or written as a matrix h(kx, ky) with the elements hμ,μ′ = 〈μ|ĥkx ,ky |μ′〉, |μ〉 = c†μ|0〉

h =

⎛
⎜⎜⎜⎜⎝

v1 −ta 0 −ta e−iqkx

−ta v2
. . . 0

0
. . .

. . . −ta
−ta eiqkx 0 −ta vq

⎞
⎟⎟⎟⎟⎠. (21)

Here we have defined vμ = −2tb cos(ky + 2πϕμ). Note that the matrix in equation (21) is
2π-periodic in ky and 2π/q-periodic in kx as it should be considering the shape of our unit
cell originating from the choice of A. The notation from reference [7] leads to kx and ky being
swapped in the matrix, which contradicts the definition of the Brillouin zone. Then defining
patches over the boundary conditions of the actual Brillouin zone cannot be done.

8
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Figure 3. Energy spectrum of the Hofstadter model for p/q = 1/2.

3.1. p/q = 1/2: non-trivial winding vectors

For p/q = 1/2 equation (21) becomes

h =

(
2tb cos ky −ta(1 + e−2ikx )

−ta(1 + e2ikx ) −2tb cos ky

)
. (22)

Two Dirac cones emerge at (π/2, π/2) and (π/2,−π/2), see figure 3. Their respective Hamil-
tonians in linear approximation are

h±(k) = 2ta
(

kx −
π

2

)
σy ± 2tb

(
ky ±

π

2

)
σz. (23)

For two-band models only non-vanishing fx and fy around the Dirac point can lead to a defin-
able winding number. Here, with f x = 0 the introduction of winding vectors is expedient as
we discuss below.

Close to the Dirac cone of an effective Hamiltonian Ĥ = fσ we can expand the Bloch
vector f to linear order in polar coordinates

f j(kx, ky) ≈ α jkx + β jky = k(α j cos ϕ+ β j sin ϕ). (24)

Then for fixed k = |k| the Bloch vector traces the shape of an ellipse

f = k(α cos ϕ+ β sin ϕ). (25)

Orthogonal to the plane spanned by α and β we define the winding vector w as an oriented
normal vector

w =
α× β

|α× β| . (26)

This definition is equivalent to the definition given in [15]:

w =
1

2π

∮
n ×dn, (27)

9
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where n = f/| f |. For convenience, we work with a normalized vector |α× β| = 1. The phase
φ of the second component of equation (13) ( f x + i fy = R eiφ) determines the winding number:

φ = arctan

(
fy

f x

)
= arctan

(
α2 cos ϕ+ β2 sin ϕ

α1 cos ϕ+ β1 sin ϕ

)
(28)

and to have a well-defined winding orientation, (α1, β1) and (α2, β2) have to be linearly inde-
pendent:

det

(
α1 β1

α2 β2

)
= wz �= 0. (29)

The sign of wz in equation (29) determines the winding orientation, analogously to the
definition of chirality in [2, 21]. wz > 0 (wz < 0) is related to counterclockwise (clockwise)
winding. Alternatively we could say that the winding is +1 (−1). For the Hamiltonian ĤM=0 =
kxσx + kyσy the winding vector would be w = ez and the winding is counterclockwise.

For the Dirac cones in equation (23) the winding vector is parallel to the σx-axis. To get a
well-defined winding with respect to the σx –σy-plane we rotate the Hamiltonian around the
σy-axis by π/2. Such a rotation corresponds to a unitary transformation that leaves the band
spectrum invariant. Since a rotation affects the Hamiltonian like a continuous deformation, the
Chern numbers of the bands must also be invariant. With the rotation matrices [28]

R̂ j(ω) = exp
(

i
ω

2
σ j

)
= 𝟙cos

ω

2
+ σ jisin

ω

2
(30)

we find the transformed Hamiltonian

R̂†
y(π/2)h±R̂y(π/2) = ±2tb

(
ky ±

π

2

)
σx + 2ta

(
kx −

π

2

)
σy. (31)

The Dirac cone at kx = ky = π/2 results in a vortex, the Dirac cone at kx = π/2, ky = −π/2
in an antivortex, see figures 4(c) and (d). Their joint contribution to the Chern number is then
zero. The unapproximated Hamiltonian rotated by π/2 is

R̂†
y(π/2)hR̂y(π/2) =

(
ta(1 + cos 2kx) 2tb cos ky + ita sin 2kx

2tb cos ky − ita sin 2kx −ta(1 + cos 2kx)

)
. (32)

In the lower band there is now also a flux carrying antivortex at kx = 0, ky = π/2 and a flux
carrying vortex at kx = 0, ky = −π/2. This vortex–antivortex pair emerges with the rotation of
the Hamiltonian and does not change the difference between vortices and antivortices. Adding
all contributions together, the Chern number of the two bands is zero, as it is expected to be
for any two-band system. Finally, note that in the unrotated vortex fields shown in figures 4(a)
and (b) there appears to be a line at kx = π/2 between ky = −π/2 and ky = π/2, where the
vortex field vanishes. This can be associated to a Z2 invariant, as shown in appendix D.

3.2. Solution for arbitrary p/q

The Hofstadter model has the advantage that the Chern number of every band for all pos-
sible p, q can be computed analytically. This can even be achieved without using the Berry
formalism. With the Streda formula one can calculate the Chern number of an isolated
band [29]

Cr = tr − tr−1, (33)

10
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Figure 4. (a) Vortex field for p/q = 1/2 of the upper band. (b) Vortex field of the lower
band. (c) Vortex field of the rotated Hofstadter model for the upper band. (d) Vortex
field of the rotated Hofstadter model for the lower band. Vortices are marked as oriented
arrows, Dirac cones as dotted oriented arrows or as dotted circles if they lack a winding
number. For the color code see figure 2.

where r denotes the rth eigenspace, which are ordered according to their eigenvalues. If the
band is gapped, then r (r − 1) may equivalently label the energy gap above (below) the band.
tr can be determined with a Diophantine equation

r = qsr + ptr, (34)

where sr, tr ∈ Z and |tr| � q/2. It is also possible to prove equation (33) using the Berry for-
malism, see reference [6, 7, 13, 27]. However, there the two bands connected by Dirac cones
have been ignored. We want to address this deficit.

Chern numbers can only change as band gaps close and reopen. We use this to give the
Hamiltonian a simpler form. In the limit ta → 0, hμ,μ′ becomes diagonal and the eigenener-
gies become cosine bands with no dispersion along the kx-axis, see figure 5. To these bands
we associate eigenstates c†μ|0〉 = |μ〉 with eigenenergies Eμ(ky) = −2tb cos(ky + 2πϕμ). Note
that these states are not the Bloch bands, which are ordered according to their eigenvalues;
to distinguish the two, we assign the Bloch bands a latin index, whereas the eigenstates with
the continuous cosine dispersion will be denoted using greek indices. In the weak coupling
regime ta � tb eigenstates |m〉 should approximately be equal to |μ〉 for some μ, except in the
neighborhood of a degeneracy between two bands μ1 and μ2. Here, eigenstates are obtained
by an effective 2 × 2 matrix hr,α, with (hr,α) j,l = 〈μ j|ĥkx ,ky |μl〉. The index α runs from 1 to q,
thereby covering all q crossings of a gap r, see figure 5. The Bloch states |m〉 have to be
gained in perturbation theory and hr,α has off-diagonal elements that cause hybridization.
Details are given in appendix C. In the vicinity of the rth gap opening, there are |tr| matrices
of the form

hr,α =

(
ε Δr e− sgn(tr)ikxq

Δr esgn(tr)ikxq −ε

)
(35)

and q − |tr| matrices of the form

hr,α =

(
ε Δr

Δr −ε

)
, (36)

11
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Figure 5. Energy spectrum of the Hofstadter model for q = 4, ta = 0.

Figure 6. Closeup of the phase convention chosen between the rth and r − 1th gap. The
vertical bar separates two neighboring patches which have to be defined for intervals of
2π/q in ky-direction. |Ψα

I 〉 and |Ψα
II〉 are two eigenstates of the same band, but with a

different phase convention. |Ψα
II〉 has a positive real |μ1〉 component and |Ψα

I 〉 a positive
real |μ3〉 component.

where Δr is a small hybridization matrix element that scales like t|tr |a /t|tr |−1
b and ε = vyky

with vy > 0, see equation (C1). For convenience, we omit the explicit dependence of ε on
r and α.

For gapped bands the vortex field frame is not yet required and we determine the Chern
number by partitioning the Brillouin zone into patches as described in section 2.1. Around
each degeneracy we choose the phase convention to make the first component with the strictly
increasing energy dispersion positive real. We need the negative energy eigenstates for the band
below the rth gap. The eigenstates of equation (35) are then given as |Ψα

II〉 = |μ1〉+ 0+|μ2〉 for
ε < 0 and |Ψα

II〉 = 0+|μ1〉 − sgn(Δr)esgn(tr)ikxq|μ2〉 for ε > 0, see figure 6. ‘0+’ symbolizes the

12
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Figure 7. Patch construction vs vortex field for the p/q = 1/4 Hofstadter model.
(a) Plot of the first component of the eigenvectors of the lowest band. On each patch the
phase convention is chosen as described in the main text. To make the phase difference
between neighboring patches easier to spot, the component is plotted for ta = tb = 1,
which is qualitatively the same as in the weak coupling limit. The boundaries of the
patches are located at ky = −5π/8,−π/8, 3π/8, 7π/8. The patches touching at ky =
−π/8 are connected in the weak coupling limit with the transition function eiχα = e−ikxq

which leads to the correct Chern number C1 = 1 = t1 − t0 (with t0 = tq = 0) according
to equation (37). The other transition functions in the limit ta → 0 are equal to one.
(b) Vortex field for the lowest band with |ΦII〉 = |1〉 and |ΦI〉 = |3〉. The vortex at
kx = π/4, ky = −π/2 corresponds to the correct Chern number C1 = 1. For the color
code see figure 2.

fact that we work with eigenstates far enough away from the degeneracy that one of the com-
ponents can be made arbitrarily small, yet it never goes exactly to zero. Correspondingly, the
eigenstates for the (r − 1)th gap are |Ψα

I 〉 = 0+|μ3〉+ sgn(Δr−1)esgn(tr−1)ikxq|μ2〉 for ε < 0 and
|Ψα

I 〉 = |μ3〉+ 0+|μ2〉 for ε > 0, as here we have to consider the positive energy eigenstates.
The eigenstates of equation (36) do not carry relevant phase factors6.

We need q patches, each one covering both a degeneracy of the (r − 1)th gap at some fixed
ky and a degeneracy of the rth gap at ky + π/q. Equation (8) becomes

Cr =
1

2π

q∑
α=1

∫ −π/q

π/q
dkx

d
(
Arg(eiχα )

)
dkx

. (37)

6 Note that technically to conform with our perturbation ansatz we need one further patch line the decreasing sections
of the band, as we have made only the parts with increasing dispersion real. However, it is easy to convince oneself
that this will not change the end result, as it is ultimately equivalent to have one transition function between |Ψα

II〉
and |Ψα

I 〉 or to have two transition functions that connect the states with a state, where the decreasing component is
non-negative real and analogously for eigenstates of equation (36).

13
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We define eiχα = eiχr−1,α e−iχr,α , with |Ψα
I 〉 = eiχα |Ψα

II〉. In |tr| cases eiχr,α =
− sgn(Δr) exp(sgn(tr)ikxq) and in |tr−1| cases eiχr−1,α = sgn(Δr−1) exp(sgn(tr−1)ikxq). In
all other cases, where the crossing is of the form of equation (36), eiχα is equal to ±1. The
Chern number is then equal to Cr = tr − tr−1, like in equation (33).

An example is plotted in figure 7(a) for p/q = 1/4 and the lowest band. It is easy to spot the
phase difference between the gauges at ky = −π/8, which leads to the correct Chern number
of C1 = 1, because the only non-trivial eiχα is equal to e−ikx q in the limit ta � tb. Alternatively
one could have considered a vortex field, which is plotted in figure 7(b).

If q is an even number, then at E = 0 there are q Dirac cones [30] that also manifest
themselves in the band hybridization elements. If q = 4n, n ∈ N then at r = q/2 they are

hq/2,α± =

(
ε ±iΔ q

2
e∓ikxq/2 sin(kxq/2)

c.c. −ε

)
, (38)

where α+ = α− + q/2, see equation (C4). In other words, for every degeneracy at ky there is
another degeneracy at ky + π of the same subspace but with a complex conjugated coupling
matrix. If q = 2(2n + 1), then

hq/2,α± =

(
ε Δ q

2
e∓ikxq/2 cos(kxq/2)

c.c. −ε

)
, (39)

see equation (C3). The winding vectors of the Dirac cones again point toward the σx axis of
each subspace. Therefore, we rotate all subspaces around their σy axes by π/2. Since all the
rotation matrices R̂y,μ1 (π/2) for different subspaces {|μ1〉, |μ2〉 = |μ1 + q/2〉} commute with
each other, there is no particular order and we can build the product of all of them:

(40)

𝟙 are q/2 × q/2 unit matrices. Notice that the winding numbers of the two Dirac cones in the
same subspace are opposite to each other as in the case of p/q = 1/2.

We want to calculate the Chern number C of the two bands with Dirac cones. We will have
the contributions of the gaps with r = q/2 − 1 and r = q/2 + 1 that have to be treated as we
did before. Additionally, we have the contributions of the Dirac cones. The optimal route is
therefore to split up the patches we worked with before. There used to be q patches for a given
band, covering a degeneracy at r and r − 1; now we will work with 2q patches, one for each
degeneracy.

What is the transition function eiχα between the patches? Without loss of generality we
start with the lower band m = q/2. Let us denote with |Ψq/2

0 〉 the eigenstates of the Hofstadter

matrix h (see equation (21)) and with |Ψq/2
π/2〉 the eigenstates of R̂†

tothR̂tot. Both eigenstates are

connected like |Ψq/2
π/2〉 = R̂†

tot|Ψ
q/2
0 〉. The transition function is then defined by

Arg(eiχ) = Arg
(
〈Ψq/2

II,π/2|Ψ
q/2
I,π/2〉

)
= Arg

(
〈ΦII|P̂q/2

Ψπ/2
|ΦI〉

)
,

(41)
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with the projector P̂q/2
Ψπ/2

onto the state |Ψq/2
π/2〉. By substituting |ΦII〉 → R̂†

tot|ΦII〉 and using the

idempotence of the projector we find

Arg(eiχ) = Arg
(
〈ΦII|Ψq/2

0 〉〈Ψq/2
0 |R̂tot|Ψq/2

π/2〉〈Ψ
q/2
π/2|ΦI〉

)
. (42)

We have determined earlier that the only form of |Ψq/2
0 〉〈Ψq/2

0 |ΦII〉 that results in non-trivial

contributions is 0+|μ− tq/2−1〉+ sgn(Δq/2−1)esgn(tq/2−1)ikxq|μ〉. For R̂rot|Ψq/2
π/2〉〈Ψ

q/2
π/2|ΦI〉 one

finds a solution of the form a|μ〉+ b|μ+ q/2〉. It is easy to show, that either R(a) < 0 or
>0 and similarly for b. Therefore,

dArg(eiχ) = dArg(〈μ|sgn(Δq/2−1) e−sgn(tq/2−1)ikxqa|μ〉)
= sgn(tq/2−1)q dkx + dArg(a),

(43)

where
∫ −π/q
π/q dkx∂Arg(a)/∂kx = 0. The upper band with m = q/2 + 1 can be treated analo-

gously. Therefore, the contributions from the patches of the lower and upper band combined
are the same as in the gapped case, tq/2+1 − tq/2−1.

We still have to analyze the patches containing the Dirac cones. We make use of a vortex
field given by

Arg(eiχ) = Arg
(
〈μ+ q/2|P̂q/2

Ψπ/2
|μ〉

)
= Arg(±ε− iΔ/2 sin(kxq)).

(44)

It results in two vortices with opposite winding in every patch. One of the vortices is pinned
by the Dirac point, the other one is shifted by π/2 in kx-direction, where the band is gapped.
This can be seen for the p/q = 1/2 case in figures 4(c) and (d). Independent of the way we
split the Dirac cones up with a mass term, there must be exactly one clockwise and one coun-
terclockwise flux carrying vortex in one of the two bands at the position of the former Dirac
cones. Therefore, the net contribution of both vortices at the Dirac cones is zero and we are
left with the contributions from the gaps at q/2 − 1 and q/2 + 1. The total Chern number is
then C = tq/2+1 − tq/2−1.

4. Conclusion

In this paper we have studied the effect of topological defects on Chern numbers of gapless
bands. These defects manifest themselves as Dirac cones that can be characterized with wind-
ing vectors. This generalizes the notion of winding numbers, which cannot be defined if the
winding vector is placed in the σx –σy-plane. Such a situation occurs in the Hofstadter model.
We have shown that in a weak coupling limit all of its Dirac cones lack a well-defined winding
number. In that case Chern numbers of bands can be calculated by rotating their characteristic
winding vectors w to have a non-vanishing σz-component. Then a combination of single-band
vortex fields of the involved bands leads to the correct Chern number. This procedure has been
successfully applied on the Hofstadter model which to our knowledge has not been done in the
literature.

The next logical step for future research would be to extend the notion of winding vec-
tors and winding numbers to Dirac cones and topological defects in Hermitian q × q, q > 2
matrices. It is possible to work with effective 2 × 2 matrices by projecting the Hamiltonian
onto the eigenbasis of the contact point of the Dirac cone, as outlined in [15, 21]: with the
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contact point k0 the Hamiltonian can be written as Ĥ = Ĥ(k0) + Ĥ1(k − k0) +O((k − k0)2).
If U(k0) diagonalizes Ĥ(k0) and P̂ projects onto the eigenbasis of the contact point of Ĥ(k0)
then P̂U†(k0)Ĥ1(k − k0)U(k0)P̂ provides an effective 2 × 2 Hamiltonian of a Dirac cone that
can be attributed a winding vector. A promising study ground for this ansatz could again be
the Hofstadter model. We have already found earlier that in the limit ta → 0 two Dirac cones
located at ky and ky + π exist in the same eigenspace and have opposite winding. We suspect
that this might be the case in the isotropic case, too, as one finds

Ĥ1(kx − k0
x , ky − k0

y ) = Ĥ1(kx − k0
x ,−ky − (k0

y + π)) (45)

and

(46)

This study may be interesting for inquiring merging scenarios of Dirac cones beyond p/q =
1/2 [31].

Finally, it should be noted that the vortex field approach does not provide us with a new
type of topological invariant but a more efficient way to compute Chern numbers that shows
its strength if the position of vortices can be determined based on some symmetries. It would be
interesting to use this fact in computationally expensive problems like in the study of correlated
Chern insulators, where symmetries can indeed be used to predict the location of a topological
phase transition in an associated manifold [32].
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Appendix A. Magnetic translation operators

The Hamiltonian of electrons subject to a periodic potential has a common set of eigenstates
with the translation operators T̂a = e−iap̂/ h̄ if a is a unit vector of the lattice. In the presence
of an external magnetic field this does not hold anymore, because the vector potential A(r) is
aperiodic. However, the vector potential on two lattice sites can be related by a gauge transfor-
mation φa(r):

A(r − a) = A(r) +∇φa(r). (A1)
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Thereby, we can define magnetic translation operators that commute with the Hamiltonian
[6, 33]

T̂M
a = exp

(
i

e
h̄c

φa(r)
)

T̂a. (A2)

T̂M
a and T̂M

b commute only if a and b span an area threaded by an integer number of flux quanta,
so for p/q flux quanta per lattice site the (magnetic) unit cell of the Hofstadter Hamiltonian has
to contain q sites for all involved magnetic translation operators to be diagonalizable simulta-
neously with the Hamiltonian. In the gauge convention of equation (16) we identify T̂M

ey
= T̂ey

and

T̂M
ex
=

∑
m,n,μ

e−2πinϕ
(
cμ+1

m,n

)†
cμm,n

=
∑

kx ,ky ,μ

(
cμ+1

kx ,ky−2πϕ

)†
cμkx ,ky

.

(A3)

As unit cell vectors we choose ey and qex, because then T̂M
qex

= T̂qex . This implies 2π/q peri-
odicity of the energy spectrum in kx direction. Translating an electron around a unit cell results
in an Aharonov–Bohm phase

T̂M
ex

T̂M
ey

(
T̂M

ex

)−1
(

T̂M
ey

)−1
= e−2πiϕ. (A4)

As a consequence, if |m, kx , ky〉 is a Bloch eigenstate of Ĥ, then

T̂M
ey

T̂M
ex
|m, kx, ky〉 = e−i(ky−2πϕ)T̂M

ex
|m, kx, ky〉 (A5)

which implies

T̂M
ex
|m, kx, ky〉 ∝ |m, kx, ky − 2πϕ〉, (A6)

so the energy spectrum is also 2π/q-periodic in ky-direction. We can characterize this state
further. If

|m, kx, ky〉 =
q∑

μ=1

bm
μ

(
cμkx ,ky

)†
|0〉, (A7)

where bm
μ (k) are the eigenvector components, then with equation (A3)

T̂M
ex
|m, kx, ky〉 =

q∑
μ=1

bm
μ−1 e−ikxqδ1,μ

(
cμkx ,ky−2πϕ

)†
|0〉 (A8)

with bm
μ = bm

μ+q and the Kronecker delta δ1,μ. This means that all components of the eigenvector
permute if the eigenvector is shifted from ky to ky − 2πϕ; theμ = 1 component is supplied with
an additional phase factor to satisfy c†μ+q = e−ikx qc†μ.
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Appendix B. Effective coupling order around unperturbed band degenarcies

In the weak coupling limit we write equation (20) as ĥkx ,ky = ĥ0,kx ,ky − taV̂kx ,ky with

ĥ0,kx ,ky = −2tb

q∑
μ=1

cos(ky + 2πϕμ)c†μcμ

V̂kx ,ky =

q∑
μ=1

(
c†μ+1cμ + c†μcμ+1

)
.

(B1)

Because V̂kx ,ky only contains nearest neighbor hopping terms, to couple two bands |μ1〉 and |μ2〉
around a degeneracy at the rth gap with |̃tr| := min(|μ2 − μ1|, q − |μ2 − μ1|) we need pertur-
bation theory of |̃tr|th order. For now, we distinguish t̃r and tr from the Diophantine equation in
equation (34), because we have not shown the equivalence yet. There is a connection between
the algebra of magnetic translation operators and the Diophantine equation [34]. We inquire

Eμ1(ky) = 〈μ1, kx, ky|ĥ0

(
q∑

μ=1

c†μ+1cμ

)t̃r

|μ2, kx, ky〉

= 〈μ1, kx, ky|ĥ0
(
T̂M

ex

)̃tr |μ2, kx , ky + 2πα/q〉,

(B2)

see equation (A8). Note that T̂M
ex

shifts ky, requiring the addition of the term 2πα/q in
|μ2, kx , ky + 2πα/q〉. The eigenenergy, where the rth gap opens, is Egap = −2tb cos(rπ/q).
Then, if ky is the wavevector at the degeneracy, where we find Eμ1 (ky) = Eμ2(ky), according
to equation (B2) (because T̂M

ex
commutes with ĥ0) Egap = Eμ2(ky) = Eμ2(ky + 2πα/q):

cos(rπ/q) = cos(ky + 2πϕμ2) = cos(ky + 2πα/q + 2πϕμ2) (B3)

and therefore

r = (±)ky,μ2α (mod q), (B4)

where

(±)ky,μ2 =

{
+ if ky + 2πϕμ2 (mod 2π) ∈ (−π, 0)
− if ky + 2πϕμ2 (mod 2π) ∈ (0, π)

. (B5)

We can deduce from equation (B2) together with equation (A3) a relation between t̃r and α

ky +
2πα

q
− 2πϕ̃tr = ky (mod 2π). (B6)

Together with equation (B4) this yields

(±)ky,μ2r = p̃tr + qsr, (B7)
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where sr ∈ Z. Note the additional sign compared to equation (34), hence tr = (±)ky,μ2 t̃r.
If Eμ2(ky) is decreasing and Eμ1(ky) is increasing at the degeneracy, then, according to
equation (B5), (±)ky,μ2 = + and tr = t̃r.

Appendix C. Hofstadter model in the weak coupling limit

We want to deduce equations (35) and (36). To get well-defined matrix elements we demand
that Eμ1(ky) is monotonically increasing at the degeneracy, so t̃r = tr and 〈μ1|ĥkx ,ky |μ1〉 = vyky,
with vy > 0. For convenience, in the following we change notation and use |μ〉 for the expanded
states7. Unperturbed states and energies will now contain a superscript (0), i.e. |μ(0)〉 and E(0)

μ .
We expand |μ1〉 and |μ2〉 in (|tr| − 1)th order perturbation theory. The missing order is con-
tained in the coupling term taV̂kx ,ky (see appendix B) in the matrix element 〈μ1|ĥkx ,ky |μ2〉. Due
to equation (B2) we have μ2 = μ1 − tr mod q. Two cases have to be considered for its evalua-
tion. The first case is μ2 = μ1 + sgn(tr)(q − |tr|). Here we have to make use of the continuation
condition cμ+q = eikxqcμ. This happens a total of |tr| times, namely whenever at a given degen-
eracy naively defining μ2 = μ1 − tr for 1 � μ1 � q would fail to provide 1 � μ2 � q. Then

〈μ1|ĥkx ,ky |μ2〉 ≈
t|tr |a

(ΔE)|tr|−1
e− sgn(tr)ikx q

=:Δr e−i sgn(tr)kx q.

(C1)

ΔE is some constant ∝ tb (see equation (C2)). Note that it is not the gap between E(0)
μ1

and
E(0)
μ2

. Equation (35) then follows. In the other q − |tr| cases, where μ2 = μ1 − tr equation (C1)
yields Δr.

The reason that we get Dirac cones in equations (38) and (39) is that |tr| = q/2 and we get
the same order in ta by raising |μ(0)

2 〉 with (
∑

μc†μ+1cμ)q/2 or lowering it with (
∑

μc†μ+1cμ)−q/2.
This results in two terms, where the continuation condition has to be used for one of the two.
The jth order of perturbation theory of a state |μ〉 is

|μ( j)〉 =
∑
ν �=μ

|ν(0)〉 〈ν
(0)|V̂|μ( j−1)〉
E(0)
ν − E(0)

μ

+

j∑
l=1

E(l)
μ

∑
ν �=μ

|ν(0)〉 〈ν
(0)|μ( j−l)〉

E(0)
ν − E(0)

μ

, (C2)

with the orthogonality condition 〈μ( j)|μ(0)〉 = δ j,0 and jth correction to the eigenenergies E( j)
μ =

−〈μ(0)|V̂|μ( j−1)〉 for j � 1. Right at the degeneracy E(0)
μ = −2tb cos(ky + 2πϕμ) = 0, because

the Dirac points have zero energy, so E(0)
μ+ν = −2tb cos(ky + 2πϕμ+ 2πϕν) = +2tb cos(ky +

2πϕμ− 2πϕν) = −E(0)
μ−ν . |μ( j−1)〉 in equation (C2) can be expressed as a weighted sum over

states {|ν(0)〉}. By applying V̂ to these states they will be lowered or raised with
∑

λc†λ+1cλ
and

∑
λc†λcλ+1. Let |ν(0)

max〉 and |ν(0)
min〉 be the two states in the sum so that |μ− νmax/min| �

|μ− ν|. For every additional order in perturbation theory raising |ν(0)
max〉 will get an addi-

tional (−1) compared to lowering |ν(0)
min〉. The gap scales proportional to 1/(ΔE)q/2−1, so for

q = 4n we have to subtract the contributions from these raised and lowered states in the

7 This will not cause issues as the dominant contribution to the expanded states comes from the original one in the limit
ta → 0. Because of this the Berry curvature of the expanded states goes to zero in this limit, so the relevant topological
information of the Bloch states is contained in the matrices of equation (35), not in their basis.
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expansion of |μ〉 at E = 0 and for q = 2(2n + 1) we have to add them. Then, we find for
q = 2(2n + 1)

〈μ1|ĥkx ,ky |μ2〉 ≈
Δ

2
(1 + e∓ikxq) = Δeikxq/2 cos(kxq/2) (C3)

and for q = 4n

〈μ1|ĥkx ,ky |μ2〉 ≈
Δ

2
(1 − e∓ikxq)

= ±iΔe∓ikxq/2 sin(kxq/2).

(C4)

We write ±, because at ky and ky + π we find the same subspace |μ1〉 and |μ2〉 but a different
sign in the exponent.

Appendix D. Möbius bundle description of topological defects in 2D

Consider the toy Hamiltonian

Ĥ+(k) = kxσx + kyσy. (D1)

Around a circle S1 at k = 0 we may choose smooth complex eigenstates. These have a U(1)
gauge freedom, as we can multiply eigenstates with a complex phase factor eiφ(k). In math-
ematical terms eigenstates correspond to sections of a line bundle E [21]. In the above case
E is given by the Cartesian product of the base space S1 times the manifold associated to
the structure group U(1), the fiber, which is also S1, because there exist eigenstates that
are globally smooth. This results in the trivial bundle E = S1 × S1, which does not indi-
cate by itself an associated topological invariant of this problem. Let us now consider the
Hamiltonian

Ĥ+
R(k) = kxσx + kyσz, (D2)

which can be obtained from equation (D1) by unitary rotation. Since equation (D2) is a real
Hermitian matrix, we are allowed to choose real eigenstates. However, it turns out that these
cannot be made globally smooth. If we restrict ourselves to a Z2 � {+1,−1} structure group,
then sections are defined on a Möbius bundle with fiber [−1, 1], which locally looks like
U j × [−1, 1], where {Uj} are open sets that cover S1 [35, 36]. Normalized eigenstates are
then sections, which are defined on the boundary of the Möbius band ∂[−1, 1] = Z2. This
allows the definition of a Z2 invariant of a topological defect. Let |Ψ(θ)〉 be an eigenstate of
equation (D2), where θ ∈ S1 is a parametrization of the base space. With equation (13) one
will find that real eigenstates obey |Ψ(0)〉 = −|Ψ(2π)〉, so the bundle is twisted once. If a
closed curve encircles n cones of the form of equation (D2), the twist will be n mod 2. Gener-
ally, twists of real vector bundles can be expressed by Stiefel–Whitney classes [37] that also
play a role in the Z2 invariants of topological insulators [38] and in higher order topology
[39]. Here, the quantization of the Berry phase [35, 36] is given by the first Stiefel–Whitney
class. The quantization of the Berry phase will hold for any Hamiltonian with Dirac cones if
a real Möbius bundle construction as discussed above is possible, which is for example the
case for graphene, as its Hamiltonian can also be made purely real by a continuous unitary
transformation.

The relation between the twist of the bundle and the presence of Dirac cones can be further
clarified, by considering a special solid torus parametrization of the p/q = 1/2 Hofstadter
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Figure 8. Flux tubes between monopoles in a torus geometry. (a) Flux tubes touching
the torus surface only at the monopole positions which will lead to well-defined winding
numbers. (b) Flux tubes lying exactly on the surface of the torus that will lead to a
discontinuity of the eigenstates at the respective k values.

Hamiltonian as an example. We already have two parameters kx and ky that describe the surface
of the torus. We include a third parameter r and substitute the f z component of the Hofstadter
model, written as h = fσ, by 4 − 4r + 2r cos ky, where we have set tb = 1. We obtain a solid
torus geometry

x = (2 + r cos ky) cos kx

y = (2 + r cos ky) sin kx

z = r sin ky,

(D3)

where e.g. 0 � r � 1. Then the Hamiltonian will not be degenerate for isolated points but
instead for all points of a closed curve that is parameterized by the conditions kx = π/2 and
r = 4/(4 − 2 cos ky). The curve crosses the surface of the torus (r = 1), where the Dirac points
appear in the Brillouin zone of the p/q = 1/2 Hofstadter model. Going around a single one of
the Dirac cones results in a path around the curve of degeneracies, which is not homeomorphic
to a path that does not encircle a Dirac cone. The difference between both scenarios can be
captured by a Z2 invariant [40] which describes the topological charge of a nodal line [41].
The Möbius bundle of the Dirac cones of the Hofstadter model also corresponds to a real
bundle as can be seen, when applying the unitary transformation

U =

(
1 0
0 e−ikx

)
(D4)

which brings the Hamiltonian to a purely real form. It gives the wave function a twisted bound-
ary condition Ψ(kx = −π/2) = −Ψ(kx = π/2) but otherwise leaves its geometric properties
invariant, as d(U† dU) = 0.

A good graphical indicator of the twist of the Möbius bundle is the line between the Dirac
cones in figures 4(a) and (b), where the vortex field is discontinuous. This is due to the condition
|Ψ(0)〉 = −|Ψ(2π)〉 in the chosen gauge and the fact that the winding vectors of the Dirac cones
do not have a σz component. In this particular situation and with a solid torus parametrization,
where the two Dirac points appear as isolated monopoles, they will have opposite charge (the
parametrization given above for the Hofstadter model would not be suitable here, as it leads to
an equivalent of a real vector bundle. In this case, the Chern classes which are commonly used
to express the charge of Weyl points, are all necessarily trivial and the solid torus parametriza-
tion could not lead to isolated degeneracies with linear dispersion). They are connected by a
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flux tube, which lies exactly on the surface of the torus and which causes the discontinuity
in the states, see figure 8. An infinitesimal rotation of the Hamiltonian and the same gauge
convention of the eigenstates will push the flux tube away from the torus surface everywhere,
except at the monopole positions, which will correspond to an opposite, well-defined winding
of the two Dirac cones.
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